WO2019041942A1 - 一种对置基板及其制备方法、显示面板以及封装方法 - Google Patents

一种对置基板及其制备方法、显示面板以及封装方法 Download PDF

Info

Publication number
WO2019041942A1
WO2019041942A1 PCT/CN2018/090123 CN2018090123W WO2019041942A1 WO 2019041942 A1 WO2019041942 A1 WO 2019041942A1 CN 2018090123 W CN2018090123 W CN 2018090123W WO 2019041942 A1 WO2019041942 A1 WO 2019041942A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
spacer
layer
array
auxiliary electrode
Prior art date
Application number
PCT/CN2018/090123
Other languages
English (en)
French (fr)
Inventor
罗程远
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/327,246 priority Critical patent/US11127799B2/en
Publication of WO2019041942A1 publication Critical patent/WO2019041942A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8723Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present disclosure relates to the field of liquid crystal display technologies, and in particular, to a counter substrate, a method for fabricating the same, a display panel, and a packaging method.
  • the OLED (Organic Light-Emitting Diode) display is a new type of display device. Compared with the liquid crystal display, the OLED display has the advantages of self-illumination, fast response speed and wide viewing angle, and can perform flexible display, transparent display and 3D display. Therefore, it has been rapidly developed and popularized.
  • the OLED display panel is generally packaged by means of a plastic package.
  • the process of using the glue package is: forming a film on the opposite substrate, and arranging the array substrate (ie, the substrate on which the OLED structure is formed) and the opposite substrate to the box. , complete the package.
  • the present disclosure provides a counter substrate, a method for fabricating the same, a display panel, and a packaging method for solving the problem that the auxiliary electrode cannot be in contact with the top electrode when the opposing substrate is pressed against the array substrate.
  • the present disclosure relates to an opposite substrate comprising: a spacer and a spacer distributed on the substrate, an auxiliary electrode layer covering the spacer and the substrate, and at least The spacer corresponds to a lubricant layer on the auxiliary electrode layer.
  • the lubricant layer comprises nanoparticles, the surface of which is coated with a hydrophilic organic material.
  • the nanoparticles comprise at least one of titanium dioxide, silicon dioxide, and zinc oxide.
  • the hydrophilic organic material comprises at least one of an aliphatic carboxylic acid, hydroxyethyl acrylate, hydroxypropyl acrylate, and N-methylol acrylamide.
  • the lubricant layer has a thickness of from 100 nanometers to 300 nanometers.
  • the spacer column has a tapered structure and the top end of the spacer column is curved.
  • the auxiliary electrode layer is a high transmittance electrode layer, wherein the high transmittance electrode layer has a light transmittance of not less than 90%.
  • the present disclosure is also directed to a display panel including an array substrate and the opposite substrate according to any one of claims 1 to 7, wherein the array substrate is formed with a top electrode, the spacer An auxiliary electrode layer disposed opposite to the top electrode and covering the spacer column is in contact with a top electrode overlying the pixel defining layer.
  • the present disclosure also relates to a method for preparing a counter substrate, including:
  • a lubricant layer is formed on at least the auxiliary electrode layer corresponding to the spacer.
  • the step of forming a lubricant layer on the auxiliary electrode layer corresponding to the spacer column comprises:
  • the surface is coated with a nanoparticle of a hydrophilic organic material, and is coated on the auxiliary electrode layer corresponding to at least the spacer by spray coating or spin coating to form a lubricant layer.
  • the lubricant layer has a thickness of from 100 nanometers to 300 nanometers.
  • the method before the forming the array-distributed spacers on the substrate, the method further includes:
  • Forming an array of spaced spacers on the substrate comprising:
  • the spacer is formed on the auxiliary electrode column.
  • the present disclosure also relates to a method for packaging a display panel, including:
  • the array substrate is pressed against the opposite substrate such that the spacer column is opposite to the top electrode, and the auxiliary electrode layer covering the spacer column and the top electrode covering the pixel defining layer are in contact with each other.
  • the present disclosure also relates to a display panel, including:
  • a spacer pillar formed on at least one of the first substrate and the second substrate to maintain a spacing between the first substrate and the second substrate;
  • the lubricant layer comprises nanoparticles, the surface of which is coated with a hydrophilic organic material.
  • the nanoparticles comprise at least one of titanium dioxide, silicon dioxide, and zinc oxide.
  • the hydrophilic organic material comprises at least one of an aliphatic carboxylic acid, hydroxyethyl acrylate, hydroxypropyl acrylate, and N-methylol acrylamide.
  • the lubricant layer has a thickness of from 100 nanometers to 300 nanometers.
  • the spacer column has a tapered structure and the top end of the spacer column is curved.
  • the display panel further includes an encapsulant coated between the first substrate and the second substrate, and the lubricant layer is not wetted by the encapsulant.
  • the opposite substrate of the present disclosure includes: a spacer and a spacer distributed on the substrate, an auxiliary electrode layer covering the spacer and the substrate, and at least covering the auxiliary corresponding to the spacer
  • the lubricant layer on the electrode layer allows the auxiliary electrode layer to be in better contact with the top electrode through the lubricant layer, thereby improving the electrical conductivity of the entire display panel.
  • FIG. 1A is a structural block diagram of a counter substrate according to an embodiment of the present disclosure
  • 1B is a structural block diagram of a counter substrate according to an embodiment of the present disclosure.
  • FIG. 2 is a structural block diagram of a display panel according to an embodiment of the present disclosure
  • FIG. 3 is a flow chart of a method for fabricating a counter substrate according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural view of forming a black matrix and a color pixel unit according to the present disclosure
  • FIG. 5 is a schematic structural view of a flat layer formed by the present disclosure.
  • FIG. 6 is a schematic structural view of forming an auxiliary electrode column according to the present disclosure.
