WO2019039487A1 - コンバータ - Google Patents

コンバータ Download PDF

Info

Publication number
WO2019039487A1
WO2019039487A1 PCT/JP2018/030906 JP2018030906W WO2019039487A1 WO 2019039487 A1 WO2019039487 A1 WO 2019039487A1 JP 2018030906 W JP2018030906 W JP 2018030906W WO 2019039487 A1 WO2019039487 A1 WO 2019039487A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
switching
inductor
switching elements
converter
Prior art date
Application number
PCT/JP2018/030906
Other languages
English (en)
French (fr)
Inventor
正雄 渡邉
将吾 中原
Original Assignee
ダイヤモンド電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイヤモンド電機株式会社 filed Critical ダイヤモンド電機株式会社
Priority to US16/638,382 priority Critical patent/US11025174B2/en
Priority to CN201880054609.3A priority patent/CN110999059B/zh
Publication of WO2019039487A1 publication Critical patent/WO2019039487A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a converter that performs soft switching.
  • Patent Document 1 discloses a DC-DC converter capable of achieving high-efficiency power transmission by establishing ZVS operation when the voltage difference between the primary DC voltage and the secondary DC voltage is large. .
  • power is detected on each of the primary side and the secondary side, and the duty of the primary side switch and the secondary side switch are detected so that the difference between the two powers is minimized. The duty is increased or decreased. Thus, the ZVS operation is established.
  • Patent Document 1 in order to perform the ZVS operation, it is necessary to perform power detection and switching control on each of the primary side and the secondary side. Therefore, the circuit configuration and the control thereof become complicated, and it is difficult to improve productivity and reduce costs.
  • an object of the present invention is to provide a converter that performs ZVS operation with simple control and reduces switching loss.
  • a converter is a first full bridge circuit having a capacitor which is a parasitic capacitance or a switching element including four external capacitors connected in parallel;
  • a transformer having a first winding connected to a full bridge circuit, a second winding magnetically coupled to the first winding, and an inductance component connected in series to the first winding or the second winding
  • a control circuit that performs soft switching control of each switching element of the first full bridge circuit, and an inductor current flowing in the transformer and the equivalent inductor of the inductance component is switched at the switching timing of turning on and off of the switching element Threshold current, and the threshold current is an energy stored in the equivalent inductor.
  • Chromatography is, such that the total energy or accumulated in the capacitor, are set.
  • a second invention of the present application is the converter according to the first invention, wherein the first full bridge circuit includes a first leg in which a first switching element and a second switching element are connected in series, a third switching element, and a fourth And a second leg in which switching elements are connected in series, and the control circuit controls to turn on the first switching element and the fourth switching element and turn off the second switching element and the third switching element. And control for turning off the first switching element and the fourth switching element and turning on the second switching element and the third switching element alternately by providing a first dead time, the first dead The inductor current flowing at time is greater than or equal to the threshold current.
  • a third invention of the present application is the converter of the second invention, wherein the third leg in which the fifth switching element and the sixth switching element are connected in series, and the seventh leg in which the seventh switching element and the eighth switching element are connected in series.
  • a fourth full bridge circuit including four capacitors and each of the fifth to eighth switching elements being a capacitor having a parasitic capacitance or an external four capacitors connected in parallel;
  • the second winding is connected to the middle point of each of the third leg and the fourth leg, and the control circuit synchronizes with the switching frequency of the first to fourth switching elements to obtain the fifth switching element and Control for turning on the eighth switching element, turning off the sixth switching element and the seventh switching element, and the fifth switch And the eighth switching element is turned off, and the control to turn on the sixth switching element and the seventh switching element is alternately repeated with a second dead time, and the inductor flows in the second dead time
  • the current is greater than or equal to the threshold current.
  • ZVS of each switching element of the first full bridge circuit can be realized by supplying an inductor current equal to or greater than the threshold current to the equivalent inductor.
  • the third invention of the present application can also realize ZVS of each switching element of the second full bridge circuit.
  • FIG. 1 is a circuit diagram of a DC-DC converter 1 according to the present embodiment.
  • the DC-DC converter 1 includes a pair of input / output terminals IO11 and IO12 and a pair of input / output terminals IO21 and IO22.
  • a DC power supply E1 is connected to the input / output terminals IO11 and IO12.
  • a DC power supply E2 is connected to the input / output terminals IO21 and IO22.
  • the DC-DC converter 1 transforms the power supply voltage of the DC power supply E1 input from the input / output terminals IO11 and IO12, and outputs the transformed voltage from the input / output terminals IO21 and IO22.
  • the DC-DC converter 1 transforms the power supply voltage of the DC power supply E2 input from the input / output terminals IO21 and IO22, and outputs the transformed voltage from the input / output terminals IO11 and IO12. That is, the DC-DC converter 1 is a converter capable of bidirectionally transmitting power.
  • the DC-DC converter 1 includes a first full bridge circuit 10, a second full bridge circuit 20, and a transformer T.
  • the transformer T includes a first winding n1 and a second winding n2.
  • the first winding n1 and the second winding n2 are magnetically coupled.
  • the first winding n1 is connected to the input / output terminals IO11 and IO12 via the first full bridge circuit 10.
  • the second winding n2 is connected to the input / output terminals IO21 and IO22 via the second full bridge circuit 20.
  • the first full bridge circuit 10 has a first leg in which switching element Q11 and switching element Q12 are connected in series, a second leg in which switching element Q13 and switching element Q14 are connected in series There is.
  • the switching elements Q11, Q12, Q13, and Q14 are examples of the "first, second, third, and fourth switching elements" in the present invention.
  • the first winding n1 of the transformer T is connected to the middle point of each of the first leg and the second leg.
  • An inductor L1 is provided between the first winding n1 of the transformer T and the middle point of the first leg.
  • the inductor L1 may be connected in series to the first winding n1 or the second winding n2, and the arrangement location may be changed as appropriate.
  • the inductor L1 may be provided between the first winding n1 and the middle point of the second leg.
  • the inductor L1 may be a real element, the leakage inductance of the transformer T, or a combination of the real element and the leakage inductance.
  • Diodes D11, D12, D13, D14 and capacitors C11, C12, C13, C14 are connected in parallel to the switching elements Q11, Q12, Q13, Q14.
  • Switching elements Q11 to Q14 are MOS-FETs. However, switching elements Q11 to Q14 may be IGBTs or JFETs or the like.
  • the diodes D11 to D14 may be real devices or parasitic diodes.
  • the capacitors C11 to C14 may be real devices, parasitic capacitances, or a combination of parasitic capacitances and real devices.
  • the second full bridge circuit 20 has a third leg in which switching element Q21 and switching element Q22 are connected in series, a fourth leg in which switching element Q23 and switching element Q24 are connected in series There is.
  • the switching elements Q21, Q22, Q23, and Q24 are examples of the "fifth, sixth, seventh, and eighth switching elements" in the present invention.
  • the second winding n2 of the transformer T is connected to the middle point of each of the third leg and the fourth leg.
  • the inductor L1 may be provided between the second winding n2 and the middle point of the third leg or the fourth leg.
  • Diodes D21, D22, D23, D24 and capacitors C21, C22, C23, C24 are connected in parallel to the switching elements Q21, Q22, Q23, Q24.
  • Switching elements Q21 to Q24 are MOS-FETs. However, switching elements Q21 to Q24 may be IGBTs or JFETs or the like.
  • the diodes D21 to D24 may be real devices or parasitic diodes.
  • the capacitors C21 to C24 may be real devices, parasitic capacitances, or a combination of parasitic capacitances and real devices.
  • Control circuit 30 controls switching of switching elements Q11 to Q14 and Q21 to Q24 so that the output power of DC-DC converter 1 becomes the set target power.
  • the control circuit 30 performs soft switching on each of the switching elements Q11 to Q14 and Q21 to Q24 in order to reduce the switching loss.
  • the DC-DC converter 1 performs power transmission from one of the input / output terminals IO11 and IO12 and one of the input / output terminals IO21 and IO22 to the other or from the other.
  • the input / output terminals IO11 and IO12 will be described as the input side
  • the input / output terminals IO21 and IO22 will be described as the output side.
  • FIG. 2 is a timing chart of on / off of the switching elements Q11 to Q14 and the switching elements Q21 to Q24.
  • FIGS. 3, 4 and 5 are diagrams for describing current paths in DC-DC converter 1.
  • FIG. 3 to FIG. 5 the inductor L1 and the transformer T of FIG. 1 are represented by equivalent inductors L.
  • the inductor L is an example of the “inductance component” in the present invention.
