WO2019039777A1 - 단백질 및 효소 안정화용 다공성 실리카 담지체, 이의 제조방법 및 용도 - Google Patents

단백질 및 효소 안정화용 다공성 실리카 담지체, 이의 제조방법 및 용도 Download PDF

Info

Publication number
WO2019039777A1
WO2019039777A1 PCT/KR2018/009062 KR2018009062W WO2019039777A1 WO 2019039777 A1 WO2019039777 A1 WO 2019039777A1 KR 2018009062 W KR2018009062 W KR 2018009062W WO 2019039777 A1 WO2019039777 A1 WO 2019039777A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
enzyme
channel
present
hollow portion
Prior art date
Application number
PCT/KR2018/009062
Other languages
English (en)
French (fr)
Inventor
이석중
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2019039777A1 publication Critical patent/WO2019039777A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/14Peptides being immobilised on, or in, an inorganic carrier
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres

Definitions

  • the present invention relates to a porous silica support for protein and enzyme stabilization, a method for producing the same and a use thereof.
  • Enzymes have been used extensively in various fields such as medicine, foods, and textiles because they have a direct catalytic action or transmit information in all biomechanical systems and their kinds and effects vary.
  • U.S. Patent No. 4,556,554 discloses a sebum-inhibiting cosmetic composition containing an enzyme immobilized by a method of immobilizing and binding an enzyme to a functional polymer.
  • the immobilizing method disclosed in the above patent is a general immobilizing method and fails to provide a specific method for actual problem solving.
  • T. Masunaga et al. (IFSCC, Yokohama, A205, p483-501) proposed a method of chemically binding polyethylene glycol to proteolytic enzyme to improve stability and stimulation. This method is problematic for long-term storage, and the manufacturing method is also complicated.
  • U.S. Patent No. 5,230,891 discloses a method for producing a polysaccharide by reacting a polysaccharide such as dextran, alginic acid, or caragenin with cyanuric trichloride to obtain a triazine-ring-linked polysaccharide and then reacting the polysaccharide with the protease to stabilize the protease And how to do it.
  • a polysaccharide such as dextran, alginic acid, or caragenin with cyanuric trichloride
  • European Patent No. 0,803,257 A2 and Japanese Patent Application Laid-Open No. 4-141097 each disclose stabilizing an enzyme by a method of protein binding by polysaccharide oxidation and broadly applying it to improvement of medicinal instruments and inhibition of adsorption on the surface of a reactor
  • Korean Patent No. 10-0283848 proposes a stabilizing enzyme suitable for cosmetics by binding an enzyme or a protein to a beta-1,6-branched beta-1,3 glucan. This method depends on the structural diversity such as the molecular weight and tertiary structure of glucan, and thus the stabilization reaction is very changed, and therefore, it has a disadvantage in producing an industrially uniform stabilizing enzyme.
  • the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a method and apparatus for providing a customized space according to the size of proteins and enzymes of various sizes harmless to human body, And a porous silica support for enzyme stabilization, a method for producing the porous silica support, and a use thereof.
  • main body And a plurality of main channels, at least two of which intersect each other within the main body, and in which a protein or an enzyme is injected and carried, and a silica carrier for enzyme and protein stabilization.
  • the main channel may be formed in a curved shape.
  • the protein carrier and the silica carrier for enzyme stabilization may further include a plurality of subchannels connecting two different main channels to each other and flowing with a substrate.
  • the subchannel may have a smaller diameter than the main channel.
  • the diameter of the main channel may be 5 to 30 nm, and the diameter of the sub channel may be 1 to 10 nm.
  • main body A hollow portion formed inside the body to support a protein or an enzyme; And a plurality of channel portions communicating with the hollow portion and flowing with the substrate injected therein, respectively, and a silica carrier for protein and enzyme stabilization.
  • the hollow portion may be formed in a spherical shape, and a plurality of the channel portions may be spaced apart at predetermined intervals along a circular arc around the hollow portion.
  • At least two of the plurality of channel sections may be formed to have different cross sectional areas.
  • the diameter of the channel portion may be 5 to 30 nm.
  • the above-mentioned porous particles are added to a mixed solution of cetyltrimethylammonium bromide (CTAB) or cetyltrimethylammonium chloride (CTAC) and NaOH or KOH, followed by heating, drying and calcining, And obtaining porous particles having a plurality of subchannels formed by connecting the two main channels to each other.
  • CTAB cetyltrimethylammonium bromide
  • CTAC cetyltrimethylammonium chloride
  • the nonionic polymer may be selected from the group consisting of Pluronic 123, Pluronic F123 and Pluronic F68.
  • the inorganic additive may be selected from the group consisting of potassium chloride, magnesium chloride, sodium chloride, lithium chloride, calcium chloride and cesium chloride.
  • the organic additive may be selected from the group consisting of tetramethylbenzene, tetraethylbenzene, xylene and toluene. At this time, the concentration of the organic additive may be 0.50 mM or less.
  • the silica precursor may be tetraethly orthosilicate (TEOS).
  • the mixing ratio of the silica precursor and the carbon precursor in the step (b) may be 1: 0.4-0.8.
  • the silica precursor may be tetraethly orthosilicate (TEOS), and the carbon precursor may be octadecyltrimethoxysilane (C18TMS).
  • TEOS tetraethly orthosilicate
  • C18TMS octadecyltrimethoxysilane
  • the carbonate solution may be MgCO 3 , CaCO 3 , K 2 CO 3 or Na 2 CO 3 solution.
  • concentration of the carbonate solution may be 0.3 to 0.8 M.
  • the silica carrier according to the present invention is based on silica which is harmless to the human body and does not react with proteins and enzymes and can provide a customized space according to the sizes of various sizes of proteins and enzymes, And the substrate can be easily accessed through channels of various sizes, so that the reaction of the enzyme can be effectively performed.
  • a main channel or a hollow portion in which an enzyme is supported and stabilized, and a sub channel or a channel connected to the main channel or hollow portion A carrier having various pores can be easily prepared, and a carrier capable of effectively stabilizing an enzyme and a protein can be provided.
  • Example 1 is a schematic view of a silica carrier for protein and enzyme stabilization according to Example 1 of the present invention.
  • Example 2 is a schematic view of a silica carrier for protein and enzyme stabilization according to Example 2 of the present invention.
  • Example 3 is SEM (a, b) and TEM image (c) of the silica carrier for protein and enzyme stabilization according to Example 1 of the present invention.
  • Example 4 is SEM (a, b) and TEM image (c) of the silica carrier for protein and enzyme stabilization according to Example 2 of the present invention.
  • 5A to 5D are graphs showing BET surface area analysis and nitrogen adsorption / desorption measurement results of the silica carrier according to Example 1 of the present invention.
  • 6A and 6B are graphs showing BET surface area analysis and nitrogen adsorption / desorption measurement results of the silica carrier according to Example 2 of the present invention.
  • FIG. 7 is a fluorescence microscope image showing the result of carrying GFP (green fluorescence protein) on the silica carrier according to Examples 1 and 2 of the present invention.
  • Example 8 is a fluorescence microscope image showing the stability of GFP with time after carrying GFP on the silica carrier according to Example 1 of the present invention and drying at room temperature.
  • FIG. 9 is a fluorescence microscope image showing the stability of GFP on day 92 after loading GFP onto the silica carrier according to Example 1 of the present invention and drying at room temperature.
  • Example 10 is a fluorescence microscope image showing the stability of GFP with time after carrying GFP on a silica carrier according to Example 2 of the present invention and drying at room temperature.
  • Example 11 is a fluorescence microscope image showing the stability of GFP on day 92 after carrying GFP on the silica carrier according to Example 2 of the present invention and drying at room temperature.
  • Example 14 is a fluorescence microscope image showing the stability of GFP with time after drying the GFP solution alone at room temperature without using the silica carrier of Example 1 or 2 of the present invention.
  • FIG. It should be noted that, in the present specification, reference numerals are added to the components of each drawing, and the same numerals are assigned to the same components as much as possible even if they are shown on different drawings. Also, terms such as “first, “ “ second, “ and the like are used to distinguish one element from another element, and the element is not limited thereto. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
  • Example 1 is a schematic view of a silica carrier for protein and enzyme stabilization according to Example 1 of the present invention.
  • the carrier for protein and enzyme stabilization according to Example 1-1 of the present invention comprises a main body 10, at least two or more mutually intersecting inside the main body 10, And may include a plurality of main channels 20 carried thereon.
  • the main body 10 may be made of silica which is harmless to the human body and does not react with proteins and enzymes, that is, SiO 2 .
  • a main channel 20, which is a space in which proteins or enzymes are injected and supported, may be provided in the main body 10.
  • the main channel 20 may include at least two or more (for example, 20a and 20b ) May be connected to each other.
  • the silica carrier for stabilizing proteins and enzymes according to Example 1-2 of the present invention is formed by connecting two different main channels 20 to each other as shown in FIG. 1, And may further include a plurality of sub-channels 30. Substrates capable of reacting with proteins or enzymes can be injected and flowed not only through the main channel 20 but also through the subchannel 30, Not only the accessibility of the substrate capable of reacting with the loaded protein or enzyme is facilitated but also the product produced through the reaction can be smoothly moved through the main channel 20 or the subchannel 30. [
  • the main channel 20 may be formed in a curved shape as shown in FIG. As a result, it is possible to effectively prevent the protein or the enzyme from flowing out after being injected and supported on the main channel 20, so that the protein or enzyme can be more effectively stabilized.
  • the subchannel 30 may be formed to have a diameter smaller than that of the main channel 20 so that proteins or enzymes can be prevented from flowing out and substrates capable of reacting with proteins or enzymes can be effectively flowed.
  • the diameter of the main channel 20 may be varied according to the size of the protein or enzyme to prevent the protein or enzyme from being easily released after being effectively supported.
  • the diameter of the main channel 20 is 5 to 30 nm Lt; / RTI >
  • the diameter of the subchannel 30 is preferably smaller than the diameter of the main channel 20 in order to prevent the protein or enzyme from easily flowing out.
  • the size of the substrate But it is preferable that the diameter of the sub-channel 30 is 1 to 10 nm.
  • Example 2 is a schematic view of a silica carrier for protein and enzyme stabilization according to Example 2 of the present invention.
  • the carrier for protein and enzyme stabilization according to Example 2 of the present invention comprises a main body 100, a hollow portion 200 formed inside the main body 100 and carrying a protein or enzyme thereon; And a plurality of channel parts 300 communicating with the hollow part 200 and flowing with a substrate.
  • the main body 100 may be made of silica which is harmless to the human body and does not react with proteins and enzymes, that is, SiO 2 .
  • the body 100 may include a hollow portion 200, which is a space in which a protein or an enzyme is injected and supported, and a plurality of channel portions 200 communicating with the hollow portion 200, 300 may be provided together.
  • the proteins or enzymes carried in the hollow part 200 are prevented from contacting with the external environment such as high temperature, air, and acidic environment, so that the protein or enzyme can be effectively stabilized without denaturing the function.
  • the proteins or enzymes injected first in the process of injecting the protein or enzyme and carried close to the center of the hollow part 200 may be injected later, and the protein or enzyme carried away from the center of the hollow part 200, It can not be supported on the channel 200, and the contact with the external environment is more effectively blocked as compared with the protein or enzyme carried on the channel part 300, so that it can be more effectively stabilized.
  • the channel portions 300 are connected to the hollow portion 200 so that substrates capable of reacting with proteins or enzymes are injected through the channel portion 300 and the proteins or enzymes in the hollow portion 200 And then can flow out through the channel part 300 again. Therefore, it is possible to perform the reaction effectively without modifying the function of the protein or the enzyme, and to smoothly move the product after the reaction.
  • the hollow part 200 may be formed in a spherical shape as shown in FIG. 2.
  • the hollow part 200 may include a plurality of channels (not shown) so that injection of proteins or enzymes, (300) may be spaced apart at predetermined intervals along the arc direction about the hollow portion (200).
  • the channel portions 300 may be formed to have different cross-sectional areas.
  • the cross-sectional area means a cross-sectional area perpendicular to the direction in which the protein, enzyme or substrate is injected.
  • the channel portions 300 can have different cross-sectional areas such that proteins or enzymes can be injected through the channel portion 300 having a relatively large cross-sectional area, and a relatively small cross- The substrate is injected through the channel part 300 having an area, so that the substrate can effectively access the protein or enzyme supported on the hollow part.
  • the channel part 300 is preferably formed in a cylindrical shape.
  • the diameter of the channel part 300 may vary according to the size of the protein, the enzyme, and the substrate, To 30 nm.
  • the silica carrier according to the present invention is based on silica which is harmless to the human body and does not react with proteins and enzymes, can provide a customized space according to the sizes of various sizes of proteins and enzymes, And the substrate can be easily accessed through channels of various sizes, so that the reaction of the enzyme can be effectively performed.
  • the present invention provides a method for preparing a silica carrier according to Example 1, and more specifically, a method for producing a silica carrier according to Example 1-1 of the present invention comprises: (a) mixing a nonionic polymer and an inorganic additive To a mixed solution of distilled water and hydrochloric acid and performing a primary stirring process; (b) adding an organic additive to the primary stirring solution to perform a secondary stirring process; And (c) adding a silica precursor to the secondary agitating solution followed by heating, drying and calcining to obtain porous particles in which a plurality of main channels are formed, at least two of which intersect each other, .