  • FIG. 7 is a schematic structural view of a spacer column forming an array distribution according to the present disclosure.
  • FIG. 8 is a schematic structural view of forming an auxiliary electrode layer according to the present disclosure.
  • FIG. 9 is a flowchart of a method for packaging a display panel according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural view of a display panel package of the present disclosure.
  • FIG. 1A and FIG. 1B there is shown a structural block diagram of a counter substrate (for example, a color filter substrate) according to an embodiment of the present disclosure, which specifically includes:
  • the substrate 1 and the array are distributed on the spacers 2 on the substrate 1.
  • the auxiliary electrode layer 3 covering the spacer 2 and the substrate, and at least the lubricant layer 4 on the auxiliary electrode layer 3 corresponding to the spacer 2 is covered.
  • the lubricant layer 4 may be covered on the auxiliary electrode layer 3 corresponding to the spacer 2, or the lubricant layer 4 may be formed on the auxiliary electrode layer 3 by a single process, which is not specifically limited in this disclosure. Since the primary layer forms a lubricant layer on the auxiliary electrode layer, the lubricant layer entirely covers the auxiliary electrode layer on the substrate, so that the lubricant layer contains relatively uniform distribution of nanoparticles, and the light scattering effect is uniformly distributed due to the uniform distribution of the nanoparticles. Therefore, the light reflection of the auxiliary electrode layer can be reduced.
  • the substrate 1 includes a substrate 11, a black matrix 12, a color pixel unit 13, a flat layer 14 disposed on the black matrix 12 and the color pixel unit 13, and an auxiliary electrode pillar distributed in an array disposed on the flat layer 14. 15.
  • the array of spacers 2 is distributed on the substrate 1, wherein the auxiliary electrode column 15 is used to increase the conductivity of the auxiliary electrode layer and the top electrode.
  • the spacer is generally a photoresist material, which is formed by a process such as exposure, development, baking, etc., the spacer column has a tapered structure and the top end of the spacer column is curved. Such a structure can prevent excessive deposition of the encapsulant at the top of the spacer column, and further Affects conductivity.
  • the height of the spacers may be set according to actual process requirements. The disclosure is not specifically limited. Alternatively, the spacers may have a height of 5 micrometers to 10 micrometers.
  • the auxiliary electrode layer 3 is a structure that can be omitted.
  • the lubricant layer 4 may be formed directly on the array of spacers 2. This disclosure does not specifically limit this.
  • the lubricant layer comprises nanoparticles 9 , the surface of which is coated with a hydrophilic organic material, and since the surface of the nanoparticles is coated with a hydrophilic organic material, the sliding friction becomes a rolling friction force. The encapsulant is more easily squeezed out, thereby reducing the contact resistance of the auxiliary electrode layer and the top electrode.
  • the nanoparticle includes at least one of titanium dioxide, silicon dioxide, and zinc oxide, and the nanoparticle is a transparent spherical nanoparticle, wherein, optionally, the nanoparticle has a particle diameter of 10 nm to 50 nm. This disclosure is not specifically limited.
  • the hydrophilic organic material includes at least one of an aliphatic carboxylic acid, hydroxyethyl acrylate, hydroxypropyl acrylate, and N-methylol acrylamide.
  • the thickness of the lubricant layer may be set according to actual process requirements, and the disclosure is not specifically limited.
  • the thickness of the lubricant layer is from 100 nm to 300 nm.
  • the auxiliary electrode layer generally adopts a high transmittance electrode layer, wherein the high transmittance electrode layer has a light transmittance of not less than 90%.
  • the material of the high light transmittance electrode layer includes at least one of magnesium, silver, aluminum, copper, indium zinc oxide IZO, and indium tin oxide ITO. And formed by physical deposition (PVD) or evaporation, when the auxiliary electrode layer material is magnesium, silver, aluminum, copper, optionally, the auxiliary electrode layer has a thickness of 10 nm to 15 nm, and may also be other thicknesses. This disclosure is not specifically limited. When the auxiliary electrode layer material is indium zinc oxide IZO or indium tin oxide ITO, the thickness of the auxiliary electrode layer is 50 nm to 150 nm, which may be other thicknesses, and the present disclosure is not particularly limited.
  • the color filter substrate includes: a spacer and a spacer distributed on the substrate, an auxiliary electrode layer covering the spacer and the substrate, and at least covering the spacer
  • the lubricant layer on the auxiliary electrode layer allows the auxiliary electrode layer to more easily contact the top electrode through the lubricant layer, thereby improving the conductivity of the entire display panel.
  • the oxide nanoparticles are spherical nanoparticles and the surface is coated with a hydrophilic organic material
  • the coated hydrophilic material repels the epoxy resin, which is the main component of the encapsulant, and can prevent the nanoparticle from being opposite to the device. Scratches, and the spherical nanoparticles can be rolled, so that the sliding friction becomes a rolling friction, making the encapsulant more easily squeezed, thereby reducing the contact resistance between the auxiliary electrode layer and the top electrode, and improving the auxiliary electrode layer and The conductivity of the top electrode.
  • FIG. 2 it is a structural block diagram of a display panel according to an embodiment of the present disclosure, which specifically includes:
  • the top substrate 7 is formed on the array substrate, and the spacer electrode 2 is disposed opposite to the top electrode 7 and covers the auxiliary electrode layer on the spacer column and covers the substrate
  • the top electrodes of the pixel defining layer PDL5 are in contact with each other.
  • a lubricant layer formed on the top of the spacer (or auxiliary electrode layer) (for example, one end away from the substrate) is squeezed and gathered at the bottom of the spacer (for example, close to the substrate) One end).
  • the array substrate further includes an OLED substrate 8 and an organic layer EL6, wherein the PDL 5 is overlaid on the OLED substrate 8, the EL6 is overlaid on the PDL 5, and the top electrode 7 is overlaid on the EL6.
