WO2019041866A1 - 薄膜封装结构及具有其的显示装置 - Google Patents

薄膜封装结构及具有其的显示装置 Download PDF

Info

Publication number
WO2019041866A1
WO2019041866A1 PCT/CN2018/085172 CN2018085172W WO2019041866A1 WO 2019041866 A1 WO2019041866 A1 WO 2019041866A1 CN 2018085172 W CN2018085172 W CN 2018085172W WO 2019041866 A1 WO2019041866 A1 WO 2019041866A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
inorganic film
film layer
sub
refractive index
Prior art date
Application number
PCT/CN2018/085172
Other languages
English (en)
French (fr)
Inventor
刘胜芳
李雪原
朱平
朱可
吕孝鹏
宋艳芹
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Priority to US16/328,734 priority Critical patent/US11251402B2/en
Priority to KR1020197021219A priority patent/KR102263856B1/ko
Priority to EP18849544.4A priority patent/EP3557645B1/en
Priority to JP2019538433A priority patent/JP6873249B2/ja
Publication of WO2019041866A1 publication Critical patent/WO2019041866A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/80Composition varying spatially, e.g. having a spatial gradient

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a thin film package structure and a display device therewith.
  • OLEDs organic light emitting diodes
  • the purpose of the organic light emitting diode package is to protect the organic light emitting diode, in particular to protect the light emitting layer of the organic light emitting diode from water and oxygen.
  • the organic light emitting diode can usually be packaged by means of a glass powder package, a cover plate and a dry sheet package to improve the water and oxygen barrier capability.
  • these package structures are generally only used in hard screens and cannot be used in flexible screens, thus limiting the development of flexible screen technology.
  • the present application provides a thin film encapsulation structure for improving water and oxygen barrier capability.
  • the present application also provides a display device having such a thin film package structure.
  • a thin film encapsulation structure comprising a plurality of inorganic film layers and at least one organic film layer which are alternately stacked on one side of a packaged device, wherein the plurality of inorganic layers
  • the film layer comprises an N-layer inorganic film layer, the N-layer inorganic film layer from the inside to the outside of the first inorganic film layer to the N-th inorganic film layer, N ⁇ 2;
  • At least the refractive index of the first inorganic film layer gradually increases from the inside to the outside.
  • the first inorganic film layer includes an M layer sublayer, and the M layer sublayer is sequentially from the inner side to the outer side, and the first sub layer to the Mth sub layer, M ⁇ 2, the first inorganic The refractive index of each sub-layer of the M-layer sub-layer of the film layer is gradually increased from the first sub-layer to the M-th sub-layer.
  • the thickness of each sub-layer of the M-layer sub-layer of the first inorganic film layer is increased stepwise from the first sub-layer to the M-th sub-layer.
  • the refractive index of each of the plurality of inorganic film layers gradually increases from the inside to the outside.
  • the refractive index of each of the inorganic film layers of the plurality of inorganic film layers of the package structure is gradually increased from the first inorganic film layer to the Nth inorganic film layer.
  • the inorganic film layer closest to the packaged device among the plurality of inorganic film layers of the thin film encapsulation structure is a first inorganic film layer.
  • the refractive index of the first inorganic film layer ranges from 1.45 to 1.91.
  • the first sub-layer of the first inorganic film layer has a refractive index ranging from 1.45 to 1.81.
  • an inorganic film layer farthest from the packaged device among the plurality of inorganic film layers of the thin film encapsulation structure is an Nth inorganic film layer, and a refractive index of the Nth inorganic film layer The range is from 1.63 to 1.91.
  • a display device comprising a substrate, a display device, and a thin film package structure as described above.
  • the above thin film encapsulation structure includes a plurality of alternately stacked inorganic film layers and organic film layers disposed on one side of the packaged device, at least the refractive index of the first inorganic film layer is gradually increased from the inside to the outside, adjacent to the first of the packaged devices
  • the inorganic film layer portion is formed by a deposition method with lower temperature or lower power, which can reduce damage to the package device during the deposition process, and at the same time, the first inorganic film layer portion away from the packaged device can adopt a relatively high temperature or a relatively high power.
  • the deposition method forms an inorganic layer with a high refractive index, few defects, and a denser one, which can improve the water-oxygen barrier property of the package structure and greatly improve the storage life of the packaged product.
  • FIG. 1 is a schematic structural view of a display device according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a thin film encapsulation structure according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic view of a thin film encapsulation structure according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic view of a thin film encapsulation structure according to Comparative Example 1.
  • the thin film package structure of the present invention includes a plurality of inorganic film layers and at least one organic film layer which are alternately stacked on one side of a packaged device such as a display device (for example, an OLED device).
  • the inorganic film layer includes an N-layer inorganic film layer, and the N-layer inorganic film layer is sequentially from the first to the N-th inorganic film layers, N ⁇ 2. Wherein, at least the refractive index of the first inorganic film layer gradually increases from the inside to the outside.
  • the refractive index is related to the quality of the inorganic film layer.
  • the refractive index of the first inorganic film layer disposed on the side of the packaged device adjacent to the packaged device is gradually increased from the inside to the outside, and the first inorganic film layer portion adjacent to the packaged device is formed by a deposition method with lower temperature or low power.
  • the damage of the packaged device can be reduced by the deposition process, and the portion of the first inorganic film layer away from the packaged device can be formed by a relatively high temperature deposition method, so that the inorganic film layer of the portion has a higher refractive index and fewer defects. It is more compact and can improve the water-oxygen barrier capability of the package structure and greatly improve the storage life of the packaged product.
  • the first inorganic film layer adjacent to the packaged device having a relatively low refractive index is first deposited on the packaged device, and can be formed at a lower temperature, for example, a temperature of 30 ° C to 60 ° C.
  • Conditions can be deposited under lower power conditions according to equipment conditions, which can reduce damage to the packaged device, and at the same time, the first inorganic film layer adjacent to the packaged device is overlaid on the packaged device,
  • the deposited inorganic layer provides a better interface environment, further facilitating subsequent temperature deposition to prepare a first inorganic film layer having a higher refractive index, and the first inorganic film layer having a higher refractive index is more dense, has fewer defects, and has more High water and oxygen barrier capacity.
  • the method of forming the first inorganic film layer by deposition may be a magnetron sputtering method, an atomic layer deposition method, an electron beam evaporation method, a plasma enhanced chemical vapor deposition method, or the like.
  • the first inorganic film layer includes an M layer sublayer, and the M layer sublayer is sequentially from the inner side to the outer side, the first sub layer to the Mth sub layer, M ⁇ 2, and the refractive index of the first inorganic film layer. The first sub-layer to the M-th sub-layer are gradually increased. The same is true for the remaining electrodeless layers.
  • the first sub-layer having a relatively low refractive index is generally prepared by a process that is less damaged to the packaged device.
  • the first sub-layer can reduce the damage to the packaged device due to the low damage process using low power and low temperature conditions.
