WO2019034122A1 - 一种基于人体位置的空调器控制方法及空调器 - Google Patents

一种基于人体位置的空调器控制方法及空调器 Download PDF

Info

Publication number
WO2019034122A1
WO2019034122A1 PCT/CN2018/100887 CN2018100887W WO2019034122A1 WO 2019034122 A1 WO2019034122 A1 WO 2019034122A1 CN 2018100887 W CN2018100887 W CN 2018100887W WO 2019034122 A1 WO2019034122 A1 WO 2019034122A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
human body
air
working area
comfort
Prior art date
Application number
PCT/CN2018/100887
Other languages
English (en)
French (fr)
Inventor
王荟桦
刘聚科
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2019034122A1 publication Critical patent/WO2019034122A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode

Definitions

  • the present invention relates to the field of air conditioning technology, and in particular, to an air conditioner control method based on a human body position, and an air conditioner to which the control method is applied.
  • the air conditioner When the air conditioner operates in the cooling mode, if the compressor operates at a high frequency state, the air is supplied to the air-conditioned room in a large amount with a relatively low temperature. If the user feels hot and sends air to the unmanned area in the air-conditioned room, the temperature of the user's area cannot be effectively controlled, and the air-conditioning energy consumption is not converted into the actual air-conditioning capacity, and there is a large amount of energy waste. If the user feels cold, the temperature of the air-conditioned room is high, but the air conditioner directly supplies air to the user's area in the air-conditioned room, the user's sense of body will be colder, and the actual experience is poor.
  • the position of a person is detected by an infrared sensor, such as the technical content disclosed in the patent application "Air Conditioner", Application No. 200480032127.6 "Infrared sensor is disposed near the surface of the indoor unit, and is used for sensing.
  • a sensor for sensing a person in the room, the infrared sensor transmitting information related to the sensed direction of the person to the control, and sensing the person using the infrared sensor to always perform sensing. Sensing can also be performed every predetermined time.
  • the technical solution disclosed in the prior art after entering the touching state, the detection signal of the infrared sensor has a relatively high priority.
  • the air supply of the air conditioner is always controlled according to the detection signal of the infrared sensor.
  • the user is actually unable to know that the infrared sensor is detecting its position, unable to generate subjective knowledge of the infrared sensor, and establish an interactive interaction relationship.
  • the characteristics of the infrared sensor itself are more sensitive to dynamic objects, and if the user stands at the front end of the infrared sensor, it is prone to recognition failure. If there is an object in the air-conditioned room that is hot and whose surface temperature is close to the temperature of the user's body surface, there is also a certain recognition error rate.
  • an air conditioner that detects an object position using an infrared sensor has a problem of difficulty in interaction and a high recognition error rate.
  • the present invention discloses a method for controlling an air conditioner based on a human body position.
  • a method for controlling an air conditioner based on a human body position comprising the following steps:
  • thermopile sensor to divide a work area in an air-conditioned room
  • thermopile sensor has a plurality of unit infrared sensors distributed in a matrix
  • the unit infrared sensor simultaneously outputs a temperature detection signal to the air conditioner controller, and when more than half of the unit infrared sensor output temperature detection value is greater than or equal to the ambient temperature detection value, and the difference between the two belongs to the set temperature interval, the determination is Some people in the work area control the movement of the air conditioner according to the position of the human body.
  • the method further includes the following steps:
  • the air conditioner controller controls the display panel to switch from the standby state to the working state, and the display panel remains in the working state until the end of the first period.
  • thermopile sensor has a unit infrared sensor distributed in an 8*8 matrix, and the set temperature interval is 1 to 2 °C.
  • the method further includes the following steps:
  • thermopile sensor When the air conditioner is turned on, it is first determined whether the indoor ambient temperature satisfies the set indoor ambient temperature condition of the intelligent control mode, and if yes, the thermopile sensor is used to detect whether there is any person in the working area;
  • the first control strategy comprises: detecting a distance of a person by using a radar sensor, simultaneously calculating and calculating the comfort of the human body, controlling the air supply wind speed and the air supply temperature according to the distance and the human body comfort, so that the human body comfort reaches the standard human body comfort;
  • the second control strategy includes: correcting the set temperature, and controlling the air conditioner to operate with the corrected set temperature as the target temperature;
  • the method further includes dividing, by the thermopile sensor, a plurality of working areas in the air-conditioned room, the working area including at least a first working area and a second working area,
  • the radar sensor is used to detect the distances of the people in the first working area and the second working area, respectively, and the respective identified in the first working area are separately sampled and calculated.
  • the human body comfort of the user and the human body comfort recognized by the user in the second work area controlling the air supply wind speed of the first work area by using the distance of the person in the first work area and the human body comfort of the user in the first work area, respectively
  • the supply air temperature using the distance of the person in the second working area and the human body comfort of the user in the second working area to control the air supply wind speed and the supply air temperature of the second working area; the sending of the first working area and the second working area Wind independent control.
  • one user with the largest deviation of the human body comfort in each working area is selected as the control object of the working area, according to the control object
  • the human body comfort and distance control the air supply wind speed and the air supply temperature of the first working area and/or the second working area, so that the human body comfort of the controlled object reaches the standard human body comfort.
  • thermopile sensor includes at least a first thermopile sensor, a second thermopile sensor, and a third thermopile sensor disposed in a horizontal direction, the thermopile sensor having a horizontal viewing angle of 120[deg.], the first thermopile sensor At least two viewing angle ranges of the second thermopile sensor and the third thermopile sensor overlap and form an overlapping area, and the first working area and the second working area are formed in the one or more overlapping areas.
  • the blowing wind speed increases as the human comfort deviation and the distance increase.
  • the air conditioning operating condition is automatically determined according to the indoor ambient temperature, and is operated according to the set temperature corresponding to the set air conditioning operating condition.
  • thermopile sensor disposed on the air conditioner can fully exert its own characteristics of accurately detecting the dynamic object on the one hand, and on the other hand, if the human body is in the work area for a period of time Keeping still, the thermopile can also accurately obtain the position of the human body by sampling the detection value of the matrix distribution unit infrared sensor, setting the temperature interval to filter out invalid data points during the detection process, improving the detection accuracy and reducing the thermopile.
  • the recognition error rate of the sensor can be used to obtain the position of the human body by sampling the detection value of the matrix distribution unit infrared sensor, setting the temperature interval to filter out invalid data points during the detection process, improving the detection accuracy and reducing the thermopile.
  • an air conditioner which adopts an air conditioner control method based on a human body position, and the air conditioner control method based on the human body position includes the following steps:
  • thermopile sensor to divide a work area in an air-conditioned room
  • thermopile sensor has a plurality of unit infrared sensors distributed in a matrix
  • the unit infrared sensor simultaneously outputs a temperature detection signal to the air conditioner controller, and when more than half of the unit infrared sensor output temperature detection value is greater than or equal to the ambient temperature detection value, and the difference between the two belongs to the set temperature interval, the determination is Some people in the work area control the movement of the air conditioner according to the position of the human body.
  • the invention has the advantages of good intelligence and good user experience.
  • FIG. 1 is a flow chart of a first embodiment of a method for controlling a human body position based air conditioner according to the present invention
  • FIG. 2 is a flow chart of a second embodiment of a method for controlling a human body position based air conditioner according to the present invention
  • FIG. 3 is a flow chart of a third embodiment of a method for controlling a human body position based air conditioner according to the present invention.
  • FIGS. 1 to 3 is a flow chart of calculating human comfort in the body position-based air conditioner control method disclosed in FIGS. 1 to 3;
  • Figure 5 is a cross-sectional view of an air conditioner to which the above-described human body position based air conditioner control method can be applied;
  • Figure 6 is an exploded view of the air conditioner shown in Figure 5;
  • Figure 7 is a front elevational view of the air conditioner of Figure 5;
  • FIG. 8 is a schematic view of a viewing angle range of an air conditioner provided with three thermopile sensors
  • FIG. 9 is a schematic block diagram of an embodiment of a human body position based air conditioner disclosed in the present invention.
  • FIG. 10 is a schematic block diagram of another embodiment of a disclosed human body position based air conditioner.
  • the air conditioner generally includes an indoor unit 1000 and an outdoor unit 2000, and an electrical connection is formed between the indoor unit 1000 and the outdoor unit 2000.
  • the indoor unit 1000 and the outdoor unit 2000 constitute a vapor compression refrigeration cycle system for achieving cooling and heating of the indoor environment.
  • the outdoor unit 2000 is provided with a compression refrigeration structure such as a compressor and an outdoor heat exchanger