  • the method for producing a silica carrier according to Example 1-2 of the present invention is characterized in that (d) cetyltrimethylammonium bromide (CTAB) or cetyltrimethylammonium
  • CTAB cetyltrimethylammonium bromide
  • CTAC hydrochloric acid
  • the nonionic polymer and the inorganic additive are added to a mixed solution of distilled water and hydrochloric acid, and a primary stirring process is performed.
  • the nonionic polymer forms a micellar column in a highly polar solvent in which the inorganic additive is dissolved.
  • the micellar column thus formed causes the main channel of the carrier to be formed, and is then removed through the calcination process in step (c), thereby forming the main channel of the carrier.
  • the nonionic polymer can be passed through micelles, micellar columns, lamellar and reverse micelles depending on the concentration, so that the nonionic polymer is required to have a proper concentration for forming the micellar column, and the optimal concentration of the nonionic polymer is nonionic Depending on the kind of polymer, it may be preferably 1.0 to 1.8 mM.
  • the nonionic polymer may be selected from the group consisting of Pluronic 123, Pluronic F123, and Pluronic F68.
  • the inorganic additive is preferably a halogen compound based on an alkali metal or an alkaline earth metal capable of dissolving to form a large amount of ions and is selected from the group consisting of, for example, potassium chloride, magnesium chloride, sodium chloride, lithium chloride, calcium chloride and cesium chloride .
  • an organic additive is added to the primary stirring solution to perform a secondary stirring process.
  • the organic additive interacts with the hydrophobic moiety located inside the polymer micelle column formed in the step (a), so that the polymer contributes to increase the diameter of the micelle column to control the size of the main channel of the carrier . Since the degree of interaction with the polymer micelle column varies depending on the kind and size of the organic additive, it is necessary to appropriately select the organic additive according to the diameter of the main channel, and the organic additive may include tetramethylbenzene, tetraethylbenzene, Toluene, and the like.
  • the concentration of the organic additive may vary depending on the diameter of the main channel, but may be preferably 0.50 mM or less. Since the organic additive acts to increase the diameter of the micellar column as described above, the smaller the concentration of the organic additive, the smaller the size of the micellar column and the smaller the size of the main channel. The higher the concentration of the organic additive The size of the micellar column is increased and the size of the main channel is also increased. However, when the concentration of the organic additive is more than 0.50 mM, the micellar column made of nonionic polymer is broken and the main channel can not be formed.
  • a silica precursor is added to the secondary stirring solution, followed by heating, drying and calcination to obtain porous particles having a plurality of main channels formed in the main body so that at least two of the main channels cross each other .
  • the silica precursor undergoes a sol-gel process to form silica particles including a plurality of polymer micellar columns therein, and the polymer micellar column is removed through drying and calcination
  • the porous carrier having the main channel that is, the silica carrier according to the embodiment 1-1 of the present invention, is formed.
  • a well-aligned polymer micellar column was formed through step (b).
  • a silica precursor is added to the polymer micelle column thus formed to form silica through a sol-gel process between the void spaces.
  • the concentration of the silica precursor may vary depending on the size of the silica particles required and the thickness of the particles, but may be preferably 0.2 to 0.5 mM. If the concentration of the silica precursor is less than the lower limit, there is a problem that a sol-gel process does not occur and particles can not be formed. When the concentration exceeds the upper limit, many particles that can not form a channel are generated.
  • the silica precursor may be tetraethly orthosilicate (TEOS).
  • the step (d) may be performed by adding the porous particles obtained above to a mixed solution of cetyltrimethylammonium bromide (CTAB) or cetyltrimethylammonium chloride (CTAC) and NaOH or KOH, heating, drying and calcining And a plurality of subchannels connecting the other two main channels to each other are formed.
  • CTAB cetyltrimethylammonium bromide
  • CTAC cetyltrimethylammonium chloride
  • the formed micelle column penetrates the main channel of the support and reacts with the silanol (-SiOH) of the incompletely condense silica during the drying and calcination.
  • silica support having multiple channels according to Example 1-2 of the present invention is formed.
  • the present invention provides a method for preparing a silica carrier according to Example 2, wherein the method comprises (a) dissolving an organic solvent selected from the group consisting of ethanol, methanol, and propanol in distilled water and ammonia Preparing a first mixed solution by mixing and stirring with an aqueous solution; (b) mixing and stirring the silica precursor and the carbon precursor to prepare a second mixed solution; (c) adding and stirring a silica precursor to the first mixed solution, and then adding and stirring the second mixed solution to obtain double particles having different densities in the body; And (d) heating, drying and calcining the resultant particles after adding the particles to a carbonate solution to obtain porous particles having a hollow portion and a plurality of channel portions communicating with the hollow portion.
  • an organic solvent selected from the group consisting of ethanol, methanol, and propanol in distilled water and ammonia
  • an organic solvent selected from the group consisting of ethanol, methanol, and propanol is mixed with distilled water and an aqueous ammonia solution and stirred to prepare a first mixed solution.
  • the mixed solution becomes weakly basic and provides an optimal environment for the sol-gel process.
  • the concentration of the ammonia aqueous solution is preferably 3-7%.
  • a silica precursor and a carbon precursor are mixed and stirred to prepare a second mixed solution.
  • the silica precursor contained in the second mixed solution and the carbon precursor are mixed with each other. Thereafter, in step (c), a sol-gel reaction occurs to form incomplete silica particles in a spherical shape.
  • the particles thus formed form tethered particles with a large number of micellar columns formed by long carbon chains.
  • an appropriate mixing ratio of the silica precursor and the carbon precursor is important, and the mixing ratio of the silica precursor and the carbon precursor is preferably 1: 0.4-0.8.
  • the concentration of the carbon precursor is preferably 0.2 to 0.4 mM. If the concentration of the carbon precursor is less than the lower limit, there is a problem that no channel is formed, and if the concentration exceeds the upper limit, the particles themselves are not formed.
  • the silica precursor may be tetraethly orthosilicate (TEOS), and the carbon precursor may be octadecyltrimethoxysilane (C18TMS).
  • TEOS tetraethly orthosilicate
  • C18TMS octadecyltrimethoxysilane
  • a silica precursor is added to and stirred in the first mixed solution, and then the second mixed solution is added and stirred to obtain double particles having different densities in the body.
  • a silica precursor is added to the first mixed solution to form silica particles, and silica particles having a high density of Si-O-Si are formed by a relatively large amount of silica precursors reacting rapidly.
  • the second mixed solution is added to the thus formed particles to form a tethered particle having a large amount of micellar columns attached thereto.
  • the concentration of the added silica precursor may vary depending on the size of the required hollow portion, but may be preferably 1.0 to 4 mM. If the concentration of the silica precursor is less than the lower limit, double particle particles are not formed, and if the concentration exceeds the upper limit, the particle thickness becomes large and particles having a hollow portion are not formed.
  • the particles obtained are added to a carbonate solution, heated, dried and calcined to obtain porous particles having a hollow portion and a plurality of channel portions communicating with the hollow portion.
  • the carbonate solution may be MgCO 3 , CaCO 3 , K 2 CO 3 or Na 2 CO 3 solution.
  • the carbonate solution is a Na 2 CO 3 solution
  • the Na 2 CO 3 solution reacts with Si to form Na 2 SiO 3 under a mild condition, so that the center portion primary Reacts more effectively with the particles and converts the double particles into silica particles with hollows.
  • the concentration of the carbonate solution is preferably 0.3 to 0.8 M.
  • the concentration of the carbonate solution is less than the lower limit, there is a problem that the reaction does not occur and a hollow part is not formed.
  • the concentration exceeds the upper limit all the particles are disassembled.
  • the micelle column formed by the carbon precursor is burnt through the calcination process and a plurality of channel portions communicating with the hollow portion are formed.
  • a silica support is formed.
  • the main channel or the hollow, which is stabilized by supporting the enzyme, and the subchannel or hollow, which is connected to the main channel or the hollow, Or a channel part, can be easily manufactured, and a carrier capable of effectively stabilizing enzymes and proteins can be provided.
  • the present invention also provides a method for stabilizing proteins and enzymes comprising the steps of supporting a protein or an enzyme on a silica carrier according to the first or second embodiment.
  • P-123 (0.8 g) and KCl (2.92 g) were added to a mixed solution of distilled water (10 mL) and concentrated hydrochloric acid (1.4 mL) and stirred at room temperature until the mixture became transparent.
  • tetramethylbenzene (0.62 mL) was added and stirred slowly for 2 hours, then TEOS (2.14 mL) was slowly added dropwise with stirring.
  • the magnetic bar was stirred at a high speed for 10 minutes, left without stirring at 55 ⁇ for 24 hours, and then heated at 100 ⁇ for 24 hours. Then, the precipitate was separated using a centrifuge, washed with distilled water, and repeated until the supernatant was transparent.
  • the precipitate was dried at 60 ⁇ ⁇ and calcined at 500 ⁇ ⁇ for 6 hours to obtain porous particles having a plurality of main channels formed therein at least two intersecting each other. Thereafter, a mixture of CTAB (10.5 mL, 0.1 M) and NaOH (1.5 mL, 0.4 M) was stirred rapidly at 50 ° C for 24 hours, cooled to room temperature, and the porous particles obtained (0.3 g) . After 4 hours, the mixture was heated at 90 DEG C for 48 hours without stirring, and the particles were separated by a centrifuge and washed with distilled water. Thereafter, the silica carrier according to the present invention was obtained, which was dried at 100 DEG C for 12 hours and calcined at 500 DEG C for 5 hours, thereby forming a plurality of subchannels connecting two different main channels to each other.
  • Ethanol (61.4 mL), distilled water (20 mL) and aqueous ammonia solution (1.14 mL) were stirred at 50 ⁇ ⁇ using a magnetic bar for 1 hour to prepare a first mixed solution.
  • TEOS 7 mL
  • C18 TMS 5 mL
  • TEOS 3 mL
  • the second mixed solution was rapidly added and stirred for 1 hour to obtain particles having a hollow portion in the body. The resultant particles were filtered with a centrifuge and washed with distilled water.
  • the particles were then added to Na 2 CO 3 (20 mL, 0.2 M) solution, stirred at 60 ° C for 7 hours, filtered through a centrifuge and washed with distilled water. Thereafter, the silica carrier according to the present invention was obtained, which was dried at 60 DEG C for 12 hours and then calcined at 550 DEG C for 6 hours to form a plurality of channel portions communicating with the hollow portion.
  • Fig. 3 is SEM (a, b) and TEM image (c) of the silica carrier for protein and enzyme stabilization according to Example 1 of the present invention, SEM (a, b) and TEM image (c) of the silica carrier.
  • SEM images (a, b) were obtained by increasing the amount of the carrier sample on a silicon wafer and analyzing it by a high-resolution scanning electron microscope (HR-SEM).
  • TEM images (c) Were measured using a microscope (HR-TEM).
  • the spherical support is well formed through the SEM image (a, b) image of FIG. 3, and the main channel and the subchannel are formed inside the support through the TEM image (c). Also, it can be seen that a spherical support of uniform size is well formed through the SEM (a, b) image of FIG. 4, and a hollow hollow body is formed through the TEM image (c).
  • FIG. 5 is a graph showing BET surface area analysis and nitrogen adsorption / desorption measurement results of the silica carrier according to Example 1 of the present invention.
  • FIG. 6 is a graph showing the BET surface area analysis of the silica carrier according to Example 2 of the present invention, The results are shown in FIG.
  • FIGS. 5 (b) and 5 (d) show the carrier in which the main channel and the subchannel exist.
  • FIG. 5 (a) shows that the average diameter of the main channel is 10.6 nm.
  • FIG. 5 (c) shows that the pores of the sample are macroporous through the presence of hysteresis.
  • (b) shows that the average pore size decreased to 3.3 nm due to the formation of many subchannels, and (d) the hysteresis disappears due to the formation of many subchannels, (macroporous) to microporous (microporous) state.
  • FIG. 4 shows that the average size of the pores is about 10 nm.
  • FIG. 6 (b) it is confirmed that the pores of the sample are macroporous through the presence of hysteresis.
  • FIG. 7 is a fluorescence microscope image showing the result of carrying GFP (green fluorescence protein) on the silica carrier according to Examples 1 and 2 of the present invention. As a result, it was confirmed that when the silica carrier according to the present invention was used, the GFP was sufficiently supported before 24 hours.
  • GFP green fluorescence protein
  • Example 8 is a fluorescence microscope image showing the stability of GFP with time after carrying GFP on the silica carrier according to Example 1 of the present invention and drying at room temperature.
  • FIG. 9 is a fluorescence microscope image showing the stability of GFP on day 92 after loading GFP onto the silica carrier according to Example 1 of the present invention and drying at room temperature.
  • Example 10 is a fluorescence microscope image showing the stability of GFP with time after carrying GFP on a silica carrier according to Example 2 of the present invention and drying at room temperature.
  • Example 11 is a fluorescence microscope image showing the stability of GFP on day 92 after carrying GFP on the silica carrier according to Example 2 of the present invention and drying at room temperature.
  • FIG. 14 is a fluorescence microscope image showing the stability of GFP with time after drying GFP at room temperature without carrying it on the carrier according to the present invention.
  • main body 20 main channel
  • Subchannel 100 Body
  • the silica carrier according to the present invention is based on silica which is harmless to the human body and does not react with proteins and enzymes and can provide a customized space according to the sizes of various sizes of proteins and enzymes, And the substrate can be easily accessed through the channels of various sizes, so that the reaction of the enzyme can be effectively performed. Therefore, it can be effectively used as a carrier for protein and enzyme stabilization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Silicon Compounds (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