  • the second sub-layer having an increased refractive index is superimposed on the first sub-layer of the homogenous film layer having a lower refractive index. Since the second sub-layer and the first sub-layer are homogenous film layers, the film structure of the two sub-layers is more matched and the bonding force is higher; the second sub-layer is prepared by a process with higher power and higher temperature to improve the film. Qualitative, reduce the internal defects of the second sub-layer with higher refractive index, make the second sub-layer more dense, and have higher water-oxygen barrier ability, although the second sub-layer is prepared with higher power and higher temperature, but due to the first The sublayer protects the packaged device, and the process of depositing the second sublayer does not cause damage to the packaged device. Therefore, the combination of the first sub-layer and the second sub-layer can achieve the combined effect of improving the water-blocking oxygen resistance and the damage to the OLED device.
  • the third sub-layer to the M-th sub-layer with increasing refractive index are sequentially deposited, and the temperature and power of the deposition process can be further improved to obtain a higher quality film layer to improve the water-blocking oxygen resistance.
  • the inorganic material is provided by a multi-step deposition method, and the deposition conditions are gradually changed to gradually increase the refractive index of the same inorganic material, the denseness thereof is gradually increased, and the internal defects are reduced, thereby making the first inorganic
  • the refractive index of the film gradually increases from the inside to the outside.
  • the inorganic material may be any one of SiO x , SiN x , TiO 2 , Al 2 O 3 or a mixture thereof.
  • a chemical vapor deposition (CVD) is first used to deposit an inorganic material on one side of a packaged device, and a first sub-layer having a lower refractive index is used as a buffer layer.
  • a higher refractive index homogenous film is grown as the second sub-layer of high refractive index, wherein the first layer of the lower refractive index film is reduced by a low temperature, low power process with a temperature of 50 ° C and a power of 300 W.
  • the thickness of the first sub-layer to the M-th sub-layer is increased step by step.
  • the stepwise increase in thickness can ensure a dense film with a high refractive index and a thicker film layer, and the effect of blocking water oxygen is higher.
  • the refractive index of each of the inorganic film layers in the thin film encapsulation structure gradually increases from the inside to the outside.
  • the thin film encapsulation structure includes a first inorganic film layer, a first organic layer, and a second inorganic film layer which are sequentially stacked from the inside to the outside.
  • the refractive index of the first inorganic film layer gradually increases from the inside to the outside, and the refractive index of the second inorganic film layer also gradually increases from the inside to the outside.
  • the second inorganic film layer includes a first sub-layer and a second sub-layer, and the refractive index of the first sub-layer is smaller than the refractive index of the second sub-layer. Accordingly, the first sub-layer has a lower refractive index and can be deposited using relatively lower temperature or lower power process conditions, reducing damage to the first organic layer.
  • the second sub-layer has a higher refractive index and can be formed by relatively high temperature and higher power deposition without causing damage to the first organic layer, and at the same time, due to the use of higher temperature and higher power.
  • the second sub-layer has a first sub-layer as a buffer layer, so the second sub-layer has fewer defects, is more dense, and has higher water-blocking oxygen resistance. Moreover, since the second sub-layer is located on the surface of the package structure, it is more necessary to provide a thin film layer having a high refractive index, high compactness, and high water-blocking ability.
  • the refractive index of the package structure is gradually increased from the first inorganic film layer to the Nth inorganic film layer.
  • the inorganic film layer closest to the packaged device among the plurality of inorganic film layers of the thin film encapsulation structure is the first inorganic film layer.
  • the first sub-layer of the first inorganic film layer has a low refractive index, and generally adopts a low-damage process with low power, low temperature and the like, which can reduce damage to the packaged device when the first inorganic film layer is prepared.
  • the refractive index of the first inorganic film layer ranges from 1.45 to 1.91.
  • the refractive index of the first sub-layer of the first inorganic film layer ranges from 1.45 to 1.80.
  • the first sub-layer deposition temperature of the first inorganic film layer ranges from 30 to 60 ° C, and the deposition power is determined according to the actual conditions of the device, and the lower power is used for deposition.
  • the inorganic film layer farthest from the packaged device among the plurality of inorganic film layers of the thin film encapsulation structure is the Nth inorganic film layer, and the refractive index of the Nth inorganic film layer ranges from 1.63 to 1. 1.90.
  • the display device of the present invention includes a substrate 10, a display device 20, and a thin film package structure.
  • Display device 20 is a packaged device.
  • the thin film package structure is disposed on a side of the display device 20 away from the substrate 10 for packaging the display device 20.
  • the thin film encapsulation structure includes a first inorganic film layer 110, a first organic film layer 210, a second inorganic film layer 120, and a second organic film layer 220 which are sequentially laminated on the display device 20 side from the inside to the outside.
  • the thin film encapsulation structure of the present embodiment includes a first inorganic film layer 110, a first organic film layer 210, and a second inorganic film layer 120 which are sequentially laminated on the side of the packaged device from the inside to the outside.
  • the first inorganic film layer 110 is, in order from the inside to the outside, the first sub-layer 111 of the first inorganic film layer and the second sub-layer 112 of the first inorganic film layer, and the first inorganic film layer.
  • the refractive index of the first sub-layer 111 and the second sub-layer 112 of the first inorganic film layer is 1.78 and 1.85, respectively, and the thickness is 200 nm and 800 nm in this order.
  • the second inorganic film layer 120 is, in order from the inside to the outside, a first sub-layer 121 of a second inorganic film layer formed of silicon nitride and a second sub-layer 122 of a second inorganic film layer, and a first sub-layer of the second inorganic film layer
  • the refractive index of the second sub-layer 122 of the layer 121 and the second inorganic film layer is 1.79 and 1.85, respectively, and the thickness is 200 nm and 800 nm in this order.
  • the display device packaged by the thin film package structure of this embodiment was measured under a test condition of high temperature and high humidity of 60 ° C and 90 ° for a storage life of more than 760 h.
  • the thin film encapsulation structure of the present embodiment includes a first inorganic film layer 110, a first organic film layer 210, and a second inorganic film layer 120 which are sequentially laminated on the side of the packaged device from the inside to the outside.
  • the first inorganic film layer 110 is, in order from the inside to the outside, the first sub-layer 111 of the first inorganic film layer formed of silicon nitride, the second sub-layer 112 of the first inorganic film layer, and the first inorganic film layer.
  • the third sub-layer 113, the first sub-layer 111 of the first inorganic film layer, the second sub-layer 112 of the first inorganic film layer, and the third sub-layer 113 of the third inorganic film layer have refractive indices of 1.76, 1.83, and 1.85, respectively.
  • the thickness is 100 nm, 400 nm, and 500 nm in this order.
  • the second inorganic film layer 120 is, in order from the inside to the outside, a first sub-layer 121 of a second inorganic film layer formed of silicon nitride, a second sub-layer 122 of the second inorganic film layer, and a third sub-layer of the second inorganic film layer.
