WO2019042477A1 - 自动除雪设备及其安全抛雪方法 - Google Patents

自动除雪设备及其安全抛雪方法 Download PDF

Info

Publication number
WO2019042477A1
WO2019042477A1 PCT/CN2018/104000 CN2018104000W WO2019042477A1 WO 2019042477 A1 WO2019042477 A1 WO 2019042477A1 CN 2018104000 W CN2018104000 W CN 2018104000W WO 2019042477 A1 WO2019042477 A1 WO 2019042477A1
Authority
WO
WIPO (PCT)
Prior art keywords
snow
throwing
angle
height
speed
Prior art date
Application number
PCT/CN2018/104000
Other languages
English (en)
French (fr)
Inventor
赵凤丽
查霞红
程坤
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710895458.1A external-priority patent/CN109586347A/zh
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Priority to EP18851399.8A priority Critical patent/EP3680391B1/en
Priority to CN201880003805.8A priority patent/CN110312834B/zh
Publication of WO2019042477A1 publication Critical patent/WO2019042477A1/zh
Priority to US16/808,039 priority patent/US20200299912A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H5/00Removing snow or ice from roads or like surfaces; Grading or roughening snow or ice
    • E01H5/04Apparatus propelled by animal or engine power; Apparatus propelled by hand with driven dislodging or conveying levelling elements, conveying pneumatically for the dislodged material
    • E01H5/045Means per se for conveying or discharging the dislodged material, e.g. rotary impellers, discharge chutes
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H1/00Removing undesirable matter from roads or like surfaces, with or without moistening of the surface
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H5/00Removing snow or ice from roads or like surfaces; Grading or roughening snow or ice
    • E01H5/04Apparatus propelled by animal or engine power; Apparatus propelled by hand with driven dislodging or conveying levelling elements, conveying pneumatically for the dislodged material
    • E01H5/08Apparatus propelled by animal or engine power; Apparatus propelled by hand with driven dislodging or conveying levelling elements, conveying pneumatically for the dislodged material dislodging essentially by driven elements
    • E01H5/09Apparatus propelled by animal or engine power; Apparatus propelled by hand with driven dislodging or conveying levelling elements, conveying pneumatically for the dislodged material dislodging essentially by driven elements the elements being rotary or moving along a closed circular path, e.g. rotary cutter, digging wheels
    • E01H5/098Apparatus propelled by animal or engine power; Apparatus propelled by hand with driven dislodging or conveying levelling elements, conveying pneumatically for the dislodged material dislodging essentially by driven elements the elements being rotary or moving along a closed circular path, e.g. rotary cutter, digging wheels about horizontal or substantially horizontal axises perpendicular or substantially perpendicular to the direction of clearing

