WO2019037668A1 - 自移动机器人及其行走方法、显示障碍物分布的方法 - Google Patents

自移动机器人及其行走方法、显示障碍物分布的方法 Download PDF

Info

Publication number
WO2019037668A1
WO2019037668A1 PCT/CN2018/101119 CN2018101119W WO2019037668A1 WO 2019037668 A1 WO2019037668 A1 WO 2019037668A1 CN 2018101119 W CN2018101119 W CN 2018101119W WO 2019037668 A1 WO2019037668 A1 WO 2019037668A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance sensor
self
layer map
obstacle
different heights
Prior art date
Application number
PCT/CN2018/101119
Other languages
English (en)
French (fr)
Inventor
汤进举
Original Assignee
科沃斯机器人股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科沃斯机器人股份有限公司 filed Critical 科沃斯机器人股份有限公司
Publication of WO2019037668A1 publication Critical patent/WO2019037668A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/60Editing figures and text; Combining figures or text

Definitions

  • the invention relates to a self-mobile robot, a walking method thereof and a method for displaying obstacle distribution, and belongs to the technical field of small household appliance manufacturing.
  • the technical problem to be solved by the present invention is to provide a self-mobile robot, a walking method thereof, and a method for displaying an obstacle distribution according to the deficiencies of the prior art.
  • the self-moving robot is ensured in a complex environment. Smooth, safe and efficient walking, while reducing the storage and calculation of the control unit, reducing production costs while ensuring obstacle avoidance.
  • An embodiment of the present invention provides a self-mobile robot, including a robot body and a control unit disposed on the robot body.
  • the robot body further includes a multi-layer map information collecting device, which is used to collect obstacle information at different heights in the working environment.
  • the control unit is configured to receive and process obstacle information of different heights, and establish a multi-layer map; wherein the multi-layer map information collection device includes a plurality of distance sensors, and the plurality of distance sensors are at different heights.
  • the multi-layer map includes a plurality of two-dimensional maps, and each two-dimensional map corresponds to obstacle information of different heights.
  • the multi-layer map further includes a two-dimensional obstacle map that integrates obstacle information of a plurality of different heights.
  • the obstacle information of different heights is marked on the two-dimensional obstacle map in different ways.
  • the multi-layer map information collecting device includes a first distance sensor and a second distance sensor, and the first distance sensor and the second distance sensor are respectively used to collect obstacles of their height.
  • the first distance sensor is disposed at a top end of the robot body, and the second distance sensor is disposed at a bottom end of the robot body, wherein the ranging range of the first distance sensor is a range of ranging of the second distance sensor.
  • the ranging range of the first distance sensor is more than twice the ranging range of the second distance sensor.
  • the multi-layer map information collecting device further includes a third distance sensor disposed between the first distance sensor and the second distance sensor, and the third distance sensor is measured The range of distance is between the ranging range of the first distance sensor and the second distance sensor.
  • the first distance sensor is a laser range finder
  • the second distance sensor is an ultrasonic range finder
  • the third distance sensor is an infrared range finder.
  • the embodiment of the invention further provides a walking method of a self-mobile robot, the method comprising:
  • Step 1 Collect obstacle information at different heights in the working environment
  • Step 2 Handling obstacle information of different heights and establishing a multi-layer map
  • Step 3 Plan the walking path of the mobile robot based on the multi-layer map.
  • the walking path planned from the mobile robot in the step 3 is to automatically plan the walking path from the mobile robot or the user to plan the walking path.
  • the automatically planning the walking path of the self-mobile robot comprises: collecting the obstacle information of different heights in the multi-layer map, obtaining all obstacle information of the space to be cleaned, and marking all the obstacle information in different manners. On a two-dimensional obstacle map; or, the walkable areas in the multi-layer map are taken together to obtain the walkable area information.
  • the embodiment of the invention further provides a method for displaying an obstacle distribution, the method comprising:
  • the obstacle information of different heights in the multi-layer map is marked in different ways and transmitted to the user terminal for display.
  • the embodiment of the present invention ensures that the self-mobile robot can smoothly and safely and efficiently travel in a complex environment by setting a multi-layer map collection device, and at the same time reduces the storage amount and calculation amount of the control unit, and ensures obstacle avoidance. In this case, the production cost is reduced.
  • FIG. 1 is a schematic structural diagram of a self-mobile robot according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a self-mobile robot according to an embodiment of the present invention.
  • a self-mobile robot such as an air purification robot, a cleaning robot, etc.
  • the robot body 10 includes a multi-layer map information collecting device 20 for collecting obstacle information of different heights in the working environment.
  • the multi-layer map information collecting device 20 is electrically connected to the control unit, and sends the collected obstacle information to the control unit.
  • the control unit receives and processes obstacle information of different heights, and establishes a multi-layer map according to the obstacle information.
  • the multi-layer map includes a plurality of two-dimensional maps, each of which corresponds to obstacle information of different heights.
  • the multi-layer map includes a two-dimensional obstacle map, and the control unit may mark obstacle information of different heights on the two-dimensional obstacle map in different manners (patterns, colors, letters, etc.), that is, The two-dimensional obstacle map combines obstacle information of several different heights.
  • the robot body 10 further includes components such as a walking unit 11, a detecting unit, and a functional unit.
  • the walking unit 11 may be composed of a motor, a driving wheel and a driven wheel for driving the mobile robot to walk; the detecting unit is configured to detect the working environment of the mobile robot and the working object, and send the detection signal to the control unit to The convenient control unit controls the self-mobile robot to perform different functions.
  • the detecting unit includes a plurality of different sensors such as an ultrasonic range finder, a laser range finder, an infrared range finder, and the like, and also includes a collision sensor.
  • the functional unit may be of various types, for example, when the functional unit includes a cleaning component, the self-moving robot can perform a cleaning work, when the functional unit includes a robot arm, The mobile robot can implement functions such as handling, grasping, etc.