  • the refractive index of the layer 123, the first sub-layer 121 of the second inorganic film layer, the second sub-layer 122 of the second inorganic film layer, and the third sub-layer 123 of the second inorganic film layer are 1.76, 1.83, 1.87, respectively. It is 100 nm, 400 nm, and 500 nm in this order.
  • the display device packaged by the thin film package structure of this example was measured under a test condition of 60 ° C and 90 ° for a storage life of 870 h.
  • the thin film encapsulation structure of the present embodiment includes a first inorganic film layer, a first organic film layer, and a second inorganic film layer which are sequentially laminated on the side of the packaged device from the inside to the outside.
  • the first inorganic film layer is, in order from the inside to the outside, a first sub-layer of the first inorganic film layer, a second sub-layer of the first inorganic film layer, and a third sub-layer of the first inorganic film layer.
  • the refractive index of the first sub-layer of the first inorganic film layer, the second sub-layer of the first inorganic film layer, and the third sub-layer of the third inorganic film layer are 1.76, 1.83, and 1.85, respectively, and the thickness is 200 nm, 500 nm. , 600nm.
  • the second inorganic film layer is a sub-layer of a single refractive index generated from silicon nitride having a refractive index of 1.87 and a thickness of 1000 nm.
  • the display device packaged by the thin film package structure of this embodiment was measured under a test condition of high temperature and high humidity of 60 ° C and 90 ° for a storage life of more than 760 h.
  • the thin film encapsulation structure of the present embodiment includes a first inorganic film layer, a first organic film layer, and a second inorganic film layer which are sequentially laminated on the side of the packaged device from the inside to the outside.
  • the first inorganic film layer is, in order from the inside to the outside, a first sub-layer of the first inorganic film layer and a second sub-layer of the first inorganic film layer, and a first sub-layer of the first inorganic film layer.
  • the refractive index of the second sub-layer of the first inorganic film layer is 1.76 and 1.80 in this order, and the thickness is 500 nm and 600 nm in this order.
  • the second inorganic film layer is, in order from the inside to the outside, a first sub-layer of the second inorganic film layer and a second sub-layer of the second inorganic film layer, and a first sub-layer of the second inorganic film layer,
  • the refractive index of the second sub-layer of the second inorganic film layer is 1.83 and 1.87, and the thickness is 500 nm and 600 nm in this order.
  • the display device packaged by the thin film package structure of this embodiment was measured under a test condition of high temperature and high humidity of 60 ° C and 90 ° for a storage life of more than 760 h.
  • the thin film package structure of the comparative example includes a first inorganic film layer 110, a first organic film layer 210, and a second inorganic film layer 120 which are sequentially laminated on the side of the packaged device from the inside to the outside.
  • the first inorganic film layer 110 is a single-refractive index inorganic film layer formed of silicon nitride, and has a refractive index uniformity of 1.78 and a thickness equal to that of the first inorganic film layer of the first embodiment, both of which are 1000 nm.
  • the second inorganic film layer 120 is a single-refractive-index inorganic film layer formed of silicon nitride, and has a refractive index uniformity of 1.78 and a thickness equal to that of the second inorganic film layer of Example 1, both being 1000 nm.
  • the display device packaged in the film package structure of this comparative example was measured under a test condition of 60 ° C and 90 ° for a storage life of 240 h.
  • the thin film encapsulation structure of this comparative example includes a first inorganic film layer, a first organic film layer, and a second inorganic film layer which are sequentially laminated on the side of the packaged device from the inside to the outside.
  • the first inorganic film layer is, in order from the inside to the outside, a first sub-layer of the first inorganic film layer and a second sub-layer of the first inorganic film layer, and a first sub-layer of the first inorganic film layer.
  • the refractive index of the second sub-layer of the first inorganic film layer is 1.85 and 1.78, and the thickness is 200 nm and 800 nm in this order.
  • the second inorganic film layer is, in order from the inside to the outside, a first sub-layer of the second inorganic film layer and a second sub-layer of the second inorganic film layer, and a first sub-layer of the second inorganic film layer,
  • the refractive index of the second sub-layer of the second inorganic film layer was 1.85 and 1.79, and the thickness was 200 nm and 800 nm in this order.
  • the display device packaged by the film package structure of this comparative example was measured under a test condition of 60 ° C and 90 ° for a storage life of 350 h.
  • the thin film encapsulation structure of this comparative example includes a first inorganic film layer, a first organic film layer, and a second inorganic film layer which are sequentially laminated on the side of the packaged device from the inside to the outside.
  • the first inorganic film layer is, in order from the inside to the outside, a first sub-layer of the first inorganic film layer, a second sub-layer of the first inorganic film layer, and a third sub-layer of the first inorganic film layer.
  • the refractive index of the first sub-layer of the first inorganic film layer, the second sub-layer of the first inorganic film layer, and the third sub-layer of the third inorganic film layer are 1.85, 1.83, 1.76, and the thickness is 200 nm, 500 nm. , 600nm.
  • the second inorganic film layer is a sub-layer of a single refractive index generated from silicon nitride having a refractive index of 1.87 and a thickness of 1000 nm.
  • the display device packaged in the film package structure of this comparative example was measured under a test condition of 60 ° C and 90 ° for a storage life of 380 h.
  • the thin film encapsulation structure of this comparative example includes a first inorganic film layer, a first organic film layer, and a second inorganic film layer which are sequentially laminated on the side of the packaged device from the inside to the outside.
  • the first inorganic film layer is, in order from the inside to the outside, a first sub-layer of the first inorganic film layer and a second sub-layer of the first inorganic film layer, and a first sub-layer of the first inorganic film layer.
  • the refractive index of the second sub-layer of the first inorganic film layer is 1.80 and 1.76, and the thickness is 600 nm and 500 nm in this order.
  • the second inorganic film layer is, in order from the inside to the outside, a first sub-layer of the second inorganic film layer and a second sub-layer of the second inorganic film layer, and a first sub-layer of the second inorganic film layer,
  • the refractive index of the second sub-layer of the second inorganic film layer was 1.87 and 1.83, and the thickness was 600 nm and 500 nm in this order.
  • the display device packaged by the thin film package structure of this example was measured under a test condition of high temperature and high humidity of 60 ° C and 90 ° for a storage life of 380 h.
  • Table 1 below compares the storage life of the inventive examples and the different comparative examples, compared with the conventionally alternately stacked single refractive index inorganic film layers and organic film layers.
  • the thin film package structure can increase the density of the inorganic film layer by using a sub-layer with a gradually increasing refractive index, and accordingly, the stress of the sub-layer gradually increasing the refractive index is gradually reduced, which can be significantly improved.
  • the water and oxygen barrier ability of the product improves the storage life of the product.
  • Example 4 760 Comparative Example 1 240 Comparative Example 2 350 Comparative Example 3 350 Comparative Example 4 380
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本发明提供的一种薄膜封装结构,包括布置于被封装器件一侧的交替层叠的多个无机膜层和至少一个有机膜层,所述多个无机膜层包括N层无机膜层,由内向外依次为第一无机膜层至第N无机膜层,N≥2;其中,至少所述第一无机膜层的折射率由内向外逐渐增加。上述薄膜封装结构,邻近被封装器件的第一无机膜层部分采用如温度较低或者功率较低的沉积方法形成,能够降低沉积过程对被封装器件的损伤,同时远离被封装器件的第一无机膜层的第N层能够采用温度相对较高或者功率相对较高的沉积方法形成折射率高、缺陷少、更为致密的无机层,能够提高封装结构的水氧阻隔能力,大大提高封装产品的储存寿命。