  • the indoor unit 1000 is provided with a compression refrigeration structure such as an indoor heat exchanger.
  • the working principle of the vapor compression refrigeration cycle system is a well-known technique of those skilled in the art, and will not be described herein.
  • the indoor unit 1000 may be provided with an air outlet 14 for air supply, and the arrow in FIG.
  • the indoor unit 1000 is a general air blowing direction of the indoor unit 1000 in one embodiment, and W1, W2, W3, and W4 are the indoor unit 1000.
  • the indoor wall surface may be composed of four straight wall surfaces, or may be composed of a single curved wall surface, or may be composed of any other number of walls of any shape.
  • the indoor unit 1000 may be a cabinet type and disposed at any position in the room, or may be wall-mounted and disposed on any wall in the room.
  • thermopile sensor 200 is used to detect whether there is a human body and a human body in the air-conditioned room.
  • the thermopile sensor 200 has a range of working viewing angles.
  • the working angle range of the thermopile sensor 200 is the working area of the air-conditioned room (step S101 shown in FIG. 1).
  • the thermopile sensor 200 has a plurality of unit infrared sensors 200a distributed in a matrix in the thermopile sensor 200.
  • thermopile sensor 200 can detect a plane range within a range of its working angle of view. Human body signal inside. It is not difficult to understand that, in general, the ambient temperature in an air-conditioned room is lower than the body surface temperature, and the ambient temperature is basically stable. When the human body is in the plane range, the temperature detection value of the portion of the plane that is blocked by the human body changes, which is higher than the temperature detection value of other parts in the plane. The closer the human body is to the air conditioner, the larger the proportion of the occluded portion in the plane range.
  • the unit infrared sensor 200a distributed in a matrix simultaneously outputs a temperature detection signal to the air conditioner controller 400.
  • step S103 and step S104 it is determined that the unit infrared sensor 200a outputs the relationship between the temperature detection value and the ambient temperature detection value.
  • the temperature detection value output by more than half of the unit infrared sensors 200a is greater than or equal to the ambient temperature detection value, each temperature is determined. Whether the difference between the detected value and the ambient temperature detected value belongs to the set temperature interval. If both conditions are satisfied, it is determined that there is a person in the working area of the thermopile sensor 200, and the air conditioner operation is further controlled, as in step S105 and step S106.
  • the thermopile sensor 200 has a unit infrared sensor 200a distributed in an 8*8 matrix.
  • the thermopile sensor 200 disposed on the air conditioner can fully exert its own characteristics of accurately detecting the dynamic object on the one hand, and on the other hand, if the human body remains stationary for a period of time in the working area, the thermoelectricity The stack can also accurately obtain the position of the human body by sampling the detection value of the matrix distribution unit infrared sensor 200a, and set the temperature interval to filter out invalid data points during the detection process, thereby improving the detection accuracy and reducing the thermopile sensor 200. Identify the error rate.
  • FIG. 2 is a flow chart showing a second embodiment of a method for controlling a human body position based air conditioner according to the present invention.
  • the air conditioner controller 400 is operated in addition to the air conditioner according to the human body position.
  • the control panel 401 is switched from the standby state to the active state, as shown in step S2062 of FIG.
  • the display panel 401 is illuminated, and the user can clearly know that the thermopile sensor 200 enters the working state, and the air conditioner automatically controls according to its own position.
  • the user can set the target temperature through the touch screen of the display panel 401.
  • the display panel 401 remains in operation until the end of the first cycle.
  • the first cycle can be consistent with the operating time of the air conditioner. However, in order to reduce power consumption, the first period is preferably set to 1 minute.
  • FIG. 3 is a flow chart showing a third embodiment of a method for controlling a human body position based air conditioner according to the present invention.
  • the thermopile sensor 200 disposed on the air conditioner automatically divides the working area in the air-conditioned room.
  • the air conditioner first determines whether the indoor ambient temperature satisfies the set indoor ambient temperature condition of the air conditioner control mode based on the human body position. If the indoor ambient temperature is relatively mild, the first control target is to control the indoor ambient temperature to reach a reasonable range, and the control mode based on the human body position is not entered.
  • the indoor ambient temperature condition is set to be 15 ° C to 30 ° C.
  • the indoor ambient temperature detected in real time belongs to the above interval, it is determined that the indoor ambient temperature satisfies the set indoor ambient temperature condition of the air conditioner control mode based on the human body position, and enters or allows access to the air conditioner control mode based on the human body position.
  • the thermopile sensor 200 detects whether there is a person in the work area. If there is a person in the work area in the manner provided by the first embodiment. Then, the first control strategy is executed, and in step S3041, the display panel 401 is switched from the standby state to the active state, step S3042.
  • the first control strategy includes detecting the distance of the person using the radar sensor while sampling and calculating the comfort of the human body, as shown in step S305.
  • the air supply wind speed and the air supply temperature are controlled according to the distance and the human body comfort, so that the human body comfort reaches the standard human body comfort, as shown in step S306.
  • step 308 if there is no person in the work area, the set temperature is corrected, and the corrected set temperature is used as the target temperature control air conditioner operation, as shown in step S309.
  • FIG. 5 to FIG. 7 are structural diagrams of an air conditioner according to a human body position-based air conditioner control method disclosed in an embodiment.
  • the air conditioner includes a base 500 and at least two air conditioning bodies disposed on the base 500. That is, the first air conditioning body 1 and the second air conditioning body 2 are as shown.
  • the first air conditioning body 1 and the second air conditioning body 2 may together constitute an indoor unit 1000. Taking the two air conditioner bodies as an example, the specific structure of the vertical air conditioner is specifically introduced.
  • the base 500 is surrounded by a base rear wall 9, a base side wall 7, 8, a base front wall 6, and a chassis.
  • a functional component 4 such as a humidifying member is disposed in the base 500.
  • the first air conditioning body 1 includes a first housing 10 and a first drainage duct B1 formed in the first housing 10, and the second air conditioning body 2 includes a second housing 20 and a second portion formed in the second housing 20. Second drainage duct B2.
  • the first housing 10 and the second housing 20 are independently spaced apart without airflow interference therebetween.
  • the first housing 10 includes a first housing rear wall 10-1, a first housing top wall 10-2, and a first housing front wall 10-3, a first housing rear wall 10-1, and a first housing Both the top wall 10-2 and the first housing front wall 10-3 are designed to be streamlined.
  • the second housing 20 includes a second housing rear wall 20-1, a second housing top wall 20-2, and a second housing front wall 20-3.
  • the second housing top wall 20-2 and the second housing front wall 20-3 are designed to be streamlined.
  • a first air inlet 11 is defined in the first housing rear wall 10-1
  • a first air outlet 14 is defined in the first housing front wall 10-3
  • the first housing 10 is provided with a first throughflow.
  • the first flow fan 13 includes a first cross flow fan 131 and a first cross flow fan motor 132
  • the second cross flow fan 23 includes a second cross flow fan 231 and a second cross flow fan motor 232.
  • the first flow fan motor 132 is disposed in the first housing top wall 10-2.
  • the first air inlet 11, the first heat exchanger 12, the first cross flow fan 13, and the first air outlet 14 are sequentially disposed in the first draft air passage B1 in the air flow direction.
  • a second air outlet 24 is defined in the front wall of the second housing 20, a second air inlet 12 is defined in the second housing rear wall 20-1, and a second cross flow fan 23 is disposed in the second housing 20.
  • a second heat exchanger 22 is defined in the front wall of the second housing 20
  • a second air inlet 12 is defined in the second housing rear wall 20-1
  • a second cross flow fan 23 is disposed in the second housing 20.
  • a second heat exchanger 22 is defined in the front wall of
  • the second cross flow fan motor 232 is disposed in the second housing top wall 20-2.
  • the second air inlet 12, the second heat exchanger 22, the second cross flow fan 23, and the second air outlet 24 are sequentially disposed in the second draft air passage B2 in the air flow direction.
  • the first air conditioning body 1 and the second air conditioning body 2 are disposed adjacent to each other.
  • a through air duct A is formed between the first housing 10 and the second housing 20, and passes through the first housing front wall 10-3 and the first housing.
  • the streamlined design of the wall 10-1 and the first housing top wall 10-2 and the streamlined design of the second housing front wall 20-3, the second housing rear wall 20-1 and the second housing top wall 20-2 The cross-sectional shape of the through-air passage A is defined to further define the flow rate and flow direction of the air passing through the air passage A.
  • the air in the first draft air passage B1 and the second air flow duct B2 and the air in the through air passage A are mixed in the through air passage.
  • the through air passage A is preferably in the form of a double horn that is gradually expanded to reduced to then expanded as shown in FIG.
  • the confluence preferably occurs between the first air outlet 14 and the second air outlet 24, that is, the middle portion and the front end of the air passage A.
  • the mixed air is sent to a designated area of the air-conditioned room.
  • thermopile sensor 200-1 is disposed on the first air conditioning body 1, and a second thermopile sensor 200-2 is disposed on the second air conditioning body 2.
  • the viewing angle range of the first thermopile sensor 200-1 is the first working area
  • the viewing angle range of the second thermopile sensor 200-2 is the second working area.
