WO2019037595A1 - 电动汽车动力电池的保护方法、装置及电动汽车 - Google Patents

电动汽车动力电池的保护方法、装置及电动汽车 Download PDF

Info

Publication number
WO2019037595A1
WO2019037595A1 PCT/CN2018/099323 CN2018099323W WO2019037595A1 WO 2019037595 A1 WO2019037595 A1 WO 2019037595A1 CN 2018099323 W CN2018099323 W CN 2018099323W WO 2019037595 A1 WO2019037595 A1 WO 2019037595A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
fault
battery pack
power battery
vehicle
Prior art date
Application number
PCT/CN2018/099323
Other languages
English (en)
French (fr)
Inventor
何正伟
代康伟
梁海强
张蓝文
Original Assignee
北京新能源汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京新能源汽车股份有限公司 filed Critical 北京新能源汽车股份有限公司
Publication of WO2019037595A1 publication Critical patent/WO2019037595A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to the field of electric vehicle technology, and in particular, to a method, device, and electric vehicle for protecting an electric vehicle power battery.
  • the purpose of the present disclosure is to provide a method, a device, and an electric vehicle for protecting a power battery of an electric vehicle, thereby solving the problem that the battery life of the power battery is shortened or even scrapped in advance due to over-discharge.
  • Embodiments of the present disclosure provide a method for protecting an electric vehicle power battery, including:
  • the maximum discharge power is allowed for the power battery pack. Adjust and/or control the high voltage power-on and off of the whole vehicle through the vehicle control unit.
  • the method further includes:
  • a fault voltage threshold corresponding to a current temperature of the power battery pack is determined according to a correspondence between a pre-stored battery pack temperature and a fault voltage threshold.
  • the fault voltage threshold corresponding to the current temperature of the power battery pack is a first fault voltage threshold
  • the first fault voltage threshold is greater than a second fault voltage threshold
  • the maximum discharge power adjustment may be allowed for the power battery pack.
  • the power battery pack can be allowed to adjust the maximum discharge power and/or the high-voltage power-on and power-off of the whole vehicle can be controlled by the vehicle control unit.
  • the step of controlling the maximum discharge power of the power battery pack according to the determined undervoltage fault level and/or controlling the high voltage power-on and power-off of the whole vehicle by the vehicle control unit includes:
  • the maximum allowable discharge power of the power battery pack is adjusted to be one-half of the currently allowed maximum discharge power
  • the maximum discharge power of the power battery pack can be adjusted to zero;
  • the maximum discharge power of the power battery pack can be adjusted to zero and the whole vehicle is controlled to be powered down by the vehicle control unit;
  • the corresponding fault voltage threshold under the one-stage undervoltage fault is greater than the corresponding fault voltage threshold under the second undervoltage fault; the corresponding fault voltage threshold under the second undervoltage fault is greater than the corresponding fault voltage threshold under the third undervoltage fault.
  • the method further includes: if the voltage value of the plurality of battery cells in the power battery pack is monitored in real time, if the fault voltage threshold corresponding to the current temperature of the power battery pack is the second fault voltage threshold.
  • the steps of adjusting and/or controlling the high voltage power-on and power-off of the whole vehicle through the vehicle control unit include:
  • the lowest voltage value is less than the second fault voltage threshold, and the state of charge of the power battery pack at a plurality of adjacent monitoring time points is less than the first charging state
  • the method further includes:
  • the vehicle control unit If it is detected that the state of charge of the power battery pack is greater than the second state of charge threshold, controlling, by the vehicle control unit, high voltage power-on, the second state of charge threshold is greater than the first state of charge threshold .
  • the method further includes:
  • the battery pack can allow the maximum discharge power before the lock communication abnormality occurs, and the maximum discharge can be allowed for the power battery pack within the locking time period. Power adjustment
  • the battery pack at the moment before the communication abnormality is allowed to allow the maximum discharge power as the target discharge power, and the vehicle control unit responds to the target discharge power.
  • the method further includes:
  • the whole vehicle control unit controls the high-voltage power-off of the whole vehicle.
  • the embodiment of the present disclosure further provides a protection device for an electric vehicle power battery, including:
  • a monitoring module for real-time monitoring of voltage values of a plurality of battery cells in the power battery pack
  • a comparison module configured to compare a lowest voltage value of the plurality of the voltage values obtained at each monitoring time point with a fault voltage threshold
  • a first adjustment module configured to: when the plurality of adjacent monitoring time points are, the minimum voltage value is less than the fault voltage threshold, and the accumulated duration of the multiple adjacent monitoring time points reaches a first duration, and the power battery pack
  • the maximum discharge power can be adjusted and/or the high-voltage power-on and off of the whole vehicle can be controlled by the vehicle control unit.
  • the protection device further comprises:
  • a first acquiring module configured to acquire a current temperature of the power battery pack while monitoring a voltage value of the plurality of battery cells in the power battery package in real time
  • the fault threshold determining module is configured to determine a fault voltage threshold corresponding to a current temperature of the power battery pack according to a correspondence between a pre-stored battery pack temperature and a fault voltage threshold.
  • the first adjustment module includes:
  • a fault level determining submodule configured to: when the fault voltage threshold corresponding to a current temperature of the power battery pack is a first fault voltage threshold, and when the first fault voltage threshold is greater than a second fault voltage threshold, according to pre-storage
  • the different fault voltage thresholds correspond to the corresponding relationships of different undervoltage fault levels, and determine an undervoltage fault level corresponding to the first fault voltage threshold;
  • the first adjustment submodule is configured to allow the maximum discharge power adjustment of the power battery pack according to the determined undervoltage fault level when the vehicle is in the running state, and/or to perform power on and off of the whole vehicle through the vehicle control unit. control.
  • the first adjustment submodule includes:
  • a first adjusting unit configured to adjust a maximum allowable discharge power of the power battery pack to one-half of a current maximum allowable discharge power when the fault level corresponding to the first fault voltage threshold is a level one undervoltage fault
  • a second adjusting unit configured to adjust a maximum allowable discharge power of the power battery pack to zero when the fault level corresponding to the first fault voltage threshold is a secondary undervoltage fault
  • a third adjusting unit configured to adjust a maximum allowable discharge power of the power battery pack to zero when the fault level corresponding to the first fault voltage threshold is a three-stage undervoltage fault, and control the whole vehicle under high pressure by the vehicle control unit Electricity;
  • the corresponding fault voltage threshold under the one-stage undervoltage fault is greater than the corresponding fault voltage threshold under the second undervoltage fault; the corresponding fault voltage threshold under the second undervoltage fault is greater than the corresponding fault voltage threshold under the third undervoltage fault.
  • the protection device further comprises:
  • a second acquiring module configured to monitor the fault voltage threshold corresponding to the current temperature of the power battery pack as a second fault voltage threshold, and monitor the voltage values of the plurality of battery cells in the power battery pack in real time a state of charge of the power battery pack;
  • the adjustment module includes:
  • a second adjustment submodule configured to: at a plurality of adjacent monitoring time points, the lowest voltage value is less than the second fault voltage threshold, and the power of the power battery pack at a plurality of adjacent monitoring time points The state is smaller than the first state of charge threshold, and the accumulated duration of the plurality of adjacent monitoring time points reaches the second time period, the maximum discharge power of the power battery pack can be adjusted to zero, and the high-voltage power-off of the whole vehicle is controlled by the vehicle control unit and Does not respond to the high voltage power supply of the whole vehicle.
  • the protection device further comprises:
  • the first control module is configured to adjust the maximum discharge power of the power battery pack to zero and control the high-voltage power-off of the whole vehicle through the vehicle control unit and not to respond to the next high-voltage power-on of the whole vehicle, and the power is detected
  • the state of charge of the battery pack is greater than the second state of charge threshold
  • the vehicle high voltage power is controlled by the vehicle control unit
  • the second state of charge threshold is greater than the first state of charge threshold.
  • the protection device further comprises:
  • the second adjustment module is configured to allow the maximum discharge power of the battery pack at a moment before the lock communication abnormality occurs when the communication with the at least two battery control units is abnormal, and the vehicle is in the driving state, and is within the lock duration
  • the power battery pack allows maximum discharge power adjustment
  • the processing module is configured to, when the locking duration is exceeded, the maximum discharge power allowed by the battery pack at a time before the communication abnormality occurs as the target discharge power, and respond to the target discharge power by the vehicle control unit.
  • the protection device further comprises:
  • the second control module is configured to control the high-voltage power-off of the whole vehicle by the vehicle control unit when the communication abnormality with the at least two battery control units is detected and the vehicle is in the charging state.
  • An embodiment of the present disclosure further provides an electric vehicle, comprising: the protection device for the electric vehicle power battery as described above.
  • the lowest voltage value among the voltage values of the plurality of battery cells obtained by real-time monitoring is compared with the fault voltage threshold, and the minimum voltage value is smaller than the fault voltage threshold, and the accumulated duration of the monitoring is monitored.
  • the power battery pack can be allowed to adjust the maximum discharge power and/or the high-voltage power-on and power-off of the whole vehicle can be controlled by the vehicle control unit.
  • the over-discharge failure of the power battery can be avoided, thereby protecting the power battery and extending the power battery. The life of the power battery.
  • FIG. 1 is a block diagram of a protection system of a power battery of the present disclosure
  • FIG. 2 is a flow chart of a method for protecting a power battery of an electric vehicle according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a method for protecting a power battery of an electric vehicle according to another embodiment of the present disclosure
  • step 103 in FIG. 3 is a specific flowchart of step 103 in FIG. 3;
  • FIG. 5 is a flowchart of a method for protecting a power battery of an electric vehicle according to still another embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a protection device for a power battery of an electric vehicle according to an embodiment of the present disclosure.
  • the protection system of the power battery includes: a plurality of BCU (Battery Controller Unit) daughter boards, a BMS (Battery Management System), and a VCU (Vehicle Controller Unit). .
  • BCU Battery Controller Unit
  • BMS Battery Management System
  • VCU Vehicle Controller Unit
  • multiple BCU daughter boards are connected to the BMS through a CAN (Controller Area Network) bus; the BMS is connected to the VCU through the CAN bus.
  • CAN Controller Area Network
  • the BCU daughter board is used to collect battery cell voltage and temperature information, and send the unit voltage and temperature information to the BMS through the CAN bus; the BMS is used to collect the total battery voltage, and the minimum cell voltage and battery pack temperature.
