WO2019035269A1 - 磁気センサ - Google Patents
磁気センサ Download PDFInfo
- Publication number
- WO2019035269A1 WO2019035269A1 PCT/JP2018/022373 JP2018022373W WO2019035269A1 WO 2019035269 A1 WO2019035269 A1 WO 2019035269A1 JP 2018022373 W JP2018022373 W JP 2018022373W WO 2019035269 A1 WO2019035269 A1 WO 2019035269A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic
- pattern
- magnetoresistive element
- insulating layer
- pattern portion
- Prior art date
Links
- 230000035945 sensitivity Effects 0.000 claims abstract description 39
- 230000002093 peripheral effect Effects 0.000 claims description 45
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 238000001514 detection method Methods 0.000 abstract description 41
- 238000009413 insulation Methods 0.000 abstract 1
- 239000004065 semiconductor Substances 0.000 description 20
- 239000000758 substrate Substances 0.000 description 19
- 230000004907 flux Effects 0.000 description 18
- 239000000696 magnetic material Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 229910000990 Ni alloy Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910000889 permalloy Inorganic materials 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910000976 Electrical steel Inorganic materials 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910000815 supermalloy Inorganic materials 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
Definitions
- the present invention relates to a magnetic sensor, and more particularly to a magnetic sensor including a magnetoresistive element.
- JP-A-2013-44641 (patent document 1) and WO 2016/013345 (patent document 2).
- the magnetic sensor described in Patent Document 1 includes a sensor circuit unit.
- the sensor circuitry comprises a first series circuit and a second series circuit.
- the first series circuit the first magnetoresistance element and the third magnetoresistance element are connected in series.
- the second series circuit the second magnetoresistance element and the fourth magnetoresistance element are connected in series.
- the sensor circuit unit is configured of a bridge circuit in which a first series circuit and a second series circuit are connected in parallel.
- each of the first magnetoresistance element, the second magnetoresistance element, the third magnetoresistance element, and the fourth magnetoresistance element is covered with an insulating layer.
- a magnetic layer made of a magnetic material is formed on the surface of each of the third and fourth magnetoresistive elements with an insulating layer interposed therebetween.
- the magnetic sensor described in Patent Document 2 includes a first magnetoresistive element and a second magnetoresistive element having a smaller rate of change in resistance than the first magnetoresistive element.
- the first magnetoresistance element which is a so-called magnetosensitive element, includes a pattern arranged concentrically.
- the to-be-measured magnetic field is collected by the magnetic member and the magnetic field distribution becomes uneven, so that the fluctuation of the detection sensitivity of the magnetic sensor due to the direction of the to-be-measured magnetic field can be suppressed. There is room.
- the present invention has been made in view of the above problems, and provides a magnetic sensor in which the fluctuation of detection sensitivity due to the direction of the magnetic field to be measured caused by the magnetic member collecting the magnetic field to be measured is suppressed. With the goal.
- a magnetic sensor comprises a first magnetic resistance element, a second magnetic resistance element, an insulating layer, and a second magnetic member different from the first magnetic member and the first magnetic member. And at least a first magnetic member.
- the second magnetoresistance element is electrically connected to the first magnetoresistance element to form a bridge circuit.
- the insulating layer covers the first magnetoresistive element and the second magnetoresistive element.
- the first magnetic member and the second magnetic member are located on the insulating layer.
- the first magnetoresistive element has at least the outer periphery of the outer periphery and the inner periphery.
- the first magnetic member is located in an area inside the outer peripheral edge of the first magnetoresistive element as viewed in the direction orthogonal to the insulating layer.
- the second magnetoresistive element is located in a region inside the inner peripheral edge of the first magnetoresistive element and viewed from the direction perpendicular to the insulating layer, and is covered with the first magnetic member or the first magnetoresistive element
- the second magnetic member is located in a region outside the outer peripheral edge of the element.
- the number of formation of the first magnetic member or the sum of the number of formation of the first magnetic member and the number of formation of the second magnetic member is two or more.
- the first magnetoresistive element is, as viewed in a direction perpendicular to the insulating layer, the inside of the region sandwiched between the adjacent magnetic members of the first magnetic member and the second magnetic member. And a second pattern portion located outside the area. In each of the first pattern portion and the second pattern portion, the detection sensitivity in the first magnetoresistance element is equalized as compared to the case where each of the first pattern portion and the second pattern portion has the same pattern shape. To have different pattern shapes.
- a magnetic sensor includes a first magnetoresistive element, a second magnetoresistive element, an insulating layer, and two or more first magnetic members.
- the second magnetoresistance element is electrically connected to the first magnetoresistance element to form a bridge circuit.
- the insulating layer covers the first magnetoresistive element and the second magnetoresistive element.
- the first magnetic member is located on the insulating layer.
- the first magnetoresistive element has an outer peripheral edge and an inner peripheral edge. The first magnetic member is located in an area inside the outer peripheral edge of the first magnetoresistive element as viewed in the direction orthogonal to the insulating layer.
- the second magnetoresistive element is covered with the first magnetic member at a region inside the inner peripheral edge of the first magnetoresistive element when viewed in the direction orthogonal to the insulating layer.
- the first magnetoresistive element includes a first pattern portion located inside a region sandwiched between adjacent first magnetic members as viewed in a direction perpendicular to the insulating layer, and the first pattern portion. And a second pattern portion located outside. Each of the first pattern portion and the second pattern portion has a pattern shape different from each other.
- a magnetic sensor comprises a first magnetoresistive element, a second magnetoresistive element, an insulating layer, at least one first magnetic member and at least one second magnetic member. .
- the second magnetoresistance element is electrically connected to the first magnetoresistance element to form a bridge circuit.
- the insulating layer covers the first magnetoresistive element and the second magnetoresistive element.
- the first magnetic member and the second magnetic member are located on the insulating layer.
- the first magnetoresistance element has an outer peripheral edge. The first magnetic member is located in an area inside the outer peripheral edge of the first magnetoresistive element as viewed in the direction orthogonal to the insulating layer.
- the second magnetoresistive element is located in a region outside the outer peripheral edge of the first magnetoresistive element and is covered with the second magnetic member.
- the first magnetoresistive element is, as viewed in a direction perpendicular to the insulating layer, the inside of the region sandwiched between the adjacent magnetic members of the first magnetic member and the second magnetic member.
- a second pattern portion located outside the area. Each of the first pattern portion and the second pattern portion has a pattern shape different from each other.
- a magnetic sensor comprises a first magnetoresistive element, a second magnetoresistive element, an insulating layer, and at least two magnetic members.
- the second magnetoresistance element is electrically connected to the first magnetoresistance element to form a bridge circuit.
- the insulating layer covers the first magnetoresistive element and the second magnetoresistive element.
- At least two magnetic members are located on the insulating layer.
- the second magnetoresistive element is covered by at least a portion of at least two magnetic members as viewed in a direction perpendicular to the insulating layer.
- the first magnetoresistive element is positioned within a region sandwiched between adjacent magnetic members of the at least two magnetic members, as viewed in the direction orthogonal to the insulating layer.
- each of the first pattern portion and the second pattern portion the detection sensitivity in the first magnetoresistance element is equalized as compared to the case where each of the first pattern portion and the second pattern portion has the same pattern shape. To have different pattern shapes.
- the first pattern portion and the second pattern portion have different line widths of the pattern.
- the first pattern portion and the second pattern portion have different numbers of patterns.
- the present invention it is possible to suppress the fluctuation of the detection sensitivity of the magnetic sensor due to the direction of the magnetic field to be measured which is caused by the magnetic member collecting the magnetic field to be measured.
- FIG. 1 is a perspective view showing the configuration of a magnetic sensor according to Embodiment 1 of the present invention.
- FIG. 2 is a plan view of the magnetic sensor of FIG. 1 as viewed in the direction of arrow II.
- FIG. 3 is an equivalent circuit diagram of the magnetic sensor according to the first embodiment of the present invention.
- the outer edge of the first magnetic member 40 described later is indicated by a dotted line.
- the width direction of the circuit board 100 described later is shown as the X-axis direction, the length direction of the circuit board 100 as the Y-axis direction, and the thickness direction of the circuit board 100 as the Z-axis direction.
- illustration of a differential amplifier, a temperature compensation circuit, and the like, which will be described later, is omitted.
- the magnetic sensor 1 As shown in FIGS. 1 and 2, the magnetic sensor 1 according to Embodiment 1 of the present invention includes a circuit board 100 and two first magnetic members 40 provided on the circuit board 100.
- Circuit board 100 includes a semiconductor substrate 110.
- the four magnetoresistance elements consist of two sets of first magnetoresistance elements and second magnetoresistance elements.
- the magnetic sensor 1 includes a first magnetoresistance element 120a and a second magnetoresistance element 130a, and a first magnetoresistance element 120b and a second magnetoresistance element 130b.
- the first magnetoresistance element 120a and the second magnetoresistance element 130a constitute one set.
- the first magnetoresistance element 120 b and the second magnetoresistance element 130 b constitute one set.
- the magnetic sensor 1 includes the two sets of the first and second magnetoresistance elements, but the invention is not limited thereto, and at least one set of the first and second magnetoresistance elements. It is sufficient if the element is included.
- the circuit board 100 is configured with a half bridge circuit.
- Each of the first magnetoresistive elements 120a and 120b and the second magnetoresistive elements 130a and 130b is an AMR (Anisotropic Magneto Resistance) element. Note that each of the first magnetoresistance elements 120a and 120b and the second magnetoresistance elements 130a and 130b is replaced with an AMR element, and a GMR (Giant Magneto Resistance) element, a TMR (Tunnel Magneto Resistance) element, a BMR (Ballistic Magneto Resistance) Or a magnetoresistive element such as a Colossal Magneto Resistance (CMR) element.
- AMR Analog Magnetotropic Magneto Resistance
- the second magnetoresistance element 130a is magnetically shielded by the first magnetic member 40 as described later, and therefore, the magnetic field in the Z axis direction (vertical magnetic field) and the magnetic field in the X axis direction and the Y axis direction (horizontal magnetic field) And so-called fixed resistance.
- the first magnetoresistance element 120 a is a so-called magnetosensitive resistance whose electric resistance value changes when an external magnetic field is applied.
- the first magnetoresistance element 120 b is a so-called magnetosensitive resistance whose electric resistance value changes when an external magnetic field is applied.
- the first magnetoresistive elements 120 a and 120 b and the second magnetoresistive elements 130 a and 130 b are electrically connected to each other by a wiring provided on the semiconductor substrate 110. Specifically, the first magnetoresistive element 120 a and the second magnetoresistive element 130 a are connected in series by the wire 146. The first magnetoresistance element 120 b and the second magnetoresistance element 130 b are connected in series by the wiring 150.
- a middle point 140 On the semiconductor substrate 110 of the circuit board 100, a middle point 140, a middle point 141, a power supply terminal (Vcc) 142, a ground terminal (Gnd) 143 and an output terminal (Out) 144 are further provided.
- Vcc power supply terminal
- Gnd ground terminal
- Out output terminal
- Each of the first magnetoresistance element 120 a and the second magnetoresistance element 130 b is connected to the middle point 140. Specifically, the first magnetoresistive element 120 a and the midpoint 140 are connected by the wire 145, and the second magnetoresistive element 130 b and the midpoint 140 are connected by the wire 152.
- Each of the first magnetoresistance element 120 b and the second magnetoresistance element 130 a is connected to the middle point 141. Specifically, the first magnetoresistive element 120 b and the midpoint 141 are connected by the wire 149, and the second magnetoresistive element 130 a and the midpoint 141 are connected by the wire 148.
- the wiring 146 is connected to a power supply terminal (Vcc) 142 to which current is input.
- the wiring 150 is connected to the ground terminal (Gnd) 143.
- the magnetic sensor 1 further includes a differential amplifier 160, a temperature compensation circuit 161, a latch and switch circuit 162, and a complementary metal oxide semiconductor (CMOS) driver 163.
- CMOS complementary metal oxide semiconductor
- the differential amplifier 160 has an input end connected to each of the midpoints 140 and 141 and an output end connected to the temperature compensation circuit 161. Also, the differential amplifier 160 is connected to each of the power supply terminal (Vcc) 142 and the ground terminal (Gnd) 143.
- the output terminal of the temperature compensation circuit 161 is connected to the latch and switch circuit 162. Also, the temperature compensation circuit 161 is connected to each of the power supply terminal (Vcc) 142 and the ground terminal (Gnd) 143.
- An output end of the latch and switch circuit 162 is connected to the CMOS driver 163.
- the latch and switch circuit 162 is connected to each of the power supply terminal (Vcc) 142 and the ground terminal (Gnd) 143.
- the output terminal of the CMOS driver 163 is connected to the output terminal (Out) 144.
- the CMOS driver 163 is connected to each of the power supply terminal (Vcc) 142 and the ground terminal (Gnd) 143.
- the magnetic sensor 1 By having the above-described circuit configuration, the magnetic sensor 1 generates a potential difference depending on the strength of the external magnetic field between the midpoint 140 and the midpoint 141. When this potential difference exceeds a preset detection level, a signal is output from the output terminal (Out) 144.
- FIG. 4 is a cross-sectional view showing the laminated structure of the connection portion between the magnetoresistive element and the wiring on the circuit board of the magnetic sensor according to Embodiment 1 of the present invention. In FIG. 4, only the connection portion between the region R functioning as a magnetoresistive element and the region L functioning as a wire is illustrated.
- the first magnetoresistance elements 120a and 120b and the second magnetoresistance elements 130a and 130b are made of a semiconductor substrate 110 made of Si or the like on the surface of which an SiO 2 layer or Si 3 N 4 layer is provided. It is provided on top.