본 발명은 단백질 및 효소 안정화용 다공성 실리카 담지체, 이의 제조방법 및 용도에 관한 것이다. 본 발명에 따른 실리카 담지체는 인체에 무해하고 단백질 및 효소와 반응하지 않는 실리카를 기반으로 하며, 다양한 크기의 단백질 및 효소의 크기에 따라 맞춤형 공간을 제공할 수 있어 단백질 및 효소의 기능을 그대로 유지한 채 안정화시킬 수 있으며, 또한 다양한 크기의 채널들을 통해 기질의 접근이 용이하여 효소의 반응이 효과적으로 수행될 수 있다. 본 발명에 따른 실리카 담지체의 제조방법을 이용하면, 효소가 담지되어 안정화되는 주채널 또는 중공부, 및 상기 주채널 또는 중공부에 연결되어 기질이 용이하게 주입 및 유동될 수 있는 부채널 또는 채널부 등 다양한 기공들을 구비한 담지체를 용이하게 제작할 수 있으며, 이를 통해 효소 및 단백질을 효과적으로 안정화시킬 수 있는 담지체를 제공할 수 있다.

Description

단백질 및 효소 안정화용 다공성 실리카 담지체, 이의 제조방법 및 용도
본 발명은 단백질 및 효소 안정화용 다공성 실리카 담지체, 이의 제조방법 및 용도에 관한 것이다.
효소는 모든 생체 기작에 있어서 직접적 촉매 작용을 하거나 정보전달을 하는 물질로서, 그 종류 및 효과가 다양하므로, 의약, 식품, 섬유 등 여러 분야에서 광범위하게 사용되어 왔다.
이에, 최근에는 이러한 효소 또는 단백질의 다양한 성질의 활용을 위해 많은 연구들이 진행되고 있으나, 상온(혹은 36 ℃ 이상의 높은 온도) 및 공기 중, 위산 (pH=2) 등과 같은 극한 조건에서 매우 불안정하기 때문에 효소 및 단백질의 활용은 극히 제한적이라는 한계가 있다.
이러한 문제해결의 일환으로 산업적으로 이용되는 고정화 방법 또는 화학적 변형 방법의 적용 및 개선이 진행되고 있는데, 현재까지 이러한 효소 또는 단백질을 고정화 또는 안정화시키는 방법으로 알려진 예는 다음과 같다.
미국특허 제4,556,554호는 효소를 기능성 폴리머에 고정 및 결합시키는 방법에 의해 고정화된 효소를 함유하는 피지 억제용 화장료 조성물을 개시하고 있다. 상기 특허에서 제시하는 고정화 방법은 일반적인 고정화 방법으로서, 실제 문제해결을 위한 특정적인 방법을 제시하지 못하고 있다.
또한, T. Masunaga 등(IFSCC, Yokohama, A205, p483-501)에 단백분해효소에 폴리에틸렌글리콜(polyethylene glycol)등을 화학 결합시켜 안정도 및 자극도를 개선하는 방법을 제안하고 있다. 이 방법은 장기간 보존하는데 문제가 있으며, 제조방법 또한 복잡하다.
미국특허 제5,230,891호는 덱스트란, 알긴산, 카라게닌 등의 폴리사카라이드와 삼염화시아누르(cyanuric trichloride)를 반응시켜 트리아진-링이 결합된 폴리사카라이드를 얻고, 이를 프로테아제와 반응시켜 프로테아제를 안정화시키는 방법을 언급하고 있다. 그러나 이러한 방법은 여전히 제조방법이 복잡한 문제를 해소하지는 못하였다.
유럽특허 제0,803,257 A2호와 일본특허공개 평 4-141097호에 각각 다당류산화에 의한 단백질결합방법으로 효소를 안정화시키고, 이를 의약용 기구의 개선, 반응기 표면의 흡착억제 등에 포괄적으로 응용한 것이 개시되어 있으나, 안정도의 제시가 미비하여 화장품 등과 같은 외용제로서의 직접적인 응용에는 무리가 있다.
대한민국등록특허 제10-0283848호는 베타-1,6-분지 베타-1,3 글루칸에 효소 또는 단백질을 결합하여 화장품에 적합한 안정화 효소를 제안하고 있다. 이 방법은 글루칸의 분자량, 3차구조 등 구조적 다양성에 의존하여 안정화 반응의 변화가 매우 심하며 따라서 산업적으로 균일한 안정화 효소를 제조하는 데에 단점을 가지고 있다.
이처럼, 효소 또는 단백질을 안정화시키기 위해 산업적으로 이용되는 고정화 방법 또는 화학적 변형 방법의 적용 및 개선에 대한 많은 연구들이 진행되어 왔으나, 전술한 바와 같은 다양한 문제점을 내포하고 있으며, 특히 극한 조건에서 효소 및 단백질의 기능을 그대로 유지한 채 안정화시키기 위한 근본적인 해결방안을 제시한 연구는 보고된 바 없다.
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로, 본 발명에서는 인체에 무해하고, 다양한 크기의 단백질 및 효소의 크기에 따라 맞춤형 공간을 제공함으로써 단백질 및 효소의 기능을 그대로 유지한 채 안정화시킬 수 있는 단백질 및 효소 안정화용 다공성 실리카 담지체, 이의 제조방법 및 용도를 제공하고자 한다.
본 발명은 상기 과제를 해결하기 위하여,
본체; 및 각각 상기 본체 내부에 적어도 2개 이상이 서로 교차하고, 단백질 또는 효소가 주입되어 담지되는 다수의 주채널;을 포함하는 단백질 및 효소 안정화용 실리카 담지체를 제공한다.
본 발명에 따르면, 상기 주채널은 만곡된 형상으로 형성되는 것일 수 있다.
본 발명에 따르면, 상기 단백질 및 효소 안정화용 실리카 담지체는 서로 다른 2개의 상기 주채널을 서로 연결하고, 기질이 주입되어 유동하는 다수의 부채널;을 더 포함할 수 있다.
이때, 상기 부채널은 상기 주채널보다 직경이 작게 형성된 것일 수 있다.
또한, 상기 주채널의 직경은 5 내지 30 nm이고, 상기 부채널의 직경은 1 내지 10 nm일 수 있다.
또한, 본 발명은 상기 과제를 해결하기 위하여,
본체; 상기 본체 내부에 형성되어 단백질 또는 효소가 담지되는 중공부; 및 각각 상기 중공부와 소통되어 기질이 주입되어 유동하는 다수의 채널부;를 포함하는 단백질 및 효소 안정화용 실리카 담지체를 제공한다.
본 발명에 따르면, 상기 중공부는 구형으로 형성되고, 다수의 상기 채널부는 상기 중공부를 중심으로 원호 방향을 따라 소정의 간격으로 이격 배치되는 것일 수 있다.
본 발명에 따르면, 다수의 상기 채널부 중 적어도 2개 이상은 서로 다른 횡단면적을 갖도록 형성된 것일 수 있다.
본 발명에 따르면, 상기 채널부의 직경은 5 내지 30 nm일 수 있다.
또한, 본 발명은 상기 과제를 해결하기 위하여,
(a) 비이온성 폴리머 및 무기 첨가제를 증류수와 염산의 혼합용액에 첨가하고 1차 교반 과정을 수행하는 단계; (b) 상기 1차 교반 용액에 유기 첨가제를 첨가하여 2차 교반 과정을 수행하는 단계; 및 (c) 상기 2차 교반 용액에 실리카 전구체를 첨가 후 가열, 건조 및 하소시켜 본체 내부에 적어도 2개 이상이 서로 교차하는 다수의 주채널이 형성된 다공성 입자를 수득하는 단계;를 포함하는 단백질 및 효소 안정화용 실리카 담지체의 제조방법을 제공한다.
본 발명에 따르면, (d) 세틸트리메틸암모니움브로마이드(CTAB) 또는 세틸트리메틸암모니움클로라이드(CTAC)와 NaOH 또는 KOH의 혼합용액에 상기 수득한 다공성 입자를 첨가한 후 가열, 건조 및 하소시켜 서로 다른 2개의 상기 주채널을 서로 연결하는 다수의 부채널이 형성된 다공성 입자를 수득하는 단계;를 더 포함할 수 있다.
본 발명에 따르면, 상기 비이온성 폴리머는 플루로닉 123, 플루로닉 F123 및 플루로닉 F68로 이루어진 군에서 선택될 수 있다.
본 발명에 따르면, 상기 무기 첨가제는 염화칼륨, 염화마그네슘, 염화나트륨, 염화리튬, 염화칼슘 및 염화세슘으로 이루어진 군에서 선택될 수 있다.
본 발명에 따르면, 상기 유기 첨가제는 테트라메틸벤젠, 테트라에틸벤젠, 자일렌 및 톨루엔으로 이루어진 군에서 선택될 수 있다. 이때, 상기 유기 첨가제의 농도는 0.50 mM 이하일 수 있다.
본 발명에 따르면, 상기 실리카 전구체는 테트라에틸 오쏘실리케이트(tetraethly orthosilicate, TEOS)일 수 있다.
또한, 본 발명은 상기 과제를 해결하기 위하여,
(a) 에탄올, 메탄올, 프로판올로 이루어진 군에서 선택되는 유기용매를 증류수 및 암모니아 수용액과 혼합 및 교반하여 제1 혼합용액을 제조하는 단계; (b) 실리카 전구체와 탄소 전구체를 혼합 및 교반하여 제2 혼합용액을 제조하는 단계; (c) 상기 제1 혼합용액에 실리카 전구체를 첨가 및 교반한 후, 상기 제2 혼합용액을 첨가 및 교반하여 본체 내부에 서로 다른 밀도를 가지는 2중 입자를 수득하는 단계; 및 (d) 상기 수득한 입자를 탄산염 용액에 첨가한 후 가열, 건조 및 하소시켜, 본체 내부에 중공부 및 상기 중공부와 소통되는 다수의 채널부가 형성된 다공성 입자를 수득하는 단계;를 포함하는 단백질 및 효소 안정화용 실리카 담지체의 제조방법을 제공한다.
본 발명에 따르면, 상기 (b) 단계에서 실리카 전구체와 탄소 전구체의 혼합비는 1:0.4-0.8일 수 있다.
본 발명에 따르면, 상기 실리카 전구체는 테트라에틸 오쏘실리케이트(tetraethly orthosilicate, TEOS)이고, 상기 탄소 전구체는 옥타데실트리메톡시실란(octadecyltrimethoxysilane, C18TMS)일 수 있다.
본 발명에 따르면, 상기 탄산염 용액은 MgCO3, CaCO3, K2CO3 또는 Na2CO3 용액일 수 있다. 이때, 상기 탄산염 용액의 농도는 0.3 내지 0.8 M일 수 있다.
또한, 본 발명은 상기 과제를 해결하기 위하여,
상기 실리카 담지체에 단백질 또는 효소를 담지하는 단계;를 포함하는 단백질 및 효소의 안정화 방법을 제공한다.
본 발명에 따른 실리카 담지체는 인체에 무해하고 단백질 및 효소와 반응하지 않는 실리카를 기반으로 하며, 다양한 크기의 단백질 및 효소의 크기에 따라 맞춤형 공간을 제공할 수 있어 단백질 및 효소의 기능을 그대로 유지한 채 안정화시킬 수 있으며, 또한 다양한 크기의 채널들을 통해 기질의 접근이 용이하여 효소의 반응이 효과적으로 수행될 수 있다.
본 발명에 따른 실리카 담지체의 제조방법을 이용하면, 효소가 담지되어 안정화되는 주채널 또는 중공부, 및 상기 주채널 또는 중공부에 연결되어 기질이 용이하게 주입 및 유동될 수 있는 부채널 또는 채널부 등 다양한 기공들을 구비한 담지체를 용이하게 제작할 수 있으며, 이를 통해 효소 및 단백질을 효과적으로 안정화시킬 수 있는 담지체를 제공할 수 있다.
도 1은 본 발명의 실시예 1에 따른 단백질 및 효소 안정화용 실리카 담지체의 모식도이다.
도 2는 본 발명의 실시예 2에 따른 단백질 및 효소 안정화용 실리카 담지체의 모식도이다.
도 3은 본 발명의 실시예 1에 따른 단백질 및 효소 안정화용 실리카 담지체의 SEM(a, b) 및 TEM 이미지(c)이다.