  • the display panel in this embodiment can be applied to any product or component having a display function, such as a mobile phone, a tablet computer, a television, a notebook computer, a digital photo frame, a navigator, and the like.
  • the display panel has all the advantages of the color filter substrate in the above embodiment, and details are not described herein again.
  • the display panel is formed of the array substrate and the color filter substrate, and the lubricant layer is formed on the auxiliary electrode on the color filter substrate.
  • the present disclosure is not limited thereto.
  • the display panel may also include other substrates, and is not limited to the aforementioned array substrate and color film substrate.
  • the lubricant layer of the present disclosure is capable of achieving its technical purpose regardless of whether or not the above auxiliary electrode is formed.
  • an embodiment of the present disclosure is directed to a display panel including: a first substrate and a second substrate opposite to the first substrate; and a spacer formed on at least one of the first substrate and the second substrate, To maintain a spacing between the first substrate and the second substrate; a lubricant layer covering at least the top surface of the spacer.
  • the lubricant layer may be the lubricant layer specifically described in the foregoing embodiment, and the description thereof will not be repeated here.
  • the package is applied between the first substrate and the second substrate, and the lubricant layer is not Infiltration with the encapsulant facilitates the purpose of changing the sliding friction into rolling friction and facilitates the extrusion of the encapsulant.
  • the present embodiment can have other advantages in addition to the auxiliary electrodes in the foregoing embodiments in the case where the above-described auxiliary electrodes are not formed.
  • a flow chart of a method for fabricating a color filter substrate according to an embodiment of the present disclosure includes:
  • Step 301 Form a black matrix and a color pixel unit on the substrate, as shown in FIG.
  • Step 302 Form a flat layer on the black matrix and the color pixel unit, as shown in FIG.
  • Step 303 forming an array of auxiliary electrode columns in the flat layer to obtain the substrate, as shown in FIG.
  • Step 304 Forming array spacer spacers on the substrate, as shown in FIG.
  • the forming the array of spaced spacers on the substrate comprises: forming the spacers on the auxiliary electrode columns.
  • Step 305 forming an auxiliary electrode layer on the spacer, the auxiliary electrode layer covering the spacer and the substrate, as shown in FIG.
  • Step 306 forming a lubricant layer on at least the auxiliary electrode layer corresponding to the spacer, as shown in FIG. 1B.
  • the step of forming a lubricant layer on the auxiliary electrode layer corresponding to the spacer column comprises:
  • the surface is coated with a nanoparticle of a hydrophilic organic material, and is coated on the auxiliary electrode layer corresponding to at least the spacer by spray coating or spin coating to form a lubricant layer. That is, a lubricant layer is formed on the auxiliary electrode layer corresponding to the spacer by spraying or spin coating. Alternatively, a lubricant layer is formed on the auxiliary electrode layer by spray coating or spin coating, the lubricant layer having a thickness of 100 nm to 300 nm.
  • the color filter substrate includes: a spacer and a spacer distributed on the substrate, an auxiliary electrode layer covering the spacer and the substrate, and at least covering the spacer
  • the lubricant layer on the auxiliary electrode layer can better contact the auxiliary electrode layer and the top electrode through the lubricant layer, thereby improving the conductivity of the entire display panel.
  • the oxide nanoparticles are spherical nanoparticles and the surface is coated with a hydrophilic organic material
  • the coated hydrophilic material repels the epoxy resin, which is the main component of the encapsulant, and can prevent the nanoparticle from being opposite to the device. Scratches, and the spherical nanoparticles can be rolled, so that the sliding friction becomes a rolling friction, making the encapsulant more easily squeezed, thereby reducing the contact resistance between the auxiliary electrode layer and the top electrode, and improving the auxiliary electrode layer and The conductivity of the top electrode.
  • FIG. 9 it is a flowchart of a method for packaging a display panel according to an embodiment of the present disclosure, which specifically includes:
  • Step 901 Prepare the array substrate and the color filter substrate described in the foregoing embodiments.
  • the top electrode is formed on the array substrate.
  • Step 902 Apply an encapsulant on the array substrate or the color filter substrate.
  • the specific process of forming the encapsulant in this step can adopt the existing adhesive film forming technology.
  • the film may be formed on the lubricant layer of the color filter substrate, or may be formed on the array substrate or on the color filter substrate.
  • the encapsulant is formed on the lubricant layer, and at this time, the effect of conducting electricity is more favorable.
  • Step 903 Pressing the array substrate with the color filter substrate, so that the spacer column is opposite to the top electrode, and the auxiliary electrode layer covering the spacer column and the top electrode covering the pixel defining layer are in contact with each other. .
  • the array substrate forming the encapsulant and the color filter substrate are adhered to each other by the encapsulant, or the frame is coated with the sealant on the periphery of the color filter substrate and the array substrate forming the lubricant layer.
  • the frame is coated with the sealant on the periphery of the color filter substrate and the array substrate forming the lubricant layer.
  • the package substrate formed through the above steps is as shown in FIG. 10.
  • the spacers are opposite to the top and are in contact with each other.
  • the nanoparticles in the lubricant layer covered on the column can move the encapsulant on the array substrate or the color film substrate along the two sides of the spacer column, so that the top electrode and the auxiliary electrode layer can be more easily contacted, and the conductivity is improved.
  • the packaging method of the display panel has all the advantages in the above embodiments, and details are not described herein again.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种对置基板及其制备方法、显示面板以及封装方法,包括:基板(1)和阵列分布在该基板(1)上的间隔柱(2),覆盖在该间隔柱(2)及该基板(1)上的辅助电极层(3),以及至少覆盖在该间隔柱(2)对应的该辅助电极层(3)上的润滑剂层(4),从而解决了现有的对置基板与阵列基板压合时,辅助电极层无法与顶电极接触的问题。