  • the functional unit includes an air purifier, the self-moving robot can purify the air, and the embodiment of the present invention does not limit the type of the functional unit.
  • the multi-layer map information collecting device 20 includes a plurality of distance sensors in which a plurality of distance sensors are located at different heights, and the distance sensors include an ultrasonic range finder 22, an infrared range finder 23, a laser range finder 21, and the like.
  • the multi-layer map information collecting device 20 may include a first distance sensor disposed at a top end of the robot body 10 and a second distance sensor disposed at a lower portion of the robot body 10, wherein the first distance is The ranging range of the sensor is a second distance sensor.
  • the ranging range of the first distance sensor is more than twice the ranging range of the second distance sensor.
  • the first distance sensor and the second distance sensor are respectively used to collect obstacle information of the height at which they are located, that is, the first distance sensor and the second distance sensor are respectively used to acquire the first height obstacle information and the second height obstacle Object information
  • the control unit receives and processes obstacle information of different heights (first height obstacle information and second height obstacle information), corresponding to establishing a two-dimensional map of the plane height (first plane height information two-dimensional map) And a two-dimensional map of the second plane height information).
  • the multi-layer map information collecting device 20 further includes a third distance sensor disposed between the first distance sensor and the second distance sensor, and the ranging range of the third distance sensor is between the first distance sensor and the second distance sensor Between the ranging ranges.
  • the first distance sensor is a laser range finder 21
  • the second distance sensor is an ultrasonic range finder 22
  • the third distance sensor is an infrared range finder 23 .
  • the ranging range of the laser range finder 21 is 3m-8m, and preferably, the number of settings is one.
  • the laser range finder 21 includes a laser emitting tube, a receiving tube, a motor, a processing chip and the like. Under the driving of the motor, the laser range finder 21 measures the object within a range of 360° by rotation, and also has the function of assisting positioning, It is disposed at the top of the robot body 10, and has a good field of view. In this embodiment, the positioning of the self-moving robot is performed by the laser range finder 21, and other sensors on the self-moving robot such as a code wheel or a gyroscope can also be used.
  • the laser range finder 21 can also confirm the maximum height of the obstacle to determine whether the self-moving robot can pass through the furniture such as a table.
  • the height at which the laser range finder 21 is located > the height of the robot body 10 (the distance between the highest point of the robot body 10 and the work surface, ie, the self-moving robot The highest height of the 4/5.
  • the laser range finder 21 can be disposed on the top surface of the robot body 10.
  • the laser range finder 21 Since the laser range finder 21 has an obstacle working height range L in the vertical direction when measuring an obstacle, the laser ranging The instrument 21 actually emits a small angle of the spindle beam (typically 1°-3°), so that the laser range finder can detect at least an obstacle located between the top surface of the mobile robot and the height of the robot body. Prevent collisions with obstacles from the top surface of the mobile robot or the laser rangefinder. Therefore, the height at which the laser range finder 21 is located > the height of the robot body 10 - the range of the working height of the laser range finder is L. Preferably, the robot body 10 has a height of >40 cm, and the laser range finder 21 is located at a height ranging from 50 cm to 60 cm.
  • the height of most indoor dwarf items is generally less than 50cm, and the height of the laser range finder 21 is controlled between 50cm-60cm, which can effectively avoid the above obstacles.
  • the blocking of the object improves the efficiency of the laser range finder 21 in establishing the map, and it only needs to traverse the walking in a small part of the working environment to obtain the contour map of the entire working environment.
  • a method of locating a laser range finder and establishing a two-dimensional map of its height is known in the prior art.
  • the patent documents CN101809461A and CN200610053690.2 disclose a technical solution for constructing a map and positioning using a laser ranging sensor, and details are not described herein. .
  • the ultrasonic range finder 22 includes three ultrasonic transmitters 221 and two ultrasonic receivers 222.
  • the embodiments of the present invention do not limit the number and position of the transmitters and receivers, and those skilled in the art can adjust according to actual needs.
  • the ultrasonic range finder 22 has a wide measuring angle, and the obstacles in the working environment are generally on the ground, so the lower portion can minimize the leakage detection of the obstacle; in addition, the ultrasonic range finder 22 pairs the glass ( If the office has a lot of glass walls, etc., the material with low infrared light reflectivity has good detection effect, and the ultrasonic range finder 22 is disposed at the lower part of the robot body 10, so that the self-moving robot can find various obstacles (such as chair legs) when walking.
  • the height at which the ultrasonic range finder 22 is located is 1/5 of the height of the robot body 10.
  • the method of positioning and establishing a two-dimensional map of the height of the ultrasonic range finder is known in the prior art.
  • Patent documents CN104536447A and CN201510363054.9 disclose a technical solution for constructing and positioning using ultrasonic waves, and details are not described herein.
  • a barrier (not shown) is disposed between the ultrasonic transmitter and the ultrasonic receiver, and the barrier is disposed on an outer surface of the mobile robot body for blocking the ultrasonic transmitter and The continuous surface between the ultrasonic receivers acts as a crosstalk prevention.
  • the barrier member includes a plurality of grooves disposed between the ultrasonic transmitter 221 and the ultrasonic receiver 222. Barriers include, but are not limited to, grooves or ribs, but also dense bumps or dimples, or a length of isolating soft glue or the like.
  • the ultrasonic range finder 22 Since the ultrasonic range finder 22 has a relatively low detection accuracy and a relatively short detection distance (about 1 m), the laser range finder 21 has a high detection accuracy and a high detection distance, but the cost thereof is also high. Therefore, in this embodiment, An infrared range finder 23 is also disposed between the laser range finder 21 and the ultrasonic range finder 22, and the detection distance of the infrared range finder 23 is 1.2 m.