  • the fault and processing related information is sent to the VCU via the CAN bus.
  • each BCU sub-board can generally collect multiple battery cell voltage and temperature information.
  • FIG. 2 is a flow chart of a method for protecting an electric vehicle power battery according to an embodiment of the present disclosure. The implementation of the method will be specifically described below with reference to the figure.
  • Step 101 Real-time monitoring the voltage values of the plurality of battery cells in the power battery pack
  • the real-time reporting of the BCU can monitor the voltage values of multiple battery cells in real time.
  • Step 102 Compare a lowest voltage value of the plurality of voltage values obtained at each monitoring time point with a fault voltage threshold
  • Step 103 If the minimum voltage value is less than the fault voltage threshold at a plurality of adjacent monitoring time points, and the accumulated duration of the plurality of adjacent monitoring time points reaches the first duration, the power battery pack may be allowed.
  • the maximum discharge power is adjusted and/or the high-voltage power-off of the whole vehicle is controlled by the vehicle control unit.
  • the minimum voltage value is less than the fault voltage threshold, and the accumulated duration of the plurality of adjacent monitoring time points reaches the first duration, indicating that the battery cell is in an undervoltage fault. Or there is a danger of over-discharge failure.
  • the battery undervoltage faults include: battery cell undervoltage fault, battery total voltage undervoltage fault. Moreover, battery cell undervoltage faults and battery total voltage undervoltage faults can be recovered.
  • the diagnosis process of the battery total voltage undervoltage fault is similar to the above steps. Since the fault can be recovered, and the battery total voltage undervoltage fault usually does not affect the power battery, the observation can be temporarily performed without corresponding processing, so The diagnostic steps are not described here.
  • adjusting the power battery pack allows the maximum discharge power to actually limit the maximum discharge power that the power battery pack can allow, thereby avoiding irreversible damage of the power battery, and also preventing the torque jitter of the whole vehicle as much as possible, thereby improving driving. Driving experience.
  • the whole vehicle control unit is used to control the high-voltage power-on and power-off of the whole vehicle, so that by forcibly controlling the high-voltage power-on and off of the whole vehicle, the power battery can be effectively protected and the irreversible damage of the power battery can be avoided.
  • the protection method for the electric vehicle power battery compares the lowest voltage value of the plurality of battery cells obtained by real-time monitoring with the fault voltage threshold, and the lowest voltage value is smaller than the fault voltage threshold.
  • the maximum discharge power adjustment of the power battery pack can be allowed and/or the high-voltage power-on and power-off of the whole vehicle can be controlled by the vehicle control unit, so that the over-discharge failure of the power battery can be avoided, thereby Protect the power battery and extend the life of the power battery.
  • FIG. 3 a flowchart of a method for protecting a power battery of an electric vehicle according to another embodiment of the present disclosure.
  • the difference from the previous embodiment is that, in step 101, the voltage value of the plurality of battery cells in the power battery pack is detected in real time, and the method further includes:
  • Step 104 Acquire a current temperature of the power battery pack.
  • Step 105 Determine a fault voltage threshold corresponding to a current temperature of the power battery pack according to a correspondence between a pre-stored battery pack temperature and a fault voltage threshold.
  • fault voltage threshold is related to the battery pack temperature, and different battery pack temperatures correspond to different fault voltage thresholds.
  • the correspondence between the battery pack temperature and the fault voltage threshold may be stored in the BMS in the form of a table.
  • step 103 may also specifically include:
  • Step 1031 Determine an undervoltage fault level corresponding to the first fault voltage threshold according to a corresponding relationship between different fault voltage thresholds that are stored in advance and corresponding to different undervoltage fault levels.
  • step 1032 if the whole vehicle is in the driving state, according to the determined undervoltage fault level, the maximum discharge power adjustment of the power battery pack may be allowed and/or the high voltage power-on and power-off of the whole vehicle may be controlled by the vehicle control unit.
  • step 1032 may further include:
  • Step 10321 if the fault level corresponding to the first fault voltage threshold is a level one undervoltage fault, the maximum allowable discharge power of the power battery pack is adjusted to be one-half of the currently allowed maximum discharge power;
  • the corresponding fault handling measure is: adjusting the maximum discharge power of the power battery pack to the current allowable maximum discharge power One of the points.
  • the power battery pack can be allowed to adjust the maximum discharge power to one-half of the currently allowed maximum discharge power.
  • the power battery pack can allow the maximum discharge power to be adjusted to the current allowable maximum discharge power ratio, and can be adaptively adjusted according to the specific value of the first fault voltage threshold. Not limited to one-half of the maximum allowable discharge power currently available.
  • Step 10322 if the fault level corresponding to the first fault voltage threshold is a secondary undervoltage fault, the maximum allowable discharge power of the power battery pack is adjusted to zero;
  • the first fault voltage threshold B in this step is smaller than the first fault voltage threshold A.
  • the power battery pack can allow the maximum discharge power to be adjusted to zero, that is, after the vehicle control unit responds to the adjustment, the power battery pack stops discharging and the entire vehicle stops.
  • Step 10323 if the fault level corresponding to the first fault voltage threshold is a three-stage undervoltage fault, the maximum discharge power of the power battery pack can be adjusted to zero and the whole vehicle is controlled to be powered down by the vehicle control unit;
  • the first fault voltage threshold C in this step is smaller than the first fault voltage threshold B. That is, the first fault voltage threshold corresponding to different levels of undervoltage faults is different.
  • the corresponding fault voltage threshold under the one-stage undervoltage fault is greater than the corresponding fault voltage threshold under the second undervoltage fault; the corresponding fault voltage threshold under the second undervoltage fault is greater than the corresponding fault voltage threshold under the third undervoltage fault.
  • the vehicle control unit controls the high-voltage power-off of the vehicle, that is, the positive and negative terminals of the relay and the battery pack are disconnected by the vehicle control unit.
  • steps 10321 to 10323 are performed according to different fault levels corresponding to different first fault voltage thresholds.
  • the fault level of the embodiment of the present disclosure is divided into three levels. It should be noted that the fault level may not be limited to three levels, and may be divided according to specific conditions. However, it should be emphasized that different fault levels correspond to different fault handling measures.
  • step 101 if the fault voltage threshold corresponding to the current temperature of the power battery pack is the second fault voltage threshold, step 101 is performed, real-time monitoring is performed. While the voltage values of the plurality of battery cells in the power battery pack are simultaneously, the method further includes:
  • Step 106 Monitor the state of charge of the power battery pack in real time
  • Step 103 may also specifically include:
  • Step 1033 if at a plurality of adjacent monitoring time points, the lowest voltage value is smaller than the second fault voltage threshold, and the charging states of the power battery packs of the plurality of adjacent monitoring time points are smaller than the first A state of charge state threshold, the cumulative duration of a plurality of adjacent monitoring time points reaches a second duration, the power battery pack allows the maximum discharge power to be adjusted to zero, and the vehicle control unit controls the high-voltage power-off of the vehicle and does not respond to the whole The car is powered on at high voltage.
  • the second duration in the embodiment refers to a cumulative duration of a plurality of adjacent monitoring time points when the state of charge of the power battery pack is monitored in real time.
  • the first duration refers to the cumulative duration of a plurality of adjacent monitoring time points when the voltage values of the plurality of battery cells in the power battery pack are monitored in real time.
  • the first duration and the second duration may be equal or may not be equal.
  • the second duration is greater than the first duration.
  • step 1033 the entire vehicle is in a driving state.
  • the second fault voltage threshold is less than the first fault voltage threshold.
  • the lowest voltage value is smaller than the second fault voltage threshold, and the charging states of the power battery packs at multiple adjacent monitoring time points are When the threshold value is less than the first state of charge, it indicates that the battery unit has a risk of over-discharge failure. If the accumulated duration of multiple adjacent monitoring time points reaches the over-discharge failure time, the battery unit over-discharge failure is determined. Unrecoverable.
  • a near-zero protection control strategy for the state of charge is proposed, that is, the power battery pack can be allowed to adjust the maximum discharge power. It is zero and controls the high-voltage power-off of the whole vehicle through the vehicle control unit and does not respond to the high-voltage power-on of the whole vehicle.
  • the fault handling measures of the embodiment include that the maximum discharge power of the power battery pack can be adjusted to zero, and the high-voltage power-off of the whole vehicle is controlled by the vehicle control unit, and the whole control unit does not respond to the whole.
  • the car is powered on at high voltage.
  • the high-voltage power-on of the whole vehicle is not responded, that is, the next high-voltage power-on of the whole vehicle is prohibited. Specifically, it can be achieved by prohibiting the position of the high voltage power-on flag.
  • the first duration is 3 seconds
  • the over-discharge failure time is 5 seconds. That is to say, before the long-term failure time is reached, the near-zero protection control strategy is entered into the state of charge, so that the power battery can be protected to the utmost extent, and the battery unit over-discharge failure is caused to cause irreversible damage to the power battery.
  • the method further includes:
  • the vehicle control unit If it is detected that the state of charge of the power battery pack is greater than the second state of charge threshold, controlling, by the vehicle control unit, high voltage power-on, the second state of charge threshold is greater than the first state of charge threshold .
  • the vehicle control unit when it is detected that the state of charge of the power battery pack is less than the second state of charge threshold, the vehicle high voltage power is controlled by the vehicle control unit. That is to say, the vehicle control unit responds to the high-voltage power-on of the entire vehicle. Specifically, it can be achieved by clearing the position of the high voltage power-on flag.
  • the BMS can allow maximum discharge power adjustment for the power battery pack
  • the VCU can allow the adjustment of the maximum discharge power in response to the power battery pack.
  • the comparison of the state of charge of the power battery pack with the first state of charge threshold or the second state of charge threshold may be done in the BMS or in the VCU.
  • the following describes the specific implementation process of the protection method of the electric vehicle power battery of the present disclosure when the BCU sub-board and the BMS communication abnormality and/or the BMS and VCU communication abnormality are respectively described.
  • the BCU daughter board communicates abnormally with the BMS, including two cases.
  • Case 1 If the communication with at least two battery control units is abnormal and the vehicle is in the driving state, the battery pack at the moment before the lock communication abnormality can be allowed to allow the maximum discharge power, and the power battery pack can be locked within the locking time period. Allow maximum discharge power adjustment;