- the first magnetoresistance elements 120a and 120b and the second magnetoresistance elements 130a and 130b are formed on the semiconductor substrate 110 by patterning the magnetic layer 10 made of an alloy containing Ni and Fe by ion milling. It is formed by The thickness of the magnetic layer 10 is, for example, 0.04 ⁇ m.
- the wirings 145, 146, 148, 149, 150, and 152 are formed by patterning the conductive layer 20 provided on the semiconductor substrate 110 and made of Au or Al by wet etching.
- the conductive layer 20 is located immediately above the magnetic layer 10 in the region L functioning as a wire, and is not provided in the region R functioning as a magnetoresistive element. Therefore, as shown in FIG. 4, the end of the conductive layer 20 is located immediately above the magnetic layer 10 in the connection portion between the region R functioning as a magnetoresistive element and the region L functioning as a wire. .
- Each of middle point 140, middle point 141, power supply terminal (Vcc) 142, ground terminal (Gnd) 143 and output terminal (Out) 144 is formed of conductive layer 20 located directly above semiconductor substrate 110. That is, each of the midpoint 140, the midpoint 141, the power supply terminal (Vcc) 142, the ground terminal (Gnd) 143, and the output terminal (Out) 144 is formed of a pad provided on the semiconductor substrate 110.
- a Ti layer not shown is provided immediately above the conductive layer 20.
- An insulating layer 30 made of SiO 2 or the like is provided to cover the magnetic layer 10 and the conductive layer 20. That is, the insulating layer 30 covers the first magnetoresistive elements 120a and 120b and the second magnetoresistive elements 130a and 130b.
- FIG. 5 is a plan view showing a pattern of the first magnetoresistive element of the magnetic sensor according to Embodiment 1 of the present invention.
- the first magnetoresistive element 120a, the pattern 120 and 120b when viewed from a direction perpendicular to the insulating layer 30, the diameter of the virtual circle C 1 along the circumference of the virtual circle C 1 It includes four first unit patterns arranged in a direction and connected to each other.
- the direction orthogonal to the insulating layer 30 is the Z-axis direction, which is parallel to the direction orthogonal to the top surface of the semiconductor substrate 110.
- Each of the four first unit pattern is located along a virtual C-shaped C 11 a portion where the wiring 146,148,150,152 are located at the circumference of the virtual circle C 1 is opened.
- Each of the four first unit pattern is a C-shaped pattern 121 disposed concentrically so as to be arranged in a radial direction of the virtual circle C 1 along a virtual C-shaped C 11.
- C-shaped pattern 121 are connected to each other alternately from the center of the virtual circle C 1 and the one end and the other end in order.
- the C-shaped patterns 121 whose one ends are connected to each other are connected to each other by a semi-circular pattern 122.
- the C-shaped patterns 121 whose other ends are connected to each other are connected to each other by a semi-circular pattern 123.
- the pattern 120 of the first magnetoresistance elements 120a and 120b includes two semicircular arc patterns 122 and one semicircular arc pattern 123. Thus, four C-shaped patterns 121 are connected in series.
- the semi-arc shaped patterns 122 and 123 do not include linear extending portions, and are formed only of curved portions.
- An end portion of the C-shaped pattern located on the outermost side from the center of the virtual circle C 1 among the four C-shaped patterns 121, the end portion not connected to the semi-circular pattern 122 is a wiring made of the conductive layer 20 It is connected to 145 or the wiring 149.
- the virtual circle C 1 of the C-shaped pattern located on the innermost side from the center, the end portion on the side not connected to the semicircular pattern 122 of the four C-shaped pattern 121, the conductive layer 20 , And is connected to the wire 146 or the wire 150.
- the inner peripheral edge of the C-shaped pattern 121 located at the innermost side from the center of the virtual circle C 1 among the four C-shaped patterns 121 is the inner peripheral edge of the first magnetoresistance elements 120 a and 120 b.
- the first magnetoresistance element 120 a and the first magnetoresistance element 120 b have different circumferential directions such that the virtual C-shape C 11 has a different orientation. That is, the first magnetoresistance element 120 a and the first magnetoresistance element 120 b have different circumferential directions of the pattern 120 such that the C-shaped patterns 121 have different directions.
- the first magnetoresistive element 120 a and the first magnetoresistive element 120 b have the circumferential direction of the pattern 120 different by 90 ° such that the C-shaped patterns 121 are different from each other by 90 °. .
- FIG. 6 is a plan view showing a pattern of a second magnetoresistive element of the magnetic sensor according to Embodiment 1 of the present invention.
- the second magnetoresistance element 130a is seen from a direction perpendicular to the insulating layer 30, situated in the center of the virtual circle C 1, it is surrounded by a first magnetoresistive element 120a
- the second magnetoresistive element 130 b is located on the center side of the imaginary circle C 1 when viewed in the direction orthogonal to the insulating layer 30 and is surrounded by the first magnetoresistive element 120 b.
- the second magnetoresistive element 130 a is located inside the inner peripheral edge of the first magnetoresistive element 120 a when viewed in the direction orthogonal to the insulating layer 30, and the second magnetoresistive element 130 b is located on the insulating layer 30. It is located inside the inner peripheral edge of the 1st magnetoresistive element 120b seeing from the orthogonal direction.
- Second magnetoresistance element 130a is connected to the wiring 146, 148 made of a conductive layer 20 provided from the central side of the imaginary circle C 1 to the outside of the virtual circle C 1.
- Second magnetoresistance element 130b is connected to the wiring 150, 152 made of a conductive layer 20 provided from the central side of the imaginary circle C 1 to the outside of the virtual circle C 1.
- the second magnetoresistance elements 130 a and 130 b have a double spiral pattern 130 when viewed in the direction orthogonal to the insulating layer 30.
- the double spiral pattern 130 has one spiral pattern 131 which is one of two second unit patterns, the other spiral pattern 132 which is the other one of two second unit patterns, And an inverted S-shaped pattern 133 connecting one spiral pattern 131 and the other spiral pattern 132 at the center of the double spiral pattern 130.
- the reverse S-shaped pattern 133 does not include a linear extending portion, and is formed only of a curved portion.
- the second magnetoresistance element 130 a and the second magnetoresistance element 130 b have different circumferential directions of the double spiral pattern 130 such that the directions of the inverted S-shaped patterns 133 are different from each other. ing.
- the second magnetoresistive element 130 a and the second magnetoresistive element 130 b have a circumferential direction of the double spiral pattern 130 such that the directions of the inverted S-shaped patterns 133 are different from each other by 90 °. 90 ° different.
- the first magnetoresistance elements 120 a and 120 b have a C-shaped pattern 121.
- the C-shaped pattern 121 is configured by an arc.
- the C-shaped patterns 121 adjacent to each other are connected to each other by a semi-circular pattern 122 or a semi-circular pattern 123.
- the anisotropy of the magnetic field detection is reduced.
- the direction of the C-shaped pattern 121 of the first magnetoresistive element 120 a and the direction of the C-shaped pattern 121 of the first magnetoresistive element 120 b are different from each other.
- the different orientations of the circumferential direction 120 increase the isotropy of magnetic field detection.
- the magnetic sensor 1 since the second magnetoresistance elements 130a and 130b are disposed inside the first magnetoresistance elements 120a and 120b, the magnetic sensor 1 can be miniaturized. Further, in the magnetic sensor 1, the circuit board 100 is manufactured by a simple manufacturing process because it is not necessary to three-dimensionally draw the wiring connecting the first magnetoresistance elements 120a and 120b and the second magnetoresistance elements 130a and 130b. It is possible.
- first magnetic members 40 are provided on the insulating layer 30, and the two first magnetic members 40 are arranged side by side in the Y-axis direction.
- the thickness of the first magnetic member 40 is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more and 150 ⁇ m or less. When the thickness of the first magnetic member 40 is 10 ⁇ m or more, the perpendicular magnetic field deflected in the substantially horizontal direction by the first magnetic member 40 can be detected by the first magnetoresistance elements 120 a and 120 b.
- the thickness of the first magnetic member 40 is 20 ⁇ m or more, since the perpendicular magnetic field can be effectively deflected by the first magnetic member 40 in the substantially horizontal direction, the first magnetic resistance elements 120a and 120b are weaker. Perpendicular magnetic field can be detected. When the thickness of the first magnetic member 40 is 150 ⁇ m or less, it is possible to maintain the mass productivity of the magnetic sensor 1 by suppressing an increase in the formation time of the first magnetic member 40.
- the first magnetic member 40 has a circular outer shape when viewed in the direction orthogonal to the insulating layer 30 and is a region inside the outer peripheral edge of the first magnetoresistance elements 120 a and 120 b. It is located in Note that, with respect to the region inside the outer peripheral edge of the first magnetoresistance elements 120a and 120b, both ends of the outer peripheral edge of the first magnetoresistance elements 120a and 120b are connected by imaginary straight lines when viewed from the direction orthogonal to the insulating layer 30.
- first magnetic member 40 It is an area surrounded by It is preferable that a region inside the outer peripheral edge of the first magnetoresistance elements 120a and 120b and a half or more of the first magnetic member 40 overlap with each other when viewed from the direction orthogonal to the insulating layer 30, and the first magnetic member More preferably, 2/3 or more of 40 overlap.
- the first magnetic member 40 is located in a region inside the inner peripheral edge of the first magnetoresistive elements 120 a and 120 b when viewed from the direction orthogonal to the insulating layer 30. Note that with the region inside the inner peripheral edge of the first magnetoresistance elements 120a and 120b, both ends of the inner peripheral edge of the first magnetoresistance elements 120a and 120b are connected by imaginary straight lines when viewed from the direction orthogonal to the insulating layer 30. It is an area surrounded by The first magnetic member 40 may be located in a region including the region on the inner peripheral edge of the first magnetoresistance elements 120 a and 120 b and the region inside the inner peripheral edge as viewed from the direction orthogonal to the insulating layer 30.
- a region inside the inner peripheral edge of the first magnetoresistance elements 120a and 120b and a half or more of the first magnetic member 40 overlap with each other when viewed from the direction orthogonal to the insulating layer 30, and the first magnetic member More preferably, 2/3 or more of 40 overlap.
- the first magnetic member 40 is concentric with the outer peripheral edge of the first magnetoresistance elements 120 a and 120 b when viewed from the direction orthogonal to the insulating layer 30.
- the first magnetic member 40 is a second magnetoresistive element of the first magnetoresistive elements 120 a and 120 b and the second magnetoresistive elements 130 a and 130 b when viewed from the direction orthogonal to the insulating layer 30. It covers only 130a and 130b. Therefore, when viewed from the direction orthogonal to the insulating layer 30, the first magnetic member 40 is surrounded by the first magnetoresistive elements 120a and 120b.
- the first magnetic member 40 is made of a magnetic material having high magnetic permeability and high saturation magnetic flux density, such as electromagnetic steel, mild steel, silicon steel, permalloy, supermalloy, nickel alloy, iron alloy or ferrite. In addition, these magnetic materials preferably have low coercivity.
- the magnetic permeability increases at high temperatures and decreases at low temperatures.
- the resistance of the first magnetoresistance elements 120a and 120b The temperature dependency of the rate of change can be reduced.
- the first magnetic member 40 is formed, for example, by plating. Another thin layer may be provided between the insulating layer 30 and the first magnetic member 40.
- the first magnetic member 40 includes, for example, an adhesion layer containing Ti (titanium) and Au (gold) between the insulating layer 30 and the first magnetic member 40. At least one of the electrode reaction layers may be formed.
- the outer shape of the first magnetic member 40 is a cylindrical shape having a diameter of 140 ⁇ m and a thickness of 100 ⁇ m.
- the distance between the first magnetic members 40 specifically, the distance between the centers of the first magnetic members 40 when viewed from the direction perpendicular to the insulating layer 30 is 250 ⁇ m.
- the first magnetic member 40 was made of permalloy.
- the strength of the applied horizontal magnetic field was 2.0 mT.
- FIG. 7 is a contour diagram showing the results of simulation analysis of the magnetic flux density distribution when a horizontal magnetic field in the Y-axis direction is applied to the magnetic sensor according to Embodiment 1 of the present invention. In FIG. 7, it has shown in planar view similar to FIG.
- the magnetic flux density is a line with 0.4 mT E 1 , a line with 0.8 mT E 2 , a line with 1.2 mT E 3 , a line with 1.6 mT E 4 , 2
- a line of 0 mT is E 5
- a line of 2.4 mT is E 6
- a line of 2.8 mT is E 7
- a line of 3.2 mT is E 8
- a line of 3.6 mT is E 9 ing.
- the magnetic sensor As shown in FIG. 7, in a region sandwiched between the first magnetic members 40, they are separated from the first magnetic member 40 compared to other regions located around the first magnetic member 40. However, the magnetic flux density was maintained high. As described above, in the magnetic sensor provided with the magnetic member, the magnetic field distribution becomes uneven due to the influence of the magnetic member, so that the detection sensitivity of the magnetic sensor tends to fluctuate depending on the direction of the measured magnetic field.
- the number and arrangement of the magnetic members are not limited to the above.
- the magnetic flux density tends to be maintained high in the region sandwiched between the first magnetic members 40, but the arrangement of the plurality of magnetic members and the direction of the measured magnetic field Depending on the relationship between the two magnetic members, the magnetic flux density of the region sandwiched between the adjacent magnetic members is not necessarily kept high. Conversely, in the region sandwiched between the adjacent magnetic members, The magnetic flux density may be lower than other regions located around the magnetic member.
- the patterns 120 of the first magnetoresistance elements 120a and 120b are viewed in the direction perpendicular to the insulating layer 30, as shown in the Y axis direction. And a second pattern portion 120S located outside the region T.
- the first pattern portion 120T is located inside the region T sandwiched between the first magnetic members 40 arranged adjacent to each other.