Definitions

  • the invention relates to the field of intelligent control, and in particular to an automatic walking snow removal device.
  • small mechanical snow-cleaning vehicles are mainly composed of a prime mover, a transmission device, a snow collecting device, a snow throwing device, and an operating system.
  • the prime mover can use a motor or an engine.
  • most of them use a gasoline engine or a diesel engine;
  • the snow collecting device is used to collect snow, mainly using a snow shovel or a spiral stirring cage or a rubber roller brush;
  • the snow throwing device is to throw the collected snow.
  • the main methods are snow throwing impeller and blower;
  • the operating device mainly controls the operation of the equipment, and the forward and the direction of the machine are realized by hand pushing. In this way, under the impetus of manpower, the de-icing and snow-removing machine can continuously remove accumulated ice and snow.
  • the intelligent snow sweeper should have a high degree of automation, low cost of use, low effort and time saving, and good snow removal equipment for snow removal, which can quickly remove snow after snow, thus facilitating people to travel. .
  • the present invention has been made in view of the above circumstances.
  • an automatic walking snow removing device which throws snow or inclusions without causing harm to people or objects, comprising: a walking module that drives the snow removing device to move; a working module including a working motor and Working motor-driven snow throwing mechanism, which collects snow and inclusions on the ground and throws a snow throwing mechanism under the driving of the working motor, saying that the maximum height of the throwing object in the air from the ground is the throwing height; And a control module configured to control the working module or the walking module such that the snow throwing height is not greater than a predetermined snow throwing height threshold.
  • the predetermined snow throw height threshold is 0.8 to 1.1 meters.
  • the predetermined snow throw height threshold is 0.8 meters.
  • the snow throwing mechanism includes a snow removing head that rotates about a central axis, and the working motor drives the snow removing head to rotate the snow and the inclusions on the ground to the snow throwing mechanism, wherein the control module is configured to When it is detected that the throw speed reaches a predetermined speed threshold, the control snow throw height is lower than the predetermined snow throw height threshold.
  • the predetermined speed threshold has a value in the range of 18 to 19 meters per second.
  • the snow removal head radius is 0.088 meters and the snow removal head speed is 1800 to 2000 rpm.
  • the snow throwing mechanism is said to throw the throwing speed as the throwing speed, and the initial throwing angle relative to the horizontal direction is the throwing angle, and the height of the throwing point is the initial Height, wherein the snow throw height is controlled by controlling at least one of throwing speed, throwing angle, and initial height.
  • the predetermined snow throw height threshold ranges from 0.8 to 1.1 m.
  • the initial height is from 200 mm to 800 mm.
  • the throw speed is controlled from 15 m/s to 20 m/s.
  • control throws an angle of elevation of -10 degrees to 25 degrees.
  • the throw speed is controlled from 15 m/s to 20 m/s, and the throw angle is from -10 to 25 degrees.
  • the throw speed is controlled from 15 m/s to 20 m/s
  • the throw angle is from -10 degrees to +25 degrees
  • the initial height is from 200 mm to 800 mm.
  • the snow removal head radius is 0.08 m to 0.12 m
  • the snow removal head speed is controlled from 1,500 rpm to 2500 rpm.
  • control throw speed is 18 m/s to 19 m/s
  • throw angle is 15 degrees
  • the snow removal head radius is 0.088 m and the control rotation speed is 1800 rpm to 2000 rpm.
  • control throwing angle is negative and the initial height is less than or equal to 1 meter.
  • the method further includes simultaneously controlling the snow throw distance to meet a predetermined requirement.
  • the snow throwing mechanism includes a snow removal head that rotates about a central axis that drives the snow removal head to collect snow and debris from the ground to the snow throwing mechanism, wherein the initial height and the snow removal head are given
  • the radius is controlled by controlling the speed of the snow removal head and/or throwing the angle of the throw.
  • the snow throw height is controlled by controlling the rotational speed of the snow removal head.
  • the automatic snow removal device further includes: a snow removal speed detecting component for detecting the rotation speed of the snow removal head, and when the rotation speed of the snow removal head is greater than the first predetermined rotation speed threshold, the control module controls to cause the object to be thrown Throw the angle of the horn as the first angle.
  • the control module controls such that the throwing angle of the throwing object is a second raised angle, wherein the second predetermined rotational speed threshold is less than the first predetermined rotational speed. a threshold, the second raised angle being greater than the first raised angle.
  • the automatic snow removal apparatus further includes: a throwing angle detecting component for detecting the throwing angle, and the control module controlling the snow removing head when the throwing angle is greater than the first predetermined angle of attack threshold The speed is the first speed.
  • the control module controls such that the speed of the snow head is the second speed, wherein the second predetermined angle of attack is less than the first predetermined angle of the threshold, The second rotational speed is greater than the first rotational speed.
  • the automatic snow removal apparatus further includes: adjusting at least one of a rotation speed and a snow angle determined for the snow throw height without considering the resistance condition based on an environmental resistance condition.
  • the automatic snow removing device further comprises: the snow throwing mechanism further comprises: a snow throwing wheel and a snow throwing wheel, the snow throwing wheel gives the secondary power from the snow removing head and throws it from the snow throwing barrel Out.
  • the snow throwing height is controlled by controlling at least one of the rotational speed of the snow removing head, the rotational speed of the snow throwing wheel, and the throwing angle.
  • the automatic snow removal apparatus further includes: a baffle structure disposed at an end of the snow throwing mechanism, wherein the baffle angle is adjustable, and the throwing angle can be adjusted by adjusting the baffle angle.
  • control module adjusts the speed of the walking module according to the thickness of the snow such that the snow throwing height is not greater than a predetermined snow throwing height threshold.
  • control module controls the walking speed of the walking module to be 20-30 m/min.
  • the control module controls the walking speed of the walking module to be 10-25 m/min.
  • the automatic snow removal apparatus further includes: a grille disposed inside or at the end of the snow throwing mechanism for returning the inclusions to reduce inclusions in the throwing object.
  • the grid spacing is less than 50 mm.
  • the snow throwing mechanism further includes a snow thrower that is rotatable in a horizontal direction.
  • the automatic snow removal apparatus further includes: a pocket with a gas permeable structure in the snow throwing cylinder, the gas permeable structure being made of a gas permeable material or provided with a hole so that the throwing material leaks into the pocket from the gas permeable structure.
  • the automatic snow removal apparatus further includes a combination of throwing height and/or throwant energy control structures as follows:
  • baffle angle is adjustable, and the throwing angle can be adjusted by adjusting the baffle angle
  • a grille disposed inside or at the end of the snow throwing mechanism for returning the inclusions to reduce inclusions in the thrown object
  • the invention also provides a safe snow throwing method for controlling snow or inclusions caused by an automatic walking snow removing device without causing harm to people or objects
  • the automatic walking snow removing device comprising a walking module, a working module and a control module
  • the safety Snow throwing methods include:
  • the snow removal device is driven by the walking module
  • the working snow is driven by the working motor to collect the snow and the inclusions on the ground and throw the snow throwing mechanism, saying that the maximum height of the throwing object in the air from the ground is the snow throwing height;
  • the working module or the walking module is controlled by the control module such that the snow throwing height is not greater than a predetermined snow throwing height threshold.
  • the predetermined snow throw height threshold is 0.8 to 1.1 meters.
  • the predetermined snow throw height threshold is 0.8 meters.
  • the snow throwing mechanism includes a snow removing head that rotates about a central axis, and the working motor drives the snow removing head to rotate the snow and the inclusions on the ground to the snow throwing mechanism.
  • the control module is configured to control the snow throwing height to be no greater than a predetermined throwing snow height threshold when detecting that the throwing speed reaches a predetermined speed threshold.
  • the predetermined speed threshold has a value in the range of 18 to 19 meters per second.
  • the snow removal head radius is 0.088 meters and the snow removal head speed is 1800 to 2000 rpm.
  • the snow throwing mechanism is said to throw the throwing speed as the throwing speed, and the initial throwing angle relative to the horizontal direction is the throwing angle, and the height of the throwing point is the initial Height, of which
  • the snow throw height is controlled by controlling at least one of throwing speed, throwing angle, and initial height.
  • the predetermined snow throw height threshold ranges from 0.8 to 1.1 m.
  • the initial height is from 200 mm to 800 mm.
  • the throw speed is controlled from 15 m/s to 20 m/s.
  • control throws an angle of elevation of -10 degrees to 25 degrees.
  • the throw speed is controlled from 15 m/s to 20 m/s, and the throw angle is from -10 to 25 degrees.
  • control throw speed is from 15 m/s to 20 m/s
  • the throw angle is from 0 to +25 degrees
  • the initial height is from 200 mm to 800 mm.
  • the snow removal head radius is 0.08 m to 0.12 m
  • control throw speed is 18 m/s to 19 m/s
  • throw angle is 15 degrees
  • the control speed is 1800 rpm to 2000 rpm.
  • control throwing angle is negative and the initial height is no more than 1 meter.
  • the safe snow throwing method further includes simultaneously controlling the snow throw distance to meet a predetermined requirement.
  • the snow throwing mechanism includes a snow removing head that rotates about a central axis, and the working motor drives the snow removing head to rotate the snow and the inclusions on the ground to the snow throwing mechanism.
  • the snow throw height is controlled by controlling the speed of the snow removal head and/or throwing the angle of elevation.
  • the safe snow throwing method further comprises:
  • the control module controls such that the throwing angle of the throwing object is the first raised angle.
  • the safe snow throwing method further comprises:
  • control module controls to cause the throwing angle of the throwing object to be the second rising angle.
  • the second predetermined speed threshold is less than the first predetermined speed threshold, and the second angle is greater than the first angle.
  • the safe snow throwing method further comprises:
  • the throwing angle is detected by the throwing angle detecting component
  • control module controls such that the speed of the snow removal head is the first speed.
  • the safe snow throwing method further comprises:
  • control module controls so that the speed of the snow removing head is the second speed
  • the second predetermined angle of attack threshold is less than a first predetermined angle of annulus, and the second number of revolutions is greater than the first speed.
  • the safe snow throwing method further comprises: further giving a throwing angle, and controlling the snow throwing height by controlling the speed of the snow removing head.
  • the snow throwing mechanism further comprises: a snow throwing wheel and a snow throwing wheel, the snow throwing wheel gives a secondary power from the snow removing head and throws it from the snow throwing barrel, and
  • the snow throwing height is controlled by controlling at least one of the rotational speed of the snow removing head, the rotational speed of the snow throwing wheel, and the throwing angle.
  • the throwing angle is adjusted by adjusting the angle of the baffle to adjust the throwing height.
  • the baffle structure is disposed at the end of the snow throwing mechanism, and the baffle angle can be adjusted.
  • the speed of the walking module is adjusted by the control module based on the thickness of the snow such that the snow throwing height is no greater than a predetermined snow throw height threshold.
  • the walking speed of the walking module is controlled to be 20-30 m/min.
  • the walking speed of the walking module is controlled to be 10-25 m/min.
  • Some or all of the inclusions are turned back through the grille disposed inside or at the end of the snow throwing mechanism to reduce inclusions in the throw.
  • the grid spacing is less than 50 mm.
  • the snow throwing mechanism further includes a snow thrower that is rotatable in a horizontal direction.
  • the safe snow throwing method further comprises:
  • a pocket with a gas permeable structure is provided in the snow throwing cylinder, and the gas permeable structure is made of a gas permeable material or is provided with a hole so that the throwing material leaks into the pocket from the gas permeable structure.
  • the safe snow throwing method further comprises controlling the throw height and/or the thrown energy by throwing a combination of height and/or throw energy control structures as follows:
  • baffle angle is adjustable, and the throwing angle can be adjusted by adjusting the baffle angle
  • a grille disposed inside or at the end of the snow throwing mechanism for returning the inclusions to reduce inclusions in the thrown object
  • a pocket with a venting function or a hole-like structure A pocket with a venting function or a hole-like structure.
  • the safe snow throwing method further includes, based on the environmental resistance condition, increasing at least one of the rotational speed and the snow lifting angle determined for the snow throw height without considering the resistance condition.
  • the invention also provides an automatic walking snow removal device which throws snow or inclusions without causing harm to people or objects, including:
  • a walking module that drives the snow removal device to move
  • the working module comprises a working motor and a snow throwing mechanism driven by the working motor.
  • the snow throwing mechanism collects the snow and the inclusions on the ground under the driving of the working motor and throws the snow throwing mechanism, saying that the throwing object is in the air from the ground.
  • the maximum height is the height of the snow throw;
  • the snow throwing height is not greater than a predetermined throwing snow height threshold.
  • the snow throwing mechanism is said to throw the throwing speed as the throwing speed, and the initial throwing angle relative to the horizontal direction is the throwing angle, and the height of the throwing point is the initial Height, where the initial height is not greater than the predetermined throw height threshold.
  • the automatic snow removal apparatus further includes a control module configured to control the work module such that the snow throw height is no greater than a predetermined snow throw height threshold.
  • the throwing height of the throwing object is controlled, thereby avoiding hitting the face of a child or an adult, and the safety factor is improved.
  • any one or combination of various structures is arranged to control the throwing energy of the throw, so that even children or adults do not have children or adults. cause some damages.
  • the invention provides a robot power supply device and a robot for the problem that the traditional outdoor high-voltage robot can meet the working demand only by performing high-voltage charging indoors.
  • a robot power supply device includes a control circuit and a power module; the power module is connected to the control circuit; and the control circuit is configured to control the output end of the power module to output the first when the robot is in a working state a voltage, and the control circuit is further configured to: when the robot is in a charging state, control an output end of the power module to output a second voltage; the first voltage is higher than a corresponding second voltage after the charging is completed.
  • the power module includes two or more power sources.
  • the second voltage is an output voltage of the power source.
  • the second voltage is between 42V and 60V.
  • the first voltage is a sum of output voltages after all of the power sources are charged.
  • control circuit controls all of the power supplies in series when the robot is in an operational state, and the control circuit is configured to control all of the power supplies in parallel when the robot is in a charging state.
  • control circuit includes a control unit and a switch unit; the control unit is configured to control each of the power sources in series or in parallel through the switch unit.
  • the number of the power sources is two, and is respectively recorded as a first power source and a second power source;
  • the switch unit includes a first single pole double throw switch and a second single pole double throw switch; the movable contact of the first single pole double throw switch is connected to the positive pole of the first power source, and the first single pole double throw switch a first stationary contact is respectively connected to a positive pole of the second power source and a second stationary contact of the second single pole double throw switch; a movable contact of the second single pole double throw switch and the first power source
  • the negative pole is commonly grounded, and the first static contact of the second single pole single pole double throw switch is grounded together with the negative pole of the second power source;
  • the control unit is configured to control a dynamic contact of the first single-pole double-throw switch to be connected with a second static contact when the robot is in an active state, and control a movable contact of the second single-pole double-throw switch Connecting to the second stationary contact; the control unit is further configured to control, when the robot is in a charging state, to connect the movable contact of the first single-pole double-throw switch with the first stationary contact, and control the first The movable contact of the two single-pole double-throw switch is connected to the first stationary contact.
  • a switch circuit is further included; the switch circuit is connected between the power module and a load in the robot, and is connected to the control circuit; when the robot is in a working state, The switching circuit is in an on state under the control of the control circuit; when the robot is in a charging state, the switching circuit is in an off state under the control of the control circuit.
  • a robot includes a load and the robot power supply device; the load is coupled to the robot power supply device.
  • the above-mentioned robot power supply device and the robot have the beneficial effects that in the robot power supply device and the robot, the control circuit is configured to control the output end of the power module to output the first voltage when the robot is in the working state, and the control circuit is further used for When the robot is in the charging state, the output terminal of the control power module outputs the second voltage. Therefore, when the robot needs a higher working voltage, under the joint action of the control circuit and the power module, even if the outdoor charger can only perform low voltage charging, the power module can only be charged.
  • the output voltage ie, the first voltage
  • the output voltage can also meet the high power demand, so that the traditional outdoor high-voltage robot can overcome the shortcomings of high-voltage charging indoors to meet the working requirements, and improve the intelligence of the robot.
  • FIG. 1(a) is a schematic view showing a simplified structure 1000 of an automatic walking snow removing device according to a first embodiment of the present invention
  • FIG. 1(b) is a view showing a simplified structure of an automatic walking snow removing device according to a second embodiment of the present invention. Schematic diagram of 1000'.
  • Figure 2 shows a schematic diagram of a system framework 2000 for an automated walking snow removal device.
  • Fig. 3 is a schematic view showing the theoretical basis of the automatic walking and snow removing device controlling the throwing height according to the present invention.
  • Figure 4 shows a flow chart of a method for detecting the pitch of the cage to control the throwing angle for the purpose of controlling the throw height.
  • Figure 5 shows a flow chart of a method for detecting the throw angle to control the speed of the cage for the purpose of controlling the throw height.
  • Fig. 6 is a view showing the structure of an automatic snow removing device provided with a baffle structure according to an embodiment of the present invention.
  • Fig. 7 is a block diagram showing the structure of an automatic snow removing device provided with a grill according to an embodiment of the present invention.
  • FIG. 9 is a block diagram showing the structure of an automatic snow removing device equipped with a pocket structure according to an embodiment of the present invention.
  • FIG. 10 shows a flow chart of an example method of automatically controlling a snow throw height by an automatic walking snow removal device in accordance with an embodiment of the present invention.
  • FIG. 11 is a block diagram of a robot power supply apparatus according to an embodiment
  • Figure 12 is a block diagram of one embodiment of the robot power supply device of the embodiment shown in Figure 11;
  • FIG. 13 is a schematic diagram of a charging circuit of one embodiment of the robot power supply device of the embodiment shown in FIG. 11; FIG.
  • FIG. 14 is a schematic diagram of a power supply circuit of one embodiment of the robot power supply device of the embodiment shown in FIG.
  • the automatic walking snow removing device may be an automatic snow thrower, an automatic throwing/snowing machine, an automatic pushing/shoveling machine, a combination thereof, etc., which automatically walk on the ground or surface of the work area,
  • the work of clearing snow and ice, such as snow sweeping, snow throwing, or snow pushing, can also be considered as a snow blower with automatic working ability.
  • the automatic working ability here refers to the snow removing machine does not need the user to operate it when performing snow removal work. No need for the user to remotely control or monitor all the time, the user only needs to complete the relevant settings, and can perform other work, and the snow remover automatically executes the relevant programs.
  • the automatic snow blower the automatic snow blower and the automatic snow thrower are collectively referred to as a snow blower.
  • FIG. 1(a) is a schematic view showing a simplified structure 1000 of an automatic walking snow removal apparatus according to a first embodiment of the present invention, including a snow throwing cylinder;
  • FIG. 1(a) shows an automatic according to a second embodiment of the present invention.
  • the automatic walking snow removing apparatus 1000 includes a main body 1100 and a snow throwing mechanism 1200.
  • the automatic walking snow removing device 1000 further includes a working motor for driving the snow throwing mechanism 1200, and the like, in order to avoid confusion, it will not be described.
  • the snow throwing mechanism 1200 includes a snow removal head 1210, a snow throwing cylinder 1230, a snow throwing steering motor, and a mechanism 1220.
  • Specific examples of the snow removal head 1210 include, for example, a snow shovel or a stirrer or a rubber roller brush.
  • the cage is exemplified below, but this is by way of example and not by way of limitation.
  • the snow removal head 1210 is used as a snow scraping assembly to rotate around a central axis, and the working motor drives the stirring cage to rotate to collect snow and inclusions on the ground to the snow throwing mechanism, and the collected snow is used in the snow throwing steering motor and mechanism 1230. Then throw it out through the throwing cone.
  • Figure 1 (b) shows a schematic view of an automatic walking snow removal device 1000' without a snow thrower. Compared to Figure 1 (a), there is no snow throwing cylinder 1220 and a snow throwing steering motor and mechanism 1230, wherein the symbol S Directed the throwing snow.
  • Figure 2 shows a schematic diagram of a system framework 2000 for an automated walking snow removal device.
  • FIG. 2 is a block diagram showing the functional modules of the automatic walking and snow removing device 2000 according to an embodiment of the present invention.
  • the automatic walking snow removal device 2000 includes a control module 2100, a walking module 2200, a working module 2300, an energy module 2400, a detecting module 2500, and the like.
  • the walking module 2200 drives the snow removal device to move.
  • the working module 2300 includes a working motor and a snow throwing mechanism driven by the working motor.
  • the snow throwing mechanism collects snow and inclusions on the ground and throws a snow throwing mechanism under the driving of the working motor, saying that the throwing object is in the air from the ground.
  • the maximum height is the height of the snow throw.
  • the control module 2100 controls the operation of the work module 2300. In one embodiment, the control module 2100 controls the rotational speed of the motor of the work module 2300 to control the throw speed of the throw, thereby controlling the throw height of the throw. In another embodiment, the control module 2100 controls the walking speed of the walking module 2200 to control the throwing speed of the throw.
  • the biggest difference between the automatic walking and snow removal equipment and the hand-pushing snow removal equipment is that the former is unsupervised during the process of removing snow and throwing snow.
  • the unsupervised state if the snow throwing height is too high, the damage to people or things will be greater.
  • the height of relatively strong organs such as the legs is relatively low, and the height of important organs such as the face is relatively high. If the height of the throwing snow is too high, it is easy for the face, etc. Major organs cause damage.
  • the higher the snow throwing height the more objects are below the throwing height and the greater the probability of hitting the object.
  • the operator can automatically adjust the working state of the snow throwing mechanism according to the presence or absence of people or objects in the surrounding environment.
  • the snow throwing operation is performed without worrying about throwing Whether the snow will cause harm to people or things, and once the person or thing appears in the snow-scarring area, immediately suspend the snow throwing operation, so as to avoid damage to people or objects caused by the height of the snow throwing. Therefore, it is necessary to design an unmanned automatic walking snow removal device at the beginning of the design to limit the snow throwing height below the predetermined throwing height threshold.
  • the height threshold is set to a value between 0.8 and 1.1 meters. It is also considered that the minimum age of children playing in the snow is about 3 years old when the front and back yards of the house are full of snow. In order to prevent the thrown objects from being thrown to the face and above of children or adults over 3 years old and older, it is preferable to set the predetermined snow throw height threshold to 0.8 meters.
  • the working head stirrer is powered by the motor, the snow is caught by the rotation of the stirrer, and the snow is thrown out by the stirrer blades or the fan, and the snow throwing device will collect the accumulated product.
  • Snow is thrown to one side of the road or at a designated location.
  • hard objects such as stones on the road surface will be thrown along with the snow and have a certain amount of energy (head) if the energy of stones or other hard objects in the thrown Too large may cause harm to people, pets or other items, so the energy of the throw should be controlled within a certain range.
  • head the energy of the snow throwing
  • simplified control can also be performed, for example, in a simplified example, the height of the snow thrower can be automatically adjusted when the energy of the throwing object is detected to be too high, so that the snow throwing height is below the safe height.
  • Fig. 3 is a schematic view showing the theoretical basis of the automatic walking and snow removing device controlling the throwing height according to the present invention.
  • the snow and its inclusions are thrown from the throwing point A through the snow throwing cylinder 1230, where the point A is thrown away from the point where the snow leaves the snow throwing cylinder, where the center point of the end of the throwing snow cone is used,
  • the throwing speed is expressed by V
  • the throwing angle is expressed by ⁇ .
  • the snow removal depth is d
  • the initial height of snow thrown is H 0 .
  • the height of the throwing point from the ground is thrown
  • the throwing height is H.
  • the throwing snow height is the maximum height of the throwing object in the air from the ground
  • the horizontal projection distance from the throwing point to the throwing point is the snow throwing distance, which is denoted by L.
  • the influencing factors of the throwing height H include the throwing speed v, the throwing angle ⁇ and the initial height H 0 . Therefore, it is necessary to design and control the throwing speed V, the throwing angle ⁇ and the initial height H 0 to ensure that the snow throwing height H is below the predetermined throwing height threshold, wherein the predetermined throwing height threshold is 0.8 to 1.1 meters. . In the following, how to design and control the above various influencing factors will be specifically explained.
  • the determinants of the initial height H 0 include the declared depth of the snow sweep, the height to be gathered during the snow rise, and the height of the mechanism that directs the snow to the automatic walking snow removal equipment.
  • the snow removal depth corresponds to d 0
  • the height to be gathered during the snow rising process corresponds to d 1
  • the height of the mechanism that extracts the snow from the automatic walking snow removal device corresponds to the height d of the snow throwing cylinder. 2 .
  • the power of the automatic walking snow removal device is about 1000 W, typically 500 to 800 W, 1000 to 1600 W
  • the watt hour of the energy storage unit is about 300 wh, typically 160 wh, 200 wh, 240 wh, etc.
  • the declared snow sweeping thickness d 0 is 0 to 0.2 m.
  • the height d 1 to be gathered during the snow rise needs to ensure that the snow thrown is not scattered.
  • the height d 2 of the throwing cone corresponds to the height of the arc which guarantees the minimum snow energy loss thrown, and the height of the arc affects the size of the throwing angle ⁇ , and the different throwing angles ⁇ correspond to different heights.
  • the height d 2 while throwing the angle of elevation ⁇ also affects the height H of the snow throw.
  • the initial height H 0 is set in the range of 200 mm to 800 mm.
  • the automatic walking and snow removing device of the present invention is mainly household, considering that the universal width of the American family lane is within 6 m, a preferred example of the parameter setting is that the snow throwing distance is 6 meters.
  • the requirement for snow throwing distance is 6 meters
  • the predetermined snow throwing height threshold is between 0.8 meters and 1.1 meters
  • the initial height H 0 is between 200mm and 800mm.
  • the snow throwing speed v is determined by the cage radius r and the cage speed n.
  • the cage rotation speed n is actually obtained by controlling the rotation speed of the drive motor of the cage.
  • a mechanical transmission is provided between the cage and the drive motor, and the relationship between the cage speed and the drive motor speed is dependent on the transmission ratio of the mechanical transmission.
  • the guaranteed snow height is less than or equal to 1 meter, and some exemplary parameter configurations are shown in Table 1.
  • the automatic snow removing device of the embodiment of the invention has an initial height of 200 mm to 800 mm, a control throwing speed of 15 m/s to 20 m/s, and an throwing angle of 0 to +25 degrees, and the throwing height is less than Equal to 1 meter.