  • the battery pack at the moment before the lock communication abnormality can allow the maximum discharge power, that is, the maximum allowable discharge power of the battery pack at the moment before the communication abnormality occurs.
  • the maximum discharge power of the power battery pack can be adjusted by itself during the locking period.
  • the purpose is to prevent the torque jitter of the electric vehicle from being excessively large, giving the driver a certain reaction time, improving the driving comfort of the electric vehicle and improving the driving comfort of the electric vehicle. Car safety.
  • the battery pack at the moment before the communication abnormality is allowed to allow the maximum discharge power as the target discharge power, and the vehicle control unit responds to the target discharge power.
  • Case 2 If the communication with the at least two battery control units is abnormal and the vehicle is in the charging state, the vehicle control unit controls the high-voltage power-off of the vehicle.
  • the state of charge of the power battery pack is estimated by the VCU itself;
  • the VCU can estimate the state of charge of the power battery pack according to the algorithm, so that the VCU can obtain the state of charge of the power battery pack in real time, and facilitate the subsequent control of the high voltage power-on and power-off of the whole vehicle.
  • the vehicle is controlled by the whole vehicle.
  • the unit controls the high-voltage power-off of the whole vehicle and does not respond to the high-voltage power-on of the whole vehicle;
  • the third duration is 30 seconds.
  • the vehicle control unit If it is detected that the state of charge of the power battery pack is greater than the second state of charge threshold, controlling, by the vehicle control unit, high voltage power-on, the second state of charge threshold is greater than the first state of charge threshold .
  • the protection method for the electric vehicle power battery compares the lowest voltage value of the plurality of battery cells obtained by real-time monitoring with the fault voltage threshold, and the minimum voltage value is less than
  • the maximum discharge power adjustment of the power battery pack can be allowed and/or the high-voltage power-on and power-off of the whole vehicle can be controlled by the vehicle control unit, thereby avoiding the over-discharge failure of the power battery.
  • the malfunction can protect the power battery and prolong the service life of the power battery.
  • the embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a computer program (instruction), the program (instruction) being executed by the processor to implement the following steps:
  • the maximum discharge power is allowed for the power battery pack. Adjust and/or control the high voltage power-on and off of the whole vehicle through the vehicle control unit.
  • the program is executed by the processor to implement the following steps:
  • the method further includes:
  • a fault voltage threshold corresponding to a current temperature of the power battery pack is determined according to a correspondence between a pre-stored battery pack temperature and a fault voltage threshold.
  • the fault voltage threshold corresponding to the current temperature of the power battery pack is a first fault voltage threshold
  • the first fault voltage threshold is greater than a second fault voltage threshold
  • the maximum discharge may be allowed for the power battery pack.
  • the power battery pack can be allowed to adjust the maximum discharge power and/or the high-voltage power-on and power-off of the whole vehicle can be controlled by the vehicle control unit.
  • the step of allowing the maximum discharge power adjustment of the power battery pack and/or controlling the high voltage power on and off of the whole vehicle by the vehicle control unit includes:
  • the maximum allowable discharge power of the power battery pack is adjusted to be one-half of the currently allowed maximum discharge power
  • the maximum discharge power of the power battery pack can be adjusted to zero;
  • the maximum discharge power of the power battery pack can be adjusted to zero and the whole vehicle is controlled to be powered down by the vehicle control unit;
  • the corresponding fault voltage threshold under the one-stage undervoltage fault is greater than the corresponding fault voltage threshold under the second undervoltage fault; the corresponding fault voltage threshold under the second undervoltage fault is greater than the corresponding fault voltage threshold under the third undervoltage fault.
  • the method further includes :
  • the minimum voltage value is less than the fault voltage threshold, and the accumulated duration of the plurality of adjacent monitoring time points reaches the first duration, the maximum discharge power is allowed for the power battery pack.
  • the lowest voltage value is less than the second fault voltage threshold, and the state of charge of the power battery pack at a plurality of adjacent monitoring time points is less than the first charging state
  • the method further includes:
  • the vehicle control unit If it is detected that the state of charge of the power battery pack is greater than the second state of charge threshold, controlling, by the vehicle control unit, high voltage power-on, the second state of charge threshold is greater than the first state of charge threshold .
  • the method further includes:
  • the battery pack can allow the maximum discharge power before the lock communication abnormality occurs, and the maximum discharge can be allowed for the power battery pack within the locking time period. Power adjustment
  • the battery pack at the moment before the communication abnormality is allowed to allow the maximum discharge power as the target discharge power, and the vehicle control unit responds to the target discharge power.
  • the method further includes:
  • the whole vehicle control unit controls the high-voltage power-off of the whole vehicle.
  • Computer readable media includes both permanent and non-persistent, removable and non-removable media.
  • Information storage can be implemented by any method or technology.
  • the information can be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
  • computer readable media does not include temporary storage of computer readable media, such as modulated data signals and carrier waves.
  • an embodiment of the present disclosure further provides a protection device for an electric vehicle power battery, including:
  • the monitoring module 201 is configured to monitor the voltage values of the plurality of battery cells in the power battery pack in real time;
  • the comparing module 202 is configured to compare a lowest voltage value of the plurality of the voltage values obtained at each monitoring time point with a fault voltage threshold;
  • the first adjustment module 203 is configured to: when the plurality of adjacent monitoring time points are used, the minimum voltage value is less than the fault voltage threshold, and the accumulated duration of the multiple adjacent monitoring time points reaches the first duration, and the power battery is
  • the package allows for maximum discharge power adjustment and/or control of high voltage power up and down by the vehicle control unit.
  • the protection device further includes:
  • a first acquiring module configured to acquire a current temperature of the power battery pack while monitoring a voltage value of the plurality of battery cells in the power battery package in real time
  • the fault threshold determining module is configured to determine a fault voltage threshold corresponding to a current temperature of the power battery pack according to a correspondence between a pre-stored battery pack temperature and a fault voltage threshold.
  • the first adjustment module includes:
  • a fault level determining submodule configured to: when the fault voltage threshold corresponding to a current temperature of the power battery pack is a first fault voltage threshold, and when the first fault voltage threshold is greater than a second fault voltage threshold, according to pre-storage
  • the different fault voltage thresholds correspond to the corresponding relationships of different undervoltage fault levels, and determine an undervoltage fault level corresponding to the first fault voltage threshold;
  • the first adjustment submodule is configured to allow the maximum discharge power adjustment of the power battery pack according to the determined undervoltage fault level when the vehicle is in the running state, and/or to perform power on and off of the whole vehicle through the vehicle control unit. control.
  • the first adjustment submodule includes:
  • a first adjusting unit configured to adjust a maximum allowable discharge power of the power battery pack to one-half of a current maximum allowable discharge power when the fault level corresponding to the first fault voltage threshold is a level one undervoltage fault
  • a second adjusting unit configured to adjust a maximum allowable discharge power of the power battery pack to zero when the fault level corresponding to the first fault voltage threshold is a secondary undervoltage fault
  • a third adjusting unit configured to adjust a maximum allowable discharge power of the power battery pack to zero when the fault level corresponding to the first fault voltage threshold is a three-stage undervoltage fault, and control the whole vehicle under high pressure by the vehicle control unit Electricity;
  • the corresponding fault voltage threshold under the one-stage undervoltage fault is greater than the corresponding fault voltage threshold under the second undervoltage fault; the corresponding fault voltage threshold under the second undervoltage fault is greater than the corresponding fault voltage threshold under the third undervoltage fault.
  • the protection device further includes:
  • a second acquiring module configured to monitor the fault voltage threshold corresponding to the current temperature of the power battery pack as a second fault voltage threshold, and monitor the voltage values of the plurality of battery cells in the power battery pack in real time a state of charge of the power battery pack;
  • the adjustment module includes:
  • a second adjustment submodule configured to: at a plurality of adjacent monitoring time points, the lowest voltage value is less than the second fault voltage threshold, and the power of the power battery pack at a plurality of adjacent monitoring time points The state is smaller than the first state of charge threshold, and the accumulated duration of the plurality of adjacent monitoring time points reaches the second time period, the maximum discharge power of the power battery pack can be adjusted to zero, and the high-voltage power-off of the whole vehicle is controlled by the vehicle control unit and Does not respond to the high voltage power supply of the whole vehicle.
  • the protection device further includes:
  • the first control module is configured to adjust the maximum discharge power of the power battery pack to zero and control the high-voltage power-off of the whole vehicle through the vehicle control unit and not to respond to the next high-voltage power-on of the whole vehicle, and the power is detected
  • the state of charge of the battery pack is greater than the second state of charge threshold
  • the vehicle high voltage power is controlled by the vehicle control unit
  • the second state of charge threshold is greater than the first state of charge threshold.
  • the protection device further includes:
  • the second adjustment module is configured to allow the maximum discharge power of the battery pack at a moment before the lock communication abnormality occurs when the communication with the at least two battery control units is abnormal, and the vehicle is in the driving state, and is within the lock duration
  • the power battery pack allows maximum discharge power adjustment
  • the processing module is configured to, when the locking duration is exceeded, the maximum discharge power allowed by the battery pack at a time before the communication abnormality occurs as the target discharge power, and respond to the target discharge power by the vehicle control unit.
  • the protection device further includes:
  • the second control module is configured to control the high-voltage power-off of the whole vehicle by the vehicle control unit when the communication abnormality with the at least two battery control units is detected and the vehicle is in the charging state.
  • An embodiment of the present disclosure also provides an electric vehicle including the protection device for the electric vehicle power battery as described above.
  • Embodiments of the present disclosure also provide an electric vehicle including: a processor, a memory, and a computer program stored on the memory and executable on the processor, the computer program being implemented by the processor, such as

