WO2019031660A1 - 노즐 - Google Patents
노즐 Download PDFInfo
- Publication number
- WO2019031660A1 WO2019031660A1 PCT/KR2017/014397 KR2017014397W WO2019031660A1 WO 2019031660 A1 WO2019031660 A1 WO 2019031660A1 KR 2017014397 W KR2017014397 W KR 2017014397W WO 2019031660 A1 WO2019031660 A1 WO 2019031660A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow control
- nozzle
- control unit
- molten steel
- width
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D41/00—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
- B22D41/50—Pouring-nozzles
Definitions
- the present invention relates to a nozzle, and more particularly, to a nozzle capable of reducing an inclusion.
- a typical continuous casting machine includes a tundish for supplying molten steel through an injection nozzle connected to the ladle and temporarily storing molten steel and distributing the molten steel to each strand, a nozzle for supplying molten steel to the tundish, and a tundish
- a plurality of rolls and cooling nozzles (not shown) for performing a series of operations to take the heat away from the non-solidified casting and to bend or straighten the casting while completing the solidification, ).
- the molten steel is injected into the nozzle connecting the ladle and the tundish, the molten steel is discharged into the turndisse through the discharge port provided at the lower end of the nozzle.
- the molten steel discharged from the nozzle forms a rising current flowing in the direction of the upper surface of the molten steel.
- a strong upward flow is formed around the nozzle.
- a strong turbulent flow is generated in the bath surface, and this upward flow or turbulence pushes the slag around the nozzle. That is, the molten steel rising or turbulent flow pushes the slag around the nozzle. Therefore, nude steel is generated which is separated from the nozzle 10 and the slag S.
- Such a slag is a factor for generating inclusions, which makes the tundish bath surface unstable and causes the slag to be mixed into molten steel.
- the present invention provides a nozzle capable of reducing inclusions.
- the present invention provides a nozzle capable of suppressing or preventing the generation of a crack on a bath surface.
- the nozzle according to the present invention includes a body portion having a passage through which molten steel can pass and a discharge port through which the molten steel is discharged to the outside at a lower end; And a flow control unit mounted on the body part so as to extend in an outer width direction of the body part with the body part as a center.
- the flow control unit is installed at a lower portion of the body portion to be located outside the discharge port.
- the flow control portion extends outward from the outer surface of the body portion, and the length of the flow control portion extending from the outer surface of the body portion is larger than the thickness of the body portion wall.
- the flow control portion is formed in a hollow shape having an opening corresponding to the discharge port, and an inner surface of the flow control portion, which is the opening peripheral wall, is provided to be in contact with the outer peripheral surface of the body portion.
- the ratio (A + F) / D * 100) of the sum of the thickness F of the wall of the body portion to the width D of the body portion passage and the width A of the flow control portion is 74% % Or less.
- the ratio (A / F) of the width A of the flow control portion to the thickness F of the wall portion 110 of the body portion 110 is not less than 2.1 and not more than 4.2.
- the flow control unit may have any one of a circular shape, an elliptical shape, and a polygonal shape.
- the flow control unit is continuously extended along the circumferential direction of the body portion.
- the bottom surface of the lower end portion of the body portion and the bottom surface of the flow control portion are the same.
- the flow rate of the bath surface around the nozzle can be reduced as compared with the conventional one. Accordingly, when the molten steel is supplied by applying the nozzle having the flow control unit according to the embodiment, the amount of the molten metal on the bath surface around the nozzle is reduced as compared with the prior art. As a result, it is possible to inhibit or prevent the slag from being mixed into molten steel due to the slag, thereby preventing or preventing the occurrence of inclusions.
- FIG. 1 is a view showing a part of a continuous casting facility equipped with a nozzle according to an embodiment of the present invention
- FIG. 2 is a view for explaining the generation of a nugget when a conventional nozzle is applied
- FIG. 3 is a view for explaining a flow control unit connected to a lower portion of a body of a nozzle according to an embodiment of the present invention
- 4 is an experimental graph showing the bath surface flow velocity index according to the ratio of the thickness of the body portion or the wall to the width of the passage and the sum of the width of the flow control portion
- FIG. 5 is a cross-sectional view of a flow control unit according to embodiments of the present invention.
- Figs. 6 to 13 are views showing the nozzles according to the first to eighth comparative examples and the embodiments and the molten steel flow at the time of application thereof
- the present invention relates to a nozzle for reducing the generation of inclusions when molten steel is fed or discharged by using a nozzle. More specifically, the present invention provides a nozzle capable of reducing the occurrence of scum and reducing or preventing the occurrence of inclusions in supplying or conveying molten steel in a ladle by using a nozzle in a tundish.
- FIG. 1 is a view showing a continuous casting facility equipped with a nozzle according to an embodiment of the present invention
- FIG. 2 is a view for explaining the generation of a nitrogen gas during application of a conventional nozzle.
- FIG. 3 is a view illustrating a flow control unit connected to a lower portion of a body of a nozzle according to an embodiment of the present invention.
- 4 is an experimental graph showing the bath surface flow velocity index according to the ratio of the sum of the thickness of the body portion or the wall to the width of the passage and the width of the flow control portion.
- 5 is a cross-sectional view of a flow control unit according to embodiments of the present invention.
- 6 to 13 are views showing the nozzles according to the first to eighth comparative examples and the embodiments and the flow of molten steel in the application thereof.
- the continuous casting facility includes a ladle L in which molten steel M is stored, a tundish 200 supplied with molten steel M from the ladle L, molten steel in the ladle L, A nozzle 100 for supplying the tundish 200 and a gate (or sliding gate) G for controlling the communication between the ladle L and the nozzle 100.
- a mold (not shown) disposed below the tundish 200 to receive molten steel from the tundish 200 to primarily cool the molten steel M
- a tundish 200 and a mold And an immersion nozzle (not shown) for supplying the molten steel M of the tundish 200 to the mold.
- the ladle L is a means for taking the molten steel M and providing it to the tundish 200.
- the ladle L is provided at the floor of the ladle with a ladle for discharging molten steel, ).
- the nozzle mounted on the ladle is referred to as a top nozzle
- the nozzle for supplying molten steel passing through the top nozzle of the ladle L in a turn-off direction is referred to as a shroud nozzle, It is named as 'nozzle'.
- molten steel in the ladle L is transferred to the nozzle 100 via the top nozzle TN and the gate G, and the opening provided at the lower portion of the nozzle 100, that is, And is supplied into the tundish 200.
- the molten steel discharged from the discharge port 113 of the nozzle 100 forms a rising current flowing in the direction of the upper surface of the molten steel. In particular, a strong upward flow is formed around the nozzle 100.
- a strong turbulent flow is generated in the hot water surface due to the upward flow of the molten steel M.
- This upward flow or turbulent flow pushes the slag S around the nozzle 10. That is, the upward flow or the turbulent flow of the molten steel M pushes the slag S around the nozzle 10. Therefore, as shown in the enlarged view of FIG. 2, nude steel is generated which is separated from the nozzle 10 and the slag S.
- Such slag is a factor for generating inclusions, which makes the tundish 200 bath surface unstable and causes the slag to be mixed into molten steel.
- a nozzle 100 for reducing the generation of a crack in supplying molten steel in the ladle L to the tundish 200, there is provided a nozzle 100 for reducing the generation of a crack.
- the nozzle 100 includes an inner space or passageway through which molten steel can pass, and a body 110 having a discharge port 113 through which the molten steel is discharged to the outside And a flow controller 120 mounted on the body 110 to extend in a width direction of the body 110 with respect to the body 110.
- the body 110 includes a body 111 having a space 112 formed therein extending in the vertical direction and provided with a discharge port 113 which is a lower opening through which the molten steel M is discharged.
- the main body 111 includes a main body 111 extending vertically and an empty space provided inside the main body 111.
- the main body 111 includes a passage 112 extending in the extending direction of the main body 111, And a discharge port 113 communicating with the inlet 112 and the lower opening of the main body 111 communicating with the passage 112, which is an opening on the upper side of the main body 111,
- the main body 111 can be named as a wall surrounding the inlet, the passage 112, and the discharge port 113.
- the width, thickness, or outer diameter of the main body 111 or the lower end of the wall corresponding to the periphery of the discharge port 113 may be larger than that of the upper portion. Accordingly, the body 110 or the lower end of the main body 111 may be called a flange.
- the body 110 includes a first nozzle 110a located under the gate G and a second nozzle 110b connected to the lower portion of the first nozzle 110a. 2 nozzle 110b, and a third nozzle 110c connected to a lower portion of the second nozzle 110b.