  • the snow lifting height is guaranteed to be less than or equal to 0.8 meters, and some exemplary parameter configurations are shown in Table 2.
  • the snow lifting height is guaranteed to be less than or equal to 0.8 meters, and some exemplary parameter configurations are shown in Table 3.
  • the automatic snow removing device of the embodiment of the invention has an initial height of 200 mm to 800 mm, a control throwing speed of 18 m/s to 19 m/s, an throwing angle of 10 to 15 degrees, and a throwing height of less than or equal to 0.8 meters.
  • control module 2100 controls at least one of the cage speed or the throw angle to control the snow throw height H not to exceed the predetermined snow throw height.
  • An example method 400 of automatically controlling the snow throw height is described below with reference to FIG.
  • step S410 the snow blower is automatically detected to detect the rotation speed of the stirring cage
  • step S420 the control module determines whether the rotational speed is greater than a first predetermined rotational speed threshold.
  • the process proceeds to step S430, and otherwise proceeds to step S440.
  • step S430 the control module controls to throw the raised angle to the first raised angle.
  • step S440 the control module determines whether the rotational speed is greater than a second predetermined rotational speed threshold, wherein the second predetermined rotational speed threshold is less than the first predetermined rotational speed threshold.
  • the process proceeds to step S450, and the control module performs control so that the thrown angle is the second raised angle, otherwise the advancement can be continued and similar processing is performed.
  • Figure 4 shows the purpose of controlling the throw height to detect the stirrer speed to control the throw angle. Conversely, it is also possible to control the throwing angle by controlling the throwing height to control the stirrer speed.
  • Figure 5 shows a flow chart of a method for detecting the throw angle to control the speed of the cage for the purpose of controlling the throw height.
  • the automatic snow removing device further includes a throwing angle detecting means for detecting the throwing angle.
  • the method of detecting the throwing angle by throwing the angle detecting component may be to directly detect the throwing angle, or by detecting other indirect parameters, and converting and generating the throwing angle.
  • step S510 the throwing angle is detected.
  • step S520 it is determined whether the throwing angle is greater than the first predetermined angle of attack threshold. If the result is YES, the process goes to step S530, otherwise it goes to step S540.
  • step S530 the control module controls so that the rotation speed of the cage is the first rotation speed.
  • step S540 it is determined whether the throwing angle is greater than the second predetermined angle of attack threshold. If the result is yes, proceeding to step S550, the control module performs control such that the rotation speed of the cage is the second rotation speed, wherein the second predetermined angle of attack threshold is less than the first predetermined angle of attack threshold, and the second speed is greater than the first speed; If the result of the determination in step S540 is NO, the foregoing operation can be continued.
  • Fig. 5 shows a method of controlling the stirrer rotation speed to perform the throw height control by detecting the thrown angle by detecting the thrown angle when the throw angle is adjustable.
  • the initial height H 0 , the cage radius r, and the throw angle are fixed, and the height is controlled by controlling the speed.
  • the control stirrer The speed does not exceed 2200 rpm, so that the throwing speed does not exceed 20m/s, and the requirement to control the snow throwing height is less than 1 meter.
  • the speed of the stirring cage can be controlled to not exceed 1750 rpm, so that the throwing speed does not exceed 16m/s, and the requirement to control the snow throwing height does not exceed 0.8 meters.
  • it can be various values in Table 4 below.
  • the throwing angle, the cage radius and the initial height of the snow are fixed, which is economical and practical for the automatic snow removal equipment, which can reduce the design and manufacturing costs.
  • the aforementioned snow throw height control method does not consider the environmental resistance.
  • environmental resistance such as wind power.
  • the cage speed determined by the aforementioned resistance is not considered.
  • the angle of elevation the snow throwing height reached at this time is lower than the ideal snow throwing height, so the environmental resistance can be evaluated, and the resistance is determined regardless of the resistance and the throwing angle. At least one is turned up.
  • the snow throwing mechanism further includes a snow thrower and a snow thrower that imparts secondary power to the thrower from the stirrer and throws it from the snow thrower.
  • the speed of the throwing object thrown from the snow thrower is mainly determined by both the speed of the stirrer and the speed of the snow thrower.
  • the snow throw height is controlled by controlling at least one of the speed of the cage, the speed of the snow thrower, and the throw angle.
  • the snow throw height can be completely limited below the predetermined snow throw height threshold by a given initial height H0 and thrown angle.
  • the control module is not required to control the snow throwing speed or the speed of the driving motor of the snow removing head.
  • the predetermined throwing snow height threshold is 0.8 meters
  • the given initial height H0 and throwing angle may be values in Table 5 below. At this time, regardless of the snow throwing speed, the snow throwing height will not exceed 0.8 meters.
  • the automatic snow removing device controls the snow throwing height such that the snow throwing height is lower than a predetermined threshold, thereby reducing or even eliminating the risk of potential throwing objects being thrown onto the face of a child such as a child, and improving the snow throwing process. safety.
  • the walking speed V1 of the walking module 2200 also affects the snow throwing height H, and the walking speed V1 of the walking module 2200 is controlled such that the snow throwing height H is not greater than a predetermined throwing height threshold.
  • the situation includes adjusting the walking speed V1 of the walking module 2200 in conjunction with the thickness of the snow. For example, when the thickness of the snow is thick, if the walking module 2200 is fast, the amount of snow collected by the snow removing head 1210 of the snow throwing mechanism 1200 is large, and the amount of snow thrown by the snow throwing barrel 1220 is less than the amount of snow collected. The snow is blocked in the snow throwing mechanism 1200.
  • the running speed V1 of the walking module 2200 is correspondingly reduced to improve the processing capability of the snow throwing mechanism 1200 for snow.
  • the walking speed V1 of the walking module 2200 is increased accordingly, and the distance of the thrown snow can be increased to improve the snow throwing capability of the snow throwing mechanism 1200, and the above factors and the throwing height H are considered. Relationship, in a specific embodiment, when the thickness of the snow is less than 4 cm, the walking speed V1 of the walking module 2200 is controlled to be 20-30 m/min. When the thickness is greater than 4 cm, the walking speed V1 of the walking module 2200 is controlled to be 10-25 m/min.
  • an automatic snow removal apparatus that controls both the height of the snow throwing and the throwing energy of the throwing object to avoid injury to children or adults.
  • There are various ways to control the throwing energy of the throwing object such as controlling the operating parameters of the snow throwing mechanism or arranging any one or combination of various structures to control the throwing energy of the throwing object.
  • the throwing energy of the throw is controlled to be lower than the safe energy by controlling the operating parameters of the snow throwing mechanism.
  • the meaning of the safety energy is described in the Chinese patent application CN201710065902.7.
  • FIGS. 6 through 9 An exemplary technical solution for controlling both the throwing height and the throwing throwing energy according to an embodiment of the present invention will be described below with reference to FIGS. 6 through 9, for example, wherein the baffle structure illustrated in FIG. 6 and the bend shown in FIG.
  • the folding structure preferentially controls the height while also controlling the energy; the energy is preferentially controlled in, for example, the grid shown in Fig. 7 and the pocket shown in Fig. 10.
  • a baffle structure and/or a bent structure are provided, and a grille and/or a pocket is provided as needed to control the snow throw height and the snow throwing energy.
  • the automatic snow removing apparatus further includes a baffle structure disposed at an end of the snow throwing mechanism, and the baffle angle is adjustable, and the throwing angle can be adjusted by adjusting the baffle angle.
  • FIG. 6 illustrates an automatic snow removal apparatus in accordance with an embodiment of the present invention in which a safety deflector (also referred to herein as a baffle structure) is provided at the end of the snow throwing mechanism (the end of the snow thrower 1230 in the Figure).
  • the two can be used interchangeably) 1250, and the angle of the safety deflector 1250 can be adjusted by, for example, a safety diversion steering motor and mechanism 1240.
  • the baffle angle can be controlled in association with the working stirrer 1210 speed to control the throw height and energy. For example, when the working stirrer 1210 rotates too high, resulting in a higher throw height and a higher energy, the angle of the safety deflector 1250 can be adjusted to reduce the throw height and reduce the throw. energy of.
  • the automatic snow removing apparatus further includes a grille disposed inside or at the end of the snow throwing mechanism for blocking the inclusions to reduce inclusions in the throwing object, and the stumped debris such as It can be collected in the form of a net pocket.
  • the grid structure is exemplarily explained below with reference to FIG.
  • FIG 7 illustrates an automatic snow removal apparatus in accordance with another embodiment of the present invention in which a grill 1260 is provided at the end of the snow throwing mechanism (the end of the snow thrower 1230 in the Figure).
  • Figures 8(a) through (e) show several exemplary structural schematics of a grid.
  • the automatic snow removing apparatus further includes: a pocket with a gas permeable structure in the snow throwing cylinder, the gas permeable structure being made of a gas permeable material or provided with a hole so that the throwing material leaks into the pocket from the gas permeable structure.
  • Figure 9 illustrates an automatic snow removal apparatus in accordance with another embodiment of the present invention in which a pocket 1280 is provided for collecting hard objects to further reduce the risk of hard objects in the throw.
  • the pocket 1280 is preferably breathable or apertured such that a hard object such as a stone can escape from the pocket.
  • the end of the snow throwing cylinder 1230 is provided with a safety deflector 1250, and the snow throwing mechanism is provided with a grill 1260 through the safety deflector 1250 on the snow throwing cylinder 1230 or through the grille
  • the collected hard object directly falls into the pocket, avoiding the hard object throwing out to cause the person or thing s damage.
  • a safety deflector 1250 can reduce the energy loss of the throwing material, ensure a low throw height that meets safety requirements, and prevent large-sized inclusions from being thrown. And can collect hard objects, providing a more complete security.
  • a safe snow throwing method for controlling snow or inclusions caused by an automatic walking snow removing device without causing harm to persons or objects which will be described below with reference to FIG.
  • FIG. 10 illustrates a general flow diagram of a safe snow throwing method 3000 that controls the automatic walking snow removal apparatus such that snow or inclusions do not cause harm to people or objects, in accordance with an embodiment of the present invention.
  • step S3100 the snow removal device is driven by the walking module.
  • step S3200 the snow blower is driven by the working motor to collect the snow and the inclusions on the ground and throw the snow throwing mechanism, and the maximum height of the throwing object from the ground in the air is the throwing height.
  • step S3300 the working module is controlled by the control module such that the snow throwing height is less than a predetermined snow throwing height threshold.
  • the predetermined snow throw height threshold is between 0.8 meters and 1.1 meters.
  • the predetermined snow throw height threshold is 0.8 meters.
  • the snow throwing mechanism includes a snow removal head that rotates about a central axis, and the working motor drives the snow removal head to collect snow and debris from the ground to the snow throwing mechanism, wherein the control module is configured to detect the throw speed when detected When the predetermined speed threshold is reached, the control snow throw height is below the predetermined snow throw height threshold.
  • the predetermined speed threshold ranges from 18 to 19 meters per second.
  • the snow removal head radius is 0.088 meters and the snow removal head speed is 1800 to 2000 rpm.
  • the snow throwing mechanism is said to throw the throwing speed as the throwing speed, the initial throwing angle relative to the horizontal direction is the throwing angle, and the height of the throwing point is the initial height.
  • the snow throwing height is controlled by controlling at least one of the throwing speed, the throwing angle, and the initial height, wherein the throwing speed is higher, the throwing snow height is higher; in the case where the throwing angle is positive, the throwing The larger the angle of emergence, the higher the height of the snow throw; the higher the initial height, the higher the height of the snow throw.
  • the initial height is from 200 mm to 800 mm.
  • the safe snow throwing method controls the throw speed from 15 m/s to 20 m/s.
  • the safe snow throwing method controls the throw angle to be -10 degrees to 25 degrees.
  • the safe snow throwing method controls the throw speed from 15 m/s to 20 m/s and throws an angle of elevation from -10 degrees to 25 degrees.
  • the safe snow throwing method controls the throw speed from 15 m/s to 20 m/s, throws an angle of elevation from 0 to +25 degrees, and an initial height of 200 mm to 800 mm.
  • the snow removal head radius is 0.08 m to 0.12 m
  • the snow removal head speed is controlled from 1500 rpm to 2500 rpm.
  • the safe snow throwing method controls the throw speed from 18 m/s to 19 m/s and throws an angle of 15 degrees.
  • the snow removal radius is 0.088 m and the control speed is 1800 rpm to 2000 rpm.
  • the safe snow throwing method controls the throwing angle to be negative and the initial height is less than or equal to 1 meter.
  • the safe snow throwing method further includes simultaneously controlling the snow throw distance to meet a predetermined requirement.
  • the snow throwing mechanism includes a stirrer that rotates about a central axis that drives the stirrer to rotate to collect snow and debris from the ground to the snow throwing mechanism, wherein the initial height and the radius of the stirrer are given
  • the snow throw height is controlled by controlling the speed of the stirrer and/or the throw angle of the throw.
  • the safe snow throwing method further comprises: detecting the rotation speed of the stirring cage by using the stirring cage rotation detecting component, and the control module performs control on the driving motor of the stirring cage according to the actual rotation speed of the stirring cage, so that the rotation speed of the stirring cage does not exceed the pre-preheating Set the speed threshold.
  • the method for detecting the rotation speed of the stirring cage by using the stirring cage rotation detecting component may directly detect the rotation speed of the stirring cage for the detecting component, or may directly detect the rotation speed of the driving motor of the stirring cage for the detecting component, and determine the transmission relationship between the stirring cage and the motor.
  • the gear ratio is used to calculate the speed of the cage.
  • the safe snow throwing method further comprises: detecting the rotation speed of the stirring cage by using the stirring cage rotation detecting component, and when the rotation speed of the stirring cage is greater than the first predetermined rotation speed threshold, the control module controls to cause the throwing angle of the throwing object For the first angle.
  • the safe snow throwing method further includes: when the rotation speed of the stirring cage is greater than a second predetermined speed threshold, the control module controls such that the throwing angle of the throw is a second angle, wherein the second predetermined speed threshold Less than the first predetermined speed threshold, the second angle is greater than the first angle.
  • the safe snow throwing method further comprises: detecting a throwing angle by the throwing angle detecting component; and when the throwing angle is greater than the first predetermined angle of attack threshold, the control module controls to cause the stirrer to rotate A speed.
  • the safe snow throwing method further includes: when the throwing angle is greater than the second predetermined angle of attack threshold, the control module controls such that the speed of the cage is the second speed, wherein the second predetermined angle of attack is less than the first A raised angle threshold is predetermined, the second speed being greater than the first speed.
  • the snow throwing mechanism further includes: a snow throwing wheel and a snow throwing wheel, the snow throwing wheel gives the secondary power of the throwing material from the stirring cage, throws it out from the throwing snow bucket, and the safe snow throwing method also The method includes: controlling the snow throwing height by controlling at least one of a rotation speed of the stirring cage, a rotation speed of the snow throwing wheel, and a throwing angle.
  • the safe snow throwing method further includes: adjusting the throwing angle by adjusting the angle of the baffle to adjust the throwing height, the baffle structure is disposed at the end of the snow throwing mechanism, and the baffle angle is adjustable.
  • the safe snow throwing method further includes: adjusting, by the control module, the speed of the walking module according to the thickness of the snow such that the snow throwing height is not greater than a predetermined snow throwing height threshold.
  • the safe snow throwing method further includes: when the thickness of the snow is less than 4 cm, the walking speed of the walking module is controlled to be 20-30 m/min.
  • the safe snow throwing method further includes: when the thickness of the snow is greater than 4 cm, the walking speed of the walking module is controlled to be 10-25 m/min.
  • the safe snow throwing method further includes: shifting some or all of the inclusions back through a grill disposed inside or at the end of the snow throwing mechanism to reduce inclusions in the throw.
  • the grid spacing is less than 50 mm.
  • the safe snow throwing method may further include: providing a pocket with a gas permeable structure in the snow throwing cylinder, the gas permeable structure being made of a gas permeable material or provided with a hole so that the throwing material leaks into the pocket from the gas permeable structure.
  • the safe snow removal method further includes controlling the throw height and/or the thrown energy by throwing a combination of height and/or throw energy control structures as follows: a baffle structure disposed at the end of the snow throwing mechanism The angle of the baffle can be adjusted, and the angle of the baffle can be adjusted by adjusting the angle of the baffle; the grille disposed inside or at the end of the snow throwing mechanism is used to return the inclusions to reduce inclusions in the thrown object. a pocket with a venting function or a hole-like structure.
  • the throwing height of the throwing object is controlled, thereby avoiding hitting the face of a child or an adult, and the safety factor is improved.
  • any one or combination of various structures is arranged to control the throwing energy of the throw, so that even children or adults do not have children or adults. cause some damages.
  • the relevant values such as the initial height, the target snow throw height, and the throw speed are based on, for example, a statistically lower child's height, a common snow depth, and the energy of the currently developed automatic snow removal device.
  • a robotic power supply device is also provided for providing electrical energy to a load within the robot.
  • the robot is, for example, a mobile robot and is active outdoors.
  • the automatic walking and snow removing device can be charged by the charging device.
  • the maximum output voltage is usually lower than the operating voltage required by the robot. That is, if the robot is charged by the charging device in the conventional way, the voltage after the charging is completed cannot satisfy the actual situation of the robot. Required working voltage.
  • the robot power supply device includes a control circuit 100 and a power module 200 .
  • the power module 200 is connected to the control circuit 100.
  • the power module 200 can provide electrical energy.
  • the control circuit 100 is configured to control the output of the power module 200 to output a first voltage when the robot is in an active state, and the control circuit 100 is further configured to control the output of the power module 200 to output a second voltage when the robot is in a charging state.
  • the first voltage is higher than the corresponding second voltage after the charging is completed.
  • the second voltage corresponding to the completion of the charging refers to the voltage outputted by the output end of the power module 200 when the power module 200 is charged and the robot is not in the working state. Therefore, in the present embodiment, the voltage outputted by the power module 200 during the operation and charging of the robot is different, that is, the power module 200 outputs a higher voltage when the robot operates, and the robot outputs a lower voltage when charging, and The voltage (ie, the second voltage) output by the power module 200 during the entire charging process (including the completion of charging) is always smaller than the corresponding voltage at the time of operation (ie, the first voltage).
  • the robot can work with high voltage during operation, and the low voltage can be used for charging when the robot is charged, that is, low voltage charging and high voltage operation are realized.
  • the control circuit 100 can change the voltage outputted from the output of the power module 200 by changing the circuit connection principle inside the power module 200.
  • the output voltage of the output terminal of the power module 200 (ie, the first voltage) It can also meet the high power demand, so as to overcome the shortcomings of traditional outdoor high-voltage robots that can only meet the working requirements by high-voltage charging indoors, and improve the intelligence of the robot.
  • the power module 200 includes two or more power sources.
  • the power source is, for example, a battery, a lithium battery or other type of device capable of charging and providing electrical energy.
  • the second voltage is an output voltage of the power source, for example, between 42V and 60V.
  • the first voltage is a sum of output voltages after all power sources are charged. Therefore, during the charging process of the robot, the output voltage of the output terminal of the power module 200 is only the output voltage of a single power source, and during the operation of the robot, the output voltage of the output terminal of the power module 200 is the output voltage after all the power sources are charged. And, in order to be able to meet high power requirements.
  • control circuit 100 is configured to control all power sources in series when the robot is in an active state. Wherein, all the power supplies are connected in series, that is, the cathode of each power source is connected to the anode of an adjacent power source, and the anode of each power source is connected to the cathode of another adjacent power source. Therefore, after the control circuit 100 causes all the power sources to be connected in series, the working voltage that the entire robot power supply device can supply to the load is the sum of the power supply voltages of all the power sources.
  • the robot power supply unit can provide a higher level when all power sources are connected in series. Voltage to meet high power operation requirements. Therefore, the power supply process provided by the embodiment of the present invention is a high voltage operation mode.
  • the control circuit 100 is also operative to control all power supplies in parallel when the robot is in a charging state.
  • each power source can be separately charged by the charging device. Therefore, the charging process provided in this embodiment is low-voltage charging, and can be directly charged outdoors.
  • the charging device can separately charge each power source at the same time, or can charge each power source in turn (that is, after the charging device charges a power source, the next power source is charged, and so on, until Charge all power supplies).
  • the control circuit 100 includes a control unit 110 and a switch unit 120.
  • the control unit 110 is configured to control each power source in series or in parallel through the switch unit 120. Therefore, the control unit 110 mainly controls the state of the switching unit 120 such that the respective power sources are connected in series or in parallel.
  • the control unit 110 is, for example, an editable logic device or a hardware circuit composed of a plurality of devices.
  • the number of power sources includes two, which are respectively recorded as a first power source BAT1 and a second power source BAT2.
  • the switch unit 120 includes a first single pole double throw switch SW2 and a second single pole double throw switch SW3.
  • the movable contact (1) of the first single-pole double-throw switch SW2 is connected to the positive pole (B+) of the first power supply BAT1
  • the first stationary contact (3) of the first single-pole double-throw switch SW2 is respectively connected to the second power supply BAT2
  • the positive electrode (B+) and the second stationary contact (2) of the second single pole double throw switch SW3 are connected.
  • the movable contact (1) of the second single-pole double-throw switch SW3 is commonly grounded with the negative pole (B-) of the first power supply BAT1, and the first stationary contact (3) and the second power supply BAT2 of the second single-pole single-pole double-throw switch SW3
  • the negative poles (B-) are commonly grounded.
  • the control unit 110 is configured to control the movable contact (1) of the first single-pole double-throw switch SW2 to be connected with the first stationary contact (3) and control the second single-pole double-throw when the robot is in the charging state.
  • the movable contact (1) of the switch SW3 is connected to the first stationary contact (3).
  • the communication circuit between the first power source BAT1 and the second power source BAT2 is as shown by a thick line, that is, the first power source BAT1 and the second power source BAT2 are in a parallel state.
  • the voltage of the output terminal of the entire power module 200 is the first.
  • control unit 110 is further configured to control the movable contact (1) of the first single-pole double-throw switch SW2 to be connected with the second static contact (2) when the robot is in the working state, and control the second single-pole double The movable contact (1) of the throw switch SW3 is connected to the second stationary contact (2).
  • the communication circuit between the first power source BAT1 and the second power source BAT2 is as shown by a thick line, that is, the first power source BAT1 and the second power source BAT2 are in a series state, and therefore, the voltage of the output terminal of the entire power module 200 is the first.
  • control unit 110 can control the connection between the movable contact of the first single pole double throw switch SW2 and the second single pole double throw switch SW3 and the stationary contact by using a conventional control manner.
  • the control unit 110 can directly receive the status signal sent by the external device (for example, the mobile phone held by the user) to acquire the state of the robot; or the control unit 110 can also determine the robot station by itself. The state of the location, for example, after the control unit 110 detects that the robot establishes a connection with the charging device, the robot is considered to enter the charging state.
  • control unit 110 can communicate with the charging device to confirm whether the charging is completed, and if the charging is confirmed, It is considered that the robot starts to enter the working state; or, the user directly operates the switching unit 120 according to the state in which the robot is located, at which time the control unit 110 is not required.
  • the robot power supply device further includes a switch circuit SW1.
  • the switch circuit SW1 is connected between the power module 200 and a load in the robot, and is connected to the control circuit 100. Specifically, the switch circuit SW1 is connected to the control unit 110 in the above-described control circuit 100.
  • the switch circuit SW1 has two states of on and off.
  • the switch circuit SW1 When the robot is in the working state, the switch circuit SW1 is in an on state under the control of the control circuit 100, and the power module 100 can supply power to the load. When the robot is in the charging state, the switch circuit SW1 is in the off state under the control of the control circuit 100, at which time the power module 100 is in the charging process.
  • the robot power supply device may further include a plurality of in-vehicle charging units (not shown). Each of the power sources is connected to each of the in-vehicle charging units one by one. The in-vehicle charging unit is used to establish an electrical connection with the charging device to charge each power source.
  • the power sources are respectively connected to the in-vehicle charging units one by one.
  • the number of the in-vehicle charging units is the same as that of the power source, and there is no connection relationship between the in-vehicle charging units to ensure that the respective connected power sources are respectively charged.
  • the car charging unit and the charging device can use the charging technology of the traditional mobile robot to charge the power source.
  • the car charging unit and the charging device can be charged by the contact charging technology, and the car charging unit can be provided with a male connector for charging.
  • the device can be equipped with a female connector that can be charged by simply aligning and connecting the male connector and the female connector.
  • the contact charging technology can be an on-line automatic charging mode (ie, the contact for connecting the charging device is located above the robot body), the side-mounted automatic charging mode (ie, the contact for connecting the charging device is located on the side of the robot), The automatic charging mode (ie, the contact for connecting the charging device is located in the lower part of the robot body) and the like.
  • the in-vehicle charging unit and the charging device can also be charged by using a non-contact inductive charging technology, wherein the non-contact inductive charging technology is a charging method that uses an electromagnetic induction principle to perform energy transfer through a non-contact coupling method.
  • a coupler is composed of a separate high-frequency transformer between the on-board charging unit and the charging device, and the energy is transmitted without contact by inductive coupling.
  • connection manner between the in-vehicle charging unit and the power source is not limited to the above, as long as the charging device can separately charge each power source.
  • the vehicle charging unit may be connected to the power supply unit directly through the changeover switch. Charging is performed. After the charging is completed, the in-vehicle charging unit turns on the connection circuit with the next power source, and then performs charging, and sequentially, until all the power sources are charged.
  • Another embodiment provides a robot including a load and a robot power supply device provided in the previous embodiment.
  • the load is connected to the robot power supply unit.
  • the robot power supply device in the robot provided by the embodiment of the present invention has the same principle as the robot power supply device provided in the previous embodiment, and details are not described herein again.