Abstract

一种电动汽车动力电池的保护方法、装置及电动汽车。该方法包括:实时监测动力电池包中多个电池单体的电压值;将每一监测时间点获得的多个电压值中的最低电压值与故障电压阈值进行比较;若在多个相邻监测时间点时,最低电压值均小于故障电压阈值,且多个相邻监测时间点的累计时长达到第一时长,则对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制。

Description

电动汽车动力电池的保护方法、装置及电动汽车
相关申请的交叉引用
本申请主张在2017年8月21日在中国提交的中国专利申请号No.201710718472.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及电动汽车技术领域,尤其是涉及一种电动汽车动力电池的保护方法、装置及电动汽车。
背景技术
随着能源危机以及环境污染问题的日益加剧,节能与新能源汽车正成为当前研究的热点。作为节能与新能源汽车的一种,纯电动汽车在行驶过程中具有无尾气排放、能量效率高、噪声低、可回收利用能量等多项优点,因此大力发展纯电动汽车对能源安全、环境保护具有重大意义。
而动力电池作为新能源汽车的关键零部件,对整车动力性、经济性和安全性具有重大影响。
发明内容
本公开的目的在于提供一种电动汽车动力电池的保护方法、装置及电动汽车,从而可以解决相关技术中动力电池由于过放现象而导致的电池使用寿命缩短,甚至提前报废的问题。
本公开实施例提供一种电动汽车动力电池的保护方法,包括:
实时监测动力电池包中多个电池单体的电压值;
将每一监测时间点获得的多个所述电压值中的最低电压值与故障电压阈值进行比较;
若在多个相邻监测时间点时,所述最低电压值均小于所述故障电压阈值,且多个相邻监测时间点的累计时长达到第一时长,则对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制。
其中,在实时监测动力电池包中多个电池单体的电压值的同时,所述方法还包括:
获取所述动力电池包的当前温度;
根据预先存储的电池包温度与故障电压阈值的对应关系,确定与所述动力电池包的当前温度对应的故障电压阈值。
其中,若所述动力电池包的当前温度对应的所述故障电压阈值为第一故障电压阈值,所述第一故障电压阈值大于一第二故障电压阈值,对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制的步骤,包括:
根据预先存储的不同故障电压阈值对应不同欠压故障等级的对应关系,确定所述第一故障电压阈值对应的欠压故障等级;
若整车处于行车状态,则根据所确定的欠压故障等级,对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制。
其中,根据所确定的欠压故障等级,对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制的步骤,包括:
若所述第一故障电压阈值对应的故障等级为一级欠压故障,则将动力电池包可允许最大放电功率调整为当前允许最大放电功率的二分之一;
若所述第一故障电压阈值对应的故障等级为二级欠压故障,则将动力电池包可允许最大放电功率调整为零;
若所述第一故障电压阈值对应的故障等级为三级欠压故障,则将动力电池包可允许最大放电功率调整为零且通过整车控制单元控制整车高压下电;
其中,一级欠压故障下对应的故障电压阈值大于二级欠压故障下对应的故障电压阈值;二级欠压故障下对应的故障电压阈值大于三级欠压故障下对应的故障电压阈值。
其中,若所述动力电池包的当前温度对应的所述故障电压阈值为第二故障电压阈值,在实时监测动力电池包中多个电池单体的电压值的同时,所述方法还包括:
实时监测所述动力电池包的荷电状态;
若在多个相邻监测时间点时,所述最低电压值均小于所述故障电压阈值, 且多个相邻监测时间点的累计时长达到第一时长,则对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制的步骤,包括:
若在多个相邻监测时间点时,所述最低电压值均小于所述第二故障电压阈值,且多个相邻监测时间点的所述动力电池包的荷电状态均小于第一荷电状态阈值,多个相邻监测时间点的累计时长达到第二时长,则将动力电池包可允许最大放电功率调整为零且通过整车控制单元控制整车高压下电以及不响应整车高压上电。
其中,将动力电池包可允许最大放电功率调整为零且通过整车控制单元控制整车高压下电以及不响应整车下次高压上电的步骤之后,所述方法还包括:
若检测到所述动力电池包的荷电状态大于第二荷电状态阈值,则通过整车控制单元控制整车高压上电,所述第二荷电状态阈值大于所述第一荷电状态阈值。
其中,所述方法还包括:
若监测到与至少两个电池控制单元通讯异常,且整车处于行车状态,则锁定通讯异常发生前一时刻的电池包可允许最大放电功率,并在锁定时长内对动力电池包可允许最大放电功率调整;
若超过所述锁定时长,则将通讯异常发生前一时刻的电池包可允许最大放电功率作为目标放电功率,并通过整车控制单元响应所述目标放电功率。
其中,所述方法还包括:
若监测到与至少两个电池控制单元通讯异常,且整车处于充电状态,则通过整车控制单元控制整车高压下电。
本公开实施例还提供一种电动汽车动力电池的保护装置,包括:
监测模块,用于实时监测动力电池包中多个电池单体的电压值;
比较模块,用于将每一监测时间点获得的多个所述电压值中的最低电压值与故障电压阈值进行比较;
第一调整模块,用于在多个相邻监测时间点时,所述最低电压值均小于所述故障电压阈值,且多个相邻监测时间点的累计时长达到第一时长,对动 力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制。
其中,所述保护装置还包括:
第一获取模块,用于在实时监测动力电池包中多个电池单体的电压值的同时,获取所述动力电池包的当前温度;
故障阈值确定模块,用于根据预先存储的电池包温度与故障电压阈值的对应关系,确定与所述动力电池包的当前温度对应的故障电压阈值。
其中,所述第一调整模块包括:
故障等级确定子模块,用于在所述动力电池包的当前温度对应的所述故障电压阈值为第一故障电压阈值,所述第一故障电压阈值大于一第二故障电压阈值时,根据预先存储的不同故障电压阈值对应不同欠压故障等级的对应关系,确定所述第一故障电压阈值对应的欠压故障等级;
第一调整子模块,用于在整车处于行车状态时,根据所确定的欠压故障等级,对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制。
其中,所述第一调整子模块包括:
第一调整单元,用于在所述第一故障电压阈值对应的故障等级为一级欠压故障时,将动力电池包可允许最大放电功率调整为当前允许最大放电功率的二分之一;
第二调整单元,用于在所述第一故障电压阈值对应的故障等级为二级欠压故障时,将动力电池包可允许最大放电功率调整为零;
第三调整单元,用于在所述第一故障电压阈值对应的故障等级为三级欠压故障时,将动力电池包可允许最大放电功率调整为零且通过整车控制单元控制整车高压下电;
其中,一级欠压故障下对应的故障电压阈值大于二级欠压故障下对应的故障电压阈值;二级欠压故障下对应的故障电压阈值大于三级欠压故障下对应的故障电压阈值。
其中,所述保护装置还包括:
第二获取模块,用于在所述动力电池包的当前温度对应的所述故障电压 阈值为第二故障电压阈值,在实时监测动力电池包中多个电池单体的电压值的同时,实时监测所述动力电池包的荷电状态;
所述调整模块包括:
第二调整子模块,用于在多个相邻监测时间点时,所述最低电压值均小于所述第二故障电压阈值,且多个相邻监测时间点的所述动力电池包的荷电状态均小于第一荷电状态阈值,多个相邻监测时间点的累计时长达到第二时长,将动力电池包可允许最大放电功率调整为零且通过整车控制单元控制整车高压下电以及不响应整车高压上电。
其中,所述保护装置还包括:
第一控制模块,用于将动力电池包可允许最大放电功率调整为零且通过整车控制单元控制整车高压下电以及不响应整车下次高压上电之后,且在检测到所述动力电池包的荷电状态大于第二荷电状态阈值时,通过整车控制单元控制整车高压上电,所述第二荷电状态阈值大于所述第一荷电状态阈值。
其中,所述保护装置还包括:
第二调整模块,用于在监测到与至少两个电池控制单元通讯异常,且整车处于行车状态时,锁定通讯异常发生前一时刻的电池包可允许最大放电功率,并在锁定时长内对动力电池包可允许最大放电功率调整;
处理模块,用在超过所述锁定时长时,将通讯异常发生前一时刻的电池包可允许最大放电功率作为目标放电功率,并通过整车控制单元响应所述目标放电功率。
其中,所述保护装置还包括:
第二控制模块,用于在监测到与至少两个电池控制单元通讯异常,且整车处于充电状态时,通过整车控制单元控制整车高压下电。
本公开实施例还提供一种电动汽车,包括:如上述所述的电动汽车动力电池的保护装置。
本公开的上述技术方案的有益效果如下:
本公开实施例的上述方案中,通过将实时监测获得的多个电池单体的电压值中的最低电压值与故障电压阈值进行比较,并在最低电压值小于故障电压阈值,且监测的累计时长达到时长时,对动力电池包可允许最大放电功率 调整和/或通过整车控制单元对整车高压上下电进行控制,如此,能够避免动力电池出现过放失效故障,从而可以保护动力电池,延长动力电池的使用寿命。
附图说明
图1为本公开动力电池的保护系统框图;
图2为本公开一实施例的电动汽车动力电池的保护方法的流程图;
图3为本公开另一实施例的电动汽车动力电池的保护方法的流程图;
图4为图3中步骤103的具体流程图;
图5为本公开又一实施例的电动汽车动力电池的保护方法的流程图;
图6为本公开实施例的电动汽车动力电池的保护装置的组成结构示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
首先,下述电动汽车动力电池的保护方法的所有实施例均可具体应用于动力电池的保护系统,如图1所示。下面简要说明一下该保护系统的组成部分及各部分完成的功能。