  • each switching element is shown by the simplified circuit symbol.
  • V1 is a potential difference between the middle point of the switching element Q11 and the switching element Q12 and the middle point of the switching element Q13 and the switching element Q14 shown in FIG.
  • V2 is a potential difference between the midpoint of switching element Q21 and switching element Q22 and the midpoint of switching element Q23 and switching element Q24.
  • I L is a current flowing to the inductor L.
  • V1 (t1) V2 (t2).
  • the solid line waveform of the switching elements Q11 to Q14 and Q21 to Q24 is the waveform of the voltage between the source and the drain, and the broken line waveform shows the waveform of the drain current.
  • Control circuit 30 sets dead time (second dead time) at switching frequency f (period 1 / f) and switching elements Q11 and Q14 and switching elements Q12 and Q13 in first full bridge circuit 10. Turn on and off alternately. Further, in the second full bridge circuit 20, the control circuit 30 alternately turns on and off the switching elements Q21 and Q24 and the switching elements Q22 and Q23 at the switching frequency f with a dead time (second dead time). .
  • control circuit 30 has a phase difference ⁇ at the switching timing of the first full bridge circuit 10 and the second full bridge circuit 20. That is, as shown in FIG. 2, the phase difference between switching elements Q11 and Q14 and switching elements Q21 and Q24 and the phase difference between switching elements Q12 and Q13 and switching elements Q22 and Q23 are ⁇ , respectively. . As a result, the phase difference between the voltage V1 and the voltage V2 is also ⁇ .
  • switching elements Q11 and Q14 and switching elements Q22 and Q23 are both on, and switching elements Q12 and Q13 and switching elements Q21 and Q24 are both off.
  • current flows from the DC power supply E1 in the order of the switching element Q11, the inductor L, the switching element Q22, the DC power supply E2, the switching element Q23, and the switching element Q14.
  • the power supply voltage of the DC power supplies E1 and E2 is applied to the inductor L. That is, as shown in FIG. 2, the inductor current I L is increased.
  • switching elements Q22 and Q23 are turned off, and switching elements Q21 and Q24 are turned on.
  • all the switching elements Q21 to Q24 are turned off in the dead time.
  • the inductor current IL continues to flow. Therefore, as shown in FIG. 3B, current flows from the inductor L to the path passing through the capacitor C21, the capacitor C23, and the switching element Q14, and from the inductor L to the path passing through the capacitor C22, the capacitor C24, and the switching element Q14. Flow.
  • capacitors C22 and C23 are charged. Also, the capacitors C21 and C24 are discharged.
  • the time charge and discharge of the capacitors C21 ⁇ C24 is completed, the inductor current I L, determined by the capacitance of the capacitors C21 ⁇ C24.
  • the diodes D21 and D24 are turned on. That is, the drain-source voltage of the switching elements Q21 and Q24 is zero. At this time, when the switching elements Q21 and Q24 are turned on, ZVS is obtained.
  • the switching elements Q11 and Q14 are turned off, and the switching elements Q12 and Q13 are turned on. At this time, all of the switching elements Q11 to Q14 are turned off during the dead time, as described for the switching elements Q21 to Q24.
  • the inductor L, the inductor current I L continues to flow, through the inductor L, switching element Q21, the DC power source E2, the switching element Q24, capacitor C14, capacitor C12, the inductor L A current flows from the path and from the inductor L to the path passing through the switching element Q21, the DC power supply E2, the switching element Q24, the capacitor C13, the capacitor C11, and the inductor L, respectively.
  • capacitors C11 and C14 are charged, and capacitors C12 and C13 are discharged.
  • the charge time of the capacitors C11 and C14 is longer than the turn-off time of the switching elements Q11 and Q14, the turn-off of the switching elements Q11 and Q14 is soft switching.
  • the diodes D12 and D13 are turned on. That is, the drain-source voltage of the switching elements Q12 and Q13 is zero. At this time, ZVS of the switching elements Q12 and Q13 can be performed by turning on the switching elements Q12 and Q13.
  • the period t3 to t0 can be described similarly to the operation of the period t1 to t2.
  • the switching elements Q21 and Q24 turn off and become ZVS, and the switching elements Q22 and Q23 turn on become ZVS.
  • the switching elements Q11 and Q14 turn on and become ZVS, and the switching elements Q12 and Q13 turn off become ZVS.
  • the switching loss can be reduced and the reduction of the power transfer efficiency can be suppressed by turning off and turning on each of the switching elements Q11 to Q14 and Q21 to Q24 with ZVS.
  • Equation (1) is converted to the following equation (2).
  • ⁇ ⁇ Vx ⁇ (4C / L) in equation (2) be a threshold current Iref.
  • Vx ⁇ Vy that is, V1 (t1) tV2 (t2)
  • V1 (t1)> V2 (t2) or V1 (t1) ⁇ V2 (t2) the inductor
  • the inductor The potential difference between the voltage V1 and the voltage V2 is applied to L. For this reason.
  • Timing t1, t2 respectively of the inductor current I L are different.
  • the timing t3, t0 also each of the inductor current I L differs.
  • FIG. 6 is a diagram showing the waveform of the inductor current I L in the case of V1 (t1) ⁇ V2 (t2 ).
  • FIG. 6A shows the waveform of the inductor current I L in the case of V1 (t1)> V2 (t2)
  • FIG. 6B shows the inductor current I in the case of V1 (t1) ⁇ V2 (t2).
  • the waveform of L is shown.
  • the inductor current I L at the timing t2 (hereinafter, the I L (t1) Yes) is smaller.
  • ZVS of the switching elements Q11 to Q14 and Q21 to Q24 becomes possible when
  • the inductor current I L at the timing t1 (hereinafter, the I L (t2) Yes) is smaller.
  • ZVS of the switching elements Q11 to Q14 and Q21 to Q24 becomes possible when
  • Control circuit 30 controls switching of switching elements Q11 to Q14 so that the output power of DC-DC converter 1 follows a set command value. At the time of switching control according to the command value, the control circuit 30 switches and executes the first control and the second control so as to satisfy the condition of
  • Vy of Formula (3) is a power supply voltage (refer FIG. 1) of DC-power-supply E2.
  • n is a winding ratio between the first winding n1 and the second winding n2.
  • the power PT is hereinafter referred to as target power.
  • is a phase difference between the switching elements Q12 and Q13 and the switching elements Q22 and Q23, that is, a phase difference between the voltage V1 and the voltage V2.
  • FIG. 7 is a diagram for explaining the first control and the second control.
  • the horizontal axis in FIG. 7 is the target power PT .
  • the control circuit 30 executes the first control.
  • the control circuit 30 performs phase shift control to change the phase difference ⁇ while keeping the switching frequency f (drive angular frequency ⁇ ) constant.
  • Figure 8 is a diagram showing waveforms of voltages V1, V2 and the inductor current I L in the first control.
  • the solid line shows the waveform before the phase change
  • the broken line shows the waveform after the phase change.
  • the phase after phase change is represented by ⁇ 1 ( ⁇ ).
  • the control circuit 30 executes the second control.
  • the control circuit 30 performs frequency conversion control to change the switching frequency f (drive angular frequency ⁇ ) while keeping the time difference td constant.
  • Figure 9 is a diagram showing waveforms of voltages V1, V2 and the inductor current I L in the second control.
  • a solid line indicates a waveform before changing the frequency
  • a broken line indicates a waveform after changing the frequency.
  • the switching frequency after frequency change is represented by f1 ( ⁇ f).
  • the drive angular frequency ⁇ (ie, the switching frequency f) is changed.
  • the drive angular frequency ⁇ is increased.
  • the inductor current I L is constant, not below the threshold current Iref. Therefore, in the second control, even when the switching frequency f is changed,
  • the driving angular frequency ⁇ is set by the following equation (5).
  • control circuit 30 can expand the region in which ZVS can be performed by executing the first control or the second control with the target power PT .
  • first control in a region where the switching frequency f does not need to be changed, it is possible to suppress heat generation or magnetic saturation of the inductor L (transformer T) due to changing the switching frequency f.
  • the input / output terminals IO11 and IO12 are described as the input side, and the input / output terminals IO21 and IO22 are described as the output side.
  • the DC-DC converter 1 can transmit power bidirectionally. Therefore, it is possible to set the input / output terminals IO11 and IO12 as the output side and to set the input / output terminals IO21 and IO22 as the input / output side. In this case, since it can be described in the same manner as the above embodiment, the description is omitted.
  • the DC-DC converter 1 may not be bidirectional.
  • the switching frequency f is changed in the second control, but another third control may be performed.
  • the Duty control method is performed. For example, the phase difference between the drive signal of switching element Q11 and switching element Q12 and the drive signal of switching element Q13 and switching element Q14 is changed, or the drive signal of switching element Q21 and switching element Q22, switching element Q23 and The phase difference with the drive signal of switching element Q24 is changed.
  • the time difference td is constant but may be varied.
  • DC-DC converter 10 first full bridge circuit 20: second full bridge circuit 30: control circuits C11, C12, C13, C14: capacitors C21, C22, C23, C24: capacitors D11, D12, D13, D14: Diodes D21, D22, D23, D24: diode
  • E1 DC power supply
  • E2 DC power supply
  • L inductor L1: inductor Q11, Q12, Q13, Q14: switching elements Q21, Q22, Q23: switching element T: transformer
  • Vx power supply voltage
  • Vy power supply voltage
  • V1 voltage
  • V2 voltage n1: first winding
  • n2 second winding