Description

薄膜封装结构及具有其的显示装置 技术领域
本发明涉及显示技术领域,特别是涉及一种薄膜封装结构及具有其的显示装置。
背景技术
封装技术是有机发光二极管(OLED)中的常用技术。有机发光二极管封装的目的在于保护有机发光二极管,特别是保护有机发光二极管的发光层不受水、氧的损害。通常可使用玻璃粉封装、盖板附加干燥片封装等方式对有机发光二极管进行封装来提高水、氧阻隔能力。然而,这些封装结构通常只能使用在硬屏当中,不能在柔性屏体中使用,因而限制了柔性屏体技术的发展。
发明内容
基于此,本申请提供了一种薄膜封装结构,用于提高水、氧阻隔能力。此外,本申请还提供了一种具有这种薄膜封装结构的显示装置。
根据本发明的一个方面,提供了一种薄膜封装结构,该薄膜封装结构包括布置于被封装器件一侧的交替层叠的多个无机膜层和至少一个有机膜层,其中,所述多个无机膜层包括N层无机膜层,所述N层无机膜层由内向外依次为第一无机膜层至第N无机膜层,N≥2;
其中,至少所述第一无机膜层的折射率由内向外逐渐增加。
在其中一个实施例中,所述第一无机膜层包括M层子层,所述M层子层由内向外依次为第一子层至第M子层,M≥2,所述第一无机膜层的M层子层的各子层的折射率由第一子层到第M子层逐级增加。
在其中一个实施例中,所述第一无机膜层的所述M层子层的各子层的厚度从所述第一子层到第M子层逐级增加。
在其中一个实施例中,所有多个无机膜层中的每个无机膜层的折射率均由内向外逐渐增加。
在其中一个实施例中,所述封装结构的所述多个无机膜层的各无机膜层的折射率由第一无机膜层到第N无机膜层逐级增加。
在其中一个实施例中,所述薄膜封装结构的所述多个无机膜层中距离所述被封装器件最近的无机膜层为第一无机膜层。
在其中一个实施例中,所述第一无机膜层的折射率的范围为1.45~1.91。
在其中一个实施例中,所述第一无机膜层的第一子层的折射率的范围为1.45~1.81。
在其中一个实施例中,所述薄膜封装结构的所述多个无机膜层中距离所述被封装器件最远的无机膜层为第N无机膜层,所述第N无机膜层的折射率的范围为1.63~1.91。
根据本发明的另一方面,还提供一种显示装置,所述显示装置包括基板、显示器件以及如上所述的薄膜封装结构。
上述薄膜封装结构,包括布置于被封装器件一侧的若干交替层叠的无机膜层和有机膜层,至少第一无机膜层的折射率由内向外逐渐增加地设置,邻近被封装器件的第一无机膜层部分采用温度较低或者功率较低的沉积方法形成,能够降低沉积过程对封装器件的损伤,同时远离被封装器件的第一无机膜层部分能够采用温度相对较高或者功率相对较高的沉积方法形成折射率高、缺陷少、更为致密的无机层,能够提高封装结构的水氧阻隔能力,大大提高封装产品的储存寿命。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为根据本发明的一个实施例的显示装置的结构示意图;
图2为根据本发明的实施例1的薄膜封装结构的示意图;
图3为根据本发明的实施例2的薄膜封装结构的示意图;
图4为根据对照例1的薄膜封装结构的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本发明的薄膜封装结构及具有其的显示装置进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
请参阅图1至图4所示,本发明的薄膜封装结构包括布置于被封装器件,例如显示器件(例如OLED器件)一侧的交替层叠的多个无机膜层和至少一个有机膜层,多个无机膜层包括N层无机膜层,N层无机膜层由内向外依次为第一无机膜层至第N无机膜层,N≥2。其中,至少第一无机膜层的折射率由内向外逐渐增加。
折射率与无机膜层质量有关,薄膜越致密,折射率越高,阻水氧能力也相应越高。薄膜封装结构布置于邻近被封装器件一侧的第一无机膜层的折射率由内向外逐渐增加地设置,邻近被封装器件的第一无机膜层部分采用温度较低或者低功率的沉积方法形成,能够降低沉积过程对被封装器件的损伤,同时远离被封装器件的第一无机膜层部分能够采用温度相对较高的沉积方法形成,以使该部分的无机膜层折射率更高、缺陷少、更为致密,能够提高封装结构的水氧阻隔能力,大大提高封装产品的储存寿命。
在利用沉积第一无机膜层时,沉积过程中若温度过高,则会对被封装器件造成损伤,若温度过低,则沉积上的原子团没有足够的能量迁移,缺陷较多。本发明中,先在被封装器件上沉积折射率相对较低的邻近被封装器件的第一无机膜层,由于可以在较低的温度条件下沉积形成,例如可以是30℃~60℃的温度条件,并可根据设备情况设定较低的功率条件沉积形成,能够降低对被封装器件的损伤,同时,形成的邻近被封装器件的第一无机膜层覆盖在被封装器件上,为下一步沉积的无机层提供更好界面环境,进一步有利于后续提高温度沉积能制备出折射率较高的第一无机膜层,折射率较高的第一无机膜层更为致密、缺陷少,具有更高的水氧阻隔能力。
需要说明的是,通过沉积形成第一无机膜层的方法可以是磁控溅射法、原子层沉积方法、电子束蒸镀法或等离子体增强化学气相沉积法等。作为一种可选实施方式,第一无机膜层包括M层子层,M层子层由内向外依次为第一子层至第M子层,M≥2,第一无机膜层的折射率由第一子层到第M子层逐级增加。对于其余的无极膜层来说,也是如此。
从封装工艺角度上考虑,折射率相对较低的第一子层一般采用对被封装器件损伤较小的工艺方法制备。第一子层作为首层封装膜,由于采用功率较低、温度较低等条件参数的低损伤工艺,可减少对被封装器件的损伤。
折射率增加的第二子层叠加在折射率较低的同质膜层—第一子层上。由于第二子层与第一子层是同质膜层,二者的膜层结构更加匹配,结合力更高;第二子层采用功率较高、温度较高等条件参数的工艺制备以提高膜质,减少折射率较高的第二子层内部缺陷,使第二子层更为致密,水氧阻隔能力更高,尽管第二子层制备时功率较高、温度较高,但是由于第一子层对被封装器件的保护作用,沉积第二子层的工艺过程并不会对被封装器件造成损伤。从而,第一子层与第二子层两层的结合能够可达到既提高阻水氧能力,又避免了对OLED器件的损伤的综合作用。
同理,折射率逐级增加的第三子层至第M子层依次叠加沉积,沉积过程的温度及功率可以进一步提高,以获得更高质量的膜层,以更高地提高阻水氧能力。
通过多步法沉积折射率逐级增加同质膜层作为第一子层至第M子层,可以有效防止各子层缺陷的扩散和延展,并且折射率较高的膜层更致密,其应力也可逐步降低。
可选地,在薄膜封装过程中,采用多步沉积法提供无机材料,逐渐改变沉积条件使同一无机材料的折射率逐渐增大,其致密性逐渐增大,内部缺陷降低,从而使第一无机膜层的折射率由内向外逐渐增加。