如图1所示,动力电池的保护系统包括:多个BCU(电池控制单元,Battery Controller Unit)子板、BMS(电池管理系统,Battery Management System)和VCU(整车控制单元,Vehicle Controller Unit)。
其中,多个BCU子板通过CAN(控制器局域网络,Controller Area Network)总线与BMS连接;BMS通过CAN总线与VCU连接。
这里,BCU子板用于采集电池单体电压、温度信息,并将单体电压、温度信息通过CAN总线发送至BMS;BMS用于采集电池总电压,并将电池单体最低电压、电池包温度、故障及处理相关信息通过CAN总线发送至VCU。
需要说明的是,每个BCU子板一般可采集多个电池单体电压、温度信息。
如图2所示,为本公开一实施例的电动汽车动力电池的保护方法的流程图。下面就该图具体说明该方法的实施过程。
步骤101,实时监测动力电池包中多个电池单体的电压值;
需要说明的是,当本公开实施例提供的电动汽车动力电池的保护方法应用于如图1所示的动力电池的保护系统时,多个BCU子板与BMS通讯正常,且BMS与VCU通讯正常。
这里,通过BCU的实时上报,可实时监测多个电池单体的电压值。
步骤102,将每一监测时间点获得的多个所述电压值中的最低电压值与故障电压阈值进行比较;
步骤103,若在多个相邻监测时间点时,所述最低电压值均小于所述故障电压阈值,且多个相邻监测时间点的累计时长达到第一时长,则对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制。
这里,若在多个相邻监测时间点时,所述最低电压值均小于所述故障电压阈值,且多个相邻监测时间点的累计时长达到第一时长,说明电池单体处于欠压故障或者存在过放失效故障的危险。
需说明的是,电池欠压故障包括:电池单体欠压故障、电池总电压欠压故障。而且,电池单体欠压故障和电池总电压欠压故障均可恢复。
这里,电池总电压欠压故障的诊断流程与上述步骤类似,由于该故障可恢复,且电池总电压欠压故障通常不会对动力电池造成影响,可暂进行观测,不做相应处理,所以具体诊断步骤这里不再赘述。
这里,调整动力电池包可允许最大放电功率实际上是对动力电池包可允许最大放电功率进行限制,这样可以避免造成动力电池的不可逆损坏,而且还可以尽量防止整车的扭矩抖动,从而提升驾驶者的驾驶感受。
而通过整车控制单元对整车高压上下电进行控制,这样通过强制对整车高压上下电的控制,可以有效保护动力电池,避免动力电池的不可逆损坏。
本公开实施例提供的电动汽车动力电池的保护方法,通过将实时监测获得的多个电池单体的电压值中的最低电压值与故障电压阈值进行比较,并在最低电压值小于故障电压阈值,且监测的累计时长达到时长时,对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制,如此,能够避免动力电池出现过放失效故障,从而可以保护动力电池, 延长动力电池的使用寿命。
基于上一实施例,如图3所示,为本公开另一实施例的电动汽车动力电池的保护方法的流程图。
这里具体的,与上一实施例所不同的是,在执行步骤101,实时检测动力电池包中多个电池单体的电压值,的同时,所述方法还包括:
步骤104,获取所述动力电池包的当前温度;
步骤105,根据预先存储的电池包温度与故障电压阈值的对应关系,确定与所述动力电池包的当前温度对应的故障电压阈值。
需要说明的是,故障电压阈值与电池包温度有关,不同的电池包温度对应不同的故障电压阈值。
这里,电池包温度与故障电压阈值的对应关系可以以表格的形式存储于BMS中。
本实施例中,具体的,如图4所示,若所述动力电池包的当前温度对应的所述故障电压阈值为第一故障电压阈值,所述第一故障电压阈值大于一第二故障电压阈值,步骤103还可具体包括:
步骤1031,根据预先存储的不同故障电压阈值对应不同欠压故障等级的对应关系,确定所述第一故障电压阈值对应的欠压故障等级;
需要说明的是,故障电压阈值越小对应的欠压故障等级越高。
步骤1032,若整车处于行车状态,则根据所确定的欠压故障等级,对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制。
具体的,步骤1032还可具体包括:
步骤10321,若所述第一故障电压阈值对应的故障等级为一级欠压故障,则将动力电池包可允许最大放电功率调整为当前允许最大放电功率的二分之一;
这里,若在多个相邻监测时间点时,电池单体的最低电压值均小于第一故障电压阈值时,且多个相邻监测时间点的累计时长达到第一时长,则确定电池单体欠压故障,又由于该第一故障电压阈值A对应的故障等级为一级欠压故障,则对应的故障处理措施为:将动力电池包可允许最大放电功率调整 为当前允许最大放电功率的二分之一。
这里,可选的,将动力电池包可允许最大放电功率调整为当前允许最大放电功率的二分之一。当然,将动力电池包可允许最大放电功率调整为当前允许最大放电功率的比例多少,可根据第一故障电压阈值的具体取值情况适应性调整。不仅限于当前允许最大放电功率的二分之一。
步骤10322,若所述第一故障电压阈值对应的故障等级为二级欠压故障,则将动力电池包可允许最大放电功率调整为零;
这里需说明的是,本步骤中的第一故障电压阈值B小于第一故障电压阈值A。
这里,将动力电池包可允许最大放电功率调整为零,也就是说,整车控制单元响应该调整后,动力电池包停止放电,整车停车。
步骤10323,若所述第一故障电压阈值对应的故障等级为三级欠压故障,则将动力电池包可允许最大放电功率调整为零且通过整车控制单元控制整车高压下电;
这里,本步骤中的第一故障电压阈值C小于第一故障电压阈值B。也就是,不同等级欠压故障对应的第一故障电压阈值不同。
其中,一级欠压故障下对应的故障电压阈值大于二级欠压故障下对应的故障电压阈值;二级欠压故障下对应的故障电压阈值大于三级欠压故障下对应的故障电压阈值。
也就是说,欠压故障等级越高对应的第一故障电压阈值越小。
这里,通过整车控制单元控制整车高压下电,也就是通过整车控制单元断开继电器和电池包的正负极连接。
这里,步骤10321~10323根据不同第一故障电压阈值对应的不同故障等级而分情况执行。
这里,可选的,本公开实施例的故障等级分为三级。需说明的是,故障等级可不限于三级,可根据具体情况划分。但需强调的是,不同故障等级对应不同的故障处理措施。
基于如图2所示的实施例,具体的,如图5所示,若所述动力电池包的当前温度对应的所述故障电压阈值为第二故障电压阈值,则在执行步骤101, 实时监测动力电池包中多个电池单体的电压值的同时,所述方法还包括:
步骤106,实时监测所述动力电池包的荷电状态;
则步骤103还可具体包括:
步骤1033,若在多个相邻监测时间点时,所述最低电压值均小于所述第二故障电压阈值,且多个相邻监测时间点的所述动力电池包的荷电状态均小于第一荷电状态阈值,多个相邻监测时间点的累计时长达到第二时长,则将动力电池包可允许最大放电功率调整为零且通过整车控制单元控制整车高压下电以及不响应整车高压上电。
这里,本实施例中的第二时长是指实时监测所述动力电池包的荷电状态时多个相邻监测时间点的累计时长。
第一时长是指实时监测动力电池包中多个电池单体的电压值时多个相邻监测时间点的累计时长。
其中,第一时长与第二时长可以相等,也可以不等。不等时,第二时长大于第一时长。
需说明的是,步骤1033执行的前提是,整车处于行车状态。
这里,第二故障电压阈值小于第一故障电压阈值。
需要说明的是,当在多个相邻监测时间点时,所述最低电压值均小于所述第二故障电压阈值,且多个相邻监测时间点的所述动力电池包的荷电状态均小于第一荷电状态阈值时,表明电池单体存在过放失效故障的危险,倘若多个相邻监测时间点的累计时长达到过放失效时长,则确定电池单体过放失效故障,该故障不可恢复。
所以,为了避免出现电池单体过放失效故障给用户带来不便,同时为了最大限度保护动力电池,提出一种荷电状态近0保护控制策略,也就是将动力电池包可允许最大放电功率调整为零且通过整车控制单元控制整车高压下电以及不响应整车高压上电。
需说明的是,本实施例的故障处理措施中除了包括将动力电池包可允许最大放电功率调整为零,通过整车控制单元控制整车高压下电,还包括通过整车控制单元不响应整车高压上电。
这里,不响应整车高压上电,也就是,禁止整车下一次高压上电。具体 的,可通过将禁止高压上电标志位置来实现。
这里,可选的,第一时长为3秒,过放失效时长为5秒。也就是,在赶在过长失效时长达到之前,进入荷电状态近0保护控制策略,这样可以最大限度的保护动力电池,避免电池单体过放失效故障给动力电池带来不可逆的损坏。
进一步地,本实施例中在步骤1033之后,所述方法还包括:
若检测到所述动力电池包的荷电状态大于第二荷电状态阈值,则通过整车控制单元控制整车高压上电,所述第二荷电状态阈值大于所述第一荷电状态阈值。
这里,当监测到动力电池包的荷电状态小于第二荷电状态阈值时,则通过整车控制单元控制整车高压上电。也就是说,整车控制单元响应整车高压上电。具体的,可通过清除禁止高压上电标志位置来实现。
需说明的是,上述实施例提供的电动汽车动力电池的保护方法应用于如图1所示的动力电池的保护系统中时,多个BCU子板均与BMS通讯正常,且BMS与VCU通讯正常,且执行主体均为BMS。
这里需要说明的是,BMS对动力电池包可允许最大放电功率调整,由VCU响应动力电池包可允许最大放电功率的调整。
还有,动力电池包的荷电状态与第一荷电状态阈值或第二荷电状态阈值的比较可以在BMS中完成,也可以在VCU中完成。
下面分别说明BCU子板与BMS通讯异常和/或BMS与VCU通讯异常时,本公开电动汽车动力电池的保护方法的具体实施过程。
一、BCU子板与BMS通讯异常,包括两种情况
情况一:若监测到与至少两个电池控制单元通讯异常,且整车处于行车状态,则锁定通讯异常发生前一时刻的电池包可允许最大放电功率,并在锁定时长内对动力电池包可允许最大放电功率调整;
这里,锁定通讯异常发生前一时刻的电池包可允许最大放电功率,亦即记录通讯异常发生前一时刻的电池包可允许最大放电功率。