  • the setting of the infrared range finder 23 improves the detection range of the detecting unit 20, and avoids the problem that the moving robot collides due to the detection when the abnormal obstacle occurs. In order to ensure that the collision does not occur when the mobile robot is working, the number of the infrared range finder 23 is set as much as possible.
  • the number of the infrared range finder 23 is five, three of which are The infrared range finder 23 is disposed below the laser range finder 21 in a manner parallel to the work surface, and two infrared range finder 23 are sequentially disposed under the infrared range finder 23 located in the middle of the three infrared range finder 23.
  • the height at which the infrared range finder 23 is located is 1/3-2/3 of the height of the robot body 10.
  • the method of locating the infrared range finder 23 and establishing a two-dimensional map of its height is a prior art, and details are not described herein again. It can be seen from the above that five two-dimensional maps are respectively established in the embodiment for composing a multi-layer map.
  • the self-mobile robot can establish and store at least three two-dimensional maps, that is, the laser range finder 21, the ultrasonic range finder 22, and the infrared range finder 23 respectively correspond to one two-dimensional map, and each A two-dimensional map corresponds to the obstacle information that the ranging sensor collects at its height.
  • the range of the laser range finder 21 is large, it is easy to walk and explore in the working environment to obtain the contour map of the working environment and the obstacle information at the height of the laser laser range finder.
  • the ranging range of the ultrasonic range finder 22 and the infrared range finder 23 is relatively small, and it can only collect obstacle information in the vicinity of the walking process. However, by updating the acquired obstacle information when traversing walking or walking a plurality of times, the ultrasonic range finder 22 and the infrared range finder 23 can finally obtain obstacle information corresponding to the height of the entire working environment.
  • Table 1 shows the number of collisions that occurred since the mobile robot completed work when different distance sensors were set at different heights in the test.
  • the height of the self-moving robot used in the test is 60 cm.
  • the number 21 in the table indicates that the laser range finder 21 is set at the corresponding height
  • the numeral 22 represents that the ultrasonic range finder 22 is set at the corresponding height
  • the numeral 23 represents the corresponding height.
  • An infrared range finder 23 is provided. It can be seen from Table 1 that when different distance sensors are set at different height positions, the number of collisions experienced by the mobile robot after completing the work is different. In the experiment with serial number 1, the self-mobile robot successfully completes the work without any collision. .
  • the detecting unit 20 adopting the structure of the serial number 1 fully utilizes the characteristics of different distance sensors, can almost detect the obstacles often encountered in daily life, and avoids the problem that the self-moving robot collides while walking.
  • the embodiment of the present invention does not limit the specific setting position and height of the distance sensor, and those skilled in the art can design according to actual needs.
  • the senor may be disposed on the rotating component (such as the above-mentioned motor or the like) so that the sensor can rotate around the outer periphery of the robot body 10, or the robot body 10 can be disposed on the rotating component, so that the robot body 10 It can be rotated in place, that is, when the mobile robot is in a random position in the working environment, it can obtain obstacle information of a wide range of working environment without moving.
  • the rotating component such as the above-mentioned motor or the like
  • the embodiment of the invention further discloses a walking method applied to the self-mobile robot as described above, the method comprising:
  • Step 1 Collect obstacle information at different heights in the working environment
  • Step 2 Handling obstacle information of different heights and establishing a multi-layer map
  • Step 3 Plan the walking path of the mobile robot based on the multi-layer map.
  • the travel path planned from the mobile robot in step 3 may be automatically planned by the self-mobile robot or the travel path may be planned by the user.
  • the self-moving robot automatically planning the walking path includes: collecting the obstacle information of different heights in the multi-layer map to obtain all obstacle information of the working environment, or taking the walkable area in the multi-layer map Intersection to obtain information on the walkable area of the work environment. After obtaining the walkable area information or all the obstacle information, the control unit plans the walking path of the mobile robot so that the self-mobile robot does not collide with the obstacle during the walking.
  • the embodiment of the invention further discloses a method for displaying an obstacle distribution of a self-mobile robot as described above, the method comprising:
  • the obstacle information of different heights in the multi-layer map is marked in different ways and transmitted to the user terminal for display.
  • the obstacle information corresponding to the multi-layer map may be displayed on the user terminal (such as a mobile phone, a tablet computer, a remote controller, or a display). It is convenient for the user to watch or manually participate in the planning of the walking path of the mobile robot.
  • the user terminal such as a mobile phone, a tablet computer, a remote controller, or a display.
  • the user terminal such as a mobile phone, a tablet computer, a remote controller, or a display. It is convenient for the user to watch or manually participate in the planning of the walking path of the mobile robot.
  • obstacles of different heights in the multi-layer map are marked in different ways, such as different colors, different patterns, and different letters. For example, yellow, green, and blue are used to represent high, medium, and short obstacles measured by laser range finder, infrared range finder, and ultrasonic range finder.
  • the above two-dimensional obstacle map is directly displayed on the user terminal.
  • the self-moving robot collects obstacle information of different heights through the multi-layer map information collecting device 20 in the working environment, and the multi-layer map information collecting device 20 sends the information to the control unit after collecting the information, and the control unit according to different heights is included.
  • the obstacle information generates a plurality of two-dimensional maps corresponding to the obstacle information of different heights, and the walking is performed after the walking path of the mobile robot is planned, thereby avoiding collision of the obstacles in the working environment during the walking process of the self-moving robot.
  • the embodiment of the invention ensures that the self-mobile robot can smoothly and safely and efficiently travel in a complex environment by setting up a multi-layer map collecting device, and reduces the storage amount and calculation amount of the control unit, and reduces the production in the case of ensuring obstacle avoidance. cost.