  • the first thermopile sensor 200-1 is centered on the position of the sensor, and the viewing angle range covers 120°.
  • the second thermopile sensor 200-2 also takes the position of the sensor as the center line, and the viewing angle range covers 120°.
  • the first thermopile sensor 200-1 and the second thermopile sensor 200-2 are preferably disposed on the first housing front wall 10-3 and the second housing front wall 20-3.
  • a first radar sensor 300-1 is further disposed on the first housing front wall 10-3
  • a second radar sensor 300-2 is further disposed on the second housing front wall 20-3.
  • the coverage angle of the first radar sensor 300-1 and the second radar sensor 300-2 in the horizontal direction is preferably 100°. After experimentation, the 100° horizontal coverage angle of the radar sensor ensures that there is no dead space in the room. The distance between the person and the air conditioning body can be judged by the feedback signal of the radar sensor.
  • the first thermopile sensor 200-1 and the second thermopile sensor 200-2 respectively detect the first work. Whether there is a person in the area and the second work area, if there is someone in the first work area, detecting the distance between the person in the first work area and the first air conditioner body 1, and calculating the human body comfort of the person in the first work area, using the first The distance obtained by a radar sensor 300-1 and the wind speed corresponding to the calculation of the sampled human comfort selection control the operation of the first cross flow fan 13, while controlling the coil of the first heat exchanger 12 by distributing the refrigerant flow rate.
  • the temperature reaches the corresponding set value, so that the air supply of the first air outlet 14 has a set supply air temperature, and the human body comfort gradually reaches the standard human body comfort. If a person is in the second working area, the distance between the person in the second working area and the second air conditioning body 2 is detected in a similar manner, and the human body comfort of the person in the second working area is calculated, and the second radar sensor 300-2 is used. The distance and the calculation of the sampled human comfort degree select the wind speed to control the operation of the second cross flow fan 23, and at the same time, the coil temperature of the second heat exchanger 22 is controlled to reach a corresponding set value by distributing the refrigerant flow rate.
  • the air supply of the second air outlet 24 has a set air supply temperature, and the human body comfort of the second work area gradually reaches the standard human body comfort. If there is no one in the first working area and the second working area, the set temperature is automatically corrected, and the corrected set temperature is used as the target temperature to control the operation of the air conditioner. In this way, even if the user temporarily leaves the air-conditioned room, the air parameters in the air-conditioned room can be kept stable while reducing the energy consumption of the air conditioner.
  • the corrected set temperature in the cooling mode is 26 ° C
  • the low-frequency operation of the air conditioner is maintained, and the indoor ambient temperature is maintained at 26 ° C.
  • the corrected set temperature in the heating mode is 22 ° C. After the corrected set temperature is reached, the low-frequency operation of the air conditioner is maintained, and the indoor ambient temperature is maintained at 22 ° C.
  • the structure of the air conditioner is only a preferred structure, and the air position control method based on the human body position disclosed in this embodiment can be applied to a fan that operates independently or has two or more independently operated fans.
  • Air conditioner When there are multiple users in the working area, such as the first working area and the second working area as described above, a user with the largest deviation of the human body comfort is selected as the control object, and the human comfort and distance control according to the controlled object are controlled.
  • the air supply wind speed and the air supply temperature of the first working area and/or the second working area are such that the human body comfort of the control object reaches the standard human body comfort.
  • the human comfort deviation is the difference between the actual human comfort sampling calculation value and the standard human comfort.
  • the value of hr is between 4W/(m 2 ⁇ °C) and 5W/(m 2 ⁇ °C), and the value of hc is from 3W/(m 2 ⁇ °C) to 4W/(m 2 ⁇ °C). )between.
  • the radiant thermal conductivity and the convective thermal conductivity are typically set and stored in the controller 400 of the air conditioner for retrieval at any time.
  • the human body real-time clothing body surface temperature Ts can be detected by a thermopile sensor disposed on the air conditioner.
  • the internal surface temperature Tq of the building can be detected by a temperature sensor that is in direct contact with the wall surface, the top surface, and the ground, or can be detected by a thermopile sensor or a thermal imager.
  • the inner surface temperature Tq may be the wall surface temperature of the air conditioner installation contact, the surface temperature of the wall surface facing the air outlet of the air conditioner, or the temperature of the top wall or the temperature of the ground.
  • the real-time building inner surface temperature Tq is preferably an average value of the inner surface temperatures of all the inner walls of the air-conditioned room.
  • the real-time ambient temperature Th is preferably the inlet air temperature of the air conditioning return port 15.
  • the human body real-time clothing body surface temperature Ts, the real-time building internal surface temperature Tq, and the real-time ambient temperature Th in the air-conditioned room have the same sampling frequency.
  • the sampling frequency is preferably 1 time/minute.
  • the sampling frequency can be increased or decreased moderately.
  • the target temperature can be reached in a short time after starting up, and with the operation of the cooling mode, the humidity of the air-conditioned room has little effect on the comfort of the human body, while in the heating mode, due to the outdoor The ambient temperature is low and the effect of humidity on human comfort is negligible.
  • the human comfort calculated by the model disclosed in the embodiment can significantly reduce the amount of data processing, and at the same time, the obtained human comfort is based on real-time detection parameters rather than experimentally obtained inherent data, so it is more practical.
  • the human body state includes cold, slightly cold and comfortable, and the corresponding human comfort is (2.5, 3), (0.5, 2.5) and (0, 0.5).
  • the human body state includes heat, heat and comfort, and the corresponding human comfort is (2.5, 3), (0.5, 2.5) and (0, 0.5).
  • the standard human comfort is a comfortable human body comfort corresponding to the human body state, which is a fixed value between intervals (0, 0.5).
  • the difference in the formula for calculating the comfort of the human body is an absolute value.
  • an independent processing bit can also be set in the air conditioner controller 400, and the human body comfort has a sign bit. Standard human comfort values are between the intervals (-0.5, 0.5).
  • thermopile sensors of the same model and having the same viewing angle range that is, the first thermopile sensor 200-1 and the second thermopile sensor 200-2 as shown in the figure.
  • the third thermopile sensor 200-3, the first thermopile sensor 200-1, the second thermopile sensor 200-2, and the third thermopile sensor 200-3 are sequentially arranged in the horizontal direction and are disposed at a certain height, and are highly preferred It is 1m to avoid the malfunction of the air conditioner if the pet in the air-conditioned room enters the work area.
  • the spacing in the horizontal direction is equal and the coverage is average.
  • the set height can be adjusted according to the needs of the air-conditioned room.
  • the working angle range ⁇ of the first thermopile sensor 200-1, the second thermopile sensor 200-2, and the third thermopile sensor 200-3 is preferably 120°, thereby dividing the air-conditioned room into six regions as shown in the figure. , that is, AF as shown in FIG. 6.
  • the viewing angle range of the first thermopile sensor 200-1 and the second thermopile sensor 200-2 overlaps at the regions B, D and forms an overlapping region, and the second thermopile sensor 200-2 and the third thermopile sensor 200-3
  • the range of viewing angles overlaps at regions D, E and forms an overlapping region.
  • the first working area and the second working area are independently controlled and the air is controlled by the area D, and the user's human comfort in the area D can be quickly adjusted to the standard human body. Comfort.
  • the area D is formed between the first air conditioning body 1 and the second air conditioning body 2 and is located at the front end of the air conditioner, and the air conditioner forms a mixed flow at the area D, located at D Users in the area can get the best air conditioning experience.
  • the third thermopile sensor 200-3 may be disposed on the base 500, or may be disposed between the first air conditioning body 200-1 and the second air conditioning body 200-2 (not shown) Out).
  • the maximum air supply angle of the air conditioner covers the horizontal viewing angles of the first thermopile sensor 200-1, the second thermopile sensor 200-2, and the third thermopile sensor 200-3. If the user is only at the area D, the air supply angles of the first air conditioner body 1 and the second air conditioner body 2 are controlled to be the same as the coverage angle of the area D.
  • the automatic ambient temperature determines the air conditioning operating condition. If the indoor ambient temperature is higher than 30 °C, the air conditioner automatically enters the cooling mode, and the air conditioner is operated at the maximum power to make the indoor ambient temperature lower than 30 °C. If the indoor ambient temperature is lower than 15 °C, the air conditioner automatically enters the heating mode, and the air conditioner is operated at the maximum power to make the indoor ambient temperature higher than 15 °C.
  • the air conditioner control method based on the human body position disclosed in the embodiment, the number of air parameters affecting the comfort of the user's human body is reduced by the new data model, the parameter processing amount of the control system and the system hardware requirement are reduced, and the air conditioner is further reduced.
  • the cost of the device at the same time fully air supply to the working area of the air-conditioned room, adjust the wind speed and supply air temperature, with better human comfort.
  • the invention also discloses an air conditioner, which adopts the human body position based air conditioner control method disclosed in the above embodiment.
  • the specific steps of the control method are described in detail in the above embodiment, and the air conditioner using the above intelligent air conditioner control method has the same technical effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