可选地,无机材料可以是SiO x、SiN x、TiO 2、Al 2O 3中的任意一种或它们的混合物。
例如,在薄膜封装过程中,先利用化学气相沉积法(Chemical vapor  deposition,CVD)在被封装器件的一侧沉积无机材料,先生长一层折射率较低的第一子层作为缓冲层,再生长一层折射率较高的同质膜作为高折射率的第二子层,其中第一层折射率较低的膜层,采用温度为50℃、功率为300W的低温、低功率工艺以减少对底层OLED器件的损伤,其中第二层折射率较高的膜层,采用温度为80℃、功率为800W的高温、高功率工艺以提高第二层的膜层质量。作为一种可选实施方式,第一子层到第M子层的厚度逐级增加。厚度逐级增加能够保证折射率高的致密性好的膜层较厚,阻隔水氧能力效果更高。
作为一种可选实施方式,薄膜封装结构中的每个无机膜层的折射率均由内向外逐渐增加。
例如,薄膜封装结构包括由内向外依次叠加的第一无机膜层、第一有机层、第二无机膜层。第一无机膜层的折射率由内向外逐渐增加,第二无机膜层的折射率也由内向外逐渐增加。
第二无机膜层包括第一子层以及第二子层,第一子层的折射率小于第二子层的折射率。相应地,第一子层的折射率较低,可以采用相对较低的温度或者功率较低的工艺条件进行沉积,减少对第一有机层的损伤。第二子层的折射率较高,可以采用相对较高的温度、较高的功率沉积形成并且不会对第一有机层造成损伤,同时,由于采用较高的温度、较高的功率形成第二子层,在有第一子层作为缓冲层,因此第二子层的缺陷少,更为致密,阻水氧能力更高。并且由于第二子层位于封装结构表面,因此,更为需要将其设置折射率高、致密性高、阻水氧能力高的薄膜层。
通过使所有无机膜层的折射率均由内向外逐渐增加,即越临近封装结构表面的膜层折射率越高,水氧阻隔性能越高,更有利于提高封装结构的使用寿命。
作为一种可选实施方式,封装结构的折射率由第一无机膜层到第N无机膜层逐级增加。
作为一种可选实施方式,薄膜封装结构的多个无机膜层中距离被封装器件最近的无机膜层为第一无机膜层。第一无机膜层的第一子层的折射率低,通常采用低功率、低温等条件参数的低损伤工艺,可减少制备第一无机膜层时对被封装器件造成损伤。
作为一种可选实施方式,第一无机膜层的折射率的范围为1.45~1.91。
作为一种可选实施方式,第一无机膜层的第一子层的折射率的范围为1.45~1.80。可选地,第一无机膜层的第一子层沉积温度的范围为30-60℃,沉积功率依据设备实际情况而定,选用较低功率的进行沉积。
作为一种可选实施方式,薄膜封装结构的多个无机膜层中距离所述被封装器件最远的无机膜层为第N无机膜层,第N无机膜层的折射率的范围为1.63~1.90。
请继续参阅图1所示,本发明的显示装置包括基板10、显示器件20以及薄膜封装结构。显示器件20为被封装器件。薄膜封装结构布置在显示器件20远离基板10的一侧,用于封装该显示器件20。薄膜封装结构包括由内向外依次层叠在显示器件20一侧的第一无机膜层110、第一有机膜层210、第二无机膜层120和第二有机膜层220。
实施例1
请参阅图2所示,本实施例的薄膜封装结构包括由内向外依次层叠在被封装器件一侧的第一无机膜层110、第一有机膜层210以及第二无机膜层120。
其中,第一无机膜层110由内向外依次是由氮化硅生成的第一无机膜层的第一子层111和第一无机膜层的第二子层112,第一无机膜层的第一子层111、第一无机膜层的第二子层112的折射率依次是1.78、1.85,厚度依次是200nm,800nm。
第二无机膜层120由内向外依次是由氮化硅生成的第二无机膜层的第一子层121和第二无机膜层的第二子层122,第二无机膜层的第一子层121、第二无机膜层的第二子层122的折射率依次是1.79、1.85,厚度依次是200nm,800nm。
由该实施例的薄膜封装结构封装的显示装置在高温高湿60℃、90H的实验条件下测定储存寿命大于760h。
实施例2
请参阅图3所示,本实施例的薄膜封装结构包括由内向外依次层叠在被封装器件一侧的第一无机膜层110、第一有机膜层210以及第二无机膜层120。
其中,第一无机膜层110由内向外依次是由氮化硅生成的第一无机膜层的 第一子层111、第一无机膜层的第二子层112以及第一无机膜层的第三子层113,第一无机膜层的第一子层111、第一无机膜层的第二子层112、第三无机膜层的第三子层113的折射率依次是1.76、1.83、1.85,厚度依次是100nm,400nm,500nm。
第二无机膜层120由内向外依次是由氮化硅生成的第二无机膜层的第一子层121、第二无机膜层的第二子层122以及第二无机膜层的第三子层123,第二无机膜层的第一子层121、第二无机膜层的第二子层122、第二无机膜层的第三子层123的折射率依次是1.76、1.83、1.87,厚度依次是100nm,400nm,500nm。
由该实施例的薄膜封装结构封装的显示装置在60℃、90H的实验条件下测定储存寿命为870h。
实施例3
本实施例的薄膜封装结构包括由内向外依次层叠在被封装器件一侧的第一无机膜层、第一有机膜层以及第二无机膜层。
其中,第一无机膜层由内向外依次是由氮化硅生成的第一无机膜层的第一子层、第一无机膜层的第二子层以及第一无机膜层的第三子层,第一无机膜层的第一子层、第一无机膜层的第二子层、第三无机膜层的第三子层的折射率依次是1.76、1.83、1.85,厚度依次是200nm,500nm,600nm。
第二无机膜层为由氮化硅生成的单一折射率的子层,其折射率是1.87,厚度是1000nm。
由该实施例的薄膜封装结构封装的显示装置在高温高湿60℃、90H的实验条件下测定储存寿命大于760h。
实施例4
本实施例的薄膜封装结构包括由内向外依次层叠在被封装器件一侧的第一无机膜层、第一有机膜层以及第二无机膜层。
其中,第一无机膜层由内向外依次是由氮化硅生成的第一无机膜层的第一子层和第一无机膜层的第二子层,第一无机膜层的第一子层、第一无机膜层的第二子层的折射率依次是1.76、1.80,厚度依次是500nm,600nm。
第二无机膜层由内向外依次是由氮化硅生成的第二无机膜层的第一子层和 第二无机膜层的第二子层,第二无机膜层的第一子层、第二无机膜层的第二子层的折射率依次是1.83、1.87,厚度依次是500nm,600nm。
由该实施例的薄膜封装结构封装的显示装置在高温高湿60℃、90H的实验条件下测定储存寿命大于760h。
对照例1
请参阅图4所示,本对照例的薄膜封装结构包括由内向外依次层叠在被封装器件一侧的第一无机膜层110、第一有机膜层210以及第二无机膜层120。
其中,第一无机膜层110为由氮化硅生成的单一折射率的无机膜层,其折射率均一地为1.78,厚度与实施例1的第一无机膜层厚度相同,均为1000nm。