Abstract

一种自移动机器人及其行走方法、显示障碍物分布的方法,自移动机器人包括机器人本体(10)和设置在机器人本体上的控制单元,机器人本体还包括多层地图信息采集装置(20),用于采集作业环境不同高度的障碍物信息,控制单元用于接收并处理不同高度的障碍物信息,并建立多层地图;其中,多层地图信息采集装置包括多个距离传感器,多个距离传感器所处的高度不同。通过设置多层地图采集装置(20),确保了自移动机器人在复杂环境中畅通、安全高效的行走,同时减少了控制单元的储存量和计算量,在保证避障的情况下降低了生产成本。

Description

自移动机器人及其行走方法、显示障碍物分布的方法
交叉引用
本申请引用于2017年08月25日递交的名称为“自移动机器人及其行走方法、显示障碍物分布的方法”的第201710744543.8号中国专利申请,其通过引用被全部并入本申请。
技术领域
本发明涉及一种自移动机器人及其行走方法、显示障碍物分布的方法,属于小家电制造技术领域。
背景技术
随着人工智能技术研究的广泛深入,我国对自移动机器人的研究正逐步深入,对自移动机器人的要求也越来越高,但现有的自移动机器人在复杂的环境下执行自主性、可靠性要求比较高的任务时,对环境感知能力较弱且对行走路线的避障效果不好,集成度不高。另外,由于自移动机器人具有一定高度,依靠生成传统的二维地图已经无法满足其使用需要,例如,二维地图无法有效的标注不同高度的障碍物,避障效果差,而生成三维地图所需要的数据量和计算量又比较大,需要专门设置三维信息采集装置以及运行速度快的中央处理器才能建立相应模型,增加了自移动机器人的成本。
发明内容
本发明所要解决的技术问题在于针对现有技术的不足,提供一种自移动机器人及其行走方法、显示障碍物分布的方法,通过设置多层地图采集装置, 确保了自移动机器人在复杂环境中畅通、安全高效的行走,同时减少了控制单元的储存量和计算量,在保证避障的情况下降低了生产成本。
本发明所要解决的技术问题是通过如下技术方案实现的:
本发明实施例提供一种自移动机器人,包括机器人本体和设置在所述机器人本体上的控制单元,所述机器人本体还包括多层地图信息采集装置,用于采集作业环境不同高度的障碍物信息,控制单元用于接收并处理不同高度的障碍物信息,并建立多层地图;其中,所述多层地图信息采集装置包括多个距离传感器,多个距离传感器所处的高度不同。
可选地,所述多层地图包括多个二维地图,每个二维地图对应不同高度的障碍物信息。
或者,所述多层地图还包括一个二维障碍物地图,所述二维障碍物地图综合了多个不同高度的障碍物信息。
为了区分不同高度的障碍物,所述不同高度的障碍物信息用不同方式标记在二维障碍物地图上。
为了优化多层地图信息采集装置的功能,所述多层地图信息采集装置包括第一距离传感器和第二距离传感器,所述第一距离传感器和第二距离传感器分别用于采集其所在高度的障碍物信息,第一距离传感器设置在机器人本体顶端,第二距离传感器设置在机器人本体底端,其中,第一距离传感器的测距范围>第二距离传感器的测距范围。
优选的,所述第一距离传感器的测距范围是第二距离传感器测距范围的2倍以上。
为了进一步优化多层地图信息采集装置的功能,所述多层地图信息采集装置还包括设置在第一距离传感器和第二距离传感器之间的第三距离传感器,且所述第三距离传感器的测距范围介于第一距离传感器和第二距离传感器的测距范围之间。
优选的,所述第一距离传感器为激光测距仪,第二距离传感器为超声波测距仪,第三距离传感器为红外测距仪。
本发明实施例还提供一种自移动机器人的行走方法,所述方法包括:
步骤1:采集作业环境不同高度的障碍物信息;
步骤2:处理不同高度的障碍物信息,建立多层地图;
步骤3:根据多层地图规划自移动机器人的行走路径。
具体来说,所述步骤3中规划自移动机器人的行走路径为自移动机器人自动规划行走路径或者用户规划行走路径。
所述自移动机器人自动规划行走路径包括:将多层地图中的不同高度的障碍物信息取并集,得到待净化空间的所有障碍物信息,并将所述所有障碍物信息用不同方式标记在一个二维障碍物地图上;或者,将多层地图中的可行走区域取交集,得到可行走区域信息。
本发明实施例还提供一种显示障碍物分布的方法,所述方法包括:
采集作业环境不同高度的障碍物信息,建立多层地图;
将多层地图中的不同高度的障碍物信息用不同方式标记,并传送到用户终端显示。
综上所述,本发明实施例通过设置多层地图采集装置,确保了自移动机器人在复杂环境中畅通、安全高效的行走,同时减少了控制单元的储存量和计算量,在保证避障的情况下降低了生产成本。
下面结合附图和具体实施例,对本发明实施例的技术方案进行详细地说明。
附图说明
图1为本发明实施例提供的一种自移动机器人的结构示意图。
具体实施方式
图1为本发明实施例提供的一种自移动机器人的结构示意图。如图1所 示,本发明实施例提供一种自移动机器人(如空气净化机器人、扫地机器人等),包括机器人本体10和设置在所述机器人本体10上的控制单元(图中未示出),所述机器人本体10包括多层地图信息采集装置20,用于采集作业环境不同高度的障碍物信息。所述多层地图信息采集装置20与控制单元电性连接,将采集到的障碍物信息发送给控制单元,控制单元接收并处理不同高度的障碍物信息,根据障碍物信息建立多层地图。所述多层地图包括多个二维地图,每个二维地图对应不同高度的障碍物信息。或者,所述多层地图包括一个二维障碍物地图,控制单元可以将不同高度的障碍物信息用不同的方式(图案、色彩、字母等)标注在所述二维障碍物地图上,即所述二维障碍物地图综合了多个不同高度的障碍物信息。