Abstract

一种抛出的雪或夹杂物不会对人或物造成伤害的自动行走除雪设备,包括:行走模块(2200),驱动除雪设备移动(2000);工作模块(2300),包括工作马达和由工作马达驱动的抛雪机构,抛雪机构在工作马达的驱动下收集地面的积雪以及夹杂物并抛出抛雪机构,称抛出物在空中距地面的最大高度为抛雪高度;以及,控制模块(2100),配置为控制工作模块或行走模块使得抛雪高度不大于预定抛雪高度阈值。

Description

自动除雪设备及其安全抛雪方法 技术领域
本发明涉及智能控制领域,特别是涉及一种自动行走除雪设备。
背景技术
冬天下雪后路面上堆积大量积雪,给人们出行带来很多麻烦。清除道路冰雪主要有人工除雪、融雪除雪和机械除雪等几种方法。人工清扫人工除雪劳动强度大、费时费力,清扫效率还不高。而利用热能或撒布化学药剂促使积雪融化的方法能耗大、成本高,对环境及路面易造成污染和腐蚀,仅适合一些特殊场合。而目前使用的机械除雪设备却又因使用体积庞大,结构复杂,成本较高、除雪效果差、对路面有一定破坏作用等原因,影响使用。
目前小型机械式清雪车主要由原动机、传动装置、集雪装置、抛雪装置、和操作系统组成。原动机可以采用电机或发动机,目前大多采用汽油机或柴油机;集雪装置用来收集积雪,主要采用推雪铲或螺旋状搅笼或橡胶滚刷等;抛雪装置是将收集的积雪抛到路的一侧或收集装置中。主要的方式有抛雪叶轮和鼓风机两种;操作装置主要控制设备的运转,通过手推来实现机器的前进和行驶方向。这样在人力推动下,除冰除雪机不断前进,就能实现连续的清除积冰和积雪。
为了降低了操作者的劳动强度,有一些自动行走式的清雪机,即清雪机的行走由原动机带动,通过各种机械传动装置来实现高效清雪的同时使清雪机不断前进,从而在很大程度上节省人力。
现有技术中缺少智能扫雪机,智能扫雪机应该自动化程度较高,使用费用低、使用者省力省时、除雪效果好的除雪设备,能在雪后迅速铲除积雪,从而方便人们出行。
在相同申请人(苏州宝时得电动工具有限公司)的发明名称为“自动行走除雪设备”、申请号为201710065902.7的中国在先申请(后文称之为中国专利申请CN201710065902.7)中,提出了智能化程度高的智能扫雪机,而且还提出了能够控制夹杂物离开抛雪机构时的冲量以免抛出的夹杂物不会对人或物造成伤害的自动行走除雪设备。本申请通过引用将该在先申请全文并入,就如同全部内容记载在本文中一样。
现有技术中不存在控制抛雪高度以防伤人或物的安全控制方案。
发明内容
鉴于上述情况,提出了本发明。
根据本发明的一个方面,提供了一种抛出的雪或夹杂物不会对人或物造成伤害的自动行走除雪设备,包括:行走模块,驱动除雪设备移动;工作模块,包括工作马达和由工作马达驱动的抛雪机构,所述抛雪机构在工作马达的驱动下收集地面的积雪以及夹杂物并抛出抛雪机构,称抛出物在空中距地面的最大高度为抛雪高度;控制模块,配置为控制工作模块或行走模块使得所述抛雪高度不大于预定抛雪高度阈值。
在其中一个实施例中,预定抛雪高度阈值为0.8到1.1米。
在其中一个实施例中,预定抛雪高度阈值为0.8米。
在其中一个实施例中,抛雪机构包括绕中心轴线转动的除雪头,所述工作马达驱动除雪头转动从而将地面的积雪以及夹杂物收集到抛雪机构,其中所述控制模块配置为,当检测到抛出速度达到预定速度阈值时,控制抛雪高度低于预定抛雪高度阈值。
在其中一个实施例中,其中预定速度阈值的取值范围为18到19米/秒。
在其中一个实施例中,除雪头半径为0.088米,除雪头转速为1800到2000转/分。
在其中一个实施例中,称所述抛雪机构将抛出物抛出时的速度为抛出速度,相对于水平方向的初始抛出扬角为抛出扬角,抛出点的高度为初始高度,其中通过控制抛出速度、抛出扬角、初始高度中的至少一项来控制抛雪高度。
在其中一个实施例中,其中除雪头半径为0.08米到0.12米,除雪头的转速为1500到2500转/分钟,预定抛雪高度阈值的取值范围为0.8到1.1米。
在其中一个实施例中,其中初始高度为200mm到800mm。
在其中一个实施例中,控制抛出速度为15m/s到20m/s。
在其中一个实施例中,控制抛出扬角为-10度到25度。
在其中一个实施例中,控制抛出速度为15m/s到20m/s,抛出扬角为-10度到25度。
在其中一个实施例中,控制抛出速度为15m/s到20m/s,抛出扬角为-10度到+25度,初始高度为200mm到800mm。
在其中一个实施例中,其中除雪头半径是0.08m到0.12m,以及控制除雪头转速为1500转/分到2500转/分。
在其中一个实施例中,控制抛出速度为18m/s到19m/s,抛出扬角为15度。
在其中一个实施例中,其中除雪头半径是0.088m,以及控制转速为1800转/分到2000转/分。
在其中一个实施例中,控制抛雪扬角为负,初始高度小于等于1米。
在其中一个实施例中,还包括同时控制抛雪距离满足预定要求。
在其中一个实施例中,抛雪机构包括绕中心轴线转动的除雪头,所述工作马达驱动除雪头转动从而将地面的积雪以及夹杂物收集到抛雪机构,其中给定初始高度和除雪头的半径,通过控制除雪头的转速和/或抛出扬角来控制抛雪高度。
在其中一个实施例中,其中进一步给定抛出扬角,通过控制除雪头的转速来控制抛雪高度。
在其中一个实施例中,自动除雪设备还包括:除雪头转速检测部件,用于检测除雪头的转速,以及当除雪头的转速大于第一预定转速阈值时,控制模块进行控制使得抛出物的抛出扬角为第一扬角。
在其中一个实施例中,当除雪头的转速大于第二预定转速阈值时,控制模块进行控制使得抛出物的抛出扬角为第二扬角,其中第二预定转速阈值小于第一预定转速阈值,所述第二扬角大于第一扬角。
在其中一个实施例中,自动除雪设备还包括:抛出扬角检测部件,用于检测抛出扬角,以及当抛出扬角大于第一预定扬角阈值时,控制模块进行控制使得除雪头的转速为第一转速。
在其中一个实施例中,当抛出扬角大于第二预定扬角阈值时,控制模块进行控制使得除雪头的转速为第二转速,其中第二预定扬角阈值小于第一预定扬角阈值,所述第二转速大于第一转速。
在其中一个实施例中,自动除雪设备还包括:基于环境阻力情况,将未考虑阻力情况针对抛雪高度确定的转速和扬雪角度中的至少一个调大。
在其中一个实施例中,自动除雪设备还包括:抛雪机构还包括:抛雪轮和抛雪筒,抛雪轮给予来自除雪头的抛出物二次动力,并将其从抛雪筒抛出。
在其中一个实施例中,其中通过控制除雪头的转速、抛雪轮的转速、抛出扬角中的至少一个来控制抛雪高度。
在其中一个实施例中,自动除雪设备还包括:设置于抛雪机构端部的挡板结构,其中挡板角度可调节,能够通过调节挡板角度来调节抛出扬角。
在其中一个实施例中,所述控制模块根据雪的厚度调整行走模块的速度使得所述抛雪高度不大于预定抛雪高度阈值。
在其中一个实施例中,雪的厚度小于4cm时,控制模块控制行走模块的行走速度为20-30m/min。
在其中一个实施例中,雪的厚度大于4cm时,控制模块控制行走模块的 行走速度为10-25m/min。
在其中一个实施例中,自动除雪设备还包括:设置于抛雪机构内部或端部的格栅,用于将夹杂物档回,以减少抛出物中的夹杂物。
在其中一个实施例中,所述格栅间隔小于50mm。
在其中一个实施例中,抛雪机构还包括抛雪筒,所述抛雪筒能够在水平方向上转动。
在其中一个实施例中,自动除雪设备还包括:抛雪筒中的加有透气结构的兜子,透气结构通过透气材料制成或者设置为带孔,使得抛出物从透气结构漏入兜子。
在其中一个实施例中,自动除雪设备还包括如下抛出高度和/或抛出物能量控制结构的组合:
设置于抛雪机构端部的挡板结构,挡板角度可调节,能够通过调节挡板角度来调节抛出扬角;
设置于抛雪机构内部或端部的格栅,用于将夹杂物档回,以减少抛出物中的夹杂物;
以及具有透气功能或者孔状结构的兜子。
本发明还提供一种控制自动行走除雪设备使得的雪或夹杂物不会对人或物造成伤害的安全抛雪方法,所述自动行走除雪设备包括行走模块、工作模块和控制模块,所述安全抛雪方法包括:
由行走模块驱动除雪设备移动;
由工作马达驱动抛雪机构收集地面的积雪以及夹杂物并抛出抛雪机构,称抛出物在空中距地面的最大高度为抛雪高度;以及
由控制模块控制工作模块或行走模块使得所述抛雪高度不大于预定抛雪高度阈值。
在其中一个实施例中,预定抛雪高度阈值为0.8到1.1米。
在其中一个实施例中,预定抛雪高度阈值为0.8米。
在其中一个实施例中,抛雪机构包括绕中心轴线转动的除雪头,所述工作马达驱动除雪头转动从而将地面的积雪以及夹杂物收集到抛雪机构,
其中所述控制模块配置为,当检测到抛出速度达到预定速度阈值时,控制抛雪高度不大于预定抛雪高度阈值。
在其中一个实施例中,其中预定速度阈值的取值范围为18到19米/秒。
在其中一个实施例中,除雪头半径为0.088米,除雪头转速为1800到2000转/分。
在其中一个实施例中,称所述抛雪机构将抛出物抛出时的速度为抛出速度,相对于水平方向的初始抛出扬角为抛出扬角,抛出点的高度为初始高度,其中
通过控制抛出速度、抛出扬角、初始高度中的至少一项来控制抛雪高度。
在其中一个实施例中,其中除雪头半径为0.08米到0.12米,除雪头的转速为1500到2500转/分钟,预定抛雪高度阈值的取值范围为0.8到1.1米。
在其中一个实施例中,其中初始高度为200mm到800mm。
在其中一个实施例中,控制抛出速度为15m/s到20m/s。
在其中一个实施例中,控制抛出扬角为-10度到25度。
在其中一个实施例中,控制抛出速度为15m/s到20m/s,抛出扬角为-10度到25度。
在其中一个实施例中,控制抛出速度为15m/s到20m/s,抛出扬角为0度到+25度,初始高度为200mm到800mm。
在其中一个实施例中,其中除雪头半径是0.08m到0.12m,以及
控制除雪头转速为1500转/分到2500转/分。
在其中一个实施例中,控制抛出速度为18m/s到19m/s,抛出扬角为15度。
在其中一个实施例中,其中除雪头半径是0.088m,以及
控制转速为1800转/分到2000转/分。
在其中一个实施例中,控制抛雪扬角为负,初始高度不大于1米。
在其中一个实施例中,安全抛雪方法还包括同时控制抛雪距离满足预定要求。
在其中一个实施例中,抛雪机构包括绕中心轴线转动的除雪头,所述工作马达驱动除雪头转动从而将地面的积雪以及夹杂物收集到抛雪机构,
其中给定初始高度和除雪头的半径,通过控制除雪头的转速和/或抛出扬角来控制抛雪高度。
在其中一个实施例中,安全抛雪方法还包括:
利用除雪头转速检测部件检测除雪头的转速,
当除雪头的转速大于第一预定转速阈值时,控制模块进行控制使得抛出物的抛出扬角为第一扬角。
在其中一个实施例中,安全抛雪方法还包括:
当除雪头的转速大于第二预定转速阈值时,控制模块进行控制使得抛出物的抛出扬角为第二扬角,
其中第二预定转速阈值小于第一预定转速阈值,所述第二扬角大于第一扬角。
在其中一个实施例中,安全抛雪方法还包括:
由抛出扬角检测部件检测抛出扬角;
当抛出扬角大于第一预定扬角阈值时,控制模块进行控制使得除雪头的转速为第一转速。
在其中一个实施例中,安全抛雪方法还包括:
当抛出扬角大于第二预定扬角阈值时,控制模块进行控制使得除雪头的转速为第二转速,
其中第二预定扬角阈值小于第一预定扬角阈值,所述第二转速大于第一转速。
在其中一个实施例中,安全抛雪方法还包括:进一步给定抛出扬角,通过控制除雪头的转速来控制抛雪高度。
在其中一个实施例中,抛雪机构还包括:抛雪轮和抛雪筒,抛雪轮给予来自除雪头的抛出物二次动力,并将其从抛雪筒抛出,以及
通过控制除雪头的转速、抛雪轮的转速、抛出扬角中的至少一个来控制抛雪高度。
在其中一个实施例中,其中:
通过调节挡板角度来调节抛出扬角,从而调节抛雪高度,所述挡板结构设置于抛雪机构端部,挡板角度可调节。
在其中一个实施例中,由控制模块根据雪的厚度调整行走模块的速度使得所述抛雪高度不大于预定抛雪高度阈值。
在其中一个实施例中,雪的厚度小于4cm时,控制行走模块的行走速度为20-30m/min。
在其中一个实施例中,雪的厚度大于4cm时,控制行走模块的行走速度为10-25m/min。
在其中一个实施例中,其中:
经由设置于抛雪机构内部或端部的格栅,将部分或全部夹杂物档回,以减少抛出物中的夹杂物。
在其中一个实施例中,所述格栅间隔小于50mm。
在其中一个实施例中,抛雪机构还包括抛雪筒,所述抛雪筒能够在水平方向上转动。
在其中一个实施例中,安全抛雪方法还包括:
在抛雪筒中设置加有透气结构的兜子,透气结构通过透气材料制成或者设置为带孔,使得抛出物从透气结构漏入兜子。
在其中一个实施例中,安全抛雪方法还包括通过如下抛出高度和/或抛出物能量控制结构的组合来控制抛出高度和/或抛出物能量:
设置于抛雪机构端部的挡板结构,挡板角度可调节,能够通过调节挡板角度来调节抛出扬角;
设置于抛雪机构内部或端部的格栅,用于将夹杂物档回,以减少抛出物中的夹杂物;
具有透气功能或者孔状结构的兜子。
在其中一个实施例中,安全抛雪方法还包括,基于环境阻力情况,将未考虑阻力情况针对抛雪高度确定的转速和扬雪角度中的至少一个调大。
本发明还提供一种抛出的雪或夹杂物不会对人或物造成伤害的自动行走除雪设备,包括:
行走模块,驱动除雪设备移动;
工作模块,包括工作马达和由工作马达驱动的抛雪机构,所述抛雪机构在工作马达的驱动下收集地面的积雪以及夹杂物并抛出抛雪机构,称抛出物在空中距地面的最大高度为抛雪高度;
所述抛雪高度不大于预定抛雪高度阈值。
在其中一个实施例中,称所述抛雪机构将抛出物抛出时的速度为抛出速度,相对于水平方向的初始抛出扬角为抛出扬角,抛出点的高度为初始高度,其中初始高度不大于预定抛雪高度阈值。
在其中一个实施例中,所述自动除雪设备还包括控制模块,所述控制模块配置为控制工作模块使得所述抛雪高度不大于预定抛雪高度阈值。
利用根据本发明实施例的自动除雪设备和安全除雪方法,控制抛出物的抛雪高度,从而避免打到儿童或成人的脸,提高了安全系数。
进一步地,除了控制抛出物的抛雪高度外,布置多种结构中的任一个或者组合来控制抛出物的抛出能量,使得即便打到儿童或成人时,也不会对儿童或成人造成伤害。
本发明针对传统室外高压机器人只有到室内进行高压充电才能满足工作需求的问题,提供一种机器人供电装置及机器人。
一种机器人供电装置,包括控制电路及电源模块;所述电源模块与所述控制电路连接;所述控制电路用于在所述机器人处于工作状态时,控制所述电源模块的输出端输出第一电压,且所述控制电路还用于在所述机器人处于充电状 态时,控制所述电源模块的输出端输出第二电压;所述第一电压高于充电完成后对应的第二电压。
在其中一个实施例中,所述电源模块包括两个或两个以上的电源。
在其中一个实施例中,所述第二电压为所述电源的输出电压。
在其中一个实施例中,所述第二电压介于42V至60V之间。
在其中一个实施例中,所述第一电压为所有所述电源充电完成后的输出电压之和。
在其中一个实施例中,所述控制电路用于所述机器人处于工作状态时控制所有所述电源串联,且所述控制电路用于在所述机器人处于充电状态时控制所有所述电源并联。
在其中一个实施例中,所述控制电路包括控制单元及开关单元;所述控制单元用于通过所述开关单元控制各所述电源串联或并联。
在其中一个实施例中,所述电源的数量为两个,并分别记为第一电源和第二电源;
所述开关单元包括第一单刀双掷开关、第二单刀双掷开关;所述第一单刀双掷开关的动触点与所述第一电源的正极连接,所述第一单刀双掷开关的第一静触点分别与所述第二电源的正极、所述第二单刀双掷开关的第二静触点连接;所述第二单刀双掷开关的动触点与所述第一电源的负极共同接地,所述第二单刀单刀双掷开关的第一静触点与所述第二电源的负极共同接地;
所述控制单元用于在所述机器人处于工作状态时,控制所述第一单刀双掷开关的动触点与第二静触点连接,并控制所述第二单刀双掷开关的动触点与第二静触点连接;所述控制单元还用于在所述机器人处于充电状态时,控制所述第一单刀双掷开关的动触点与第一静触点连接,并控制所述第二单刀双掷开关的动触点与第一静触点连接。
在其中一个实施例中,还包括开关电路;所述开关电路连接于所述电源模块与所述机器人内的负载之间,并与所述控制电路连接;当所述机器人处于工作状态时,所述开关电路在所述控制电路的控制下处于导通状态;当所述机器人处于充电状态时,所述开关电路在所述控制电路的控制下处于断开状态。
一种机器人,包括负载及所述的机器人供电装置;所述负载与所述机器人供电装置连接。
上述机器人供电装置及机器人具有的有益效果为:在该机器人供电装置及机器人中,控制电路用于在机器人处于工作状态时,控制电源模块的输出端输出第一电压,且控制电路还用于在机器人处于充电状态时,控制电源模块的输 出端输出第二电压,因此机器人需要较高工作电压时,在控制电路及电源模块的共同作用下,就算室外充电器只能进行低压充电,电源模块的输出端输出的电压(即第一电压)也能够满足大功率需求,从而能够克服传统室外高压机器人只有到室内进行高压充电才能满足工作需求的缺陷,提高了机器人的智能化。
附图说明
从下面结合附图对本发明实施例的详细描述中,本发明的这些和/或其它方面和优点将变得更加清楚并更容易理解,其中:
图1(a)示出了根据本发明第一实施例的自动行走除雪设备的简化结构1000的示意图,图1(b)示出了根据本发明第二实施例的自动行走除雪设备的简化结构1000’的示意图。
图2示出了自动行走除雪设备的系统框架2000的示意图。
图3示出了根据本发明的自动行走除雪设备控制抛雪高度的理论基础示意图。
图4示出了出于控制抛出高度的目的,检测搅笼转速,来控制抛出扬角的方法的流程图。
图5示出了出于控制抛出高度的目的,检测抛出扬角,来控制搅笼转速的方法的流程图。
图6示出了根据本发明实施例的设置有挡板结构的自动除雪设备的结构示意图。
图7示出了根据本发明实施例的设置有格栅的自动除雪设备的结构示意图。
图8(a)到(e)示出了格栅的示例性结构示意图。
图9示出了根据本发明实施例的配置有兜子结构的自动除雪设备的结构示意图。
图10示出了根据本发明实施例的自动行走除雪设备自动控制抛雪高度的示例方法的流程图。
图11为一实施方式提供的机器人供电装置的框图;
图12为图11所示实施方式的机器人供电装置的其中一种实施例的框图;
图13为图11所示实施方式的机器人供电装置的其中一种实施例的充电电路示意图;
图14为图11所示实施方式的机器人供电装置的其中一种实施例的供电电路示意图。
具体实施方式
为了使本领域技术人员更好地理解本发明,下面结合附图和具体实施方式对本发明作进一步详细说明。
本发明具体实施方式的自动行走除雪设备可以是自动扫雪机,自动抛/扬雪机、自动推/铲雪机以及它们之间的组合等,它们自动行走于工作区域的地面或表面上,进行扫雪、抛雪、或推雪等清除冰雪的工作,也可以认为是具有自动工作能力的除雪机,这里的自动工作能力指的是除雪机在进行除雪工作的时候,无需用户亲自操作,无需用户一直遥控或者一直监控,用户只需完成相关的设定,就可以进行其他的工作,除雪机自动执行相关的程序。
这里把自动抛雪机、自动扫雪机以及自动推雪机统称为除雪机。
图1(a)示出了根据本发明第一实施例的自动行走除雪设备的简化结构1000的示意图,其包括抛雪筒;图1(a)示出了根据本发明第二实施例的自动行走除雪设备的简化结构1000’的示意图,其不包括抛雪筒。
如图1(a)所示,自动行走除雪设备1000包括主机1100和抛雪机构1200。当然自动行走除雪设备1000还包括驱动抛雪机构1200工作的工作马达等,这里为避免混淆要点,对其不加以描述。
抛雪机构1200包括除雪头1210、抛雪筒1230、抛雪筒转向电机和机构1220。除雪头1210的具体例子例如有推雪铲或搅笼或橡胶滚刷等。下文中以搅笼为例加以说明,不过此作为例子而非作为限制。
除雪头1210用作刮雪组件,绕中心轴线转动,工作马达驱动搅笼转动从而将地面的积雪以及夹杂物收集到抛雪机构,所收集的雪在抛雪筒转向电机和机构1230的作用下然后经抛雪筒向外抛出。
图1(b)示出了不带抛雪筒的自动行走除雪设备1000’的示意图,与图1(a)相比,没有抛雪筒1220和抛雪筒转向电机和机构1230,其中符号S指示了直抛抛雪口。
图2示出了自动行走除雪设备的系统框架2000的示意图。
为避免混淆要点,这里重点说明和本发明相关的结构、操作模式和功能,关于详细结构和工作原理,请参考中国专利申请CN201710065902.7中的描述。
图2示出了根据本发明实施例的自动行走除雪设备2000的功能模块组成示意图。自动行走除雪设备2000包括控制模块2100、行走模块2200、工作模块2300、能量模块2400、检测模块2500等。
具体地,行走模块2200驱动除雪设备移动。
工作模块2300包括工作马达和由工作马达驱动的抛雪机构,所述抛雪机 构在工作马达的驱动下收集地面的积雪以及夹杂物并抛出抛雪机构,称抛出物在空中距地面的最大高度为抛雪高度。
控制模块2100控制工作模块2300的工作。在一种实施例中,控制模块2100控制工作模块2300的马达的转速,从而控制抛出物的抛出速度,进而控制抛出物的抛雪高度。在另一种实施例中,控制模块2100控制行走模块2200的行走速度,从而控制抛出物的抛出速度。
自动行走除雪设备相对手推式除雪设备的最大区别在于,前者在除雪、抛雪的过程中无人监控。在无人监控的状态下,如果抛雪高度过高,则会对人或物造成的伤害越大。对人而言,在身高固定的情况下,腿部等相对强壮的器官的高度相对较低,而脸部等重要器官的高度相对较高,如果抛雪高度过高,则容易对脸部等重要器官造成伤害。对物而言,抛雪高度越高,处于该抛雪高度以下的物体越多,砸到物体的概率就越大。而在有人监控的状态下,操作者可以根据周围环境的人或物的出没自动调整抛雪机构的工作状态,在抛雪区域没有人或物出现的时候,执行抛雪操作,无需担心抛出的雪是否会对人或物造成伤害,而一旦发现抛雪区域出现人或物时,立即暂停抛雪操作,从而避免因抛雪高度过高,而导致对人或物的伤害。因此,无人监控的自动行走除雪设备非常有必要在设计之初就考虑到将抛雪高度限制在预定抛雪高度阈值以下。
经过研发人员对典型的雪地工作环境的长期研究,结合自动除雪设备实际应用的场景为住宅的前后院,并且考虑到住宅的前后院中出现的人或物的高度,优选的,预定抛雪高度阈值设置为0.8到1.1米之间的数值。又考虑到,在住宅的前后院充满积雪的情况下,在雪地上玩耍的小孩的最小年纪在3岁左右。为避免抛出物抛到3岁及3岁以上儿童或者成人的脸部及以上部位,优选的,预定抛雪高度阈值设置为0.8米。
为便于本领域技术人员透彻理解本发明,下面说明根据本发明实施例的自动行走除雪设备控制抛雪高度的技术原理和理论分析。
智能无人操作抛雪式扫雪机,工作头搅笼由马达提供动力,通过搅笼的转动卷入积雪,再通过搅笼叶片或风扇将积雪抛出,抛雪装置将收集的积雪抛到路的一边或指定地点,抛雪过程中,路面的石子等硬物会随雪一起抛出,并具有一定的能量(扬程),如果抛出物中的石子或其它硬物的能量过大,可能会对人、宠物或其它物品造成伤害,因此应该将抛出物的能量控制在一定范围之内。为了保证人和物的安全,优选无论抛出物能量为多少,均要控制抛雪高度。不过,也可以进行简化控制,例如在一个简化示例中,也可以当检测到抛出物能量过高时,自动调整抛雪高度,使得抛雪高度在安全高度以下。
图3示出了根据本发明的自动行走除雪设备控制抛雪高度的理论基础示意图。
如图3所述,雪及其夹杂物经抛雪筒1230从抛出点A抛出,这里抛出点A即雪离开抛雪筒的点,这里用抛雪筒末端的中心点表示,设抛出速度用V表示,抛出扬角用β表示,宣称除雪深度为d,雪抛出的初始高度为H 0,这里即抛出点距地面的高度,抛雪高度为H,如前所述抛雪高度为抛出物在空中距地面的最大高度,抛出物落地点到抛出点的水平投影距离为抛雪距离,用L表示。抛雪高度H的影响因素包括抛出速度v、抛出扬角β和初始高度H 0。因此,需要通过对抛出速度V、抛出扬角β和初始高度H 0进行设计和控制,从而保证抛雪高度H在预定抛雪高度阈值以下,其中预定抛雪高度阈值为0.8到1.1米。以下,具体说明如何对上述各影响因素进行设计和控制。
初始高度H 0的决定因素包括宣称扫雪深度,雪上升过程中需聚集的高度,以及将雪导出自动行走除雪设备的机构的高度。在图3所示的实施例中,宣称扫雪深度对应为d 0,雪上升过程需聚集的高度对应为d 1,将雪导出自动行走除雪设备的机构的高度对应为抛雪筒的高度d 2
考虑到自动行走除雪设备的整机功率约1000W左右,典型地如500到800w,1000到1600w,还考虑到能量存储单元的瓦时数约300wh左右,典型地如160wh,200wh,240wh等,以及考虑到马达的配置等,本实施例中,宣称的扫雪厚度d 0为0到0.2米。雪上升过程中需聚集的高度d 1,需要保证抛出的雪不散。抛雪筒的高度d 2对应于保证抛出的雪能量损失最小的弧形所具有的高度,而弧形的高度又影响着抛出扬角β的大小,不同的抛出扬角β对应不同的高度d 2,同时抛出扬角β又影响抛雪高度H。综合各种相关因素,在一个优选示例中,初始高度H 0在200mm到800mm范围内设置。
由于本发明的自动行走除雪设备主要为家用,考虑美国家庭车道普遍宽度为6m以内,参数设置的一个优选示例为:抛雪距离为6米。基于抛雪距离的要求为6米,预定抛雪高度阈值为0.8米到1.1米之间,且初始高度H 0在200mm到800mm之间,搭建各种可能的试验模块,并进行反复的测试,得到一系列抛雪速度v和抛出扬角β的数值。然后基于家用自动行走除雪设备的产品定位,最终确定抛雪速度v=15米/秒到20米/秒,抛出扬角β=-10°到25°。需要说明的是,抛出扬角为负时,最大高度,即抛雪高度由初始高度决定。在一个示例中,自动除雪设备的抛出扬角设置为负,通过调整初始高度,来调整最大高度。
进一步地,抛雪速度v由搅笼半径r和搅笼转速n决定。为简化处理,不考虑损失(不考虑因负载导致搅笼转速的下降),可以视为抛出速度v与搅笼 半径r和搅笼转速n满足下式的关系:v=2πrn。基于抛雪速度v=15米/秒到20米/秒,结合上述公式以及搅笼转速n对震动的影响,搅笼半径对整机尺寸和除雪能力的影响,设定n=1500转/分到2500转/分,r=0.08米到0.12米。本领域技术人员可以理解的是,搅笼转速n实际是通过控制搅笼的驱动马达的转速来获得的。在一种情景下,搅笼与驱动马达之间设置了机械传动,那么搅笼转速与驱动马达转速之间的关系取决于机械传动的传动比。在另一种情景下,搅笼与驱动马达之间没有设置机械传动,搅笼由驱动马达直接驱动,则搅笼转速与驱动马达的转速相同。
在一种示例中,保证扬雪高度小于等于1米,一些示例性参数配置如表1所示。
表格1
抛出扬角β(度) 25 20 15 10 5 0 -5 -10
抛出速度v(米/秒) 20 20 20 20 20 20 20 20
初始高度H 0(毫米) 280 400 520 630 720 1000 1000 1000
优选的,本发明实施例的自动除雪设备的初始高度为200毫米到800毫米,控制抛出速度为15m/s到20m/s,抛出扬角为0度到+25度,抛雪高度小于等于1米。
在另一种示例中,保证扬雪扬雪高度小于等于0.8米,一些示例性参数配置如表格2所示。
表格2
抛出扬角β(度) 25 20 15 10 5 0 -5 -10
抛出速度v(米/秒) 20 20 20 20 20 20 20 20
初始高度H 0(毫米) 200 290 400 550 650 800 800 800
在另一种示例中,保证扬雪扬雪高度小于等于0.8米,一些示例性参数配置如表格3所示。
表格3
Figure PCTCN2018104000-appb-000001
优选的,本发明实施例的自动除雪设备的初始高度为200毫米到800毫米,控制抛出速度为18m/s到19m/s,抛出扬角为10度到15度,抛雪高度小于等于0.8米。对应地,n=1800转/分到2000转/分,r=0.088米。
在一种可选的情景中,给定初始高度H 0和搅笼半径r,通过控制模块2100控制搅笼转速或抛出扬角中的至少一个,控制抛雪高度H不超过预定抛雪高度。
下面参考附图4描述自动控制抛雪高度的示例方法400。
在步骤S410中,自动检测除雪机检测搅笼的转速;
在步骤S420,控制模块判断转速是否大于第一预定转速阈值。当判断结果为是时,过程前进到步骤S430,否则前进到步骤S440。
在步骤S430中,控制模块进行控制使得抛出扬角至第一扬角。
在步骤S440中,控制模块判断转速是否大于第二预定转速阈值,其中第二预定转速阈值小于第一预定转速阈值。当判断结果为是时,过程前进到步骤S450,控制模块进行控制使得抛出扬角为第二扬角,否则可以继续前进,进行类似处理。
有关转速阈值的设置,可以考虑节能性能进行设置。
由前面对抛出高度的分析可知,搅笼转速越大,抛出物的抛出速度越大,抛出高度越高,为了控制抛出高度,可以减小抛出扬角。
图4示出了为了控制抛出高度的目的,检测搅笼转速,来控制抛出扬角。反过来,也可以出于控制抛出高度的目的,检测抛出扬角,来控制搅笼转速。
图5示出了出于控制抛出高度的目的,检测抛出扬角,来控制搅笼转速的方法的流程图。
具体地,自动除雪设备还包括抛出扬角检测部件,用于检测抛出扬角。抛出扬角检测部件检测抛出扬角的方法可以为直接检测抛出扬角,也可以通过检测其他间接的参数,进行换算获得抛出扬角。
如图5所示,在步骤S510中,检测抛出扬角。
在步骤S520中,判断抛出扬角是否大于第一预定扬角阈值。如果结果为是,前进至步骤S530,否则前进至步骤S540。
在步骤S530中,控制模块进行控制使得搅笼的转速为第一转速。
在步骤S540中,判断抛出扬角是否大于第二预定扬角阈值。如果结果为是,前进至步骤S550,控制模块进行控制使得搅笼的转速为第二转速,其中第二预定扬角阈值小于第一预定扬角阈值,所述第二转速大于第一转速;如果步骤S540的判断结果为否,可以继续进行前述操作。
图5示出了抛出扬角可调的情况下,通过检测抛出扬角,基于检测到的抛出扬角,来控制搅笼转速以进行抛出高度控制的方法。
在另一种可选的示例中,固定初始高度H 0、搅笼半径r、以及抛出扬角, 通过控制转速,来控制高度。在一种非常具体的场景下,给定初始高度H 0=0.6米,抛出扬角=15度,搅笼半径r=0.088米,为满足控制抛雪高度低于1米,可控制搅笼转速不超过2200转/分,使得抛出速度不超过20m/s,达到控制抛雪高度不超过1米的要求。为满足控制抛雪高度低于0.8米,可控制搅笼转速不超过1750转/分,使得抛出速度不超过16m/s,达到控制抛雪高度不超过0.8米的要求。具体可以为下表格4中的各种数值。
表格4
Figure PCTCN2018104000-appb-000002
抛出扬角、搅笼半径以及扬雪初始高度固定,对于自动除雪设备而言,能够降低设计和制造成本,是较经济实用的。
前述抛雪高度控制方法未考虑环境阻力情况,实际生活中,可能会存在明显的环境阻力,例如风力,在这种情况下,因为阻力的存在,对于前述不考虑阻力情况所确定的搅笼转速和抛出扬角,此时达到的抛雪高度为低于理想情况的抛雪高度,因此可以评估环境阻力情况,并将未考虑阻力情况针对抛雪高度确定的转速和抛出扬角中的至少一个调大。
在一个示例性自动除雪设备中,抛雪机构还包括抛雪轮和抛雪筒,抛雪轮给予来自搅笼的抛出物二次动力,并将其从抛雪筒抛出。这时,从抛雪筒抛出的抛出物的速度主要由搅笼的转速和抛雪轮的转速两者决定。
由此,在一个示例中,通过控制搅笼的转速、抛雪轮的转速、抛出扬角中的至少一个来控制抛雪高度。
在另一个示例中,通过给定的初始高度H0和抛出扬角就可以完全将抛雪高度限制在预定抛雪高度阈值以下。此时,无需控制模块对抛雪速度或除雪头的驱动马达的转速进行控制。在预定抛雪高度阈值为0.8米的情况下,给定的初始高度H0和抛出扬角可以为如下表格5中的数值。此时,无论抛雪速度为多少,抛雪高度均不会超过0.8米。
表格5
Figure PCTCN2018104000-appb-000003
根据本发明上述实施例的自动除雪设备,控制抛雪高度,使得抛雪高度低 于预定阈值,从而减少乃至消除潜在的抛出物抛到诸如小孩的人脸上的风险,提高抛雪过程的安全性。
在另一个具体的实施例中,行走模块2200的行走速度V1也会对抛雪高度H造成影响,控制行走模块2200的行走速度V1使得抛雪高度H不大于预定抛雪高度阈值。情况包括,结合雪的厚度调整行走模块2200的行走速度V1。例如,当雪的厚度较厚时,行走模块2200若走的快,会导致抛雪机构1200的除雪头1210收集的雪量较多,而抛雪筒1220抛出的雪量不及收集的雪量,造成雪堵在抛雪机构1200中,因此,当雪的厚度较厚时,相应降低行走模块2200的行走速度V1,以提高抛雪机构1200对雪的处理能力。而当雪的厚度较薄时,相应提高行走模块2200的行走速度V1,能够提高抛出的雪的距离,以提高抛雪机构1200的抛雪能力,又考虑到上述因素与抛雪高度H的关系,在一个具体的实施例中,当雪的厚度小于4cm时,控制行走模块2200的行走速度V1为20-30m/min。当的厚度大于4cm时,控制行走模块2200的行走速度V1为10-25m/min。
根据本发明另一些实施例,提供了一种自动除雪设备,既控制抛雪高度,也控制抛出物的抛出能量,以免对儿童或成人造成伤害。控制抛出物的抛出能量的方法有多种,如控制抛雪机构的运行参数或布置多种结构中的任一个或者组合来控制抛出物的抛出能量。
在一个示例中,通过控制抛雪机构的运行参数,来控制抛出物的抛出能量低于安全能量。安全能量的含义参见中国专利申请CN201710065902.7中的描述。具体的,可以通过抛雪机构的运行参数使得抛出物的抛出速度为18.5m/s±1m/s。根据v=2πrn,相应的,给定搅笼半径为0.088m±0.01m,控制搅笼的转速为1800转/分到2000转/分。
下面参考图6到图9描述根据本发明实施例的既控制抛雪高度也控制抛出物抛出能量的示例性技术方案,例如,其中图6例示的挡板结构和图9所示的弯折结构优先控制高度,同时也能控制能量;在例如图7所示的格栅和图10所示的兜子优先控制能量。在一个示例中,在自动除雪设备中,设置挡板结构和/或弯折结构,以及根据需要来设置格栅和/或兜子来控制抛雪高度和抛雪能量。