需说明的是,在锁定时长内对动力电池包可允许最大放电功率进行自行调整,目的是为了防止电动汽车扭矩抖动过大,给驾驶员一定的反应时间, 提高电动汽车的驾驶舒适度以及整车安全性。
这里,若监测到与一电池控制单元通讯异常,此时,BMS与VCU不做任何处理。
若超过所述锁定时长,则将通讯异常发生前一时刻的电池包可允许最大放电功率作为目标放电功率,并通过整车控制单元响应所述目标放电功率。
情况二:若监测到与至少两个电池控制单元通讯异常,且整车处于充电状态,则通过整车控制单元控制整车高压下电。
二、BMS与VCU通讯异常
若监测到BMS与VCU通讯异常,且整车处于行车状态,则通过VCU自行进行动力电池包的荷电状态估算;
这里,当BMS与VCU通讯异常时,VCU可根据算法,自行进行动力电池包的荷电状态估算,使得VCU可以实时获取动力电池包的荷电状态,便于后续对整车高压上下电的控制。
若检测到多个相邻监测时间点的所述动力电池包的荷电状态均小于第一荷电状态阈值,且多个相邻监测时间点的累计时长达到第三时长时,通过整车控制单元控制整车高压下电以及不响应整车高压上电;
这里,可选的,第三时长为30秒。
若检测到所述动力电池包的荷电状态大于第二荷电状态阈值,则通过整车控制单元控制整车高压上电,所述第二荷电状态阈值大于所述第一荷电状态阈值。
需说明的是,BCU子板与BMS通讯与BMS与VCU通讯均异常时,整车故障处理相应上述两种情况中较为严重的故障处理措施。
综上,本公开上述实施例提供的电动汽车动力电池的保护方法,通过将实时监测获得的多个电池单体的电压值中的最低电压值与故障电压阈值进行比较,并在最低电压值小于故障电压阈值,且监测的累计时长达到时长时,对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制,如此,能够避免动力电池出现过放失效故障,从而可以保护动力电池,延长动力电池的使用寿命。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序 (指令),该程序(指令)被处理器执行时实现以下步骤:
实时监测动力电池包中多个电池单体的电压值;
将每一监测时间点获得的多个所述电压值中的最低电压值与故障电压阈值进行比较;
若在多个相邻监测时间点时,所述最低电压值均小于所述故障电压阈值,且多个相邻监测时间点的累计时长达到第一时长,则对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制。
可选地,该程序(指令)被处理器执行时还可实现以下步骤:
在实时监测动力电池包中多个电池单体的电压值的同时,所述方法还包括:
获取所述动力电池包的当前温度;
根据预先存储的电池包温度与故障电压阈值的对应关系,确定与所述动力电池包的当前温度对应的故障电压阈值。
可选地,若所述动力电池包的当前温度对应的所述故障电压阈值为第一故障电压阈值,所述第一故障电压阈值大于一第二故障电压阈值,对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制的步骤,包括:
根据预先存储的不同故障电压阈值对应不同欠压故障等级的对应关系,确定所述第一故障电压阈值对应的欠压故障等级;
若整车处于行车状态,则根据所确定的欠压故障等级,对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制。
可选地,根据所确定的欠压故障等级,对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制的步骤,包括:
若所述第一故障电压阈值对应的故障等级为一级欠压故障,则将动力电池包可允许最大放电功率调整为当前允许最大放电功率的二分之一;
若所述第一故障电压阈值对应的故障等级为二级欠压故障,则将动力电池包可允许最大放电功率调整为零;
若所述第一故障电压阈值对应的故障等级为三级欠压故障,则将动力电池包可允许最大放电功率调整为零且通过整车控制单元控制整车高压下电;
其中,一级欠压故障下对应的故障电压阈值大于二级欠压故障下对应的故障电压阈值;二级欠压故障下对应的故障电压阈值大于三级欠压故障下对应的故障电压阈值。
可选地,若所述动力电池包的当前温度对应的所述故障电压阈值为第二故障电压阈值,在实时监测动力电池包中多个电池单体的电压值的同时,所述方法还包括:
实时监测所述动力电池包的荷电状态;
若在多个相邻监测时间点时,所述最低电压值均小于所述故障电压阈值,且多个相邻监测时间点的累计时长达到第一时长,则对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制的步骤,包括:
若在多个相邻监测时间点时,所述最低电压值均小于所述第二故障电压阈值,且多个相邻监测时间点的所述动力电池包的荷电状态均小于第一荷电状态阈值,多个相邻监测时间点的累计时长达到第二时长,则将动力电池包可允许最大放电功率调整为零且通过整车控制单元控制整车高压下电以及不响应整车高压上电。
可选地,将动力电池包可允许最大放电功率调整为零且通过整车控制单元控制整车高压下电以及不响应整车下次高压上电的步骤之后,所述方法还包括:
若检测到所述动力电池包的荷电状态大于第二荷电状态阈值,则通过整车控制单元控制整车高压上电,所述第二荷电状态阈值大于所述第一荷电状态阈值。
可选地,所述方法还包括:
若监测到与至少两个电池控制单元通讯异常,且整车处于行车状态,则锁定通讯异常发生前一时刻的电池包可允许最大放电功率,并在锁定时长内对动力电池包可允许最大放电功率调整;
若超过所述锁定时长,则将通讯异常发生前一时刻的电池包可允许最大放电功率作为目标放电功率,并通过整车控制单元响应所述目标放电功率。
可选地,所述方法还包括:
若监测到与至少两个电池控制单元通讯异常,且整车处于充电状态,则通过整车控制单元控制整车高压下电。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
如图6所示,本公开实施例还提供一种电动汽车动力电池的保护装置,包括:
监测模块201,用于实时监测动力电池包中多个电池单体的电压值;
比较模块202,用于将每一监测时间点获得的多个所述电压值中的最低电压值与故障电压阈值进行比较;
第一调整模块203,用于在多个相邻监测时间点时,所述最低电压值均小于所述故障电压阈值,且多个相邻监测时间点的累计时长达到第一时长,对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制。
具体的,所述保护装置还包括:
第一获取模块,用于在实时监测动力电池包中多个电池单体的电压值的同时,获取所述动力电池包的当前温度;
故障阈值确定模块,用于根据预先存储的电池包温度与故障电压阈值的对应关系,确定与所述动力电池包的当前温度对应的故障电压阈值。
具体的,所述第一调整模块包括:
故障等级确定子模块,用于在所述动力电池包的当前温度对应的所述故障电压阈值为第一故障电压阈值,所述第一故障电压阈值大于一第二故障电 压阈值时,根据预先存储的不同故障电压阈值对应不同欠压故障等级的对应关系,确定所述第一故障电压阈值对应的欠压故障等级;
第一调整子模块,用于在整车处于行车状态时,根据所确定的欠压故障等级,对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制。
这里,所述第一调整子模块包括:
第一调整单元,用于在所述第一故障电压阈值对应的故障等级为一级欠压故障时,将动力电池包可允许最大放电功率调整为当前允许最大放电功率的二分之一;
第二调整单元,用于在所述第一故障电压阈值对应的故障等级为二级欠压故障时,将动力电池包可允许最大放电功率调整为零;
第三调整单元,用于在所述第一故障电压阈值对应的故障等级为三级欠压故障时,将动力电池包可允许最大放电功率调整为零且通过整车控制单元控制整车高压下电;
其中,一级欠压故障下对应的故障电压阈值大于二级欠压故障下对应的故障电压阈值;二级欠压故障下对应的故障电压阈值大于三级欠压故障下对应的故障电压阈值。
具体的,所述保护装置还包括:
第二获取模块,用于在所述动力电池包的当前温度对应的所述故障电压阈值为第二故障电压阈值,在实时监测动力电池包中多个电池单体的电压值的同时,实时监测所述动力电池包的荷电状态;
所述调整模块包括:
第二调整子模块,用于在多个相邻监测时间点时,所述最低电压值均小于所述第二故障电压阈值,且多个相邻监测时间点的所述动力电池包的荷电状态均小于第一荷电状态阈值,多个相邻监测时间点的累计时长达到第二时长,将动力电池包可允许最大放电功率调整为零且通过整车控制单元控制整车高压下电以及不响应整车高压上电。
具体的,所述保护装置还包括:
第一控制模块,用于将动力电池包可允许最大放电功率调整为零且通过 整车控制单元控制整车高压下电以及不响应整车下次高压上电之后,且在检测到所述动力电池包的荷电状态大于第二荷电状态阈值时,通过整车控制单元控制整车高压上电,所述第二荷电状态阈值大于所述第一荷电状态阈值。
具体的,所述保护装置还包括:
第二调整模块,用于在监测到与至少两个电池控制单元通讯异常,且整车处于行车状态时,锁定通讯异常发生前一时刻的电池包可允许最大放电功率,并在锁定时长内对动力电池包可允许最大放电功率调整;
处理模块,用在超过所述锁定时长时,将通讯异常发生前一时刻的电池包可允许最大放电功率作为目标放电功率,并通过整车控制单元响应所述目标放电功率。
具体的,所述保护装置还包括:
第二控制模块,用于在监测到与至少两个电池控制单元通讯异常,且整车处于充电状态时,通过整车控制单元控制整车高压下电。
本公开实施例还提供一种电动汽车,包括如上述所述的电动汽车动力电池的保护装置。
本公开实施例还提供一种电动汽车,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上述电动汽车动力电池的保护方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (19)