所述机器人本体10还包括行走单元11、检测单元及功能单元等组件。所述行走单元11可以由电机、驱动轮及从动轮组成,用于驱动自移动机器人行走;检测单元用于检测自移动机器人的作业环境以及作业对象等,并将检测信号发送给控制单元,以方便控制单元控制自移动机器人执行不同的功能,可选地,所述检测单元包括多种不同传感器如超声波测距仪、激光测距仪、红外测距仪等环境信息采集装置,也包含碰撞传感器、码盘、陀螺仪等检测机器人自身运行状态的传感器;功能单元可以为多种类型,例如,当功能单元包括清洁组件时,自移动机器人可以执行清洁工作,当功能单元包括机械手臂时,自移动机器人可以实现搬运、抓取等功能,当功能单元包括空气净化器时,自移动机器人可以净化空气,本发明实施例并不限制功能单元的类型。
所述多层地图信息采集装置20包括多个距离传感器,其中多个距离传感器所处的高度不同,所述距离传感器包括超声波测距仪22、红外测距仪23和激光测距仪21等。
具体来说,多层地图信息采集装置20可以包括第一距离传感器和第二距离传感器,第一距离传感器设置在机器人本体10顶端,第二距离传感器设置在机器人本体10下部,其中,第一距离传感器的测距范围>第二距离传感器, 优选的,所述第一距离传感器的测距范围是第二距离传感器测距范围的2倍以上。所述第一距离传感器和第二距离传感器分别用于采集其所在高度的障碍物信息,即所述第一距离传感器和第二距离传感器分别用于获取第一高度障碍物信息和第二高度障碍物信息,所述控制单元接收并处理不同高度的障碍物信息(第一高度障碍物信息和第二高度障碍物信息),对应建立所在平面高度的二维地图(第一平面高度信息二维地图和第二平面高度信息二维地图)。
进一步地,多层地图信息采集装置20还包括设置在第一距离传感器和第二距离传感器之间的第三距离传感器,第三距离传感器的测距范围介于第一距离传感器和第二距离传感器的测距范围之间。优选的,如图1所示,第一距离传感器为激光测距仪21,第二距离传感器为超声波测距仪22,第三距离传感器为红外测距仪23。
本实施例中,激光测距仪21的测距范围为3m-8m,优选的,设置数量为一个。激光测距仪21包括激光发射管、接收管、电机和处理芯片等,在电机带动下,激光测距仪21通过自转测量周围360°范围内的物体,同时其还具备辅助定位的功能,由于其设置在机器人本体10顶端,视野较好,在本实施例中自移动机器人的定位是依靠激光测距仪21完成的,也可以利用自移动机器人上的其它传感器如码盘或陀螺仪等来辅助定位,另一方面激光测距仪21还可以确认障碍物最高高度以判断自移动机器人是否可以穿过桌子这样的家具。可选地,激光测距仪21所处的高度(激光测距仪21与作业表面之间的距离)>机器人本体10高度(机器人本体10最高点与作业表面之间的距离,即自移动机器人的最高高度)的4/5。具体来说,可以将激光测距仪21设置在机器人本体10的顶面上,由于激光测距仪21在测量障碍物时,本身在竖直方向上存在测距工作高度范围L,激光测距仪21实际上发射一个小夹角的纺锤体光束(通常为1°-3°),使得该激光测距仪至少能探测到位于自移动机器人顶面和机器人本体高度之间高度的障碍物,防止自移动机器人顶面或激光测距仪碰撞到障碍物。因此,激光测距仪21所处的高度>机器人本体10 高度-激光测距仪的测距工作高度范围L。优选的,机器人本体10高度>40cm,激光测距仪21所处的高度范围为50cm-60cm。据统计,室内大多数矮小物品的高度(如茶几、椅子座位、花瓶)一般都低于50cm,将激光测距仪21所处的高度控制在50cm-60cm之间,能够有效的避过上述障碍物的阻挡,提高激光测距仪21在建立地图时的效率,其只需要在作业环境的小部分区域内遍历行走即可得到整个作业环境的轮廓线图。激光测距仪定位以及建立其所在高度的二维地图的方法为现有技术,例如专利文献CN101809461A和CN200610053690.2公开了利用激光测距传感器来建图和定位的技术方案,在此不再赘述。
所述超声波测距仪22包括3个超声波发射器221和2个超声波接收器222,本发明实施例并不限制发射器和接收器的数量及位置,本领域技术人员可以根据实际需要进行调整。所述超声波测距仪22的特性是测量角度广,而作业环境中的障碍物一般都处于地面上,所以设置在下部可以尽量减少障碍物的漏检测;另外,超声波测距仪22对玻璃(如办公室有很多玻璃墙)等红外光反射率低的材质探测效果好,将超声波测距仪22设置在机器人本体10下部,能够使得自移动机器人在行走时及时发现各种障碍物(如椅子脚和沙发脚等),从而避免碰撞。可选地,超声波测距仪22所处的高度(超声波测距仪22与作业表面之间的距离)<机器人本体10高度的1/5。超声波测距仪定位以及建立其所在高度的二维地图的方法为现有技术,专利文献CN104536447A和CN201510363054.9公开了利用超声波进行建图和定位的技术方案,在此不再赘述。