基于人体位置的空调器控制方法,包括以下步骤:利用热电堆传感器在空调房间中划分出工作区域(S101);热电堆传感器具有呈矩阵分布的多个单位红外传感器,单位红外传感器同时输出温度检测信号至空调器控制器(S102);当一半以上的单位红外传感器输出的温度检测值大于等于环境温度检测值,且二者差值属于设定温度区间时(S103、S104),判定为工作区域中有人(S105),根据人体位置控制空调器动作(S106)。还公开一种空调器。该方法一方面可以对动态对象准确检测,另一方面,也可以通过对矩阵分布单位红外传感器的检测值的采样获取静态人体的位置,设定温度区间滤除了检测过程中的无效数据点,提高了检测精度,降低了热电堆传感器的识别错误率。

Description

一种基于人体位置的空调器控制方法及空调器 技术领域
本发明涉及空气调节技术领域,尤其涉及一种基于人体位置的空调器控制方法,以及一种应用该种控制方法的空调器。
背景技术
空调器工作在制冷模式时,如果压缩机工作在高频状态,相对温度非常低空气大量供给至空调房间。若用户体感较热,而送风向空调房间内的无人区域,则用户所在区域的温度不能有效控制,空调能耗没有转化为实际空调能力,存在很大程度的能源浪费。若用户体感较冷,空调房间温度较高,但空调向空调房间内用户所在区域直接送风,则用户体感会更冷,实际体验较差,
为了克服上述问题,现有技术中通过红外传感器检测人的位置,如发明专利《空调机》,申请号200480032127.6中所公开的技术内容“红外线传感器设置在室内机的表面附近,是用于感测室内的人的对人进行感测的传感器,该红外线传感器将感测到的人所在的方向的相关信息发给控制不,另外,关于使用红外线传感器对人进行感测,可以始终进行感测,也可以每个预定时间进行感测。”现有技术中所公开的技术方案,进入感人状态之后,红外传感器的检测信号具有相对较高的优先级。空调器的送风始终按照红外传感器的检测信号进行控制。用户在这个过程中,实际上无法获知是红外传感器在检测自己的位置,无法产生对红外传感器的主观认识,建立交互互动关系。而且,红外传感器本身的特性约束了其对于动态的对象更为敏感,如果用户站立在红外传感器的前端,则容易出现识别故障。如果空调房间内还存在发热且表面温度与用户体表温度接近的物体,也存在一定的识别错误率。
因此,现有技术中利用红外传感器检测人体位置的空调器存在互动困难且识别错误率高的问题。
发明内容
为解决现有技术中利用红外传感器检测人体位置的空调器存在互动困难且识别错误率高的问题,本发明公开一种基于人体位置的空调器控制方 法。
一种基于人体位置的空调器控制方法,包括以下步骤:
利用热电堆传感器在空调房间中划分出工作区域;
所述热电堆传感器具有呈矩阵分布的多个单位红外传感器;
所述单位红外传感器同时输出温度检测信号至空调器控制器,当一半以上的单位红外传感器输出的温度检测值大于等于环境温度检测值,且二者差值属于设定温度区间时,判定为所述工作区域中有人,根据人体位置控制空调器动作。
进一步的,还包括以下步骤:
当判定所述工作区域中有人时,所述空调器控制器控制显示板自待机状态切换至工作状态,所述显示板保持工作状态至第一周期结束。
优选的,所述热电堆传感器具有呈8*8矩阵分布的单位红外传感器,所述设定温度区间为1至2℃。
进一步的,还包括以下步骤:
空调器开机,首先判定室内环境温度是否满足智能控制模式的设定室内环境温度条件,若满足,则利用热电堆传感器检测所述工作区域内是否有人;
若所述工作区域内有人,则执行第一控制策略;若所述工作区域内无人,则执行第二控制策略;
所述第一控制策略包括:利用雷达传感器检测人的距离,同时采样计算人体舒适度,根据距离和人体舒适度控制送风风速和送风温度,使人体舒适度达到标准人体舒适度;
所述第二控制策略包括:修正设定温度,以修正后的设定温度为目标温度控制空调器运行;
人体舒适度通过以下步骤采样获得:
采集识别出的用户的实时着衣体表温度Ts;采集空调房间内的实时建筑物内表面温度Tq;采集空调房间内的实时环境温度Th;计算实时人体舒适度C’,C′=h r·(T s-T q)+h c·(T s-T h),其中hr和hc为常数,其中hr为放射热传导率,hc为对流热传导率。
进一步的,还包括利用热电堆传感器在空调房间中划分出多个工作区域,所述工作区域至少包括第一工作区域和第二工作区域,
若所述第一工作区域和第二工作区域内均有人时,则利用雷达传感器分 别检测第一工作区域和第二工作区域内的人的距离,同时分别采样计算第一工作区域内识别出的用户的人体舒适度和第二工作区域内识别出的用户的人体舒适度;分别利用第一工作区域内人的距离和第一工作区域内用户的人体舒适度控制第一工作区域的送风风速和送风温度,利用第二工作区域内人的距离和第二工作区域内用户的人体舒适度控制第二工作区域的送风风速和送风温度;第一工作区域和第二工作区域的送风独立控制。
进一步的,当第一工作区域和/或第二工作区域中有多名用户时,选定每一个工作区域中人体舒适度偏差最大的一名用户作为该工作区域的控制对象,根据控制对象的人体舒适度和距离控制第一工作区域和/或第二工作区域的送风风速和送风温度,使得控制对象的人体舒适度达到标准人体舒适度。
进一步的,所述热电堆传感器至少包括沿水平方向设置的第一热电堆传感器、第二热电堆传感器和第三热电堆传感器,所述热电堆传感器的水平视角为120°,第一热电堆传感器、第二热电堆传感器和第三热电堆传感器中的至少两个视角范围重叠并形成重叠区域,所述第一工作区域和第二工作区域形成在所述一个或多个重叠区域中。
进一步的,在所述第一控制策略中,送风风速随人体舒适度偏差和距离的增大而增大。
进一步的,如果室内环境温度不满足智能控制模式的设定室内环境温度条件,则自动根据室内环境温度判定空调运行工况,并根据设定空调运行工况对应的设定温度运行。
本发明所公开的基于人体位置的空调器控制方法,设置在空调器上的热电堆传感器一方面可以充分发挥其本身对动态对象准确检测的特点,另一方面,如果人体在工作区域内一段时间保持静止,热电堆也可以进行准确的通过对矩阵分布单位红外传感器的检测值的采样获取人体的位置,设定温度区间滤除了检测过程中的无效数据点,提高了检测精度,降低了热电堆传感器的识别错误率。
同时公开了一种空调器,采用基于人体位置的空调器控制方法,基于人体位置的空调器控制方法包括以下步骤:
利用热电堆传感器在空调房间中划分出工作区域;
所述热电堆传感器具有呈矩阵分布的多个单位红外传感器;
所述单位红外传感器同时输出温度检测信号至空调器控制器,当一半以 上的单位红外传感器输出的温度检测值大于等于环境温度检测值,且二者差值属于设定温度区间时,判定为所述工作区域中有人,根据人体位置控制空调器动作。
本发明具有智能化程度好且用户体验好的优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所公开的基于人体位置的空调器控制方法第一种实施例的流程图;
图2为本发明所公开的基于人体位置的空调器控制方法第二种实施例的流程图;
图3为本发明所公开的基于人体位置的空调器控制方法第三种实施例的流程图;
图4为图1至图3所公开的基于人体位置的空调器控制方法中计算人体舒适度的流程图;
图5为一种可应用上述基于人体位置的空调器控制方法的空调器的剖视图;