根据本发明一个实施例,自动除雪设备还包括设置于抛雪机构端部的挡板结构,挡板角度可调节,能够通过调节挡板角度来调节抛出扬角。下面参考图6来进行示例性说明。
图6示出了根据本发明实施例的自动除雪设备,其中在抛雪机构的端部 (图中为抛雪筒1230的端部)设置有安全导流板(本文也称之为挡板结构,两者可互换使用)1250,安全导流板1250的角度可通过例如安全导流转向电机以及机构1240调节。
可以与工作搅笼1210转速相关联地控制挡板角度,以控制抛出物高度和能量。例如,当工作搅笼1210转速过高,导致抛出物抛出高度较高、能量较大时,可以调小安全导流板1250的角度,这样既能够降低抛出高度,同时降低抛出物的能量。
利用设置与抛雪机构端部的角度可调的挡板结构,既能够调节雪的抛出高度,也能够通过阻挡雪,而对抛出物的能够造成损耗,提高安全性能。
根据本发明另一个实施例,自动除雪设备还包括设置于抛雪机构内部或端部的格栅,用于将夹杂物挡回,以减少抛出物中的夹杂物,挡回的杂物例如可通过网兜的形式收集。下面参考图7来进行示例性说明格栅结构。
图7示出了根据本发明另一实施例的自动除雪设备,其中在抛雪机构的端部(图中为抛雪筒1230的端部)设置有格栅1260。图8(a)到(e)示出了格栅的几种示例性结构示意图。
根据本发明另一实施例,自动除雪设备还包括:抛雪筒中的加有透气结构的兜子,透气结构通过透气材料制成或者设置为带孔,使得抛出物从透气结构漏入兜子。下面参考图9来进行示例性说明。
图9示出了根据本发明另一实施例的自动除雪设备,其中设置有兜子1280,用于收集硬物,从而进一步降低抛出物中硬物伤人的危险。
兜子1280优选为透气的,或带孔的,这样例如石子这样的硬物能够从兜子漏出。
在图9所示的示例中,抛雪筒1230的端部设置有安全导流板1250,抛雪机构内设置有格栅1260,通过抛雪筒1230上的安全导流板1250或者通过隔栅来阻挡硬物,从而降低硬物的抛出能量,还可以透气的兜子1280起到收集硬物的作用,收集的硬物直接落在兜子里,避免硬物向外抛出造成对人或物的伤害。
可见图9所示的结构组合有安全导流板1250、格栅1260和兜子1280,能够降低抛出物的能量损耗,保证满足安全要求的低抛出高度,防止尺寸较大的夹杂物抛出,且能收集硬物,提供了较完备的安全保障。
本领域技术人员根据需要可以对图6到图9所示的挡板结构、格栅、弯折结构、兜子进行各种组合和修改,以使其适应实际情况,满足安全要求。
根据本发明另一实施例,还提供了一种控制自动行走除雪设备使得的雪或 夹杂物不会对人或物造成伤害的安全抛雪方法,下面参考图10来加以描述。
图10示出了根据本发明实施例的控制自动行走除雪设备使得的雪或夹杂物不会对人或物造成伤害的安全抛雪方法3000的总体流程图。
如图10所示,在步骤S3100中,由行走模块驱动除雪设备移动。
在步骤S3200中,由工作马达驱动抛雪机构收集地面的积雪以及夹杂物并抛出抛雪机构,称抛出物在空中距地面的最大高度为抛雪高度。
在步骤S3300中,由控制模块控制工作模块使得所述抛雪高度小于预定抛雪高度阈值。
在一个示例中,预定抛雪高度阈值为0.8米到1.1米。
在一个示例中,预定抛雪高度阈值为0.8米。
在一个示例中,抛雪机构包括绕中心轴线转动的除雪头,工作马达驱动除雪头转动从而将地面的积雪以及夹杂物收集到抛雪机构,其中控制模块配置为,当检测到抛出速度达到预定速度阈值时,控制抛雪高度低于预定抛雪高度阈值。
在一个示例中,预定速度阈值的取值范围为18到19米/秒。
在一个示例中,除雪头半径为0.088米,除雪头转速为1800到2000转/分。
在一个示例中,称所述抛雪机构将抛出物抛出时的速度为抛出速度,相对于水平方向的初始抛出扬角为抛出扬角,抛出点的高度为初始高度,其中通过控制抛出速度、抛出扬角、初始高度中的至少一项来控制抛雪高度,其中抛出速度越大,抛雪高度越高;在抛出扬角为正的情况下,抛出扬角越大,抛雪高度越高;初始高度越高,抛雪高度越高。
在一个示例中,初始高度为200mm到800mm。
在一个示例中,安全抛雪方法控制抛出速度为15m/s到20m/s。
在一个示例中,安全抛雪方法控制抛出扬角为-10度到25度。
在一个示例中,安全抛雪方法控制抛出速度为15m/s到20m/s,抛出扬角为-10度到25度。
在一个示例中,安全抛雪方法控制抛出速度为15m/s到20m/s,抛出扬角为0度到+25度,初始高度为200mm到800mm。
在一个示例中,除雪头半径是0.08m到0.12m,以及控制除雪头转速为1500转/分到2500转/分。
在一个示例中,安全抛雪方法控制抛出速度为18m/s到19m/s,抛出扬角为15度。
在一个示例中,除雪头半径是0.088m,以及控制转速为1800转/分到2000转/分。
在一个示例中,安全抛雪方法控制抛雪扬角为负,初始高度小于等于1米。
在一个示例中,安全抛雪方法还包括同时控制抛雪距离满足预定要求。
在一个示例中,抛雪机构包括绕中心轴线转动的搅笼,所述工作马达驱动搅笼转动从而将地面的积雪以及夹杂物收集到抛雪机构,其中给定初始高度和搅笼的半径,通过控制搅笼的转速和/或抛出物的抛出扬角来控制抛雪高度。
在一个示例中,安全抛雪方法还包括:利用搅笼转速检测部件检测搅笼的转速,控制模块进行根据搅笼的实际转速对搅笼的驱动马达进行控制,使得搅笼的转速不超过预设转速门限值。利用搅笼转速检测部件检测搅笼转速的方法可以为检测部件直接检测搅笼的转速,也可以为检测部件直接检测的是搅笼的驱动马达的转速,通过搅笼与马达的传动关系确定的传动比,推算出搅笼的转速。
在一个示例中,安全抛雪方法还包括:利用搅笼转速检测部件检测搅笼的转速,当搅笼的转速大于第一预定转速阈值时,控制模块进行控制使得抛出物的抛出扬角为第一扬角。
在一个示例中,安全抛雪方法还包括:当搅笼的转速大于第二预定转速阈值时,控制模块进行控制使得抛出物的抛出扬角为第二扬角,其中第二预定转速阈值小于第一预定转速阈值,所述第二扬角大于第一扬角。
在一个示例中,安全抛雪方法还包括:由抛出扬角检测部件检测抛出扬角;当抛出扬角大于第一预定扬角阈值时,控制模块进行控制使得搅笼的转速为第一转速。
在一个示例中,安全抛雪方法还包括:当抛出扬角大于第二预定扬角阈值时,控制模块进行控制使得搅笼的转速为第二转速,其中第二预定扬角阈值小于第一预定扬角阈值,所述第二转速大于第一转速。
在一个示例中,抛雪机构还包括:抛雪轮和抛雪筒,抛雪轮给予来自搅笼的抛出物二次动力,并将其从抛雪筒抛出,以及安全抛雪方法还包括:通过控制搅笼的转速、抛雪轮的转速、抛出扬角中的至少一个来控制抛雪高度。
在一个示例中,安全抛雪方法还包括:通过调节挡板角度来调节抛出扬角,从而调节抛雪高度,所述挡板结构设置于抛雪机构端部,挡板角度可调节。
在一个示例中,安全抛雪方法还包括:由控制模块根据雪的厚度调整行走模块的速度使得所述抛雪高度不大于预定抛雪高度阈值。
在一个示例中,安全抛雪方法还包括:雪的厚度小于4cm时,控制行走模块的行走速度为20-30m/min。
在一个示例中,安全抛雪方法还包括:雪的厚度大于4cm时,控制行走模块的行走速度为10-25m/min。
在一个示例中,安全抛雪方法还包括:经由设置于抛雪机构内部或端部的格栅,将部分或全部夹杂物档回,以减少抛出物中的夹杂物。
在一个示例中,所述格栅间隔小于50mm。
在一个示例中,安全抛雪方法还可以包括:在抛雪筒中设置加有透气结构的兜子,透气结构通过透气材料制成或者设置为带孔,使得抛出物从透气结构漏入兜子。
在一个示例中,安全除雪方法还包括通过如下抛出高度和/或抛出物能量控制结构的组合来控制抛出高度和/或抛出物能量:设置于抛雪机构端部的挡板结构,挡板角度可调节,能够通过调节挡板角度来调节抛出扬角;设置于抛雪机构内部或端部的格栅,用于将夹杂物档回,以减少抛出物中的夹杂物;具有透气功能或者孔状结构的兜子。
利用根据本发明实施例的自动除雪设备和安全除雪方法,控制抛出物的抛雪高度,从而避免打到儿童或成人的脸,提高了安全系数。
进一步地,除了控制抛出物的抛雪高度外,布置多种结构中的任一个或者组合来控制抛出物的抛出能量,使得即便打到儿童或成人时,也不会对儿童或成人造成伤害。
在前述示例中,有关数值例如初始高度、目标抛雪高度、抛出速度是根据例如统计的较低儿童身高,常见积雪深度和当前研发的自动除雪设备的能量。
在一个具体的实施例中,还提供了一种机器人供电装置,用于对机器人内的负载提供电能。可选地,机器人例如为移动机器人,并且在室外活动。例如为,上述实施例中的自动行走除雪设备,该机器人供电装置能够利用充电设备进行充电。对于室外的充电设备(例如充电桩)来说,最大输出电压通常低于机器人所需的工作电压,即如果机器人按照传统的方式利用充电设备进行充电后,充电完成后的电压无法满足机器人实际所需的工作电压。
基于上述情况,一实施方式提供了一种机器人供电装置。请参考图11,机器人供电装置包括控制电路100及电源模块200。电源模块200与控制电路100连接。其中,电源模块200可以提供电能。
控制电路100用于在机器人处于工作状态时,控制电源模块200的输出端输出第一电压,且控制电路100还用于在机器人处于充电状态时,控制电源模 块200的输出端输出第二电压。第一电压高于充电完成后对应的第二电压。
其中,充电完成后对应的第二电压,是指电源模块200充电完毕且机器人还没有处于工作状态时电源模块200的输出端输出的电压。因此,在本实施方式中,电源模块200在机器人工作和充电时输出的电压是不同的,即电源模块200在机器人工作时输出较高的电压,而机器人在充电时输出较低的电压,并且整个充电过程中(包括刚刚充电完成)电源模块200输出的电压(即第二电压)始终小于工作时对应的电压(即第一电压)。如此,即可使得机器人在工作时利用高电压进行工作,而在机器人充电时可以利用低电压进行充电,即实现低压充电、高压工作。具体地,控制电路100可以通过改变电源模块200内部的电路连接原理从而改变电源模块200的输出端输出的电压。
综上所述,机器人需要较高工作电压时,在控制电路100及电源模块200的共同作用下,就算室外充电器只能进行低压充电,电源模块200的输出端输出的电压(即第一电压)也能够满足大功率需求,从而能够克服传统室外高压机器人只有到室内进行高压充电才能满足工作需求的缺陷,提高了机器人的智能化。
在其中一个实施例中,电源模块200包括两个或两个以上电源。电源例如为蓄电池、锂电池或其他类型能够充电并提供电能的器件。
具体地,上述第二电压为电源的输出电压,例如,介于42V至60V之间。
具体地,上述第一电压为所有电源充电完成后的输出电压之和。因此,机器人充电过程中,电源模块200的输出端输出的电压仅为单个电源的输出电压,而在机器人工作过程中,电源模块200的输出端输出的电压为所有电源充电完成后的输出电压之和,从而能够满足大功率需求。
进一步地,控制电路100用于在机器人处于工作状态时,控制所有电源串联。其中,所有电源串联,是指各电源的阴极与一个相邻电源的阳极连接,各电源的阳极与另一个相邻电源的阴极连接。故,控制电路100使得所有电源串联在一起后,整个机器人供电装置能够对负载提供的工作电压就是所有电源的供电电压之和。因此,对于高压机器人来说,如果需要的工作电压较高且大于单个电源能提供的最大电压(即充电完成时的电压)时,将所有电源串联起来后该机器人供电装置即可提供较高的电压,从而能够满足大功率工作需求。因此,本发明实施方式提供的供电过程为高电压工作模式。
控制电路100还用于在机器人处于充电状态时,控制所有电源并联。这时,各电源则能够分别利用充电设备单独进行充电。因此,本实施例中提供的充电过程是低压充电,而且可以在室外直接进行充电。具体地,在充电过程中,充 电设备可以同时对各电源分别进行充电,也可以依次对各电源进行充电(即充电设备对一个电源充电完毕后,再对下一个电源进行充电,依次类推,直到对所有电源都充电完毕)。
具体地,请参考图12,控制电路100包括控制单元110及开关单元120。控制单元110用于通过开关单元120控制各电源串联或并联。因此,控制单元110主要控制开关单元120的状态,从而使各电源之间串联或并联。控制单元110例如为可编辑逻辑器件或由多个器件构成的硬件电路。
具体地,请参考图13,图14,电源的数量包括两个,分别记为第一电源BAT1和第二电源BAT2。并且,开关单元120包括第一单刀双掷开关SW2及第二单刀双掷开关SW3。其中,第一单刀双掷开关SW2的动触点(1)与第一电源BAT1的正极(B+)连接,第一单刀双掷开关SW2的第一静触点(3)分别与第二电源BAT2的正极(B+)、第二单刀双掷开关SW3的第二静触点(2)连接。第二单刀双掷开关SW3的动触点(1)与第一电源BAT1的负极(B-)共同接地,第二单刀单刀双掷开关SW3的第一静触点(3)与第二电源BAT2的负极(B-)共同接地。
请参考图13,控制单元110用于在机器人处于充电状态时,控制第一单刀双掷开关SW2的动触点(1)与第一静触点(3)连接,并控制第二单刀双掷开关SW3的动触点(1)与第一静触点(3)连接。这时,第一电源BAT1和第二电源BAT2之间的连通电路如粗线所示,即第一电源BAT1和第二电源BAT2处于并联状态,此时,整个电源模块200的输出端的电压为第一电源BAT1的输出电压或第二电源BAT2的输出电压,即上述第二电压。
请参考图14,控制单元110还用于在机器人处于工作状态时,控制第一单刀双掷开关SW2的动触点(1)与第二静触点(2)连接,并控制第二单刀双掷开关SW3的动触点(1)与第二静触点(2)连接。此时,第一电源BAT1和第二电源BAT2之间的连通电路如粗线所示,即第一电源BAT1和第二电源BAT2处于串联状态,因此,整个电源模块200的输出端的电压为第一电源BAT1和第二电源BAT2的输出电压之和。
此外,控制单元110可以利用传统的控制方式来控制第一单刀双掷开关SW2及第二单刀双掷开关SW3动触点与静触点的连接。并且,关于判断机器人处于工作状态还是充电状态方面,控制单元110可以直接接收外界设备(例如用户持有的手机)发送的状态信号来获取机器人的状态;或者,控制单元110也可以自行判断机器人所处的状态,例如:控制单元110检测到机器人与充电设备建立连接后,则认为机器人进入充电状态,充电结束后控制单元110 可以与充电设备进行通信以确认是否充电完毕,如果确认充电完毕,则认为机器人开始进入工作状态;或者,用户直接根据机器人所处的状态对开关单元120进行操作,这时则无需控制单元110。
进一步地,请继续参考图13、图14,上述机器人供电装置还包括开关电路SW1。开关电路SW1连接于电源模块200与机器人内的负载之间,并与控制电路100连接。具体地,开关电路SW1与上述控制电路100中的控制单元110连接。开关电路SW1具有导通和断开两种状态。
当机器人处于工作状态时,开关电路SW1在控制电路100的控制下处于导通状态,这时电源模块100即可对负载进行供电。当机器人处于充电状态时,开关电路SW1在控制电路100的控制下处于断开状态,这时电源模块100处于充电过程中。
在其中一个实施例中,上述机器人供电装置还可以包括多个车载充电单元(图中未示出)。各电源分别一一对应连接各车载充电单元。车载充电单元用来与充电设备建立电气连接,以对各电源进行充电。
其中,各电源分别一一对应连接各车载充电单元,换言之,车载充电单元的数量与电源是相同的,并且,各车载充电单元之间没有连接关系,以保证分别对各自连接的电源进行充电。车载充电单元与充电设备可以采用传统移动机器人的充电技术来对电源充电,例如:车载充电单元与充电设备可以利用接触式充电技术进行充电,这时车载充电单元可以设置一个公头连接器,充电设备可以设置一个母头连接器,只要将公头连接器和母头连接器对准并连接,即可进行充电。其中,接触式充电技术可以为上置式自动充电模式(即用来连接充电设备的触点位于机器人本体上方)、侧置式自动充电模式(即用来连接充电设备的触点位于机器人侧面)、下置式自动充电模式(即用来连接充电设备的触点位于机器人本体下部)等。另外,车载充电单元与充电设备也可以利用非接触式感应充电技术进行充电,其中,非接触式感应充电技术是利用电磁感应原理通过非接触的耦合方式进行能量传递的充电方式。例如:车载充电单元与充电设备之间由分离的高频变压器组成耦合器,通过感应耦合,无接触式地传输能量。
可以理解的是,车载充电单元与电源之间的连接方式不限于上述情况,只要保证充电设备能够分别对各电源进行充电即可。例如:也可以仅包括一个车载充电单元,且该车载充电单元与各电源直接通过转换开关连接,那么,在机器人进行充电时,车载充电单元可以接通与一个电源的连接电路,并对该电源进行充电,充电完成后该车载充电单元再接通与下一个电源的连接电路,再进 行充电,依次进行,直至对所有电源充电完毕为止。
另一实施方式提供了一种机器人,包括负载及上一实施方式提供的机器人供电装置。负载与机器人供电装置连接。
需要说明的是,本发明实施方式提供的机器人中的机器人供电装置与上一实施方式提供的机器人供电装置的原理相同,这里就不再赘述。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (74)