Description

一种对置基板及其制备方法、显示面板以及封装方法
相关申请的交叉引用
本申请要求于2017年08月31日递交的中国专利申请第201710776007.6号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及液晶显示技术领域,特别是涉及一种对置基板及其制备方法、显示面板以及封装方法。
背景技术
OLED(Organic Light-Emitting Diode)显示器是一种新型的显示器件,与液晶显示器相比,OLED显示器具有自发光、响应速度快和宽视角等优点,而且可以进行柔性显示、透明显示和3D显示,因而得到了快速发展与普及。
目前OLED显示面板一般采用胶封装的方式进行封装,采用胶封装的方式的过程为:在对置基板上形成胶膜,将阵列基板(即,形成有OLED结构的基板)与对置基板对盒,完成封装。需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开提供了一种对置基板及其制备方法、显示面板以及封装方法,以解决现有的对置基板与阵列基板压合时,辅助电极无法与顶电极接触的问题。
为了解决上述问题,本公开涉及了一种对置基板,包括:基板和阵列分布在所述基板上的间隔柱,覆盖在所述间隔柱及所述基板上的辅助电极层,以及至少覆盖在所述间隔柱对应的所述辅助电极层上 的润滑剂层。
可选地,所述润滑剂层包含纳米颗粒,所述纳米颗粒的表面包覆有亲水性有机材料。
可选地,所述纳米颗粒包括二氧化钛、二氧化硅、氧化锌中的至少一种。
可选地,所述亲水性有机材料包括脂肪族羧酸、丙烯酸羟乙酯、丙烯酸羟丙酯、N-羟甲基丙烯酰胺中的至少一种。
可选地,所述润滑剂层的厚度为100纳米-300纳米。
可选地,所述间隔柱为锥状结构且所述间隔柱的顶端为弧形。
可选地,所述辅助电极层为高透光率电极层,其中,所述高透光率电极层的透光率不小于90%。
为了解决上述问题,本公开还涉及了一种显示面板,包括阵列基板和如权利要求1-7中任一项所述的对置基板,所述阵列基板上形成有顶电极,所述间隔柱与所述顶电极相对设置且覆盖在间隔柱上的辅助电极层与覆盖在像素界定层上的顶电极相互接触。
为了解决上述问题,本公开还涉及了一种对置基板的制备方法,包括:
在基板上形成阵列分布的间隔柱;
在所述间隔柱上形成辅助电极层,所述辅助电极层覆盖在所述间隔柱及所述基板上;
至少在所述间隔柱对应的所述辅助电极层上形成润滑剂层。
可选地,所述至少在所述间隔柱对应的所述辅助电极层上形成润滑剂层的步骤包括:
将表面包覆有亲水性有机材料的纳米颗粒,通过喷涂或者旋涂的方式涂覆在至少所述间隔柱对应的所述辅助电极层上形成润滑剂层。
可选地,所述润滑剂层的厚度为100纳米-300纳米。
可选地,所述在基板上形成阵列分布的间隔柱之前,还包括:
在基底上形成黑矩阵和彩色像素单元;
在所述黑矩阵和彩色像素单元上形成平坦层;
在所述平坦层形成阵列分布的辅助电极柱,获得所述基板;
所述在基板上形成阵列分布的间隔柱,包括:
在所述辅助电极柱上形成所述间隔柱。
为了解决上述问题,本公开还涉及了一种显示面板的封装方法,包括:
制备阵列基板和如权利要求1-7任一项所述的对置基板,其中,所述阵列基板上形成有顶电极;
在所述阵列基板或所述对置基板上涂覆封装胶;
将所述阵列基板与所述对置基板压合,使所述间隔柱与所述顶电极相对且覆盖在间隔柱上的辅助电极层与覆盖在像素界定层上的顶电极相互接触。
为了解决上述问题,本公开还涉及了一种显示面板,包括:
第一基板以及与第一基板对盒的第二基板;
间隔柱,形成在第一基板与第二基板中的至少一个上,以保持第一基板与第二基板之间的间距;
润滑剂层,至少覆盖在所述间隔柱的顶表面上。
可选地,所述润滑剂层包含纳米颗粒,所述纳米颗粒的表面包覆有亲水性有机材料。
可选地,所述纳米颗粒包括二氧化钛、二氧化硅、氧化锌中的至少一种。
可选地,所述亲水性有机材料包括脂肪族羧酸、丙烯酸羟乙酯、丙烯酸羟丙酯、N-羟甲基丙烯酰胺中的至少一种。
可选地,所述润滑剂层的厚度为100纳米-300纳米。
可选地,所述间隔柱为锥状结构且所述间隔柱的顶端为弧形。
可选地,所述显示面板还包括封装胶,涂布在第一基板与第二基板之间,所述润滑剂层不与所述封装胶发生浸润。
与现有技术相比,本公开包括以下优点:
本公开的对置基板包括:基板和阵列分布在所述基板上的间隔柱,覆盖在所述间隔柱及所述基板上的辅助电极层,以及至少覆盖在所述间隔柱对应的所述辅助电极层上的润滑剂层,通过润滑剂层使辅 助电极层与顶电极能更好的接触,从而提高了整个显示面板的导电性。
当然,实施本公开的任一产品不一定需要同时达到以上所述的所有优点。应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
本节提供本公开中描述的技术的各种实现或示例的概述,并不是所公开技术的全部范围或所有特征的全面公开。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A是本公开实施例所述一种对置基板的结构框图;
图1B是本公开实施例所述一种对置基板的结构框图;
图2是本公开实施例所述一种显示面板的结构框图;
图3是本公开实施例所述一种对置基板的制作方法的流程图;
图4是本公开形成黑矩阵和彩色像素单元的结构示意图;
图5是本公开形成平坦层的结构示意图;