需要补充的是,所述超声波发射器和超声波接收器之间设有阻隔件(图中未示出),阻隔件设置在自移动机器人本体的外表面上,用于隔断所述超声波发射器和超声波接收器之间的连续面,起到防串扰作用。较佳的,阻隔件包括设置在超声波发射器221和超声波接收器222之间的多条凹槽。阻隔件包括但不限于凹槽或者凸条,还可以是密集的凸点或者凹坑,或者是一段隔离软胶等等。
由于超声波测距仪22检测精度相对较低、检测距离相对较短(1m左右),而激光测距仪21虽然检测精度和检测距离较高,但其成本也很高,因此,本实施例中激光测距仪21和超声波测距仪22之间还设有红外测距仪23,红外测距仪23的检测距离为1.2m。红外测距仪23的设置,完善了检测单元20的检测范围,避免出现异形障碍物时自移动机器人因检测不到而发生碰撞的问题。为了保证自移动机器人工作时不发生碰撞,红外测距仪23的设置数量越多越好,然而考虑到边际效应及生产成本,所述红外测距仪23的设置数量有5个,其中3个红外测距仪23以平行于作业表面的方式设置于激光测距仪21下方,3个红外测距仪23中位于中间的红外测距仪23下方依次设有另外2个红外测距仪23。可选地,红外测距仪23所处的高度(红外测距仪23与作业表面之间的距离)为机器人本体10高度的1/3-2/3。红外测距仪23定位以及建立其所在高度的二维地图的方法为现有技术,在此不再赘述。由上述可知,本实施例中分别建立了5个二维地图,用于组成多层地图。
换句话说,本实施例中,自移动机器人可以至少建立并存储3个二维地图,即激光测距仪21、超声波测距仪22和红外测距仪23分别对应1个二维地图,每个二维地图对应该测距传感器采集其所在高度的障碍物信息。其中,由于激光测距仪21的测距范围较大,其在作业环境中简单行走探索即可得到作业环境的轮廓图以及激光激光测距仪所处高度的障碍物信息。而超声波测距仪22和红外测距仪23的测距范围相对较小,其仅能采集行走过程附近区域的障碍物信息。但通过遍历行走或多次行走时的采集到的障碍物信息的更新,超声波测距仪22和红外测距仪23也能最终获得整个作业环境的对应其高度的障碍物信息。
表1示出了试验中在不同高度设置不同距离传感器时自移动机器人完成工作发生的碰撞次数。试验中所采用的自移动机器人的高度为60cm,表中的数字21代表在相应高度设置了激光测距仪21,数字22代表在相应高度设置了超声波测距仪22,数字23代表在相应高度设置了红外测距仪23。从表1中可以看出,在不同的高度位置设置不同的距离传感器时,自移动机器人完 成工作所经历的碰撞次数不同,序号为1的试验中自移动机器人没有经历任何碰撞便顺利完成了工作。
表1
Figure PCTCN2018101119-appb-000001
采用序号1结构的检测单元20充分利用了不同距离传感器的特点,几乎能够检测到日常生活经常遇到的障碍,避免了自移动机器人在行走时发生碰撞的问题。
本发明实施例并不限制距离传感器的具体设置位置以及高度,本领域技术人员可以根据实际需要进行设计。
优选的,为了方便传感器工作,可以将传感器设置在旋转组件(如上述电机等)上,使得传感器能够绕机器人本体10外周旋转,或者,可以将机器人本体10设置在旋转组件上,使得机器人本体10可以原地旋转,即自移动机器人处于作业环境的随机位置时,均能在不移动的情况下得到较大范围的作业环境的障碍物信息。
本发明实施例还公开一种应用于如上所述的自移动机器人的行走方法, 所述方法包括:
步骤1:采集作业环境不同高度的障碍物信息;
步骤2:处理不同高度的障碍物信息,建立多层地图;
步骤3:根据多层地图规划自移动机器人的行走路径。
其中,步骤3中规划自移动机器人的行走路径可以由自移动机器人自动规划行走路径或者由用户规划行走路径。
其中,所述自移动机器人自动规划行走路径包括:将多层地图中的不同高度的障碍物信息取并集,得到作业环境的所有障碍物信息,或者,将多层地图中的可行走区域取交集,得到作业环境的可行走区域信息。在得到可行走区域信息或者所有障碍物信息后,控制单元规划自移动机器人的行走路径,以使自移动机器人在行走过程中不会与障碍物碰撞。
本发明实施例还公开一种应用于如上所述的自移动机器人的显示障碍物分布的方法,所述方法包括:
采集作业环境不同高度的障碍物信息,建立多层地图;
将多层地图中的不同高度的障碍物信息用不同方式标记,并传送到用户终端显示。
具体来说,为了方便用户知道作业环境的不同高度的障碍物的分布,还可以将上述的多层地图对应的障碍物信息显示在用户终端(如手机、平板电脑、遥控器或者显示器等)上,方便用户观看或手动参与自移动机器人的行走路径的规划。为了区别不同高度的障碍物,将多层地图中的不同高度的障碍物用不同方式标记,如不同颜色,不同图案,不同字母进行标记。举例来说,用黄、绿、蓝分别表示激光测距仪、红外测距仪、超声波测距仪测得的高、中、矮障碍物。或者,直接将上述二维障碍物地图显示在用户终端上。
本发明实施例中自移动机器人的工作过程如下:
首先,自移动机器人在作业环境中通过多层地图信息采集装置20采集不同高度的障碍物信息,多层地图信息采集装置20在采集信息后将其发送给控制单元,控制单元根据包括不同高度的障碍物信息生成多个对应不同高度的 障碍物信息的二维地图,规划自移动机器人的行走路径后执行行走,从而避免了自移动机器人在行走过程中与作业环境中的障碍物发生碰撞。
本发明实施例通过设置多层地图采集装置,确保了自移动机器人在复杂环境中畅通、安全高效的行走,同时减少了控制单元的储存量和计算量,在保证避障的情况下降低了生产成本。