도 4는 본 발명의 실시예 2에 따른 단백질 및 효소 안정화용 실리카 담지체의 SEM(a, b) 및 TEM 이미지(c)이다.
도 5a 내지 도 5d는 본 발명의 실시예 1에 따른 실리카 담지체의 BET 표면적 분석 및 질소 흡탈착 측정 결과를 나타낸 그래프이다.
도 6a 내지 도 6b는 본 발명의 실시예 2에 따른 실리카 담지체의 BET 표면적 분석 및 질소 흡탈착 측정 결과를 나타낸 그래프이다.
도 7은 본 발명의 실시예 1, 2에 따른 실리카 담지체에 GFP(green fluorescence protein) 담지 실험 결과를 나타낸 형광현미경 이미지이다.
도 8은 본 발명의 실시예 1에 따른 실리카 담지체에 GFP를 담지하고 상온 건조시킨 후 시간에 따른 GFP의 안정도를 나타내는 형광현미경 이미지이다.
도 9는 본 발명의 실시예 1에 따른 실리카 담지체에 GFP를 담지하고 상온 건조시킨 후 92일 째에 GFP의 안정도를 나타내는 형광현미경 이미지이다.
도 10은 본 발명의 실시예 2에 따른 실리카 담지체에 GFP를 담지하고 상온 건조시킨 후 시간에 따른 GFP의 안정도를 나타내는 형광현미경 이미지이다.
도 11은 본 발명의 실시예 2에 따른 실리카 담지체에 GFP를 담지하고 상온 건조시킨 후 92일 째에 GFP의 안정도를 나타내는 형광현미경 이미지이다.
도 12는 본 발명의 실시예 1에 따른 실리카 담지체에 GFP를 담지하고, 산성 용액(pH=2)에서 시간에 따른 GFP의 안정도를 나타내는 형광현미경 이미지이다.
도 13은 본 발명의 실시예 2에 따른 실리카 담지체에 GFP를 담지하고, 산성 용액(pH=2)에서 시간에 따른 GFP의 안정도를 나타내는 형광현미경 이미지이다.
도 14는 본 발명의 실시예 1 혹은 2의 실리카 담지체를 사용하지 않고, GFP 용액을 단독으로 상온 건조시킨 후 시간에 따른 GFP의 안정도를 나타내는 형광현미경 이미지이다.
도 15는 본 발명의 실시예 1 혹은 2의 실리카 담지체를 사용하지 않고, GFP 용액을 단독으로 산성 용액(pH=2)하에서 시간에 따른 GFP의 안정도를 나타내는 형광현미경 이미지이다.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어 지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라고 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한 "제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로, 구성요소가 상기 용어들에 의해 제한되는 것은 아니다. 이하, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련 공지 기술에 대한 상세한 설명은 생략한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시형태를 상세히 설명하기로 한다.
도 1은 본 발명의 실시예 1에 따른 단백질 및 효소 안정화용 실리카 담지체의 모식도이다.
본 발명의 실시예 1-1에 따른 단백질 및 효소 안정화용 실리카 담지체는 도 1에 도시된 바와 같이 본체(10), 각각 상기 본체 내부에 적어도 2개 이상이 서로 교차하고, 단백질 또는 효소가 주입되어 담지되는 다수의 주채널(20)을 포함할 수 있다.
이때, 상기 본체(10)는 인체에 무해하며, 단백질 및 효소와 반응하지 않는 실리카, 즉 SiO2로 이루어진 것일 수 있다. 또한, 상기 본체(10) 내부에서는 단백질 또는 효소가 주입되어 담지되는 공간인 주채널(20)이 구비될 수 있는데, 이때, 상기 주채널(20)은 적어도 2개 이상(예를 들어 20a, 20b)이 서로 교차되어 연결되어 있을 수 있다. 이러한 주채널(20)에 단백질 또는 효소가 주입 및 담지되면, 높은 온도, 공기, 산성환경 등의 외부 환경과의 접촉이 차단되는바, 단백질 또는 효소가 기능의 변성 없이 효과적으로 안정화될 수 있다.
이에 더하여, 본 발명의 실시예 1-2에 따른 단백질 및 효소 안정화용 실리카 담지체는 도 1에 도시된 바와 같이 서로 다른 2개의 상기 주채널(20)을 서로 연결하고, 기질이 주입되어 유동하는 다수의 부채널(30)을 더 포함할 수 있다. 단백질 또는 효소와 반응할 수 있는 기질들은 상기 주채널(20) 뿐만 아니라, 상기 부채널(30)을 통해서도 주입되어 유동할 수 있는바, 상기 부채널(30)이 구비됨으로써 주채널(20)에 담지된 단백질 또는 효소와 반응할 수 있는 기질의 접근성이 용이해질 뿐만 아니라, 반응을 통해 생성된 생성물 또한 주채널(20) 또는 부채널(30)을 통해 순조롭게 이동할 수 있다는 장점이 있다.
또한, 상기 주채널(20)은 하기 도 1에 도시된 바와 같이 만곡된 형상으로 형성될 수 있다. 이를 통해 주채널(20)에 단백질 또는 효소가 주입 및 담지된 후에 유출되는 것을 효과적으로 방지할 수 있는바, 단백질 또는 효소를 더욱 효과적으로 안정화시킬 수 있다.
또한, 상기 부채널(30)은 단백질 또는 효소가 유출되는 것을 방지하고, 단백질 또는 효소와 반응하는 기질들이 효과적으로 유동될 수 있도록, 상기 주채널(20)보다 직경이 작게 형성된 것일 수 있다.
상기 주채널(20)의 직경은 단백질 또는 효소가 효과적으로 담지된 후 쉽게 유출되지 못하도록 단백질 또는 효소의 크기에 따라 다양하게 변경 가능하나, 바람직하게는 상기 주채널(20)의 직경은 5 내지 30 nm일 수 있다. 또한, 상기 부채널(30)의 직경은 단백질 또는 효소가 쉽게 유출되지 못하도록 하기 위해 주채널(20)의 직경보다는 작은 것이 바람직하며, 단백질 또는 효소와 반응하는 기질들이 쉽게 유동할 수 있도록 기질의 크기에 따라 다양하게 변경 가능하나, 바람직하게는 상기 부채널(30)의 직경은 1 내지 10 nm일 수 있다.
도 2는 본 발명의 실시예 2에 따른 단백질 및 효소 안정화용 실리카 담지체의 모식도이다.
본 발명의 실시예 2에 따른 단백질 및 효소 안정화용 실리카 담지체는 도 2에 도시된 바와 같이 본체(100), 상기 본체(100) 내부에 형성되어 단백질 또는 효소가 담지되는 중공부(200); 및 각각 상기 중공부(200)와 소통되어 기질이 주입되어 유동하는 다수의 채널부(300)를 포함할 수 있다.
이때, 상기 본체(100)는 인체에 무해하며, 단백질 및 효소와 반응하지 않는 실리카, 즉 SiO2로 이루어진 것일 수 있다. 또한, 상기 본체(100) 내부에서는 단백질 또는 효소가 주입되어 담지되는 공간인 중공부(200)가 구비될 수 있으며, 상기 중공부(200)와 소통되어 기질이 주입되어 유동하는 다수의 채널부(300)가 함께 구비될 수 있다. 이를 통해 중공부(200) 내에 담지된 단백질 또는 효소들은 높은 온도, 공기, 산성환경 등의 외부 환경과의 접촉이 차단되는바, 단백질 또는 효소가 기능의 변성 없이 효과적으로 안정화될 수 있다. 이에 더하여, 단백질 또는 효소가 주입되는 과정에서 먼저 주입되어 중공부(200)의 중심에 가깝게 담지된 단백질 또는 효소들은 후에 주입되어 중공부(200)의 중심에서 멀게 담지된 단백질 또는 효소나, 중공부(200)에 담지되지 못하고 채널부(300)에 담지된 단백질 또는 효소에 비하여 외부 환경과의 접촉이 더욱 효과적으로 차단되는바, 더욱 효과적으로 안정화될 수 있다. 또한, 상기 채널부(300)들은 상기 중공부(200)와 연결되어 있는바, 단백질 또는 효소와 반응할 수 있는 기질들이 채널부(300)를 통해 주입되어 중공부(200)에 있는 단백질 또는 효소와 반응한 후 다시 채널부(300)를 통해 유출될 수 있는바, 단백질 또는 효소의 기능의 변성 없이도 효과적으로 반응을 수행한 후 생성물과 순조롭게 이동할 수 있다는 장점이 있다.
또한, 상기 중공부(200)는 하기 도 2에 도시된 바와 같이 구형으로 형성될 수 있으며, 본체(100) 외면 전영역에서 단백질 또는 효소의 주입 및 기질의 유출입이 효과적으로 이루어질 수 있도록 다수의 상기 채널부(300)가 상기 중공부(200)를 중심으로 원호 방향을 따라 소정의 간격으로 이격 배치되는 것일 수 있다.
또한, 다수의 상기 채널부(300) 중 적어도 2개 이상은 서로 다른 횡단면적을 갖도록 형성된 것일 수 있다. 이때, 상기 횡단면적은 단백질, 효소 또는 기질이 주입되는 방향에 대해 수직인 단면적을 의미한다. 이처럼, 채널부(300)들이 서로 다른 횡단면적을 가질 수 있는바, 상대적으로 크기가 큰 횡단면적을 가진 채널부(300)를 통해서는 단백질 또는 효소가 주입될 수 있고, 상대적으로 크기가 작은 횡단면적을 가진 채널부(300)를 통해서는 기질이 주입되도록 함으로써, 기질이 중공부에 담지된 단백질 또는 효소에 효과적으로 접근하도록 할 수 있다.
또한, 상기 채널부(300)는 바람직하게는 원통형으로 형성되어 있는 것이 바람직하며, 이때, 상기 채널부(300)의 직경은 단백질, 효소 및 기질의 크기에 따라 다양하게 변경 가능하나 바람직하게는 5 내지 30 nm일 수 있다.
이처럼, 본 발명에 따른 실리카 담지체는 인체에 무해하고 단백질 및 효소와 반응하지 않는 실리카를 기반으로 하며, 다양한 크기의 단백질 및 효소의 크기에 따라 맞춤형 공간을 제공할 수 있어 단백질 및 효소의 기능을 그대로 유지한 채 안정화시킬 수 있으며, 또한 다양한 크기의 채널들을 통해 기질의 접근이 용이하여 효소의 반응이 효과적으로 수행될 수 있다.
또한, 본 발명에서는 상기 실시예 1에 따른 실리카 담지체를 제조하는 방법을 제공하며, 구체적으로 본 발명의 실시예 1-1에 따른 실리카 담지체의 제조방법은 (a) 비이온성 폴리머 및 무기 첨가제를 증류수와 염산의 혼합용액에 첨가하고 1차 교반 과정을 수행하는 단계; (b) 상기 1차 교반 용액에 유기 첨가제를 첨가하여 2차 교반 과정을 수행하는 단계; 및 (c) 상기 2차 교반 용액에 실리카 전구체를 첨가 후 가열, 건조 및 하소시켜 본체 내부에 적어도 2개 이상이 서로 교차하는 다수의 주채널이 형성된 다공성 입자를 수득하는 단계;를 포함할 수 있다.