图6是本公开形成辅助电极柱的结构示意图;
图7是本公开形成阵列分布的间隔柱的结构示意图;
图8是本公开形成辅助电极层的结构示意图;
图9是本公开实施例所述一种显示面板的封装方法的流程图;
图10是本公开显示面板封装的结构示意图。
具体实施方式
为使本公开的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本公开作进一步详细的说明。
参照图1A和图1B,其示出了本公开实施例所述一种对置基板 (例如,彩膜基板)的结构框图,具体包括:
基板1和阵列分布在所述基板1上的间隔柱2。覆盖在所述间隔柱2及所述基板上的辅助电极层3,以及至少覆盖在所述间隔柱2对应的所述辅助电极层3上润滑剂层4。
在实际应用中,可以在间隔柱2对应的辅助电极层3上覆盖润滑剂层4,也可以通过一次工艺在辅助电极层3上形成润滑剂层4,对此本公开不做具体限制。由于一次工艺在辅助电极层上形成润滑剂层,润滑剂层整个覆盖在基板上的辅助电极层上,使润滑剂层包含的纳米颗粒分布较为均匀,由于纳米颗粒均匀分布有一定的光散射作用,因此可减少辅助电极层的光反射。
其中,所述基板1包括:基底11、黑矩阵12、彩色像素单元13、设置在黑矩阵12和彩色像素单元13上的平坦层14和在所述平坦层14设置的阵列分布的辅助电极柱15,间隔柱2阵列分布在基板1上,其中,辅助电极柱15用于提高辅助电极层与顶电极的导电率。间隔柱一般为光阻材料,通过曝光、显影、烘焙等工艺形成,该间隔柱为锥状结构且间隔柱的顶端为弧形,这样的结构可以避免间隔柱顶端沉积过多的封装胶,进而影响导电性。
间隔柱的高度可以根据实际工艺需要进行设置,对此本公开不做具体限制,可选地,所述间隔柱的高度为5微米-10微米。
另外,应当理解的是,在本公开的具体应用中,辅助电极层3是可以省略的结构。例如,如图1B所示,润滑剂层4可以直接形成在间隔柱2阵列上。本公开对此不作具体限定。
所述润滑剂层包含纳米颗粒9,所述纳米颗粒的表面包覆有亲水性有机材料,由于纳米颗粒的表面包覆有亲水性有机材料,从而使滑动摩擦变为了滚动摩擦力,使封装胶更容易被挤开,从而减少了辅助电极层与顶电极的接触阻力。
该所述纳米颗粒包括二氧化钛、二氧化硅、氧化锌中的至少一种,并且该纳米颗粒为透明的球形纳米颗粒,其中,可选地,所述纳米颗粒的粒径为10纳米-50纳米,对此本公开不做具体限制。
所述亲水性有机材料包括脂肪族羧酸、丙烯酸羟乙酯、丙烯酸 羟丙酯、N-羟甲基丙烯酰胺中的至少一种。
润滑剂层的厚度可以根据实际工艺需要进行设置,对此本公开不做具体限制,可选地,润滑剂层的厚度为100纳米-300纳米。
在实际应用中,辅助电极层通常采用高透光率电极层,其中,所述高透光率电极层的透光率不小于90%。
所述高透光率电极层的材料包括镁、银、铝、铜、氧化铟锌IZO、氧化铟锡ITO中的至少一种。并通过物理沉积(PVD)或蒸镀等方式形成,当辅助电极层材料为镁、银、铝、铜时,可选地,辅助电极层的厚度为10纳米-15纳米,也可以为其他厚度,对此本公开不作具体限制。当辅助电极层材料为氧化铟锌IZO、氧化铟锡ITO时,辅助电极层的厚度为50纳米-150纳米,也可以为其他厚度,对此本公开不作具体限制。
本实施例,首先,彩膜基板包括:基板和阵列分布在所述基板上的间隔柱,覆盖在所述间隔柱及所述基板上的辅助电极层,以及至少覆盖在所述间隔柱对应的所述辅助电极层上的润滑剂层,通过润滑剂层使辅助电极层更容易接触到顶电极,从而提高了整个显示面板的导电性。
其次,由于氧化物纳米颗粒为球形纳米颗粒,并且表面包覆有亲水性有机材料,由于包覆的亲水性材料与封装胶的主要成分环氧树脂相排斥,同时能够防止纳米颗粒对器件的划伤,并且球形纳米颗粒可以进行滚动,从而使滑动摩擦变为了滚动摩擦力,使封装胶更容易被挤开,从而减少了辅助电极层与顶电极的接触阻力,提高了辅助电极层与顶电极的导电能力。
参照图2,其示出了本公开实施例所述一种显示面板的结构框图,具体包括:
阵列基板和前述实施例所述的彩膜基板,所述阵列基板上形成有顶电极7,所述间隔柱2与所述顶电极7相对设置且覆盖在间隔柱上的辅助电极层与覆盖在像素界定层PDL5的顶电极相互接触。在这种情况下,形成在间隔柱(或辅助电极层)的顶部(例如,远离所述基板的一端)的润滑剂层被挤开并聚集在所述间隔柱的底部(例如, 靠近基板的一端)。
所述阵列基板还包括:OLED基板8和有机层EL6,其中,所述PDL5覆盖在OLED基板8上,所述EL6覆盖在所述PDL5上,所述顶电极7覆盖在所述EL6上。
需要说明的是,本实施例中的显示面板可以应用在手机、平板电脑、电视机、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
所述显示面板具有上述实施例中彩膜基板的所有优点,在此不再赘述。
应当理解的是,在本实施例中,显示面板由阵列基板和彩膜基板形成,并且所述润滑剂层形成在彩膜基板上的辅助电极上。然而本领域技术人员应当理解,本公开不限于此。基于本公开的构思,显示面板也可以包括其它的基板,而不限于前述的阵列基板和彩膜基板。此外,还应当理解的是,无论是否形成上述辅助电极,本公开的润滑剂层均能够实现其技术目的。
因此,本公开的一个实施例还涉及一种显示面板,包括:第一基板以及与第一基板对盒的第二基板;间隔柱,形成在第一基板与第二基板中的至少一个上,以保持第一基板与第二基板之间的间距;润滑剂层,至少覆盖在所述间隔柱的顶表面上。其中,所述润滑剂层可以是前述实施例中所具体描述的润滑剂层,在此将不再重复描述。