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

DC-DCコンバータ1は、第1フルブリッジ回路10と、第2フルブリッジ回路20とが、トランスTおよびインダクタL1を介して接続された構成である。制御回路30は、スイッチング素子Q11、Q14と、スイッチング素子Q12、Q13とを交互にオンオフする。スイッチング素子Q11~Q14を切り替えるデッドタイミングで、トランスTおよびインダクタTの等価インダクタに流れるインダクタ電流は、閾値電流以上である。閾値電流は、等価インダクタに蓄積されるエネルギーが、スイッチング素子Q11~Q14それぞれに並列接続されたキャパシタC11~C14に蓄積される全エネルギー以上となるように、設定されている。

Description

コンバータ
 本発明は、ソフトスイッチングを行うコンバータに関する。
 DC-DCコンバータなどの電力変換装置では、スイッチング損失を低減して、高効率で電力伝送を行うため、また、ノイズを低減して、スイッチングサージを抑えて、耐圧の低い安価な素子を用いるために、ゼロボルトスイッチング(以下、ZVSと言う)が用いられている。特許文献1には、1次側直流電圧と2次側直流電圧の電圧差が大きい場合に、ZVS動作を成立させて、高効率な電力伝送を可能としたDC-DCコンバータが開示されている。特許文献1に記載のDC-DCコンバータでは、1次側および2次側それぞれで電力を検出し、それら2つの電力差が最小となるように、1次側スイッチのデューティと2次側スイッチのデューティとを増減させている。これにより、ZVS動作が成立するようにしている。
特開2016-012970号公報
 しかしながら、特許文献1では、ZVS動作を行うために、1次側および2次側それぞれで電力の検出、および、スイッチング制御を行う必要がある。このため、回路構成、および、その制御が複雑となり、生産性の向上およびコストダウンを図ることが難しい。
 そこで、本発明は、簡易な制御でZVS動作を行い、スイッチング損失を低減するコンバータを提供することを目的とする。
 上記課題を解決するため、本願の第1発明のコンバータは、寄生容量であるキャパシタ、または、並列接続された外付けの4つのキャパシタを含むスイッチング素子を有する第1フルブリッジ回路と、前記第1フルブリッジ回路に接続された第1巻線と、前記第1巻線と磁気結合する第2巻線とを有するトランスと、前記第1巻線または前記第2巻線に直列接続されたインダクタンス成分と、前記第1フルブリッジ回路の各スイッチング素子をソフトスイッチング制御する制御回路と、を備え、スイッチング素子のターンオンとターンオフとの切り替えタイミングで、前記トランスおよび前記インダクタンス成分の等価インダクタに流れるインダクタ電流は、閾値電流以上であり、前記閾値電流は、前記等価インダクタに蓄積されるエネルギーが、前記キャパシタに蓄積される全エネルギー以上となるように、設定されている。
 本願の第2発明は、第1発明のコンバータであって、前記第1フルブリッジ回路は、第1スイッチング素子および第2スイッチング素子が直列接続された第1レグと、第3スイッチング素子および第4スイッチング素子が直列接続された第2レグとを有し、前記制御回路は、前記第1スイッチング素子および前記第4スイッチング素子をオン、前記第2スイッチング素子および前記第3スイッチング素子をオフにする制御と、前記第1スイッチング素子および前記第4スイッチング素子をオフ、前記第2スイッチング素子および前記第3スイッチング素子をオンにする制御とを、第1デッドタイムを設けて交互に繰り返し、前記第1デッドタイムに流れる前記インダクタ電流が、前記閾値電流以上である。
 本願の第3発明は、第2発明のコンバータであって、第5スイッチング素子および第6スイッチング素子が直列接続された第3レグと、第7スイッチング素子および第8スイッチング素子が直列接続された第4レグとを有し、前記第5~前記第8スイッチング素子それぞれは、寄生容量であるキャパシタ、または、並列接続された外付けの4つのキャパシタを含む第2フルブリッジ回路、を備え、前記第2巻線は、前記第3レグおよび前記第4レグそれぞれの中点に接続され、前記制御回路は、前記第1~前記第4スイッチング素子のスイッチング周波数に同期させて、前記第5スイッチング素子および前記第8スイッチング素子をオン、前記第6スイッチング素子および前記第7スイッチング素子をオフにする制御と、前記第5スイッチング素子および前記第8スイッチング素子をオフ、前記第6スイッチング素子および前記第7スイッチング素子をオンにする制御とを、第2デッドタイムを設けて交互に繰り返し、前記第2デッドタイムに流れる前記インダクタ電流が、前記閾値電流以上である。
 本願の第4発明は、第1発明から第3発明のコンバータであって、前記閾値電流をIref、前記第1フルブリッジ回路の入力電圧をVx、前記キャパシタのキャパシタンスをC、前記等価インダクタのインダクタンスをL、補正係数をαで表した場合、Iref=α・Vx√(4C/L)、を満たす。
 本願の第1発明~第4発明によれば、等価インダクタに閾値電流以上のインダクタ電流を流すことで、第1フルブリッジ回路の各スイッチング素子のZVSを実現できる。
 特に、本願の第3発明は、第2フルブリッジ回路の各スイッチング素子のZVSも実現できる。
実施形態に係るDC-DCコンバータの回路図である。 各スイッチング素子のオンオフのタイミングチャートである。 DC-DCコンバータでの電流経路を説明するための図である。 DC-DCコンバータでの電流経路を説明するための図である。 DC-DCコンバータでの電流経路を説明するための図である。 V1(t1)≠V2(t2)の場合のインダクタ電流の波形を示す図である。 第1制御と第2制御とを説明するための図である。 第1制御での電圧およびインダクタ電流の波形を示す図である。 第2制御での電圧およびインダクタ電流の波形を示す図である。
 以下、本発明の実施形態について、図面を参照しつつ説明する。以下では、本発明の「コンバータ」について、DC-DCコンバータを例に挙げて説明する。
 <1.DC-DCコンバータの回路構成>
 図1は、本実施形態に係るDC-DCコンバータ1の回路図である。
 DC-DCコンバータ1は、一対の入出力端子IO11および入出力端子IO12と、一対の入出力端子IO21および入出力端子IO22と、を備える。入出力端子IO11、IO12には、直流電源E1が接続されている。入出力端子IO21、IO22には、直流電源E2が接続されている。DC-DCコンバータ1は、入出力端子IO11、IO12から入力される、直流電源E1の電源電圧を変圧し、入出力端子IO21、IO22から出力する。また、DC-DCコンバータ1は、入出力端子IO21、IO22から入力される、直流電源E2の電源電圧を変圧し、入出力端子IO11、IO12から出力する。つまり、DC-DCコンバータ1は、双方向に電力伝送が可能なコンバータである。
 DC-DCコンバータ1は、第1フルブリッジ回路10と、第2フルブリッジ回路20と、トランスTと、を備えている。