图6为图5所示空调器的爆炸图;
图7为图5所示空调器的主视图;
图8为设置有三个热电堆传感器的空调器的视角范围示意图;
图9为本发明所公开的基于人体位置的空调器一种实施例的示意性框图;
图10为本发明所公开的基于人体位置的空调器另一种实施例的示意性框图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述, 显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图9,空调器一般可包括室内机1000和室外机2000,室内机1000和室外机2000之间形成有电连接。该室内机1000与室外机2000一同构成蒸气压缩制冷循环系统,实现对室内环境的制冷和制热。具体地,室外机2000内设置有压缩机和室外换热器等压缩制冷结构,室内机1000内设置有室内换热器等压缩制冷结构。蒸气压缩制冷循环系统的工作原理为本领域技术人员所习知的技术,在此不做赘述。室内机1000上可设置有出风口14以用于送风,图9中箭头所示即为一个实施例中的室内机1000的大致送风方向,W1、W2、W3、W4即为室内机1000所在室内的墙面。室内墙面可以由四个直线型墙面构成,也可由单独一个弧形墙面构成,也可由其他任意数量的任意形状的墙面构成。其中,室内机1000可以为柜式并设置在室内任意位置,也可以为壁挂式并设置在室内任一墙面上。
参见图1所示为本发明所公开的基于人体位置的空调器控制方法一种具体实施例的流程图。首先,基于人体位置的空调器控制方法与现有技术类似,采用热电堆传感器200检测空调房间中是否有人体以及人体的存在。热电堆传感器200具有一定的工作视角范围。在本实施例中,热电堆传感器200的工作视角范围即为空调房间的工作区域(如图1所示的步骤S101)。与传统的热电堆传感器200不同,在本实施例中,参见图10,热电堆传感器200具有呈矩阵分布在热电堆传感器200中的多个单位红外传感器200a。每一个单位红外传感器200a均生成温度检测信号并同时输出温度检测信号至空调器控制器400(如图1所示的步骤S102),因此,热电堆传感器200可以检测其工作视角范围内一个平面范围内的人体信号。不难理解的是,一般情况下,空调房间内的环境温度低于人体体表温度,而环境温度基本稳定。当人体在平面范围内时,平面中由人体遮挡的部分的温度检测值会发生变化,高于平面内其它部分的温度检测值。人体离空调器越近,则遮挡部分占平面范围的比例越大。根据这一原则,呈矩阵分布的单位红外传感器200a同时输出温度检测信号至空调器控制器400。如步骤S103和步骤S104,判定单位红外传感器200a输出温度检测值和环境温度检测值的关系,当一半以上的单位红外传感器200a输出的温度检测值大于等于环境温度检测值时,则判 定每一个温度检测值和环境温度检测值的差值是否属于设定温度区间。若两个条件均满足,则判定热电堆传感器200的工作区域内有人,进一步控制空调器动作,如步骤S105和步骤S106。优选的,热电堆传感器200具有呈8*8矩阵分布的单位红外传感器200a。采用本实施例所公开的方案,设置在空调器上的热电堆传感器200一方面可以充分发挥其本身对动态对象准确检测的特点,另一方面,如果人体在工作区域内一段时间保持静止,热电堆也可以进行准确的通过对矩阵分布单位红外传感器200a的检测值的采样获取人体的位置,设定温度区间滤除了检测过程中的无效数据点,提高了检测精度,降低了热电堆传感器200的识别错误率。
参见图2所示为本发明所公开的基于人体位置的空调器控制方法第二种具体实施例的流程图。除了提高检测准确率之外,为了使用户了解到热电堆传感器200的使用状态,并与空调器产生互动,当判定工作区域有人时,除了根据人体位置空调器动作之外,空调器控制器400控制显示板401自待机状态切换至工作状态,如图2所示步骤S2062。工作状态中,显示板401点亮,用户可以明确的了解到热电堆传感器200进入工作状态,空调器会根据其自身的位置进行自动控制。同时,用户可以通过显示板401的触摸屏设定目标温度。显示板401保持工作状态至第一周期结束。第一周期可以与空调的运行时长一致。但是,为了降低功耗,第一周期优选设置为1分钟。
参见图3所示为本发明所公开的基于人体位置的空调器控制方法第三种具体实施例的流程图。如图1所示,如步骤S301所示,空调器开机后,优选为首次上电后,设置在空调器上的热电堆传感器200自动在空调房间中划分出工作区域。如步骤S302所示,空调器首先判定室内环境温度是否满足基于人体位置的空调器控制模式的设定室内环境温度条件。如果室内环境温度较为恶略,则首先以控制室内环境温度达到合理区间范围为首要控制目标,不进入基于人体位置的控制模式。优选的,设定室内环境温度条件为15℃至30℃。当实时检测的室内环境温度属于上述区间时,则判定室内环境温度满足基于人体位置的空调器控制模式的设定室内环境温度条件,进入或允许进入基于人体位置的空调器控制模式。
如图1步骤S303所示,空调器进入智能控制模式后,热电堆传感器200检测工作区域内是否有人。如果依据第一实施例所提供的方式判定工作区域内有人。则执行第一控制策略,步骤S3041,同时显示板401自待机状态切 换至工作状态,步骤S3042。第一控制策略包括,利用雷达传感器检测人的距离,同时采样计算人体舒适度,如步骤S305所示。根据距离和人体舒适度控制送风风速和送风温度,使人体舒适度达到标准人体舒适度,如步骤S306所示。如步骤308所示,如果工作区域内没有人,则修正设定温度,以修正后的设定温度为目标温度控制空调器运行,如步骤S309所示。
热电堆传感器200划分工作区域的一种更为优选的方式是,利用两个热电堆传感器200在空调房间中划分多个工作区域,工作区域至少包括第一工作区域和第二工作区域。如图5至图7所示为一种应用实施例所公开的基于人体位置的空调器控制方法的空调器的结构图。如图所示,空调器包括底座500和设置在底座500上的至少两个空调本体。即如图所示的第一空调本体1和第二空调本体2。第一空调本体1和第二空调本体2可共同组成室内机1000。以设置两个空调本体为例,具体介绍立式空调器的具体结构。底座500由底座后壁9、底座侧壁7,8、底座前壁6、和底盘围成。如加湿部件等功能部件4设置在在所述底座500内。第一空调本体1包括第一壳体10以及形成在第一壳体10内的第一引流风道B1,第二空调本体2包括第二壳体20以及形成在第二壳体20内的第二引流风道B2。