另外,本领域技术人员还应当理解的是,在本发明的第一基板和第二基板对盒封装的过程中,在第一基板和第二基板之间施加封装胶,所述润滑剂层不与该封装胶发生浸润,从而有利于实现使滑动摩擦力变为滚动摩擦力的目的,并且有利于挤开封装胶。
应当理解,在未形成上述辅助电极的情况下,本实施例能够具有前述实施例中除了与辅助电极相关的其它优点。例如,能够防止纳米颗粒对器件的划伤,并且球形纳米颗粒可以进行滚动,从而使滑动摩擦变为了滚动摩擦力,使封装胶更容易被挤开,从而减少了间隔件与基板之间的接触阻力。
参照图3,其示出了本公开实施例一种彩膜基板的制作方法的流 程图,具体包括:
步骤301:在基底上形成黑矩阵和彩色像素单元,如图4所示。
步骤302:在所述黑矩阵和彩色像素单元上形成平坦层,如图5所示。
步骤303:在所述平坦层形成阵列分布的辅助电极柱,获得所述基板,如图6所示。
步骤304:在基板上形成阵列分布的间隔柱,如图7所示。
优选的,所述在基板上形成阵列分布的间隔柱,包括:在所述辅助电极柱上形成所述间隔柱。
步骤305:在所述间隔柱上形成辅助电极层,所述辅助电极层覆盖在所述间隔柱及所述基板上,如图8所示。
步骤306:至少在所述间隔柱对应的所述辅助电极层上形成润滑剂层,如图1B所示。
可选地,所述至少在所述间隔柱对应的所述辅助电极层上形成润滑剂层的步骤包括:
将表面包覆有亲水性有机材料的纳米颗粒,通过喷涂或者旋涂的方式涂覆在至少所述间隔柱对应的所述辅助电极层上形成润滑剂层。即通过喷涂或者旋涂的方式涂覆在所述间隔柱对应的所述辅助电极层上形成润滑剂层。或者,通过喷涂或者旋涂的方式涂覆在所述辅助电极层上形成润滑剂层,所述润滑剂层的厚度为100纳米-300纳米。
本实施例,首先,彩膜基板包括:基板和阵列分布在所述基板上的间隔柱,覆盖在所述间隔柱及所述基板上的辅助电极层,以及至少覆盖在所述间隔柱对应的所述辅助电极层上的润滑剂层,通过润滑剂层使辅助电极层与顶电极能更好的接触,从而提高了整个显示面板的导电性。
其次,由于氧化物纳米颗粒为球形纳米颗粒,并且表面包覆有亲水性有机材料,由于包覆的亲水性材料与封装胶的主要成分环氧树脂相排斥,同时能够防止纳米颗粒对器件的划伤,并且球形纳米颗粒可以进行滚动,从而使滑动摩擦变为了滚动摩擦力,使封装胶更容易 被挤开,从而减少了辅助电极层与顶电极的接触阻力,提高了辅助电极层与顶电极的导电能力。
参照图9,其示出了本公开实施例一种显示面板的封装方法的流程图,具体包括:
步骤901:制备阵列基板和前述实施例所述的彩膜基板。
其中,所述阵列基板上形成有顶电极。
步骤902:在所述阵列基板或所述彩膜基板上涂覆封装胶。
需要说明的是,该步骤中形成封装胶的具体过程可以采用已有的胶粘剂成膜技术。该胶膜可以形成在彩膜基板的润滑剂层,也可以形成在阵列基板上或者彩膜基板上。可选地,所述封装胶形成在润滑剂层之上,此时,更利于实现导电的效果。
步骤903:将所述阵列基板与所述彩膜基板压合,使所述间隔柱与所述顶电极相对且覆盖在间隔柱上的辅助电极层与覆盖在像素界定层上的顶电极相互接触。
具体的,将形成封装胶的阵列基板与彩膜基板通过封装胶相互胶粘完成压合封装,或者,在形成润滑剂层的彩膜基板和阵列基板的四周使用封框胶将二者对盒封装。
经过上述步骤形成的封装基板如图10所示,在图10中,当将阵列基板与所述彩膜基板进行压合时,使所述间隔柱与所述顶电相对且相互接触,这样间隔柱上覆盖的润滑剂层中的纳米颗粒可以将阵列基板或者彩膜基板上的封装胶沿着间隔柱的两侧进行运动,可以使顶电极与辅助电极层更容易接触,提高了导电性。
所述显示面板的封装方法具有上述实施例中的所有优点,在此不再赘述。
需要说明的是,对于前述的方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本公开并不受所描述的动作顺序的限制,因为依据本公开,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是 本公开所必需的。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域技术人员易于想到的是:上述各个实施例的任意组合应用都是可行的,故上述各个实施例之间的任意组合都是本公开的实施方案,但是由于篇幅限制,本说明书在此就不一一详述了。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”,不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
而且,上文中的“和/或”表示本文既包含了“和”的关系,也包含了“或”的关系,其中:如果方案A与方案B是“和”的关系,则表示某实施例中可以同时包括方案A和方案B;如果方案A与方案B是“或”的关系,则表示某实施例中可以单独包括方案A,或者单独包括方案B。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
以上对本公开所提供的一种彩膜基板及其制备方法、显示面板以及封装方法,进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (15)

