WO2019033646A1 - 具有表面定向功能修饰涂层的多孔支架及其制备方法 - Google Patents

具有表面定向功能修饰涂层的多孔支架及其制备方法 Download PDF

Info

Publication number
WO2019033646A1
WO2019033646A1 PCT/CN2017/116211 CN2017116211W WO2019033646A1 WO 2019033646 A1 WO2019033646 A1 WO 2019033646A1 CN 2017116211 W CN2017116211 W CN 2017116211W WO 2019033646 A1 WO2019033646 A1 WO 2019033646A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional component
azide
group
base material
porous
Prior art date
Application number
PCT/CN2017/116211
Other languages
English (en)
French (fr)
Inventor
左奕
胡釜
李玉宝
陈杰
邹琴
李吉东
Original Assignee
四川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学 filed Critical 四川大学
Publication of WO2019033646A1 publication Critical patent/WO2019033646A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/204Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials with nitrogen-containing functional groups, e.g. aminoxides, nitriles, guanidines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/22Lipids, fatty acids, e.g. prostaglandins, oils, fats, waxes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/23Carbohydrates
    • A61L2300/236Glycosaminoglycans, e.g. heparin, hyaluronic acid, chondroitin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/252Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/02Methods for coating medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the invention relates to a stent structure and a preparation method thereof for grafting a functional component modified structural layer including a drug on a surface of a porous stent structure.
  • Porous scaffold materials have important applications in biomedical engineering, particularly in tissue engineering and bone regenerative medicine.
  • Conventional porous scaffold materials are mainly prepared by foaming method, electrospinning, mold porous sintering method, 3D additive printing, and the like. Take bone repair twice as an example, but whether it is made of inorganic, organic, metal, or composite materials, even if it is blended with bioactive or pharmaceutical ingredients in its matrix, the porous scaffold surface structure obtained by these preparation methods is dense. It is difficult to effectively achieve the designed sustained-release or controlled release effect at the time of implantation, and it is impossible to provide initial cell adhesion, proliferation and differentiation for tissue engineering and bone-critical repair processes, such as inducing osteogenesis, promoting cell proliferation and differentiation, and inhibiting bacteria.
  • a modified medical titanium metal material provided by the Chinese patent CN201410001001 uses a silane coupling agent to graft polyaniline on the surface of titanium.
  • CN201010587242 provides a method for preparing a drug vascular stent with an antibody immobilized on the surface, which is used for spraying polyester on the stent, and then crosslinking the antibody with a coupling agent.
  • CN201210331666.6 in the proposed method for immobilizing functional molecules on the surface of dopamine-bridged biomedical materials, it is proposed to use chemical reactions to graft functional molecules onto the polydopamine layer, but the method of immobilizing functional molecules remains The biomedical material to which dopamine is immobilized is immersed in functional molecules.
  • the present invention provides a porous stent having a novel structural form of a surface orientation functional modification coating, and further provides a method of preparing the porous stent.
  • the porous stent with the surface orientation functional modification coating is coated on the surface of the porous stent material structure with a polydopamine coating structure, and is grafted in a modular manner on the hydroxyl and/or amino sites on the surface of the polydopamine coating structure.
  • the porous scaffold material structure described in the above structure may be preferably, but not limited to, a structure prepared from medically acceptable components and/or materials, generally being an inert biomaterial, or having a degradation time of ⁇ 3 months.
  • a porous structure of a slowly degradable biological material a support structure of a metal material including titanium alloy, stainless steel, including silicon oxide, zirconium oxide, polyurethane (PU), polytetrafluoroethylene (PTFE), polystyrene ( PS), an inorganic component such as polyethylene (PE), polycarbonate (PC), or polyamide (PA), an organic component, or a composite component composed of at least one of these materials.
  • the pore diameter of the porous scaffold material structure is preferably 0.01 mm to 1 mm, and the better pore diameter is 0.3 mm to 0.8.
  • the mm, and/or its porosity may preferably be from 20% to 90%, and more preferably from 30% to 80%.
  • a functional component including a drug or a biomolecule having a biologically active function/effect as described in the above structure It may include a drug or a biomolecule having a terminal alkynyl group, or a hydroxy group, and/or an amino group which may be directly converted into an end state, and/or an amino group; or a structure containing a substitution mode, plus
  • the chemical mode including the mode is converted into a transitional structure including a halide, a hydroxyl group, a thiol group, an alkenyl group, an alkenoic acid, an aldehyde, an ether in an end state, and then in the same reaction system or in a stepwise manner.
  • the mode is further converted to an alkynyl or azido-based drug or biomolecule in the corresponding end state.
  • the drug or biomolecule containing a terminal alkynyl group in the composition includes an antibacterial drug such as terbinaphine, and a hormonal drug such as ethinyl estradiol, such as at least one of anticancer drugs such as erlotinib;
  • the alkynyl or azido-based drug or biomolecule which can be converted into a corresponding end state by chemical conversion, including at least one of chondroitin sulfate, collagen, hyaluronic acid, heparin, and osteogenic protein .
  • the thickness of the polydopamine coating structure coated in the surface of the porous stent may further preferably have a thickness of 10 to 200 nm, and more preferably 60 to 500 nm.
  • the corresponding pharmaceutical component to which it is attached is easily released in the biological fluid environment by the action of an enzyme in the living body, and the chemical structure of the released drug can be reversed back to the original state
  • lick reaction: a Versatile toolbox for the synthesis of peptide-conjugates, Chem Soc Rev, 2014, 43, 7013-7039; "Click Chemistry, a potent tool in medicinal sciences” F. Musumeci, S. Schenone, A. Desogus, E. Nieddu, D .Deodato and L.Botta, Current Medicinal Chemistry, 2015, Vol. 22, No. 17, 2022-2050)
  • the functional component structural layer coated on the surface of the polydopamine coating structure coated on the surface of the stent is modularly grafted, and it is preferred to pass through the The alkyne and/or amino moiety of the surface of the porous scaffold dopamine coating is subjected to alkyne treatment or azide treatment, and after the azide treatment and/or alkynylation treatment, the functional component is an alkynyl group. a functional component structural layer formed by grafting corresponding to the azido group.
  • the polydopamine molecular coating coated on the surface of the above porous scaffold structure of the present invention is formed by polymerization of dopamine (although the polymerization state is different under different pH conditions), and the reactive groups in the structure are mainly hydroxyl groups and amino groups.
  • the reactive groups are dominant under acidic conditions and are suitable for azidation. Therefore, in preparation, it is generally preferred but It is not limited to azide coating with polydopamine, and alkyne can be used for functional components such as corresponding drugs or biomolecules.
  • the preparation of the above porous scaffold having the surface orientation functional modification coating of the present invention may generally comprise the following substrate material formed of the porous scaffold material having a polydopamine coating on its surface, the base material and the corresponding functional components.
  • the -OH and/or -NH 2 is subjected to alkynylation and/or azide treatment, and the functional component after the treatment is grafted on the surface of the polydopamine coating of the base material.
  • the porous scaffold material after the surface is cleaned and dried is prepared at a temperature of 10 ° C to 80 ° C in a Tris solution containing 10 mM of tris (hydroxymethyl) aminomethane and having a pH of 8.0 to 9.0.
  • the solution is doped with 0.1 to 5 mg/ml of dopamine hydrochloride for at least 6 to 72 hours to form a scaffold coated with a polydopamine coating on the surface of the porous scaffold material structure, that is, a polydopamine-coated base material, and then washed with water.
  • Ultrasonic cleaning is preferred, and finally, it can be washed with absolute ethanol (also available in ultrasonic mode) to better remove moisture.
  • the pH of the washing to the washing liquid is neutral, and it is used after drying.
  • the porous scaffold material after the surface is cleaned and dried in this step can be as described above, generally in the dopamine hydrochloride. Soaking in solution for 1-10 times.
  • the stent-polydopamine coated substrate material having a satisfactory thickness of polydopamine coating can be obtained by soaking and depositing in the dopamine hydrochloride solution in the manner described above for 3-6 times.
  • the surface of the substrate to be used on which the polydopamine coating is deposited on the surface and the surface of the functional component are subjected to azide or alkyne treatment in the following manner:
  • Alkynylation is carried out in one of the following ways:
  • a common organic solvent such as, but not limited to, tetrahydrofuran (THF) or ethyl acetate may be selected, and 100 to 400 mg including NaH, KOH, K 2 CO 3 or KOCH 3 , potassium t-butoxide may be added in an inert gas atmosphere including a usual nitrogen gas.
  • THF tetrahydrofuran
  • ethyl acetate may be selected, and 100 to 400 mg including NaH, KOH, K 2 CO 3 or KOCH 3 , potassium t-butoxide may be added in an inert gas atmosphere including a usual nitrogen gas.
  • the hydroxyl group on the surface of the polydopamine coating layer of the base material or the surface hydroxyl group of the functional component containing the hydroxyl group is added to the alkyne having the halogenated alkyl terminal alkyne in the form of XRC ⁇ CH.
  • the reaction is stirred at 20-30 ° C to form a halogenated substance, and the solvent extract is halogen-free, and the reaction time is generally 12 to 48 hours, respectively, on the surface of the polydopamine coating of the base material.
  • a structure having an alkynyl group (RC ⁇ CH) is formed on the surface of the functional component.
  • the impurities are removed by washing with water.
  • the obtained alkynylated base material can be directly used; the obtained functional component can be dialyzed by a dialysis bag with a molecular weight cut-off corresponding to its alkynylation to remove impurities and dried, preferably after vacuum drying or freeze drying. stand-by.
  • the process is as shown in equation (a-1):
  • the base material or the functional component is placed in a polar solvent having a boiling point of 150 ° C or higher, for example, in a ratio of a-1, for example, preferably, such as dimethylformamide (DMF) or dimethyl.
  • a polar solvent having a boiling point of 150 ° C or higher, for example, in a ratio of a-1, for example, preferably, such as dimethylformamide (DMF) or dimethyl.
  • the volume of the sulfoxide (DMSO) is equimolar to the surface amino group of the polydopamine coating or the surface amino group of the functional component containing the amino group in the presence of an alkaline component in an inert gas atmosphere such as a usual nitrogen gas.
  • the amount of the halogenated alkyl component such as propargyl bromide or propargyl chloride having the terminal alkyne XRC ⁇ CH form is reacted under heating conditions of ⁇ 100 °C.
  • the alkaline component described therein preferably includes an alkaline component such as potassium carbonate, triethylamine or sodium hydride which are conventionally used. After the reaction, it may be neutralized with an acid and washed with water as in the above step a-1.
  • the obtained alkynylated base material can be directly used after being dried; the obtained alkynylated functional component is dialyzed to remove impurities by a dialysis bag having a molecular weight corresponding to its molecular weight, and dried (also preferably vacuum dried or freeze-dried). stand-by.
  • the process is as shown in equation (a-2):
  • the base material or the functional component containing both a hydroxyl group and an amino group in the structure are treated according to the above a-1 and a-2, respectively, and the hydroxyl group and the amino group are converted into an alkynyl group, respectively, to be used.