- the first nozzle 110a is usually called a middle nozzle and is located between the gate G and the second nozzle 110b.
- the second nozzle 110b is generally called a collector nozzle and is a nozzle connecting the first nozzle 110a and the third nozzle 110c.
- the third nozzle 110c is generally called a shroud nozzle.
- the nozzle is a nozzle that is installed inside the tundish 200 to supply molten steel through a turn-dish.
- At least the lower portion of the third nozzle (i.e., shroud nozzle) 110c has its outer diameter variable or other section. 1 or 3, the lower part of the third nozzle 110c includes a first section 111a formed to have an increased outer diameter toward the lower side, a lower section extending downward from the lower section of the first section 111a, And a second section 111b formed to have the same outer diameter as the lowermost outer diameter of the first section 111a.
- the outer diameter of the second section 111b is larger than the outer diameter of the upper section of the first section 111a, and the second section 111b may be referred to as a flange.
- the first to third nozzles 110a, 110b, and 110c described above can be individually separated and mutually fastened.
- the lower end of the body 110 may be the lower end of the third nozzle 110c, that is, the shroud nozzle.
- the flow control unit 120 controls or changes the flow of molten steel discharged from the discharge port 113 of the body 110 to reduce or prevent the flow rate of the molten metal .
- the flow control unit 120 extends from the lower end of the body 110 to the outer side of the body 110 and extends in a direction corresponding to the width direction of the body 110.
- the flow control unit 120 has a hollow plate shape, for example, a circular hollow shape in which a region corresponding to the discharge port 113 of the body 110 is opened. That is, the flow control unit 120 is continuously extended from the outside of the body 110 along the circumferential direction.
- the flow control unit 120 extends outward in the width direction of the body 110 with respect to the opening and the inner side surface defining the central opening is connected to the body 110. Accordingly, the flow control unit 120 is installed in a structure extending outward from the lower portion of the body portion 110 while the openings thereof are positioned corresponding to the discharge port of the body portion 110.
- bottom surface of the lower end of the body 110 and the bottom surface of the flow controller 120 are the same.
- the bath surface flow velocity ratio I around the nozzle can be named as the bath surface flow velocity index I, and when the bath surface flow velocity index is less than 1, , And thus, the water content is reduced.
- the width A of the flow control part 120 extending outward in the width direction from the body part 110 is larger than the width A of the body part 110 of the body part 110 in order to make the bath surface flow velocity index I less than 1 ) Or the wall thickness (F) (A> F).
- the width A of the flow control unit refers to the distance between the inner surface of the flow control unit 120 connected to the body 110 and the outer surface. In other words, the distance between the outer surface of the body part 110 and the outer surface of the flow control part 120 is a distance.
- the length A from the inner side to the outer side of the flow control part 120 corresponds to the width A of the main body 110 of the body part 110 surrounding the discharge port 113 111). ≪ / RTI >
- the length from the inner side to the outer side of the flow control part 120 that is, the width A of the flow control part 120 is smaller than the thickness F of the wall of the body part 110 surrounding the discharge port (F > A), the bath surface flow velocity index I is 1 or more, the effect of inhibiting the scatter is less than that of the conventional method without the flow control part 120, or the like can be generated.
- the opening ratio between the top nozzle TN and the nozzle 100 is set at 100% at the beginning of feeding or starting the supply of the molten steel of the ladle L to the tundish 200, and the opening rate To 50%.
- the opening ratio can be controlled by the operation of the gate (G).
- the flow rate at the bath surface is relatively large. Also, when the nozzle is not provided with the flow control unit 120 as in the prior art, even when 50% of the nozzle is opened, the nozzle is disturbed. Therefore, it is preferable that the 50% open time is used as a reference for obtaining the bath surface flow velocity index (I).
- the width D of the discharge port 113 or the width W of the passage 112 in order to effectively reduce the flow rate of the bath surface around the body portion 110 or to make the bath surface flow velocity index less than 1
- the thickness F of the body portion 110 and the width A of the flow control portion 120 with respect to the inner diameter D of the body portion 110 (hereinafter, the width D of the passage) (F + A) (see Equation 2).
- the bath surface flow velocity index I is set to a value of less than 1, and it is preferably not less than 85% and not more than 110% so as to have a lower value (see FIG. 4).
- the width A of the flow control part 120 is adjusted according to the thickness F of the main body 111 of the body part 110 or the wall to be operated,
- the body 110 and the flow controller 120 can be separately manufactured according to the specifications of the casting equipment without using the conventional body 110 or the shroud nozzle.
- the flow control portion according to the first embodiment of the present invention is such that the shape of the opening and the appearance are circular as shown in Fig. 5A.
- the shape of the flow control portion is not limited to this, and can be changed into various shapes.
- the outer shape of the body is not limited to a circle but may be various polygons such as a square, and the opening of the flow control portion may be changed into various polygons such as a rectangle in addition to a circular shape according to the outer shape of the body.
- the flow control unit 120 has a circular opening and an outer shape is elliptical (see FIG. 5B), a circular opening has a square appearance (see FIG. 5C) Or may be rectangular (see FIG. 5D). 5e), having a rectangular opening and having an oval shape (see Fig. 5f), having a square opening and having a square appearance (see Fig. 5g), or having a rectangular opening Having a square opening and having a rectangular appearance (see Fig. 5H).
- the distance between the inner side surface and the outer side surface of the flow control part 120 is the same regardless of its position when both the opening and the outer shape are circular rather than elliptical.
- the distance between the one side surface and the other side surface may vary depending on the measurement point.
- the thickness of the body 110 of the body 110 or the wall thickness F of the wall 110 is set to be smaller than the width D of the passage 112, It is necessary to designate the width A of the flow control unit 120 in adjusting the ratio X of the sum (F + A) of the width A of the flow control unit 120 and the width A of the flow control unit 120.
- the maximum distance between the tangent line passing through the inner surface of the flow control unit and the tangent line passing through the outer surface is the width A of the flow control unit 120. At this time, the corners of the opening or the exterior are excluded.
- the maximum distance between the inner and outer surfaces of the flow control unit 120 in the flow control unit 120 according to the second embodiment of FIG. 5B is defined as the width A of the flow control unit 120 . That is, the maximum distance between the first tangent line passing through one point on the inner side of the circular shape and the second tangent line passing through the outer side surface facing the first tangent line, .
- the distance between the inner side and the vertex of the outer side is not made to be the width A of the flow control part 120.
- the distance between the first tangent line passing through the inner surface of the flow control unit 120 and the tangent line passing through the vertex of the outer surface is measured by the flow controller 120 (A).
- the maximum spacing distance between the first tangent line passing through the inner surface of the flow control unit 120 and the second tangent line passing through the side of the outer surface facing the first tangent line is set to the width A ).
- the distance A between the vertex of the inner surface and the outer surface is not made to be the width A of the flow control part 120.
- the flow control unit 120 determines the maximum spacing distance between the first tangent line passing through the side excluding the vertex of the flow control unit 120 and the second tangent line passing through the outer side surface facing the first tangent line, (A).
- the separation distance between the vertex of the inner surface of the flow control part 120 and the vertex of the outer surface is not made to be the width A of the flow control part 120.
- the width A of the flow control unit 120 among the separation distances between the first tangent line passing through the side excluding the vertex of the flow control unit 120 and the second tangent line passing through the side excluding the vertex of the outer side while facing the first tangent line, And the width A of the flow control unit 120.
- the nozzle according to the embodiment includes a body 110 for injecting molten steel through a tundish, a flow formed to extend in the width direction of the body 110 from the lower end of the body 110, And a control unit 120.
- the flow control unit 120 is formed in a hollow shape having a central opening and is connected to the body 110 so that the lower end of the body 110 or the discharge opening 113 is positioned at the center opening. That is, the inner surface of the flow control unit 120 is connected to the outer surface of the body 110.
- the sum of the thickness F of the main body 110 or the thickness F of the wall 110 and the width A of the flow control part 120 with respect to the width D of the passage 112 of the main body 110 + A) was 74% or more and 125%.
- the first and second comparison examples shown in Figs. 6 and 7 are the nozzles 11 having no configuration corresponding to the flow control unit of the present invention.
- the first comparative example is a first nozzle (top nozzle) and the second and third (50% open)
- the second comparative example is 100% (100% open) when the nozzles (middle nozzle and shroud nozzle) are 50% communicated.
- the nozzles according to the third to sixth comparative examples shown in Figs. 8 to 11 include a body portion 10 for injecting molten steel through a turn-by-turn manner. In the turn-off state, A control unit 12 is installed.