  1. 一种对置基板,包括:基板,阵列分布在所述基板上的间隔柱,覆盖在所述间隔柱上的润滑剂层。
  2. 根据权利要求1所述的对置基板,其中,所述润滑剂层包含纳米颗粒,所述纳米颗粒的表面包覆有亲水性有机材料。
  3. 根据权利要求2所述的对置基板,其中,所述纳米颗粒包括二氧化钛、二氧化硅或氧化锌中的至少一种。
  4. 根据权利要求2所述的对置基板,其中,所述亲水性有机材料包括脂肪族羧酸、丙烯酸羟乙酯、丙烯酸羟丙酯或N-羟甲基丙烯酰胺中的至少一种。
  5. 根据权利要求1所述的对置基板,其中,所述润滑剂层的厚度为100纳米-300纳米。
  6. 根据权利要求1所述的对置基板,其中,所述间隔柱为锥状结构且所述间隔柱远离所述基板的一端为弧形。
  7. 根据权利要求1所述的对置基板,其中,所述对置基板还包括设置在所述间隔柱与所述润滑剂层之间的辅助电极层。
  8. 根据权利要求7所述的对置基板,其中,所述辅助电极层为高透光率电极层,其中,所述高透光电极层的透光率不小于90%。
  9. 一种显示面板,包括阵列基板和如权利要求1-8中任一项所述的对置基板,所述阵列基板上形成有顶电极,所述间隔柱与所述顶电极相对设置且覆盖在间隔柱上的辅助电极层与覆盖在像素界定层上的顶电极相互接触。
  10. 根据权利要求9所述的显示面板,其中,所述润滑剂层聚集在所述间隔柱靠近所述基板的一端。
  11. 一种对置基板的制备方法,包括:
    在基板上形成阵列分布的间隔柱;
    在所述间隔柱上形成润滑剂层。
  12. 根据权利要求11所述的方法,其中,所述在所述间隔柱上形成润滑剂层的步骤包括:
    将表面包覆有亲水性有机材料的纳米颗粒,通过喷涂或者旋涂 的方式涂覆在所述间隔柱上形成润滑剂层。
  13. 根据权利要求12所述的方法,其中,所述润滑剂层的厚度为100纳米-300纳米。
  14. 根据权利要求11所述的方法,其中,所述在基板上形成阵列分布的间隔柱之前,还包括:
    在基底上形成黑矩阵和彩色像素单元;
    在所述黑矩阵和彩色像素单元上形成平坦层;
    在所述平坦层形成阵列分布的辅助电极柱,获得所述基板;
    所述在基板上形成阵列分布的间隔柱,包括:
    在所述辅助电极柱上形成所述间隔柱。
  15. 一种显示面板的封装方法,包括:
    制备的阵列基板和如权利要求1-10任一项所述的对置基板,其中,所述阵列基板上形成有顶电极;
    在所述阵列基板或所述对置基板上涂覆封装胶;
    将所述阵列基板与所述对置基板压合,使所述间隔柱与所述顶电极相对且相互接触。
PCT/CN2018/090123 2017-08-31 2018-06-06 一种对置基板及其制备方法、显示面板以及封装方法 WO2019041942A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/327,246 US11127799B2 (en) 2017-08-31 2018-06-06 Opposite substrate and preparation method thereof, display panel and packaging method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710776007.6A CN107579168B (zh) 2017-08-31 2017-08-31 一种彩膜基板及其制备方法、显示面板以及封装方法
CN201710776007.6 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019041942A1 true WO2019041942A1 (zh) 2019-03-07