第一壳体10和第二壳体20独立间隔设置,二者之间不发生气流干涉。第一壳体10包括第一壳体后壁10-1、第一壳体顶壁10-2和第一壳体前壁10-3,第一壳体后壁10-1、第一壳体顶壁10-2和第一壳体前壁10-3均设计为流线型。第二壳体20包括第二壳体后壁20-1、第二壳体顶壁20-2和第二壳体前壁20-3。第二壳体顶壁20-2和第二壳体前壁20-3设计为流线型。第一壳体后壁10-1上开设有第一进风口11,第一壳体前壁10-3上开设有第一出风口14,所述第一壳体10内设置有第一贯流风扇13和第一热交换器12。第一贯流风扇13包括第一贯流风扇131和第一贯流风扇电机132,第二贯流风扇23包括第二贯流风扇231和第二贯流风扇电机232。第一贯流风扇电机132设置在第一壳体顶壁10-2中。第一进风口11、第一热交换器12、第一贯流风扇13和第一出风口14沿空气流动方向依次布设在第一引流风道B1中。第二壳体20前壁上开设有第二出风口24,第二壳体后壁20-1上开设有第二进风口12,所述第二壳体20内设置有第二贯流风扇23和第二热交换器22。第二贯流风扇电机232设置在第二壳体顶壁20-2中。第二进风口12、第二热交换器22、第二贯流风扇23和第二出风口24沿空气流动方向依次布 设在第二引流风道B2中。第一空调本体1和第二空调本体2相邻设置,第一壳体10和第二壳体20之间形成贯通风道A,通过第一壳体前壁10-3、第一壳体后壁10-1和第一壳体顶壁10-2的流线型设计以及第二壳体前壁20-3、第二壳体后壁20-1和第二壳体顶壁20-2的流线型设计限定贯通风道A的横截面形状,进一步限定贯通风道A中空气的流量和流动方向。第一引流风道B1和第二引流风道B2中的引风和贯通风道A中的空气在贯通风道中混流。贯通风道A优选为图1所示的由渐扩至减缩再至渐扩的双喇叭状。汇流优选发生在所述第一出风口14、第二出风口24之间,即贯通风道A的中段及前端。混流后的空气被送至空调房间的指定区域。
在第一空调本体1上设置有第一热电堆传感器200-1,在第二空调本体2上设置有第二热电堆传感器200-2。第一热电堆传感器200-1的视角范围为第一工作区域,第二热电堆传感器200-2的视角范围为第二工作区域。第一热电堆传感器200-1以传感器所在位置为中心线,视角范围覆盖120°,第二热电堆传感器200-2同样以传感器所在位置为中心线,视角范围覆盖120°。第一热电堆传感器200-1和第二热电堆传感器200-2优选设置在第一壳体前壁10-3和第二壳体前壁20-3上。对应的,在第一壳体前壁10-3上还设置有第一雷达传感器300-1,在第二壳体前壁20-3上还设置有第二雷达传感器300-2。第一雷达传感器300-1和第二雷达传感器300-2水平方向的覆盖角度为优选为100°。经过实验,雷达传感器100°的水平覆盖角度可以确保室内没有死角。通过雷达传感器的反馈信号可以判断出人与空调本体之间的距离。
以图5至图7所示的空调器为例,当划分有第一工作区域和第二工作区域后,第一热电堆传感器200-1和第二热电堆传感器200-2分别检测第一工作区域和第二工作区域中是否有人,如果第一工作区域中有人,则检测第一工作区域中人与第一空调本体1的距离,并计算第一工作区域中人的人体舒适度,利用第一雷达传感器300-1得到的距离和计算采样得到的人体舒适度选择对应的风速控制第一贯流风扇13的运行,同时通过对制冷剂流量的分配,控制第一热交换器12的盘管温度达到对应的设定值,使得第一出风口14的送风具有设定的送风温度,人体舒适度逐渐达到标准人体舒适度。如果第二工作区域中有人,采用类似的方式,检测第二工作区域中人与第二空调本体2的距离,计算第二工作区域中人的人体舒适度,利用第二雷达传感器 300-2得到的距离和计算采样得到的人体舒适度选择对应的风速控制第二贯流风扇23的运行,同时通过对制冷剂流量的分配,控制第二热交换器22的盘管温度达到对应的设定值,使得第二出风口24的送风具有设定的送风温度,第二工作区域的人体舒适度逐渐达到标准人体舒适度。如果第一工作区域和第二工作区域中均没有人,则自动修正设定温度,以修正后的设定温度为目标温度控制空调器运行。这样,即使是用户暂时离开空调房间,也可以保持空调房间内的空气参数稳定,同时降低空调器的能耗。优选的,制冷模式下的修正设定温度为26℃,达到修正设定温度后维持空调器低频运行,维持室内环境温度为26℃。制热模式下的修正设定温度为22℃,达到修正设定温度后维持空调器低频运行,维持室内环境温度为22℃。
上述空调器的结构仅为一种优选的结构,本实施例所公开的基于人体位置的空调器控制方法可以应用于具有一台独立运行的风机,或者具有两台或多台独立运行的风机的空调器。当工作区域,如上文所述的第一工作区域和第二工作区域中有多名用户时,选定人体舒适度偏差最大的一名用户作为控制对象,根据控制对象的人体舒适度和距离控制第一工作区域和/或第二工作区域的送风风速和送风温度,使得控制对象的人体舒适度达到标准人体舒适度。人体舒适度偏差为实际人体舒适度采样计算值和标准人体舒适度之间的差值。
与现有技术所采用的PMV模型不同,通过全新的方式获得空调房间内的用户人体舒适度。参见图4所示,采集计算获得用户人体舒适度包括以下步骤:采集用户的实时着衣体表温度Ts(步骤S501);采集空调房间内的实时建筑物内表面温度Tq(步骤S502);采集空调房间内的实时环境温度Th(步骤S503);计算实时人体舒适度C’(步骤S504),C′=h r·(T s-T q)+h c·(T s-T h),其中hr和hc为常数,其中hr为放射热传导率,hc为对流热传导率。常来说,hr的取值在4W/(m 2·℃)至5W/(m 2·℃)之间,hc的取值在3W/(m 2·℃)至4W/(m 2·℃)之间。放射热传导率和对流热传导率通常取定值,且存储在空调器的控制器400中供随时调取。人体实时着衣体表温度Ts可以通过设置在空调器上的热电堆传感器检测。建筑物内表面温度Tq可以采用与墙面、顶面、地面直接接触的温度传感器检测,也可以采用热电堆传感器或热成像仪进行检测。内表面温度Tq可以是空调器安装接触的墙面表面温度,也可以是空调器出风口面对的墙面的表面温度,还可以是顶壁 的温度或者地面的温度。对于家庭用户来说,上下左右邻里的房间温度、建筑物朝向所引起的日照时间变化等其它因素也会对空调房间的内表面温度造成影响。因此,实时建筑物内表面温度Tq优选为空调房间所有内壁内表面温度的平均值。实时环境温度Th优选为空调回风口15的进风温度。人体实时着衣体表温度Ts,实时建筑物内表面温度Tq,空调房间内的实时环境温度Th的采样频率一致。采样频率优选为1次/分钟。采样频率可以适度增大或减小。由于在制冷模式中,开机后很短的时间内即可以达到目标温度,且随着制冷模式的运行,空调房间的湿度对人体舒适度的影响非常小,而在制热模式运行时,由于室外环境温度较低,湿度对人体舒适度的影响也可以忽略。所以,采用本实施例所公开的模型计算的人体舒适度,可以显著地降低数据处理量,同时,得到的人体舒适度是基于实时检测的参数而不是实验得到的固有数据,因此更贴合实际的人体舒适度。制冷模式下,人体状态包括冷、微冷和舒适,对应人体舒适度为(2.5,3),(0.5,2.5)和(0,0.5)。制热模式下,人体状态包括热、微热和舒适,对应人体舒适度为(2.5,3),(0.5,2.5)和(0,0.5)。标准人体舒适度为对应人体状态为舒适的人体舒适度,为区间(0,0.5)之间的定值。人体舒适度为正值时,人体舒适度计算公式中的差值均为绝对值。在某些对空调精度要求精度更好的应用条件下,也可以在空调器控制器400中设置一位独立的处理位,人体舒适度具有符号位。标准人体舒适度在区间(-0.5,0.5)之间取值。
以下提供一组第一控制策略的优选参数,其中送风风速随人体舒适度偏差和距离的增大而增大。
Figure PCTCN2018100887-appb-000001