 トランスTは、第1巻線n1と、第2巻線n2とを備えている。第1巻線n1と第2巻線n2とは磁気結合する。第1巻線n1は、第1フルブリッジ回路10を介して、入出力端子IO11、IO12に接続されている。第2巻線n2は、第2フルブリッジ回路20を介して、入出力端子IO21、IO22に接続されている。
 第1フルブリッジ回路10は、スイッチング素子Q11と、スイッチング素子Q12とが直列接続された第1レグと、スイッチング素子Q13と、スイッチング素子Q14とが直列接続された第2レグと、を有している。スイッチング素子Q11、Q12、Q13、Q14は、本発明の「第1、第2、第3、第4スイッチング素子」の一例である。
 トランスTの第1巻線n1は、第1レグおよび第2レグそれぞれの中点に接続されている。トランスTの第1巻線n1と、第1レグの中点との間には、インダクタL1が設けられている。ただし、インダクタL1は、第1巻線n1または第2巻線n2に直列接続されていればよく、その配置場所は適宜変更可能である。例えば、インダクタL1は、第1巻線n1と第2レグの中点との間に設けられていてもよい。また、インダクタL1は、実素子、トランスTの漏れインダクタンス、または、実素子と漏れインダクタンスとの組み合わせであってもよい。
 スイッチング素子Q11、Q12、Q13、Q14には、ダイオードD11、D12、D13、D14、および、キャパシタC11、C12、C13、C14が並列に接続されている。スイッチング素子Q11~Q14は、MOS-FETである。ただし、スイッチング素子Q11~Q14は、IGBTまたはJFET等であってもよい。ダイオードD11~D14は、実素子であってもよいし、寄生ダイオードであってもよい。また、キャパシタC11~C14は、実素子、寄生容量、または、寄生容量と実素子との組み合わせであってもよい。
 第2フルブリッジ回路20は、スイッチング素子Q21と、スイッチング素子Q22とが直列接続された第3レグと、スイッチング素子Q23と、スイッチング素子Q24とが直列接続された第4レグと、を有している。スイッチング素子Q21、Q22、Q23、Q24は、本発明の「第5、第6、第7、第8スイッチング素子」の一例である。
 トランスTの第2巻線n2は、第3レグおよび第4レグそれぞれの中点に接続されている。前記のインダクタL1は、第2巻線n2と、第3レグまたは第4レグの中点との間に設けられていてもよい。
 スイッチング素子Q21、Q22、Q23、Q24には、ダイオードD21、D22、D23、D24、および、キャパシタC21、C22、C23、C24が並列に接続されている。スイッチング素子Q21~Q24は、MOS-FETである。ただし、スイッチング素子Q21~Q24は、IGBTまたはJFET等であってもよい。ダイオードD21~D24は、実素子であってもよいし、寄生ダイオードであってもよい。また、キャパシタC21~C24は、実素子、寄生容量、または、寄生容量と実素子との組み合わせであってもよい。
 スイッチング素子Q11~Q14およびスイッチング素子Q21~Q24それぞれのゲート端子は、制御回路30に接続されている。制御回路30は、DC-DCコンバータ1の出力電力が、設定される目標電力となるように、スイッチング素子Q11~Q14、Q21~Q24それぞれをスイッチング制御する。本実施形態では、制御回路30は、スイッチング損失を低減するために、スイッチング素子Q11~Q14、Q21~Q24それぞれをソフトスイッチングする。
 <2.ソフトスイッチング動作について>
 以下に、各スイッチング素子Q11~Q14、Q21~Q24のソフトスイッチング動作について説明する。
 DC-DCコンバータ1は、入出力端子IO11、IO12および入出力端子IO21、IO22の一方から他方、または、他方から一方への電力伝送を行う。以下では、入出力端子IO11、IO12を入力側とし、入出力端子IO21、IO22を出力側として説明する。
 図2は、各スイッチング素子Q11~Q14、および、スイッチング素子Q21~Q24のオンオフのタイミングチャートである。図3、図4および図5は、DC-DCコンバータ1での電流経路を説明するための図である。図3~図5では、図1のインダクタL1およびトランスTを等価的なインダクタLで表している。このインダクタLは、本発明の「インダクタンス成分」の一例である。また、各図では、各スイッチング素子は簡略化した回路記号で示している。
 図2において、V1は、図1に示す、スイッチング素子Q11とスイッチング素子Q12との中点と、スイッチング素子Q13とスイッチング素子Q14との中点との電位差である。V2は、スイッチング素子Q21とスイッチング素子Q22との中点と、スイッチング素子Q23とスイッチング素子Q24との中点との電位差である。Iは、インダクタLに流れる電流である。図2では、直流電源E1、E2それぞれが同じ電源電圧であるとする。つまり、V1(t1)=V2(t2)である。また、図2において、スイッチング素子Q11~Q14、Q21~Q24について、実線波形はソース・ドレイン間電圧の波形であり、破線波形は、ドレイン電流の波形を示す。
 制御回路30は、第1フルブリッジ回路10において、スイッチング素子Q11、Q14と、スイッチング素子Q12、Q13とを、スイッチング周波数f(周期1/f)で、デッドタイム(第2デッドタイム)を設けて交互にオンオフする。また、制御回路30は、第2フルブリッジ回路20において、スイッチング素子Q21、Q24と、スイッチング素子Q22、Q23とを、スイッチング周波数fで、デッドタイム(第2デッドタイム)を設けて交互にオンオフする。
 さらに、制御回路30は、第1フルブリッジ回路10と、第2フルブリッジ回路20とのスイッチングタイミングに、位相差δを持たせている。つまり、図2に示すように、スイッチング素子Q11、Q14と、スイッチング素子Q21、Q24との位相差、および、スイッチング素子Q12、Q13と、スイッチング素子Q22、Q23との位相差は、それぞれδである。その結果、電圧V1と、電圧V2との位相差も、δである。
(t0~t1)
 t0~t1期間では、スイッチング素子Q11、Q14、および、スイッチング素子Q22、Q23が共にオン、スイッチング素子Q12、Q13、および、スイッチング素子Q21、Q24が共にオフである。この場合、図3(A)に示すように、直流電源E1から、スイッチング素子Q11、インダクタL、スイッチング素子Q22、直流電源E2、スイッチング素子Q23、スイッチング素子Q14の順に電流が流れる。インダクタLには、直流電源E1、E2の電源電圧が印加される。つまり、図2に示すように、インダクタ電流Iは増加する。
 タイミングt1では、スイッチング素子Q22、Q23がターンオフされ、スイッチング素子Q21、Q24がターンオンされる。このとき、デッドタイムが設けられているため、デッドタイムでは、スイッチング素子Q21~Q24すべてがオフとなる。このとき、インダクタLには、その性質上、インダクタ電流Iが流れ続ける。このため、図3(B)に示すように、インダクタLからキャパシタC21、キャパシタC23、スイッチング素子Q14を通る経路と、インダクタLからキャパシタC22、キャパシタC24、スイッチング素子Q14を通る経路とに、電流が流れる。