  1. 一种抛出的雪或夹杂物不会对人或物造成伤害的自动行走除雪设备,包括:
    行走模块,驱动除雪设备移动;
    工作模块,包括工作马达和由工作马达驱动的抛雪机构,所述抛雪机构在工作马达的驱动下收集地面的积雪以及夹杂物并抛出抛雪机构,称抛出物在空中距地面的最大高度为抛雪高度;
    控制模块,配置为控制工作模块或行走模块使得所述抛雪高度不大于预定抛雪高度阈值。
  2. 根据权利要求1的自动行走除雪设备,预定抛雪高度阈值为0.8到1.1米。
  3. 根据权利要求2的自动行走除雪设备,预定抛雪高度阈值为0.8米。
  4. 根据权利要求1的自动行走除雪设备,抛雪机构包括绕中心轴线转动的除雪头,所述工作马达驱动除雪头转动从而将地面的积雪以及夹杂物收集到抛雪机构,
    其中所述控制模块配置为,当检测到抛出速度达到预定速度阈值时,控制抛雪高度低于预定抛雪高度阈值。
  5. 根据权利要求4的自动行走除雪设备,其中预定速度阈值的取值范围为18到19米/秒。
  6. 根据权利要求5的自动行走除雪设备,除雪头半径为0.088米,除雪头转速为1800到2000转/分。
  7. 根据权利要求1的自动行走除雪设备,称所述抛雪机构将抛出物抛出时的速度为抛出速度,相对于水平方向的初始抛出扬角为抛出扬角,抛出点的高度为初始高度,其中
    通过控制抛出速度、抛出扬角、初始高度中的至少一项来控制抛雪高度。
  8. 根据权利要求7的自动行走除雪设备,其中除雪头半径为0.08米到0.12米,除雪头的转速为1500到2500转/分钟,预定抛雪高度阈值的取值范围为0.8到1.1米。
  9. 根据权利要求7的自动除雪设备,其中初始高度为200mm到800mm。
  10. 根据权利要求7的自动除雪设备,控制抛出速度为15m/s到20m/s。
  11. 根据权利要求7的自动除雪设备,控制抛出扬角为-10度到25度。
  12. 根据权利要求7的自动除雪设备,控制抛出速度为15m/s到20m/s,抛出扬角为-10度到25度。
  13. 根据权利要求7的自动除雪设备,控制抛出速度为15m/s到20m/s,抛出扬角为-10度到+25度,初始高度为200mm到800mm。
  14. 根据权利要求13的自动除雪设备,其中除雪头半径是0.08m到0.12m,以及
    控制除雪头转速为1500转/分到2500转/分。
  15. 根据权利要求13的自动除雪设备,控制抛出速度为18m/s到19m/s,抛出扬角为15度。
  16. 根据权利要求15的自动除雪设备,其中除雪头半径是0.088m,以及
    控制转速为1800转/分到2000转/分。
  17. 根据权利要求7的自动除雪设备,控制抛雪扬角为负,初始高度小于等于1米。
  18. 根据权利要求1的自动除雪设备,还包括同时控制抛雪距离满足预定要求。
  19. 根据权利要求7的自动除雪设备,抛雪机构包括绕中心轴线转动的除雪头,所述工作马达驱动除雪头转动从而将地面的积雪以及夹杂物收集到抛雪机构,其中给定初始高度和除雪头的半径,通过控制除雪头的转速和/或抛出扬角来控制抛雪高度。
  20. 根据权利要求19的自动除雪设备,其中进一步给定抛出扬角,通过控制除雪头的转速来控制抛雪高度。
  21. 根据权利要求19的自动除雪设备,还包括:除雪头转速检测部件,用于检测除雪头的转速,以及
    当除雪头的转速大于第一预定转速阈值时,控制模块进行控制使得抛出物的抛出扬角为第一扬角。
  22. 根据权利要求21的自动除雪设备,
    当除雪头的转速大于第二预定转速阈值时,控制模块进行控制使得抛出物的抛出扬角为第二扬角,
    其中第二预定转速阈值小于第一预定转速阈值,所述第二扬角大于第一扬角。
  23. 据权利要求19的自动除雪设备,还包括:抛出扬角检测部件,用于检测抛出扬角,以及
    当抛出扬角大于第一预定扬角阈值时,控制模块进行控制使得除雪头的转速为第一转速。
  24. 根据权利要求23的自动除雪设备,
    当抛出扬角大于第二预定扬角阈值时,控制模块进行控制使得除雪头的转速为第二转速,
    其中第二预定扬角阈值小于第一预定扬角阈值,所述第二转速大于第一转速。
  25. 根据权利要求7的自动除雪设备,还包括:
    基于环境阻力情况,将未考虑阻力情况针对抛雪高度确定的转速和扬雪角度中的至少一个调大。
  26. 根据权利要求19的自动除雪设备,还包括:
    抛雪机构还包括:抛雪轮和抛雪筒,抛雪轮给予来自除雪头的抛出物二次动力,并将其从抛雪筒抛出。
  27. 根据权利要求26的自动除雪设备,其中通过控制除雪头的转速、抛雪轮的转速、抛出扬角中的至少一个来控制抛雪高度。
  28. 根据权利要求1到27任一项的自动除雪设备,还包括:
    设置于抛雪机构端部的挡板结构,其中挡板角度可调节,能够通过调节挡板角度来调节抛出扬角。
  29. 根据权利要求1的自动行走除雪设备,所述控制模块根据雪的厚度调整行走模块的速度使得所述抛雪高度不大于预定抛雪高度阈值。
  30. 根据权利要求29的自动行走除雪设备,雪的厚度小于4cm时,控制模块控制行走模块的行走速度为20-30m/min。
  31. 根据权利要求29的自动行走除雪设备,雪的厚度大于4cm时,控制模块控制行走模块的行走速度为10-25m/min。
  32. 根据权利要求1到27任一项的自动除雪设备,还包括:
    设置于抛雪机构内部或端部的格栅,用于将夹杂物档回,以减少抛出物中的夹杂物。
  33. 根据权利要求32的自动除雪设备,所述格栅间隔小于50mm。
  34. 根据权利要求1的自动除雪设备,抛雪机构还包括抛雪筒,所述抛雪筒能够在水平方向上转动。
  35. 根据权利要求1到27任一项的自动除雪设备,还包括:
    抛雪筒中的加有透气结构的兜子,透气结构通过透气材料制成或者设置为带孔,使得抛出物从透气结构漏入兜子。
  36. 根据权利要求1到27任一项的自动除雪设备,还包括如下抛出高度和/或抛出物能量控制结构的组合:
    设置于抛雪机构端部的挡板结构,挡板角度可调节,能够通过调节挡板角度来调节抛出扬角;
    设置于抛雪机构内部或端部的格栅,用于将夹杂物档回,以减少抛出物中的夹杂物;
    以及
    具有透气功能或者孔状结构的兜子。
  37. 一种控制自动行走除雪设备使得的雪或夹杂物不会对人或物造成伤害的安全抛雪方法,所述自动行走除雪设备包括行走模块、工作模块和控制模块,所述安全抛雪方法包括:
    由行走模块驱动除雪设备移动;
    由工作马达驱动抛雪机构收集地面的积雪以及夹杂物并抛出抛雪机构,称抛出物在空中距地面的最大高度为抛雪高度;以及
    由控制模块控制工作模块或行走模块使得所述抛雪高度不大于预定抛雪高度阈值。
  38. 根据权利要求37的安全抛雪方法,预定抛雪高度阈值为0.8到1.1米。
  39. 根据权利要求38的安全抛雪方法,预定抛雪高度阈值为0.8米。
  40. 根据权利要求37的安全抛雪方法,抛雪机构包括绕中心轴线转动的除雪头,所述工作马达驱动除雪头转动从而将地面的积雪以及夹杂物收集到抛雪机构,
    其中所述控制模块配置为,当检测到抛出速度达到预定速度阈值时,控制抛雪高度不大于预定抛雪高度阈值。
  41. 根据权利要求40的安全抛雪方法,其中预定速度阈值的取值范围为18到19米/秒。
  42. 根据权利要求41的安全抛雪方法,除雪头半径为0.088米,除雪头转速为1800到2000转/分。
  43. 根据权利要求37的安全抛雪方法,称所述抛雪机构将抛出物抛出时的速度为抛出速度,相对于水平方向的初始抛出扬角为抛出扬角,抛出点的高度为初始高度,其中
    通过控制抛出速度、抛出扬角、初始高度中的至少一项来控制抛雪高度。
  44. 根据权利要求43的安全抛雪方法,其中除雪头半径为0.08米到0.12米,除雪头的转速为1500到2500转/分钟,预定抛雪高度阈值的取值范围为0.8到1.1米。
  45. 根据权利要求43的安全抛雪方法,其中初始高度为200mm到800mm。
  46. 根据权利要求43的安全抛雪方法,控制抛出速度为15m/s到20m/s。
  47. 根据权利要求43的安全抛雪方法,控制抛出扬角为-10度到25度。
  48. 根据权利要求43的安全抛雪方法,控制抛出速度为15m/s到20m/s,抛出扬角为-10度到25度。
  49. 根据权利要求43的安全抛雪方法,控制抛出速度为15m/s到20m/s,抛出扬角为0度到+25度,初始高度为200mm到800mm。
  50. 根据权利要求49的安全抛雪方法,其中除雪头半径是0.08m到0.12m,以及
    控制除雪头转速为1500转/分到2500转/分。
  51. 根据权利要求49的安全抛雪方法,控制抛出速度为18m/s到19m/s,抛出扬角为15度。
  52. 根据权利要求51的安全抛雪方法,其中除雪头半径是0.088m,以及
    控制转速为1800转/分到2000转/分。
  53. 根据权利要求43的安全抛雪方法,控制抛雪扬角为负,初始高度不大于1米。
  54. 根据权利要求37的安全抛雪方法,还包括同时控制抛雪距离满足预定要求。
  55. 根据权利要求43的安全抛雪方法,抛雪机构包括绕中心轴线转动的除雪头,所述工作马达驱动除雪头转动从而将地面的积雪以及夹杂物收集到抛雪机构,
    其中给定初始高度和除雪头的半径,通过控制除雪头的转速和/或抛出扬角来控制抛雪高度。
  56. 根据权利要求55的安全抛雪方法,还包括:
    利用除雪头转速检测部件检测除雪头的转速,
    当除雪头的转速大于第一预定转速阈值时,控制模块进行控制使得抛出物的抛出扬角为第一扬角。
  57. 根据权利要求56的安全抛雪方法,还包括:
    当除雪头的转速大于第二预定转速阈值时,控制模块进行控制使得抛出物的抛出扬角为第二扬角,
    其中第二预定转速阈值小于第一预定转速阈值,所述第二扬角大于第一 扬角。
  58. 据权利要求55的安全抛雪方法,还包括:
    由抛出扬角检测部件检测抛出扬角;
    当抛出扬角大于第一预定扬角阈值时,控制模块进行控制使得除雪头的转速为第一转速。
  59. 根据权利要求58的安全抛雪方法,还包括:
    当抛出扬角大于第二预定扬角阈值时,控制模块进行控制使得除雪头的转速为第二转速,
    其中第二预定扬角阈值小于第一预定扬角阈值,所述第二转速大于第一转速。
  60. 据权利要求55的安全抛雪方法,还包括:进一步给定抛出扬角,通过控制除雪头的转速来控制抛雪高度。
  61. 根据权利要求55到59任一项的安全抛雪方法,抛雪机构还包括:抛雪轮和抛雪筒,抛雪轮给予来自除雪头的抛出物二次动力,并将其从抛雪筒抛出,以及
    通过控制除雪头的转速、抛雪轮的转速、抛出扬角中的至少一个来控制抛雪高度。
  62. 根据权利要求37到59任一项的安全抛雪方法,其中:
    通过调节挡板角度来调节抛出扬角,从而调节抛雪高度,所述挡板结构设置于抛雪机构端部,挡板角度可调节。
  63. 根据权利要求37的安全抛雪方法,由控制模块根据雪的厚度调整行走模块的速度使得所述抛雪高度不大于预定抛雪高度阈值。
  64. 根据权利要求63的安全抛雪方法,雪的厚度小于4cm时,控制行走模块的行走速度为20-30m/min。
  65. 根据权利要求63的安全抛雪方法,雪的厚度大于4cm时,控制行走模块的行走速度为10-25m/min。
  66. 根据权利要求37到59任一项的安全抛雪方法,其中:
    经由设置于抛雪机构内部或端部的格栅,将部分或全部夹杂物档回,以减少抛出物中的夹杂物。
  67. 根据权利要求66的安全抛雪方法,所述格栅间隔小于50mm。
  68. 根据权利要求37的安全抛雪方法,抛雪机构还包括抛雪筒,所述抛雪筒能够在水平方向上转动。
  69. 根据权利要求37到59任一项的安全抛雪方法,还包括:
    在抛雪筒中设置加有透气结构的兜子,透气结构通过透气材料制成或者设置为带孔,使得抛出物从透气结构漏入兜子。
  70. 根据权利要求37到59任一项的安全抛雪方法,还包括通过如下抛出高度和/或抛出物能量控制结构的组合来控制抛出高度和/或抛出物能量:
    设置于抛雪机构端部的挡板结构,挡板角度可调节,能够通过调节挡板角度来调节抛出扬角;
    设置于抛雪机构内部或端部的格栅,用于将夹杂物档回,以减少抛出物中的夹杂物;
    具有透气功能或者孔状结构的兜子。
  71. 根据权利要求43的安全抛雪方法,还包括,基于环境阻力情况,将未考虑阻力情况针对抛雪高度确定的转速和扬雪角度中的至少一个调大。
  72. 一种抛出的雪或夹杂物不会对人或物造成伤害的自动行走除雪设备,包括:
    行走模块,驱动除雪设备移动;
    工作模块,包括工作马达和由工作马达驱动的抛雪机构,所述抛雪机构在工作马达的驱动下收集地面的积雪以及夹杂物并抛出抛雪机构,称抛出物在空中距地面的最大高度为抛雪高度;
    所述抛雪高度不大于预定抛雪高度阈值。
  73. 根据权利要求72所述的自动行走除雪设备,称所述抛雪机构将抛出物抛出时的速度为抛出速度,相对于水平方向的初始抛出扬角为抛出扬角,抛出点的高度为初始高度,其中初始高度不大于预定抛雪高度阈值。
  74. 根据权利要求72所述的自动行走除雪设备,所述自动除雪设备还包括控制模块,所述控制模块配置为控制工作模块使得所述抛雪高度不大于预定抛雪高度阈值。
PCT/CN2018/104000 2017-09-04 2018-09-04 自动除雪设备及其安全抛雪方法 WO2019042477A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18851399.8A EP3680391B1 (en) 2017-09-04 2018-09-04 Automatic self-moving snow removal device
CN201880003805.8A CN110312834B (zh) 2017-09-04 2018-09-04 自动除雪设备及其安全抛雪方法
US16/808,039 US20200299912A1 (en) 2017-09-04 2020-03-03 Automatic snow removal device and safe snow throwing method thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201710787859.5 2017-09-04
CN201710787859 2017-09-04
CN201721257328.7 2017-09-28
CN201710895458.1 2017-09-28
CN201721257328 2017-09-28
CN201710895458.1A CN109586347A (zh) 2017-09-28 2017-09-28 机器人供电装置及机器人