- the nozzles according to the third to sixth comparative examples are not configured to include the same flow control unit as the embodiment, and the flow control unit 12 according to the third to sixth comparative examples is separately provided to be separate from the body unit 10 .
- the flow control unit 12 according to the third to sixth comparative examples may have a hollow shape having an opening corresponding to the discharge port of the body part 10, 10). ≪ / RTI > The lower end of the body portion 10 and the flow control portion 12 are spaced apart from each other.
- the flow control unit 12 according to the third comparative example has a shape extending in the width direction or the left-right direction.
- the flow control unit 12 according to the fourth and fifth comparative examples further includes a flow control unit (hereinafter referred to as " first flow control unit ") extending vertically below the flow control unit 2 flow control unit) may be connected.
- the flow control unit 12 according to the fourth comparative example has a configuration in which a second flow control unit is provided in a portion of the lower surface of the first flow control unit, which is located inside the outer surface.
- the flow control unit 12 according to the fifth comparative example has a configuration in which the second flow control unit is connected to the outermost outer surface of the first flow control unit and a hole through which the molten steel can pass is provided in the second flow control unit.
- the hole may be shaped to be inclined upwards toward the outer side of the flow control part 12.
- the flow control unit 16 according to the sixth comparative example may have a shape having a convex curvature in the upward direction while being inclined downward from the body 110 in the outward direction.
- the nozzle according to the seventh and eighth comparative examples shown in Figs. 12 and 13 includes a body portion 10 for injecting molten steel through a turn-dish, and separately flows under the discharge port of the body portion 10 in the turn- A control unit 12 is installed.
- the flow control unit 12 according to the seventh and eighth comparative examples is mounted on the bottom surface of the turn-off floor and is convex toward the discharge port.
- the flow control unit 12 according to the seventh comparative example is convex in the direction of the discharge port and has a curvature, for example, a semicircular shape.
- In the flow control unit 12 according to the eighth comparative example And has a pointed shape such as a triangular shape.
- the flow control unit 12 is provided not to be connected to the body 10 but to be separated or spaced apart.
- the flow control unit 12 according to the third to eighth comparative examples is configured to determine the thickness F of the body portion or the wall of the body portion 10 with respect to the width D of the passage 112 of the body portion 10, (X) of the sum (F + A) of the width A of the honeycomb structure 120 is not less than 74% and not more than 125%.
- the flow rates of the bath surface were measured at the time of using the nozzles according to the first to eighth comparative examples and the embodiments, respectively.
- each of the nozzles according to the first to eighth comparative examples and the embodiments described above was applied, and when the molten steel was supplied by turn-dish, the flow rate of the bath surface around the nozzle was detected.
- the discharge amount from the nozzle is 48 kg / s
- the ratio of the flow rate of the bath surface at the time of applying the nozzle according to the second to sixth comparative examples and the embodiment was calculated based on the flow rate in the first comparative example where the opening rate was 50% (I).
- the bath surface flow velocity index (I) is 1 or more. That is, even if the flow control unit is provided as in the third to eighth comparative examples, the flow rate of the bath surface is larger than that of the first comparative example in which the flow control unit is not provided. Therefore, when the nozzle and the flow control unit according to the third to eighth comparative examples are applied, the flow control unit can generate a larger amount of natan than that of the first comparative example.
- the bath surface flow velocity index I is 0.62, which is less than 1, which means that the bath surface velocity is significantly reduced compared to the first comparative example. Accordingly, when the molten steel is supplied in the turn-dish by applying the nozzle having the flow control unit according to the embodiment, the napping on the bath surface around the nozzle is reduced compared with the first comparative example, which is a conventional nozzle. As a result, it is possible to inhibit or prevent the slag from being mixed into molten steel due to the slag, thereby preventing or preventing the occurrence of inclusions.
- the flow rate of the bath surface around the nozzle can be reduced as compared with the conventional one. Accordingly, when the molten steel is supplied by applying the nozzle having the flow control unit according to the embodiment, the amount of the molten metal on the bath surface around the nozzle is reduced as compared with the prior art. As a result, it is possible to inhibit or prevent the slag from being mixed into molten steel due to the slag, thereby preventing or preventing the occurrence of inclusions.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
Abstract
본 발명에 따른 노즐은 용강이 통과 가능한 통로 및 하단에 상기 용강이 외부로 토출되는 토출구가 마련된 몸체부 및 몸체부를 중심으로하여 몸체부의 외측 폭 방향으로 연장 형성되도록 상기 몸체부에 장착된 흐름 제어부를 포함한다. 따라서, 본 발명의 실시형태에 따른 노즐에 의하면, 종래에 비해 노즐 주변의 탕면 유속을 저감시킬 수 있다. 이에 따라, 실시예에 따른 흐름 제어부를 구비하는 노즐을 적용하여 용강을 공급할 때, 노즐 주변의 탕면에서의 나탕이 종래에 비해 저감된다. 이로 인해 나탕으로 인해 슬래그가 용강으로 혼입되는 것을 종래에 비해 억제 또는 방지할 수 있어, 개재물 발생을 억제 또는 방지할 수 있다.
Description
본 발명은 노즐에 관한 것으로, 보다 상세하게는 개재물을 저감시킬 수 있는 노즐에 관한 것이다.
일반적인 연속주조기는 래들에 연결된 주입노즐을 통해 용강을 공급받아 일시적으로 용강을 저장한 후 각 스트랜드(strand)로 분배하는 턴디쉬(tundish), 래들의 용강을 턴디쉬로 공급하는 노즐, 턴디쉬로부터 전달받은 용강을 일정한 형상으로 초기 응고시키는 주형(mold) 및 미응고된 주편으로부터 열을 빼앗아 응고를 완료시키면서 주편을 구부리거나 펴는 일련의 작업을 수행하는 다수의 롤(roll)과 냉각 노즐(미도시)을 포함하는 냉각대를 포함한다.
한편, 래들과 턴디시를 연결하는 노즐로 용강을 주입하면, 상기 노즐 하단에 마련된 토출구를 통해 용강이 턴디시 내로 토출된다. 노즐로부터 토출된 용강은 용강 상부 표면 방향으로 흐르는 상승류를 형성하며, 특히, 노즐 주변에 강한 상승류가 형성된다. 그리고, 용강의 상승류에 의해 탕면에 강한 난류가 발생되게 되는데, 이 상승류 또는 난류가 노즐 주변의 슬래그를 밀어내게 된다. 즉, 용강 상승류 또는 난류가 노즐을 중심으로 슬래그를 밀어낸다. 따라서, 노즐(10)과 슬래그(S) 간이 이격되는 나탕(Nude steel)이 발생된다. 이러한 나탕은 개재물을 발생시키는 요인이되고, 턴디쉬 탕면을 불안정하게 하여, 슬래그가 용강으로 혼입되는 원인이 된다.
따라서, 턴디시로 용강을 공급할 때, 탕면에서 나탕 발생을 저감 또는 억제 시킬 수 있는 노즐에 대한 연구가 필요하다.
(선행문헌)
한국등록실용신안공보 KR0223846Y1
본 발명은 개재물을 저감시킬 수 있는 노즐을 제공한다.
본 발명은 탕면에 나탕 발생을 억제하거나 방지할 수 있는 노즐을 제공한다.
본 발명에 따른 노즐은 용강이 통과 가능한 통로 및 하단에 상기 용강이 외부로 토출되는 토출구가 마련된 몸체부; 및 상기 몸체부를 중심으로하여 상기 몸체부의 외측 폭 방향으로 연장 형성되도록 상기 몸체부에 장착된 흐름 제어부;를 포함한다.
상기 흐름 제어부는 상기 몸체부의 하부에서 상기 토출구의 외측에 위치하도록 설치된다.
상기 흐름 제어부는 상기 몸체부 외측면으로부터 외측 방향으로 연장되고, 상기 흐름 제어부가 상기 몸체부 외측면으로부터 연장된 길이는 상기 몸체부 벽체의 두께에 큰 것이 바람직하다.
상기 흐름 제어부는 상기 토출구와 대응하는 영역이 개구된 중공형의 형상이며, 상기 개구 주변벽인 상기 흐름 제어부의 내측면이 상기 몸체부의 외주면과 접촉되도록 설치되는 것이 바람직하다.
상기 몸체부 통로의 폭(D)에 대한 상기 몸체부의 벽체의 두께(F)와 상기 흐름 제어부의 폭(A)의 합의 비율((A+F)/D)*100)이 74% 이상, 125% 이하인 것이 바람직하다.
상기 몸체부(110) 벽체의 두께(F)에 대한 상기 흐름 제어부의 폭(A)의 비율(A/F)이 2.1 이상, 4.2 이하인 것이 바람직하다.