- Each of the first pattern portion 120T and the second pattern portion 120S has the first magnetoresistive element 120a, 120b compared to when each of the first pattern portion 120T and the second pattern portion 120S has the same pattern shape. And have different pattern shapes so that the detection sensitivity at.
- the line widths of the patterns of the first pattern unit 120T and the second pattern unit 120S are different from each other. Specifically, the line width of the first pattern portion 120T is wider than the line width of the second pattern portion 120S. As a result, the detection sensitivity of the first pattern portion 120T to the horizontal magnetic field in the Y-axis direction is lowered, so that the detection sensitivities of the first magnetoresistance elements 120a and 120b are equalized.
- the region T sandwiched between the adjacent first magnetic members 40 is closer than the other regions located around the first magnetic members 40.
- the line width of the first pattern portion 120T is made narrower than the line width of the second pattern portion 120S.
- the detection sensitivity of the first pattern portion 120T to the horizontal magnetic field in the Y-axis direction is increased, so that the detection sensitivity in the first magnetoresistance elements 120a and 120b is equalized.
- the magnetic sensor 1 can suppress the fluctuation of the detection sensitivity of the magnetic sensor 1 due to the direction of the magnetic field to be measured, which is generated by the first magnetic member 40 that collects the magnetic field to be measured.
- the present invention is not limited to this aspect, and the line width of the first pattern portion 120T may be intermittently changed, for example.
- the line width of the first pattern portion 120T may gradually change.
- Embodiment 2 of the present invention a magnetic sensor according to Embodiment 2 of the present invention will be described with reference to the drawings.
- the magnetic sensor according to the second embodiment of the present invention is different from the magnetic sensor 1 according to the first embodiment of the present invention mainly in the pattern of the first magnetoresistive element, so the magnetic sensor according to the first embodiment of the present invention Description of the same configuration as that of the sensor 1 will not be repeated.
- FIG. 8 is a plan view showing the configuration of a magnetic sensor according to Embodiment 2 of the present invention.
- FIG. 9 is a plan view showing a pattern of the first magnetoresistive element of the magnetic sensor according to Embodiment 2 of the present invention.
- the magnetic sensor 2 according to Embodiment 2 of the present invention includes a circuit board 200 and two first magnetic members 40 provided on the circuit board 200.
- the patterns 220 of the first magnetoresistance elements 220a and 220b of the magnetic sensor 2 according to Embodiment 2 of the present invention are viewed in the Y axis direction when viewed from the direction orthogonal to the insulating layer 30. It includes a first pattern portion 220T located inside the region T sandwiched between the first magnetic members 40 arranged adjacent to each other, and a second pattern portion 220S located outside the region T. Each of the first pattern portion 220T and the second pattern portion 220S is different from the case where each of the first pattern portion 220T and the second pattern portion 220S has the same pattern shape, the first magnetoresistive element 220a, 220b. And have different pattern shapes so that the detection sensitivity at.
- the first pattern unit 220T and the second pattern unit 220S have different numbers of patterns. Specifically, the number of patterns of the first pattern portion 220T is smaller than the number of patterns of the second pattern portion 220S. As a result, the detection sensitivity of the first pattern portion 220T to the horizontal magnetic field in the Y-axis direction is lowered, so that the detection sensitivity in the first magnetoresistance elements 220a and 220b is equalized.
- the region T sandwiched between the adjacent first magnetic members 40 is closer than the other regions located around the first magnetic members 40.
- the number of patterns of the first pattern portion 220T is made larger than the number of patterns of the second pattern portion 220S. Thereby, the detection sensitivity of the first pattern portion 220T with respect to the horizontal magnetic field in the Y-axis direction is increased, and therefore, the detection sensitivity of the first magnetoresistance elements 220a and 220b is equalized.
- the magnetic sensor 2 can suppress the fluctuation of the detection sensitivity of the magnetic sensor 2 due to the direction of the magnetic field to be measured, which is generated by the first magnetic member 40 that collects the magnetic field to be measured.
- the magnetic sensor according to Embodiment 3 of the present invention further includes a pattern of each of the first and second magnetoresistive elements, an arrangement of the second magnetoresistive element, and a second magnetic member. Is mainly different from the magnetic sensor 1 according to the first embodiment of the present invention, the description will not be repeated for the same configuration as the magnetic sensor 1 according to the first embodiment of the present invention.
- FIG. 10 is a perspective view showing the configuration of a magnetic sensor according to Embodiment 3 of the present invention.
- 11 is a plan view of the magnetic sensor of FIG. 10 as viewed in the direction of arrow XI.
- the magnetic sensor 3 according to the third embodiment of the present invention includes a circuit board 300, two first magnetic members 40 and two second magnetic members 40 provided on the circuit board 300. And a magnetic member 50.
- the circuit board 300 of the magnetic sensor 3 is provided with four magnetoresistive elements which are electrically connected to each other by wires to form a Wheatstone bridge type bridge circuit.
- the four magnetoresistance elements consist of two sets of first magnetoresistance elements and second magnetoresistance elements.
- the magnetic sensor 3 includes a first magnetoresistive element 320a and a second magnetoresistive element 330a, and a first magnetoresistive element 320b and a second magnetoresistive element 330b.
- the first magnetoresistance element 320a and the second magnetoresistance element 330a constitute one set.
- the first magnetoresistance element 320 b and the second magnetoresistance element 330 b constitute one set.
- FIG. 12 is a plan view showing a pattern of the first magnetoresistive element of the magnetic sensor according to Embodiment 3 of the present invention.
- the first magnetoresistive elements 320 a and 320 b have a double spiral pattern 320 when viewed in the direction orthogonal to the insulating layer 30.
- the two double spiral patterns 320 are concentrically arranged in the radial direction of the imaginary circle along the circumference of the imaginary circle and viewed from the direction orthogonal to the insulating layer 30 and connected to each other. Includes unit patterns.
- the double spiral pattern 320 includes one spiral pattern 321 which is a first unit pattern, the other spiral pattern 322 which is a first unit pattern, and one spiral pattern 321 and the other spiral pattern 322. Are connected at the central portion of the double spiral pattern 320.
- the S-shaped pattern 323 does not include a linear extending portion, and is formed only of a curved portion.
- the double spiral pattern 320 has redundant portions 324 and 325 for adjusting the length of the double spiral pattern 320 at the end of each spiral pattern 321 and the other spiral pattern 322.
- the length adjustment redundant portions 324 and 325 are configured by bending and folding the end portions of one spiral pattern 321 and the other spiral pattern 322, respectively.
- the length adjustment redundant portion 324 provided in one spiral pattern 321 and the length adjustment redundant portion 325 provided in the other spiral pattern 322 are mutually different in the radial direction of the double spiral pattern 320. It is located on the opposite side.
- Each of the length adjustment redundant portions 324 and 325 does not include a linear extending portion, and is configured only by a curved portion.
- the double spiral pattern 320 is connected to the conductive layer 20 forming the wiring in the length adjustment redundant portions 324 and 325.
- the electric resistance value of the first magnetoresistance elements 320a and 320b can be adjusted.
- the circumferential direction of the double spiral pattern 320 is different so that the directions of the S-shaped patterns 323 are different from each other. There is.
- the circumferential direction of the double spiral pattern 320 is 90 so that the orientations of the S-shaped patterns 323 are different from each other by 90 °. ° is different.
- the double spiral pattern 320 may be wound in the reverse direction, and in this case, the central portion of the double spiral pattern 320 is formed of an inverted S-shaped pattern including only a curved portion. That is, one spiral pattern 321 and the other spiral pattern 322 are connected by the reverse S-shaped pattern.
- the second magnetoresistive elements 330 a and 330 b are located outside the outer peripheral edge of the first magnetoresistive elements 320 a and 320 b when viewed in the direction orthogonal to the insulating layer 30.
- the second magnetoresistance elements 330a and 330b have a plurality of bent portions and have a folded pattern shape.
- first magnetic members 40 and two second magnetic members 50 are disposed on the insulating layer 30.
- the thickness of each of the first magnetic member 40 and the second magnetic member 50 is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more and 150 ⁇ m or less. The thicknesses may be different from each other, but in the case where the thicknesses are the same, the two first magnetic members 40 and the two second magnetic members 50 are processed in the same step. The two first magnetic members 40 and the two second magnetic members 50 can be easily formed.
- the first magnetic member 40 has a circular outer shape when viewed in the direction orthogonal to the insulating layer 30, and is a region inside the outer peripheral edge of the first magnetoresistance elements 320a and 320b. It is located in In the present embodiment, the first magnetic member 40 is located concentrically with the outer peripheral edge of the first magnetoresistive elements 320 a and 320 b when viewed from the direction orthogonal to the insulating layer 30.
- the first magnetic member 40 when viewed from the direction perpendicular to the insulating layer 30, the first magnetic member 40 is the first magnetoresistive element of the first magnetoresistive elements 320a and 320b and the second magnetoresistive elements 330a and 330b. It covers only the central part of 320a and 320b. Therefore, as viewed in the direction orthogonal to the insulating layer 30, the first magnetic member 40 is surrounded by the outer peripheral portions of the first magnetoresistance elements 320a and 320b.
- the second magnetic member 50 covers only the second magnetoresistance elements 330a and 330b of the first magnetoresistance elements 320a and 320b and the second magnetoresistance elements 330a and 330b, as viewed from the direction orthogonal to the insulating layer 30. ing.
- the second magnetoresistive elements 330 a and 330 b are each positioned 7 ⁇ m away from the center of the second magnetic member 50 from the outer peripheral edge of the second magnetic member 50 as viewed in the direction orthogonal to the insulating layer 30. It is preferable to be located in the area.
- the second magnetic member 50 is made of a magnetic material having high magnetic permeability and high saturation magnetic flux density, such as electromagnetic steel, mild steel, silicon steel, permalloy, supermalloy, nickel alloy, iron alloy or ferrite. In addition, these magnetic materials preferably have low coercivity.
- the double spiral pattern 320 of the first magnetoresistance elements 320a and 320b is substantially viewed from the direction orthogonal to the insulating layer 30.
- a second pattern portion 320S positioned outside the regions T 1 to T 3 .
- the magnetic flux density is high even when separated from each of the first magnetic member 40 and the second magnetic member 50 as compared with other regions not sandwiched between the magnetic members. It was maintained.
- Each of the first pattern portion 320T and the second pattern portion 320S is different from the case where each of the first pattern portion 320T and the second pattern portion 320S has the same pattern shape, the first magnetoresistive element 320a, 320b. And have different pattern shapes so that the detection sensitivity at.
- the line widths of the patterns of the first pattern unit 320T and the second pattern unit 320S are different from each other. Specifically, the line width of the first pattern portion 320T is wider than the line width of the second pattern portion 320S. Thereby, the detection sensitivity of the first pattern portion 320T to the horizontal magnetic field in the X-axis direction and the Y-axis direction is lowered, so that the detection sensitivity in the first magnetoresistance elements 320a and 320b is equalized.
- the first pattern portion 320T may be different from one another.
- the line width of the first pattern portion 320T located inside the area T 2 is narrower than the line width of the second pattern portion 320S.
- the region T 3 sandwiched between the adjacent first magnetic member 40 and second magnetic member 50 is not sandwiched between the magnetic members. If the magnetic flux density is lower than the other regions, the line width of the first pattern portion 320T located inside the area T 3, is narrower than the line width of the second pattern portion 320S.
- the detection sensitivity of the first pattern portion 320T to the horizontal magnetic field in the X-axis direction or the Y-axis direction is enhanced, so that the detection sensitivity in the first magnetoresistance elements 320a and 320b is equalized.
- the detection sensitivity of the magnetic sensor 3 according to the direction of the measured magnetic field generated by the first magnetic member 40 and the second magnetic member 50 for collecting the measured magnetic field. Fluctuations can be suppressed.
- the present invention is not limited to this aspect, and for example, the line width of the first pattern portion 320T may be intermittently changed.
- the line width of the first pattern portion 320T may gradually change.
- Embodiment 4 a magnetic sensor according to Embodiment 4 of the present invention will be described with reference to the drawings.
- the magnetic sensor according to the fourth embodiment of the present invention is mainly characterized in that the first magnetoresistive element and the pattern of the second magnetoresistive element and the first magnetic member are not provided. Since the present embodiment is different from the magnetic sensor 1 according to the above, the description of the same configuration as the magnetic sensor 1 according to the first embodiment of the present invention will not be repeated.
- FIG. 13 is a plan view showing the configuration of the magnetic sensor according to Embodiment 4 of the present invention.
- the magnetic sensor 4 according to Embodiment 4 of the present invention includes a circuit board 400 and two second magnetic members 50 provided on the circuit board 400.
- the magnetic sensor 4 includes a first magnetoresistance element 420a and a second magnetoresistance element 430a, and a first magnetoresistance element 420b and a second magnetoresistance element 430b.
- Each of the first magnetoresistance elements 420a and 420b and the second magnetoresistance elements 430a and 430b is formed in a meander shape in which a long strip pattern and a short strip pattern are alternately connected.
- the shape of the magnetoresistive element is not limited to the meander shape.
- each of the first magnetoresistance elements 420a and 420b a long strip pattern extends along the X direction.
- Each of the first magnetoresistance elements 420a and 420b has the smallest resistance when a magnetic field in the Y direction is applied.
- each of the second magnetoresistance elements 430a and 430b a long strip pattern extends along the Y direction.
- Each of the second magnetoresistance elements 430a and 430b has the smallest resistance when a magnetic field in the X direction is applied.
- the first magnetoresistive element 420 a is located at the lower left of the semiconductor substrate 110
- the first magnetoresistive element 420 b is located at the upper right of the semiconductor substrate 110
- the second magnetoresistive element 430 a is located on the semiconductor substrate 110.
- the second magnetoresistive element 430 b is located at the upper right and the lower right of the semiconductor substrate 110.