如图8所示,在本实施例中,优选设置有三个相同型号且视角范围相同的热电堆传感器,即如图所示的第一热电堆传感器200-1、第二热电堆传感器200-2和第三热电堆传感器200-3,第一热电堆传感器200-1、第二热电堆 传感器200-2和第三热电堆传感器200-3沿水平方向依次布设且设置在一定的高度,高度优选为1m,避免如空调房间中的宠物进入工作区域导致空调器误动作。优选沿水平方向的间距相等,覆盖范围平均。设置高度可以根据空调房间的需要进行调整。第一热电堆传感器200-1、第二热电堆传感器200-2和第三热电堆传感器200-3的工作视角范围α优选为120°,从而将空调房间分为如图所示的六个区域,即如图6所示的A-F。其中第一热电堆传感器200-1、第二热电堆传感器200-2的视角范围在区域B,D处重叠并形成重叠区域,第二热电堆传感器200-2和第三热电堆传感器200-3的视角范围在区域D、E处重叠并形成重叠区域。如果空调房间内的人均集中在区域D中时,第一工作区域和第二工作区域均独立控制且均对区域D进行送风控制,区域D内用户的人体舒适度可以很快调整为标准人体舒适度。如果是如附图5至图7中举例的空调器结构,区域D形成在第一空调本体1和第二空调本体2之间且位于空调器前端,在区域D处空调器形成混流,位于D区域的用户可以得到最佳的空调效果体验。对于这种结构,第三热电堆传感器200-3可以设置在底座500上,也可以设置在第一空调本体200-1和第二空调本体200-2之间设置的连杆(图中未示出)上。空调器的最大送风角度覆盖第一热电堆传感器200-1、第二热电堆传感器200-2和第三热电堆传感器200-3的水平视角。如果用户仅在区域D处,则控制第一空调本体1和第二空调本体2的送风角度与区域D的覆盖角度相同。
如果室内环境温度不满足智能控制模式的设定室内环境温度条件,则自动环境温度判定空调运行工况。如果室内环境温度高于30℃,则空调器自动进入制冷模式,以最大功率控制空调运行使室内环境温度低于30℃。如果室内环境温度低于15℃,则空调器自动进入制热模式,以最大功率控制空调运行使室内环境温度高于15℃。
采用本实施例所公开基于人体位置的空调器控制方法,通过全新的数据模型降低了影响用户人体舒适度的空气参数的数量,降低了控制系统的参数处理量和系统硬件要求,进一步降低了空调器的成本;同时充分对空调房间的工作区域分区送风,调整风速和送风温度,具有更好的人体舒适度。
本发明同时公开了一种空调器,采用上述实施方式所公开的基于人体位置的空调器控制方法。控制方法的具体步骤参见上述实施例的详细描述,在此不再赘述,采用上述智能的空调器控制方法的空调器具有同样的技术效 果。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种基于人体位置的空调器控制方法,其特征在于,包括以下步骤:
    利用热电堆传感器在空调房间中划分出工作区域;
    所述热电堆传感器具有呈矩阵分布的多个单位红外传感器;
    所述单位红外传感器同时输出温度检测信号至空调器控制器,当一半以上的单位红外传感器输出的温度检测值大于等于环境温度检测值,且二者差值属于设定温度区间时,判定为所述工作区域中有人,根据人体位置控制空调器动作。
  2. 根据权利要求1所述的基于人体位置的空调器控制方法,其特征在于,还包括以下步骤:
    当判定所述工作区域中有人时,所述空调器控制器控制显示板自待机状态切换至工作状态,所述显示板保持工作状态至第一周期结束。
  3. 根据权利要求2所述的基于人体位置的空调器控制方法,其特征在于,所述热电堆传感器具有呈8*8矩阵分布的单位红外传感器,所述设定温度区间为1至2℃。
  4. 根据权利要求2或3所述的基于人体位置的空调器控制方法,其特征在于,包括以下步骤:
    空调器开机,首先判定室内环境温度是否满足智能控制模式的设定室内环境温度条件,若满足,则利用热电堆传感器检测所述工作区域内是否有人;
    若所述工作区域内有人,则执行第一控制策略;若所述工作区域内无人,则执行第二控制策略;
    所述第一控制策略包括:利用雷达传感器检测人的距离,同时采样计算人体舒适度,根据距离和人体舒适度控制送风风速和送风温度,使人体舒适度达到标准人体舒适度;
    所述第二控制策略包括:修正设定温度,以修正后的设定温度为目标温度控制空调器运行;
    人体舒适度通过以下步骤采样获得:
    采集识别出的用户的实时着衣体表温度Ts;采集空调房间内的实时建筑物内表面温度Tq;采集空调房间内的实时环境温度Th;计算实时人体舒适度C’,C′=h r·(T s-T q)+h c·(T s-T h),其中hr和hc为常数,其中hr为放射热 传导率,hc为对流热传导率。
  5. 根据权利要求4所述的基于人体位置的空调器控制方法,其特征在于,还包括利用热电堆传感器在空调房间中划分出多个工作区域,所述工作区域至少包括第一工作区域和第二工作区域,
    若所述第一工作区域和第二工作区域内均有人时,则利用雷达传感器分别检测第一工作区域和第二工作区域内的人的距离,同时分别采样计算第一工作区域内识别出的用户的人体舒适度和第二工作区域内识别出的用户的人体舒适度;分别利用第一工作区域内人的距离和第一工作区域内用户的人体舒适度控制第一工作区域的送风风速和送风温度,利用第二工作区域内人的距离和第二工作区域内用户的人体舒适度控制第二工作区域的送风风速和送风温度;第一工作区域和第二工作区域的送风独立控制。
  6. 根据权利要求5所述的基于人体位置的空调器控制方法,其特征在于,
    当第一工作区域和/或第二工作区域中有多名用户时,选定每一个工作区域中人体舒适度偏差最大的一名用户作为该工作区域的控制对象,根据控制对象的人体舒适度和距离控制第一工作区域和/或第二工作区域的送风风速和送风温度,使得控制对象的人体舒适度达到标准人体舒适度。
  7. 根据权利要求6所述的基于人体位置的空调器控制方法,其特征在于,所述热电堆传感器至少包括沿水平方向设置的第一热电堆传感器、第二热电堆传感器和第三热电堆传感器,所述热电堆传感器的水平视角为120°,第一热电堆传感器、第二热电堆传感器和第三热电堆传感器中的至少两个视角范围重叠并形成重叠区域,所述第一工作区域和第二工作区域形成在所述一个或多个重叠区域中。
  8. 根据权利要求7所述的基于人体位置的空调器控制方法,其特征在于,在所述第一控制策略中,送风风速随人体舒适度偏差和距离的增大而增大。
  9. 根据权利要求8所述的基于人体位置的空调器控制方法,其特征在于,如果室内环境温度不满足智能控制模式的设定室内环境温度条件,则自动根据室内环境温度判定空调运行工况,并根据设定空调运行工况对应的设定温度运行。
  10. 一种空调器,其特征在于,采用如权利要求1所述的基于人体位置的空调器控制方法。
PCT/CN2018/100887 2017-08-18 2018-08-16 一种基于人体位置的空调器控制方法及空调器 WO2019034122A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710713968.2A CN107631423B (zh) 2017-08-18 2017-08-18 一种基于人体位置的空调器控制方法及空调器
CN201710713968.2 2017-08-18