Claims (12)

  1. 一种自移动机器人,包括机器人本体(10)和设置在所述机器人本体上的控制单元,其特征在于,所述机器人本体还包括多层地图信息采集装置(20),用于采集作业环境不同高度的障碍物信息,控制单元用于接收并处理不同高度的障碍物信息,并建立多层地图;
    其中,所述多层地图信息采集装置包括多个距离传感器,多个距离传感器所处的高度不同。
  2. 如权利要求1所述的自移动机器人,其特征在于,所述多层地图包括多个二维地图,每个二维地图对应不同高度的障碍物信息。
  3. 如权利要求1所述的自移动机器人,其特征在于,所述多层地图包括一个二维障碍物地图,所述二维障碍物地图综合了多个不同高度的障碍物信息。
  4. 如权利要求3所述的自移动机器人,其特征在于,所述不同高度的障碍物信息用不同方式标记在二维障碍物地图上。
  5. 如权利要求1所述的自移动机器人,其特征在于,所述多层地图信息采集装置(20)包括第一距离传感器和第二距离传感器,所述第一距离传感器和第二距离传感器分别用于采集其所在高度的障碍物信息,第一距离传感器设置在机器人本体(10)顶端,第二距离传感器设置在机器人本体底端,其中,第一距离传感器的测距范围>第二距离传感器的测距范围。
  6. 如权利要求5所述的自移动机器人,其特征在于,所述第一距离传感器的测距范围是第二距离传感器测距范围的2倍以上。
  7. 如权利要求5所述的自移动机器人,其特征在于,所述多层地图信息采集装置(20)还包括设置在第一距离传感器和第二距离传感器之间的第三距离传感器,且所述第三距离传感器的测距范围介于第一距离传感器和第二距离传感器的测距范围之间。
  8. 如权利要求7所述的自移动机器人,其特征在于,所述第一距离传 感器为激光测距仪(21),第二距离传感器为超声波测距仪(22),第三距离传感器为红外测距仪(23)。
  9. 一种自移动机器人的行走方法,其特征在于,所述方法包括:
    步骤1:采集作业环境不同高度的障碍物信息;
    步骤2:处理不同高度的障碍物信息,建立多层地图;
    步骤3:根据多层地图规划自移动机器人的行走路径。
  10. 如权利要求9所述的行走方法,其特征在于,所述步骤3中规划自移动机器人的行走路径为自移动机器人自动规划行走路径或者用户规划行走路径。
  11. 如权利要求10所述的行走方法,其特征在于,所述自移动机器人自动规划行走路径包括:
    将多层地图中的不同高度的障碍物信息取并集,得到作业环境的所有障碍物信息;
    或者,将多层地图中的可行走区域取交集,得到作业环境的可行走区域信息。
  12. 一种显示障碍物分布的方法,其特征在于,所述方法包括:
    采集作业环境不同高度的障碍物信息,建立多层地图;
    将多层地图中的不同高度的障碍物信息用不同方式标记,并传送到用户终端显示。
PCT/CN2018/101119 2017-08-25 2018-08-17 自移动机器人及其行走方法、显示障碍物分布的方法 WO2019037668A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710744543.8A CN109426248A (zh) 2017-08-25 2017-08-25 自移动机器人及其行走方法、显示障碍物分布的方法
CN201710744543.8 2017-08-25

Publications (1)

Publication Number Publication Date
WO2019037668A1 true WO2019037668A1 (zh) 2019-02-28

Family

ID=65439376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101119 WO2019037668A1 (zh) 2017-08-25 2018-08-17 自移动机器人及其行走方法、显示障碍物分布的方法

Country Status (2)