- two second magnetic members 50 are arranged on the insulating layer 30 in a direction inclined 45 ° in each of the X-axis direction and the Y-axis direction.
- the second magnetic member 50 is formed to cover the whole of each of the second magnetoresistance elements 430a and 430b.
- the second magnetic member 50 in a portion covering the second magnetoresistance element 430a has a rectangular shape.
- the second magnetic member 50 in a portion covering the second magnetoresistance element 430b has a rectangular shape.
- the formation position of the second magnetic member 50 is not limited to the above, and it is sufficient to cover at least a part of the second magnetoresistive elements 430 a and 430 b when viewed from the direction orthogonal to the insulating layer 30.
- the second magnetoresistive elements 430 a and 430 b may be covered by at least a part of at least two second magnetic members 50 when viewed in the direction orthogonal to the insulating layer 30.
- the patterns of the first magnetoresistance elements 420 a and 420 b are arranged adjacent to each other when viewed from the direction orthogonal to the insulating layer 30. It includes a first pattern portion 420T located inside the region T sandwiched between the magnetic members 50, and a second pattern portion 420S located outside the region T.
- the region T sandwiched between the second magnetic members 50 arranged adjacent to each other is on two sides adjacent to each other in the two rectangular second magnetic members 50.
- the corner parts located are connected by a virtual straight line, it is a region sandwiched by two virtual straight lines.
- Each of the first pattern portion 420T and the second pattern portion 420S is different from the case where each of the first pattern portion 420T and the second pattern portion 420S have the same pattern shape, the first magnetoresistive element 420a, 420b. And have different pattern shapes so that the detection sensitivity at.
- the second pattern portion 420S goes from the second pattern portion 420S to the first pattern portion 420T side.
- the line width of the pattern is gradually widening.
- the region T between the adjacent second magnetic members 50 has a second magnetic property.
- the magnetic flux density is lower than that of the other region located around the body member 50, in the strip-like pattern extending along the X direction of the respective patterns of the first magnetoresistance elements 420a and 420b, The line width of the pattern is gradually narrowed from the side of the second pattern portion 420S toward the side of the first pattern portion 420T.
- the magnetic sensor 4 can suppress the fluctuation of the detection sensitivity of the magnetic sensor 4 due to the direction of the magnetic field to be measured, which is generated by the second magnetic member 50 collecting the magnetic field to be measured.
- Embodiment 5 a magnetic sensor according to Embodiment 5 of the present invention will be described with reference to the drawings.
- the magnetic sensor according to the fifth embodiment of the present invention is different from the magnetic sensor 4 according to the fourth embodiment of the present invention mainly in the pattern of the first magnetoresistive element, so the magnetic sensor according to the fourth embodiment of the present invention The description of the same configuration as that of the sensor 4 will not be repeated.
- FIG. 14 is a plan view showing the configuration of the magnetic sensor according to Embodiment 5 of the present invention.
- the magnetic sensor 5 according to the fifth embodiment of the present invention includes a circuit board 500 and two second magnetic members 50 provided on the circuit board 500.
- the magnetic sensor 5 includes a first magnetoresistance element 520a and a second magnetoresistance element 430a, and a first magnetoresistance element 520b and a second magnetoresistance element 430b.
- Each of the first magnetoresistance elements 520a and 520b and the second magnetoresistance elements 430a and 430b is formed in a meander shape in which a long strip pattern and a short strip pattern are alternately connected.
- the shape of the magnetoresistive element is not limited to the meander shape.
- each of the first magnetoresistance elements 520a and 520b a long strip pattern extends along the X direction.
- Each of the first magnetoresistance elements 520a and 520b has the smallest resistance when a magnetic field in the Y direction is applied.
- the first magnetoresistive element 520 a is located at the lower left of the semiconductor substrate 110
- the first magnetoresistive element 520 b is located at the upper right of the semiconductor substrate 110
- the second magnetoresistive element 430 a is located on the semiconductor substrate 110.
- the second magnetoresistive element 430 b is located at the upper right and the lower right of the semiconductor substrate 110.
- the patterns of the first magnetoresistance elements 520 a and 520 b are arranged adjacent to each other when viewed from the direction orthogonal to the insulating layer 30. It includes a first pattern portion 520T located inside the region T sandwiched between the magnetic members 50 and a second pattern portion 520S located outside the region T.
- Each of the first pattern portion 520T and the second pattern portion 520S is different from the case where each of the first pattern portion 520T and the second pattern portion 520S has the same pattern shape, the first magnetoresistive element 520a, 520b. And have different pattern shapes so that the detection sensitivity at.
- the first pattern portion 520T and the second pattern portion 520S have the line widths of the patterns. Are different from each other. Specifically, in the strip-like pattern extending along the X direction, the line width of the first pattern portion 520T is wider than the line width of the second pattern portion 520S. The line width of the first pattern portion 520T in the strip-like pattern extending along the X direction is wider as it is separated from the second pattern portion 520S.
- the region T between the adjacent second magnetic members 50 has a second magnetic property.
- the strip-like patterns extending along the X direction of the respective patterns of the first magnetoresistance elements 520a and 520b The line width of the first pattern portion 520T is made narrower than the line width of the second pattern portion 520S.
- the magnetic sensor 5 can suppress the fluctuation of the detection sensitivity of the magnetic sensor 5 due to the direction of the magnetic field to be measured, which is generated by the second magnetic member 50 collecting the magnetic field to be measured.
- the line width of the first pattern portion 520T is gradually changed in the strip pattern extending along the X direction.
- the present invention is not limited to this aspect.
- the line width of the first pattern portion 520T May be changed intermittently, or the line width of the first pattern portion 520T may be changed uniformly.
- the combinations of combinations may be combined with each other.
- the number of first magnetic members formed or the total of the number of first magnetic members formed and the number of second magnetic members formed may be two or more.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Measuring Magnetic Variables (AREA)