Publications (1)

Publication Number Publication Date
WO2019034122A1 true WO2019034122A1 (zh) 2019-02-21

Family

ID=61101435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100887 WO2019034122A1 (zh) 2017-08-18 2018-08-16 一种基于人体位置的空调器控制方法及空调器

Country Status (2)

Country Link
CN (1) CN107631423B (zh)
WO (1) WO2019034122A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107631423B (zh) * 2017-08-18 2019-12-03 青岛海尔空调器有限总公司 一种基于人体位置的空调器控制方法及空调器
CN107525237B (zh) * 2017-08-18 2019-12-31 青岛海尔空调器有限总公司 一种智能空调器控制方法及智能空调器
CN107525236B (zh) * 2017-08-18 2019-12-31 青岛海尔空调器有限总公司 基于人体舒适度的空调器控制方法及空调器
CN108444052B (zh) * 2018-02-28 2019-05-07 平安科技(深圳)有限公司 一种空调的控制方法及空调
CN108844186A (zh) * 2018-03-30 2018-11-20 广东美的制冷设备有限公司 空调器的控制方法、空调器和计算机可读存储介质
CN108344048B (zh) * 2018-04-02 2020-04-21 广东美的制冷设备有限公司 空调器
JP7053349B2 (ja) * 2018-04-05 2022-04-12 株式会社日立情報通信エンジニアリング 機器制御システム及びその方法
CN108737727A (zh) * 2018-04-27 2018-11-02 珠海格力电器股份有限公司 采集图像的方法和装置
CN108895603B (zh) * 2018-06-19 2020-06-19 芜湖美智空调设备有限公司 送风设备及其送风控制方法、装置和可读存储介质
CN108563249B (zh) * 2018-07-25 2021-11-26 浙江工商大学 一种基于uwb定位的自动追踪加热系统及方法
CN109028490B (zh) * 2018-07-31 2020-10-30 奥克斯空调股份有限公司 一种房门内外温差控制方法、装置及空调器
CN109668253B (zh) * 2018-12-20 2021-01-08 广东美的制冷设备有限公司 空调器的控制方法、空调器及存储介质
CN109539505B (zh) * 2018-12-29 2021-04-20 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN112099361A (zh) * 2019-06-17 2020-12-18 苏州市春菊电器有限公司 一种基于人体感应的家电控制方法
CN111141058A (zh) * 2020-01-19 2020-05-12 天津商业大学 基于半导体制冷制热原理的神经网络辐射板
CN113915740B (zh) * 2020-07-08 2023-12-22 海信空调有限公司 一种空调器和控制方法
CN114688617A (zh) * 2020-12-31 2022-07-01 广东美的制冷设备有限公司 空调器及其控制方法、计算机可读存储介质
CN113465120B (zh) * 2021-04-27 2023-01-13 青岛海尔空调器有限总公司 用于检测室内温度的方法、装置和智能空调
CN115096448B (zh) * 2022-08-26 2022-12-06 深圳市景新浩科技有限公司 一种基于互联网的红外测温系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6715689B1 (en) * 2003-04-10 2004-04-06 Industrial Technology Research Institute Intelligent air-condition system
CN104596042A (zh) * 2015-02-11 2015-05-06 美的集团股份有限公司 基于人体检测的空调控制方法、装置和系统
CN104776565A (zh) * 2014-01-09 2015-07-15 珠海格力电器股份有限公司 空调系统及控制方法
CN205607539U (zh) * 2016-05-03 2016-09-28 众智光电科技股份有限公司 温度感测装置以及空调系统
CN106196484A (zh) * 2016-07-29 2016-12-07 广东美的制冷设备有限公司 空调器的控制方法及空调器
CN107631423A (zh) * 2017-08-18 2018-01-26 青岛海尔空调器有限总公司 一种基于人体位置的空调器控制方法及空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6715689B1 (en) * 2003-04-10 2004-04-06 Industrial Technology Research Institute Intelligent air-condition system
CN104776565A (zh) * 2014-01-09 2015-07-15 珠海格力电器股份有限公司 空调系统及控制方法
CN104596042A (zh) * 2015-02-11 2015-05-06 美的集团股份有限公司 基于人体检测的空调控制方法、装置和系统
CN205607539U (zh) * 2016-05-03 2016-09-28 众智光电科技股份有限公司 温度感测装置以及空调系统
CN106196484A (zh) * 2016-07-29 2016-12-07 广东美的制冷设备有限公司 空调器的控制方法及空调器
CN107631423A (zh) * 2017-08-18 2018-01-26 青岛海尔空调器有限总公司 一种基于人体位置的空调器控制方法及空调器

Also Published As

Publication number Publication date
CN107631423B (zh) 2019-12-03
CN107631423A (zh) 2018-01-26

Similar Documents

Publication Publication Date Title
WO2019034122A1 (zh) 一种基于人体位置的空调器控制方法及空调器
WO2019034123A1 (zh) 一种智能空调器控制方法及智能空调器
JP6046579B2 (ja) 空気調和機
US7881827B2 (en) Air conditioner and method of operating the same
CN101191652B (zh) 空调器和控制该空调器的气流的方法
JP4952722B2 (ja) 空調吹出パネル、同空調吹出パネルを備えた空調制御システム及び空調制御方法
WO2018191703A1 (en) Thermostat with preemptive heating, cooling, and ventilation in response to elevated occupancy detection via proxy
WO2019024826A1 (zh) 壁挂式空调室内机及其控制方法
CN103912960B (zh) 一种空调控制系统及其控制方法
WO2019024825A1 (zh) 壁挂式空调室内机及其控制方法
CN107305035B (zh) 空调机
JP5063509B2 (ja) 空気調和機
CN103673089A (zh) 空气调节机
CN105352142B (zh) 一种室内温度调节控制方法
WO2019075821A1 (zh) 一种多媒体教室空调控制方法
JP2011133167A (ja) 空気調和機
WO2021019761A1 (ja) 空気調和システムおよびシステム制御装置
CN111442462A (zh) 一种温控设备控制方法、装置和温控系统
CN113091243B (zh) 一种智能控制空调的控制系统及方法
CN109405213A (zh) 空调器及其控制方法、控制装置、可读存储介质
KR101204000B1 (ko) 공기조화기 및 그 제어방법
JPWO2020035908A1 (ja) 空調装置、制御装置、空調方法及びプログラム
JP7038835B2 (ja) 空調装置、制御装置、空調方法及びプログラム
CN109725609A (zh) 一种智能空调系统
JPWO2020035907A1 (ja) 空調装置、制御装置、空調方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18845752

Country of ref document: EP

Kind code of ref document: A1