  1. 一种电动汽车动力电池的保护方法,包括:
    实时监测动力电池包中多个电池单体的电压值;
    将每一监测时间点获得的多个所述电压值中的最低电压值与故障电压阈值进行比较;
    若在多个相邻监测时间点时,所述最低电压值均小于所述故障电压阈值,且多个相邻监测时间点的累计时长达到第一时长,则对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制。
  2. 根据权利要求1所述的电动汽车动力电池的保护方法,其中,在实时监测动力电池包中多个电池单体的电压值的同时,所述方法还包括:
    获取所述动力电池包的当前温度;
    根据预先存储的电池包温度与故障电压阈值的对应关系,确定与所述动力电池包的当前温度对应的故障电压阈值。
  3. 根据权利要求2所述的电动汽车动力电池的保护方法,其中,若所述动力电池包的当前温度对应的所述故障电压阈值为第一故障电压阈值,所述第一故障电压阈值大于一第二故障电压阈值,对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制的步骤,包括:
    根据预先存储的不同故障电压阈值对应不同欠压故障等级的对应关系,确定所述第一故障电压阈值对应的欠压故障等级;
    若整车处于行车状态,则根据所确定的欠压故障等级,对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制。
  4. 根据权利要求3所述的电动汽车动力电池的保护方法,其中,根据所确定的欠压故障等级,对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制的步骤,包括:
    若所述第一故障电压阈值对应的故障等级为一级欠压故障,则将动力电池包可允许最大放电功率调整为当前允许最大放电功率的二分之一;
    若所述第一故障电压阈值对应的故障等级为二级欠压故障,则将动力电池包可允许最大放电功率调整为零;
    若所述第一故障电压阈值对应的故障等级为三级欠压故障,则将动力电池包可允许最大放电功率调整为零且通过整车控制单元控制整车高压下电;
    其中,一级欠压故障下对应的故障电压阈值大于二级欠压故障下对应的故障电压阈值;二级欠压故障下对应的故障电压阈值大于三级欠压故障下对应的故障电压阈值。
  5. 根据权利要求3所述的电动汽车动力电池的保护方法,其中,若所述动力电池包的当前温度对应的所述故障电压阈值为第二故障电压阈值,在实时监测动力电池包中多个电池单体的电压值的同时,所述方法还包括:
    实时监测所述动力电池包的荷电状态;
    若在多个相邻监测时间点时,所述最低电压值均小于所述故障电压阈值,且多个相邻监测时间点的累计时长达到第一时长,则对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制的步骤,包括:
    若在多个相邻监测时间点时,所述最低电压值均小于所述第二故障电压阈值,且多个相邻监测时间点的所述动力电池包的荷电状态均小于第一荷电状态阈值,多个相邻监测时间点的累计时长达到第二时长,则将动力电池包可允许最大放电功率调整为零且通过整车控制单元控制整车高压下电以及不响应整车高压上电。
  6. 根据权利要求5所述的电动汽车动力电池的保护方法,其中,将动力电池包可允许最大放电功率调整为零且通过整车控制单元控制整车高压下电以及不响应整车下次高压上电的步骤之后,所述方法还包括:
    若检测到所述动力电池包的荷电状态大于第二荷电状态阈值,则通过整车控制单元控制整车高压上电,所述第二荷电状态阈值大于所述第一荷电状态阈值。
  7. 根据权利要求1所述的电动汽车动力电池的保护方法,其中,所述方法还包括:
    若监测到与至少两个电池控制单元通讯异常,且整车处于行车状态,则锁定通讯异常发生前一时刻的电池包可允许最大放电功率,并在锁定时长内对动力电池包可允许最大放电功率调整;
    若超过所述锁定时长,则将通讯异常发生前一时刻的电池包可允许最大放电功率作为目标放电功率,并通过整车控制单元响应所述目标放电功率。
  8. 根据权利要求1所述的电动汽车动力电池的保护方法,其中,所述方法还包括:
    若监测到与至少两个电池控制单元通讯异常,且整车处于充电状态,则通过整车控制单元控制整车高压下电。
  9. 一种电动汽车动力电池的保护装置,其中,包括:
    监测模块,用于实时监测动力电池包中多个电池单体的电压值;
    比较模块,用于将每一监测时间点获得的多个所述电压值中的最低电压值与故障电压阈值进行比较;
    第一调整模块,用于在多个相邻监测时间点时,所述最低电压值均小于所述故障电压阈值,且多个相邻监测时间点的累计时长达到第一时长,对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制。
  10. 根据权利要求9所述的电动汽车动力电池的保护装置,其中,所述保护装置还包括:
    第一获取模块,用于在实时监测动力电池包中多个电池单体的电压值的同时,获取所述动力电池包的当前温度;
    故障阈值确定模块,用于根据预先存储的电池包温度与故障电压阈值的对应关系,确定与所述动力电池包的当前温度对应的故障电压阈值。
  11. 根据权利要求10所述的电动汽车动力电池的保护装置,其中,所述第一调整模块包括:
    故障等级确定子模块,用于在所述动力电池包的当前温度对应的所述故障电压阈值为第一故障电压阈值,所述第一故障电压阈值大于一第二故障电压阈值时,根据预先存储的不同故障电压阈值对应不同欠压故障等级的对应关系,确定所述第一故障电压阈值对应的欠压故障等级;
    第一调整子模块,用于在整车处于行车状态时,根据所确定的欠压故障等级,对动力电池包可允许最大放电功率调整和/或通过整车控制单元对整车高压上下电进行控制。
  12. 根据权利要求11所述的电动汽车动力电池的保护装置,其中,所述第一调整子模块包括:
    第一调整单元,用于在所述第一故障电压阈值对应的故障等级为一级欠压故障时,将动力电池包可允许最大放电功率调整为当前允许最大放电功率的二分之一;
    第二调整单元,用于在所述第一故障电压阈值对应的故障等级为二级欠压故障时,将动力电池包可允许最大放电功率调整为零;
    第三调整单元,用于在所述第一故障电压阈值对应的故障等级为三级欠压故障时,将动力电池包可允许最大放电功率调整为零且通过整车控制单元控制整车高压下电;
    其中,一级欠压故障下对应的故障电压阈值大于二级欠压故障下对应的故障电压阈值;二级欠压故障下对应的故障电压阈值大于三级欠压故障下对应的故障电压阈值。
  13. 根据权利要求11所述的电动汽车动力电池的保护装置,其中,所述保护装置还包括:
    第二获取模块,用于在所述动力电池包的当前温度对应的所述故障电压阈值为第二故障电压阈值,在实时监测动力电池包中多个电池单体的电压值的同时,实时监测所述动力电池包的荷电状态;
    所述调整模块包括:
    第二调整子模块,用于在多个相邻监测时间点时,所述最低电压值均小于所述第二故障电压阈值,且多个相邻监测时间点的所述动力电池包的荷电状态均小于第一荷电状态阈值,多个相邻监测时间点的累计时长达到第二时长,将动力电池包可允许最大放电功率调整为零且通过整车控制单元控制整车高压下电以及不响应整车高压上电。
  14. 根据权利要求13所述的电动汽车动力电池的保护装置,其中,所述保护装置还包括:
    第一控制模块,用于将动力电池包可允许最大放电功率调整为零且通过整车控制单元控制整车高压下电以及不响应整车下次高压上电之后,且在检测到所述动力电池包的荷电状态大于第二荷电状态阈值时,通过整车控制单 元控制整车高压上电,所述第二荷电状态阈值大于所述第一荷电状态阈值。
  15. 根据权利要求9所述的电动汽车动力电池的保护装置,其中,所述保护装置还包括:
    第二调整模块,用于在监测到与至少两个电池控制单元通讯异常,且整车处于行车状态时,锁定通讯异常发生前一时刻的电池包可允许最大放电功率,并在锁定时长内对动力电池包可允许最大放电功率调整;
    处理模块,用在超过所述锁定时长时,将通讯异常发生前一时刻的电池包可允许最大放电功率作为目标放电功率,并通过整车控制单元响应所述目标放电功率。
  16. 根据权利要求9所述的电动汽车动力电池的保护装置,其中,所述保护装置还包括:
    第二控制模块,用于在监测到与至少两个电池控制单元通讯异常,且整车处于充电状态时,通过整车控制单元控制整车高压下电。
  17. 一种电动汽车,包括:如权利要求9~16中任一项所述的电动汽车动力电池的保护装置。
  18. 一种电动汽车,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至8中任一项所述的电动汽车动力电池的保护方法的步骤。
  19. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至8中任一项所述的电动汽车动力电池的保护方法的步骤。
PCT/CN2018/099323 2017-08-21 2018-08-08 电动汽车动力电池的保护方法、装置及电动汽车 WO2019037595A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710718472.4A CN107539145B (zh) 2017-08-21 2017-08-21 一种电动汽车动力电池的保护方法、装置及电动汽车
CN201710718472.4 2017-08-21