 これにより、キャパシタC22、C23は充電される。また、キャパシタC21、C24は放電される。ここで、キャパシタC21~C24の充放電が完了する時間は、インダクタ電流Iと、キャパシタC21~C24の容量とで決まる。そして、キャパシタC22、C23の充電時間が、スイッチング素子Q22、Q23のターンオフ時間よりも長いと、スイッチング素子Q22、Q23のターンオフは、ソフトスイッチングとなる。
 キャパシタC21、C24の放電が完了すると、ダイオードD21、D24がオンとなる。つまり、スイッチング素子Q21、Q24のドレイン・ソース間電圧はゼロである。このときに、スイッチング素子Q21、Q24をターンオンすると、ZVSとなる。
(t1~t2)
 t1~t2期間では、スイッチング素子Q11、Q14、および、スイッチング素子Q21、Q24が共にオン、スイッチング素子Q12、Q13、および、スイッチング素子Q22、Q23が共にオフである。この場合、図4(A)に示すように、直流電源E1から、スイッチング素子Q11、インダクタL、スイッチング素子Q21、直流電源E2、スイッチング素子Q24、スイッチング素子Q14の順に電流が流れる。つまり、直流電源E1は放電し、直流電源E2は充電される。
 タイミングt2では、スイッチング素子Q11、Q14がターンオフされ、スイッチング素子Q12、Q13がターンオンされる。このとき、スイッチング素子Q21~Q24での説明と同様に、デッドタイムでは、スイッチング素子Q11~Q14すべてがオフとなる。図4(B)に示すように、インダクタLには、インダクタ電流Iが流れ続けるため、インダクタLから、スイッチング素子Q21、直流電源E2、スイッチング素子Q24、キャパシタC14、キャパシタC12、インダクタLを通る経路と、インダクタLから、スイッチング素子Q21、直流電源E2、スイッチング素子Q24、キャパシタC13、キャパシタC11、インダクタLを通る経路とのそれぞれに、電流が流れる。
 これにより、キャパシタC11、C14は充電され、キャパシタC12、C13は放電される。前記のように、キャパシタC11、C14の充電時間が、スイッチング素子Q11、Q14のターンオフ時間よりも長いと、スイッチング素子Q11、Q14のターンオフは、ソフトスイッチングとなる。
 キャパシタC12、C13の放電が完了すると、ダイオードD12、D13がオンとなる。つまり、スイッチング素子Q12、Q13のドレイン・ソース間電圧はゼロである。このときに、スイッチング素子Q12、Q13をターンオンすることで、スイッチング素子Q12、Q13のZVSが行える。
(t2~t3)
 t2~t3期間では、スイッチング素子Q12、Q13、および、スイッチング素子Q21、Q24が共にオン、スイッチング素子Q11、Q14、および、スイッチング素子Q22、Q23が共にオフである。この場合、図5に示すように、直流電源E1から、スイッチング素子Q12、インダクタL、スイッチング素子Q21、直流電源E2、スイッチング素子Q24、スイッチング素子Q13の順に電流が流れる。つまり、直流電源E1、E2はそれぞれ充電される。インダクタLには、直流電源E1、E2の電源電圧が、図3(A)の場合と逆方向に印可され、図2に示すように、インダクタ電流Iは減少する。
(t3~t0)
 t3~t0期間は、t1~t2期間の動作と同様に説明できる。タイミングt3では、スイッチング素子Q21、Q24のターンオフ、ZVSとなり、スイッチング素子Q22、Q23のターンオンは、ZVSとなる。また、タイミングt0では、スイッチング素子Q11、Q14のターンオン、ZVSとなり、スイッチング素子Q12、Q13のターンオフは、ZVSとなる。
 以上のように、DC-DCコンバータ1において、各スイッチング素子Q11~Q14、Q21~Q24それぞれをZVSでターンオフおよびターンオンすることにより、スイッチング損失を低減し、電力伝送効率の低下を抑制できる。
 <3.ターンオン時のZVSの条件について>
 以下に、ZVSを実現するための条件について詳細に説明する。
 <3.1.インダクタ電流Iの条件について>
 前記のように、例えば、タイミングt2でのデッドタイムにおいて、インダクタLによって、キャパシタC11~C14が充放電した後に、切替対象のスイッチング素子Q11~Q14のドレイン・ソース間電圧がゼロであれば、スイッチング素子Q11~Q14のターンオン、ターンオフはZVSとなる。つまり、インダクタLのエネルギーは、少なくとも、キャパシタC11~C14それぞれに蓄積される全エネルギー以上であれば、スイッチング素子Q11~Q14をZVSできる。
 ここで、インダクタLのインダクタンスをL、キャパシタC11~C14それぞれのキャパシタンスをC、直流電源E1の電源電圧をVx(図1参照)で表す場合、以下の式(1)が成り立つと、上記条件が満たされる。
Figure JPOXMLDOC01-appb-M000001
 式(1)は、以下の式(2)に変換される。なお、式(2)のαは補正係数であり、必要に応じて適宜値が設定される。以下では、α=1とする。
Figure JPOXMLDOC01-appb-M000002
 式(2)のα・Vx√(4C/L)を閾値電流Irefとする。タイミングt2、t0でのデッドタイムにおいて、|I|≧|Iref|であれば、スイッチング素子Q11~Q14それぞれのZVSが可能となる。
 図2は、Vx=Vyの場合の波形である。このため、V1(t1)=V2(t2)であり、タイミングt1、t2のインダクタ電流Iは等しく、タイミングt3、t0のインダクタ電流Iも等しい。このため、タイミングt0、t2で、|I|≧|Iref|であれば、タイミングt1、t3のデッドタイムでも|I|≧|Iref|が成り立つ。したがって、スイッチング素子Q21~Q24のZVSも可能となる。
 これに対し、Vx≠Vy、つまり、V1(t1)≠V2(t2)の場合、詳しくは、V1(t1)>V2(t2)、または、V1(t1)<V2(t2)の場合、インダクタLには、電圧V1と、電圧V2との電位差が印加される。このため。タイミングt1、t2それぞれのインダクタ電流Iは異なる。また、タイミングt3、t0それぞれのインダクタ電流Iも異なる。
 図6は、V1(t1)≠V2(t2)の場合のインダクタ電流Iの波形を示す図である。図6(A)は、V1(t1)>V2(t2)の場合のインダクタ電流Iの波形を示し、図6(B)は、V1(t1)<V2(t2)の場合のインダクタ電流Iの波形を示す。
 V1(t1)>V2(t2)の場合、図6(A)に示すように、タイミングt2でのインダクタ電流Iよりも、タイミングt1でのインダクタ電流I(以下、IL(t1)とする)の方が小さい。この場合、|IL(t1)|≧|Iref|を満たすと、スイッチング素子Q11~Q14、Q21~Q24のZVSが可能となる。