Family

ID=61031004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090123 WO2019041942A1 (zh) 2017-08-31 2018-06-06 一种对置基板及其制备方法、显示面板以及封装方法

Country Status (3)

Country Link
US (1) US11127799B2 (zh)
CN (1) CN107579168B (zh)
WO (1) WO2019041942A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630829B (zh) * 2017-03-17 2019-11-08 京东方科技集团股份有限公司 显示面板的制作方法、显示面板及显示装置
CN107579168B (zh) 2017-08-31 2023-11-03 京东方科技集团股份有限公司 一种彩膜基板及其制备方法、显示面板以及封装方法
CN108711592B (zh) 2018-05-23 2019-12-31 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示器件及其制作方法
CN110610972B (zh) * 2019-09-19 2022-06-03 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN111864035B (zh) * 2020-07-31 2022-04-12 上海天马微电子有限公司 显示面板、显示面板的制作方法和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104112767A (zh) * 2014-07-28 2014-10-22 京东方科技集团股份有限公司 阵列基板、有机发光二极管显示面板和显示装置
CN105118928A (zh) * 2015-07-29 2015-12-02 京东方科技集团股份有限公司 彩膜基板、其制作方法、oled显示面板及显示装置
WO2016098336A1 (ja) * 2014-12-15 2016-06-23 東レ・ダウコーニング株式会社 水系コーティング剤組成物、それからなる水系潤滑被膜用塗料組成物および部材
CN106953020A (zh) * 2016-12-30 2017-07-14 上海天马有机发光显示技术有限公司 一种有机发光显示器件和有机发光显示装置
CN107579168A (zh) * 2017-08-31 2018-01-12 京东方科技集团股份有限公司 一种彩膜基板及其制备方法、显示面板以及封装方法
CN207265056U (zh) * 2017-08-31 2018-04-20 京东方科技集团股份有限公司 一种彩膜基板、显示面板以及显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090030851A (ko) * 2007-09-21 2009-03-25 엘지디스플레이 주식회사 액정 표시 장치 및 이의 제조 방법
JP5085692B2 (ja) * 2010-07-15 2012-11-28 株式会社ジャパンディスプレイセントラル 液晶表示装置
US9287339B2 (en) * 2010-10-28 2016-03-15 Samsung Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
CN103972270B (zh) * 2014-05-09 2016-03-02 京东方科技集团股份有限公司 Oled显示面板及应用其的oled显示装置
CN104078491B (zh) * 2014-06-20 2018-04-13 京东方科技集团股份有限公司 彩膜基板及其制作方法、显示面板和显示装置
CN104298013A (zh) * 2014-09-26 2015-01-21 深圳市华星光电技术有限公司 阵列基板与彩膜基板的对组方法
CN104730762A (zh) * 2015-04-13 2015-06-24 合肥京东方光电科技有限公司 彩膜基板、彩膜基板的制造方法及显示面板
CN105140247B (zh) * 2015-10-10 2018-02-16 京东方科技集团股份有限公司 有机发光二极管阵列基板、制造方法及使用其的显示器
CN105929607A (zh) * 2016-07-04 2016-09-07 京东方科技集团股份有限公司 一种液晶显示面板及其制造方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104112767A (zh) * 2014-07-28 2014-10-22 京东方科技集团股份有限公司 阵列基板、有机发光二极管显示面板和显示装置
WO2016098336A1 (ja) * 2014-12-15 2016-06-23 東レ・ダウコーニング株式会社 水系コーティング剤組成物、それからなる水系潤滑被膜用塗料組成物および部材
CN105118928A (zh) * 2015-07-29 2015-12-02 京东方科技集团股份有限公司 彩膜基板、其制作方法、oled显示面板及显示装置
CN106953020A (zh) * 2016-12-30 2017-07-14 上海天马有机发光显示技术有限公司 一种有机发光显示器件和有机发光显示装置
CN107579168A (zh) * 2017-08-31 2018-01-12 京东方科技集团股份有限公司 一种彩膜基板及其制备方法、显示面板以及封装方法
CN207265056U (zh) * 2017-08-31 2018-04-20 京东方科技集团股份有限公司 一种彩膜基板、显示面板以及显示装置

Also Published As

Publication number Publication date
US20210074781A1 (en) 2021-03-11
CN107579168A (zh) 2018-01-12
CN107579168B (zh) 2023-11-03
US11127799B2 (en) 2021-09-21

Similar Documents

Publication Publication Date Title
WO2019041942A1 (zh) 一种对置基板及其制备方法、显示面板以及封装方法
US10096664B2 (en) Flexible organic light emitting display manufacturing method
WO2017096666A1 (zh) 液晶显示器、电子设备、液晶面板及其制作方法
WO2016041259A1 (zh) 触摸屏、其制作方法及显示装置
TW201432537A (zh) 導電膜及其製備方法以及包含該導電膜之觸控式螢幕
CN109638056A (zh) 一种柔性显示面板及其制作方法
CN108922918A (zh) 一种oled显示面板及其制作方法、oled显示装置
WO2020224487A1 (zh) 盖板结构及其制作方法、显示面板、显示装置
WO2020156040A1 (zh) 彩膜基板、显示装置以及彩膜基板制备方法
WO2019205702A1 (zh) 阵列基板及其制作方法
WO2014139211A1 (zh) 高级超维场转换液晶显示装置及其制造方法
WO2018214842A1 (zh) 彩膜基板及其制造方法和显示装置
CN102109624A (zh) 一种光扩散膜及其制备方法
US9508779B2 (en) Electroluminescence display device and fabrication method thereof
CN203786704U (zh) 偏光片模块和触摸显示模组
US9726923B2 (en) Touch liquid crystal display module having polarizer film comprising compensating layer, polarization layer, and polarization-protective layer
TWI556146B (zh) 顯示觸控裝置
US20160202563A1 (en) Display Unit with Touch Function, Manufacturing Method Thereof and Display Device
US10976852B2 (en) Touch panel, manufacturing method thereof, and display device
CN207265056U (zh) 一种彩膜基板、显示面板以及显示装置
WO2013135074A1 (zh) 触摸屏显示器的制作方法、触摸屏显示器以及终端
CN109002236B (zh) 一种柔性触摸屏、其制作方法及显示装置
WO2013060048A1 (zh) 一种液晶基板及其制作方法、液晶显示装置
US20170261805A1 (en) Manufacturing method of array substrate, trnaslucent passivation film and liquid crystal display panel
CN109545445A (zh) 透明导电性薄膜、触控屏及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19-08-2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18851044

Country of ref document: EP

Kind code of ref document: A1