第二无机膜层120为由氮化硅生成的单一折射率的无机膜层,其折射率均一地为1.78,厚度与实施例1的第二无机膜层厚度相同,均为1000nm。
由该对照例的薄膜封装结构封装的显示装置在60℃、90H的实验条件下测定储存寿命为240h。
对照例2
本对照例的薄膜封装结构包括由内向外依次层叠在被封装器件一侧的第一无机膜层、第一有机膜层以及第二无机膜层。
其中,第一无机膜层由内向外依次是由氮化硅生成的第一无机膜层的第一子层和第一无机膜层的第二子层,第一无机膜层的第一子层、第一无机膜层的第二子层的折射率依次是1.85、1.78,厚度依次是200nm,800nm。
第二无机膜层由内向外依次是由氮化硅生成的第二无机膜层的第一子层和第二无机膜层的第二子层,第二无机膜层的第一子层、第二无机膜层的第二子层的折射率依次是1.85、1.79,厚度依次是200nm,800nm。
由该对照例的薄膜封装结构封装的显示装置在60℃、90H的实验条件下测定储存寿命为350h。
对照例3
本对照例的薄膜封装结构包括由内向外依次层叠在被封装器件一侧的第一无机膜层、第一有机膜层以及第二无机膜层。
其中,第一无机膜层由内向外依次是由氮化硅生成的第一无机膜层的第一 子层、第一无机膜层的第二子层以及第一无机膜层的第三子层,第一无机膜层的第一子层、第一无机膜层的第二子层、第三无机膜层的第三子层的折射率依次是1.85、1.83、1.76,厚度依次是200nm,500nm,600nm。
第二无机膜层为由氮化硅生成的单一折射率的子层,其折射率是1.87,厚度是1000nm。
由该对照例的薄膜封装结构封装的显示装置在60℃、90H的实验条件下测定储存寿命为380h。
对照例4
本对照例的薄膜封装结构包括由内向外依次层叠在被封装器件一侧的第一无机膜层、第一有机膜层以及第二无机膜层。
其中,第一无机膜层由内向外依次是由氮化硅生成的第一无机膜层的第一子层和第一无机膜层的第二子层,第一无机膜层的第一子层、第一无机膜层的第二子层的折射率依次是1.80、1.76,厚度依次是600nm,500nm。
第二无机膜层由内向外依次是由氮化硅生成的第二无机膜层的第一子层和第二无机膜层的第二子层,第二无机膜层的第一子层、第二无机膜层的第二子层的折射率依次是1.87、1.83,厚度依次是600nm,500nm。
由该实施例的薄膜封装结构封装的显示装置在高温高湿60℃、90H的实验条件下测定储存寿命为380h。
如上述公开方案中所描述的,下面的表1比较了本发明实施例与不同对照例的储存寿命,与传统地交替层叠单一折射率的无机膜层和有机膜层的封装结构相比,本发明的薄膜封装结构在相同封装厚度的情况下,采用逐渐增加的折射率的子层能够提高无机膜层的致密性,相应地,逐渐增加折射率的子层的应力逐级减少,能够明显提高产品的水氧阻隔能力,提高产品的储存寿命。
表1实施例与对照例应力以及储存寿命对比
序号 储存寿命/h(60℃90H)
实施例1 760
实施例2 870
实施例3 760
实施例4 760
对照例1 240
对照例2 350
对照例3 350
对照例4 380
在本发明描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种薄膜封装结构,包括布置于被封装器件一侧的交替层叠的多个无机膜层和至少一个有机膜层,其特征在于,所述多个无机膜层包括N层无机膜层,所述N层无机膜层由内向外依次为第一无机膜层至第N无机膜层,N≥2;
    其中,至少所述第一无机膜层的折射率由内向外逐渐增加。
  2. 根据权利要求1所述的薄膜封装结构,其特征在于,所述第一无机膜层包括M层子层,所述M层子层由内向外依次为第一子层至第M子层,M≥2,所述第一无机膜层的M层子层的各子层的折射率由第一子层到第M子层逐级增加。
  3. 根据权利要求2所述的薄膜封装结构,其特征在于,所述第一无机膜层的所述M层子层的各子层的厚度从所述第一子层到第M子层逐级增加。
  4. 根据权利要求1所述的薄膜封装结构,其特征在于,所述多个无机膜层中的每个无机膜层的折射率均由内向外逐渐增加。
  5. 根据权利要求4所述的薄膜封装结构,其特征在于,所述封装结构的所述多个无机膜层的各无机膜层的折射率由第一无机膜层到第N无机膜层逐级增加。
  6. 根据权利要求2至5中任意一项所述的薄膜封装结构,其特征在于,所述薄膜封装结构的所述多个无机膜层中距离所述被封装器件最近的无机膜层为第一无机膜层。
  7. 根据权利要求6所述的薄膜封装结构,其特征在于,所述第一无机膜层的折射率的范围为1.45~1.91。
  8. 根据权利要求7所述的薄膜封装结构,其特征在于,所述第一无机膜层的第一子层的折射率的范围为1.45~1.81。
  9. 根据权利要求2至5中任意一项所述的薄膜封装结构,其特征在于,所述薄膜封装结构的所述多个无机膜层中距离所述被封装器件最远的无机膜层为第N无机膜层,所述第N无机膜层的折射率的范围为1.63~1.91。
  10. 一种显示装置,所述显示装置包括基板、显示器件以及如权利要求1至9中任意一项所述的薄膜封装结构。
PCT/CN2018/085172 2017-08-28 2018-04-28 薄膜封装结构及具有其的显示装置 WO2019041866A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/328,734 US11251402B2 (en) 2017-08-28 2018-04-28 Thin-film encapsulation structures, manufacturing methods, and display apparatus therewith
KR1020197021219A KR102263856B1 (ko) 2017-08-28 2018-04-28 박막 패키징 구조체, 이의 제조 방법 및 이를 갖는 디스플레이 장치
EP18849544.4A EP3557645B1 (en) 2017-08-28 2018-04-28 Film packaging structure and display apparatus having same
JP2019538433A JP6873249B2 (ja) 2017-08-28 2018-04-28 薄膜封止構造、製造方法及び当該構造の表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710752001.5A CN109427992B (zh) 2017-08-28 2017-08-28 薄膜封装结构及具有其的显示装置
CN201710752001.5 2017-08-28