상기 흐름 제어부는 개구 및 그 외관 형상이 원형, 타원형, 다각형 중 어느 하나일 수 있다.
상기 흐름 제어부는 상기 몸체부의 둘레 방향을 따라 연속적으로 연장 형성된다.
상기 몸체부의 하단부의 바닥면과 상기 흐름 제어부의 바닥면의 위치가 상호 동일하다.
본 발명의 실시형태에 따른 노즐에 의하면, 종래에 비해 노즐 주변의 탕면 유속을 저감시킬 수 있다. 이에 따라, 실시예에 따른 흐름 제어부를 구비하는 노즐을 적용하여 용강을 공급할 때, 노즐 주변의 탕면에서의 나탕이 종래에 비해 저감된다. 이로 인해 나탕으로 인해 슬래그가 용강으로 혼입되는 것을 종래에 비해 억제 또는 방지할 수 있어, 개재물 발생을 억제 또는 방지할 수 있다.
도 1은 본 발명의 실시예에 따른 노즐을 구비하는 연속 주조 설비의 일부를 나타낸 도면
도 2는 종래의 노즐 적용시에 나탕 발생을 설명하는 도면
도 3은 본 발명의 실시예에 따른 노즐에 있어서, 몸체부의 하부에 연결된 흐름 제어부를 설명하는 도면
도 4는 통로의 폭에 대한 몸체부 본체 또는 벽체의 두께와 흐름 제어부의 폭의 합의 비에 따른 탕면 유속 인덱스를 나타낸 실험 그래프
도 5는 본 발명의 실시예들에 따른 흐름 제어부의 횡 단면도
도 6 내지 도 13은 제 1 내지 제 8 비교예 및 실시예에 따른 노즐 및 이의 적용시의 용강 흐름을 나타낸 도면
이하, 본 발명의 실시 예를 상세히 설명하기로 한다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
본 발명은 노즐을 이용하여 용강을 이송 또는 토출할 때, 개재물 발생을 저감시키는 노즐에 관한 것이다. 보다 구체적으로, 본 발명은 래들 내 용강을 노즐을 이용하여 턴디시로 공급 또는 이송시키는데 있어서, 나탕 발생을 저감시켜, 이로 인한 개재물 발생을 줄이거나 방지할 수 있는 노즐을 제공한다.
이하, 도면을 참조하여, 본 발명의 실시예에 따른 노즐에 대해 설명한다.
도 1은 본 발명의 실시예에 따른 노즐을 구비하는 연속주조설비를 도시한 도면이다. 도 2는 종래의 노즐 적용시에 나탕 발생을 설명하는 도면이다. 도 3은 본 발명의 실시예에 따른 노즐에 있어서, 몸체부의 하부에 연결된 흐름 제어부를 설명하는 도면이다. 도 4는 통로의 폭에 대한 몸체부 본체 또는 벽체의 두께와 흐름 제어부의 폭의 합의 비에 따른 탕면 유속 인덱스를 나타낸 실험 그래프이다. 도 5는 본 발명의 실시예들에 따른 흐름 제어부의 횡 단면도이다. 도 6 내지 도 13은 제 1 내지 제 8 비교예 및 실시예에 따른 노즐 및 이의 적용시의 용강 흐름을 나타낸 도면이다.
도 1을 참조하면, 연속주조설비는 용강(molten steel; M)이 저장되는 래들(L), 래들(L)로부터 용강(M)을 공급받는 턴디쉬(200), 래들(L) 내의 용강을 턴디쉬(200)에 공급하는 노즐(100), 래들(L)과 노즐(100) 간의 연통을 제어하는 게이트(또는 슬라이딩 게이트)(G)를 포함한다. 또한, 도시되지는 않았지만, 턴디쉬(200) 하부에 배치되어, 상기 턴디쉬(200)로부터 용강을 제공받아 용강(M)을 1차 냉각시키는 주형(미도시), 턴디쉬(200)와 주형 사이를 연결하도록 설치되어, 턴디쉬(200)의 용강(M)을 주형으로 공급하는 침지 노즐(미도시)을 포함한다.
래들(L)은 용강(M)을 수강하고, 이를 턴디쉬(200)로 제공하기 위한 수단으로, 래들(L) 바닥에는 용강의 토출이 가능한 출강구가 마련되고, 이 출강구에 노즐(100)이 연결된다.
이하에서는 설명의 편의를 위하여, 래들에 장착된 노즐을 탑 노즐(Top nozzle)이라 명명하고, 래들(L)의 탑 노즐을 통과한 용강을 턴디시로 공급하는 노즐을 쉬라우드 노즐로서, 본원에서는 '노즐'로 명명한다.
게이트(G)가 오픈되면, 래들(L) 내 용강이 탑 노즐(TN) 및 게이트(G)를 거쳐, 노즐(100)로 이송되고, 노즐(100) 하부에 마련된 개구 즉 토출구(113)를 통해 토출되어 턴디쉬(200) 내로 공급된다. 노즐(100)의 토출구(113)로부터 토출된 용강은 용강 상부 표면 방향으로 흐르는 상승류를 형성하며, 특히, 노즐(100) 주변에 강한 상승류가 형성된다.
그리고, 도 2를 참조하면 용강(M)의 상승류에 의해 탕면에 강한 난류가 발생되게 되는데, 이 상승류 또는 난류가 노즐(10) 주변의 슬래그(S)를 밀어내게 된다. 즉, 용강(M) 상승류 또는 난류가 노즐(10)을 중심으로 슬래그(S)를 밀어낸다. 따라서, 도 2에 도시된 확대도와 같이, 노즐(10)과 슬래그(S) 간이 이격되는 나탕(Nude steel)이 발생된다.
이러한 나탕은 개재물을 발생시키는 요인이되고, 턴디쉬(200) 탕면을 불안정하게 하여, 슬래그가 용강으로 혼입되는 원인이 된다.
따라서, 본 발명의 실시예에서는 래들(L) 내 용강을 턴디쉬(200)로 공급하는데 있어서, 나탕 발생을 저감시키는 노즐(100)을 제공한다.
도 1 및 도 3을 참조하면, 본 발명의 실시예에 따른 노즐(100)은 용강이 통과 가능한 내부 공간 또는 통로와, 하단에 상기 용강이 외부로 토출되는 토출구(113)가 마련된 몸체부(110) 및 몸체부(110)를 중심으로하여 상기 몸체부(110)의 외측 폭 방향으로 연장 형성되도록 상기 몸체부(110)에 장착된 흐름 제어부(120)를 포함한다.
몸체부(110)는 내부에 상하 방향으로 연장 형성된 공간 즉, 통로(112)가 마련되고, 용강(M)이 토출되는 하측 개구인 토출구(113)가 마련된 본체(111)를 포함한다. 즉, 몸체부(110)는 상하 방향으로 연장 형성된 본체(111), 본체(111) 내부에 마련된 빈 공간으로, 본체(111)의 연장 방향으로 대응하여 연장 형성된 통로(112), 통로(112)와 연통된 본체(111) 상측 개구인 입구 및 통로(112)와 연통된 본체(111) 하측 개구인 토출구(113)를 포함한다. 여기서, 본체(111)는 입구, 통로(112) 및 토출구(113) 주변을 둘러싸는 벽체로 명명될 수 있다.
그리고, 토출구(113) 주변에 해당하는 본체(111) 또는 벽체의 하단의 폭, 두께 또는 외경은 그 상부 영역에 비해 클 수 있다. 이에, 몸체부(110) 또는 본체(111) 하단부를 플렌지라 명명할 수도 있다.
실시예에 따른 몸체부(110)의 구성에 대해 다시 설명하면, 몸체부(110)는 게이트(G)의 하부에 위치되는 제 1 노즐(110a), 제 1 노즐(110a)의 하부에 연결된 제 2 노즐(110b), 제 2 노즐(110b)의 하부에 연결된 제 3 노즐(110c)을 포함할 수 있다.
제 1 노즐(110a)은 통상 중간 노즐(middle nozzle)이라고 명명되는 것으로, 게이트(G)와 제 2 노즐(110b) 사이에 위치한다.
제 2 노즐(110b)은 통상 콜렉터 노즐(collector nozzle)로 명명되는 것으로, 제 1 노즐(110a)과 제 3 노즐(110c)을 연결하는 노즐이다.