 V1(t1)<V2(t2)の場合、図6(B)に示すように、タイミングt1でのインダクタ電流Iよりも、タイミングt2でのインダクタ電流I(以下、IL(t2)とする)の方が小さい。この場合、|IL(t2)|≧|Iref|を満たすと、スイッチング素子Q11~Q14、Q21~Q24のZVSが可能となる。
 以上のように、電圧Vx、Vyに関わらず、インダクタLに閾値電流Iref以上のインダクタ電流Iが流れるように適宜設定することで、スイッチング素子Q11~Q14、Q21~Q24のZVSが可能となる。
 <3.2.第1制御と第2制御とについて>
 制御回路30は、DC-DCコンバータ1の出力電力が、設定される指令値に追従するように、スイッチング素子Q11~Q14をスイッチング制御する。この指令値に応じたスイッチング制御の際、制御回路30は、前記した|I|≧|Iref|の条件を満たすように、第1制御と、第2制御とを、切り替えて実行する。
 出力電力を指令値に追従させる途中で得られる電力Pは、以下の式(3)で表される。式(3)のVyは、直流電源E2の電源電圧(図1参照)であり。nは、第1巻線n1と、第2巻線n2との巻線比である。以下、電力Pは目標電力と称する。
Figure JPOXMLDOC01-appb-M000003
 式(3)において、ωは駆動角周波数であり、前記のスイッチング周波数fで表すと、ω=2πfである。δは、スイッチング素子Q12、Q13と、スイッチング素子Q22、Q23との位相差、つまり、電圧V1と電圧V2との位相差である。
 図7は、第1制御と第2制御とを説明するための図である。図7の横軸は、目標電力Pである。図7のtdは、電圧V1、V2の位相差(図2に示すδ)に相当する時間差[μs]であり、td=δ/ω=L・I/Vxである。
 図7に示すように、目標電力Pが電力Pbより大きい場合、制御回路30は、第1制御を実行する。第1制御では、制御回路30は、スイッチング周波数f(駆動角周波数ω)を一定にしつつ、位相差δを変更するフェーズシフト制御を行う。
 図8は、第1制御での電圧V1、V2およびインダクタ電流Iの波形を示す図である。図8において、実線は、位相変更前の波形を示し、破線は、位相変更後の波形を示す。位相変更後の位相を、δ1(<δ)で表す。
 式(3)からわかるように、目標電力Pを変更させるためには、第1フルブリッジ回路10と第2フルブリッジ回路20との位相差δを変更させる。つまり、目標電力Pを下げる場合には、制御回路30は、第1フルブリッジ回路10と第2フルブリッジ回路20との位相差δを小さくする。目標電力Pを上げる場合には、制御回路30は、第1フルブリッジ回路10と第2フルブリッジ回路20との位相差δを大きくする。また、td=δ/ω=LI/Vxより、位相差δが小さくなると、時間差td、および、インダクタ電流Iも小さくなる。
 この場合において、位相差δと共に小さくなるインダクタ電流Iが、閾値電流Irefを下回らないように、電力Pbは設定される。つまり、第1制御では、制御回路30は、インダクタ電流Iが、閾値電流Irefを下回らない範囲で、位相差δを変更する。これにより、スイッチング素子Q11~Q14、Q21~Q24のZVSが可能となる。
 図7に示すように、目標電力Pが電力Pbより小さい場合、制御回路30は、第2制御を実行する。第2制御では、制御回路30は、時間差tdを一定にしつつ、スイッチング周波数f(駆動角周波数ω)を変更する周波数変換制御を行う。
 図9は、第2制御での電圧V1、V2およびインダクタ電流Iの波形を示す図である。図9において、実線は、周波数変更前の波形を示し、破線は、周波数変更後の波形を示す。周波数変更後のスイッチング周波数を、f1(<f)で表す。
 ここで、式(3)は、td=δ/ωにより、以下の式(4)に変換できる。
Figure JPOXMLDOC01-appb-M000004
 式(4)からわかるように、目標電力Pを変更させるためには、駆動角周波数ω(すなわち、スイッチング周波数f)を変更させる。目標電力Pを電力Pbから小さくするためには、駆動角周波数ωを大きくする。また、td=δ/ω=LI/Vx、および、tdが一定であることから、駆動角周波数ωを大きくすると、位相差δも大きくなる。この場合、インダクタ電流Iは、閾値電流Irefを下回らずに一定である。したがって、第2制御において、スイッチング周波数fを変更しても、|I|≧|Iref|が維持される。このため、スイッチング素子Q11~Q14のZVSが可能となる。
 なお、第2制御では、駆動角周波数ωは、以下の式(5)で設定される。
Figure JPOXMLDOC01-appb-M000005
 以上のように、制御回路30は、目標電力Pによって、第1制御または第2制御を実行することで、ZVSが行える領域を拡大できる。特に、スイッチング周波数fを変更する必要がない領域では第1制御を実行することで、スイッチング周波数fを変更することによるインダクタL(トランスT)の発熱、または、磁気飽和を抑制できる。
 <4.変形例>
 以上、本発明の一実施形態について説明したが、本発明は、上記の実施形態に限定されるものではない。
 上記の実施形態では、入出力端子IO11、IO12を入力側とし、入出力端子IO21、IO22を出力側として説明した。しかしながら、DC-DCコンバータ1は双方向に電力伝送可能である。したがって、入出力端子IO11、IO12を出力側とし、入出力端子IO21、IO22を入出力側とすることが可能である。この場合、上記の実施形態と同様に説明することができため、その説明を省略する。なお、DC-DCコンバータ1は、双方向型でなくてもよい。
 上記の実施形態では、第2制御において、スイッチング周波数fを変更させているが、別の第3制御を実行するようにしてもよい。第3制御では、Duty制御方式を行う。例えば、スイッチング素子Q11およびスイッチング素子Q12の駆動信号と、スイッチング素子Q13およびスイッチング素子Q14の駆動信号との位相差を変更し、または、スイッチング素子Q21およびスイッチング素子Q22の駆動信号と、スイッチング素子Q23およびスイッチング素子Q24の駆動信号との位相差を変更する。また、第2制御において、時間差tdは一定としているが、変動させてもよい。
 また、上記の実施形態または変形例に登場した各要素を、矛盾が生じない範囲で、適宜に組み合わせてもよい。
1    :DC-DCコンバータ
10   :第1フルブリッジ回路
20   :第2フルブリッジ回路
30   :制御回路
C11、C12、C13、C14:キャパシタ
C21、C22、C23、C24:キャパシタ
D11、D12、D13、D14:ダイオード
D21、D22、D23、D24:ダイオード
E1   :直流電源
E2   :直流電源
IO11 :入出力端子
IO12 :入出力端子
IO21 :入出力端子
IO22 :入出力端子
L    :インダクタ
L1   :インダクタ
Q11、Q12、Q13、Q14:スイッチング素子
Q21、Q22、Q23、Q24:スイッチング素子
T    :トランス
Vx   :電源電圧
Vy   :電源電圧
V1   :電圧
V2   :電圧
n1   :第1巻線
n2   :第2巻線