Country Link
CN (1) CN109426248A (zh)
WO (1) WO2019037668A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3736651A1 (en) * 2019-05-07 2020-11-11 Toshiba TEC Kabushiki Kaisha Information processing apparatus and information processing method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110209157A (zh) * 2019-04-09 2019-09-06 丰疆智能科技股份有限公司 自动收割机的障碍物避让系统及其方法
CN110941266A (zh) * 2019-11-12 2020-03-31 天津大学 一种多机器人系统中的障碍物检测与规避方法
CN110928315A (zh) * 2019-12-20 2020-03-27 深圳市杉川机器人有限公司 自主机器人及其控制方法
CN111538342B (zh) * 2020-06-04 2023-05-23 中国工商银行股份有限公司 机器人行进路线调整方法、装置、机器人和存储介质
CN111665523B (zh) * 2020-06-10 2022-11-18 上海有个机器人有限公司 障碍检测方法和装置
CN112571426B (zh) * 2020-11-30 2023-03-17 重庆优乃特医疗器械有限责任公司 3d体态检测分析系统及方法
CN112494034B (zh) * 2020-11-30 2023-01-17 重庆优乃特医疗器械有限责任公司 基于3d体态检测分析的数据处理分析系统及方法
CN112381048A (zh) * 2020-11-30 2021-02-19 重庆优乃特医疗器械有限责任公司 基于多用户同步检测的3d体态检测分析系统及方法
CN112656402B (zh) * 2020-11-30 2023-01-13 重庆优乃特医疗器械有限责任公司 应用于3d体态检测分析的采集机器人联动控制系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105469445A (zh) * 2015-12-08 2016-04-06 电子科技大学 一种步长可变地图生成方法
US20170023947A1 (en) * 2015-07-26 2017-01-26 John Benjamin Mcmillion Autonomous cleaning system
CN106569489A (zh) * 2015-10-13 2017-04-19 录可系统公司 具有视觉导航功能的扫地机器人及其导航方法
CN106821157A (zh) * 2017-04-14 2017-06-13 小狗电器互联网科技(北京)股份有限公司 一种扫地机器人扫地的清扫方法
CN206355002U (zh) * 2016-08-30 2017-07-28 特斯联(北京)科技有限公司 一种具有人工扫地辅助功能的扫地机器人
CN207189672U (zh) * 2017-08-25 2018-04-06 科沃斯机器人股份有限公司 自移动机器人
CN207189673U (zh) * 2017-08-25 2018-04-06 科沃斯机器人股份有限公司 自移动机器人
CN207189671U (zh) * 2017-08-25 2018-04-06 科沃斯机器人股份有限公司 自移动机器人

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4256812B2 (ja) * 2004-04-26 2009-04-22 三菱重工業株式会社 移動体の障害物回避方法及び該移動体
JP4788722B2 (ja) * 2008-02-26 2011-10-05 トヨタ自動車株式会社 自律移動ロボット、自己位置推定方法、環境地図の生成方法、環境地図の生成装置、及び環境地図のデータ構造
JP2017102705A (ja) * 2015-12-02 2017-06-08 株式会社リコー 自律移動装置及び自律移動装置システム
CN206105865U (zh) * 2016-08-31 2017-04-19 路琨 机器人上的避障系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170023947A1 (en) * 2015-07-26 2017-01-26 John Benjamin Mcmillion Autonomous cleaning system
CN106569489A (zh) * 2015-10-13 2017-04-19 录可系统公司 具有视觉导航功能的扫地机器人及其导航方法
CN105469445A (zh) * 2015-12-08 2016-04-06 电子科技大学 一种步长可变地图生成方法
CN206355002U (zh) * 2016-08-30 2017-07-28 特斯联(北京)科技有限公司 一种具有人工扫地辅助功能的扫地机器人
CN106821157A (zh) * 2017-04-14 2017-06-13 小狗电器互联网科技(北京)股份有限公司 一种扫地机器人扫地的清扫方法
CN207189672U (zh) * 2017-08-25 2018-04-06 科沃斯机器人股份有限公司 自移动机器人
CN207189673U (zh) * 2017-08-25 2018-04-06 科沃斯机器人股份有限公司 自移动机器人
CN207189671U (zh) * 2017-08-25 2018-04-06 科沃斯机器人股份有限公司 自移动机器人

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3736651A1 (en) * 2019-05-07 2020-11-11 Toshiba TEC Kabushiki Kaisha Information processing apparatus and information processing method
US11520341B2 (en) 2019-05-07 2022-12-06 Toshiba Tec Kabushiki Kaisha Information processing apparatus and information processing method

Also Published As

Publication number Publication date
CN109426248A (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
WO2019037668A1 (zh) 自移动机器人及其行走方法、显示障碍物分布的方法
US20220167820A1 (en) Method and Apparatus for Constructing Map of Working Region for Robot, Robot, and Medium
CN110495821B (zh) 一种清洁机器人及其控制方法
ES2928877T3 (es) Sistema con al menos dos dispositivos de tratamiento de suelos
TWI765330B (zh) 一種清潔機器人及其控制方法
WO2019109635A1 (zh) 基于栅格地图的机器人监视宠物的方法及芯片
TWI789625B (zh) 一種清潔機器人及其控制方法
CN112352244B (zh) 控制系统和更新存储器中的地图的方法
CN207189673U (zh) 自移动机器人
CN207189671U (zh) 自移动机器人
CN114468898B (zh) 机器人语音控制方法、装置、机器人和介质
CN104731101B (zh) 清洁机器人室内场景地图建模方法及机器人
EP3998007A1 (en) Automatic cleaning device control method and apparatus, device and medium
EA039532B1 (ru) Автоматическое устройство для уборки и способ уборки
KR20180015505A (ko) 이동 로봇 및 그 제어방법
CN207164586U (zh) 一种扫地机器人导航系统
WO2018228203A1 (zh) 一种具备扫地功能的人机智能合作机器人系统
EP2296072A2 (en) Asymmetric stereo vision system
CN109932726B (zh) 机器人测距校准方法、装置、机器人和介质
WO2018228254A1 (zh) 一种移动电子设备以及该移动电子设备中的方法
ES2942627T3 (es) Procedimiento para la navegación y la autolocalización de un dispositivo de tratamiento que se desplaza de forma autónoma
KR20200087301A (ko) 이동 로봇
CN109421055A (zh) 自移动机器人
US20230350060A1 (en) Distance measuring device and sweeping robot
CN112904845A (zh) 基于无线测距传感器的机器人卡住检测方法、系统及芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847651

Country of ref document: EP

Kind code of ref document: A1