제 3 노즐(110c)은 통상 쉬라우드 노즐(shroud nozzle)로 명명되는 것으로, 하부가 턴디쉬(200) 내부에 위치하도록 설치되어, 턴디시로 용강을 공급하는 노즐이다. 제 3 노즐(즉, 쉬라우드 노즐)(110c)의 적어도 하부는 그 외경이 가변되는 또는 다른 구간이 있다. 즉, 도 1 또는 도 3에 도시된 바와 같이, 제 3 노즐(110c)의 하부는 하측 방향으로 갈수록 외경이 커지도록 형성된 제 1 구간(111a), 제 1 구간(111a)의 하부로부터 하측으로 연장된 구간으로, 제 1 구간(111a)의 최하단의 외경과 동일한 외경을 가지도록 형성된 제 2 구간(111b)을 포함한다. 여기서, 제 2 구간(111b)의 외경은 제 1 구간(111a)의 상측 영역의 외경에 비해 크며, 상기 제 2 구간(111b)은 플랜지로 명명될 수 있다.
상술한 제 1 내지 제 3 노즐(110a, 110b, 110c)은 모두 개별적으로 분리 및 상호 체결 가능하다.
그리고 본 발명의 실시예에 따른 몸체부(110)의 하단은 제 3 노즐(110c) 즉, 쉬라우드 노즐의 하단일 수 있다.
흐름 제어부(120)는 몸체부(110)의 토출구(113)로부터 토출된 용강의 흐름을 제어 또는 변경시켜, 탕면의 유속(또는 탕면 속도)을 종래에 비해 저감시킴으로써, 나탕을 억제 또는 방지하는 기능을 한다. 이러한 흐름 제어부(120)는 몸체부(110) 하단으로부터 상기 몸체부(110)의 외측 방향으로 연장 형성되며, 그 연장 방향은 몸체부(110)의 폭 방향과 대응한다. 다른 말로 하면, 흐름 제어부(120)는 몸체부(110)의 토출구(113)와 대응하는 영역이 개구된 중공형의 판(plate) 형상 예컨대, 원형의 중공형 형상이다. 즉, 흐름 제어부(120)는 몸체부(110)의 외측에서 둘레 방향을 따라 연속적으로 연장 형성된다. 그리고, 흐름 제어부(120)는 개구를 중심으로 하여, 몸체부(110)의 폭 방향 외측으로 연장 형성되며, 중앙 개구를 구획하는 내측면은 몸체부(110)와 연결된다. 이에, 흐름 제어부(120)는 그 개구가 몸체부(110)의 토출구에 대응 위치하면서, 몸체부(110)의 하부로부터 외측 방향으로 연장된 구조로 설치된다.
또한, 몸체부(110)의 하단부의 바닥면과 흐름 제어부(120)의 바닥면의 위치가 상호 동일하다.
상술한 바와 같이, 흐름 제어부가 설치되지 않은 종래의 노즐을 이용하여 턴디쉬(200)에 용강을 공급할 때, 탕면에서 노즐 주변에서 슬래그가 밀려나 나탕이 발생한다(도 2 확대도 참조). 이에, 나탕 발생을 저감시키기 위해서는 종래의 노즐 사용 시보다, 노즐 주변에서의 탕면 유속을 감소시킬 필요가 있다. 이를 다른 말로 하면, 흐름 제어부(120)가 구비되지 않은 종래의 노즐 이용시, 노즐 주변 탕면의 유속에 대한 개선된 노즐 이용시 탕면 유속이 1 미만이 되도록 할 필요가 있다(수학식 1 참조). 즉, 흐름 제어부(120)가 설치되지 않은 종래의 노즐 주변 탕면의 유속을 기준으로 한 개선된 노즐 이용시 탕면 유속의 값이 1 미만이 되도록 하는 것이 바람직하다(수학식 1 참조).
여기서, 종래의 노즐 주변의 탕면 유속에 대한 개선된 노즐 이용시, 노즐 주변의 탕면 유속 비율(I)은 탕면 유속 인덱스(I)로 명명될 수 있으며, 탕면 유속 인덱스가 1 미만일 때, 종래에 비해 유속이 줄어들고, 이에 따라 나탕이 저감된다.
[수학식 1]
그리고, 이렇게 탕면 유속 인덱스(I)가 1 미만이 되도록 하기 위해, 몸체부(110)로부터 폭 방향 외측 방향으로 연장된 흐름 제어부(120)의 폭(A)이 몸체부(110)의 본체(111) 또는 벽체 두께(F)에 비해 크도록 한다(A > F). 다른 말로 하면, 통로(112) 또는 토출구(113)를 구획하는 본체(111) 또는 벽체의 두께(F)에 비해 몸체부(110)로부터 외측 방향으로 연장된 흐름 제어부(120)의 길이(A)가 길도록 형성한다(A > F).
여기서 흐름 제어부의 폭(A)은 몸체부(110)와 연결되는 흐름 제어부(120)의 내측면과, 외측면 간의 이격 거리를 의미한다. 이를 다른 말로 하면, 몸체부(110)의 외측면과 흐름 제어부(120)의 외측면 간의 이격 거리이다.
이를 반영하여 흐름 제어부의 폭(A)에 대해 다시 설명하면, 흐름 제어부(120)의 내측면에서 외측면까지의 길이(A)가 토출구(113) 주변을 둘러싸는 몸체부(110)의 본체(111)의 두께(F)에 비해 크도록 한다.
한편, 흐름 제어부(120)의 내측면에서 외측면까지의 길이 즉, 흐름 제어부(120)의 폭(A)이 토출구 주변을 둘러싸는 몸체부(110)의 벽체의 두께(F)에 비해 작은 경우(F > A), 탕면 유속 인덱스(I)가 1 이상이거나, 흐름 제어부(120)가 없는 종래에 비해 나탕 저감 효과가 작거나, 종래와 유사한 나탕이 발생될 수 있다.
통상, 래들(L)의 용강을 턴디쉬(200)로 공급을 시작 또는 개시하는 초기에 탑 노즐(TN)과 노즐(100) 간의 개방율을 100%로 하며, 용강 공급 초기 또는 개시 후에 개방율을 50%로 조절한다. 개방율은 게이트(G)의 동작으로 제어 가능하다.
그리고, 개방율이 클수록 시간당 토출량이 작으며, 토출량이 상대적으로 작을 때에 비해 많을 때, 탕면에서의 유속이 상대적으로 크다. 그리고 종래와 같이 흐름 제어부(120)가 구비되지 않은 노즐 이용시에, 50%를 개방하여도 노즐 주변에서 나탕이 발생된다. 이에, 탕면 유속 인덱스(I)를 구하는 기준으로, 50% 개방시를 기준으로 하는 것이 바람직하다.
또한, 효과적으로 몸체부(110) 주변의 탕면 유속을 저감, 또는 탕면 유속 인덱스가 1 미만이 되도록 하기 위해서, 본 발명의 실시예에서는 토출구(113)의 폭(D) 또는 통로(112)의 폭(D) 또는 몸체부(110)의 내경(D)(이하, 통로의 폭(D))에 대한 몸체부(110) 본체(111)의 두께(F)와 흐름 제어부(120)의 폭(A)의 합(F+A)의 비를 조절한다(수학식 2 참조).
[수학식 2]
도 4를 참조하면, 통로(112)의 폭(D)에 대한 몸체부(110) 본체(111) 또는 벽체의 두께(F)와 흐름 제어부의 폭(A)의 합(F+A)의 비가 74% 이상, 125% 이하일 때, 탕면 유속 인덱스가 1 미만이다. 따라서, 실시예에서는 통로(112)의 폭(D)에 대한 몸체부 본체(111) 또는 벽체의 두께(F)와 흐름 제어부(120)의 폭(A)의 합(F+A)의 비(X)가 74% 이상, 125% 이하가 되도록 노즐(100)을 구성한다. 그리고, 탕면 유속 인덱스(I)를 1 미만의 값을 가지되, 그 중 더 낮은 값을 갖도록 바람직하게는 85% 이상, 110% 이하가 되도록 한다(도 4 참조).
상술한 바와 같이, 통로(112)의 폭(D)에 대한 몸체부(110) 본체(111) 또는 벽체의 두께(F)와 흐름 제어부(120)의 폭(A)의 합(F+A)의 비(X) 조절을 위해서는 통로(112)의 폭(D), 몸체부(110) 본체(111) 또는 벽체의 두께(F) 및 흐름 제어부의 폭(A) 중 적어도 하나를 조절할 수 있다.