- Hall/Mr Elements (AREA)
Abstract
第1磁気抵抗素子(120a,120b)は、絶縁層に直交する方向から見て、少なくとも2つの磁性体部材(40)のうちの隣り合って配置されている磁性体部材(40)同士に挟まれている領域(T)の内部に位置する第1パターン部と、上記領域(T)の外部に位置する第2パターン部とを含む。第1パターン部および第2パターン部の各々は、第1パターン部および第2パターン部の各々が互いに同一のパターン形状を有する場合に比較して、第1磁気抵抗素子(120a,120b)における検出感度が平準化されるように、互いに異なるパターン形状を有する。
Description
本発明は、磁気センサに関し、特に、磁気抵抗素子を含む磁気センサに関する。
磁気センサの構成を開示した先行文献として、特開2013-44641号公報(特許文献1)および国際公開第2016/013345号(特許文献2)がある。
特許文献1に記載された磁気センサは、センサ回路部を備える。センサ回路部は、第1の直列回路と第2の直列回路とを備える。第1の直列回路においては、第1の磁気抵抗素子と第3の磁気抵抗素子とが直列接続されている。第2の直列回路においては、第2の磁気抵抗素子と第4の磁気抵抗素子とが直列接続されている。センサ回路部は、第1の直列回路と第2の直列回路とが並列接続されたブリッジ回路によって構成されている。
第1の磁気抵抗素子、第2の磁気抵抗素子、第3の磁気抵抗素子および第4の磁気抵抗素子の各々の表面は、絶縁層によって覆われている。第3の磁気抵抗素子および第4の磁気抵抗素子の各々の表面上には、絶縁層を挟んで、磁性材料からなる磁性体層が形成されている。
特許文献2に記載された磁気センサは、第1磁気抵抗素子、および、第1磁気抵抗素子より抵抗変化率が小さい第2磁気抵抗素子を備える。いわゆる感磁素子である第1磁気抵抗素子は、同心円状に配置されたパターンを含んでいる。
特許文献1に記載された磁気センサにおいては、被測定磁界が磁性体部材に集磁されてその磁界分布が不均一となるため、被測定磁界の方向による磁気センサの検出感度の変動を抑制できる余地がある。
特許文献2に記載された磁気センサにおいては、磁気抵抗素子のパターン形状によって磁界検出の等方性が向上されているが、磁性体層が設けられた場合については考慮されていない。
本発明は上記の問題点に鑑みてなされたものであって、被測定磁界を集磁する磁性体部材によって生じる、被測定磁界の方向による検出感度の変動が抑制された磁気センサを提供することを目的とする。
本発明の第1局面に基づく磁気センサは、第1磁気抵抗素子と、第2磁気抵抗素子と、絶縁層と、第1磁性体部材および第1磁性体部材とは異なる第2磁性体部材のうちの少なくとも第1磁性体部材とを備える。第2磁気抵抗素子は、第1磁気抵抗素子と電気的に接続されてブリッジ回路を構成する。絶縁層は、第1磁気抵抗素子および第2磁気抵抗素子を覆う。第1磁性体部材および第2磁性体部材は、絶縁層上に位置する。第1磁気抵抗素子は、外周縁および内周縁のうちの少なくとも外周縁を有する。第1磁性体部材は、絶縁層に直交する方向から見て、第1磁気抵抗素子の外周縁より内側の領域に位置している。第2磁気抵抗素子は、絶縁層に直交する方向から見て、第1磁気抵抗素子の内周縁より内側の領域に位置して第1磁性体部材で覆われている、または、第1磁気抵抗素子の外周縁より外側の領域に位置して第2磁性体部材で覆われている。第1磁性体部材の形成数、または、第1磁性体部材の形成数と第2磁性体部材の形成数との合計が、2以上である。第1磁気抵抗素子は、絶縁層に直交する方向から見て、第1磁性体部材および第2磁性体部材のうちの隣り合って配置されている磁性体部材同士に挟まれている領域の内部に位置する第1パターン部と、上記領域の外部に位置する第2パターン部とを含む。第1パターン部および第2パターン部の各々は、第1パターン部および第2パターン部の各々が互いに同一のパターン形状を有する場合に比較して、第1磁気抵抗素子における検出感度が平準化されるように、互いに異なるパターン形状を有する。
本発明の第2局面に基づく磁気センサは、第1磁気抵抗素子と、第2磁気抵抗素子と、絶縁層と、2つ以上の第1磁性体部材とを備える。第2磁気抵抗素子は、第1磁気抵抗素子と電気的に接続されてブリッジ回路を構成する。絶縁層は、第1磁気抵抗素子および第2磁気抵抗素子を覆う。第1磁性体部材は、絶縁層上に位置する。第1磁気抵抗素子は、外周縁および内周縁を有する。第1磁性体部材は、絶縁層に直交する方向から見て、第1磁気抵抗素子の外周縁より内側の領域に位置している。第2磁気抵抗素子は、絶縁層に直交する方向から見て、第1磁気抵抗素子の内周縁より内側の領域に位置して第1磁性体部材で覆われている。第1磁気抵抗素子は、絶縁層に直交する方向から見て、隣り合って配置されている第1磁性体部材同士に挟まれている領域の内部に位置する第1パターン部と、上記領域の外部に位置する第2パターン部とを含む。第1パターン部および第2パターン部の各々は、互いに異なるパターン形状を有する。
本発明の第3局面に基づく磁気センサは、第1磁気抵抗素子と、第2磁気抵抗素子と、絶縁層と、少なくとも1つの第1磁性体部材および少なくとも1つの第2磁性体部材とを備える。第2磁気抵抗素子は、第1磁気抵抗素子と電気的に接続されてブリッジ回路を構成する。絶縁層は、第1磁気抵抗素子および第2磁気抵抗素子を覆う。第1磁性体部材および第2磁性体部材は、絶縁層上に位置する。第1磁気抵抗素子は、外周縁を有する。第1磁性体部材は、絶縁層に直交する方向から見て、第1磁気抵抗素子の外周縁より内側の領域に位置している。第2磁気抵抗素子は、第1磁気抵抗素子の外周縁より外側の領域に位置して第2磁性体部材で覆われている。第1磁気抵抗素子は、絶縁層に直交する方向から見て、第1磁性体部材および第2磁性体部材のうちの隣り合って配置されている磁性体部材同士に挟まれている領域の内部に位置する第1パターン部と、上記領域の外部に位置する第2パターン部とを含む。第1パターン部および第2パターン部の各々は、互いに異なるパターン形状を有する。
本発明の第4局面に基づく磁気センサは、第1磁気抵抗素子と、第2磁気抵抗素子と、絶縁層と、少なくとも2つの磁性体部材とを備える。第2磁気抵抗素子は、第1磁気抵抗素子と電気的に接続されてブリッジ回路を構成する。絶縁層は、第1磁気抵抗素子および第2磁気抵抗素子を覆う。少なくとも2つの磁性体部材は、絶縁層上に位置する。第2磁気抵抗素子は、絶縁層に直交する方向から見て、少なくとも2つの磁性体部材の少なくとも一部によって覆われている。第1磁気抵抗素子は、絶縁層に直交する方向から見て、少なくとも2つの磁性体部材のうちの隣り合って配置されている磁性体部材同士に挟まれている領域の内部に位置する第1パターン部と、上記領域の外部に位置する第2パターン部とを含む。第1パターン部および第2パターン部の各々は、第1パターン部および第2パターン部の各々が互いに同一のパターン形状を有する場合に比較して、第1磁気抵抗素子における検出感度が平準化されるように、互いに異なるパターン形状を有する。
本発明の一形態においては、第1パターン部と第2パターン部とは、パターンの線幅が互いに異なる。
本発明の一形態においては、第1パターン部と第2パターン部とは、パターン数が互いに異なる。
本発明によれば、被測定磁界を集磁する磁性体部材によって生じる、被測定磁界の方向による磁気センサの検出感度の変動を抑制できる。
以下、本発明の各実施形態に係る磁気センサについて図を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。
(実施形態1)
図1は、本発明の実施形態1に係る磁気センサの構成を示す斜視図である。図2は、図1の磁気センサを矢印II方向から見た平面図である。図3は、本発明の実施形態1に係る磁気センサの等価回路図である。図2においては、後述する第1磁性体部材40の外縁を点線で記載している。図1においては、後述する回路基板100の幅方向をX軸方向、回路基板100の長さ方向をY軸方向、回路基板100の厚さ方向をZ軸方向として示している。なお、図2においては、後述する差動増幅器および温度補償回路などの図示を省略している。
図1は、本発明の実施形態1に係る磁気センサの構成を示す斜視図である。図2は、図1の磁気センサを矢印II方向から見た平面図である。図3は、本発明の実施形態1に係る磁気センサの等価回路図である。図2においては、後述する第1磁性体部材40の外縁を点線で記載している。図1においては、後述する回路基板100の幅方向をX軸方向、回路基板100の長さ方向をY軸方向、回路基板100の厚さ方向をZ軸方向として示している。なお、図2においては、後述する差動増幅器および温度補償回路などの図示を省略している。
図1および図2に示すように、本発明の実施形態1に係る磁気センサ1は、回路基板100と、回路基板100上に設けられた2つの第1磁性体部材40とを備える。回路基板100は、半導体基板110を含む。
図2および図3に示すように、本発明の実施形態1に係る磁気センサ1の回路基板100には、互いに配線によって電気的に接続されてホイートストンブリッジ型のブリッジ回路を構成する4つの磁気抵抗素子が設けられている。4つの磁気抵抗素子は、2組の第1磁気抵抗素子および第2磁気抵抗素子からなる。具体的には、磁気センサ1は、第1磁気抵抗素子120aおよび第2磁気抵抗素子130aと、第1磁気抵抗素子120bおよび第2磁気抵抗素子130bとを含んでいる。第1磁気抵抗素子120aおよび第2磁気抵抗素子130aは、1つの組を構成している。第1磁気抵抗素子120bおよび第2磁気抵抗素子130bは、1つの組を構成している。
本実施形態においては、磁気センサ1は、2組の第1磁気抵抗素子および第2磁気抵抗素子を含んでいるが、これに限られず、少なくとも1組の第1磁気抵抗素子および第2磁気抵抗素子を含んでいればよい。磁気センサ1が、1組の第1磁気抵抗素子および第2磁気抵抗素子のみを含む場合には、回路基板100にはハーフブリッジ回路が構成されている。
第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bの各々は、AMR(Anisotropic Magneto Resistance)素子である。なお、第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bの各々が、AMR素子に代えて、GMR(Giant Magneto Resistance)素子、TMR(Tunnel Magneto Resistance)素子、BMR(Ballistic Magneto Resistance)素子、または、CMR(Colossal Magneto Resistance)素子などの磁気抵抗素子であってもよい。
第2磁気抵抗素子130aは、後述するように、第1磁性体部材40によって磁気シールドされているため、Z軸方向の磁界(垂直磁界)と、X軸方向およびY軸方向の磁界(水平磁界)とをほとんど検出しない、いわゆる固定抵抗となる。第1磁気抵抗素子120aは、外部磁界が印加されることによって電気抵抗値が変化するいわゆる感磁抵抗である。
同様に、第2磁気抵抗素子130bは、後述するように、第1磁性体部材40によって磁気シールドされているため、Z軸方向の磁界(垂直磁界)と、X軸方向およびY軸方向の磁界(水平磁界)とをほとんど検出しない、いわゆる固定抵抗となる。第1磁気抵抗素子120bは、外部磁界が印加されることによって電気抵抗値が変化するいわゆる感磁抵抗である。
第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bは、半導体基板110上に設けられた配線によって互いに電気的に接続されている。具体的には、第1磁気抵抗素子120aと第2磁気抵抗素子130aとが配線146によって直列に接続されている。第1磁気抵抗素子120bと第2磁気抵抗素子130bとが配線150によって直列に接続されている。
回路基板100の半導体基板110上には、中点140、中点141、電源端子(Vcc)142、接地端子(Gnd)143および出力端子(Out)144がさらに設けられている。
第1磁気抵抗素子120aおよび第2磁気抵抗素子130bの各々は、中点140に接続されている。具体的には、第1磁気抵抗素子120aと中点140とが配線145によって接続され、第2磁気抵抗素子130bと中点140とが配線152によって接続されている。
第1磁気抵抗素子120bおよび第2磁気抵抗素子130aの各々は、中点141に接続されている。具体的には、第1磁気抵抗素子120bと中点141とが配線149によって接続され、第2磁気抵抗素子130aと中点141とが配線148によって接続されている。
配線146は、電流が入力される電源端子(Vcc)142に接続されている。配線150は、接地端子(Gnd)143に接続されている。
図3に示すように、磁気センサ1は、差動増幅器160、温度補償回路161、ラッチおよびスイッチ回路162、並びに、CMOS(Complementary Metal Oxide Semiconductor)ドライバ163をさらに備える。差動増幅器160、温度補償回路161、ラッチおよびスイッチ回路162、並びに、CMOSドライバ163の各々は、半導体基板110に設けられている。
差動増幅器160は、入力端が中点140および中点141の各々に接続され、出力端が温度補償回路161に接続されている。また、差動増幅器160は、電源端子(Vcc)142および接地端子(Gnd)143の各々に接続されている。
温度補償回路161は、出力端がラッチおよびスイッチ回路162に接続されている。また、温度補償回路161は、電源端子(Vcc)142および接地端子(Gnd)143の各々に接続されている。
ラッチおよびスイッチ回路162は、出力端がCMOSドライバ163に接続されている。また、ラッチおよびスイッチ回路162は、電源端子(Vcc)142および接地端子(Gnd)143の各々に接続されている。
CMOSドライバ163は、出力端が出力端子(Out)144に接続されている。また、CMOSドライバ163は、電源端子(Vcc)142および接地端子(Gnd)143の各々に接続されている。
磁気センサ1が上記の回路構成を有することにより、中点140と中点141との間に、外部磁界の強さに依存する電位差が発生する。この電位差があらかじめ設定された検出レベルを超えると、出力端子(Out)144から信号が出力される。
図4は、本発明の実施形態1に係る磁気センサの回路基板における磁気抵抗素子と配線との接続部の積層構造を示す断面図である。図4においては、磁気抵抗素子として機能する領域Rと、配線として機能する領域Lとの接続部のみ図示している。
図4に示すように、第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bは、SiO2層またはSi3N4層などが表面に設けられた、Siなどからなる半導体基板110上に設けられている。第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bは、半導体基板110上に設けられた、NiとFeとを含む合金からなる磁性体層10が、イオンミリング法によりパターニングされることにより形成されている。磁性体層10の厚さは、たとえば、0.04μmである。
配線145,146,148,149,150,152は、半導体基板110上に設けられた、AuまたはAlなどからなる導電層20が、ウエットエッチングによりパターニングされることにより形成されている。導電層20は、配線として機能する領域Lにおいては磁性体層10の真上に位置し、磁気抵抗素子として機能する領域Rには設けられていない。よって、図4に示すように、磁気抵抗素子として機能する領域Rと、配線として機能する領域Lとの接続部においては、導電層20の端部が磁性体層10の直上に位置している。
中点140、中点141、電源端子(Vcc)142、接地端子(Gnd)143および出力端子(Out)144の各々は、半導体基板110の直上に位置する導電層20によって構成されている。すなわち、中点140、中点141、電源端子(Vcc)142、接地端子(Gnd)143および出力端子(Out)144の各々は、半導体基板110上に設けられたパッドで構成されている。
導電層20の直上には、図示しないTi層が設けられている。磁性体層10および導電層20を覆うように、SiO2などからなる絶縁層30が設けられている。すなわち、絶縁層30は、第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bを覆っている。