Publications (1)

Publication Number Publication Date
WO2019037595A1 true WO2019037595A1 (zh) 2019-02-28

Family

ID=60958548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099323 WO2019037595A1 (zh) 2017-08-21 2018-08-08 电动汽车动力电池的保护方法、装置及电动汽车

Country Status (2)

Country Link
CN (1) CN107539145B (zh)
WO (1) WO2019037595A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111638466A (zh) * 2020-05-25 2020-09-08 中合动力(北京)新能源科技有限公司 识别可拆卸电池包在更换后与整车连接是否牢靠的方法
CN113103975A (zh) * 2021-04-16 2021-07-13 黄冈格罗夫氢能汽车有限公司 氢能汽车整车故障处理方法、系统及氢能汽车
CN113665434A (zh) * 2021-08-23 2021-11-19 东风柳州汽车有限公司 电动汽车放电控制方法、设备、存储介质及装置
CN113696735A (zh) * 2021-08-06 2021-11-26 上汽通用五菱汽车股份有限公司 电池系统的上电方法、电池系统和可读存储介质
CN113791350A (zh) * 2021-08-06 2021-12-14 陕西汽车集团股份有限公司 电池故障预测方法
CN114013282A (zh) * 2021-11-16 2022-02-08 小氢汽车(上海)有限公司 一种氢燃料电池汽车的整车高压上下电控制方法及控制设备
CN114506243A (zh) * 2022-01-26 2022-05-17 北京海博思创科技股份有限公司 车载电池系统的功率控制方法及车载电池管理装置
CN116054344A (zh) * 2023-01-31 2023-05-02 中国铁塔股份有限公司 一种电池功率控制方法及装置
CN116072990A (zh) * 2021-10-29 2023-05-05 北汽福田汽车股份有限公司 动力电池内短路预警方法、装置及车辆
CN113791350B (zh) * 2021-08-06 2024-05-14 陕西汽车集团股份有限公司 电池故障预测方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107539145B (zh) * 2017-08-21 2019-09-17 北京新能源汽车股份有限公司 一种电动汽车动力电池的保护方法、装置及电动汽车
CN108599212B (zh) * 2018-04-12 2022-05-10 浙江正泰电器股份有限公司 储能系统
CN108627773B (zh) * 2018-05-04 2022-05-24 深圳市道通智能航空技术股份有限公司 电池功耗控制方法、装置及无人飞行器
CN108674191B (zh) * 2018-05-21 2020-06-30 北斗航天汽车(北京)有限公司 电动汽车故障诊断方法、装置和电动汽车
CN110682831B (zh) * 2018-06-19 2021-05-14 广州汽车集团股份有限公司 一种车载动力电池均衡方法、装置及汽车
CN109177806A (zh) * 2018-08-10 2019-01-11 浙江普朗特电动汽车有限公司 一种纯电动汽车低电量行驶控制方法
CN109167108B (zh) * 2018-09-11 2022-04-01 深圳市科陆电子科技股份有限公司 电池管理系统内的分级功率限制保护方法
CN109188182A (zh) * 2018-09-13 2019-01-11 北京新能源汽车股份有限公司 动力电池系统高压电连接故障检测方法、装置及电动汽车
CN110065394A (zh) * 2019-03-29 2019-07-30 福建省汽车工业集团云度新能源汽车股份有限公司 一种动力电池单体欠压保护方法及系统
CN112305941A (zh) * 2019-07-30 2021-02-02 苏州科瓴精密机械科技有限公司 一种机器的控制方法
CN111024410B (zh) * 2019-12-30 2021-08-03 华人运通(江苏)技术有限公司 车辆的功率超限故障检测方法、装置、车辆及存储介质
CN113401003B (zh) * 2020-03-16 2023-12-05 北京新能源汽车股份有限公司 电动汽车电池能量回馈功率的调整方法、装置及电动汽车
CN114079092B (zh) * 2020-08-12 2024-05-07 比亚迪股份有限公司 电池热管理方法、装置、介质和设备
CN114447449B (zh) * 2020-11-06 2023-10-10 南京泉峰科技有限公司 电池包、电池包供电方法及电动工具
CN112455285B (zh) * 2020-11-27 2022-09-16 东风汽车集团有限公司 纯电动汽车dcdc间歇控制方法
CN112793463B (zh) * 2020-12-29 2022-10-04 联合汽车电子有限公司 车载电池诊断方法及车载电池诊断装置
CN112644334B (zh) * 2021-01-12 2022-08-16 一汽解放汽车有限公司 防止电池过放电的控制方法、系统、车辆及存储介质
CN113022311B (zh) * 2021-02-26 2022-03-25 三一汽车制造有限公司 功率控制方法、功率控制装置和车辆
CN114212000B (zh) * 2022-01-14 2023-12-29 重庆金康动力新能源有限公司 车辆电池控制方法和装置
CN114379371B (zh) * 2022-02-18 2023-07-25 奇瑞商用车(安徽)有限公司 一种基于bms的电动汽车低电量工况高压控制方法
CN117183818A (zh) * 2022-05-30 2023-12-08 比亚迪半导体股份有限公司 一种电芯管理芯片、电池系统、车辆
CN117087497B (zh) * 2023-08-17 2024-03-08 广州巨湾技研有限公司 动力电池系统的功率控制方法、动力电池系统及存储介质
CN117465222B (zh) * 2023-12-25 2024-04-05 合众新能源汽车股份有限公司 动力电池的故障预警方法及故障预警系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101966820A (zh) * 2010-08-26 2011-02-09 清华大学 一种自适应修正的锂离子电池荷电状态在线监控方法
JP2013058416A (ja) * 2011-09-09 2013-03-28 Honda Motor Co Ltd 燃料電池車両
CN103414217A (zh) * 2013-05-31 2013-11-27 深圳市冠明能源科技有限公司 一种电池管理的方法及装置
CN107539145A (zh) * 2017-08-21 2018-01-05 北京新能源汽车股份有限公司 一种电动汽车动力电池的保护方法、装置及电动汽车

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107572B (zh) * 2012-12-10 2015-08-19 惠州市亿能电子有限公司 一种电池管理系统的功率控制方法
CN104835989B (zh) * 2014-03-27 2017-10-10 北京车和家信息技术有限责任公司 动力蓄电池的保护方法及装置
US9906069B2 (en) * 2014-07-28 2018-02-27 Ford Global Technologies, Llc Vehicle battery status detection by tracking a temperature gradient

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101966820A (zh) * 2010-08-26 2011-02-09 清华大学 一种自适应修正的锂离子电池荷电状态在线监控方法
JP2013058416A (ja) * 2011-09-09 2013-03-28 Honda Motor Co Ltd 燃料電池車両
CN103414217A (zh) * 2013-05-31 2013-11-27 深圳市冠明能源科技有限公司 一种电池管理的方法及装置
CN107539145A (zh) * 2017-08-21 2018-01-05 北京新能源汽车股份有限公司 一种电动汽车动力电池的保护方法、装置及电动汽车

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111638466A (zh) * 2020-05-25 2020-09-08 中合动力(北京)新能源科技有限公司 识别可拆卸电池包在更换后与整车连接是否牢靠的方法
CN111638466B (zh) * 2020-05-25 2024-03-29 中合动力(北京)新能源科技有限公司 识别可拆卸电池包在更换后与整车连接是否牢靠的方法
CN113103975A (zh) * 2021-04-16 2021-07-13 黄冈格罗夫氢能汽车有限公司 氢能汽车整车故障处理方法、系统及氢能汽车
CN113103975B (zh) * 2021-04-16 2024-01-05 黄冈格罗夫氢能汽车有限公司 氢能汽车整车故障处理方法、系统及氢能汽车
CN113696735B (zh) * 2021-08-06 2023-10-27 上汽通用五菱汽车股份有限公司 电池系统的上电方法、电池系统和可读存储介质
CN113791350A (zh) * 2021-08-06 2021-12-14 陕西汽车集团股份有限公司 电池故障预测方法
CN113696735A (zh) * 2021-08-06 2021-11-26 上汽通用五菱汽车股份有限公司 电池系统的上电方法、电池系统和可读存储介质
CN113791350B (zh) * 2021-08-06 2024-05-14 陕西汽车集团股份有限公司 电池故障预测方法
CN113665434A (zh) * 2021-08-23 2021-11-19 东风柳州汽车有限公司 电动汽车放电控制方法、设备、存储介质及装置
CN116072990A (zh) * 2021-10-29 2023-05-05 北汽福田汽车股份有限公司 动力电池内短路预警方法、装置及车辆
CN114013282A (zh) * 2021-11-16 2022-02-08 小氢汽车(上海)有限公司 一种氢燃料电池汽车的整车高压上下电控制方法及控制设备
CN114506243A (zh) * 2022-01-26 2022-05-17 北京海博思创科技股份有限公司 车载电池系统的功率控制方法及车载电池管理装置
CN114506243B (zh) * 2022-01-26 2024-01-23 北京海博思创科技股份有限公司 车载电池系统的功率控制方法及车载电池管理装置
CN116054344A (zh) * 2023-01-31 2023-05-02 中国铁塔股份有限公司 一种电池功率控制方法及装置
CN116054344B (zh) * 2023-01-31 2024-03-19 铁塔能源有限公司 一种电池功率控制方法及装置

Also Published As

Publication number Publication date
CN107539145A (zh) 2018-01-05
CN107539145B (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
WO2019037595A1 (zh) 电动汽车动力电池的保护方法、装置及电动汽车
US9385545B2 (en) Electric storage device protection apparatus, electric storage apparatus, starter battery, and method of protecting electric storage device
JP4311363B2 (ja) 蓄電システムおよび蓄電システムの異常処理方法
CN102959790B (zh) 一种用于监控蓄电池的充电过程的方法
JP2014520498A (ja) 二次電池、それを用いたマルチパック並列構造の情報交換のための二次電池管理システム及び方法
JP7039563B2 (ja) 監視装置および蓄電システム
US20140266049A1 (en) Detection and prevention of short formation in battery cells
CN110723028A (zh) 一种基于bms的蓄电池智能补电方法、装置及存储介质
CN112193124B (zh) 电池充电方法、装置、介质、电池管理系统及车辆
US20150155604A1 (en) System and method for controlling precipitation and dissolution of reaction-related substance in secondary battery
WO2022244572A1 (ja) 蓄電池システム、それを備えた鉄道車両、及び異常電池検知方法
CN111717066A (zh) 电池包的功率控制方法、计算机可读存储介质及控制系统
US20240113343A1 (en) Method for Monitoring a Battery System
CN116053618A (zh) 一种储能管理系统、控制方法及电池储能装置
JP6910437B2 (ja) 電池を保管するためのシステム及び方法
CN113799608A (zh) 电机驱动系统工作模式切换控制方法、装置、介质及设备
KR20210055312A (ko) 배터리팩의 보호 방법 및 이를 위한 장치
CN117674344A (zh) 一种电池包均衡方法及装置
CN112688390B (zh) 用于充电过程的功率自适应控制系统及高空作业设备
CN216231700U (zh) 双舱动力电池系统及电动汽车
CN113381463B (zh) 用于放电过程的功率自适应控制系统及高空作业设备
EP4286209A1 (en) Power replenishment wake-up apparatus and method for low-voltage battery
RU2803357C1 (ru) Устройство защиты аккумуляторной батареи и способ его работы
RU2802196C1 (ru) Устройство и способ защиты батареи
CN113459900B (zh) 动力电池被动均衡控制方法、装置、车辆和存储介质

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849041

Country of ref document: EP

Kind code of ref document: A1