Publications (1)

Publication Number Publication Date
WO2019041866A1 true WO2019041866A1 (zh) 2019-03-07

Family

ID=63960618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085172 WO2019041866A1 (zh) 2017-08-28 2018-04-28 薄膜封装结构及具有其的显示装置

Country Status (7)

Country Link
US (1) US11251402B2 (zh)
EP (1) EP3557645B1 (zh)
JP (1) JP6873249B2 (zh)
KR (1) KR102263856B1 (zh)
CN (1) CN109427992B (zh)
TW (1) TWI695462B (zh)
WO (1) WO2019041866A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109103222A (zh) * 2018-08-20 2018-12-28 武汉华星光电半导体显示技术有限公司 一种oled显示面板以及显示装置
CN111384282B (zh) * 2018-12-27 2021-10-01 Tcl科技集团股份有限公司 封装薄膜及其制备方法和发光显示装置
KR20200097373A (ko) * 2019-02-07 2020-08-19 삼성디스플레이 주식회사 양자점 색 변환 필터를 구비하는 유기발광 표시장치
CN110048019A (zh) * 2019-04-12 2019-07-23 深圳市华星光电半导体显示技术有限公司 柔性oled显示装置及制备方法
CN110504382B (zh) * 2019-08-26 2021-09-28 昆山国显光电有限公司 一种显示面板和显示装置
CN110970572A (zh) * 2019-11-14 2020-04-07 京东方科技集团股份有限公司 封装结构、显示面板及显示装置
CN111224016A (zh) * 2020-01-16 2020-06-02 Oppo广东移动通信有限公司 封装膜层、显示屏及电子设备
CN111785768A (zh) * 2020-08-25 2020-10-16 京东方科技集团股份有限公司 有机发光显示面板、制备方法和显示装置
CN112670331B (zh) * 2020-12-24 2022-08-19 武汉天马微电子有限公司 一种有机发光显示面板及其封装层制备方法、显示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1784102A (zh) * 2004-06-09 2006-06-07 三星Sdi株式会社 有机电致发光显示器装置和制备该装置的方法
CN106298848A (zh) * 2015-06-25 2017-01-04 三星显示有限公司 有机发光二极管显示器