Claims (4)

  1.  寄生容量であるキャパシタ、または、並列接続された外付けの4つのキャパシタを含むスイッチング素子を有する第1フルブリッジ回路と、
     前記第1フルブリッジ回路に接続された第1巻線と、前記第1巻線と磁気結合する第2巻線とを有するトランスと、
     前記第1巻線または前記第2巻線に直列接続されたインダクタンス成分と、
     前記第1フルブリッジ回路の各スイッチング素子をソフトスイッチング制御する制御回路と、
     を備え、
     スイッチング素子のターンオンとターンオフとの切り替えタイミングで、前記トランスおよび前記インダクタンス成分の等価インダクタに流れるインダクタ電流は、閾値電流以上であり、
     前記閾値電流は、前記等価インダクタに蓄積されるエネルギーが、前記キャパシタに蓄積される全エネルギー以上となるように、設定されている、
     コンバータ。
  2.  請求項1に記載のコンバータであって、
     前記第1フルブリッジ回路は、
      第1スイッチング素子および第2スイッチング素子が直列接続された第1レグと、第3スイッチング素子および第4スイッチング素子が直列接続された第2レグとを有し、
     前記制御回路は、
      前記第1スイッチング素子および前記第4スイッチング素子をオン、前記第2スイッチング素子および前記第3スイッチング素子をオフにする制御と、前記第1スイッチング素子および前記第4スイッチング素子をオフ、前記第2スイッチング素子および前記第3スイッチング素子をオンにする制御とを、第1デッドタイムを設けて交互に繰り返し、
     前記第1デッドタイムに流れる前記インダクタ電流が、前記閾値電流以上である、
     コンバータ。
  3.  請求項2に記載のコンバータであって、
     第5スイッチング素子および第6スイッチング素子が直列接続された第3レグと、第7スイッチング素子および第8スイッチング素子が直列接続された第4レグとを有し、前記第5~前記第8スイッチング素子それぞれは、寄生容量であるキャパシタ、または、並列接続された外付けの4つのキャパシタを含む第2フルブリッジ回路、
     を備え、
     前記第2巻線は、前記第3レグおよび前記第4レグそれぞれの中点に接続され、
     前記制御回路は、前記第1~前記第4スイッチング素子のスイッチング周波数に同期させて、前記第5スイッチング素子および前記第8スイッチング素子をオン、前記第6スイッチング素子および前記第7スイッチング素子をオフにする制御と、前記第5スイッチング素子および前記第8スイッチング素子をオフ、前記第6スイッチング素子および前記第7スイッチング素子をオンにする制御とを、第2デッドタイムを設けて交互に繰り返し、
     前記第2デッドタイムに流れる前記インダクタ電流が、前記閾値電流以上である、
     コンバータ。
  4.  請求項1から請求項3までのいずれか一つに記載のコンバータであって、
     前記閾値電流をIref、前記第1フルブリッジ回路の入力電圧をVx、前記キャパシタのキャパシタンスをC、前記等価インダクタのインダクタンスをL、補正係数をαで表した場合、
     Iref=α・Vx√(4C/L)、
     を満たす、コンバータ。
PCT/JP2018/030906 2017-08-22 2018-08-22 コンバータ WO2019039487A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/638,382 US11025174B2 (en) 2017-08-22 2018-08-22 Converter with soft switching function
CN201880054609.3A CN110999059B (zh) 2017-08-22 2018-08-22 转换器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-159267 2017-08-22
JP2017159267A JP6883489B2 (ja) 2017-08-22 2017-08-22 コンバータ

Publications (1)

Publication Number Publication Date
WO2019039487A1 true WO2019039487A1 (ja) 2019-02-28

Family

ID=65438967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030906 WO2019039487A1 (ja) 2017-08-22 2018-08-22 コンバータ

Country Status (4)

Country Link
US (1) US11025174B2 (ja)
JP (1) JP6883489B2 (ja)
CN (1) CN110999059B (ja)
WO (1) WO2019039487A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6902962B2 (ja) * 2017-08-22 2021-07-14 ダイヤモンド電機株式会社 コンバータ
JP7030254B2 (ja) * 2018-06-25 2022-03-07 ダイヤゼブラ電機株式会社 Dc-dcコンバータ
US11336189B2 (en) * 2019-04-11 2022-05-17 The Regents Of The University Of California Dual-capacitor resonant circuit for use with quasi-resonant zero-current-switching DC-DC converters
US11294438B2 (en) * 2020-04-29 2022-04-05 Dell Products L.P. System and method of providing power from one portion of an information handling system to another portion of the information handling system
JP7373802B2 (ja) 2020-09-16 2023-11-06 パナソニックIpマネジメント株式会社 電力変換装置
JP7472818B2 (ja) 2021-02-15 2024-04-23 株式会社豊田自動織機 電力変換装置
DE102021116418A1 (de) 2021-06-24 2022-12-29 Sma Solar Technology Ag Verfahren zum Betrieb eines Energieversorgungssystems, Vorrichtung zum Austausch elektrischer Leistung in einem Energieversorgungssystem und Energieversorgungssystem
EP4358381A1 (en) * 2022-10-20 2024-04-24 Siemens Gamesa Renewable Energy Innovation & Technology S.L. Zero voltage switching control method for power converters