図5は、本発明の実施形態1に係る磁気センサの第1磁気抵抗素子のパターンを示す平面図である。図2および図5に示すように、第1磁気抵抗素子120a,120bのパターン120は、絶縁層30に直交する方向から見て、仮想円C1の円周に沿って仮想円C1の径方向に並ぶように配置されて互いに接続された4つの第1単位パターンを含む。なお、絶縁層30に直交する方向は、Z軸方向であり、半導体基板110の上面に直交する方向と平行である。
4つの第1単位パターンの各々は、仮想円C1の円周において配線146,148,150,152が位置する部分が開放した仮想C字形状C11に沿って位置している。4つの第1単位パターンの各々は、仮想C字形状C11に沿って仮想円C1の径方向に並ぶように同心円状に配置されたC字状パターン121である。
4つのC字状パターン121は、仮想円C1の中心側から順に一端と他端とで交互に互いに接続されている。一端同士が接続されているC字状パターン121は、半円弧状パターン122によって互いに接続されている。他端同士が接続されているC字状パターン121は、半円弧状パターン123によって互いに接続されている。
第1磁気抵抗素子120a,120bのパターン120は、2つの半円弧状パターン122および1つの半円弧状パターン123を含む。これにより、4つのC字状パターン121が直列に接続されている。半円弧状パターン122,123は、直線状延在部を含まず、湾曲部のみから構成されている。
4つのC字状パターン121のうちの仮想円C1の中心から最も外側に位置するC字状パターンの、半円弧状パターン122と接続されていない側の端部は、導電層20からなる配線145または配線149と接続されている。同様に、4つのC字状パターン121のうちの仮想円C1の中心から最も内側に位置するC字状パターンの、半円弧状パターン122と接続されていない側の端部は、導電層20からなる、配線146または配線150と接続されている。
4つのC字状パターン121のうちの仮想円C1の中心から最も外側に位置するC字状パターン121の外周縁が、第1磁気抵抗素子120a,120bの外周縁となる。4つのC字状パターン121のうちの仮想円C1の中心から最も内側に位置するC字状パターン121の内周縁が、第1磁気抵抗素子120a,120bの内周縁となる。
図2に示すように、第1磁気抵抗素子120aと第1磁気抵抗素子120bとは、仮想C字形状C11の向きが互いに異なるように周方向の向きが異なっている。すなわち、第1磁気抵抗素子120aと第1磁気抵抗素子120bとは、C字状パターン121の向きが互いに異なるように、パターン120の周方向の向きが異なっている。
本実施形態においては、第1磁気抵抗素子120aと第1磁気抵抗素子120bとは、C字状パターン121の向きが互いに90°異なるように、パターン120の周方向の向きが90°異なっている。
図6は、本発明の実施形態1に係る磁気センサの第2磁気抵抗素子のパターンを示す平面図である。図2および図6に示すように、第2磁気抵抗素子130aは、絶縁層30に直交する方向から見て、仮想円C1の中心側に位置し、第1磁気抵抗素子120aにより囲まれており、第2磁気抵抗素子130bは、絶縁層30に直交する方向から見て、仮想円C1の中心側に位置し、第1磁気抵抗素子120bにより囲まれている。すなわち、第2磁気抵抗素子130aは、絶縁層30に直交する方向から見て、第1磁気抵抗素子120aの内周縁より内側に位置しており、第2磁気抵抗素子130bは、絶縁層30に直交する方向から見て、第1磁気抵抗素子120bの内周縁より内側に位置している。
第2磁気抵抗素子130aは、仮想円C1の中心側から仮想円C1の外側まで設けられた導電層20からなる配線146,148と接続されている。第2磁気抵抗素子130bは、仮想円C1の中心側から仮想円C1の外側まで設けられた導電層20からなる配線150,152と接続されている。
第2磁気抵抗素子130a,130bは、絶縁層30に直交する方向から見て、2重渦巻き状パターン130を有している。2重渦巻き状パターン130は、2つの第2単位パターンのうちの1つである一方の渦巻き状パターン131、2つの第2単位パターンのうちの他の1つである他方の渦巻き状パターン132、および、一方の渦巻き状パターン131と他方の渦巻き状パターン132とを2重渦巻き状パターン130の中央部にて接続する逆S字状パターン133を含む。逆S字状パターン133は、直線状延在部を含まず、湾曲部のみから構成されている。
図2に示すように、第2磁気抵抗素子130aと第2磁気抵抗素子130bとは、逆S字状パターン133の向きが互いに異なるように、2重渦巻き状パターン130の周方向の向きが異なっている。
本実施形態においては、第2磁気抵抗素子130aと第2磁気抵抗素子130bとは、逆S字状パターン133の向きが互いに90°異なるように、2重渦巻き状パターン130の周方向の向きが90°異なっている。
本実施形態に係る磁気センサ1においては、第1磁気抵抗素子120a,120bがC字状パターン121を有している。C字状パターン121は、円弧で構成されている。互いに隣接したC字状パターン121同士は、半円弧状パターン122または半円弧状パターン123によって互いに接続されている。このように、第1磁気抵抗素子120a,120bは、直線状延在部を含んでいないため、磁界検出の異方性が低減されている。
さらに、本実施形態に係る磁気センサ1においては、第1磁気抵抗素子120aのC字状パターン121の向きと第1磁気抵抗素子120bのC字状パターン121の向きとが互いに異なるように、パターン120の周方向の向きが異なっていることにより、磁界検出の等方性が高くなっている。
本実施形態に係る磁気センサ1においては、第1磁気抵抗素子120a,120bの内側に第2磁気抵抗素子130a,130bを配置しているため、磁気センサ1を小形にできる。また、磁気センサ1においては、第1磁気抵抗素子120a,120bと第2磁気抵抗素子130a,130bとを接続する配線を立体的に引き回す必要がないため、簡易な製造プロセスで回路基板100を製造可能である。
本実施形態に係る磁気センサ1においては、絶縁層30上に2つの第1磁性体部材40が設けられており、2つの第1磁性体部材40は、Y軸方向に並んで配置されている。第1磁性体部材40の厚さは、たとえば、10μm以上、好ましくは、20μm以上150μm以下である。第1磁性体部材40の厚さが10μm以上の場合、第1磁性体部材40によって略水平方向に偏向された垂直磁界を、第1磁気抵抗素子120a,120bにて検出できる。第1磁性体部材40の厚さが20μm以上の場合、第1磁性体部材40によって垂直磁界を略水平方向により効果的に偏向できるため、第1磁気抵抗素子120a,120bにて、より微弱な垂直磁界を検出できる。第1磁性体部材40の厚さが150μm以下の場合、第1磁性体部材40の形成時間が長くなることを抑制して、磁気センサ1の量産性を維持できる。
図2に示すように、第1磁性体部材40は、絶縁層30に直交する方向から見て、円形の外形を有し、かつ、第1磁気抵抗素子120a,120bの外周縁より内側の領域に位置している。なお、第1磁気抵抗素子120a,120bの外周縁より内側の領域とは、絶縁層30に直交する方向から見て、第1磁気抵抗素子120a,120bの外周縁の両端を仮想直線で結んだ際に囲まれる領域である。絶縁層30に直交する方向から見て、第1磁気抵抗素子120a,120bの外周縁より内側の領域と、第1磁性体部材40の半分以上が重なっていることが好ましく、第1磁性体部材40の2/3以上が重なっていることがより好ましい。
本実施形態においては、第1磁性体部材40は、絶縁層30に直交する方向から見て、第1磁気抵抗素子120a,120bの内周縁より内側の領域に位置している。なお、第1磁気抵抗素子120a,120bの内周縁より内側の領域とは、絶縁層30に直交する方向から見て、第1磁気抵抗素子120a,120bの内周縁の両端を仮想直線で結んだ際に囲まれる領域である。第1磁性体部材40は、絶縁層30に直交する方向から見て、第1磁気抵抗素子120a,120bの内周縁上および内周縁より内側の領域を含む領域に位置していてもよい。絶縁層30に直交する方向から見て、第1磁気抵抗素子120a,120bの内周縁より内側の領域と、第1磁性体部材40の半分以上が重なっていることが好ましく、第1磁性体部材40の2/3以上が重なっていることがより好ましい。
本実施形態においては、第1磁性体部材40は、絶縁層30に直交する方向から見て、第1磁気抵抗素子120a,120bの外周縁と同心状に位置している。
本実施形態においては、第1磁性体部材40は、絶縁層30に直交する方向から見て、第1磁気抵抗素子120a,120bおよび第2磁気抵抗素子130a,130bのうちの第2磁気抵抗素子130a,130bのみを覆っている。よって、絶縁層30に直交する方向から見て、第1磁性体部材40は、第1磁気抵抗素子120a,120bに囲まれている。
第1磁性体部材40は、電磁鋼、軟鉄鋼、ケイ素鋼、パーマロイ、スーパーマロイ、ニッケル合金、鉄合金またはフェライトなどの、透磁率および飽和磁束密度の高い磁性体材料で構成されている。また、これらの磁性体材料は、保磁力が低いことが好ましい。
第1磁性体部材40を構成する磁性体材料として、透磁率が、高温で大きくなり、低温で小さくなる、たとえば、Fe-78Ni合金などを用いた場合、第1磁気抵抗素子120a,120bの抵抗変化率の温度依存性を低減することができる。
第1磁性体部材40は、たとえば、めっきにより形成される。なお、絶縁層30と第1磁性体部材40との間に、他の薄層が設けられていてもよい。第1磁性体部材40がめっきで形成される場合には、絶縁層30と第1磁性体部材40との間に、たとえば、Ti(チタン)を含む密着層、および、Au(金)を含む電極反応層の少なくとも一方が形成されていてもよい。
ここで、図1に示すように2つの第1磁性体部材40がY軸方向に並んで配置されている磁気センサに、Y軸方向の水平磁界が印加された際の磁束密度分布をシミュレーション解析した結果について説明する。
シミュレーション解析の条件として、第1磁性体部材40の外形を、直径が140μm、厚さが100μmの円柱状とした。第1磁性体部材40同士の間隔、具体的には、絶縁層30に直交する方向から見て、第1磁性体部材40の中心同士の間隔を、250μmとした。第1磁性体部材40は、パーマロイで構成した。印加する水平磁界の強度は、2.0mTとした。
図7は、本発明の実施形態1に係る磁気センサにY軸方向の水平磁界が印加された際の磁束密度分布をシミュレーション解析した結果を示す等高線図である。図7においては、図2と同様の平面視にて示している。
図7においては、磁束密度が、0.4mTである線をE1、0.8mTである線をE2、1.2mTである線をE3、1.6mTである線をE4、2.0mTである線をE5、2.4mTである線をE6、2.8mTである線をE7、3.2mTである線をE8、3.6mTである線をE9で示している。
図7に示すように、第1磁性体部材40同士に挟まれている領域においては、第1磁性体部材40の周囲に位置する他の領域に比較して、第1磁性体部材40から離れても磁束密度が高く維持されていた。このように、磁性体部材を備える磁気センサにおいては、磁性体部材の影響によって磁界分布が不均一となるため、被測定磁界の方向によって磁気センサの検出感度が変動する傾向にある。
なお、磁性体部材の数および配置は、上記に限られない。上記のシミュレーション解析結果においては、第1磁性体部材40同士に挟まれている領域において、磁束密度が高く維持される傾向となったが、複数の磁性体部材の配置と被測定磁界の方向との関係によっては、必ずしも隣り合う磁性体部材同士に挟まれている領域の磁束密度が高く維持されるとは限られず、逆に、隣り合う磁性体部材同士に挟まれている領域の方が、磁性体部材の周囲に位置する他の領域より磁束密度が低くなる場合もある。
そこで、本実施形態に係る磁気センサ1においては、図2および図5に示すように、第1磁気抵抗素子120a,120bのパターン120は、絶縁層30に直交する方向から見て、Y軸方向に隣り合って配置されている第1磁性体部材40同士に挟まれている領域Tの内部に位置する第1パターン部120Tと、上記領域Tの外部に位置する第2パターン部120Sとを含む。第1パターン部120Tおよび第2パターン部120Sの各々は、第1パターン部120Tおよび第2パターン部120Sの各々が互いに同一のパターン形状を有する場合に比較して、第1磁気抵抗素子120a,120bにおける検出感度が平準化されるように、互いに異なるパターン形状を有する。
本実施形態においては、第1パターン部120Tと第2パターン部120Sとは、パターンの線幅が互いに異なる。具体的には、第1パターン部120Tの線幅が、第2パターン部120Sの線幅より広い。これにより、Y軸方向の水平磁界に対する第1パターン部120Tの検出感度が低くなるため、第1磁気抵抗素子120a,120bにおける検出感度が平準化される。
なお、Y軸方向の水平磁界が印加された際に、隣り合う第1磁性体部材40同士に挟まれている領域Tの方が、第1磁性体部材40の周囲に位置する他の領域より磁束密度が低くなっている場合には、第1パターン部120Tの線幅を、第2パターン部120Sの線幅より狭くする。これにより、Y軸方向の水平磁界に対する第1パターン部120Tの検出感度が高くなるため、第1磁気抵抗素子120a,120bにおける検出感度が平準化される。
上記のように、本実施形態に係る磁気センサ1は、被測定磁界を集磁する第1磁性体部材40によって生じる、被測定磁界の方向による磁気センサ1の検出感度の変動を抑制できる。
なお、本実施形態においては、第1パターン部120Tの線幅を一様に変更したが、この態様に限られず、たとえば、第1パターン部120Tの線幅を断続的に変更してもよいし、第1パターン部120Tの線幅が徐々に変化していてもよい。
(実施形態2)
以下、本発明の実施形態2に係る磁気センサについて図を参照して説明する。なお、本発明の実施形態2に係る磁気センサは、第1磁気抵抗素子が有するパターンが主に、本発明の実施形態1に係る磁気センサ1と異なるため、本発明の実施形態1に係る磁気センサ1と同様である構成については説明を繰り返さない。
以下、本発明の実施形態2に係る磁気センサについて図を参照して説明する。なお、本発明の実施形態2に係る磁気センサは、第1磁気抵抗素子が有するパターンが主に、本発明の実施形態1に係る磁気センサ1と異なるため、本発明の実施形態1に係る磁気センサ1と同様である構成については説明を繰り返さない。
図8は、本発明の実施形態2に係る磁気センサの構成を示す平面図である。図9は、本発明の実施形態2に係る磁気センサの第1磁気抵抗素子のパターンを示す平面図である。図8に示すように、本発明の実施形態2に係る磁気センサ2は、回路基板200と、回路基板200上に設けられた2つの第1磁性体部材40とを備える。
図8および図9に示すように、本発明の実施形態2に係る磁気センサ2の第1磁気抵抗素子220a,220bのパターン220は、絶縁層30に直交する方向から見て、Y軸方向に隣り合って配置されている第1磁性体部材40同士に挟まれている領域Tの内部に位置する第1パターン部220Tと、上記領域Tの外部に位置する第2パターン部220Sとを含む。第1パターン部220Tおよび第2パターン部220Sの各々は、第1パターン部220Tおよび第2パターン部220Sの各々が互いに同一のパターン形状を有する場合に比較して、第1磁気抵抗素子220a,220bにおける検出感度が平準化されるように、互いに異なるパターン形状を有する。
本実施形態においては、第1パターン部220Tと第2パターン部220Sとは、パターン数が互いに異なる。具体的には、第1パターン部220Tのパターン数が、第2パターン部220Sのパターン数より少ない。これにより、Y軸方向の水平磁界に対する第1パターン部220Tの検出感度が低くなるため、第1磁気抵抗素子220a,220bにおける検出感度が平準化される。
なお、Y軸方向の水平磁界が印加された際に、隣り合う第1磁性体部材40同士に挟まれている領域Tの方が、第1磁性体部材40の周囲に位置する他の領域より磁束密度が低くなっている場合には、第1パターン部220Tのパターン数を、第2パターン部220Sのパターン数より多くする。これにより、Y軸方向の水平磁界に対する第1パターン部220Tの検出感度が高くなるため、第1磁気抵抗素子220a,220bにおける検出感度が平準化される。
上記のように、本実施形態に係る磁気センサ2は、被測定磁界を集磁する第1磁性体部材40によって生じる、被測定磁界の方向による磁気センサ2の検出感度の変動を抑制できる。
(実施形態3)
以下、本発明の実施形態3に係る磁気センサについて図を参照して説明する。なお、本発明の実施形態3に係る磁気センサは、第1磁気抵抗素子および第2磁気抵抗素子の各々が有するパターンと、第2磁気抵抗素子の配置と、第2磁性体部材をさらに備える点が主に、本発明の実施形態1に係る磁気センサ1と異なるため、本発明の実施形態1に係る磁気センサ1と同様である構成については説明を繰り返さない。