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005027582A1 (ja) * 2003-09-10 2006-11-24 富士通株式会社 表示装置及びその製造方法
US7202504B2 (en) 2004-05-20 2007-04-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and display device
JP5124083B2 (ja) * 2004-06-09 2013-01-23 三星ディスプレイ株式會社 有機電界発光表示装置及びその製造方法
US7259055B2 (en) * 2005-02-24 2007-08-21 Sharp Laboratories Of America, Inc. Method of forming high-luminescence silicon electroluminescence device
US7297642B2 (en) 2005-02-14 2007-11-20 Sharp Laboratories Of America, Inc. Sputter-deposited rare earth element-doped silicon oxide film with silicon nanocrystals for electroluminescence applications
JP4887473B2 (ja) * 2005-06-30 2012-02-29 エルジー ディスプレイ カンパニー リミテッド 有機el素子及びそれを用いた有機elディスプレイ並びに有機elディスプレイの製造方法
FR2936651B1 (fr) * 2008-09-30 2011-04-08 Commissariat Energie Atomique Dispositif optoelectronique organique et son procede d'encapsulation.
JP2010244697A (ja) * 2009-04-01 2010-10-28 Seiko Epson Corp 有機el装置、有機el装置の製造方法、電子機器
CN101697343B (zh) * 2009-10-27 2011-06-15 苏州纳科显示技术有限公司 一种薄膜封装方法
JP2012216452A (ja) * 2011-04-01 2012-11-08 Hitachi High-Technologies Corp 光半導体装置およびその製造方法
WO2013065213A1 (ja) * 2011-11-02 2013-05-10 パナソニック株式会社 有機発光パネルおよびその製造方法
TWI429526B (zh) 2011-12-15 2014-03-11 Ind Tech Res Inst 水氣阻障複合膜及封裝結構
KR20140022683A (ko) 2012-08-14 2014-02-25 삼성디스플레이 주식회사 유기 발광 장치 및 그 제조 방법
KR102048926B1 (ko) 2012-11-19 2019-11-27 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
KR102010849B1 (ko) * 2012-12-26 2019-08-14 엘지디스플레이 주식회사 유기발광소자
US9843013B2 (en) * 2013-08-28 2017-12-12 Sharp Kabushiki Kaisha Electroluminescent device and method for manufacturing same
KR20150052490A (ko) * 2013-11-06 2015-05-14 삼성디스플레이 주식회사 유기발광 표시장치 및 그 제조방법
CN104750285B (zh) 2013-12-27 2019-01-18 昆山工研院新型平板显示技术中心有限公司 一种触控显示装置及其制备方法
TWI545827B (zh) 2014-05-23 2016-08-11 群創光電股份有限公司 有機發光二極體顯示面板
TWI565118B (zh) 2014-11-25 2017-01-01 財團法人工業技術研究院 封裝膜材與電子元件封裝體
EP3034548A1 (en) 2014-12-18 2016-06-22 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Barrier film laminate comprising submicron getter particles and electronic device comprising such a laminate
KR20160082864A (ko) 2014-12-29 2016-07-11 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
TWI570965B (zh) 2015-02-26 2017-02-11 友達光電股份有限公司 發光裝置和顯示器
CN106158905A (zh) 2015-04-21 2016-11-23 上海和辉光电有限公司 发光器件结构及有机发光面板
KR102201296B1 (ko) * 2015-10-29 2021-01-08 엘지디스플레이 주식회사 플렉서블 유기발광다이오드 표시장치 및 그 제조 방법
JP2017147191A (ja) * 2016-02-19 2017-08-24 株式会社ジャパンディスプレイ 表示装置、及び表示装置の製造方法
CN106887530B (zh) 2017-01-20 2019-06-21 南京国兆光电科技有限公司 一种有机电致发光器件的薄膜封装结构及制备方法
CN106816462B (zh) * 2017-03-28 2019-08-02 上海天马有机发光显示技术有限公司 有机发光二极管显示装置及制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1784102A (zh) * 2004-06-09 2006-06-07 三星Sdi株式会社 有机电致发光显示器装置和制备该装置的方法
CN106298848A (zh) * 2015-06-25 2017-01-04 三星显示有限公司 有机发光二极管显示器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3557645A4 *

Also Published As

Publication number Publication date
CN109427992A (zh) 2019-03-05
JP6873249B2 (ja) 2021-05-19
EP3557645B1 (en) 2022-12-07
TW201830611A (zh) 2018-08-16
TWI695462B (zh) 2020-06-01
CN109427992B (zh) 2019-10-18
EP3557645A4 (en) 2020-03-04
KR20190092579A (ko) 2019-08-07
EP3557645A1 (en) 2019-10-23
JP2020505727A (ja) 2020-02-20
KR102263856B1 (ko) 2021-06-11
US11251402B2 (en) 2022-02-15
US20210336217A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2019041866A1 (zh) 薄膜封装结构及具有其的显示装置
JP2020505727A5 (zh)
WO2018086191A1 (zh) Oled显示器及其制作方法
US10202693B2 (en) Gas barrier film, film substrate provided with gas barrier film, and electronic device including the film substrate
US20220018022A1 (en) Multilayer encapsulation thin-film
US10418590B2 (en) OLED flexible display panel and method for manufacturing the same
US11335889B2 (en) Organic light emitting diode display and method for manufacturing the same
US8461760B1 (en) Thin film encapsulation for flat panel display device and method of manufacturing thin film encapsulation structure
US10147906B2 (en) High efficacy seal for organic light emitting diode displays
US20110042702A1 (en) Organic Light Emitting Device and Method for Manufacturing the Same
TW200913344A (en) Method for applying a thin-film encapsulation layer assembly to an organic device, and an organic device provided with a thin-film encapsulation layer assembly preferably applied with such a method
US20150380678A1 (en) Organic light emitting film package structure, device, apparatus, and fabrication thereof
KR20160082864A (ko) 표시 장치 및 이의 제조 방법
US11196021B2 (en) Composite film layer, having alternately-stacked sub-film layers with different refractive indexes
TW201834507A (zh) 顯示裝置及其製造方法
KR20110096755A (ko) 유기 발광 표시 장치 및 이의 제조 방법
EP3598502B1 (en) Package structure, display panel and display device
KR102236190B1 (ko) 유기광전자소자의 봉지필름 및 그 제조방법
TWM579381U (zh) 顯示屏及顯示裝置
US11943954B2 (en) Encapsulation structure and encapsulation method for flexible organic light-emitting diode device
KR102159993B1 (ko) 유기광전자소자의 봉지필름 및 그 제조방법
CN110106494A (zh) 无机薄膜及其制备方法、应用以及薄膜封装结构和显示面板
US11302896B2 (en) Display panel and manufacturing method thereof, and display device
JP3219220U (ja) 薄膜パッケージング装置、及び太陽電池
CN113193146A (zh) 一种有机发光二极管器件的封装结构、显示装置及其封装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538433

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197021219

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018849544

Country of ref document: EP

Effective date: 20190718

NENP Non-entry into the national phase

Ref country code: DE