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072009A1 (ja) * 2013-11-15 2015-05-21 オリジン電気株式会社 双方向コンバータ
JP2017051082A (ja) * 2015-08-31 2017-03-09 サンケン電気株式会社 双方向dc/dcコンバータ

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027264A (en) * 1989-09-29 1991-06-25 Wisconsin Alumni Research Foundation Power conversion apparatus for DC/DC conversion using dual active bridges
US6246599B1 (en) * 2000-08-25 2001-06-12 Delta Electronics, Inc. Constant frequency resonant inverters with a pair of resonant inductors
JP4352444B2 (ja) * 2000-09-19 2009-10-28 Tdkラムダ株式会社 共振コンバータ
KR100901217B1 (ko) * 2000-12-04 2009-06-05 엔이씨 도낀 가부시끼가이샤 대칭형 dc/dc 컨버터
US6466458B2 (en) * 2001-02-12 2002-10-15 Delta Electronics, Inc. Asymmetrical full bridge DC-to-DC converter
JP5065188B2 (ja) * 2008-05-23 2012-10-31 オリジン電気株式会社 直列共振型コンバータ
US8587975B2 (en) * 2010-04-01 2013-11-19 Arizona Board Of Regents For And On Behalf Of Arizona State University PWM control of dual active bridge converters
JP5762617B2 (ja) * 2012-02-14 2015-08-12 三菱電機株式会社 Dc/dcコンバータ
JP6019770B2 (ja) * 2012-06-01 2016-11-02 株式会社明電舎 双方向絶縁型dc−dcコンバータの制御装置
JP5995139B2 (ja) * 2012-10-12 2016-09-21 富士電機株式会社 双方向dc/dcコンバータ
US9178437B2 (en) * 2012-12-31 2015-11-03 General Electric Company Apparatus and method for avoiding transformer saturation
JP2014217196A (ja) * 2013-04-26 2014-11-17 パナソニック株式会社 双方向dc/dcコンバータ
CN105264758B (zh) * 2013-05-30 2018-09-14 日产自动车株式会社 Dc-dc变换器及其控制方法
WO2015004825A1 (ja) * 2013-07-11 2015-01-15 三菱電機株式会社 Dc/dcコンバータ
US9490719B2 (en) * 2013-12-18 2016-11-08 Infineon Technologies Ag System and method for a power converter
US9490704B2 (en) * 2014-02-12 2016-11-08 Delta Electronics, Inc. System and methods for controlling secondary side switches in resonant power converters
US9712066B2 (en) * 2014-06-02 2017-07-18 Utah State University Assisted zero voltage switching for a DC-to-DC converter
JP6307368B2 (ja) 2014-06-27 2018-04-04 新電元工業株式会社 Dc/dcコンバータの制御装置及びその制御方法
DE102014214542A1 (de) * 2014-07-24 2016-02-11 Rheinisch-Westfälisch-Technische Hochschule Aachen Gleichspannungswandler mit Transformator
US10073512B2 (en) * 2014-11-19 2018-09-11 General Electric Company System and method for full range control of dual active bridge
DE112015006096B4 (de) * 2015-02-02 2023-08-17 Mitsubishi Electric Corporation Dc/dc-umsetzer
DE112015006097T5 (de) * 2015-02-02 2017-11-30 Mitsubishi Electric Corporation Dc/dc-wandler
JP6150018B2 (ja) * 2015-02-05 2017-06-21 株式会社安川電機 Dc−dcコンバータ、電力変換装置、発電システムおよびdc−dc変換方法
EP3276809A4 (en) * 2015-03-24 2018-12-05 Mitsubishi Electric Corporation Power conversion device
US9525355B2 (en) * 2015-03-26 2016-12-20 General Electric Company Direct current electric power systems and method of operating the same
KR102421163B1 (ko) * 2015-05-19 2022-07-14 엘지이노텍 주식회사 양방향 직류-직류 컨버터
EP3104509A1 (en) * 2015-06-09 2016-12-14 Constructions Electroniques + Telecommunications Dual bridge dc/dc power converter
US9935462B2 (en) * 2016-01-27 2018-04-03 Macau University Of Science And Technology System and method for controlling a converter circuit
CN107346941B (zh) * 2016-05-05 2020-09-25 香港生产力促进局 一种负载范围扩展的软开关双向相移变换器
US10008938B2 (en) * 2016-05-09 2018-06-26 Omron Corporation Power conversion device
WO2017213029A1 (ja) * 2016-06-06 2017-12-14 株式会社村田製作所 スイッチング電源装置
JP6848255B2 (ja) * 2016-08-10 2021-03-24 Tdk株式会社 スイッチング電源装置
CN110168896B (zh) * 2017-02-04 2021-07-06 Abb瑞士股份有限公司 Dc到dc变流器和控制方法
US10050534B1 (en) * 2017-05-15 2018-08-14 Cummins Power Generation Ip, Inc. Systems and methods for self-adaptive current control
NZ760094A (en) * 2017-05-15 2021-07-30 Dynapower Co Llc Dc/dc converter and control thereof
US10110138B1 (en) * 2017-05-26 2018-10-23 Cummins Power Generation Ip, Inc. Soft-starting control method for electrical converter
WO2019008854A1 (ja) * 2017-07-04 2019-01-10 三菱電機株式会社 電力変換装置
US11430598B2 (en) * 2017-10-12 2022-08-30 Mitsubishi Electric Corporation Power converter
CN108712081B (zh) * 2018-06-04 2020-06-19 浙江大学 恒电压增益隔离型双向全桥dc/dc变换器的控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072009A1 (ja) * 2013-11-15 2015-05-21 オリジン電気株式会社 双方向コンバータ
JP2017051082A (ja) * 2015-08-31 2017-03-09 サンケン電気株式会社 双方向dc/dcコンバータ

Also Published As

Publication number Publication date
US11025174B2 (en) 2021-06-01
CN110999059A (zh) 2020-04-10
JP2019041433A (ja) 2019-03-14
US20200366213A1 (en) 2020-11-19
CN110999059B (zh) 2023-04-18
JP6883489B2 (ja) 2021-06-09

Similar Documents

Publication Publication Date Title
JP6883489B2 (ja) コンバータ
US6016258A (en) Full bridge DC-DC converters
US10622907B2 (en) DC-DC converter
JP6902963B2 (ja) コンバータ
US7535733B2 (en) Method of controlling DC-to-DC converter whereby switching control sequence applied to switching elements suppresses voltage surges at timings of switch-off of switching elements
JP7036680B2 (ja) Dc-dcコンバータ
JP7175137B2 (ja) コンバータ
WO2019039488A1 (ja) コンバータ
WO2018061286A1 (ja) 電力変換装置
US10622905B2 (en) DC-DC converter
WO2020003717A1 (ja) Dc-dcコンバータ
WO2020003719A1 (ja) Dc-dcコンバータ
KR102077825B1 (ko) 부스트 컨버터
JP6234651B1 (ja) 電力変換装置
JP2014241707A (ja) 電源装置及びその制御方法
JP2020022307A (ja) 電源装置及び電源装置の制御方法
JP2016158378A (ja) スイッチング電源回路およびスイッチング損失抑制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848559

Country of ref document: EP

Kind code of ref document: A1