以下、本発明の実施形態3に係る磁気センサについて図を参照して説明する。なお、本発明の実施形態3に係る磁気センサは、第1磁気抵抗素子および第2磁気抵抗素子の各々が有するパターンと、第2磁気抵抗素子の配置と、第2磁性体部材をさらに備える点が主に、本発明の実施形態1に係る磁気センサ1と異なるため、本発明の実施形態1に係る磁気センサ1と同様である構成については説明を繰り返さない。
図10は、本発明の実施形態3に係る磁気センサの構成を示す斜視図である。図11は、図10の磁気センサを矢印XI方向から見た平面図である。図10および図11に示すように、本発明の実施形態3に係る磁気センサ3は、回路基板300と、回路基板300上に設けられた、2つの第1磁性体部材40および2つの第2磁性体部材50とを備える。
本発明の実施形態3に係る磁気センサ3の回路基板300には、互いに配線によって電気的に接続されてホイートストンブリッジ型のブリッジ回路を構成する4つの磁気抵抗素子が設けられている。4つの磁気抵抗素子は、2組の第1磁気抵抗素子および第2磁気抵抗素子からなる。具体的には、磁気センサ3は、第1磁気抵抗素子320aおよび第2磁気抵抗素子330aと、第1磁気抵抗素子320bおよび第2磁気抵抗素子330bとを含んでいる。第1磁気抵抗素子320aおよび第2磁気抵抗素子330aは、1つの組を構成している。第1磁気抵抗素子320bおよび第2磁気抵抗素子330bは、1つの組を構成している。
図12は、本発明の実施形態3に係る磁気センサの第1磁気抵抗素子のパターンを示す平面図である。図11および図12に示すように、第1磁気抵抗素子320a,320bは、絶縁層30に直交する方向から見て、2重渦巻き状パターン320を有している。2重渦巻き状パターン320は、絶縁層30に直交する方向から見て、仮想円の円周に沿って仮想円の径方向に並ぶように同心円状に配置されて互いに接続された2つの第1単位パターンを含む。
2重渦巻き状パターン320は、第1単位パターンである一方の渦巻き状パターン321、第1単位パターンである他方の渦巻き状パターン322、および、一方の渦巻き状パターン321と他方の渦巻き状パターン322とを2重渦巻き状パターン320の中央部にて接続するS字状パターン323を含む。S字状パターン323は、直線状延在部を含まず、湾曲部のみから構成されている。
2重渦巻き状パターン320は、一方の渦巻き状パターン321および他方の渦巻き状パターン322の各々の端部に、2重渦巻き状パターン320の長さ調整用冗長部324,325を有する。長さ調整用冗長部324,325は、一方の渦巻き状パターン321および他方の渦巻き状パターン322の各々の端部が湾曲しつつ折り返されて構成されている。一方の渦巻き状パターン321に設けられた長さ調整用冗長部324と、他方の渦巻き状パターン322に設けられた長さ調整用冗長部325とは、2重渦巻き状パターン320の径方向において互いに反対側に位置している。長さ調整用冗長部324,325の各々は、直線状延在部を含まず、湾曲部のみから構成されている。
2重渦巻き状パターン320は、長さ調整用冗長部324,325において、配線を構成する導電層20と接続されている。長さ調整用冗長部324,325と導電層20との接続位置を変更することにより、第1磁気抵抗素子320a,320bの電気抵抗値を調整することができる。
図11に示すように、第1磁気抵抗素子320aと第1磁気抵抗素子320bとは、S字状パターン323の向きが互いに異なるように、2重渦巻き状パターン320の周方向の向きが異なっている。
本実施形態においては、第1磁気抵抗素子320aと第1磁気抵抗素子320bとは、S字状パターン323の向きが互いに90°異なるように、2重渦巻き状パターン320の周方向の向きが90°異なっている。
なお、2重渦巻き状パターン320は逆方向に巻いていてもよく、この場合、2重渦巻き状パターン320の中央部が湾曲部のみからなる逆S字状パターンで構成される。すなわち、一方の渦巻き状パターン321と他方の渦巻き状パターン322とが、逆S字状パターンによって接続される。
図11に示すように、第2磁気抵抗素子330a,330bは、絶縁層30に直交する方向から見て、第1磁気抵抗素子320a,320bの外周縁より外側に位置している。第2磁気抵抗素子330a,330bは、複数の曲部を有して折り返したパターン形状を有している。
本実施形態に係る磁気センサ3においては、絶縁層30上に2つの第1磁性体部材40と2つの第2磁性体部材50が配置されている。第1磁性体部材40および第2磁性体部材50の各々の厚さは、たとえば、10μm以上、好ましくは、20μm以上150μm以下である。なお、これらの厚さは互いに異なっていてもよいが、これらの厚さが互いに同一である場合には、2つの第1磁性体部材40と2つの第2磁性体部材50とを同一の工程において形成することができ、2つの第1磁性体部材40および2つの第2磁性体部材50を容易に形成できる。
図11に示すように、第1磁性体部材40は、絶縁層30に直交する方向から見て、円形の外形を有し、かつ、第1磁気抵抗素子320a,320bの外周縁より内側の領域に位置している。本実施形態においては、第1磁性体部材40は、絶縁層30に直交する方向から見て、第1磁気抵抗素子320a,320bの外周縁と同心状に位置している。
本実施形態においては、第1磁性体部材40は、絶縁層30に直交する方向から見て、第1磁気抵抗素子320a,320bおよび第2磁気抵抗素子330a,330bのうちの第1磁気抵抗素子320a,320bの中央部のみを覆っている。よって、絶縁層30に直交する方向から見て、第1磁性体部材40は、第1磁気抵抗素子320a,320bの外周部に囲まれている。
第2磁性体部材50は、絶縁層30に直交する方向から見て、第1磁気抵抗素子320a,320bおよび第2磁気抵抗素子330a,330bのうちの第2磁気抵抗素子330a,330bのみを覆っている。第2磁気抵抗素子330a,330bは、絶縁層30に直交する方向から見て、第2磁性体部材50の中心から、第2磁性体部材50の外周縁から内側に7μm離れた位置までの、領域に位置していることが好ましい。
第2磁性体部材50は、電磁鋼、軟鉄鋼、ケイ素鋼、パーマロイ、スーパーマロイ、ニッケル合金、鉄合金またはフェライトなどの、透磁率および飽和磁束密度の高い磁性体材料で構成されている。また、これらの磁性体材料は、保磁力が低いことが好ましい。
本実施形態に係る磁気センサ3においては、図11および図12に示すように、第1磁気抵抗素子320a,320bの2重渦巻き状パターン320は、絶縁層30に直交する方向から見て、略Y軸方向に隣り合って配置されている第1磁性体部材40同士に挟まれている領域T1、X軸方向に隣り合って配置されている第1磁性体部材40と第2磁性体部材50とに挟まれている領域T2、および、略Y軸方向に隣り合って配置されている第1磁性体部材40と第2磁性体部材50とに挟まれている領域T3、の各々の内部に位置する第1パターン部320Tと、上記領域T1~T3の外部に位置する第2パターン部320Sとを含む。上記領域T1~T3においては、磁性体部材同士に挟まれていない他の領域に比較して、第1磁性体部材40および第2磁性体部材50の各々から離れても磁束密度が高く維持されていた。
第1パターン部320Tおよび第2パターン部320Sの各々は、第1パターン部320Tおよび第2パターン部320Sの各々が互いに同一のパターン形状を有する場合に比較して、第1磁気抵抗素子320a,320bにおける検出感度が平準化されるように、互いに異なるパターン形状を有する。
本実施形態においては、第1パターン部320Tと第2パターン部320Sとは、パターンの線幅が互いに異なる。具体的には、第1パターン部320Tの線幅が、第2パターン部320Sの線幅より広い。これにより、X軸方向およびY軸方向の水平磁界に対する第1パターン部320Tの検出感度が低くなるため、第1磁気抵抗素子320a,320bにおける検出感度が平準化される。
本実施形態においては、上記領域T1~T3において、第1パターン部320Tの線幅を同様に変更したが、この態様に限られず、上記領域T1~T3の各々において、第1パターン部320Tの線幅を互いに異ならせてもよい。
なお、Y軸方向の水平磁界が印加された際に、隣り合う第1磁性体部材40同士に挟まれている領域T1の方が、磁性体部材同士に挟まれていない他の領域より磁束密度が低くなっている場合には、領域T1の内部に位置する第1パターン部320Tの線幅を、第2パターン部320Sの線幅より狭くする。
X軸方向の水平磁界が印加された際に、隣り合う第1磁性体部材40と第2磁性体部材50とに挟まれている領域T2の方が、磁性体部材同士に挟まれていない他の領域より磁束密度が低くなっている場合には、領域T2の内部に位置する第1パターン部320Tの線幅を、第2パターン部320Sの線幅より狭くする。
Y軸方向の水平磁界が印加された際に、隣り合う第1磁性体部材40と第2磁性体部材50とに挟まれている領域T3の方が、磁性体部材同士に挟まれていない他の領域より磁束密度が低くなっている場合には、領域T3の内部に位置する第1パターン部320Tの線幅を、第2パターン部320Sの線幅より狭くする。
上記3態様の少なくとも1態様により、X軸方向またはY軸方向の水平磁界に対する第1パターン部320Tの検出感度が高くなるため、第1磁気抵抗素子320a,320bにおける検出感度が平準化される。
上記のように、本実施形態に係る磁気センサ3は、被測定磁界を集磁する第1磁性体部材40および第2磁性体部材50によって生じる、被測定磁界の方向による磁気センサ3の検出感度の変動を抑制できる。
なお、本実施形態においては、第1パターン部320Tの線幅を一様に変更したが、この態様に限られず、たとえば、第1パターン部320Tの線幅を断続的に変更してもよいし、第1パターン部320Tの線幅が徐々に変化していてもよい。
(実施形態4)
以下、本発明の実施形態4に係る磁気センサについて図を参照して説明する。なお、本発明の実施形態4に係る磁気センサは、第1磁気抵抗素子および第2磁気抵抗素子が有するパターン、および、第1磁性体部材を備えない点が主に、本発明の実施形態1に係る磁気センサ1と異なるため、本発明の実施形態1に係る磁気センサ1と同様である構成については説明を繰り返さない。
以下、本発明の実施形態4に係る磁気センサについて図を参照して説明する。なお、本発明の実施形態4に係る磁気センサは、第1磁気抵抗素子および第2磁気抵抗素子が有するパターン、および、第1磁性体部材を備えない点が主に、本発明の実施形態1に係る磁気センサ1と異なるため、本発明の実施形態1に係る磁気センサ1と同様である構成については説明を繰り返さない。
図13は、本発明の実施形態4に係る磁気センサの構成を示す平面図である。図13に示すように、本発明の実施形態4に係る磁気センサ4は、回路基板400と、回路基板400上に設けられた2つの第2磁性体部材50とを備える。
磁気センサ4は、第1磁気抵抗素子420aおよび第2磁気抵抗素子430aと、第1磁気抵抗素子420bおよび第2磁気抵抗素子430bとを含んでいる。第1磁気抵抗素子420a,420bおよび第2磁気抵抗素子430a,430bの各々は、長い短冊状パターンと、短い短冊状パターンとが交互に接続されたミアンダ状に形成されている。なお、磁気抵抗素子の形状は、ミアンダ状に限られない。
第1磁気抵抗素子420a,420bの各々においては、長い短冊状パターンがX方向に沿って延びている。第1磁気抵抗素子420a,420bの各々は、Y方向の磁界が印加されている時に抵抗値が最も小さくなる。
第2磁気抵抗素子430a,430bの各々においては、長い短冊状パターンがY方向に沿って延びている。第2磁気抵抗素子430a,430bの各々は、X方向の磁界が印加されている時に抵抗値が最も小さくなる。
図13に示すように、第1磁気抵抗素子420aは半導体基板110の左下に位置し、第1磁気抵抗素子420bは半導体基板110の右上に位置し、第2磁気抵抗素子430aは半導体基板110の左上に位置し、第2磁気抵抗素子430bは半導体基板110の右下に位置している。
本実施形態に係る磁気センサ4においては、絶縁層30上に2つの第2磁性体部材50が、X軸方向およびY軸方向の各々に45°傾いた方向に並んで配置されている。第2磁性体部材50は、第2磁気抵抗素子430a,430bの各々の全体を覆うように形成されている。絶縁層30に直交する方向から見て、第2磁気抵抗素子430aを覆っている部分の第2磁性体部材50は、矩形状である。絶縁層30に直交する方向から見て、第2磁気抵抗素子430bを覆っている部分の第2磁性体部材50は、矩形状である。
なお、第2磁性体部材50の形成位置は、上記に限られず、絶縁層30に直交する方向から見て、第2磁気抵抗素子430a,430bの少なくとも一部を覆っていればよい。第2磁気抵抗素子430a,430bは、絶縁層30に直交する方向から見て、少なくとも2つの第2磁性体部材50の少なくとも一部によって覆われていればよい。
本実施形態に係る磁気センサ4においては、図13に示すように、第1磁気抵抗素子420a,420bのパターンは、絶縁層30に直交する方向から見て、隣り合って配置されている第2磁性体部材50同士に挟まれている領域Tの内部に位置する第1パターン部420Tと、上記領域Tの外部に位置する第2パターン部420Sとを含む。
なお、本実施形態において、隣り合って配置されている第2磁性体部材50同士に挟まれている領域Tとは、2つの矩形状の第2磁性体部材50において互いに隣接する2辺上に位置する角部同士を仮想直線で結んだ際に、2本の仮想直線で挟まれている領域である。
第1パターン部420Tおよび第2パターン部420Sの各々は、第1パターン部420Tおよび第2パターン部420Sの各々が互いに同一のパターン形状を有する場合に比較して、第1磁気抵抗素子420a,420bにおける検出感度が平準化されるように、互いに異なるパターン形状を有する。
本実施形態においては、第1磁気抵抗素子420a,420bの各々のパターンのうちのX方向に沿って延びる短冊状パターンにおいて、第2パターン部420S側から第1パターン部420T側に行くにしたがって、パターンの線幅が徐々に広くなっている。これにより、X軸方向およびY軸方向の各々に45°傾いた方向の水平磁界に対する第1パターン部420Tの検出感度が低くなるため、第1磁気抵抗素子420a,420bにおける検出感度が平準化される。
なお、X軸方向およびY軸方向の各々に45°傾いた方向の水平磁界が印加された際に、隣り合う第2磁性体部材50同士に挟まれている領域Tの方が、第2磁性体部材50の周囲に位置する他の領域より磁束密度が低くなっている場合には、第1磁気抵抗素子420a,420bの各々のパターンのうちのX方向に沿って延びる短冊状パターンにおいて、第2パターン部420S側から第1パターン部420T側に行くにしたがって、パターンの線幅を徐々に狭くする。これにより、X軸方向およびY軸方向の各々に45°傾いた方向の水平磁界に対する第1パターン部420Tの検出感度が高くなるため、第1磁気抵抗素子420a,420bにおける検出感度が平準化される。
上記のように、本実施形態に係る磁気センサ4は、被測定磁界を集磁する第2磁性体部材50によって生じる、被測定磁界の方向による磁気センサ4の検出感度の変動を抑制できる。
(実施形態5)
以下、本発明の実施形態5に係る磁気センサについて図を参照して説明する。なお、本発明の実施形態5に係る磁気センサは、第1磁気抵抗素子が有するパターンが主に、本発明の実施形態4に係る磁気センサ4と異なるため、本発明の実施形態4に係る磁気センサ4と同様である構成については説明を繰り返さない。
以下、本発明の実施形態5に係る磁気センサについて図を参照して説明する。なお、本発明の実施形態5に係る磁気センサは、第1磁気抵抗素子が有するパターンが主に、本発明の実施形態4に係る磁気センサ4と異なるため、本発明の実施形態4に係る磁気センサ4と同様である構成については説明を繰り返さない。
図14は、本発明の実施形態5に係る磁気センサの構成を示す平面図である。図14に示すように、本発明の実施形態5に係る磁気センサ5は、回路基板500と、回路基板500上に設けられた2つの第2磁性体部材50とを備える。
磁気センサ5は、第1磁気抵抗素子520aおよび第2磁気抵抗素子430aと、第1磁気抵抗素子520bおよび第2磁気抵抗素子430bとを含んでいる。第1磁気抵抗素子520a,520bおよび第2磁気抵抗素子430a,430bの各々は、長い短冊状パターンと、短い短冊状パターンとが交互に接続されたミアンダ状に形成されている。なお、磁気抵抗素子の形状は、ミアンダ状に限られない。
第1磁気抵抗素子520a,520bの各々においては、長い短冊状パターンがX方向に沿って延びている。第1磁気抵抗素子520a,520bの各々は、Y方向の磁界が印加されている時に抵抗値が最も小さくなる。