이때, 기존의 몸체부 또는 쉬라우드 노즐에 흐름 제어부(120)를 추가 설치하는 것이 그 제작 비용적인 측면에서 유리하다. 이와 같은 경우, 기존 몸체부(110)의 통로(112)의 폭(D) 및 벽체의 두께(F)에 따라 흐름 제어부(120)의 폭(A)을 조절하여, 통로(112)의 폭(D)에 대한 몸체부(110) 본체(111) 또는 벽체의 두께(F)와 흐름 제어부의 폭(A)의 합(F+A)의 비(X = (T /(D))*100%)가 74% 이상, 125% 이하, 바람직하게는 85% 이상, 110% 이하가 되도록 한다. 즉, 조업을 실시할 몸체부(110) 본체(111) 또는 벽체의 두께(F)에 따라 흐름 제어부(120)의 폭(A)을 조절 제작하여, 통로(112)의 폭(D)에 대한 몸체부(110)의 본체(111) 또는 벽체의 두께(F)와 흐름 제어부(120)의 폭(A)의 합(F+A)의 비(X = (T /(D))*100%)가 74% 이상, 125% 이하, 바람직하게는 85% 이상, 110% 이하가 되도록 한다.
물론, 기존의 몸체부(110) 또는 쉬라우드 노즐을 사용하지 않고, 주조 설비의 사양에 따라, 몸체부(110) 및 흐름 제어부(120) 각각을 별도로 제작할 수 있다. 이와 같은 경우에도 마찬가지로, 몸체부(110)의 통로(112)의 폭(D) 및 벽체의 두께(F)에 따라 흐름 제어부(120)의 폭(A)을 조절하여, 통로(112)의 폭(D)에 대한 몸체부(110) 본체(111) 또는 벽체의 두께(F)와 흐름 제어부의 폭(A)의 합(F+A)의 비(X = (T /(D))*100%)가 74% 이상, 125% 이하가 되도록 한다.
이를 위해, 몸체부(110) 본체(111) 또는 벽체의 두께(F)에 대한 흐름 제어부(120)의 폭(A)의 비율(A/F)이 2.1 이상, 4.2 이하가 되도록 조절한다. 즉, 몸체부(110) 본체(111) 또는 벽체의 두께(F)에 대한 흐름 제어부(120)의 폭(A)의 비율(A/F)이 2.1 이상, 4.2 이하일 때, 몸체부(110) 통로(112)의 폭(D)에 대한 몸체부(110) 본체(111) 또는 벽체의 두께(F)와 흐름 제어부(120)의 폭(A)의 합(F+A)의 비(X = (T /(D))*100%)가 74% 이상, 125% 이하가 된다.
이에 따라, 본 발명의 실시예에서는 몸체부(110) 본체(111) 또는 벽체의 두께(F)에 대한 흐름 제어부(120)의 폭(A)의 비율(A/F)이 2.1 이상, 4.2 이하가 되도록 하여, 통로(112)의 폭(D)에 대한 몸체부(110) 본체(111) 또는 벽체의 두께(F)와 흐름 제어부의 폭(A)의 합(F+A)의 비(X = (T /(D))*100%)가 74% 이상, 125% 이하가 되도록 한다. 따라서, 실시예에 따른 노즐(100)을 이용한 용강 공급시에 탕면 유속 인덱스(I)가 1 미만이 되며, 이로 인해 몸체부(110) 주변의 탕면에서 나탕이 종래에 비해 저감되거나, 억제된다.
본 발명의 제 1 실시예에 따른 흐름 제어부는 개구 및 외관의 형상이 도 5a에 도시된 바와 같이 원형이다. 하지만, 흐름 제어부의 형상은 이에 한정되지 않고, 다양한 형상으로 변경 가능하다. 또한, 몸체부의 외관 형상은 원형에 한정되지 않고, 다양한 다각형 예컨대 사각형일 수 있으며, 흐름 제어부의 개구는 몸체부의 외관 형상에 따라 다양한 형상 예컨대, 원형 외에 사각형 등의 다양한 다각형으로 변경 가능하다.
보다 구체적으로, 흐름 제어부(120)는 원형의 개구를 가지면서 외관이 타원형이거나(도 5b 참조), 원형의 개구를 가지면서 외관이 정사각형이거나(도 5c 참조), 원형의 개구를 가지면서 외관이 직사각형이거나(도 5d 참조)일 수 있다. 또한, 사각형의 개구를 가지면서 외관이 원형이거나(도 5e 참조), 사각형의 개구를 가지면서 외관이 타원형이거나(도 5f 참조), 정사각형의 개구를 가지면서 외관이 정사각형이거나(도 5g 참조), 정사각형의 개구를 가지면서 외관이 직사각형일 수 있다(도 5h 참조).
도 5a에 도시된 흐름 제어부와 같이, 개구 및 외관 형상 모두 타원형이 아닌 원형일 때, 흐름 제어부(120)의 내측면과 외측면의 사이의 이격 거리는 그 위치에 상관 없이 동일하다.
하지만, 도 5b 내지 도 5h의 실시예들에 따른 흐름 제어부(120)의 형상의 경우, 일측면과 타측면 간의 이격 거리가 측정 지점에 따라 다를 수 있다.
이에, 도 5b 내지 도 5h의 실시예들에 따른 흐름 제어부(120)를 적용할 경우, 통로(112)의 폭(D)에 대한 몸체부(110) 본체(111) 또는 벽체의 두께(F)와 흐름 제어부(120)의 폭(A)의 합(F+A)의 비(X)를 조절하는데 있어서, 어디를 흐름 제어부(120)의 폭(A)으로 할지 지정할 필요가 있다.
본 발명의 실시예에서는 흐름 제어부의 내측면을 지나는 접선과 외측면을 지나는 접선 간의 이격 거리 중, 최대 거리를 흐름 제어부(120)의 폭(A)으로 한다. 이때, 개구 또는 외관 중 꼭짓점은 제외한다.
이하, 도 5b 내지 도 5h에 도시된 실시예들에 따른 흐름 제어부(120)의 폭(A)에 대해 설명한다.
본 발명에서는 도 5b의 제 2 실시예에 따른 흐름 제어부(120)에 있어서, 흐름 제어부(120)의 내측면과 외측면 간의 이격 거리 중 최대 거리를 흐름 제어부(120)의 폭(A)으로 한다. 즉, 원형인 내측면의 일 지점을 지나는 제 1 접선과, 상기 제 1 접선과 마주보면서 타원형인 외측면을 지나는 제 2 접선 간의 이격 거리 중, 최대 거리를 흐름 제어부(120)의 폭(A)으로 한다.
그리고, 도 5c 내지 도 5h와 같이 개구 및 외관의 형상 중 적어도 하나가 다각형 인 경우, 내측면과 외측면의 꼭짓점과의 이격 거리는 흐름 제어부(120)의 폭(A)으로 하지 않는다. 다른 말로 하면, 개구가 원형이고 외관이 다각형일 때(도 5c 및 도 5d), 흐름 제어부(120)의 내측면을 지나는 제 1 접선과, 외측면 중 꼭짓점을 지나는 접선 간의 거리를 흐름 제어부(120)의 폭(A)으로 하지 않는다. 이와 같은 경우, 흐름 제어부(120)의 내측면을 지나는 제 1 접선과, 제 1 접선과 마주보도록 외측면의 변을 지나는 제 2 접선 사이의 이격 거리 중, 최대 이격 거리를 흐름 제어부의 폭(A)으로 한다.
또한, 개구가 다각형이고, 외관이 원형일 때(도 5e 및 5f 참조), 내측면의 꼭짓점과 외측면 과의 이격 거리를 흐름 제어부(120)의 폭(A)으로 하지 않는다. 이와 같은 경우, 흐름 제어부(120)의 꼭짓점을 제외한 변을 지나는 제 1 접선과, 상기 제 1 접선과 마주보면서 외측면을 지나는 제 2 접선 간의 이격 거리 들 중, 최대 이격 거리를 흐름 제어부(120)의 폭(A)으로 한다.
다른 예로, 개구 및 외관 모두 다각형일 때(도 5g 및 5h), 흐름 제어부(120)의 내측면의 꼭짓점과 외측면의 꼭짓점 간의 이격 거리를 흐름 제어부(120)의 폭(A)으로 하지 않는다. 이와 같은 경우, 흐름 제어부(120)의 꼭짓점을 제외한 변을 지나는 제 1 접선과, 상기 제 1 접선과 마주보면서 외측면의 꼭짓점을 제외한 변을 지나는 제 2 접선 간의 이격 거리 들 중, 최대 이격 거리를 흐름 제어부(120)의 폭(A)으로 한다.
이하, 도 6 내지 도 14를 참조하여, 본 발명의 실시예에 따른 노즐 및 종래의 노즐에 따른 탕면 유속 및 나탕 발생 여부에 대해 설명한다.
실시예에 따른 노즐은 도 14에 도시된 바와 같이, 턴디시로 용강을 주입하는 몸체부(110)와, 몸체부(110)의 하단 외측에서 몸체부(110)의 폭 방향으로 연장되도록 형성된 흐름 제어부(120)를 포함한다. 여기서 흐름 제어부(120)는 중앙이 개구된 중공형의 형상이며, 그 중앙 개구에 몸체부(110)의 하단 또는 토출구(113)가 대응 위치하도록 몸체부(110)와 연결되도록 설치된다. 즉, 흐름 제어부(120)의 내측면은 몸체부(110)의 외측면과 연결되어 있다. 그리고, 몸체부(110)의 통로(112)의 폭(D)에 대한 몸체부(110) 본체(111) 또는 벽체의 두께(F)와 흐름 제어부(120)의 폭(A)의 합(F+A)의 비(X)가 74% 이상, 125%가 되도록 구성하였다.
한편, 도 6 및 도 7에 도시된 제 1 및 제 2 비교예는 본원발명의 흐름 제어부와 대응되는 구성이 없는 노즐(11)이다. 여기서 게이트를 통해 제 1 노즐(탑 노즐)과 제 2 및 제 3 노즐(중간 노즐 및 쉬라우드 노즐) 간을 연통시키는데 있어서, 제 1 비교예는 제 1 노즐(탑 노즐)과 제 2 및 제 3 노즐(중간 노즐 및 쉬라우드 노즐)이 50% 연통된 경우(50% 개방)이고, 제 2 비교예는 100%(100% 개방)인 경우이다.
도 8 내지 도 11에 도시된 제 3 내지 제 6 비교예에 따른 노즐은 턴디시로 용강을 주입하는 몸체부(10)를 포함하며, 턴디시 내에서 몸체부(10)의 토출구 하측에 별도로 흐름 제어부(12)가 설치된다. 즉, 제 3 내지 제 6 비교예에 따른 노즐은 실시예와 같은 흐름 제어부를 포함하는 구성이 아니며, 제 3 내지 제 6 비교예에 따른 흐름 제어부(12)는 몸체부(10)와 분리되도록 별도로 마련된다. 그리고, 제 3 내지 제 6 비교예에 따른 흐름 제어부(12)는 몸체부(10)의 토출구와 대응하는 영역이 개구된 중공형의 형상일 수 있으며, 흐름 제어부(12)의 개구는 몸체부(10)의 토출구의 크기에 비해 크다. 그리고, 몸체부(10)의 하단과 흐름 제어부(12)가 이격 되도록 설치된다.
여기서 제 3 비교예에 따른 흐름 제어부(12)는 폭 방향 또는 좌우 방향으로 연장된 형상이다.
그리고, 제 4 및 제 5 비교예에 따른 흐름 제어부(12)는 제 3 비교예와 같이 좌우 방향으로 연장 형성된 흐름 제어부(이하, 제 1 흐름 제어부)의 하부에 상하 방향으로 연장된 흐름 제어부(제 2 흐름 제어부)가 연결된 형상일 수 있다. 이때, 제 4 비교예에 따른 흐름 제어부(12)는 제 1 흐름 제어부의 하부면 중, 외측면 안쪽에 해당하는 부위에 제 2 흐름 제어부가 설치된 형상이다. 그리고, 제 5 비교예에 따른 흐름 제어부(12)는 제 1 흐름 제어부의 최외각 외측면에 제 2 흐름 제어부가 연결된 형상이며, 제 2 흐름 제어부에 용강의 통과가 가능한 홀이 마련된다. 여기서 홀은 흐름 제어부(12)의 외측 방향으로 상향 경사지는 형상일 수 있다.
제 6 비교예에 따른 흐름 제어부(16)는 몸체부(110)로부터 외측 방향으로 하향 경사지되 상측 방향으로 볼록한 곡률을 가지는 형상일 수 있다.
도 12 및 도 13에 도시된 제 7 및 제 8 비교예에 따른 노즐은 턴디시로 용강을 주입하는 몸체부(10)를 포함하며, 턴디시 내에서 몸체부(10)의 토출구 하측에 별도로 흐름 제어부(12)가 설치된다. 이때, 제 7 및 제 8 비교예에 따른 흐름 제어부(12)는 턴디시 바닥면에 장착된 상태이며, 토출구를 향해 볼록한 형상이다. 그리고 제 7 비교예에 따른 흐름 제어부(12)는 토출구 방향으로 볼록하되, 곡률을 가지는 예컨대 반원 형상이며, 제 8 비교예에 따른 흐름 제어부(12)는 토출구 방향으로 갈수록 그 직경이 작아지며 최 상단이 뾰족한 형상 예컨대 삼각형 형상이다.
상술한 제 3 내지 제 8 비교예에 따른 흐름 제어부(12)의 경우, 상술한 바와 같이 몸체부(10)와 연결되지 않고 분리 또는 이격되도록 설치되어 있다. 그리고 제 3 내지 제 8 비교예에 따른 흐름 제어부(12)는 실시예와 같이 몸체부(10)의 통로(112)의 폭(D)에 대한 몸체부 본체 또는 벽체의 두께(F)와 흐름 제어부(120)의 폭(A)의 합(F+A)의 비(X)가 74% 이상, 125% 이하가 되도록 구성하지 않았다.
제 1 내지 제 8 비교예 및 실시예에 따른 노즐 각각 사용시에 탕면 유속을 측정하였다. 실험을 위하여, 상술한 바와 같은 제 1 내지 제 8 비교예 및 실시예에 따른 노즐 각각을 적용하여 턴디시로 용강을 공급할 때, 노즐 주변의 탕면 유속을 검출하였다. 제 1 비교예와 같이 50%를 개방할 때, 노즐로부터의 토출량을 48kg/s으로 하였고, 제 2 내지 제 8 비교예와, 실시예와 같이 100%를 개방할 때, 노즐로부터의 토출량을 100kg/s으로 하였다. 그리고 개방율이 50%인 제 1 비교예에서의 유속을 기준으로 하여, 제 2 내지 제 6 비교예 및 실시예에 따른 노즐 적용시의 탕면 유속의 비를 계산하여, 표 1과 같이 탕면 유속 인덱스(I)를 산출하였다.
또한, 도 6 내지 도 14 각각에 도시된 열화상 데이타와 같이 노즐로부터 토출되는 용강의 흐름 경향을 검출하였다.
제 1 비교예 | 제 2 비교예 | 제 3 비교예 | 제 4 비교예 | 제 5 비교예 | 제 5 비교예 | 실시예 | |
탕면 유속 인덱스(I) | 1 | 1.83 | 1.29 | 1.83 | 2.51 | 2.80 | 0.62 |
표 1을 참조하면, 제 3 내지 제 8 비교예의 경우 모두 탕면 유속 인덱스(I)가 1 이상이다. 즉, 제 3 내지 제 8 비교예와 같이 흐름 제어부를 설치하더라도, 그 탕면 유속이 흐름 제어부를 설치하지 않은 제 1 비교예에 비해 크다. 이에, 제 3 내지 제 8 비교예에 따른 노즐 및 흐름 제어부 적용시에 흐름 제어부가 업는 제 1 비교예에 비해 나탕이 더 크게 발생할 수 있다.
하지만, 본원발명의 실시예와 같은 흐름 제어부를 몸체부에 연결한 경우, 탕면 유속 인덱스(I)가 0.62로 1 미만으로서, 제 1 비교예에 비해 탕면 유속이 크게 감소한 것을 알 수 있다. 이에 따라, 실시예에 따른 흐름 제어부를 구비하는 노즐을 적용하여 턴디시로 용강을 공급할 때, 노즐 주변의 탕면에서의 나탕이 종래의 노즐인 제 1 비교예에 비해 저감되는 효과를 보였다. 이로 인해 나탕으로 인해 슬래그가 용강으로 혼입되는 것을 종래에 비해 억제 또는 방지할 수 있어, 개재물 발생을 억제 또는 방지할 수 있다.
본 발명의 실시형태에 따른 노즐에 의하면, 종래에 비해 노즐 주변의 탕면 유속을 저감시킬 수 있다. 이에 따라, 실시예에 따른 흐름 제어부를 구비하는 노즐을 적용하여 용강을 공급할 때, 노즐 주변의 탕면에서의 나탕이 종래에 비해 저감된다. 이로 인해 나탕으로 인해 슬래그가 용강으로 혼입되는 것을 종래에 비해 억제 또는 방지할 수 있어, 개재물 발생을 억제 또는 방지할 수 있다.
Claims (9)
- 용강이 통과 가능한 통로 및 하단에 상기 용강이 외부로 토출되는 토출구가 마련된 몸체부; 및상기 몸체부를 중심으로하여 상기 몸체부의 외측 폭 방향으로 연장 형성되도록 상기 몸체부에 장착된 흐름 제어부;를 포함하는 노즐.
- 청구항 1에 있어서,상기 흐름 제어부는 상기 몸체부의 하부에서 상기 토출구의 외측에 위치하도록 설치된 노즐.
- 청구항 1에 있어서,상기 흐름 제어부는 상기 몸체부 외측면으로부터 외측 방향으로 연장되고, 상기 흐름 제어부가 상기 몸체부 외측면으로부터 연장된 길이는 상기 몸체부 벽체의 두께에 큰 노즐.
- 청구항 2에 있어서,상기 흐름 제어부는 상기 토출구와 대응하는 영역이 개구된 중공형의 형상이며, 상기 개구 주변벽인 상기 흐름 제어부의 내측면이 상기 몸체부의 외주면과 접촉되도록 설치된 노즐.
- 청구항 1 내지 청구항 4 중 어느 한 항에 있어서,상기 몸체부 통로의 폭(D)에 대한 상기 몸체부의 벽체의 두께(F)와 상기 흐름 제어부의 폭(A)의 합의 비율((A+F)/D)*100)이 74% 이상, 125% 이하인 노즐.
- 청구항 5에 있어서,상기 몸체부(110) 벽체의 두께(F)에 대한 상기 흐름 제어부의 폭(A)의 비율(A/F)이 2.1 이상, 4.2 이하인 노즐.
- 청구항 4에 있어서,상기 흐름 제어부는 개구 및 그 외관 형상이 원형, 타원형, 다각형 중 어느 하나인 노즐.
- 청구항 1 내지 청구항 7 중 어느 한 항에 있어서,상기 흐름 제어부는 상기 몸체부의 둘레 방향을 따라 연속적으로 연장 형성된 노즐.
- 청구항 1 내지 청구항 7 중 어느 한 항에 있어서,상기 몸체부의 하단부의 바닥면과 상기 흐름 제어부의 바닥면의 위치가 상호 동일한 노즐.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020505872A JP6972302B2 (ja) | 2017-08-08 | 2017-12-08 | ノズル |
CN201780093700.1A CN110997183A (zh) | 2017-08-08 | 2017-12-08 | 喷嘴 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170100452A KR101969105B1 (ko) | 2017-08-08 | 2017-08-08 | 노즐 |
KR10-2017-0100452 | 2017-08-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019031660A1 true WO2019031660A1 (ko) | 2019-02-14 |
Family
ID=65271412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/014397 WO2019031660A1 (ko) | 2017-08-08 | 2017-12-08 | 노즐 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6972302B2 (ko) |
KR (1) | KR101969105B1 (ko) |
CN (1) | CN110997183A (ko) |
WO (1) | WO2019031660A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6158950U (ko) * | 1984-09-18 | 1986-04-21 | ||
JPS62146553U (ko) * | 1986-03-10 | 1987-09-16 | ||
JPS6362251U (ko) * | 1986-10-04 | 1988-04-25 | ||
KR19980033105U (ko) * | 1996-12-06 | 1998-09-05 | 김종진 | 침지 개공형 노즐 |
KR20060102068A (ko) * | 2005-03-22 | 2006-09-27 | 주식회사 포스코 | 연속주조기의 용강 비산 및 이물질 부상 차단구 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0673725B2 (ja) * | 1989-04-04 | 1994-09-21 | 住友金属工業株式会社 | 浸漬ノズル及びそれを用いた連続鋳造方法 |
JP2895281B2 (ja) * | 1991-10-18 | 1999-05-24 | 川崎製鉄株式会社 | タンディッシュ内残留スラグの処理方法 |
US5544695A (en) * | 1993-06-01 | 1996-08-13 | Harasym; Michael | Antivortexing nozzle system for pouring molten metal |
JPH08155600A (ja) * | 1994-12-07 | 1996-06-18 | Nippon Steel Corp | 溶融金属の連続鋳造装置 |
KR200223846Y1 (ko) | 1996-12-12 | 2001-06-01 | 이구택 | 슬래그혼입방지용노즐 |
JP2009090322A (ja) * | 2007-10-09 | 2009-04-30 | Furukawa Sky Kk | 連続鋳造装置及び連続鋳造方法 |
JP4695701B2 (ja) * | 2009-07-24 | 2011-06-08 | 黒崎播磨株式会社 | 溶融金属排出用ノズル |
CN202667641U (zh) * | 2012-06-14 | 2013-01-16 | 鞍钢股份有限公司 | 一种气幕中间包防絮流上水口 |
CN203459651U (zh) * | 2013-08-13 | 2014-03-05 | 宝山钢铁股份有限公司 | 带控流叶片的浸入式水口 |
SI3317034T1 (sl) * | 2015-07-02 | 2020-09-30 | Vesuvius U S A Corporation | Zunanji modifikator livne ponve za staljeno kovino |
CN204842961U (zh) * | 2015-08-21 | 2015-12-09 | 安徽工业大学 | 一种去除夹杂物的浸入式水口 |
-
2017
- 2017-08-08 KR KR1020170100452A patent/KR101969105B1/ko active IP Right Grant
- 2017-12-08 JP JP2020505872A patent/JP6972302B2/ja active Active
- 2017-12-08 CN CN201780093700.1A patent/CN110997183A/zh active Pending
- 2017-12-08 WO PCT/KR2017/014397 patent/WO2019031660A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6158950U (ko) * | 1984-09-18 | 1986-04-21 | ||
JPS62146553U (ko) * | 1986-03-10 | 1987-09-16 | ||
JPS6362251U (ko) * | 1986-10-04 | 1988-04-25 | ||
KR19980033105U (ko) * | 1996-12-06 | 1998-09-05 | 김종진 | 침지 개공형 노즐 |
KR20060102068A (ko) * | 2005-03-22 | 2006-09-27 | 주식회사 포스코 | 연속주조기의 용강 비산 및 이물질 부상 차단구 |
Also Published As
Publication number | Publication date |
---|---|
KR101969105B1 (ko) | 2019-04-15 |
KR20190016344A (ko) | 2019-02-18 |
CN110997183A (zh) | 2020-04-10 |
JP6972302B2 (ja) | 2021-11-24 |
JP2020530813A (ja) | 2020-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ITMI961243A1 (it) | Tuffante per la colata continua di bramme sottili | |
CN109304432B (zh) | 一种超薄大规格含铝钢异型坯的单点非平衡保护浇铸装置及使用方法 | |
WO2011087225A2 (ko) | 주조용 침지노즐 및 이를 포함하는 연속 주조 장치 | |
WO2019031660A1 (ko) | 노즐 | |
KR20090123228A (ko) | 턴디쉬 | |
EP0293830B1 (en) | Immersion pipe for continuous casting of steel | |
CN109396409B (zh) | 一种生产超薄大规格含铝钢异型坯的单点非平衡保护浇铸方法 | |
CA1199469A (en) | Injection and feeder pipe for continuous casting apparatus | |
US7077186B2 (en) | Horizontal continuous casting of metals | |
WO2019031661A1 (ko) | 주조 설비 및 주조 방법 | |
CN114769573A (zh) | 一种塞棒及预防连铸开浇低温事故的方法 | |
WO2020222459A1 (ko) | 노즐 및 주조 방법 | |
KR100960322B1 (ko) | 쌍롤식 박판주조 장치용 침지노즐 | |
WO2020231051A1 (ko) | 주형 및 주조 방법 | |
KR101909512B1 (ko) | 용강 이송 장치 | |
WO2018088753A1 (ko) | 주조설비 및 이를 이용한 주조방법 | |
WO2013024973A2 (ko) | 주조용 침지노즐 및 이를 구비하는 연속주조장치 | |
CN217412429U (zh) | 一种可提高各流流动一致性的六流中间包 | |
JP2901983B2 (ja) | 連続鋳造用イマージョンノズル | |
CN217412391U (zh) | 一种双中间包浇铸分流装置 | |
WO2019117553A1 (ko) | 용융물 처리 장치 | |
CN215845577U (zh) | 一种铸铁机用铁水浇注装置 | |
RU2825349C2 (ru) | Погружное сопло | |
JPH10137905A (ja) | 鋼の連続鋳造法における鋳造開始方法 | |
WO2020091288A1 (ko) | 용융금속 공급장치 및 용융금속 공급방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17921186 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020505872 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17921186 Country of ref document: EP Kind code of ref document: A1 |