또한, 본 발명의 실시예 1-2에 따른 실리카 담지체의 제조방법은 상기 실시예 1-1에 다른 실리카 담지체의 제조방법에 더하여 (d) 세틸트리메틸암모니움브로마이드(CTAB) 또는 세틸트리메틸암모니움클로라이드(CTAC)와 NaOH 또는 KOH의 혼합용액에 상기 수득한 다공성 입자를 첨가한 후 가열, 건조 및 하소시켜 서로 다른 2개의 상기 주채널을 서로 연결하는 다수의 부채널이 형성된 다공성 입자를 수득하는 단계;를 더 포함할 수 있다.
상기 제조방법을 구체적으로 살펴보면, 먼저 상기 (a) 단계에서는 비이온성 폴리머 및 무기 첨가제를 증류수와 염산의 혼합용액에 첨가하고 1차 교반 과정을 수행한다. 이 과정에서 비이온성 폴리머는 무기 첨가제가 용해된 높은 극성의 용매에서 마이셀컬럼을 형성한다. 이렇게 생성된 마이셀컬럼은 담지체의 주채널을 형성시키는 원인이 되며, 이후 (c) 단계의 하소과정을 통해 제거됨으로써 담지체의 주채널을 형성하게 된다. 비이온성 폴리머는 농도에 따라 마이셀, 마이셀컬럼, 라멜라 및 역마이셀(reverse micelle)의 단계를 거칠 수 있으므로 비이온성 폴리머가 마이셀컬럼을 이루기 위한 적정 농도가 요구되며, 비이온성 폴리머의 최적 농도는 비이온성 폴리머의 종류에 따라 달라질 수 있으나, 바람직하게는 1.0 내지 1.8 mM 일 수 있다.
상기 비이온성 폴리머는 플루로닉 123, 플루로닉 F123 및 플루로닉 F68로 이루어진 군에서 선택될 수 있다.
상기 무기 첨가제는 용해되어 많은 이온을 형성할 수 있는 알칼리금속 또는 알칼리토금속을 바탕으로 하는 할로겐 화합물이 바람직하며, 예를 들어 염화칼륨, 염화마그네슘, 염화나트륨, 염화리튬, 염화칼슘 및 염화세슘으로 이루어진 군에서 선택될 수 있다.
다음으로, 상기 (b) 단계는 상기 1차 교반 용액에 유기 첨가제를 첨가하여 2차 교반 과정을 수행한다. 이 과정에서 상기 유기 첨가제는 상기 (a) 단계에서 형성된 폴리머 마이셀컬럼의 내부에 위치하는 소수성 부분과 상호작용함으로써 폴리머가 마이셀컬럼의 직경을 크게 만들어 담지체의 주채널의 크기를 조절하는데에 기여한다. 이때, 상기 유기 첨가제의 종류 및 크기에 따라 폴리머 마이셀컬럼과의 상호 작용 정도가 달라지기 때문에 요구되는 주채널의 직경에 따라 적절히 선택할 필요가 있으며, 상기 유기 첨가제는 테트라메틸벤젠, 테트라에틸벤젠, 자일렌 및 톨루엔으로 이루어진 군에서 선택될 수 있다. 이때, 상기 유기 첨가제의 농도는 요구되는 주채널의 직경에 따라 달라질 수 있으나 바람직하게는 0.50 mM 이하일 수 있다. 상기 유기 첨가제는 전술한 바와 같이 마이셀컬럼의 직경을 크게 만드는 작용을 하기 때문에 유기 첨가제의 농도가 낮을수록 마이셀컬럼의 크기 변화가 작아져 주채널의 크기 또한 작아지게 되며, 유기 첨가제의 농도가 높을수록 마이셀컬럼의 크기 변화가 커져 주채널의 크기 또한 커지게 된다. 다만, 상기 유기 첨가제의 농도가 0.50 mM을 초과할 경우 비이온성 고분자로 이루어진 마이셀컬럼이 파괴되어 주채널을 형성시킬 수 없다는 문제가 있다.
다음으로, 상기 (c) 단계는 상기 2차 교반 용액에 실리카 전구체를 첨가 후 가열, 건조 및 하소시켜 본체 내부에 적어도 2개 이상이 서로 교차하는 다수의 주채널이 형성된 다공성 입자를 수득하는 단계이다. 이 과정을 통해 실리카 전구체가 솔-젤 반응(sol-gel process)을 하여 1차적으로 다수의 폴리머 마이셀컬럼을 내부에 포함하는 실리카 입자가 형성되고, 건조 및 하소 과정을 통해 폴리머 마이셀컬럼이 제거되면서 주채널이 형성된 다공성 입자 즉 본 발명의 실시예 1-1에 따른 실리카 담지체가 형성된다. 실리카 전구체를 첨가하기 전에는 (b)단계를 통해 잘 정렬이 된 폴리머 마이셀컬럼이 형성되어 있고. 이렇게 형성된 폴리머 마이셀컬럼 위에 실리카 전구체가 첨가되면서 빈 공간 사이사이에서 솔-젤 반응(sol-gel process)을 통해 실리카가 형성된다. 이때, 상기 실리카 전구체의 농도는 요구되는 실리카 입자의 크기 및 입자의 두께에 따라 달라질 수 있으나, 바람직하게는 0.2 내지 0.5 mM일 수 있다. 상기 실리카 전구체의 농도가 상기 하한치 미만이면 솔-젤 반응(sol-gel process)이 일어나지 않아 입자를 형성할 수 없고, 상기 상한치를 초과하면 채널을 형성하지 못한 입자가 많이 생성된다는 문제가 있다.
또한, 상기 실리카 전구체는 테트라에틸 오쏘실리케이트(tetraethly orthosilicate, TEOS)일 수 있다.
마지막으로, 상기 (d) 단계는 세틸트리메틸암모니움브로마이드(CTAB) 또는 세틸트리메틸암모니움클로라이드(CTAC)와 NaOH 또는 KOH의 혼합용액에 상기 수득한 다공성 입자를 첨가한 후 가열, 건조 및 하소시켜 서로 다른 2개의 상기 주채널을 서로 연결하는 다수의 부채널이 형성된 다공성 입자를 수득하는 단계이다. 이를 통해 세틸트리메틸암모니움브로마이드(CTAB) 또는 세틸트리메틸암모니움클로라이드(CTAC)이 친수성 및 소수성 부분으로 상호작용을 하는 마이셀컬럼이 형성된다. 형성된 마이셀컬럼은 담지체의 주채널에 침투하고 건조 및 하소과정에서 불완전하게 condense된 실리카의 실라놀(-SiOH)과 반응하게 된다. 불완전하게 condense된 실리카 부분은 수용액에서 극성을 띠기 쉽고 이 부분이 세틸트리메틸암모니움브로마이드(CTAB) 또는 세틸트리메틸암모니움클로라이드(CTAC)의 친수성 부분에서 형성되는 양이온성 질소와 반응하여 천천히 제거되면서 부채널이 형성되며, 최종적으로 본 발명의 실시예 1-2에 따른 다중채널이 구비된 실리카 담지체가 형성된다.
또한, 본 발명에서는 상기 실시예 2에 따른 실리카 담지체를 제조하는 방법을 제공하며, 구체적으로 본 발명에 따른 방법은 (a) 에탄올, 메탄올, 프로판올로 이루어진 군에서 선택되는 유기용매를 증류수 및 암모니아 수용액과 혼합 및 교반하여 제1 혼합용액을 제조하는 단계; (b) 실리카 전구체와 탄소 전구체를 혼합 및 교반하여 제2 혼합용액을 제조하는 단계; (c) 상기 제1 혼합용액에 실리카 전구체를 첨가 및 교반한 후, 상기 제2 혼합용액을 첨가 및 교반하여 본체 내부에 서로 다른 밀도를 가지는 2중 입자를 수득하는 단계; 및 (d) 상기 수득한 입자를 탄산염 용액에 첨가한 후 가열, 건조 및 하소시켜, 본체 내부에 중공부 및 상기 중공부와 소통되는 다수의 채널부가 형성된 다공성 입자를 수득하는 단계;를 포함한다.
상기 제조방법을 구체적으로 살펴보면, 먼저 상기 (a) 단계에서는 에탄올, 메탄올, 프로판올로 이루어진 군에서 선택되는 유기용매를 증류수 및 암모니아 수용액과 혼합 및 교반하여 제1 혼합용액을 제조한다. 이 과정을 통해 혼합용액이 약 염기성을 띠게 되며 솔-젤 반응(sol-gel process)에 최적의 환경을 제공하게 된다. 상기 암모니아 수용액의 농도가 높을 경우 혼합용액을 강한 염기성을 띠게 하여 는 솔-젤 반응(sol-gel process)반응이 단계적으로 일어나는 것을 방해하고 많은 반응을 한 번에 일어나게 하여 실리카입자의 크기가 수십 nm 정도로 작아지게 한다는 문제가 있는바, 상기 암모니아 수용액의 농도는 3-7%가 바람직하다.
다음으로, 상기 (b) 단계에서는 실리카 전구체와 탄소 전구체를 혼합 및 교반하여 제2 혼합용액을 제조한다.
제2 혼합용액에 포함된 실리카 전구체와 탄소 전구체는 서로 혼합되어 있다가 이후 (c) 단계에서 솔-젤 반응(sol-gel process)반응이 일어나게 되어 서로 구형태로 불완전한 실리카 입자를 형성하게 되며, 이렇게 형성된 입자는 긴 탄소사슬이 형성하는 많은 수의 마이셀컬럼이 붙어있는 테더드파티클(tethered particle)을 형성하게 된다. 이때, 테터드파티클을 형성하기 위해서는 실리카 전구체와 탄소 전구체의 적절한 혼합 비율이 중요하게 작용하며, 이때 상기 실리카 전구체와 탄소 전구체의 혼합비는 1:0.4-0.8인 것이 바람직하다. 또한, 상기 탄소 전구체의 농도는 0.2 내지 0.4 mM인 것이 바람직하다. 상기 탄소 전구체의 농도가 상기 하한치 미만이면 채널이 형성되지 않는다는 문제가 있고, 상기 상한치를 초과하면 입자 자체가 형성되지 않는다는 문제가 있다.
상기 실리카 전구체는 테트라에틸 오쏘실리케이트(tetraethly orthosilicate, TEOS)이고, 상기 탄소 전구체는 옥타데실트리메톡시실란(octadecyltrimethoxysilane, C18TMS)일 수 있다.
다음으로, 상기 (c) 단계에서는 상기 제1 혼합용액에 실리카 전구체를 첨가 및 교반한 후, 상기 제2 혼합용액을 첨가 및 교반하여 본체 내부에 서로 다른 밀도를 가지는 2중 입자를 수득한다. 구체적으로, 상기 제1 혼합용액에 실리카 전구체가 첨가되어 실리카 입자가 1차로 형성되는데 상대적으로 많은 양의 실리카 전구체가 빠르게 반응함으로써 높은 밀도의 Si-O-Si를 가지는 실리카 입자가 형성된다. 이렇게 생성된 입자 위에 제2 혼합용액이 첨가되어 다량의 마이셀컬럼이 붙어있는 테더드파티클(tethered particle)이 형성되게 된다. 이때 상기 첨가되는 실리카 전구체의 농도는 요구되는 중공부의 크기에 따라 달라질 수 있으나, 바람직하게는 1.0 내지 4 mM일 수 있다. 상기 실리카 전구체의 농도가 상기 하한치 미만이면 이중입자입자가 형성되지 않고, 상기 상한치를 초과하면 입자의 두께가 커져 중공부를 가지는 입자가 만들어지지 않는다는 문제가 있다.
마지막으로, 상기 (d) 단계에서는 상기 수득한 입자를 탄산염 용액에 첨가한 후 가열, 건조 및 하소시켜, 중공부 및 상기 중공부와 소통되는 다수의 채널부가 형성된 다공성 입자를 수득한다. 이때, 상기 탄산염 용액은 MgCO3, CaCO3, K2CO3 또는 Na2CO3 용액일 수 있다. 예를 들어 상기 탄산염 용액이 Na2CO3 용액인 경우, Na2CO3 용액은 마일드한 조건에서 Si와 반응하여 Na2SiO3가 되려 하기 때문에 높은 밀도의 Si-O-Si를 가지는 중앙부 1차 입자와 더 효과적으로 반응하게 되고 상기 2중 입자를 중공부를 가지는 실리카 입자로 변화시킨다. 이때, 상기 탄산염 용액의 농도는 0.3 내지 0.8 M인 것이 바람직하다. 상기 탄산염 용액의 농도가 상기 하한치 미만이면 반응이 일어나지 않아 중공부가 형성되지 않는다는 문제가 있고, 상기 상한치를 초과하면 입자가 전부 분해된다는 문제가 있다. 마지막으로 상기 하소 과정을 통해 탄소전구체가 형성한 마이셀컬럼이 연소 되고 중공부와 소통되는 다수의 채널부가 형성됨으로써 본 발명에 따라 본체 내부에 중공부 및 상기 중공부와 소통되는 다수의 채널부가 구비된 실리카 담지체가 형성된다.
이처럼, 본 발명에 따른 실리카 담지체의 제조방법을 이용하면, 효소가 담지되어 안정화되는 주채널 또는 중공부, 및 상기 주채널 또는 중공부에 연결되어 기질이 용이하게 주입 및 유동될 수 있는 부채널 또는 채널부 등 다양한 기공들을 구비한 담지체를 용이하게 제작할 수 있으며, 이를 통해 효소 및 단백질을 효과적으로 안정화시킬 수 있는 담지체를 제공할 수 있다.
또한, 본 발명은 상기 실시예 1 또는 2에 따른 실리카 담지체에 단백질 또는 효소를 담지하는 단계;를 포함하는 단백질 및 효소의 안정화 방법을 제공한다.
이하에서는 바람직한 실시예 등을 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예 등은 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.
실시예 1 : 다중 채널을 보유한 실리카 담지체 제조
P-123(0.8g)과 KCl(2.92g)을 증류수(10 mL)와 진한염산(1.4 mL) 혼합액에 넣고 상온에서 투명해질 때까지 마그네틱 바를 이용해서 교반하였다. 용액이 투명해지면 테트라메틸번젠(0.62 mL)을 넣고 2시간 동안 천천히 교반시킨 후 TEOS(2.14 mL)를 교반하면서 한방울씩 천천히 첨가하였다. 첨가가 끝나면 10분 동안 빠른 속도로 마그네틱 바를 교반한 후, 55 ℃에서 24시간 동안 교반하지 않고 방치한 후, 100 ℃에서 24시간 동안 가열하였다. 이후, 침전물을 원심분리기를 이용하여 분리하고 증류수를 이용하여 침전물을 씻어주었으며, 이를 상층액이 투명해질 때까지 반복하였다. 침전물을 60 ℃에서 건조시키고, 500 ℃에서 6시간 동안 하소시켜 본체 내부에 적어도 2개 이상이 서로 교차하는 다수의 주채널이 형성된 다공성 입자를 수득하였다. 이후, CTAB(10.5 mL, 0.1 M)와 NaOH(1.5 mL, 0.4 M)의 혼합물을 50 ℃에서 빠르게 24시간 동안 교반한 후 상온으로 식히고 상기 수득한 다공성 입자(0.3 g)를 첨가 및 빠르게 교반시켰다. 4시간 후 혼합물을 90 ℃에서 교반없이 48시간 동안 가열시킨 후 입자를 원심분리기로 분리하고 증류수를 이용하여 입자를 세척하였다. 이후, 100 ℃에서 12시간 동안 건조시키고 500 ℃에서 5시간 동안 하소시켜, 서로 다른 2개의 상기 주채널을 서로 연결하는 다수의 부채널이 형성된, 본 발명에 따른 실리카 담지체를 수득하였다.
실시예 2 : 다중 기공 할로우 실리카 담지체 제조
에탄올(61.4 mL), 증류수(20 mL) 및 암모니아 수용액(1.14 mL)을 50 ℃에서 마그네틱 바를 이용하여 1시간 동안 교반하여 제1 혼합용액을 준비하였다. 동시에 TEOS(7 mL)와 C18TMS(5 mL)를 상온에서 따로 교반하여 제2 혼합용액을 준비하였다. 상기 제1 혼합용액을 1시간 동안 교반한 후 TEOS(3 mL)를 빠르게 첨가하고 1시간을 추가적으로 교반하였다. 이후 상기 제2 혼합용액을 빠르게 첨가하고 1시간 동안 교반하여 본체 내부에 중공부가 형성된 입자를 수득하였다. 상기 수득한 입자를 원심분리기로 걸러내고 증류수를 이용하여 세척하였다. 이후, 상기 입자를 Na2CO3(20 mL, 0.2 M) 용액에 첨가하고 60 ℃에서 7시간 동안 교반한 후 원심분리기로 걸러내고 증류수로 세척하였다. 이후, 60 ℃에서 12시간 동안 건조시킨 후 550 ℃에서 6시간 동안 하소시켜, 상기 중공부와 소통되는 다수의 채널부가 형성된, 본 발명에 따른 실리카 담지체를 수득하였다.
실험예
1. 실리카 담지체의 TEM 및 SEM 이미지 분석
도 3은 본 발명의 실시예 1에 따른 단백질 및 효소 안정화용 실리카 담지체의 SEM(a, b) 및 TEM 이미지(c)이고, 도 4는 본 발명의 실시예 2에 따른 단백질 및 효소 안정화용 실리카 담지체의 SEM(a, b) 및 TEM 이미지(c)이다.
SEM(a,b) 이미지는 실리콘 웨이퍼에 담지체 샘플을 일정양 올리고 고해상도 주사전자현미경 (HR-SEM)을 통해 분석하였고, TEM이미지(c)는 골드 그리드 (Au grid)에 샘플을 고해상도 투과전자현미경 (HR-TEM)을 이용하여 측정하였다.
도 3의 SEM(a,b) 이미지를 통해 구형의 담지체가 잘 형성됨을 알 수 있고, TEM이미지(c)를 통해 담지체 내부에 주채널 및 부채널이 형성되었음을 확인하였다. 또한, 도 4의 SEM(a,b) 이미지를 통해 균일한 크기의 구형의 담지체가 잘 형성됨을 알 수 있고, TEM이미지(c)를 통해 담지체 내부가 비어 있는 중공형상이 형성됨을 확인하였다.
2. 실리카 담지체의 BET 표면 분석 측정법
도 5는 본 발명의 실시예 1에 따른 실리카 담지체의 BET 표면적 분석 및 질소 흡탈착 측정 결과를 나타낸 그래프이고, 도 6은 본 발명의 실시예 2에 따른 실리카 담지체의 BET 표면적 분석 및 질소 흡탈착 측정 결과를 나타낸 그래프이다.
BET 실험에서는 약 200 mg의 샘플을 높은 진공을 통해 내부 기공에 존재하는 용매와 같은 불순물을 제거한 후 질소를 채움으로써 기공의 평균 크기 및 기공의 성질 등을 측정하였으며, 본 데이터는 Micromeritics Tristar II instrument (Micromeritics Instrument Corporation, USA)과 BELSORPmini II (MicrotracBEL Corp., Japan) 장비로 77 K에서 측정하였다.
도 5의 (a)와 (c)는 실리카 담지체에 주채널만 있는 상태에서 측정한 결과이고 (b)와 (d)는 주채널 및 부채널이 존재하는 담지체를 나타낸다. 도 5의 (a)를 통해 주채널의 평균 직경이 10.6 nm임을 확인하였고, (c)에서는 히스테리시스의 존재를 통해 샘플이 가지고 있는 기공이 마크로포로스(macroporous)한 상태임을 확인하였다. (b)를 통해 다수의 부채널의 형성으로 인해 평균 기공의 크기가 3.3 nm로 감소하였음을 확인하였고, (d)를 통해 다수의 부채널의 형성으로 인해 히스테리시스가 사라지면서 샘플의 성질이 마크로포로스(macroporous)에서 마이크로포로스(microporous)상태로 변화함을 확인하였다.
도 4를 통해 기공의 평균 크기가 대략 10 nm 임을 확인하였고, 도 6의 (b)에서는 히스테리시스의 존재를 통해 샘플이 가지고 있는 기공이 마크로포로스(macroporous)한 상태임을 확인하였다.
3. GFP 단백질 담지를 통한 단백질 안정화 효과 측정
(1) GFP 단백질의 담지여부 확인
GFP(3 mL, 3.3 μM) 용액에 상기 실시예 1 및 2에 따른 실리카 담지체를 10 mg 첨가하고, 상온에서 24, 32, 48시간 동안 흔들어 준 후 원심분리기로 분리하고 증류수로 5번 세척하였다. GFP의 담지 여부는 형광현미경을 통해 확인하였다.
도 7은 본 발명의 실시예 1, 2에 따른 실리카 담지체에 GFP(green fluorescence protein) 담지 실험 결과를 나타낸 형광현미경 이미지이다. 이를 통해 본 발명에 따른 실리카 담지체를 이용할 경우 24시간 이전에 GFP의 담지가 충분히 이루어짐을 확인하였다.
(2) 상온 및 공기 중에서 실리카 담지체에 담지된 GFP 단백질의 안정도 확인
도 8은 본 발명의 실시예 1에 따른 실리카 담지체에 GFP를 담지하고 상온 건조시킨 후 시간에 따른 GFP의 안정도를 나타내는 형광현미경 이미지이다.
도 9는 본 발명의 실시예 1에 따른 실리카 담지체에 GFP를 담지하고 상온 건조시킨 후 92일 째에 GFP의 안정도를 나타내는 형광현미경 이미지이다.
도 10은 본 발명의 실시예 2에 따른 실리카 담지체에 GFP를 담지하고 상온 건조시킨 후 시간에 따른 GFP의 안정도를 나타내는 형광현미경 이미지이다.
도 11은 본 발명의 실시예 2에 따른 실리카 담지체에 GFP를 담지하고 상온 건조시킨 후 92일 째에 GFP의 안정도를 나타내는 형광현미경 이미지이다.
도 14는 GFP를 본 발명에 따른 담지체에 담지하지 않고 상온 건조시킨 후 시간에 따른 GFP의 안정도를 나타내는 형광현미경 이미지이다.
도 14를 통해 높은 농도의 GFP가 상온 건조에서 48시간 후에 그 성질을 완전히 잃어 버려 형광이 없어짐을 확인하였다. 이처럼, 일반적으로 단백질이나 효소들이 상온 건조 조건에서 그 성질을 잃어 버리는 것과 달리 도 8 내지 도 11을 통해 본 발명에 따른 실리카 담지체를 이용할 경우 GFP가 상온 건조 후 92 일까지 그 성질이 보존되어 효과적으로 안정화됨을 확인하였다.
(3) 산성 조건하에서 실리카 담지체에 담지된 GFP 단백질의 안정도 확인
도 12는 본 발명의 실시예 1에 따른 실리카 담지체에 GFP를 담지하고, 산성 용액(pH=2)에서 시간에 따른 GFP의 안정도를 나타내는 형광현미경 이미지이다.
도 13은 본 발명의 실시예 2에 따른 실리카 담지체에 GFP를 담지하고, 산성 용액(pH=2)에서 시간에 따른 GFP의 안정도를 나타내는 형광현미경 이미지이다.
도 15는 GFP를 본 발명에 따른 담지체에 담지하지 않고 산성 용액(pH=2)에서 시간에 따른 GFP의 안정도를 나타내는 형광현미경 이미지이다.
도 15을 통해 높은 농도의 GFP가 산성 용액(pH=2)에서 10분 미만의 시간에 그 성질을 완전히 잃어 버려 형광이 없어짐을 확인하였다. 이처럼, 일반적으로 단백질이나 효소들이 산성 조건에서 그 성질을 잃어 버리는 것과 달리 도 12 및 도 13을 통해 본 발명에 따른 실리카 담지체를 이용할 경우 GFP가 산성 용액(pH=2)에서 5 시간까지 그 성질이 보존되어 효과적으로 안정화됨을 확인하였다.
(부호의 설명)
10: 본체 20 : 주채널
30: 부채널 100: 본체
200: 중공부 300: 채널부
본 발명에 따른 실리카 담지체는 인체에 무해하고 단백질 및 효소와 반응하지 않는 실리카를 기반으로 하며, 다양한 크기의 단백질 및 효소의 크기에 따라 맞춤형 공간을 제공할 수 있어 단백질 및 효소의 기능을 그대로 유지한 채 안정화시킬 수 있으며, 또한 다양한 크기의 채널들을 통해 기질의 접근이 용이하여 효소의 반응이 효과적으로 수행될 수 있는바, 단백질 및 효소 안정화용 담지체로 유용하게 사용될 수 있다.

Claims (21)

  1. 본체; 및
    각각 상기 본체 내부에 적어도 2개 이상이 서로 교차하고, 단백질 또는 효소가 주입되어 담지되는 다수의 주채널;을 포함하는 단백질 및 효소 안정화용 실리카 담지체.
  2. 제1항에 있어서,
    상기 주채널은 만곡된 형상으로 형성되는 것을 특징으로 하는 단백질 및 효소 안정화용 실리카 담지체.
  3. 제1항에 있어서,
    서로 다른 2개의 상기 주채널을 서로 연결하고, 기질이 주입되어 유동하는 다수의 부채널;을 더 포함하는 단백질 및 효소 안정화용 실리카 담지체.
  4. 제3항에 있어서,
    상기 부채널은 상기 주채널보다 직경이 작게 형성된 것을 특징으로 하는 단백질 및 효소 안정화용 실리카 담지체.
  5. 제3항에 있어서,
    상기 주채널의 직경은 5 내지 30 nm이고,
    상기 부채널의 직경은 1 내지 10 nm인 것을 특징으로 하는 단백질 및 효소 안정화용 실리카 담지체.
  6. 본체;
    상기 본체 내부에 형성되어 단백질 또는 효소가 담지되는 중공부; 및
    각각 상기 중공부와 소통되어 기질이 주입되어 유동하는 다수의 채널부;를 포함하는 단백질 및 효소 안정화용 실리카 담지체.
  7. 제6항에 있어서,
    상기 중공부는 구형으로 형성되고,
    다수의 상기 채널부는 상기 중공부를 중심으로 원호 방향을 따라 소정의 간격으로 이격 배치되는 것을 특징으로 하는 단백질 및 효소 안정화용 실리카 담지체.
  8. 제6항에 있어서,
    다수의 상기 채널부 중 적어도 2개 이상은 서로 다른 횡단면적을 갖도록 형성된 것을 특징으로 하는 단백질 및 효소 안정화용 실리카 담지체.
  9. 제6항에 있어서,
    상기 채널부의 직경은 5 내지 30 nm인 것을 특징으로 하는 단백질 및 효소 안정화용 실리카 담지체.
  10. (a) 비이온성 폴리머 및 무기 첨가제를 증류수와 염산의 혼합용액에 첨가하고 1차 교반 과정을 수행하는 단계;
    (b) 상기 1차 교반 용액에 유기 첨가제를 첨가하여 2차 교반 과정을 수행하는 단계; 및
    (c) 상기 2차 교반 용액에 실리카 전구체를 첨가 후 가열, 건조 및 하소시켜 본체 내부에 적어도 2개 이상이 서로 교차하는 다수의 주채널이 형성된 다공성 입자를 수득하는 단계;를 포함하는 단백질 및 효소 안정화용 실리카 담지체의 제조방법.
  11. 제10항에 있어서,
    (d) 세틸트리메틸암모니움브로마이드(CTAB) 또는 세틸트리메틸암모니움클로라이드(CTAC)와 NaOH 또는 KOH의 혼합용액에 상기 수득한 다공성 입자를 첨가한 후 가열, 건조 및 하소시켜 서로 다른 2개의 상기 주채널을 서로 연결하는 다수의 부채널이 형성된 다공성 입자를 수득하는 단계;를 더 포함하는 단백질 및 효소 안정화용 실리카 담지체의 제조방법.
  12. 제10항에 있어서,
    상기 비이온성 폴리머는 플루로닉 123, 플루로닉 F123 및 플루로닉 F68로 이루어진 군에서 선택되는 것을 특징으로 하는 단백질 및 효소 안정화용 실리카 담지체의 제조방법.
  13. 제10항에 있어서,
    상기 무기 첨가제는 염화칼륨, 염화마그네슘, 염화나트륨, 염화리튬, 염화칼슘 및 염화세슘으로 이루어진 군에서 선택되는 것을 특징으로 하는 단백질 및 효소 안정화용 실리카 담지체의 제조방법.
  14. 제10항에 있어서,
    상기 유기 첨가제는 테트라메틸벤젠, 테트라에틸벤젠, 자일렌 및 톨루엔으로 이루어진 군에서 선택되는 것을 특징으로 하는 단백질 및 효소 안정화용 실리카 담지체의 제조방법.
  15. 제14항에 있어서,
    상기 유기 첨가제의 농도는 0.50 mM 이하인 것을 특징으로 하는 단백질 및 효소 안정화용 실리카 담지체의 제조방법.
  16. 제10항에 있어서,
    상기 실리카 전구체는 테트라에틸 오쏘실리케이트(tetraethly orthosilicate, TEOS)인 것을 특징으로 하는 단백질 및 효소 안정화용 실리카 담지체의 제조방법.
  17. (a) 에탄올, 메탄올, 프로판올로 이루어진 군에서 선택되는 유기용매를 증류수 및 암모니아 수용액과 혼합 및 교반하여 제1 혼합용액을 제조하는 단계;
    (b) 실리카 전구체와 탄소 전구체를 혼합 및 교반하여 제2 혼합용액을 제조하는 단계;
    (c) 상기 제1 혼합용액에 실리카 전구체를 첨가 및 교반한 후, 상기 제2 혼합용액을 첨가 및 교반하여 본체 내부에 서로 다른 밀도를 가지는 2중 입자를 수득하는 단계; 및
    (d) 상기 수득한 입자를 탄산염 용액에 첨가한 후 가열, 건조 및 하소시켜, 본체 내부에 중공부 및 상기 중공부와 소통되는 다수의 채널부가 형성된 다공성 입자를 수득하는 단계;를 포함하는 단백질 및 효소 안정화용 실리카 담지체의 제조방법.
  18. 제17항에 있어서,
    상기 (b) 단계에서 실리카 전구체와 탄소 전구체의 혼합비는 1:0.4-0.8인 것을 특징으로 하는 단백질 및 효소 안정화용 실리카 담지체의 제조방법.
  19. 제17항에 있어서,
    상기 실리카 전구체는 테트라에틸 오쏘실리케이트(tetraethly orthosilicate, TEOS)이고,
    상기 탄소 전구체는 옥타데실트리메톡시실란(octadecyltrimethoxysilane, C18TMS)인 것을 특징으로 하는 단백질 및 효소 안정화용 실리카 담지체의 제조방법.
  20. 제17항에 있어서,
    상기 탄산염 용액의 농도는 0.3 내지 0.8 M인 것을 특징으로 하는 단백질 및 효소 안정화용 실리카 담지체의 제조방법.
  21. 제1항 또는 제6항에 따른 실리카 담지체에 단백질 또는 효소를 담지하는 단계;를 포함하는 단백질 및 효소의 안정화 방법.
PCT/KR2018/009062 2017-08-22 2018-08-09 단백질 및 효소 안정화용 다공성 실리카 담지체, 이의 제조방법 및 용도 WO2019039777A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0106285 2017-08-22
KR1020170106285A KR102066151B1 (ko) 2017-08-22 2017-08-22 단백질 및 효소 안정화용 다공성 실리카 담지체, 이의 제조방법 및 용도

Publications (1)

Publication Number Publication Date
WO2019039777A1 true WO2019039777A1 (ko) 2019-02-28

Family

ID=65438986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009062 WO2019039777A1 (ko) 2017-08-22 2018-08-09 단백질 및 효소 안정화용 다공성 실리카 담지체, 이의 제조방법 및 용도

Country Status (2)

Country Link
KR (1) KR102066151B1 (ko)
WO (1) WO2019039777A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102356519B1 (ko) * 2021-09-06 2022-02-08 주식회사 에이바이오머티리얼즈 붓꽃 구근 추출물의 안정화 방법 및 이를 포함한 화장료 조성물

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110000297A (ko) * 2009-06-26 2011-01-03 한국외국어대학교 연구산학협력단 중공형 메조다공성 실리카 캡슐 및 그 제조방법
JP2012016351A (ja) * 2010-06-09 2012-01-26 Jgc Catalysts & Chemicals Ltd 蛋白質固定化用担体、固定化蛋白質及びそれらの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003270802A1 (en) 2002-09-20 2004-04-08 The Children's Hospital Of Philadelphia Engineering of material surfaces

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110000297A (ko) * 2009-06-26 2011-01-03 한국외국어대학교 연구산학협력단 중공형 메조다공성 실리카 캡슐 및 그 제조방법
JP2012016351A (ja) * 2010-06-09 2012-01-26 Jgc Catalysts & Chemicals Ltd 蛋白質固定化用担体、固定化蛋白質及びそれらの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SINGH, L. P.: "Sol-Gel processing of silica nanoparticles and their applications", ADVANCES IN COLLOID AND INTERFACE SCIENCE, vol. 214, 6 November 2014 (2014-11-06), pages 17 - 37, XP055580504 *
WANG, Y .: "Nanoporous Protein Particles Through Templating Mesoporous Silica Spheres", ADV. MATER., vol. 18, no. 6, 17 March 2006 (2006-03-17), pages 795 - 800, XP055580505 *
ZHAO, X. S.: "Immobilizing catalysts on porous materials", MATERIALS TODAY, 2006, pages 32 - 39, XP028034042, DOI: doi:10.1016/S1369-7021(06)71388-8 *

Also Published As

Publication number Publication date
KR20190021116A (ko) 2019-03-05
KR102066151B1 (ko) 2020-01-14

Similar Documents

Publication Publication Date Title
WO2018110860A1 (ko) 벤질기를 포함하는 구조유도물질을 이용한 제올라이트 제조방법 및 이로부터 제조된 제올라이트
WO2018048198A1 (ko) 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
WO2019039777A1 (ko) 단백질 및 효소 안정화용 다공성 실리카 담지체, 이의 제조방법 및 용도
WO2016126133A1 (ko) 고밀도 번들형 카본나노튜브 및 그의 제조방법
WO2018048289A1 (ko) 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
WO2016171386A1 (ko) 고직경 저밀도 카본나노튜브 및 그 제조방법
WO2013109105A1 (en) Silicon carbide powder and method for manufacturing the same
WO2018048197A1 (ko) 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
WO2016195162A1 (ko) 페라이트 금속 산화물 촉매의 제조방법
WO2013105780A1 (ko) 카본나노튜브용 균질 담지 촉매의 제조방법
KR20190040166A (ko) 단백질 및 효소 안정화용 다공성 실리카 담지체, 이의 제조방법 및 용도
WO2019066567A1 (ko) 다중 양자점 기반 고감도 생체분자 검출법
WO2017164444A1 (ko) 졸-겔법을 이용한 몰리브데늄 기반 나노입자의 제조방법 및 이에 의해 제조된 몰리드데늄 기반 나노입자
WO2018066751A1 (ko) 이산화탄소 흡수제용 고체원료, 이를 포함하는 이산화탄소 흡수제 조성물, 및 이를 이용하여 제조된 이산화탄소 흡수제
WO2016208793A1 (ko) 표면 개질을 통한 마그네시아-카본 내화물에 함유된 흑연의 항산화성 증진 방법 및 이에 의해 제조된 마그네시아-카본 내화물
KR20000005923A (ko) 세라믹제조방법,확산차단층및이들층에대한용도
RU2101259C1 (ru) Состав для изготовления пористого проницаемого керамического материала с высокой термостойкостью
WO2011136497A2 (ko) 리튬 전이금속 인산염의 제조방법
WO2015133694A1 (ko) PoP 나노구조체 및 이를 이용한 약물 전달 방법
WO2023080445A1 (ko) 나노입자 및 그 형성 방법
WO2023003225A1 (ko) 고활성 건식 개질 촉매 및 이의 제조방법
WO2019004755A1 (ko) 산화니켈 나노입자의 제조방법 및 이를 이용하여 제조된 산화니켈 나노입자
WO2012015261A2 (en) Silicon carbide and method for manufacturing the same
WO2020022868A1 (ko) 입자 균일도가 우수한 모데나이트 제올라이트 및 그 제조방법
WO2016195379A1 (ko) 금속산화물-실리카 복합 에어로겔의 제조방법 및 이를 이용하여 제조된 금속산화물-실리카 복합 에어로겔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849194

Country of ref document: EP

Kind code of ref document: A1