図14に示すように、第1磁気抵抗素子520aは半導体基板110の左下に位置し、第1磁気抵抗素子520bは半導体基板110の右上に位置し、第2磁気抵抗素子430aは半導体基板110の左上に位置し、第2磁気抵抗素子430bは半導体基板110の右下に位置している。
本実施形態に係る磁気センサ5においては、図14に示すように、第1磁気抵抗素子520a,520bのパターンは、絶縁層30に直交する方向から見て、隣り合って配置されている第2磁性体部材50同士に挟まれている領域Tの内部に位置する第1パターン部520Tと、上記領域Tの外部に位置する第2パターン部520Sとを含む。
第1パターン部520Tおよび第2パターン部520Sの各々は、第1パターン部520Tおよび第2パターン部520Sの各々が互いに同一のパターン形状を有する場合に比較して、第1磁気抵抗素子520a,520bにおける検出感度が平準化されるように、互いに異なるパターン形状を有する。
本実施形態においては、第1磁気抵抗素子520a,520bの各々のパターンのうちのX方向に沿って延びる短冊状パターンにおいて、第1パターン部520Tと第2パターン部520Sとは、パターンの線幅が互いに異なる。具体的には、X方向に沿って延びる短冊状パターンにおいて、第1パターン部520Tの線幅が、第2パターン部520Sの線幅より広い。なお、X方向に沿って延びる短冊状パターンにおける第1パターン部520Tの線幅は、第2パターン部520S側から離れるにしたがって広くなっている。
これにより、X軸方向およびY軸方向の各々に45°傾いた方向の水平磁界に対する第1パターン部520Tの検出感度が低くなるため、第1磁気抵抗素子520a,520bにおける検出感度が平準化される。
なお、X軸方向およびY軸方向の各々に45°傾いた方向の水平磁界が印加された際に、隣り合う第2磁性体部材50同士に挟まれている領域Tの方が、第2磁性体部材50の周囲に位置する他の領域より磁束密度が低くなっている場合には、第1磁気抵抗素子520a,520bの各々のパターンのうちのX方向に沿って延びる短冊状パターンにおいて、第1パターン部520Tの線幅を、第2パターン部520Sの線幅より狭くする。
これにより、X軸方向およびY軸方向の各々に45°傾いた方向の水平磁界に対する第1パターン部520Tの検出感度が高くなるため、第1磁気抵抗素子520a,520bにおける検出感度が平準化される。
上記のように、本実施形態に係る磁気センサ5は、被測定磁界を集磁する第2磁性体部材50によって生じる、被測定磁界の方向による磁気センサ5の検出感度の変動を抑制できる。
なお、本実施形態においては、X方向に沿って延びる短冊状パターンにおいて第1パターン部520Tの線幅を徐々に変化させたが、この態様に限られず、たとえば、第1パターン部520Tの線幅を断続的に変更してもよいし、第1パターン部520Tの線幅を一様に変更してもよい。
上述した実施形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。なお、上述した実施形態においては、第1磁性体部材の形成数、または、第1磁性体部材の形成数と第2磁性体部材の形成数との合計が、2以上であればよい。
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1,2,3,4,5 磁気センサ、10 磁性体層、20 導電層、30 絶縁層、40 第1磁性体部材、50 第2磁性体部材、100,200,300,400,500 回路基板、110 半導体基板、120,220 パターン、120S,220S,320S,420S,520S 第2パターン部、120T,220T,320T,420T,520T 第1パターン部、120a,120b,220a,220b,320a,320b,420a,420b,520a,520b 第1磁気抵抗素子、121,133,323 C字状パターン、122,123 半円弧状パターン、130,320 2重渦巻き状パターン、130a,130b,330a,330b,430a,430b 第2磁気抵抗素子、131,132,321,322 渦巻き状パターン、140,141 中点、145,146,148,149,150,152 配線、160 差動増幅器、161 温度補償回路、162 スイッチ回路、163 ドライバ、324,325 長さ調整用冗長部、C1 仮想円、C11 C字形状。
Claims (6)
- 第1磁気抵抗素子と、
前記第1磁気抵抗素子と電気的に接続されてブリッジ回路を構成する第2磁気抵抗素子と、
前記第1磁気抵抗素子および前記第2磁気抵抗素子を覆う絶縁層と、
前記絶縁層上に位置する、第1磁性体部材および該第1磁性体部材とは異なる第2磁性体部材のうちの少なくとも前記第1磁性体部材とを備え、
前記第1磁気抵抗素子は、外周縁および内周縁のうちの少なくとも前記外周縁を有し、
前記第1磁性体部材は、前記絶縁層に直交する方向から見て、前記第1磁気抵抗素子の前記外周縁より内側の領域に位置しており、
前記第2磁気抵抗素子は、前記絶縁層に直交する方向から見て、前記第1磁気抵抗素子の前記内周縁より内側の領域に位置して前記第1磁性体部材で覆われている、または、前記第1磁気抵抗素子の前記外周縁より外側の領域に位置して前記第2磁性体部材で覆われており、
前記第1磁性体部材の形成数、または、前記第1磁性体部材の形成数と前記第2磁性体部材の形成数との合計が、2以上であり、
前記第1磁気抵抗素子は、前記絶縁層に直交する方向から見て、前記第1磁性体部材および前記第2磁性体部材のうちの隣り合って配置されている磁性体部材同士に挟まれている領域の内部に位置する第1パターン部と、前記領域の外部に位置する第2パターン部とを含み、
前記第1パターン部および前記第2パターン部の各々は、前記第1パターン部および前記第2パターン部の各々が互いに同一のパターン形状を有する場合に比較して、前記第1磁気抵抗素子における検出感度が平準化されるように、互いに異なるパターン形状を有する、磁気センサ。 - 第1磁気抵抗素子と、
前記第1磁気抵抗素子と電気的に接続されてブリッジ回路を構成する第2磁気抵抗素子と、
前記第1磁気抵抗素子および前記第2磁気抵抗素子を覆う絶縁層と、
前記絶縁層上に位置する、2つ以上の第1磁性体部材を備え、
前記第1磁気抵抗素子は、外周縁および内周縁を有し、
前記第1磁性体部材は、前記絶縁層に直交する方向から見て、前記第1磁気抵抗素子の前記外周縁より内側の領域に位置しており、
前記第2磁気抵抗素子は、前記絶縁層に直交する方向から見て、前記第1磁気抵抗素子の前記内周縁より内側の領域に位置して前記第1磁性体部材で覆われており、
前記第1磁気抵抗素子は、前記絶縁層に直交する方向から見て、隣り合って配置されている前記第1磁性体部材同士に挟まれている領域の内部に位置する第1パターン部と、前記領域の外部に位置する第2パターン部とを含み、
前記第1パターン部および前記第2パターン部の各々は、互いに異なるパターン形状を有する、磁気センサ。 - 第1磁気抵抗素子と、
前記第1磁気抵抗素子と電気的に接続されてブリッジ回路を構成する第2磁気抵抗素子と、
前記第1磁気抵抗素子および前記第2磁気抵抗素子を覆う絶縁層と、
前記絶縁層上に位置する、少なくとも1つの第1磁性体部材および少なくとも1つの第2磁性体部材とを備え、
前記第1磁気抵抗素子は、外周縁を有し、
前記第1磁性体部材は、前記絶縁層に直交する方向から見て、前記第1磁気抵抗素子の前記外周縁より内側の領域に位置しており、
前記第2磁気抵抗素子は、前記第1磁気抵抗素子の前記外周縁より外側の領域に位置して前記第2磁性体部材で覆われており、
前記第1磁気抵抗素子は、前記絶縁層に直交する方向から見て、前記第1磁性体部材および前記第2磁性体部材のうちの隣り合って配置されている磁性体部材同士に挟まれている領域の内部に位置する第1パターン部と、前記領域の外部に位置する第2パターン部とを含み、
前記第1パターン部および前記第2パターン部の各々は、互いに異なるパターン形状を有する、磁気センサ。 - 第1磁気抵抗素子と、
前記第1磁気抵抗素子と電気的に接続されてブリッジ回路を構成する第2磁気抵抗素子と、
前記第1磁気抵抗素子および前記第2磁気抵抗素子を覆う絶縁層と、
前記絶縁層上に位置する少なくとも2つの磁性体部材とを備え、
前記第2磁気抵抗素子は、前記絶縁層に直交する方向から見て、前記少なくとも2つの磁性体部材の少なくとも一部によって覆われており、
前記第1磁気抵抗素子は、前記絶縁層に直交する方向から見て、前記少なくとも2つの磁性体部材のうちの隣り合って配置されている磁性体部材同士に挟まれている領域の内部に位置する第1パターン部と、前記領域の外部に位置する第2パターン部とを含み、
前記第1パターン部および前記第2パターン部の各々は、前記第1パターン部および前記第2パターン部の各々が互いに同一のパターン形状を有する場合に比較して、前記第1磁気抵抗素子における検出感度が平準化されるように、互いに異なるパターン形状を有する、磁気センサ。 - 前記第1パターン部と前記第2パターン部とは、パターンの線幅が互いに異なる、請求項1から請求項4のいずれか1項に記載の磁気センサ。
- 前記第1パターン部と前記第2パターン部とは、パターン数が互いに異なる、請求項1から請求項5のいずれか1項に記載の磁気センサ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880052227.7A CN110998349B (zh) | 2017-08-16 | 2018-06-12 | 磁传感器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017157163 | 2017-08-16 | ||
JP2017-157163 | 2017-08-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019035269A1 true WO2019035269A1 (ja) | 2019-02-21 |
Family
ID=65362659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/022373 WO2019035269A1 (ja) | 2017-08-16 | 2018-06-12 | 磁気センサ |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110998349B (ja) |
WO (1) | WO2019035269A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010066262A (ja) * | 2008-09-08 | 2010-03-25 | Robert Bosch Gmbh | 磁界の空間成分を測定する磁界センサ装置 |
JP2013044641A (ja) * | 2011-08-24 | 2013-03-04 | Murata Mfg Co Ltd | 磁気センサ |
WO2016013345A1 (ja) * | 2014-07-24 | 2016-01-28 | 株式会社村田製作所 | 磁気センサ |
WO2017209169A1 (ja) * | 2016-05-31 | 2017-12-07 | 株式会社村田製作所 | 磁気センサ |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4735686B2 (ja) * | 2008-09-02 | 2011-07-27 | 株式会社村田製作所 | 磁気センサ |
EP2600164A4 (en) * | 2010-07-30 | 2016-03-30 | Mitsubishi Electric Corp | MAGNETIC SENSOR DEVICE |
US9222993B2 (en) * | 2010-07-30 | 2015-12-29 | Mitsubishi Electric Corporation | Magnetic substance detection device |
WO2014111976A1 (ja) * | 2013-01-18 | 2014-07-24 | 株式会社村田製作所 | 磁気センサ及びその製造方法 |
CN203909256U (zh) * | 2014-05-30 | 2014-10-29 | 株式会社村田制作所 | 磁传感器 |
CN204044343U (zh) * | 2014-08-22 | 2014-12-24 | 旭化成微电子株式会社 | 磁传感器 |
-
2018
- 2018-06-12 WO PCT/JP2018/022373 patent/WO2019035269A1/ja active Application Filing
- 2018-06-12 CN CN201880052227.7A patent/CN110998349B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010066262A (ja) * | 2008-09-08 | 2010-03-25 | Robert Bosch Gmbh | 磁界の空間成分を測定する磁界センサ装置 |
JP2013044641A (ja) * | 2011-08-24 | 2013-03-04 | Murata Mfg Co Ltd | 磁気センサ |
WO2016013345A1 (ja) * | 2014-07-24 | 2016-01-28 | 株式会社村田製作所 | 磁気センサ |
WO2017209169A1 (ja) * | 2016-05-31 | 2017-12-07 | 株式会社村田製作所 | 磁気センサ |
Also Published As
Publication number | Publication date |
---|---|
CN110998349B (zh) | 2021-11-16 |
CN110998349A (zh) | 2020-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5411285B2 (ja) | 磁気平衡式電流センサ | |
JP5066579B2 (ja) | 磁気センサ及び磁気センサモジュール | |
JP5066580B2 (ja) | 磁気センサ及び磁気センサモジュール | |
US10281532B2 (en) | Magnetic sensor | |
US11293950B2 (en) | Current sensor having soft magnetic bodies for adjusting magnetic field intensity | |
JP7020176B2 (ja) | 磁気センサ | |
JPWO2017169156A1 (ja) | 平衡式磁界検知装置 | |
JP2009175120A (ja) | 磁気センサ及び磁気センサモジュール | |
WO2017199519A1 (ja) | 平衡式磁気検知装置 | |
JP2017072375A (ja) | 磁気センサ | |
WO2017209169A1 (ja) | 磁気センサ | |
US11467231B2 (en) | Magnetic sensor | |
JP5505817B2 (ja) | 磁気平衡式電流センサ | |
JP5413866B2 (ja) | 磁気検出素子を備えた電流センサ | |
WO2022018978A1 (ja) | 磁気センサ | |
WO2019111765A1 (ja) | 磁気センサ | |
WO2019035269A1 (ja) | 磁気センサ | |
US10295615B2 (en) | Magnetic sensor | |
JP6618618B2 (ja) | 磁気検出装置 | |
WO2019111781A1 (ja) | 磁気センサ | |
WO2019111782A1 (ja) | 磁気センサ | |
WO2019111780A1 (ja) | 磁気センサ | |
US20220349962A1 (en) | Magnetic sensor and current sensor including magneto-resistance element | |
JP2009180596A (ja) | 磁界プローブ | |
CN116609712A (zh) | 磁传感器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18845559 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18845559 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |