WO2019037559A1 - 一种高透光率且不影响红外截止的光学玻璃 - Google Patents

一种高透光率且不影响红外截止的光学玻璃 Download PDF

Info

Publication number
WO2019037559A1
WO2019037559A1 PCT/CN2018/095299 CN2018095299W WO2019037559A1 WO 2019037559 A1 WO2019037559 A1 WO 2019037559A1 CN 2018095299 W CN2018095299 W CN 2018095299W WO 2019037559 A1 WO2019037559 A1 WO 2019037559A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
glass
transmittance
optical glass
infrared
Prior art date
Application number
PCT/CN2018/095299
Other languages
English (en)
French (fr)
Inventor
沈强国
沈杰
Original Assignee
南通市国光光学玻璃有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通市国光光学玻璃有限公司 filed Critical 南通市国光光学玻璃有限公司
Publication of WO2019037559A1 publication Critical patent/WO2019037559A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/04Opacifiers, e.g. fluorides or phosphates; Pigments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron

Definitions

  • the present invention relates to optical glass, and more particularly to a cyan optical glass capable of improving near-ultraviolet and visible light transmission without affecting infrared cutoff.
  • Cyan glass has a wide range of applications in industrial camera lenses.
  • the visible light band 400nm-550nm
  • the higher the transmittance the better the resolution will be.
  • the red light band is cut off during the shooting process
  • the infrared light band cutoff requirement is high. Therefore, it is necessary to cut off the infrared band, and the lower the transmittance, the better.
  • cyan blue optical glass is smelted, and the two functions of visible light high penetration and infrared cutoff are contradictory.
  • it is bound to affect the infrared cutoff, and vice versa. If you want to increase the transmittance in the visible light range, it will affect the infrared glass cut-off production, so that the infrared glass cut-off depth is not enough, resulting in red light during the shooting process.
  • the industry produces such filters, although the balance of the two functions can be found, the products can barely be used, but the ideal effect is never achieved.
  • the coating on the glass substrate can be performed. Reduce the transmission rate in the infrared band, or the antireflection coating on visible light.
  • the disadvantages of such methods are: (1) increase the cost of the product; (2) the coating will be attenuated, so that the product itself has a short service life. The glass itself is a self-contained property, and the spectrum will never change.
  • An object of the present invention is to provide a novel optical glass material capable of improving cyan blue optical glass which transmits near ultraviolet and visible light without affecting infrared cutoff.
  • An optical glass of the present invention having high light transmittance and not affecting infrared cutoff, comprising the following components by weight:
  • the optical glass having high light transmittance and not affecting infrared cutoff includes the following components by weight:
  • Phosphoric acid 60 alumina 10, copper oxide 2.3, boric acid 13-14, cesium carbonate 5, sodium carbonate 8, lithium carbonate 5, colorant 0.7.
  • the colorant is cerium oxide.
  • the refractive index of the optical glass having high light transmittance and not affecting infrared cutoff is 1.46 to 1.56.
  • the optical glass having high transmittance and not affecting infrared cutoff has a light transmittance of 85% to 90%, and an infrared band transmittance of 0.32%.
  • the optical glass provided by the present invention having high transmittance and not affecting the infrared cutoff can increase the visible light transmittance from the current less than 80% to 85%; the highest transmittance can reach 90%.
  • the optical glass of the present invention having high transmittance and not affecting the infrared cutoff can improve the transmittance in the visible light band under the premise of ensuring the infrared cutoff of the glass, thereby solving the problem in the prior art if it is to be in visible light
  • the band's increased transmittance will affect the infrared glass cut-off production, making the infrared glass cut-off depth insufficient, resulting in the problem of red light during the shooting process. Has a good application prospects.
  • 1 is a test chart of the optical glass spectral curve of the present invention with high light transmittance and without affecting infrared cutoff.
  • An optical glass of the present invention having high light transmittance and not affecting infrared cutoff, comprising the following components by weight:
  • the optical glass having high light transmittance and not affecting infrared cutoff includes the following components by weight:
  • Phosphoric acid 60 alumina 10, copper oxide 2.3, boric acid 13-14, cesium carbonate 5, sodium carbonate 8, lithium carbonate 5, colorant 0.7.
  • the colorant is cerium oxide.
  • the refractive index of the optical glass having high light transmittance and not affecting infrared cutoff is 1.46 to 1.56.
  • the optical glass having high transmittance and not affecting infrared cutoff has a light transmittance of 85% to 90%, and an infrared band transmittance of 0.32%. It is much higher than similar products by 85% or less, making its emission spectrum more suitable for the resolution of different tissues.
  • the component phosphoric acid in the present invention is a main component of glass formation. Since cyan glass needs high permeability in the ultraviolet range, phosphate glass is shorter than other glass system glass and has a UV cut-off wavelength band. Therefore, a phosphate glass system, that is, a P2O5-AL2O3-B2O3 glass system is used.
  • the composition is controlled in the range of 55 to 65 parts by weight, preferably 60 parts by weight.
  • the component alumina in the present invention is an intermediate oxide because it can link the broken boron oxide and the phosphorus oxygen, thereby moving the ultraviolet cutoff to the short-wave direction, and as part of the phosphate glass system structure, with phosphoric acid and boric acid.
  • the component is in the range of 8 to 12 parts by weight, preferably 10 parts by weight.
  • the component copper oxide functions as a cutoff for the red and infrared bands.
  • the copper ion is in the divalent state in the glass, it has a large absorption in the red and infrared bands of the spectrum.
  • the divalent copper ions are also absorbed in the ultraviolet portion.
  • the component is in the range of 2-3 parts by weight, preferably 2.3 parts by weight.
  • boric acid As a flux in a phosphate glass system of glass.
  • the component boric acid in the present invention is an important component of the phosphate structured glass system.
  • boric acid is a good flux that lowers the melting point of the glass. Too much boric acid tends to "boron anomaly" and is not easily introduced excessively, so the composition is controlled in the range of 13 to 15 parts by weight, preferably 13 to 14 parts by weight.
  • the invention introduces the cerium oxide component by cerium carbonate as compared with the cerium nitrate, so that the oxidation property of the whole glass is lowered, and the copper ions are colored in the glass to form divalent copper oxide CuO and monovalent cuprous oxide Cu2O.
  • divalent copper has a strong absorption in red and infrared, but at the same time has a certain absorption in the near ultraviolet and visible light.
  • Monovalent copper only absorbs near the far ultraviolet (240 nm). Because nitrate helps the glass to oxidize, and the lanthanum nitrate is changed to strontium carbonate, the oxidation potential energy of the whole glass is lowered, and the reduction potential energy is increased, the divalent copper ions in the glass are reduced, and the monovalent copper ions are increased, so that the glass can be The transmittance in the near ultraviolet and visible light bands is increased.
  • the component is controlled in 4 to 6 parts by weight, preferably 5 parts by weight.
  • the invention introduces sodium oxide by sodium carbonate, and the oxidation of the whole glass is reduced compared with that introduced by sodium nitrate, and the principle is the same component of barium carbonate.
  • the composition is controlled in 7 to 10 parts by weight, preferably 8 parts by weight.
  • the component lithium carbonate, lithium ion replaces part of the sodium ion, because the position of the divalent copper ion in the red and infrared absorption band moves toward the long wave direction as the radius of the alkali metal ion increases, which is due to the alkali having a large ionic radius.
  • the metal ions are incompletely shielded from the ligand oxygen, causing a part of the positive electric field to enter the polyhedral coordination of the colored ions, consuming a part of the effective electric field of the oxygen ions, causing the absorption band to move toward a long wavelength.
  • the radius of lithium ions is smaller than that of sodium ions, so the absorption band of divalent copper ions should move in the short-wave direction.
  • the divalent copper ions were reduced and the absorption band was moved in the long wavelength direction.
  • the red and infrared absorption bands remained unchanged.
  • lithium ions act as a component of the reinforcing structure network to move the ultraviolet cutoff wavelength in the short-wave direction, thereby making the glass have a higher transmittance in the near ultraviolet.
  • the component is controlled in 4 to 6 parts by weight, preferably 5 parts by weight.
  • High-definition industrial lenses require high visible light transmission without affecting the infrared cutoff.
  • the inventors conducted research on the phosphate glass system of glass using cerium oxide as a coloring agent.
  • the main function of cerium oxide as a coloring agent is to cut off the ultraviolet band before 250 nm, and Ce3+ and Ce4+ are present in the glass, and the cerium ions of the two valence states have strong absorption in the ultraviolet band 240 nm, and when the Ce4+ is excessive, the spectrum Absorption extends into the visible region, which affects the transmittance in the near-ultraviolet range. Therefore, the amount of Ce4+ needs to be controlled, which can be controlled by adjusting the redox of the glass itself.
  • strontium nitrate and sodium nitrate were changed to cesium carbonate and sodium carbonate.
  • the oxidation of the entire glass component is reduced, so that more orders Ce3+ can be generated, thereby suppressing the amount of Ce4+.
  • the composition is controlled in an amount of from 0.5 to 0.9 parts by weight, preferably 0.7 parts by weight.
  • an optical glass having high light transmittance and not affecting infrared cutoff includes components in the following parts by weight:
  • All raw materials are graded AR, with the aim of minimizing iron-containing impurities in the raw materials and affecting the UV transmittance of the glass. After purchasing the AR grade raw materials, it is further purified at the factory.
  • the smelting crucible and the blade propeller are made of quartz crucible, and the purpose of selecting quartz is to prevent iron impurities from contaminating the raw material.
  • the feeding temperature is 1065 ° C, and the material is added and then fed, and the total feeding is 20 times, and the feeding interval is about 15 minutes; after the feeding is completed, the temperature is raised to 1110 ° C, and the heating time is 1 hour; the melting temperature is 1120 ° C for 8 hours.
  • an optical glass having high light transmittance and not affecting infrared cutoff includes components in the following parts by weight:
  • All raw materials are graded AR, with the aim of minimizing iron-containing impurities in the raw materials and affecting the UV transmittance of the glass. After purchasing the AR grade raw materials, it is further purified at the factory.
  • the smelting crucible and the blade propeller are made of quartz crucible, and the purpose of selecting quartz is to prevent iron impurities from contaminating the raw material.
  • the feeding temperature is 1065 ° C, and the material is added and then fed, and the total feeding is 20 times, and the feeding interval is about 15 minutes; after the feeding is completed, the temperature is raised to 1110 ° C, and the heating time is 1 hour; the melting temperature is 1120 ° C for 8 hours.
  • an optical glass having high light transmittance and not affecting infrared cutoff includes components in the following parts by weight:
  • All raw materials are graded AR, with the aim of minimizing iron-containing impurities in the raw materials and affecting the UV transmittance of the glass. After purchasing the AR grade raw materials, it is further purified at the factory.
  • the smelting crucible and the blade propeller are made of quartz crucible, and the purpose of selecting quartz is to prevent iron impurities from contaminating the raw material.
  • the feeding temperature is 1065 ° C, and the material is added and then fed, and the total feeding is 20 times, and the feeding interval is about 15 minutes; after the feeding is completed, the temperature is raised to 1110 ° C, and the heating time is 1 hour; the melting temperature is 1120 ° C for 8 hours.
  • the optical glass obtained by the above Example 3 with high light transmittance and without affecting the infrared cutoff was tested by spectrophotometer to test the glass spectrum: the sample standard test thickness was 2 mm according to the national standard GB/T 15489.1, the spectral requirement: 400 nm - 550 nm "80%; 570 nm - 580nm” 70%; 700nm "1%, the transmittance of the sample at different wavelengths is shown in Table 1:
  • the cyan glass has a high transmittance in visible light glass, a peak transmittance of 90%, an infrared band transmittance of 0.32%, and good cut-off performance.
  • the optical glass spectral curve test chart of the present invention having high light transmittance and not affecting the infrared cutoff is shown in FIG.
  • the comparison of the optical transmittance of the optical glass of the present invention which does not affect the infrared cutoff and the existing glass spectral curve is shown in Fig. 2.
  • the cutoff depth is substantially unchanged after the infrared cutoff band of 720 nm.
  • the curve of the invention in the visible range 400 nm - 530 nm
  • the optical glass of the present invention having high light transmittance and not affecting the infrared cutoff can significantly improve the transmittance of the visible light band while ensuring that the infrared band cutoff function is unchanged.
  • the highest transmission rate is up to 90%.
  • the optical glass of the present invention having high light transmittance and not affecting infrared cutoff is mainly applied to industrial image pickup lenses.
  • the transmittance in the visible light band can be improved, thereby solving the problem that if the transmittance is to be increased in the visible light band in the prior art, the infrared glass cut-off production will be affected, and the infrared glass cut-off depth is insufficient. , thereby producing a problem of red light during shooting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

本发明提供的一种高透光率且不影响红外截止的光学玻璃,包括如下重量份数的各组分:磷酸 55-65,硼酸 13-15,氧化铝 8-12,氧化铜 1-2,碳酸钡 4-6,碳酸钠 7-10,碳酸锂 4-6,着色剂 0.5-0.9。本发明提供的一种高透过率且不影响红外截止的光学玻璃,可见光透过率可以由目前的低于 80%提升至 85%;最高透过率可达 90%。解决了现有技术中如果要想在可见光波段提升透过率,就会对红外玻璃截止生产影响,使红外玻璃截止深度不够,从而产生拍摄过程中的红光现象的问题。

Description

一种高透光率且不影响红外截止的光学玻璃 技术领域
本发明涉及光学玻璃,尤其涉及一种能够提高近紫外和可见光透过且不影响红外截止的青蓝色光学玻璃。
背景技术
青蓝色玻璃在工业摄像镜头有着非常广泛的应用。在可见光波段(400nm-550nm)透过率越高越好,这样清晰度也会随之而高;另一方面,因为在拍摄过程中为了避免红光影响,对红外光波段截止要求较高,因此需要对红外波段进行截止,透过率越低越好。但在实际生产过程中熔炼此类青蓝色光学玻璃,可见光高透和红外截止这两个功能是相互矛盾,若要保证可见光,势必影响红外截止,反之亦然。如果要想在可见光波段提升透过率,就会对红外玻璃截止生产影响,使红外玻璃截止深度不够,从而产生拍摄过程中的红光现象。
目前行业生产此类滤光片,虽然能够找到该两种功能的平衡,产品勉强可以使用,但是始终没有达到理想效果,对于要求较高的产品,则只能通过在玻璃基片上进行镀膜,从而降低红外波段透过率,或者在可见光镀增透膜。但此类方法缺点是:(1)增加产品成本;(2)镀膜会衰减,使产品本身使用寿命简短。而玻璃本身是自带属性,光谱永远不会有变化。
目前工业镜头应用广泛,对于镜头的高清晰度要求也越来越高,因此对可见光400nm-550nm需要较高的透过率,而目前同类产品透过率在该波段平均透过率率仅为80%。因此急需研究一种新的光学玻璃材料,能够提高可见光透过且不影响红外截止的青蓝色光学玻璃。
发明内容
技术问题:本发明的目的在于提供一种新的光学玻璃材料,能够提高近紫外和可见光透过且不影响红外截止的青蓝色光学玻璃。
技术方案:为实现上述目的,本发明提供如下技术方案:
本发明的一种高透光率且不影响红外截止的光学玻璃,包括如下重量份数的各组分:
磷酸55-65,硼酸13-15,氧化铝8-12,氧化铜1-2,碳酸钡4-6,碳酸钠7-10,碳酸锂4-6,着色剂0.5-0.9。
优选地,该高透光率且不影响红外截止的光学玻璃包括如下重量份数的各组分:
磷酸60,氧化铝10,氧化铜2.3,硼酸13-14,碳酸钡5,碳酸钠8,碳酸锂5,着色剂0.7。
优选地,所述着色剂为氧化铈。
优选地,所述高透光率且不影响红外截止的光学玻璃的折射率为1.46~1.56。
优选地,所述高透光率且不影响红外截止的光学玻璃的透光率为85%~90%,红外波段透过率为0.32%。
有益效果:采用上述技术方案,本发明与目前技术相比,拥有如下优点:
(1)本发明提供的一种高透过率且不影响红外截止的光学玻璃,可见光透过率可以由目前的低于80%提升至85%;最高透过率可达90%。
(2)本发明的一种高透过率且不影响红外截止的光学玻璃,可以在保证玻璃红外截止的前提下,提高可见光波段透过率,从而解决了现有技术中如果要想在可见光波段提升透过率,就会对红外玻璃截止生产影响,使红外玻璃截止深度不够,从而产生拍摄过程中的红光现象的问题。具有较好的应用前景。
附图说明
图1为本发明的高透光率且不影响红外截止的光学玻璃光谱曲线测试图。
图2为本发明光学玻璃与现有技术的光学玻璃光谱曲线测试对比图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,对本发明实施例中的技术方案 进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。在本发明一种实施方式中描述的元素和特征可以与一个或更多个实施方式中示出的元素和特征相结合。应当注意,为了清楚的目的,说明中省略了与本发明无关的、本领域普通技术人员已知的部件和处理的表示和描述。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的一种高透光率且不影响红外截止的光学玻璃,包括如下重量份数的各组分:
磷酸55-65,硼酸13-15,氧化铝8-12,氧化铜1-2,碳酸钡4-6,碳酸钠7-10,碳酸锂4-6,着色剂0.5-0.9。
优选地,该高透光率且不影响红外截止的光学玻璃包括如下重量份数的各组分:
磷酸60,氧化铝10,氧化铜2.3,硼酸13-14,碳酸钡5,碳酸钠8,碳酸锂5,着色剂0.7。
优选地,所述着色剂为氧化铈。
优选地,所述高透光率且不影响红外截止的光学玻璃的折射率为1.46~1.56。
优选地,所述高透光率且不影响红外截止的光学玻璃的透光率为85%~90%,红外波段透过率为0.32%。比同类产品小于等于85%高出很多,使其发射光谱更适合于不同组织的分辨。
本发明中组分磷酸,是玻璃形成的主体成分。由于青蓝色玻璃在紫外波段需要高透,磷酸盐玻璃相较与其他玻璃体系玻璃,紫外截止波段短,因此采用磷酸盐玻璃体系,即P2O5—AL2O3—B2O3玻璃体系。组分控制在55-65重量份,最佳为60重量份。
本发明中组分氧化铝,为中间体氧化物,因为能够使断裂的硼氧和磷氧联接起来,因而使紫外截止向短波方向移动,且作为磷酸盐玻璃体系结构的一部分,与磷酸和硼酸形成整磷酸铝(Al2O3·P2O5)与正磷酸硼(B2O3·P2O5),由于玻璃形成AlPO4和BPO4基团,使得磷酸盐原有的层状结构变为架状结构,使得磷酸盐玻璃化学稳定性提升,热膨胀系数降低。组分在8-12重量份,最佳为10重量份。
高清晰度的工业镜头要求可见光透过率高而不影响红外截止。发明人对玻璃的磷酸盐玻璃体系使用氧化铜作为着色剂进行了研究。本发明中组分氧化铜,作为本改良玻璃的着色剂,其作用是对红色及红外波段的截止。铜离子在玻璃中为二价态时候在光谱红色及红外波段有很大的吸收。但不可过多使用,因为二价铜离子在紫外部分也有吸收,当氧化铜过量,虽然红外波段截止非常好,但是紫外及可见光波段透过率则会下降。因此组分在2-3重量份,最佳为2.3重量份。
高清晰度的工业镜头要求可见光透过率高而不影响红外截止。发明人对玻璃的磷酸盐玻璃体系使用硼酸作为助熔剂进行了研究。本发明中组分硼酸,作为磷酸盐结构玻璃体系的重要组成部分。通过加入硼酸,能够改善磷酸盐玻璃化学稳定性差的缺点。同时,硼酸是良好的助熔剂,可使玻璃熔点降低。硼酸过多容易出现“硼反常现象”,不易过分引入,因此组分控制在13-15重量份,最佳为13-14重量份。
本发明通过碳酸钡引入氧化钡成分较之由硝酸钡引入,使整个玻璃氧化性降低,铜离子在玻璃中着色能形成二价的氧化铜CuO和一价的氧化亚铜Cu2O,同时存在并有以下平衡方程式:
Figure PCTCN2018095299-appb-000001
其中二价铜在红色及红外有很强的吸收,但同时在近紫外和可见光有一定的吸收。一价铜只有在远紫外(240nm)附近有吸收。因为硝酸盐有助于玻璃氧化,将硝酸钡改为由碳酸钡,可使整个玻璃氧化势能降低,还原势能提高,则玻璃中二价铜离子减少,一价铜离子增加,从而使玻璃能够在近紫外和可见光波段透过率提高。组分控制在4-6重量份,最佳为5重量份。
本发明通过碳酸钠引入氧化钠,较之由硝酸钠引入,整个玻璃氧化性降低,原理同组分碳酸钡。组分控制在7-10重量份,最佳为8重量份。
本发明中组分碳酸锂,锂离子代替部分钠离子,由于二价铜离子在红色及红外的吸收带位置随碱金属离子半径的增大而向长波方向移动,这是由于离子半径大的碱金属离子,对配位体氧的屏蔽不完全,使部分正电场进入着色离子的多面体配位中,消耗了一部分氧离子的有效电场,导致吸收带向长波长移动。另外,锂离子的半径比钠离子要小,因此二 价铜离子的吸收带应该往短波方向移动。而此前解释由于整个玻璃成分氧化性降低,导致二价铜离子减少,吸收带往长波长方向移动,两者此消彼长,红色及红外吸收带可维持不变。除此之外,在紫外吸收方面,锂离子作为加强结构网络的成分能够使紫外截止波长往短波方向移动,从而使玻璃在近紫外有更高的透过率。组分控制在4-6重量份,最佳为5重量份。
高清晰度的工业镜头要求可见光透过率高而不影响红外截止。发明人对玻璃的磷酸盐玻璃体系使用氧化铈作为着色剂进行了研究。本发明中氧化铈作为一种着色剂主要作用是对紫外波段250nm之前截止,在玻璃中存在Ce3+和Ce4+,两种价态的铈离子在紫外波段240nm都有强吸收,当Ce4+过多时,光谱吸收会延伸到可见光区,从而影响近紫外波段透过率,因此对于Ce4+数量需要进行控制,可以通过调整玻璃本身氧化还原性来进行控制,此前将硝酸钡和硝酸钠改为碳酸钡和碳酸钠,降低了整个玻璃成分的氧化性,从而能够生成较多订单Ce3+,从而抑制Ce4+数量。组分控制在0.5-0.9重量份,最佳为0.7重量份。
下面通过具体实施例对本发明做进一步说明:
实施例1
在本实施例中,一种高透光率且不影响红外截止的光学玻璃包括如下重量份数的组分:
磷酸55份,硼酸13份,氧化铝8份,氧化铜1份,碳酸钡4份,碳酸钠7份,碳酸锂4份,氧化铈0.5份。
所有原料全部用AR级,目的是最大程度降低原料中含铁杂质,影响玻璃在紫外光透过率。采购AR级原料后,在工厂进行再一次提纯。熔炼坩埚和叶桨采用石英坩埚,选用石英坩埚目的是防止铁杂质污染原料。将上述原料混合均匀后,加料温度1065℃,料化透后再加料,总共加料20次,每次加料间隔约15分钟;加料完毕后升温至1110℃,升温时间为1个小时;熔炼温度为1120℃,持续8小时。降温从1120℃降至800℃,降温时间为4个小时,出料温度大约为800℃。最终退火,560℃降温,每小时10℃,到了300℃闭电自然降温,得到一种高透光率且不影响红外截止的光学玻璃。
实施例2
在本实施例中,一种高透光率且不影响红外截止的光学玻璃包括如下重量份数的组分:
磷酸65份,硼酸15份,氧化铝12份,氧化铜2份,碳酸钡6份,碳酸钠10份,碳 酸锂6份,氧化铈0.9份。
所有原料全部用AR级,目的是最大程度降低原料中含铁杂质,影响玻璃在紫外光透过率。采购AR级原料后,在工厂进行再一次提纯。熔炼坩埚和叶桨采用石英坩埚,选用石英坩埚目的是防止铁杂质污染原料。将上述原料混合均匀后,加料温度1065℃,料化透后再加料,总共加料20次,每次加料间隔约15分钟;加料完毕后升温至1110℃,升温时间为1个小时;熔炼温度为1120℃,持续8小时。降温从1120℃降至800℃,降温时间为4个小时,出料温度大约为800℃。最终退火,560℃降温,每小时10℃,到了300℃闭电自然降温,得到一种高透光率且不影响红外截止的光学玻璃。
实施例3
在本实施例中,一种高透光率且不影响红外截止的光学玻璃包括如下重量份数的组分:
磷酸60份,硼酸13份,氧化铝10份,氧化铜2.3份,碳酸钡5份,碳酸钠8份,碳酸锂7份,氧化铈0.7份。
所有原料全部用AR级,目的是最大程度降低原料中含铁杂质,影响玻璃在紫外光透过率。采购AR级原料后,在工厂进行再一次提纯。熔炼坩埚和叶桨采用石英坩埚,选用石英坩埚目的是防止铁杂质污染原料。将上述原料混合均匀后,加料温度1065℃,料化透后再加料,总共加料20次,每次加料间隔约15分钟;加料完毕后升温至1110℃,升温时间为1个小时;熔炼温度为1120℃,持续8小时。降温从1120℃降至800℃,降温时间为4个小时,出料温度大约为800℃。最终退火,560℃降温,每小时10℃,到了300℃闭电自然降温,得到一种高透光率且不影响红外截止的光学玻璃。
将上述实施例3所得高透光率且不影响红外截止的光学玻璃通过分光光度计测试玻璃光谱:样品标准测试厚度2mm根据国标GB/T 15489.1,光谱要求:400nm-550nm》80%;570nm-580nm》70%;700nm《1%,样品在不同波长下的透过率详见表1:
Figure PCTCN2018095299-appb-000002
Figure PCTCN2018095299-appb-000003
从上表数据可以看出,该青蓝色玻璃在可见光玻璃有高透过率,峰值透过率达到90%,红外波段透过率为0.32%,截止性能良好。
本发明的高透光率且不影响红外截止的光学玻璃光谱曲线测试图如图1所示。本发明的高透光率且不影响红外截止的光学玻璃与现有玻璃光谱曲线测试对比如图2所示,从对比数据中可以看出,红外截止波段720nm之后,截止深度基本没有变化。但是在可见光范围内(400nm-530nm)本发明的曲线明显高于现有技术玻璃的曲线。
综上所述,本发明的高透光率且不影响红外截止的光学玻璃在保证红外波段截止功能不变的前提下,能够明显的提高可见光波段的透过率。最高透过率可达90%。
本发明的高透光率且不影响红外截止的光学玻璃主要应用于工业摄像镜头。可以在保证玻璃红外截止的前提下,提高可见光波段透过率,从而解决了现有技术中如果要想在可见光波段提升透过率,就会对红外玻璃截止生产影响,使红外玻璃截止深度不够,从而产生拍摄过程中的红光现象的问题。
最后应说明的是:虽然以上已经详细说明了本发明及其优点,但是应当理解在不超出由所附的权利要求所限定的本发明的精神和范围的情况下可以进行各种改变、替代和变换。而且,本发明的范围不仅限于说明书所描述的过程、设备、手段、方法和步骤的具体实施例。本领域内的普通技术人员从本发明的公开内容将容易理解,根据本发明可以使用执行与在此所述的相应实施例基本相同的功能或者获得与其基本相同的结果的、现有和将来要被开发的过程、设备、手段、方法或者步骤。因此,所附的权利要求旨在在它们的范围内包括这样的过程、设备、手段、方法或者步骤。

Claims (6)

  1. 一种高透光率且不影响红外截止的光学玻璃,其特征在于,包括如下重量份数的各组分:
    Figure PCTCN2018095299-appb-100001
  2. 根据权利要求1所述的一种高透光率且不影响红外截止的光学玻璃,其特征在于,包括如下重量份数的各组分:
    Figure PCTCN2018095299-appb-100002
  3. 根据权利要求1所述的一种高透光率且不影响红外截止的光学玻璃,其特征在于,包括如下重量份数的各组分:
    Figure PCTCN2018095299-appb-100003
    Figure PCTCN2018095299-appb-100004
  4. 根据权利要求1-3任意一项所述的一种高透光率且不影响红外截止的光学玻璃,其特征在于,所述着色剂为氧化铈。
  5. 根据权利要求4所述的一种高透光率且不影响红外截止的光学玻璃,其特征在于,所述高透光率且不影响红外截止的光学玻璃的折射率为1.46~1.56。
  6. 根据权利要求4所述的一种高透光率且不影响红外截止的光学玻璃,其特征在于,所述高透光率且不影响红外截止的光学玻璃的透光率为85%~90%,红外波段透过率为0.32%。
PCT/CN2018/095299 2017-08-24 2018-07-11 一种高透光率且不影响红外截止的光学玻璃 WO2019037559A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710736539.7A CN107337348A (zh) 2017-08-24 2017-08-24 一种高透光率且不影响红外截止的光学玻璃
CN201710736539.7 2017-08-24

Publications (1)

Publication Number Publication Date
WO2019037559A1 true WO2019037559A1 (zh) 2019-02-28

Family

ID=60214509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095299 WO2019037559A1 (zh) 2017-08-24 2018-07-11 一种高透光率且不影响红外截止的光学玻璃

Country Status (2)

Country Link
CN (1) CN107337348A (zh)
WO (1) WO2019037559A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107337348A (zh) * 2017-08-24 2017-11-10 南通市国光光学玻璃有限公司 一种高透光率且不影响红外截止的光学玻璃

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058519A (zh) * 2013-01-11 2013-04-24 元亮科技有限公司 一种用于红外截止滤光片的厚片蓝玻璃配方
CN106966590A (zh) * 2017-05-18 2017-07-21 南通市国光光学玻璃有限公司 紫外波段高透过且耐紫外辐照的光学玻璃的制备方法
CN107337348A (zh) * 2017-08-24 2017-11-10 南通市国光光学玻璃有限公司 一种高透光率且不影响红外截止的光学玻璃
CN107686240A (zh) * 2017-08-24 2018-02-13 南通市国光光学玻璃有限公司 一种高透光率且不影响红外截止的光学玻璃的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3242513C2 (de) * 1982-11-18 1986-07-24 Schott Glaswerke, 6500 Mainz Mit Kobalt und/oder Nickel eingefärbte Alkali- bzw. Erdalkalihaltige Phosphatgläser mit relativ hohen Al↓2↓O↓3↓- und B↓2↓O↓3↓-Anteilen
CN104609726B (zh) * 2015-01-16 2017-08-29 南通市国光光学玻璃有限公司 隔热高显色玻璃的制备方法
CN106977096A (zh) * 2017-05-18 2017-07-25 南通市国光光学玻璃有限公司 紫外波段高透过且耐紫外辐照的光学玻璃

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058519A (zh) * 2013-01-11 2013-04-24 元亮科技有限公司 一种用于红外截止滤光片的厚片蓝玻璃配方
CN106966590A (zh) * 2017-05-18 2017-07-21 南通市国光光学玻璃有限公司 紫外波段高透过且耐紫外辐照的光学玻璃的制备方法
CN107337348A (zh) * 2017-08-24 2017-11-10 南通市国光光学玻璃有限公司 一种高透光率且不影响红外截止的光学玻璃
CN107686240A (zh) * 2017-08-24 2018-02-13 南通市国光光学玻璃有限公司 一种高透光率且不影响红外截止的光学玻璃的制备方法

Also Published As

Publication number Publication date
CN107337348A (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
JP6908521B2 (ja) ガラスまたはガラスセラミック物品におけるx線誘発着色
ElBatal et al. UV–visible and infrared absorption spectra of gamma irradiated CuO-doped lithium phosphate, lead phosphate and zinc phosphate glasses: a comparative study
JP5921877B2 (ja) フッ化リン酸ガラス
JP2006342045A (ja) 銅(ii)酸化物を含有するアルミノリン酸ガラス及び光フィルタリングにおけるその使用
TW201311601A (zh) 化學強化用玻璃及玻璃框體
TW201404757A (zh) 有色玻璃
JPWO2008129763A1 (ja) ガラス偏光子およびその製造方法
JP5672300B2 (ja) 近赤外線カットフィルタガラスの製造方法
CN108423986B (zh) 一种硼硅酸盐玻璃、防光晕输入窗玻璃及其制备方法
CN110240402B (zh) 一种环保型透深紫外硼硅酸盐玻璃及其制备方法、应用
JP2013253013A (ja) 光学ガラス
JPWO2017006998A1 (ja) ガラス、光学ガラス、リン酸塩光学ガラス、研磨用ガラス素材、プレス成形用ガラス素材および光学素子
JP2007290886A (ja) 酸化銅(ii)を含んでいるアルミノリン酸塩ガラスおよび光フィルタリングのためのそれらの使用
WO2021128656A1 (zh) 紫外波段高透抗辐射光学玻璃及其制备方法
WO2016159362A1 (ja) ガラス物品
WO2017094869A1 (ja) ガラス
WO2019037559A1 (zh) 一种高透光率且不影响红外截止的光学玻璃
JP2014024748A (ja) 光学ガラス、プレス成形用ガラス素材および光学素子
JP2014024749A (ja) 光学ガラス、プレス成形用ガラス素材および光学素子
CN108367969A (zh) 具有锐截止的光致变色玻璃
JP2022500334A (ja) 高屈折率の近赤外吸収フィルターガラス
CN105923991B (zh) 光学玻璃、其的制备方法及应用
US20160083290A1 (en) Glass for ir-cut filter
TWI735451B (zh) 玻璃、光學玻璃、抛光用玻璃材料、壓製成型用玻璃材料及光學元件
JP2852462B2 (ja) 着色ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847859

Country of ref document: EP

Kind code of ref document: A1