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/808,039 Continuation US20200299912A1 (en) 2017-09-04 2020-03-03 Automatic snow removal device and safe snow throwing method thereof

Publications (1)

Publication Number Publication Date
WO2019042477A1 true WO2019042477A1 (zh) 2019-03-07

Family

ID=65524949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104000 WO2019042477A1 (zh) 2017-09-04 2018-09-04 自动除雪设备及其安全抛雪方法

Country Status (3)

Country Link
US (1) US20200299912A1 (zh)
EP (1) EP3680391B1 (zh)
WO (1) WO2019042477A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110284452A (zh) * 2019-05-15 2019-09-27 衢州超越环保科技有限公司 一种路面积雪回收处理装置
CN114319742A (zh) * 2021-12-02 2022-04-12 姜程志 一种农业生产用大棚除雪装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214994A (zh) * 2021-12-22 2022-03-22 中国重汽集团柳州运力科迪亚克机械有限责任公司 抛雪车导雪转台装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1668525A1 (ru) * 1988-12-30 1991-08-07 Белорусский Комплексный Проектно-Изыскательский И Научно-Исследовательский Институт Топливной Промышленности Оборудование дл очистки железнодорожных путей от снега и мусора
CN202809549U (zh) * 2012-09-29 2013-03-20 白山市星泰矿山机械制造有限公司 一种抛雪机
CN106245571A (zh) * 2016-08-31 2016-12-21 沈阳中兴电力通信有限公司 自动导航除雪机器人系统
CN107044103A (zh) * 2016-02-06 2017-08-15 苏州宝时得电动工具有限公司 自动行走除雪设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497263A (en) * 1968-04-17 1970-02-24 Jacobsen Mfg Co Snow thrower safety guard
US4138829A (en) * 1978-02-24 1979-02-13 Allis-Chalmers Corporation Discharge vane arrangement for a powered snow thrower
US4761901A (en) * 1986-10-22 1988-08-09 Henry Szafarz Safety guard for a power tool discharge chute
US5163239A (en) * 1991-12-06 1992-11-17 Lampe Dennis P Snow thrower discharge chute blockage removing apparatus
JP4462587B2 (ja) * 2000-11-30 2010-05-12 本田技研工業株式会社 除雪機
US6684535B2 (en) * 2001-03-16 2004-02-03 Snapper, Inc. Snowthrower discharge assembly clearance method and apparatus for facilitating same
JP4437978B2 (ja) * 2005-07-29 2010-03-24 本田技研工業株式会社 除雪機
CA2794892C (en) * 2009-04-02 2022-07-19 Hari Prasad Snow removing system
US8966870B2 (en) * 2011-10-26 2015-03-03 Accelerated Systems Inc. Methods of controlling a lawn mower having electric drive and blade motors
WO2013173338A1 (en) * 2012-05-15 2013-11-21 Briggs & Stratton Corporation Snow thrower and accessories
US8938894B2 (en) * 2012-01-12 2015-01-27 Briggs & Stratton Corporation Automatically adjustable snowthrower chute
WO2013115787A1 (en) * 2012-01-31 2013-08-08 Husqvarna Consumer Outdoor Products N.A., Inc. Auger-impeller bucket assembly for a snow removal device
US10113280B2 (en) * 2012-12-21 2018-10-30 Michael Todd Letsky Autonomous robot apparatus and method for controlling the same
US9663910B2 (en) * 2015-03-26 2017-05-30 Emadeddin Zahri Muntasser Flat roof snow thrower

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1668525A1 (ru) * 1988-12-30 1991-08-07 Белорусский Комплексный Проектно-Изыскательский И Научно-Исследовательский Институт Топливной Промышленности Оборудование дл очистки железнодорожных путей от снега и мусора
CN202809549U (zh) * 2012-09-29 2013-03-20 白山市星泰矿山机械制造有限公司 一种抛雪机
CN107044103A (zh) * 2016-02-06 2017-08-15 苏州宝时得电动工具有限公司 自动行走除雪设备
CN106245571A (zh) * 2016-08-31 2016-12-21 沈阳中兴电力通信有限公司 自动导航除雪机器人系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110284452A (zh) * 2019-05-15 2019-09-27 衢州超越环保科技有限公司 一种路面积雪回收处理装置
CN114319742A (zh) * 2021-12-02 2022-04-12 姜程志 一种农业生产用大棚除雪装置

Also Published As

Publication number Publication date
EP3680391A4 (en) 2021-05-05
US20200299912A1 (en) 2020-09-24
EP3680391B1 (en) 2023-11-01
EP3680391A1 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
US20200299912A1 (en) Automatic snow removal device and safe snow throwing method thereof
CN206602838U (zh) 一种多功能草坪自动修剪设备
CN107230962B (zh) 一种除冰器
CN107882086A (zh) 一种建筑施工保护用废弃石块收集设备
CN108755376A (zh) 一种基于公路路面导引线标线装置的公路路面标线方法
CN110016880B (zh) 一种增强负压吸力的混凝土路面清灰机的集灰装置
CN105265093A (zh) 一种水草收集装置及水草打捞船
CN204097951U (zh) 一种抛雪机
CN110312834B (zh) 自动除雪设备及其安全抛雪方法
JP2007321527A (ja) 雪降ロボット
CN205794082U (zh) 一种小型自动割草机
CN205994448U (zh) 一种楼宇清扫机
CN107313385A (zh) 一种垃圾清扫车
CN108330876A (zh) 多功能垃圾清扫机及其清扫方法
CN201635037U (zh) 一种环保节能街道清扫车
CN215128064U (zh) 一种可爬楼清扫机器人
CN205082235U (zh) 一种水草收集装置及水草打捞船
CN109999439B (zh) 网球捡拾机器人
CN211340633U (zh) 一种公路用扬雪装置
CN210561938U (zh) 一种市政工程用路面抛雪机
CN207356041U (zh) 一种红外避障吸尘器
CN204135528U (zh) 一种钢板切割机下部积渣清除装置
CN205863872U (zh) 一种电缆除冰器
CN203042129U (zh) 一种家用吸尘器
CN106869073A (zh) 一种道路融雪装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018851399

Country of ref document: EP

Effective date: 20200406