  • Azide treatment azide treatment in one of the following ways:
  • the solvent is preferably dichloromethane, N,N-dimethylformamide or dimethyl sulfoxide, and 0.5 to 1.5 ml of an organic basic component such as triethylamine, methylethylamine or dimethylamine is added.
  • 2-Bromoisobutyryl bromide (BIBB) chloroacetic acid or 1,3-bromopropane (1-3 ml) was added dropwise under the conditions of -2 to 3 ° C and reacted for 1 to 4 hours.
  • the dropwise addition is to prevent the temperature of the reaction system from rising, and for example, the dropping rate may preferably be 20 to 40 drops/min.
  • the reaction is further continued to room temperature for 24 to 72 hours to obtain a brominated or chlorinated substrate material or functional component.
  • the base material or functional component is precipitated with methanol or absolute ethanol, and the base material is washed to a pH of 6.5-7.5; the precipitate of the functional component is dissolved in dichloromethane or acetone. Purification by methanol or absolute ethanol precipitation, according to the actual situation and needs, this precipitation-dissolution purification process can be repeated several times, after purification and washed to the cleaning solution pH 6.5-7.5.
  • the washed base material or functional ingredients are each placed in 50-250 ml of dimethylformamide (DMF) or dimethyl sulfoxide (DMSO) to dissolve supersaturated NaN 3 or Zn(N 3 ) 2 ⁇
  • the solution of 2Py is reacted at 20 ° C to 90 ° C for 6 to 48 hours, and cooled to room temperature to obtain an azide base material or an azide functional component, respectively, and the obtained azide base material is washed with water.
  • the halogen-free color reaction is followed by drying, preferably vacuum drying or freeze drying, and is used; the obtained azide functional component is dialyzed with a molecular weight cut-off dialysis bag corresponding to its molecular weight, and then washed to remove impurities.
  • the cleaning solution is halogen-free color-developing reaction, and dried, and preferably vacuum drying or freeze-drying is used. The process is as shown in equation (b-1):
  • a solvent such as sulfoxide, dichloromethane or water is added to 50-150 ml of dimethyl sulfoxide (DMSO) or dimethylformamide (DMF) to dissolve azide trifluorosulfonate (TfN 3 : CF 3 SON 3 Or a solution of nifedipine azide (p-NO 2 PhSO 2 N 3 ), using 1-5 wt% CuSO 4 or CuBr 2 as a catalyst, and reacting at 0 ° C to room temperature for 24-72 hours to obtain azide respectively.
  • DMSO dimethyl sulfoxide
  • DMF dimethylformamide
  • a base material or an azide functional component is washed with water to remove impurities until the washing liquid is halogen-free color developing reaction, dried (may be vacuum dried or freeze-dried), and used; the obtained azidating functional component is corresponding to its molecular weight.
  • the impurities are removed by water washing, and after the halogen-free color reaction of the washing liquid, drying (also preferably vacuum drying or freeze drying) is used.
  • drying also preferably vacuum drying or freeze drying
  • the base material or the functional component containing both a hydroxyl group and an amino group in the structure are treated according to the above methods b-1 and b-2, respectively, and the hydroxyl group and the amino group are converted into an azide group, respectively, and are respectively used.
  • the alkynyl-azido group corresponding to the grafted functional component structure layer is formed on the surface of the porous scaffold material structure by click chemistry.
  • the azidized base material to be used is immersed in a 50-250 ml boiling point ⁇ 150 ° C containing 0.5 to 3 mmol of the alkynylated functional component to be used under the protection of a common inert gas atmosphere such as N 2 gas.
  • a common inert gas atmosphere such as N 2 gas.
  • a polar organic solvent or by immersing the alkynylated substrate material to be used in a polar organic layer having a boiling point of ⁇ 150 ° C containing 50 to 250 ml of the azidated functional component to be used in a concentration of 0.5 to 3 mmol.
  • a catalytic amount of a copper catalyst solution is added at -2 ° C to 3 ° C (for example, in an ice salt bath), and then reacted at 20 to 100 ° C for 1 to 24 hours.
  • the polar organic solvent having a boiling point of ⁇ 150 ° C may preferably be selected, for example, N,N-dimethylformamide or dimethyl sulfoxide.
  • the copper catalyst solution may be, for example, 0.05-0.3 mmol CuBr; or 20-50 ⁇ L copper sulfate solution (0.1-0.5 mol/L) and 60-300 ⁇ L sodium ascorbate solution (2-4 mol/L). There are reported forms of catalytic fluids.
  • the copper ions are removed by washing with dilute ammonia water to obtain a porous scaffold grafted with a functional component-modified coating structure by a cycloaddition reaction on the surface of the polydopamine coating of the base material by a cycloaddition-alkynyl group.
  • washing with the diluted ammonia water can be appropriately selected while ensuring that the copper ions are removed as much as possible while minimizing the possibility of adverse corrosive effects. For example, using dilute ammonia at a concentration of 1-2% (v/v) is a good choice.
  • small molecules of dopamine can be infiltrated into the pores of the stent, thereby forming a pre-deposited polydopamine coating on the surface of the stent.
  • the coating can improve the adhesion of the stent to functional components such as drugs, and on the other hand, by using a large amount of hydroxyl groups and amino groups contained in the polydopamine coating as anchor points for chemical bonding, respectively, by coating polydopamine on the surface of the substrate material.
  • the mutual grafting is accomplished by a "point-to-point" click-through chemical reaction between the azido-alkynyl groups.
  • the coupling reaction rate between the azide group and the alkynyl group is high, and the reaction yield can be achieved in a quantitative relationship, and can be simultaneously achieved. Larger compatibility with other systems.
  • the present invention employs azide and alkynyl groups as compared to existing methods for directly soaking grafted drugs or functional molecules.
  • the preparation method of the high-efficiency addition reaction not only makes the graft structure more stable, but also has higher grafting efficiency, and can be polymerized on any solid surface to form polydopamine nanometers due to the contact of dopamine with air under weak alkaline conditions.
  • the film can be adhered to almost any substrate to form a polydopamine coating, making the stent material that can be used more universal.
  • the small molecule dopamine can penetrate into the pores of the stent to achieve uniform high-crosslinking polymerization, and contains many active sites of hydroxyl and/or amino groups in the formed insoluble polydopamine molecular coating structure, so that only the coating is needed. And the active sites of the active ingredients such as drugs or biomolecules are respectively converted into corresponding azido or terminal alkynyl groups, so that the various active ingredients can be efficiently bridged and grafted to various materials in a one-to-one correspondence. Bracket surface.
  • the above-mentioned form of the porous stent with the surface orientation functional modification coating proposed by the invention not only expands the application field of the stent material, but also provides more functional options for the stent material, especially for bone repair and vascular treatment. New means.
  • Fig. 1 is a comparison of XPS patterns before and after polydopamine (PDA) coating grafted chondroitin sulfate (ChS) of the scaffold material of Example 1 of the present invention.
  • Figure 2 is a SEM contrast image of the directly formed stent and the surface of the stent material of the present invention.
  • Example 1 Porous titanium alloy scaffold material coated with surface grafted chondroitin sulfate
  • Porous titanium alloy was prepared by 3D printing with a length and width of 10 mm and a height of 5 mm. Ultrasonic cleaning with anhydrous ethanol for 10 minutes, ultrasonic cleaning with distilled water for 5 minutes, and drying.
  • the porous titanium alloy was immersed in a dopamine hydrochloride solution having a concentration of 2 mg/ml.
  • the concentration of Tris in the solution was 10 mM, the pH was 8.5, the soaking time was 48 hours, and the reaction temperature was 37 °C.
  • a base material having a structure of a scaffold-polydopamine is formed. Repeat twice to form a two-layer polydopamine coating.
  • the third step alkynylation of chondroitin sulfate
  • chondroitin sulfate (molecular weight 20,000-50,000 Da) was added to a 50 ml THF round bottom flask, and after stirring and dissolved, 250 mg of NaH was added thereto, and after stirring for 15 minutes, 750 ul of propargyl bromide was added, and the mixture was stirred at RT for 24 hours.
  • the dialysis bag with a molecular weight cut off of 1000 Da was dialyzed to remove impurities and freeze-dried.
  • the fourth step the azide of the substrate
  • a round bottom flask was charged with 30 ml of dichloromethane, the substrate was immersed, and 1 ml of triethylamine was added. Place in an ice water bath, slowly add 1 ml of BIBB (2-bromoisobutyryl bromide), react in an ice water bath for 2 h, and react at room temperature for 24 h. A surface brominated substrate is obtained. They were ultrasonically washed with a large amount of methylene chloride, acetone, absolute ethanol and ultrapure water for 15 min, and dried in a vacuum oven. 80 ml of dimethylformamide (DMF) was taken and dissolved in sodium azide powder to be saturated. The reaction was carried out at 80 ° C for 48 h to obtain a substrate-N3, which was ultrasonically washed with a large amount of ultrapure water and dried under vacuum.
  • DMF dimethylformamide
  • the fifth step is grafted by cycloaddition reaction
  • Example 2 Porous titanium alloy scaffold material coated with surface grafted chondroitin sulfate
  • Porous titanium alloy was prepared by 3D printing with a length and width of 10 mm and a height of 5 mm. Ultrasonic cleaning with anhydrous ethanol for 10 minutes, ultrasonic cleaning with distilled water for 5 minutes, and drying.
  • the porous titanium alloy was immersed in a dopamine hydrochloride solution having a concentration of 2 mg/ml.
  • the concentration of Tris in the solution was 10 mM, the pH was 8.5, the soaking time was 48 hours, and the reaction temperature was 37 °C.
  • a base material having a structure of a scaffold-polydopamine is formed. This was repeated three times to form a three-layer polydopamine coating.
  • the third step the alkynylation of the substrate
  • the substrate was placed in a round bottom flask containing 50 ml of THF, and 250 mg of NaH was added thereto. After shaking for 15 minutes to allow the gas to be discharged, 750 ul of propargyl bromide was added, and the reaction was carried out at RT for 24 hours. Remove and rinse with ultrapure water to remove impurities.
  • the fourth step the azide of chondroitin sulfate
  • a round bottom flask was charged with 30 ml of dichloromethane, and 1 g of chondroitin sulfate was added, followed by 1 ml of triethylamine. Placed in an ice water bath, 1 ml of BIBB (2-bromoisobutyryl bromide) was slowly added dropwise, reacted in an ice water bath for 2 h, and reacted at room temperature for 24 h. A surface brominated chondroitin sulfate is obtained. It was dialyzed against a dialysis bag having a molecular weight cut off of 1000 d and dried in a vacuum oven.
  • the fifth step is grafted by cycloaddition reaction
  • the SEM image of the surface of the stent which is not grafted with the functional component after direct molding and the surface of the present invention grafted with chondroitin sulfate on the surface of the polydopamine coating of the stent material is also clearly shown directly.
  • the formed stent has a smooth micro surface (A), and the stent material grafted with chondroitin sulfate of the present invention has a rough micro surface (B).
  • Example 3 Porous titanium alloy scaffold material coated with terpene antibacterial drug terbinaphate
  • Porous titanium alloy was prepared by 3D printing with a length and width of 10 mm and a height of 5 mm. Ultrasonic cleaning with anhydrous ethanol for 10 minutes, ultrasonic cleaning with distilled water for 5 minutes, and drying.
  • the porous titanium alloy was immersed in a dopamine hydrochloride solution having a concentration of 2 mg/ml.
  • the concentration of Tris in the solution was 10 mM, the pH was 8.5, the soaking time was 48 hours, and the reaction temperature was 37 °C.
  • the third step the azide of the substrate
  • a round bottom flask was charged with 30 ml of dichloromethane, the substrate was immersed, and 1 ml of triethylamine was added. Place in an ice water bath, slowly add 1 ml of BIBB (2-bromoisobutyryl bromide), react in an ice water bath for 2 h, and react at room temperature for 24 h. A surface brominated substrate is obtained. Ultrasonic cleaning with a large amount of methylene chloride, acetone, absolute ethanol and ultrapure water for 15 min, dried in a vacuum oven dry. 80 ml of dimethylformamide (DMF) was taken and dissolved in sodium azide powder to be saturated. The reaction was carried out at 80 ° C for 48 h to obtain a substrate-N3, which was ultrasonically washed with a large amount of ultrapure water and dried under vacuum.
  • DMF dimethylformamide
  • the fourth step is grafting with a cycloaddition reaction (no copper "click reaction” method)
  • Example 4 Surface grafted collagen coated polyurethane PU scaffold material
  • Polyurethane PU stents were prepared by foaming method with a length and width of 10 mm and a height of 5 mm. Ultrasonic cleaning with anhydrous ethanol for 10 minutes, ultrasonic cleaning with distilled water for 5 minutes, and drying.
  • the polyurethane stent was immersed in a concentration of 2 mg/ml dopamine hydrochloride solution.
  • the concentration of Tris in the solution was 10 mM, the pH was 8.5, the soaking time was 48 hours, and the reaction temperature was 37 °C. After the deposition of the coating was completed, it was ultrasonically washed with distilled water and absolute ethanol for 5 minutes, respectively, and dried. A base material having a structure of a scaffold-polydopamine is formed.
  • the third step alkyneization of collagen
  • the fourth step the azide of the substrate
  • a round bottom flask was charged with 30 ml of dichloromethane, the substrate was immersed, and 1 ml of triethylamine was added. Place in an ice water bath, slowly add 1 ml of BIBB (2-bromoisobutyryl bromide), react in an ice water bath for 2 h, and react at room temperature for 24 h. A surface brominated substrate is obtained. They were ultrasonically washed with a large amount of methylene chloride, acetone, absolute ethanol and ultrapure water for 15 min, and dried in a vacuum oven. 80 ml of dimethylformamide (DMF) was taken and dissolved in sodium azide powder to be saturated. The reaction was carried out at 80 ° C for 48 h to obtain a substrate-N3, which was ultrasonically washed with a large amount of ultrapure water and dried under vacuum.
  • DMF dimethylformamide
  • grafting is carried out by a cycloaddition reaction.
  • Example 5 Surface grafted hyaluronic acid coated polyurethane PU scaffold material
  • Polyurethane PU stents were prepared by foaming method with a length and width of 10 mm and a height of 5 mm. Ultrasonic cleaning with anhydrous ethanol for 10 minutes, ultrasonic cleaning with distilled water for 5 minutes, and drying.
  • the porous polyurethane was immersed in a dopamine hydrochloride solution at a concentration of 2 mg/ml.
  • the concentration of Tris in the solution was 10 mM, the pH was 8.5, the soaking time was 48 hours, and the reaction temperature was 37 °C.
  • the third step is the alkynylation of hyaluronic acid
  • hyaluronic acid (molecular weight: 100,000 to 200,000 Da) was added to a 50 ml THF round bottom flask, and the mixture was stirred and dissolved. Then, 250 mg of NaH was added thereto, and after stirring for 15 minutes, 750 ul of propargyl bromide was added, and the mixture was stirred at RT for 24 hours.
  • the dialysis bag with a molecular weight cut off of 8000-14000 Da was dialyzed to remove impurities and freeze-dried.
  • the fourth step the azide of the substrate
  • a round bottom flask was charged with 30 ml of dichloromethane, the substrate was immersed, and 1 ml of triethylamine was added. Place in an ice water bath, slowly add 1 ml of BIBB (2-bromoisobutyryl bromide), react in an ice water bath for 2 h, and react at room temperature for 24 h. A surface brominated substrate is obtained. They were ultrasonically washed with a large amount of methylene chloride, acetone, absolute ethanol and ultrapure water for 15 min, and dried in a vacuum oven. 80 ml of dimethylformamide (DMF) was taken and dissolved in sodium azide powder to be saturated. The reaction was carried out at 80 ° C for 48 h to obtain a substrate-N3, which was ultrasonically washed with a large amount of ultrapure water and dried under vacuum.
  • DMF dimethylformamide
  • grafting is carried out by a cycloaddition reaction. (No copper "click reaction” method)
  • Example 6 Nano-hydroxyapatite/polyurethane composite scaffold material grafted with heparin coating
  • the first step is the preparation of a nano-hydroxyapatite/polyurethane composite porous scaffold.
  • IPDI aliphatic isophorone diisocyanate
  • the second step is the preparation of a polydopamine coating.
  • the nano-hydroxyapatite/polyurethane composite porous scaffold was immersed in a concentration of 2 mg/ml dopamine hydrochloride solution.
  • the concentration of Tris in the solution was 10 mM, the pH was 8.5, and the soaking time was 48 hours.
  • the temperature is 37 °C.
  • the third step is the alkyneization of heparin.
  • the fourth step is the azide of the substrate.
  • a round bottom flask was charged with 30 ml of dichloromethane, the substrate was immersed, and 1 ml of triethylamine was added. Place in an ice water bath, slowly add 1 ml of BIBB (2-bromoisobutyryl bromide), react in an ice water bath for 2 h, and react at room temperature for 24 h. A surface brominated substrate is obtained. They were ultrasonically washed with a large amount of methylene chloride, acetone, absolute ethanol and ultrapure water for 15 min, and dried in a vacuum oven. 80 ml of dimethylformamide (DMF) was taken and dissolved in sodium azide powder to be saturated. The reaction was carried out at 80 ° C for 48 h to obtain a substrate-N3, which was ultrasonically washed with a large amount of ultrapure water and dried under vacuum.
  • DMF dimethylformamide
  • grafting is carried out by a cycloaddition reaction.
  • Example 7 Polycaprolactone (PCL) scaffold material grafted with chondroitin sulfate coating
  • a PCL scaffold was prepared by electrospinning in a volume of about 0.5 cm 3 . Ultrasonic cleaning with anhydrous ethanol for 10 minutes, ultrasonic cleaning with distilled water for 5 minutes, and drying.
  • the PCL stent was immersed in a dopamine hydrochloride solution at a concentration of 2 mg/ml.
  • the concentration of Tris in the solution was 10 mM, the pH was 8.5, the soaking time was 48 hours, and the reaction temperature was 37 °C.
  • the third step alkynylation of chondroitin sulfate
  • chondroitin sulfate (molecular weight 20,000-50,000 Da) was added to a 50 ml THF round bottom flask, and after stirring and dissolved, 250 mg of NaH was added thereto, and after stirring for 15 minutes, 750 ul of propargyl bromide was added, and the mixture was stirred at RT for 24 hours.
  • the fourth step the azide of the substrate
  • a round bottom flask was charged with 30 ml of dichloromethane, the substrate was immersed, and 1 ml of triethylamine was added. Placed in an ice water bath, slowly dripping Add 1 ml of BIBB (2-bromoisobutyryl bromide), react in an ice water bath for 2 h, and react at room temperature for 24 h. A surface brominated substrate is obtained. They were ultrasonically washed with a large amount of methylene chloride, acetone, absolute ethanol and ultrapure water for 15 min, and dried in a vacuum oven. 80 ml of dimethylformamide (DMF) was taken and dissolved in sodium azide powder to be saturated. The reaction was carried out at 80 ° C for 48 h to obtain a substrate-N3, which was ultrasonically washed with a large amount of ultrapure water and dried under vacuum.
  • DMF dimethylformamide
  • the fifth step is grafted by cycloaddition reaction
  • Example 8 Hydroxyapatite porous ceramic scaffold material grafted with chondroitin sulfate coating
  • PVA/HA slurry is prepared, and the PVA/HA slurry is continuously stirred at 60-80 ° C for 20-30 minutes, poured into a mold and placed in an oven for rapid drying. After 3-4 hours, the foam is shaped and then sintered. forming.
  • the HA stent was immersed in a dopamine hydrochloride solution at a concentration of 2 mg/ml.
  • the concentration of Tris in the solution was 10 mM, the pH was 8.5, the soaking time was 48 hours, and the reaction temperature was 37 °C.
  • the third step alkynylation of chondroitin sulfate
  • chondroitin sulfate (molecular weight 20,000-50,000 Da) was added to a 50 ml THF round bottom flask, and after stirring and dissolved, 250 mg of NaH was added thereto, and after stirring for 15 minutes, 750 ul of propargyl bromide was added, and the mixture was stirred at RT for 24 hours.
  • the fourth step the azide of the substrate
  • a round bottom flask was charged with 30 ml of dichloromethane, the substrate was immersed, and 1 ml of triethylamine was added. Place in an ice water bath, slowly add 1 ml of BIBB (2-bromoisobutyryl bromide), react in an ice water bath for 2 h, and react at room temperature for 24 h. A surface brominated substrate is obtained. They were ultrasonically washed with a large amount of methylene chloride, acetone, absolute ethanol and ultrapure water for 15 min, and dried in a vacuum oven. 80 ml of dimethylformamide (DMF) was taken and dissolved in sodium azide powder to be saturated. The reaction was carried out at 80 ° C for 48 h to obtain a substrate-N3, which was ultrasonically washed with a large amount of ultrapure water and dried under vacuum.
  • DMF dimethylformamide
  • the fifth step is grafted by cycloaddition reaction
  • Example 9 Surface grafted chondroitin sulfate coated polyamide PA scaffold material
  • the polyamide PA stent was prepared by a foaming method with a length and a width of 10 mm and a height of 5 mm, respectively. Ultrasonic cleaning with anhydrous ethanol for 10 minutes, ultrasonic cleaning with distilled water for 5 minutes, and drying.
  • the polyamide PA scaffold was at a concentration of 2 mg/ml dopamine hydrochloride solution, the concentration of Tris in the solution was 10 mM, the pH was 8.5, the soaking time was 48 hours, and the reaction temperature was 37 °C. After the deposition of the coating was completed, it was ultrasonically washed with distilled water and absolute ethanol for 5 minutes, respectively, and dried. A base material having a structure of a scaffold-polydopamine is formed. This was repeated three times to form a three-layer polydopamine coating.
  • the third step the alkynylation of the substrate
  • the substrate was placed in a round bottom flask containing 50 ml of THF, and 250 mg of NaH was added thereto. After shaking for 15 minutes to allow the gas to be discharged, 750 ul of propargyl bromide was added, and the reaction was carried out at RT for 24 hours. Remove and rinse with ultrapure water to remove impurities.
  • a round bottom flask was charged with 30 ml of dimethyl sulfoxide, 1 g of heparin was added, and 1 ml of methylethylamine was added. Place in an ice water bath, slowly add 1 ml of chloroacetic acid, react in an ice water bath for 3 h, and then react at room temperature for 36 h. Surface chlorinated heparin is obtained. The mixture was dialyzed against a dialysis bag having a molecular weight cut off of 1000 d, and the precipitate was dissolved in dichloromethane and then repeatedly purified by precipitation with absolute ethanol.
  • DMSO dimethyl sulfoxide
  • the fifth step is grafted by cycloaddition reaction
  • Example 10 Surface grafted erlotinib coated porous titanium alloy stent
  • Porous titanium alloy was prepared by 3D printing with a length and width of 10 mm and a height of 5 mm. Ultrasonic cleaning with anhydrous ethanol for 10 minutes, ultrasonic cleaning with distilled water for 5 minutes, and drying.
  • the porous titanium alloy stent was immersed in a concentration of 2 mg/ml dopamine hydrochloride solution.
  • the concentration of Tris in the solution was 10 mM, the pH was 8.5, the soaking time was 48 hours, and the reaction temperature was 37 °C. After the deposition of the coating was completed, it was ultrasonically washed with distilled water and absolute ethanol for 5 minutes, respectively, and dried. A base material having a structure of a scaffold-polydopamine is formed.
  • the third step is the azide of the base hydroxyl group.
  • a round bottom flask was charged with 30 ml of N,N-dimethylformamide, the substrate was immersed, and 1 ml of dimethylamine was added. Place in an ice water bath, slowly add 2 ml of 1,3-bromopropane, react in an ice water bath for 2 h, and react at room temperature for 24 h. Substituting a hydroxyl group gives a surface brominated substrate. They were ultrasonically washed with absolute ethanol and ultrapure water for 15 min, and dried in a vacuum oven. 80 ml of dimethylformamide (DMF) was taken and dissolved in sodium azide powder to be saturated. The reaction was carried out at 80 ° C for 48 h to obtain a substrate-N 3 , which was ultrasonically washed with a large amount of ultrapure water and dried under vacuum.
  • DMF dimethylformamide
  • grafting is carried out by a cycloaddition reaction.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Vascular Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Medical Uses (AREA)

Abstract

具有表面定向功能修饰涂层的多孔支架及其制备方法。在该多孔支架材料结构的表面被覆有聚多巴胺涂层结构,在聚多巴胺涂层结构表面的羟基和/或氨基部位,以模块化方式接枝有在生物体液环境中可释放具有生物活性功能/作用的包括药物或生物分子在内的功能成分结构层。制备时先在多孔支架的表面沉积有聚多巴胺涂层后,再分别使支架材料表面及相应的功能成分中的羟基和/或氨基叠氮基化或炔基化,最后经其间专一的叠氮-炔基模块化接枝后,即在多孔支架材料结构的聚多巴胺涂层表面形成功能成分的接枝结构层。该多孔支架材料表面的功能成分接枝效率高,接枝结构层也更稳固,既拓展了支架材料的应用领域,也为支架材料提供了更多功能选择,特别是可为骨修复、血管治疗、肿瘤治疗等提供了新手段。

Description

具有表面定向功能修饰涂层的多孔支架及其制备方法 技术领域
本发明涉及一种在多孔支架结构的表面接枝有包括药物在内的功能成分修饰结构层的支架结构及其制备方法。
背景技术
多孔支架材料在生物医学工程领域有重要的应用,特别是在组织工程和骨再生医学中。常规的多孔支架材料制备主要有发泡法、静电纺丝、模具多孔烧结法、3D增材打印等。以骨修复两次为例,但无论采用包括无机、有机、金属,或是其复合材料,即使在其基质中共混复合有生物活性或药物等成分,因这些制备方法得到的多孔支架表层结构致密,都难以在植入时有效实现所设计的缓释或控释效应,无法为组织工程和骨关键修复过程提供初期细胞粘附增殖分化急需的如诱导骨生成、促进细胞增殖和分化、抑制细菌和炎性细胞等生物活性功能。为了实现支架材料的生物功能,在支架材料表面进行功能成分接枝处理,是目前一种常用的方法。目前大多数通过接枝方法制备功能分子的方法,都需使用硅烷偶联剂。如CN201410001001中国专利提供的一种改性医用钛金属材料,采用了硅烷偶联剂在钛表面接枝聚苯胺。CN201010587242提供的是一种表面固定有抗体的药物血管支架的制备方法,采用的是在支架上喷涂聚酯,再用偶联剂与抗体进行交联。近年来,Lee H.等人报道了聚多巴胺能稳定地沉积并附着于各种材料表面(Lee H.;Dellatore S.M.;Miller W.M.Science.2007,318:426.)。Wu,C.等人报道该聚多巴胺涂层能提高SiO2多孔支架的体外矿化性能,并提升骨髓基质细胞(Bone marrow stromal cells,BMSCs)的粘附和增殖能力(Wu,C.;Fan,W.;Chang,J.;Xiao,Y.Mussel-inspired porous SiO2scaffolds with improved mineralization and cytocompatibility for drug delivery and bone tissue engineering.[J]J.Mater.Chem.2011,21,18300)。在此基础上,利用多巴胺的粘附性能将药物混于多巴胺后粘附着于基底材料上,在CN201210331666.6,CN201010195840.X,CN201611034630.6等文献中都有所报道。但在目前大部分文献报道的方法中,药物等都是通过浸泡或共混的方式附着的,其附着方式不明确,载药量和控释力受限。例如,虽然其中CN201210331666.6在所提出的以多巴胺为桥连的生物医用材料表面固定功能分子的方法中,提出利用化学反应将功能分子接枝到聚多巴胺层 上,但其固定功能分子方法仍是将固定有多巴胺的生物医用材料在功能分子中浸泡。
将生物功能性药物的活性基团与改性的支架表面以点击化学(Click Chemistry)方式进行点对点的化学桥接是近期报道的一种有效的接枝方法,包括利用铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),以及Thiol-ene反应如巯基与烯体、非醇醛的羰基化学、碳碳多键如双烯体与亲双烯体的加成反应等(王莉莉等,有机叠氮化合物的合成与应用进展I.有机叠氮化合物的合成方法,化工科技,2010,18(1):72-75;Click Chemistry,a poent tool in medicinal sciences,F.Musumeci,S.Schenone,A.Desogus,E.Nieddu,D.Deodato and L.Botta,Current Medicinal Chemistry,2015,Vol.22,No.17,2022-2050)。例如,中国专利文献201410019510.3中提出的空心TiO2微球表面接枝聚酰亚胺复合粒子的制备方法,就是利用这种方法,通过环加成反应将端炔基的聚酰亚胺接枝于叠氮基化的TiO2微球。此类方法常具有操作简单、条件温和等显著优点。
发明内容
针对上述情况,本发明提供了一种具有表面定向功能修饰涂层的新结构形式的多孔支架,并进一步提供了该多孔支架的制备方法。
本发明具有表面定向功能修饰涂层的多孔支架,是在多孔支架材料结构的表面被覆有聚多巴胺涂层结构,在聚多巴胺涂层结构表面的羟基和/或氨基部位,以模块化方式接枝有在生物体液环境中可释放具有生物活性功能/作用的包括药物或生物分子在内的功能成分结构层。
上述结构中所述的多孔支架材料结构,可优选但并非仅限于由医学中可以接受的成分和/或材料制备而成的结构,一般可为惰性生物材料,或者是降解时间≥3个月的可缓慢降解的生物材料的多孔结构体,包括钛合金、不锈钢在内的金属材料的支架结构、由包括氧化硅、氧化锆、聚氨酯(PU)、聚四氟乙烯(PTFE)、聚苯乙烯(PS)、聚乙烯(PE)、聚碳酸酯(PC)、聚酰胺(PA)在内的无机物成分、有机物成分、或由这些材料中的至少一种构成的复合成分。
为保证和提高所述多孔支架材料结构的孔隙,以接枝有更多的所述功能成分,多孔支架材料结构中孔隙的孔径优选为0.01mm~1mm,更好的孔径可选择0.3mm~0.8mm,和/或其孔隙率可优选为20%~90%,更好的孔隙率可选择30%~80%。
上述结构中所述的具有生物活性功能/作用的包括药物或生物分子在内的功能成分, 可以包括结构中含有端炔基、或可直接转化为端部状态的炔基或叠氮基的羟基,和/或氨基的药物或生物分子;或者是结构中含有可先经包括取代方式、加成方式在内的化学方式转化为包括端部状态的卤化物、羟基、巯基、烯基、烯酸、醛类、醚类在内的过渡形式结构后,再在同一反应系统中或以分步方式进一步转化为相应端部状态的炔基或叠氮基的药物或生物分子。
例如,成分中含有端炔基的药物或生物分子包括如特比奈酚等抗菌类药物,如炔雌醇等激素类药物,如厄洛替尼等抗癌类药物中的至少一种;所述的可先经化学方式转化后再进而可转化为相应端部状态的炔基或叠氮基的药物或生物分子,包括硫酸软骨素、胶原蛋白、玻尿酸、肝素、成骨蛋白中的至少一种。
在本发明上述的多孔支架材料结构中,增加其表面中所被覆的聚多巴胺涂层结构的厚度,可有利于功能成分的接枝量,并可提高所接枝的功能成分结构层的稳定性。因此,在上述基础上,多孔支架表面中被覆的聚多巴胺涂层结构的厚度进一步可优选的厚度为10~200nm,更好的厚度可为60~500nm。
现有研究表明,叠氮化物和炔烃几乎完全不与生物分子发生反应,且其分子结构小,不能形成强氢键,极性也相对较弱,对连接在其上的其它物质的结构和性质通常没有显著的影响(M.G.Finn等,“点击化学-释义与目标”,《化学进展》2008,Vol.20,No.1:1-4)。例如,其上所连接的相应药物成分在生物体液环境中,在生物体内的酶的作用下很容易被释放出来,释放出来的药物的化学结构形式可逆转回原态(“Click”reactions:a versatile toolbox for the synthesis of peptide-conjugates,Chem Soc Rev,2014,43,7013-7039;“Click Chemistry,a potent tool in medicinal sciences”F.Musumeci,S.Schenone,A.Desogus,E.Nieddu,D.Deodato and L.Botta,Current Medicinal Chemistry,2015,Vol.22,No.17,2022-2050)
因此,本发明所述的具有表面定向功能修饰涂层的多孔支架中,以模块化方式接枝在被覆于支架表面聚多巴胺涂层结构表面的所述功能成分结构层,优先推荐的是通过所述多孔支架多巴胺涂层表面的羟基和/或氨基部位经炔基化处理或者经叠氮化处理后,与经叠氮化处理和/或炔基化处理后的所述功能成分,以炔基-叠氮基对应的偶联方式接枝形成的功能成分结构层。
本发明上述的多孔支架结构表面被覆的聚多巴胺分子涂层中是由多巴胺聚合后形成的(虽然在不同pH条件下的聚合态有差异),其结构中的活性基团主要为羟基和氨基。例如,在酸性条件下其活性基团占优,且适宜于叠氮化。因此在制备时,一般可优先但 并非仅限于采用以聚多巴胺涂层叠氮化,对相应的药物或生物分子等功能成分则可采用炔基化。
对本发明上述具有表面定向功能修饰涂层的多孔支架的制备,一般可包括下述由所述的多孔支架材料形成在其表面背负有聚多巴胺涂层的基底材料,对基底材料和相应的功能成分中的-OH和/或-NH2进行炔基化和/或叠氮基化处理,以及将处理后的功能成分在基底材料的聚多巴胺涂层表面进行接枝等几步操作。
第一步,将表面清洁处理并干燥后的所述多孔支架材料,于10℃~80℃条件下,在用含有10mM三羟甲基氨基甲烷且pH值为8.0~9.0的Tris溶液配制的含量为0.1~5mg/ml的盐酸多巴胺溶液中至少浸泡6~72小时,形成在多孔支架材料结构的表面沉积有聚多巴胺涂层的支架,即聚多巴胺涂层的基底材料后,水清洗。优选采用超声方式进行清洗,最后可选择用无水乙醇清洗(也可用超声方式),以利更好地除尽水分。清洗至洗液的pH值呈中性,干燥后待用。
为使所述的基底材料表面能有更理想的聚多巴胺涂层厚度,此步操作中对表面清洁处理并干燥后的多孔支架材料,可根据需要按所述方式,一般可在所述盐酸多巴胺溶液中浸泡沉积1-10次。实验显示,通常按所述方式在所述盐酸多巴胺溶液中浸泡沉积3-6次,即可得到具有满意厚度聚多巴胺涂层的支架-聚多巴胺涂层基底材料。
第二步,对表面沉积有聚多巴胺涂层的待用基底材料表面和所述的功能成分表面,进行包括下述方式的叠氮基化或炔基化处理:
a.炔基化处理:按下述方式之一进行炔基化处理:
a-1:结构中的-OH转换为炔基
按下述比例的方式,将0.1~1cm3所述待用的基底材料,或者0.8~2g所述功能成分,分别置于各自的30~80ml极性值为3.5-4.5的有机溶剂中,例如可选择但不限于四氢呋喃(THF)或乙酸乙酯等常用有机溶剂,在包括常用的氮气等惰性气体氛围中,加入100~400mg包括NaH、KOH、K2CO3或KOCH3、叔丁醇钾等碱金属碱性成分,搅拌溶解后,分别加入与基底材料聚多巴胺涂层表面的羟基,或是与含有羟基的功能成分的表面羟基等摩尔量的具有X-R-C≡CH形式卤代烷基端炔的炔丙基溴、炔丙基氯等,于20-30℃搅拌反应,生成卤代物,至溶剂提取物无卤素反应,反应时间一般可为12~48小时,分别在基底材料聚多巴胺涂层表面,或者是在功能成分表面生成具有炔基的结构(RC≡CH)。酸中和后(可有限使用常用的稀盐酸),再用水洗除去杂质。所得到的炔基化基底材料可直接待用;所得到的功能成分,可用与其炔基化后对应的截留分子量的透 析袋透析,除去杂质,干燥,其中优选的是真空干燥或冷冻干燥后,待用。处理过程如式(a-1)所示:
Figure PCTCN2017116211-appb-000001
a-2:结构中的-NH2转换为炔基
按a-1的比例方式,将所述的基底材料或所述的功能成分分别置于各自的沸点150℃以上的极性溶剂中,例如可优选如二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)等容积,在常用的氮气等惰性气体氛围中,在碱性成分存在下,分别加入与基底材料聚多巴胺涂层表面的氨基或与含有氨基的功能成分的表面氨基等摩尔量的具有端炔X-R-C≡CH形式的炔丙基溴、炔丙基氯等卤代烷基成分,于<100℃的加热条件下反应。其中所述的碱性成分,可优选包括常用的碳酸钾、三乙胺和氢化钠等碱性成分。反应后,可如上述a-1步中的方式,用酸中和并水洗除杂。所得到的炔基化基底材料可干燥后直接待用;所得到的炔基化功能成分用与其分子量对应的截留分子量的透析袋透析除去杂质,干燥(同样可优选真空干燥或冷冻干燥)后,待用。处理过程如式(a-2)所示:
Figure PCTCN2017116211-appb-000002
a-3:结构中的-OH和-NH2都转换为炔基
将结构中同时含有羟基和氨基的所述基底材料或所述的功能成分,分别按上述a-1和a-2方式处理,将其中的羟基和氨基都转换为炔基,分别得到待用的炔基化基底材料,或待用的炔基化功能成分。
b.叠氮基化处理:按下述方式之一进行叠氮基化处理:
b-1:结构中的-OH转换为叠氮基
按下述比例的方式,将0.1~1cm3所述待用的基底材料,或者0.8~2g所述的功能成分,分别置于各自的30~80ml沸点≥150℃的极性有机溶剂中,所述的溶剂优选二氯甲烷、N,N-二甲基甲酰胺或二甲基亚砜,加入0.5~1.5ml的有机碱性成分,如三乙胺、甲基乙胺或二甲胺等,在保持为-2~3℃的条件下滴加2-溴异丁酰溴(BIBB)、氯乙酸或1,3- 溴丙烷1~3ml并反应1~4个小时。其中,所述的滴加投料是为防止反应体系的温度升高,例如滴加速度可优选的是20~40滴/min。低温反应后,再升至室温继续反应24~72小时,分别得到溴化处理或氯化处理的基底材料或者功能成分。溴化或氯化处理后的基底材料或者功能成分,用甲醇或无水乙醇沉淀后,基底材料清洗至清洗液pH值至6.5-7.5;对功能成分的沉淀物用二氯甲烷或丙酮溶解后再用甲醇或无水乙醇沉淀的方式进行纯化,根据实际情况和需要,这一沉淀-溶解的纯化过程可以多次重复,纯化后清洗至清洗液pH 6.5-7.5。然后,将清洗后的基底材料或者功能成分各自放入在50~250ml二甲基甲酰胺(DMF)或二甲基亚砜(DMSO)中溶解有过饱和NaN3或Zn(N3)2·2Py的溶液中,于20℃~90℃反应6~48小时,冷却至室温,分别得到叠氮基化的基底材料或叠氮基化的功能成分,对得到的叠氮基化基底材料经水洗除去杂质至洗液无卤素显色反应后,干燥,其中优选真空干燥或冷冻干燥,待用;对得到的叠氮基化功能成分用与其分子量对应的截留分子量透析袋透析后,水洗除去杂质至清洗液无卤素显色反应,干燥,其中优选真空干燥或冷冻干燥,待用。处理过程如式(b-1)所示:
Figure PCTCN2017116211-appb-000003
b-2:结构中的-NH2转换为叠氮基
按下述比例的方式,将0.1~1cm3所述待用的基底材料,或者0.8~2g所述的功能成分,分别置于各自的50~200ml极性有机溶剂中,可优选如二甲基亚砜、二氯甲烷或水等溶剂,各自加入在50~150ml二甲基亚砜(DMSO)或二甲基甲酰胺(DMF)中溶解有三氟磺酸叠氮(TfN3:CF3SON3)或对硝苯碘叠氮(p-NO2PhSO2N3)的溶液,以1~5wt%CuSO4或CuBr2为催化剂,在0℃~室温下反应24~72小时,分别得到叠氮基化的基底材料或叠氮基化的功能成分。得到的叠氮基化基底材料经水洗除去杂质至洗液无卤素显色反应后,干燥(可优选真空干燥或冷冻干燥),待用;对得到的叠氮基化功能成分用与其分子量对应的截留分子量的透析袋透析后,水洗除去杂质,至清洗液无卤素显色反应后,干燥(同样可优选真空干燥或冷冻干燥),待用。处理过程如式(b-2)所示:
Figure PCTCN2017116211-appb-000004
b-3:结构中的-OH和-NH2都转换为叠氮基
将结构中同时含有羟基和氨基的所述基底材料或所述的功能成分,分别按上述b-1和b-2方式处理,将其中的羟基和氨基都转换为叠氮基,分别得到待用的叠氮基化基底材料,或待用的叠氮基化功能成分。
第三步,以点击化学方式在多孔支架材料结构表面形成炔基-叠氮基对应接枝的功能成分结构层
在常用的N2气等惰性气体氛围保护下,将待用的已叠氮基化的基底材料,浸入含有0.5~3mmol浓度待用的已炔基化的功能成分的50~250ml沸点≥150℃的极性有机溶剂中,或是将待用的已炔基化处理的基底材料浸入含有0.5~3mmol浓度待用的已叠氮化的功能成分的50~250ml的沸点≥150℃的极性有机溶剂中,于-2℃~3℃(例如:冰盐浴中)加入催化量的铜催化液后,在20-100℃反应1-24小时。所述的沸点≥150℃的极性有机溶剂可优先选择如N,N-二甲基甲酰胺或二甲基亚砜等。所述的铜催化液可选用如0.05-0.3mmol CuBr;或依次加入20~50μL的硫酸铜溶液(0.1~0.5mol/L)和60~300μL的抗坏血酸钠溶液(2-4mol/L)等已有报道形式的催化液。反应后,用稀氨水清洗除去铜离子,得到在所述基底材料的聚多巴胺涂层表面以叠氮基化-炔基方式经环加成反应定向接枝有功能成分修饰涂层结构的多孔支架。反应后用所述的稀氨水清洗,可在保证尽可能除干净铜离子的同时,又能尽量减少其可能产生不利的腐蚀作用的前提下进行适当选择。例如,使用浓度为1-2%(v/v)的稀氨水就是一种很好的选择。
本发明上述的制备方法中,利用了多巴胺小分子可渗入支架孔隙内部,从而在支架表面形成了预沉积的聚多巴胺涂层。该涂层一方面可以提高支架对药物等功能成分的粘附性,另一方面利用聚多巴胺涂层含有的大量羟基和氨基作为化学键合的锚定点位,通过分别对基底材料表面的聚多巴胺涂层和相应的功能成分进行叠氮基化与炔基化处理后,利用其间叠氮基-炔基间“点对点”的点击式化学反应完成相互接枝。由于叠氮基和炔基相对于其它常见的官能团都是化学惰性的,因此叠氮基与炔基间的偶联反应速率高,反应收率可实现等比定量的关系,并可同时实现对其它体系较大的兼容性。
相比于现有的对接枝药物或功能分子直接进行浸泡的方法,本发明采用叠氮与炔基 间高效加成反应的的制备方法,不仅可使接枝结构更为稳固,接枝效率更高,而且由于多巴胺在弱碱性条件下接触空气时,可以在任何固体表面聚合并形成聚多巴胺纳米薄膜,几乎可以粘附于任意的基底上形成聚多巴胺涂层,从而使可以使用的支架材料更具有普适性。而小分子多巴胺可以渗入支架孔隙内部实现均匀的高度交联聚合,在所形成的不溶的聚多巴胺分子涂层结构中包含了许多的羟基和/或氨基的活性位点,因而只需将涂层和药物或生物分子等活性成分的活性位点分别转化为相应的叠氮基或端炔基模块,就能使其一一对应地实现将各种活性成分高效桥联接枝于各种材料的支架表面。因此本发明提出的上述形式具有表面定向功能修饰涂层的多孔支架,既拓展了支架材料的应用领域,也为支架材料提供了更多功能选择,特别是可为骨修复、血管治疗等提供了新手段。
以下结合由附图所示实施例的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。在不脱离本发明上述技术思想情况下,根据本领域普通技术知识和惯用手段做出的各种替换或变更,均应包括在本发明的范围内。
附图说明
图1是本发明实施例1支架材料的聚多巴胺(PDA)涂层接枝硫酸软骨素(ChS)前后的XPS图谱比较。
图2是对直接成型的支架和本发明支架材料表面的扫描电镜对比图片。
具体实施方式
实施例1:表面接枝硫酸软骨素涂层的多孔钛合金支架材料
第一步,多孔钛合金的准备
多孔钛合金用3D打印的方式制备,长宽分别为10mm,高5mm。无水乙醇超声清洗10分钟,再用蒸馏水超声清洗5分钟,烘干。
第二步,聚多巴胺涂层制备
多孔钛合金浸泡在浓度为2mg/ml盐酸多巴胺溶液中,溶液中的三羟甲基氨基甲烷(Tris)浓度为10mM,pH值为8.5,浸泡时间为48小时,反应温度37℃。涂层沉积结束后,分别用蒸馏水和无水乙醇超声清洗5分钟,并干燥。形成结构为支架-聚多巴胺的基底材料。重复两次,形成双层聚多巴胺涂层。
第三步,硫酸软骨素的炔基化
硫酸软骨素(分子量20000-50000Da)1g,加入50mlTHF圆底烧瓶,充分搅拌溶解后,加入NaH 250mg,搅拌15min后,加入炔丙基溴750ul,RT下搅拌24h。截留分子量为1000Da的透析袋进行透析,除去杂质,冷冻干燥。
第四步,基底的叠氮基化
圆底烧瓶加入30ml二氯甲烷,基底浸入,再加1ml三乙胺。置于冰水浴,缓慢滴加1ml BIBB(2-溴异丁酰溴),冰水浴中反应2h,再室温下反应24h。得到表面溴化的基底。分别用大量二氯甲烷、丙酮、无水乙醇、超纯水超声清洗15min,真空烘箱中干燥。取80ml二甲基甲酰胺(DMF),加入叠氮钠粉末溶解至饱和。80℃下反应48h,得基底-N3,大量超纯水超声清洗,真空干燥。
第五步,用环加成反应接枝
1mmol炔基-硫酸软骨素加入到50ml DMF,将基底-N3浸入。加入0.1mmol PMDETA作为配体。冰水浴下,对溶液“抽真空-通氮气”,3次,在液面下通氮气30min除尽氧气。0.1mmolCuBr加入封口,溶液浅绿色。60℃下反应3h。得基底-硫酸软骨素。1%(v/v)氨水中清洗除去多余铜离子。得到表面接枝硫酸软骨素功能修饰涂层的多孔钛合金支架材料。
实施例2:表面接枝硫酸软骨素涂层的多孔钛合金支架材料
第一步,多孔钛合金的准备
多孔钛合金用3D打印的方式制备,长宽分别为10mm,高5mm。无水乙醇超声清洗10分钟,再用蒸馏水超声清洗5分钟,烘干。
第二步,聚多巴胺涂层制备
多孔钛合金浸泡在浓度为2mg/ml盐酸多巴胺溶液中,溶液中的三羟甲基氨基甲烷(Tris)浓度为10mM,pH值为8.5,浸泡时间为48小时,反应温度37℃。涂层沉积结束后,分别用蒸馏水和无水乙醇超声清洗5分钟,并干燥。形成结构为支架-聚多巴胺的基底材料。重复三次,形成三层聚多巴胺涂层。
第三步,基底的炔基化
基底加入到装有50mlTHF的圆底烧瓶,加入NaH 250mg,震荡15min让气体排出后,加入炔丙基溴750ul,RT下反应24h。取出,用超纯水冲洗除去杂质。
第四步,硫酸软骨素的叠氮基化
圆底烧瓶加入30ml二氯甲烷,加入1g硫酸软骨素,再加1ml三乙胺。置于冰水浴, 缓慢滴加1mlBIBB(2-溴异丁酰溴),冰水浴中反应2h,再室温下反应24h。得到表面溴化的硫酸软骨素。用截留分子量为1000d的透析袋透析,真空烘箱中干燥。取80ml二甲基甲酰胺(DMF),加入叠氮钠粉末溶解至饱和,加入溴化的硫酸软骨素。60℃下反应48h,得硫酸软骨素-N3,截留分子量为1000d透析袋透析,真空干燥。
第五步,用环加成反应接枝
1mmol叠氮基-硫酸软骨素加入到50ml DMF,将基底-炔基浸入。加入0.1mmol PMDETA作为配体。冰水浴下,对溶液“抽真空-通氮气”,3次,在液面下通氮气30min除尽氧气。0.1mmolCuBr加入封口,溶液浅绿色。60℃下反应3h。得基底-硫酸软骨素。1%(v/v)氨水中清洗除去多余铜离子。得到表面接枝硫酸软骨素的多孔钛合金支架材料。
对支架材料的聚多巴胺(PDA)涂层接枝硫酸软骨素(ChS)前后的XPS图谱比较,如图1所示。图1中清楚显示,接枝硫酸软骨素后的支架材料聚多巴胺载药涂层中出现了硫的2p和2s峰。
在图2所示的对直接成型后未接枝功能成分的支架的表面和本发明在支架材料聚多巴胺涂层表面接枝了硫酸软骨素后的表面的扫描电镜对比图片中也清楚显示,直接成型的支架呈光滑微表面(A),本发明接枝了硫酸软骨素后的支架材料则呈粗糙微表面(B)。
实施例3:表面含端炔抗菌药物特比奈酚涂层的多孔钛合金支架材料
第一步,多孔钛合金的准备
多孔钛合金用3D打印的方式制备,长宽分别为10mm,高5mm。无水乙醇超声清洗10分钟,再用蒸馏水超声清洗5分钟,烘干。
第二步,聚多巴胺涂层制备
多孔钛合金浸泡在浓度为2mg/ml盐酸多巴胺溶液中,溶液中的三羟甲基氨基甲烷(Tris)浓度为10mM,pH值为8.5,浸泡时间为48小时,反应温度37℃。涂层沉积结束后,分别用蒸馏水和无水乙醇超声清洗5分钟,并干燥。重复三次,形成三层聚多巴胺涂层的基底材料。
第三步,基底的叠氮基化
圆底烧瓶加入30ml二氯甲烷,基底浸入,再加1ml三乙胺。置于冰水浴,缓慢滴加1ml BIBB(2-溴异丁酰溴),冰水浴中反应2h,再室温下反应24h。得到表面溴化的基底。分别用大量二氯甲烷、丙酮、无水乙醇、超纯水超声清洗15min,真空烘箱中干 燥。取80ml二甲基甲酰胺(DMF),加入叠氮钠粉末溶解至饱和。80℃下反应48h,得基底-N3,大量超纯水超声清洗,真空干燥。
第四步,用环加成反应接枝(无铜“点击反应”方法)
1mmol含端炔抗菌药物特比奈酚加入到50ml PBS溶液中,将叠氮化的基底置入其中。在37℃下,反应24h,得到表面接枝有比奈酚的多孔钛合金支架材料。
实施例4:表面接枝胶原蛋白涂层的聚氨酯PU支架材料
第一步,聚氨酯PU支架的准备
聚氨酯PU支架用发泡法制备,长宽分别为10mm,高5mm。无水乙醇超声清洗10分钟,再用蒸馏水超声清洗5分钟,烘干。
第二步,聚多巴胺涂层制备
聚氨酯支架浸泡在浓度为2mg/ml盐酸多巴胺溶液中,溶液中的三羟甲基氨基甲烷(Tris)浓度为10mM,pH值为8.5,浸泡时间为48小时,反应温度37℃。涂层沉积结束后,分别用蒸馏水和无水乙醇超声清洗5分钟,并干燥。形成结构为支架-聚多巴胺的基底材料。
第三步,胶原蛋白的炔基化
胶原蛋白(分子量3000-10000d)1g,加入50mlTHF圆底烧瓶,加入NaH 250mg,搅拌15min,排出气体后,加入炔丙基溴750ul,RT下搅拌24h。截留分子量为1000d的透析袋进行透析,除去杂质,冷冻干燥。
第四步,基底的叠氮基化
圆底烧瓶加入30ml二氯甲烷,基底浸入,再加1ml三乙胺。置于冰水浴,缓慢滴加1mlBIBB(2-溴异丁酰溴),冰水浴中反应2h,再室温下反应24h。得到表面溴化的基底。分别用大量二氯甲烷、丙酮、无水乙醇、超纯水超声清洗15min,真空烘箱中干燥。取80ml二甲基甲酰胺(DMF),加入叠氮钠粉末溶解至饱和。80℃下反应48h,得基底-N3,大量超纯水超声清洗,真空干燥。
第五步,用环加成反应接枝。
1mmol炔基-胶原蛋白加入到50ml DMF,将基底-N3浸入。加入0.1mmolPMDETA作为配体。冰水浴下,对溶液“抽真空-通氮气”,3次,在液面下通氮气30min除尽氧气。0.1mmolCuBr加入封口,溶液浅绿色。60℃下反应3h。得基底-胶原蛋白。1%(v/v)氨水中清洗除去多余铜离子。得到表面接枝胶原蛋白的聚氨酯PU支架材料。
实施例5:表面接枝玻尿酸涂层的聚氨酯PU支架材料
第一步,聚氨酯PU支架的准备
聚氨酯PU支架用发泡法制备,长宽分别为10mm,高5mm。无水乙醇超声清洗10分钟,再用蒸馏水超声清洗5分钟,烘干。
第二步,聚多巴胺涂层制备
多孔聚氨酯浸泡在浓度为2mg/ml盐酸多巴胺溶液中,溶液中的三羟甲基氨基甲烷(Tris)浓度为10mM,pH值为8.5,浸泡时间为48小时,反应温度37℃。涂层沉积结束后,分别用蒸馏水和无水乙醇超声清洗5分钟,并干燥。重复三次,形成三层聚多巴胺涂层的基底材料。
第三步,玻尿酸的炔基化
玻尿酸(分子量100000-200000Da)1g,加入50mlTHF圆底烧瓶,充分搅拌溶解后,加入NaH 250mg,搅拌15min后,加入炔丙基溴750ul,RT下搅拌24h。截留分子量为8000-14000Da的透析袋进行透析,除去杂质,冷冻干燥。
第四步,基底的叠氮基化
圆底烧瓶加入30ml二氯甲烷,基底浸入,再加1ml三乙胺。置于冰水浴,缓慢滴加1ml BIBB(2-溴异丁酰溴),冰水浴中反应2h,再室温下反应24h。得到表面溴化的基底。分别用大量二氯甲烷、丙酮、无水乙醇、超纯水超声清洗15min,真空烘箱中干燥。取80ml二甲基甲酰胺(DMF),加入叠氮钠粉末溶解至饱和。80℃下反应48h,得基底-N3,大量超纯水超声清洗,真空干燥。
第五步,用环加成反应接枝。(无铜“点击反应”方法)
1mmol炔基化的玻尿酸加入到50ml PBS溶液中,将叠氮化的基底置入其中。在37℃下,反应24h,得到表面接枝有玻尿酸涂层的聚氨酯PU支架材料。
实施例6:接枝有肝素涂层的纳米羟基磷灰石/聚氨酯复合支架材料
第一步,纳米羟基磷灰石/聚氨酯复合多孔支架的制备。
采用脂肪族异佛尔酮二异氰酸酯(IPDI)作为硬段、蓖麻油甘油酯作为软段合成聚氨酯,通过原位聚合法得到纳米羟基磷灰石/聚氨酯多孔支架。
第二步,聚多巴胺涂层制备。
纳米羟基磷灰石/聚氨酯复合多孔支架浸泡在浓度为2mg/ml盐酸多巴胺溶液中,溶液中的三羟甲基氨基甲烷(Tris)浓度为10mM,pH值为8.5,浸泡时间为48小时,反应温度37℃。涂层沉积结束后,分别用蒸馏水和无水乙醇超声清洗5分钟,并干燥。重 复三次,形成三层聚多巴胺涂层的基底材料。
第三步,肝素的炔基化。
肝素(分子量20000-30000Da)1g,加入50mlTHF圆底烧瓶,充分搅拌溶解后,加入NaH 250mg,搅拌15min后,加入炔丙基溴750ul,RT下搅拌24h。截留分子量为3500Da的透析袋进行透析,除去杂质,冷冻干燥。
第四步,基底的叠氮基化。
圆底烧瓶加入30ml二氯甲烷,基底浸入,再加1ml三乙胺。置于冰水浴,缓慢滴加1ml BIBB(2-溴异丁酰溴),冰水浴中反应2h,再室温下反应24h。得到表面溴化的基底。分别用大量二氯甲烷、丙酮、无水乙醇、超纯水超声清洗15min,真空烘箱中干燥。取80ml二甲基甲酰胺(DMF),加入叠氮钠粉末溶解至饱和。80℃下反应48h,得基底-N3,大量超纯水超声清洗,真空干燥。
第五步,用环加成反应接枝。
1mmol炔基化的肝素加入到50ml PBS溶液中,将叠氮化的基底置入其中。在37℃下,反应24h,得到表面接枝有肝素涂层的纳米羟基磷灰石/聚氨酯复合支架材料。
实施例7:接枝有硫酸软骨素涂层的聚已内酯(PCL)支架材料
第一步,PCL支架的准备
通过静电纺丝的方法制备PCL支架,体积约0.5cm3。无水乙醇超声清洗10分钟,再用蒸馏水超声清洗5分钟,烘干。
第二步,聚多巴胺涂层制备
将PCL支架浸泡在浓度为2mg/ml盐酸多巴胺溶液中,溶液中的三羟甲基氨基甲烷(Tris)浓度为10mM,pH值为8.5,浸泡时间为48小时,反应温度37℃。涂层沉积结束后,分别用蒸馏水和无水乙醇超声清洗5分钟,并干燥。重复三次,形成三层聚多巴胺涂层的基底材料。
第三步,硫酸软骨素的炔基化
硫酸软骨素(分子量20000-50000Da)1g,加入50mlTHF圆底烧瓶,充分搅拌溶解后,加入NaH 250mg,搅拌15min后,加入炔丙基溴750ul,RT下搅拌24h。截留分子量为3500Da的透析袋进行透析,除去杂质,冷冻干燥。
第四步,基底的叠氮基化
圆底烧瓶加入30ml二氯甲烷,基底浸入,再加1ml三乙胺。置于冰水浴,缓慢滴 加1ml BIBB(2-溴异丁酰溴),冰水浴中反应2h,再室温下反应24h。得到表面溴化的基底。分别用大量二氯甲烷、丙酮、无水乙醇、超纯水超声清洗15min,真空烘箱中干燥。取80ml二甲基甲酰胺(DMF),加入叠氮钠粉末溶解至饱和。80℃下反应48h,得基底-N3,大量超纯水超声清洗,真空干燥。
第五步,用环加成反应接枝
1mmol炔基化的硫酸软骨素加入到50ml PBS溶液中,将叠氮化的基底置入其中。在37℃下,反应24h,得到表面接硫酸软骨素涂层的PCL支架材料。
实施例8:接枝有硫酸软骨素涂层的羟基磷灰石多孔陶瓷支架材料
第一步,HA支架的准备
配制PVA/HA浆料,将PVA/HA浆料在60-80℃时持续搅拌20-30分钟起泡,倒入模具放入烘箱迅速干燥,3-4个小时后发泡体定型,然后烧结成型。
第二步,聚多巴胺涂层制备
将HA支架浸泡在浓度为2mg/ml盐酸多巴胺溶液中,溶液中的三羟甲基氨基甲烷(Tris)浓度为10mM,pH值为8.5,浸泡时间为48小时,反应温度37℃。涂层沉积结束后,分别用蒸馏水和无水乙醇超声清洗5分钟,并干燥。重复三次,形成三层聚多巴胺涂层的基底材料。
第三步,硫酸软骨素的炔基化
硫酸软骨素(分子量20000-50000Da)1g,加入50mlTHF圆底烧瓶,充分搅拌溶解后,加入NaH 250mg,搅拌15min后,加入炔丙基溴750ul,RT下搅拌24h。截留分子量为3500Da的透析袋进行透析,除去杂质,冷冻干燥。
第四步,基底的叠氮基化
圆底烧瓶加入30ml二氯甲烷,基底浸入,再加1ml三乙胺。置于冰水浴,缓慢滴加1ml BIBB(2-溴异丁酰溴),冰水浴中反应2h,再室温下反应24h。得到表面溴化的基底。分别用大量二氯甲烷、丙酮、无水乙醇、超纯水超声清洗15min,真空烘箱中干燥。取80ml二甲基甲酰胺(DMF),加入叠氮钠粉末溶解至饱和。80℃下反应48h,得基底-N3,大量超纯水超声清洗,真空干燥。
第五步,用环加成反应接枝
1mmol炔基化的硫酸软骨素加入到50ml PBS溶液中,将叠氮化的基底置入其中。在37℃下,反应24h,得到表面接枝有硫酸软骨素涂层的羟基磷灰石多孔陶瓷支架材料。
实施例9:表面接枝硫酸软骨素涂层的聚酰胺PA支架材料
第一步,聚酰胺PA支架材料的准备
聚酰胺PA支架用发泡法制备,长宽分别为10mm,高5mm。无水乙醇超声清洗10分钟,再用蒸馏水超声清洗5分钟,烘干。
第二步,聚多巴胺涂层制备
聚酰胺PA支架在浓度为2mg/ml盐酸多巴胺溶液中,溶液中的三羟甲基氨基甲烷(Tris)浓度为10mM,pH值为8.5,浸泡时间为48小时,反应温度37℃。涂层沉积结束后,分别用蒸馏水和无水乙醇超声清洗5分钟,并干燥。形成结构为支架-聚多巴胺的基底材料。重复三次,形成三层聚多巴胺涂层。
第三步,基底的炔基化
基底加入到装有50mlTHF的圆底烧瓶,加入NaH 250mg,震荡15min让气体排出后,加入炔丙基溴750ul,RT下反应24h。取出,用超纯水冲洗除去杂质。
第四步,肝素的叠氮基化
圆底烧瓶加入30ml二甲基亚砜,加入1g肝素,再加1ml甲基乙胺。置于冰水浴,缓慢滴加1ml氯乙酸,冰水浴中反应3h,再室温下反应36h。得到表面氯化的肝素。用截留分子量为1000d的透析袋透析,对沉淀物用二氯甲烷溶解后再用无水乙醇沉淀的方式进行反复纯化两次。取120ml二甲基亚砜(DMSO),加入Zn(N3)2·2Py溶解至饱和,加入氯化的肝素。20℃下反应48h,得肝素-N3,截留分子量为1000d透析袋透析,水洗除去杂质后真空干燥。
第五步,用环加成反应接枝
1mmol叠氮基-肝素加入到50ml DMF,将基底-炔基浸入。加入0.1mmol PMDETA作为配体。冰水浴下,对溶液“抽真空-通氮气”,3次,在液面下通氮气30min除尽氧气。0.1mmolCuBr加入封口,溶液浅绿色。60℃下反应3h。得基底-硫酸软骨素。1%(v/v)氨水中清洗除去多余铜离子。得到表面接枝肝素的多孔钛合金支架材料。
实施例10:表面接枝厄洛替尼涂层的多孔钛合金支架
第一步,多孔钛合金支架的准备
多孔钛合金用3D打印的方式制备,长宽分别为10mm,高5mm。无水乙醇超声清洗10分钟,再用蒸馏水超声清洗5分钟,烘干。
第二步,聚多巴胺涂层制备
多孔钛合金支架浸泡在浓度为2mg/ml盐酸多巴胺溶液中,溶液中的三羟甲基氨基甲烷(Tris)浓度为10mM,pH值为8.5,浸泡时间为48小时,反应温度37℃。涂层沉积结束后,分别用蒸馏水和无水乙醇超声清洗5分钟,并干燥。形成结构为支架-聚多巴胺的基底材料。
第三步,基底羟基的叠氮基化
圆底烧瓶加入30ml N,N-二甲基甲酰胺,基底浸入,再加1ml二甲胺。置于冰水浴,缓慢滴加2ml 1,3-溴丙烷,冰水浴中反应2h,再室温下反应24h。取代羟基得到表面溴化的基底。分别用无水乙醇、超纯水超声清洗15min,真空烘箱中干燥。取80ml二甲基甲酰胺(DMF),加入叠氮钠粉末溶解至饱和。80℃下反应48h,得基底-N3,大量超纯水超声清洗,真空干燥。
第四步,基底氨基的叠氮基化
圆底烧瓶加入30ml二甲基亚砜,基底浸入,加入在50ml二甲基亚砜中溶解有三氟磺酸叠氮(TfN3:CF3SON3)或对硝苯碘叠氮(p-NO2PhSO2N3)的溶液,以2wt%CuBr2为催化剂,在0℃~室温下反应48小时,得到氨基叠氮基化的基底材料,对得到的叠氮基化基底材料经水洗除去杂质至洗液无卤素显色反应后,干燥,其中优选真空干燥或冷冻干燥,备用。
第五步,用环加成反应接枝。
1mmol端炔基厄洛替尼加入到50ml DMF,将基底-N3浸入。加入0.1mmolPMDETA作为配体。冰水浴下,对溶液“抽真空-通氮气”,3次,在液面下通氮气30min除尽氧气。0.1mmolCuBr加入封口,溶液浅绿色。60℃下反应3h。得基底-厄洛替尼。1%(v/v)氨水中清洗除去多余铜离子。得到表面接厄洛替尼的多孔钛合金支架材料。

Claims (10)

  1. 具有表面定向功能修饰涂层的多孔支架,其特征是在多孔支架材料结构的表面被覆有聚多巴胺涂层结构,聚多巴胺涂层结构优选的厚度为10~200nm,更好的厚度为60~500nm,在聚多巴胺涂层结构表面的羟基和/或氨基部位,以模块化方式接枝有在生物体液环境中可释放具有生物活性功能/作用的包括药物或生物分子在内的功能成分结构层。
  2. 如权利要求1所述的多孔支架,其特征是所述的功能成分结构层,为通过所述多孔支架多巴胺涂层表面的羟基和/或氨基部位经炔基化处理,或者经叠氮化处理后,与经叠氮化处理和/或炔基化处理后的所述功能成分,以炔基-叠氮基对应的偶联方式接枝形成的功能成分结构层。
  3. 如权利要求1所述的多孔支架,其特征是所述的多孔支架材料结构为由医学中可以接受的成分和/或材料制备的孔径为0.01mm~1mm和孔隙率为20%~90%孔隙的多孔结构体。
  4. 如权利要求3所述的多孔支架,其特征是所述多孔支架材料结构的孔隙孔径为0.3mm~0.8mm,和/或孔隙率为30%~80%。
  5. 如权利要求3所述的多孔支架,其特征是所述的医学中可以接受的多孔结构体,为惰性生物材料或者降解时间≥3个月的可缓慢降解的生物材料的多孔结构体,包括钛合金、不锈钢在内的金属材料的支架结构、由包括氧化硅、氧化锆、聚氨酯、聚四氟乙烯、聚苯乙烯、聚乙烯、聚碳酸酯、聚酰胺在内的无机物成分、有机物成分中的至少一种。
  6. 如权利要求1至5之一所述的多孔支架,其特征是所述的功能成分包括结构中含有端炔基、或可直接转化为端部状态的炔基或叠氮基的羟基和/或氨基的药物或生物分子;或是结构中含有可先经包括取代方式、加成方式在内的化学方式转化为包括端部状态的卤化物、羟基、巯基、烯基、烯酸、醛类、醚类在内的过渡形式结构后,再在同一反应系统中或以分步方式进一步转化为相应端部状态的炔基或叠氮基的药物或生物分子。
  7. 如权利要求6所述的多孔支架,其特征是所述功能成分中含有端炔基的药物或生物分子包括抗菌类药物特比奈酚、激素类药物炔雌醇、抗癌类药物厄洛替尼中的至少一种;所述的可先经化学方式转化后再进而可转化为相应端部状态 的炔基或叠氮基的药物或生物分子,包括硫酸软骨素、胶原蛋白、玻尿酸、肝素、成骨蛋白中的至少一种。
  8. 权利要求1至7之一所述具有表面定向功能修饰涂层的多孔支架的制备方法,其特征是包括下述操作:
    第一步,将表面清洁处理并干燥后的所述多孔支架材料,于10℃~80℃条件下,在用含有10mM三羟甲基氨基甲烷且pH值为8.0~9.0的Tris溶液配制的含量为0.1~5mg/ml的盐酸多巴胺溶液中至少浸泡6~72小时,形成在多孔支架材料结构的表面沉积有聚多巴胺涂层的支架-聚多巴胺涂层的基底材料后,水清洗至清洗液pH值呈中性,优选为依次用水和无水乙醇清洗,更好的是用水和无水乙醇超声波清洗,干燥后待用;
    第二步,对表面沉积有聚多巴胺涂层的待用基底材料表面和所述的功能成分表面,进行包括下述方式的叠氮基化或炔基化处理:
    a.炔基化处理:按下述方式之一进行炔基化处理
    a-1:结构中的-OH转换为炔基
    按下述比例的方式,将0.1~1cm3所述待用的基底材料,或者0.8~2g所述功能成分,分别置于各自的30~80ml极性值为3.5-4.5的有机溶剂中,优选的有机溶剂为四氢呋喃或乙酸乙酯,在惰性气体氛围中,加入100~400mg碱金属碱性成分搅拌溶解,优选的碱金属碱性成分包括NaH、KOH、K2CO3或KOCH3、叔丁醇钾,分别加入与基底材料聚多巴胺涂层表面的羟基或与含有羟基的功能成分的表面羟基等摩尔量的炔丙基溴、炔丙基氯等卤代烷基端炔X-R-C≡CH,于20-30℃搅拌反应生成卤代物,至溶剂提取物无卤素反应,分别在基底材料聚多巴胺涂层表面或者功能成分表面生成具有炔基的结构(RC≡CH),酸中和并水洗除杂,其中的酸中和优选用稀盐酸,所得到的炔基化基底材料待用,所得到的功能成分用与其炔基化后对应的截留分子量透析袋透析,除去杂质,干燥,其中优选真空干燥或冷冻干燥,待用,处理过程如式(a-1)所示:
    Figure PCTCN2017116211-appb-100001
    a-2:结构中的-NH2转换为炔基
    按a-1的比例方式,将所述的基底材料或所述的功能成分分别置于各自的沸点150℃以上的极性溶剂中,优选的溶剂为二甲基甲酰胺和二甲基亚砜,在惰性气体氛围中,在碱性成分存在下,优选的碱性成分包括碳酸钾、三乙胺和氢化钠,分别加入与基底材料聚多巴胺涂层表面的氨基或与含有氨基的功能成分的表面氨基等摩尔量的炔丙基溴、炔丙基氯等卤代烷基端炔X-R-C≡CH,于<100℃的加热条件下反应,酸中和并水洗除杂,其中的酸中和优选用稀盐酸,所得到的炔基化基底材料干燥后待用,对所得到的炔基化功能成分用与其分子量对应的截留分子量透析袋透析除去杂质,干燥,其中优选真空干燥或冷冻干燥,待用,处理过程如式(a-2)所示:
    Figure PCTCN2017116211-appb-100002
    a-3:结构中的-OH和-NH2都转换为炔基
    将结构中同时含有羟基和氨基的所述基底材料或所述的功能成分,分别按上述a-1和a-2方式处理,将其中的羟基和氨基都转换为炔基,分别得到待用的炔基化基底材料,或待用的炔基化功能成分;
    b.叠氮基化处理:按下述方式之一进行叠氮基化处理
    b-1:结构中的-OH转换为叠氮基
    按下述比例的方式,将0.1~1cm3所述待用的基底材料,或者0.8~2g所述的功能成分,分别置于各自的30~80ml沸点≥150℃的极性有机溶剂中,所述的溶剂优选二氯甲烷、N,N-二甲基甲酰胺或二甲基亚砜,加入0.5~1.5ml的三乙胺、甲基乙胺或二甲胺,在保持为-2~3℃的条件下滴加2-溴异丁酰溴(BIBB)、氯乙酸或1,3-溴丙烷1~3ml并反应1~4个小时,优选的滴加速度为20~40滴/min,然后升至室温继续反应24~72小时,分别得到溴化处理或氯化处理的基底材料或者功能成分;得到的溴化或氯化处理的基底材料或者功能成分,用甲醇或无水乙醇沉淀后,基底材料清洗至清洗液pH值至6.5-7.5;功能成分的沉淀物用二氯甲烷或丙酮溶解后再用甲醇或无水乙醇沉淀的方式进行纯化后,清洗至清洗液pH 6.5-7.5,然后将清洗后的基底材料或者功能成分各自放入在50~250ml二甲基甲酰胺或二甲基亚砜中溶解有过饱和NaN3或Zn(N3)2·2Py的溶液中,于50℃~90℃反应6~48小时,冷却至室温,分别得到叠氮基化的基底材料或叠氮基化的功能成分,对得到的叠氮基化基底材料经水洗除去杂质至洗液无卤素显色反应后,干燥,其中优选真空干燥或冷冻干燥,待用;对得到的叠氮基化功能成分用与其分子量对应的截留分子量透析袋透析后,水洗除去杂质至清洗液无卤素显色反应,干燥,其中优选真空干燥或冷冻干燥,待用,处理过程如式(b-1)或式(b-2)所示:
    Figure PCTCN2017116211-appb-100003
    b-2:结构中的-NH2转换为叠氮基
    按下述比例的方式,将0.1~1cm3所述待用的基底材料,或者0.8~2g所述的功能成分,分别置于各自的50~200ml极性有机溶剂中,所述的溶剂优选二甲基亚砜、二氯甲烷或水,各自加入在50~150ml二甲基亚砜或二甲基甲酰胺中溶解有三氟磺酸叠氮(TfN3:CF3SON3)或对硝苯碘叠氮(p-NO2PhSO2N3)的溶液,以1~5wt%CuSO4或CuBr2为催化剂,在0℃~室温下反应24~72小时,分别得到叠氮基化的基底材料或叠氮基化的功能成分,对得到的叠氮基化基底材料经水洗除去杂质至洗液无卤素显色反应后,干燥,其中优选真空干燥或冷冻干燥,待用;对得到的叠氮基化功能成分用与其分子量对应的截留分子量透析袋透析后,水洗除去杂质至清洗液无卤素显色反应,干燥,其中优选真空干燥或冷冻干燥,待用,处理过程如式(b-2)所示:
    Figure PCTCN2017116211-appb-100004
    b-3:结构中的-OH和-NH2都转换为叠氮基
    将结构中同时含有羟基和氨基的所述基底材料或所述的功能成分,分别按上述b-1和b-2方式处理,将其中的羟基和氨基都转换为叠氮基,分别得到待用的叠氮基化基底材料,或待用的叠氮基化功能成分;
    第三步,以点击化学方式在多孔支架材料结构表面经环加成反应形成炔基-叠氮基对应接枝的功能成分结构层
    在惰性气体氛围中,将待用的已叠氮基化的基底材料,浸入含有0.5~3mmol浓度待用的已炔基化的功能成分的50~250ml沸点≥150℃的极性有机溶剂中,或是将待用的已炔基化处理的基底材料浸入含有0.5~3mmol浓度待用的已叠氮化的功能成分的50~250ml的沸点≥150℃的极性有机溶剂中,于-2℃~3℃加入催化量的铜催化液后,在20-100℃反应1-24小时,然后用氨水清洗除去铜离子,得到在所述基底材料的聚多巴胺涂层表面以叠氮基化-炔基方式经环加成反应定向接枝有功能成分修饰涂层结构的多孔支架。
  9. 如权利要求8所述的制备方法,其特征是在所述的操作(1)中,将表面清洁处理并干燥后的多孔支架材料在所述的盐酸多巴胺溶液中按所述浸泡沉积方式进行1-10次,优选浸泡沉积3-6次,得到具有所需厚度聚多巴胺涂层的支架-聚多巴胺涂层基底材料。
  10. 如权利要求8所述的制备方法,其特征是在操作(3)中所述的沸点≥150℃的极性有机溶剂为N,N-二甲基甲酰胺或二甲基亚砜。
PCT/CN2017/116211 2017-08-18 2017-12-14 具有表面定向功能修饰涂层的多孔支架及其制备方法 WO2019033646A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710714542.9 2017-08-18
CN201710714542.9A CN107335093A (zh) 2017-08-18 2017-08-18 具有表面定向功能修饰涂层的多孔支架及其制备方法

Publications (1)

Publication Number Publication Date
WO2019033646A1 true WO2019033646A1 (zh) 2019-02-21

Family

ID=60215363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116211 WO2019033646A1 (zh) 2017-08-18 2017-12-14 具有表面定向功能修饰涂层的多孔支架及其制备方法

Country Status (2)

Country Link
CN (1) CN107335093A (zh)
WO (1) WO2019033646A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113117157A (zh) * 2021-04-08 2021-07-16 复旦大学 表面生物功能化的医用骨螺钉及其制备方法及其应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107335093A (zh) * 2017-08-18 2017-11-10 四川大学 具有表面定向功能修饰涂层的多孔支架及其制备方法
CN108295303A (zh) * 2018-02-08 2018-07-20 中山大学附属第三医院(中山大学肝脏病医院) 一种钛金属植入物及其制备方法和用途
CN108641583B (zh) * 2018-05-18 2020-11-03 浙江鹏远新材料股份有限公司 一种养殖场用杀菌隔热反射材料及其制备方法
WO2020109833A1 (en) * 2018-11-27 2020-06-04 Institut National De La Sante Et De La Recherche Medicale (Inserm) Method for the modification of a substrate surface by grafting a peptide onto the surface of said substrate
CN109432512A (zh) * 2018-12-28 2019-03-08 西南交通大学 在医用材料表面引入锌离子的方法、表面负载锌离子的医用材料及其应用
CN109735819B (zh) * 2019-03-14 2020-01-31 西南交通大学 具有NO催化释放与EPCs捕获功能的生物材料及其制备方法
CN112853619B (zh) * 2020-12-31 2021-09-28 广东春夏新材料科技股份有限公司 一种环保的空气过滤无纺布及其生产工艺和应用
CN113041403B (zh) * 2021-03-25 2022-04-08 四川大学 一种骨修复n-HA/CS多孔支架及制备方法和应用
CN113082300B (zh) * 2021-04-06 2022-05-31 西南交通大学 一种抗菌抗凝血涂层、制备方法及其应用
CN113350580A (zh) * 2021-06-11 2021-09-07 海思盖德(苏州)生物医学科技有限公司 一种应用于医疗器械中的肝素涂层制备方法
CN114225124B (zh) * 2021-12-22 2023-02-24 西南交通大学 一种具有超亲水性的Ti-Cu/聚多巴胺复合涂层及其制备方法
CN114668900B (zh) * 2022-04-08 2024-03-26 东莞市人民医院 含多重官能团的转化涂层材料、其制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1453354A (zh) * 2003-05-19 2003-11-05 浙江大学 在聚合物生物材料表面引入细胞生长因子的方法
WO2009047346A1 (en) * 2007-10-11 2009-04-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for preparing porous scaffold for tissue engineering, cell culture and cell delivery
CN102813963A (zh) * 2012-09-10 2012-12-12 高长有 一种以多巴胺为桥连的生物医用材料表面固定功能分子的方法
CN104356345A (zh) * 2014-12-01 2015-02-18 四川大学 具有荧光性的接枝可降解嵌段聚氨酯、骨修复材料及制备方法
CN106983912A (zh) * 2017-04-17 2017-07-28 广东省生物工程研究所(广州甘蔗糖业研究所) 一种3d打印的抗菌水凝胶修复支架及其制备方法
CN107335093A (zh) * 2017-08-18 2017-11-10 四川大学 具有表面定向功能修饰涂层的多孔支架及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101768278A (zh) * 2010-01-19 2010-07-07 东南大学 一种表面利用聚甲基乙烯基醚修饰的聚氨酯功能材料的制备方法
CZ304072B6 (cs) * 2011-04-26 2013-09-25 Contipro Biotech S.R.O. Amfoterní materiál na bázi sítované kyseliny hyaluronové, zpusob jeho prípravy, materiály obsahující aktivní cinidla uzavrené v síti hyaluronanu, zpusob jejich prípravy a jejich pouzití
KR101575226B1 (ko) * 2013-07-16 2015-12-09 연세대학교 산학협력단 폴리도파민이 결합된 생리활성 펩타이드로 고정화된 고분자 지지체 및 이의 제조방법
CN104083805B (zh) * 2014-07-24 2015-11-18 吉林大学 一种制备可降解载药涂层支架的方法
CN106011834B (zh) * 2016-06-12 2018-12-04 天津大学 钛表面螯合锶的海藻酸钠涂层的制备方法
CN107029304A (zh) * 2016-10-24 2017-08-11 北京大学口腔医院 生物种植体以及在基体上制备活性因子的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1453354A (zh) * 2003-05-19 2003-11-05 浙江大学 在聚合物生物材料表面引入细胞生长因子的方法
WO2009047346A1 (en) * 2007-10-11 2009-04-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for preparing porous scaffold for tissue engineering, cell culture and cell delivery
CN102813963A (zh) * 2012-09-10 2012-12-12 高长有 一种以多巴胺为桥连的生物医用材料表面固定功能分子的方法
CN104356345A (zh) * 2014-12-01 2015-02-18 四川大学 具有荧光性的接枝可降解嵌段聚氨酯、骨修复材料及制备方法
CN106983912A (zh) * 2017-04-17 2017-07-28 广东省生物工程研究所(广州甘蔗糖业研究所) 一种3d打印的抗菌水凝胶修复支架及其制备方法
CN107335093A (zh) * 2017-08-18 2017-11-10 四川大学 具有表面定向功能修饰涂层的多孔支架及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113117157A (zh) * 2021-04-08 2021-07-16 复旦大学 表面生物功能化的医用骨螺钉及其制备方法及其应用

Also Published As

Publication number Publication date
CN107335093A (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
WO2019033646A1 (zh) 具有表面定向功能修饰涂层的多孔支架及其制备方法
Taraballi et al. Biomimetic tissue engineering: tuning the immune and inflammatory response to implantable biomaterials
Yang et al. A biocompatible and functional adhesive amine-rich coating based on dopamine polymerization
Lee et al. A simultaneous process of 3D magnesium phosphate scaffold fabrication and bioactive substance loading for hard tissue regeneration
He et al. Peptide LL-37 coating on micro-structured titanium implants to facilitate bone formation in vivo via mesenchymal stem cell recruitment
JP5026956B2 (ja) 医療用具のための天然生分解性多糖コーティング
CN101472624B (zh) 机械操作或灭菌后具有高度生物学活性的固定的生物活性实体
ES2276084T3 (es) Revestimiento polimerico para dispositivos medicos.
EP2702068B1 (en) Aptamer-modified polymeric materials for the binding of therapeutic factors in a wound environment
ES2201571T3 (es) Procedimiento para la inmovilizacion de moleculas mediadoras sobre materiales de implantes inorganicos y metalicos.
ES2586929T3 (es) Nanotubos y composiciones de los mismos
Han et al. Mussel-inspired hybrid coating functionalized porous hydroxyapatite scaffolds for bone tissue regeneration
CN101703813B (zh) 利用内源性no供体构建抗凝血性血管支架材料的方法
CN1589166A (zh) 包被有持续释放药物递送系统的支架及其使用方法
JP2004522461A (ja) ホスファゼン含有コーティングを有するインプラント
Fathi et al. Fabrication of interpenetrating polymer network to enhance the biological activity of synthetic hydrogels
Chen et al. The fabrication of double-layered chitosan/gelatin/genipin nanosphere coating for sequential and controlled release of therapeutic proteins
KR101712862B1 (ko) 다공성 고분자 미세입자, 이의 제조방법, 및 이를 이용한 바이오 소재
Wang et al. A high stiffness bio-inspired hydrogel from the combination of a poly (amido amine) dendrimer with DOPA
Gan et al. Artificial cilia for soft and stable surface covalent immobilization of bone morphogenetic protein-2
Kim et al. Injectable remodeling hydrogels derived from alendronate-tethered alginate calcium complex for enhanced osteogenesis
JP2014528406A (ja) 治療薬を送達するための多層インプラント
CA3087896A1 (en) Fluorosilinated liquid-infused surfaces with embedded biomolecules, methods of making and uses thereof
Seitz et al. Biliary stent clogging solved by nanotechnology? In vitro study of inorganic-organic sol-gel coatings for teflon stents
Pahal et al. Nanoarchitectonics for Free‐Standing Polyelectrolyte Multilayers Films: Exploring the Flipped Surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921699

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 06/11/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17921699

Country of ref document: EP

Kind code of ref document: A1