WO2019030830A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2019030830A1
WO2019030830A1 PCT/JP2017/028814 JP2017028814W WO2019030830A1 WO 2019030830 A1 WO2019030830 A1 WO 2019030830A1 JP 2017028814 W JP2017028814 W JP 2017028814W WO 2019030830 A1 WO2019030830 A1 WO 2019030830A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
tank
fuel cell
gas
pipe
Prior art date
Application number
PCT/JP2017/028814
Other languages
English (en)
French (fr)
Inventor
竹本 真典
純 迫田
大視 筒井
Original Assignee
三浦工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三浦工業株式会社 filed Critical 三浦工業株式会社
Priority to PCT/JP2017/028814 priority Critical patent/WO2019030830A1/ja
Publication of WO2019030830A1 publication Critical patent/WO2019030830A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention was made in order to solve the above-mentioned subject, and the invention according to claim 1 heats the warm water tank with which normal temperature water is replenished via a water refill pipe; and the normal temperature water which circulates the above-mentioned water refill pipe
  • a fuel cell system used in a building having a possible main heat source unit as a building facility, the fuel cell capable of supplying power into the building, and the upstream side of the heating position of the main heat source unit
  • a preheating tank disposed in the middle of the water rehydration pipe, wherein the off gas can be cooled while preheating the stored water in the preheating tank by heat recovery of the off gas of the fuel cell, via the water rehydration pipe
  • the fuel cell system is characterized in that room temperature water to be replenished is used as a heat source for cooling the off gas in the preheating tank, and condensed water generated by cooling the off gas is reused in the fuel cell.
  • the main heat source unit is provided in the water reserving pipe to the hot water tank so as to be able to heat the water flowing through the water recharging pipe, and preheating is performed upstream of the heating position of the main heat source machine.
  • a tank is provided. And, while preheating the stored water in the preheating tank and hence the replenishing water to the hot water tank with the waste heat of the fuel cell, the off gas of the fuel cell can be cooled to achieve water independence.
  • hot water from the fuel cell and hot water from the main heat source unit can be discharged in parallel, the hot water on the fuel cell side is preferentially used, or water supply is interrupted when hot water on the fuel cell side runs out.
  • the invention according to claim 2 is that the building is a multi-story facility having elevated tanks installed on the roof or upper floor, the elevated tanks are replenished with normal temperature water, and the hot water tank is the elevated bridge.
  • the water supply pipe connected to the water distribution pipe from the water distribution station is used as a water supply pipe to the hot water tank, and the water supply pipe can mainly heat the water flowing through the water supply pipe.
  • a heat source unit is provided, and a preheating tank is provided upstream of the heating position of the main heat source unit. And, while preheating the stored water in the preheating tank and hence the replenishing water to the hot water tank with the waste heat of the fuel cell, the off gas of the fuel cell can be cooled to achieve water independence.
  • the invention according to claim 6 is the fuel cell system according to any one of claims 1 to 4, further comprising a secondary heat source unit capable of reheating the warm water in the warm water tank.
  • water self-sustaining operation can be performed without replenishing water from the outside by condensing the water in the off-gas and re-supplying the condensed water to the reformer. It becomes possible fuel cell system.
  • SOFC solid oxide form
  • PAFC phosphoric acid form
  • PEFC solid polymer form
  • SOFC is used.
  • the SOFC has a high-temperature operating temperature of 650 to 800 ° C and a medium-temperature operating temperature of 450 to 650 ° C. Therefore, from the viewpoint of cell stack protection, the electric main heat secondary does not stop after startup / heating. It is basic to drive. Therefore, high overall efficiency can be maintained by enabling recovery of offgas waste heat that continues to be generated.
  • the building equipment refers to devices and devices integrated with the building 2 to perform various functions that are necessary for people to live their lives.
  • the building equipment may include various equipment (for example, boiler equipment and communication equipment etc.) according to the needs of the building user, in addition to the equipment etc. defined in Building Standard Law Article 2, Item 3.
  • the water receiving tank 3 is an open tank (a tank opened to the atmosphere) in the present embodiment. Tap water is supplied to and stored in the water receiving tank 3 via a water supply pipe 11 connected to a water distribution pipe (not shown). In the present embodiment, the presence or absence of water supply to the water receiving tank 3 is switched using the constant water level valve (ball tap) 12, and the water receiving tank 3 is maintained at a predetermined water level.
  • a distribution pipe means the pipe which sends water from a distribution plant to a water supply area
  • the water supply pipe 11 means a pipe which branches from a distribution pipe and supplies water to consumers such as each household. Tap water (normally in the range of 5 to 30 ° C. in season) is supplied from the water distribution pipe to the water supply pipe 11 at normal temperature.
  • the makeup water to the elevated tank 4 is normal temperature water from the water receiving tank 3. Therefore, water of the dew point temperature (for example, 40 ° C.) of the off gas of the fuel cell 8 is replenished to the elevated tank 4.
  • the stored water in the elevated tank 4 is used in the preheating tank 7 as a heat source for cooling off gas. Since the water self-sustaining of the fuel cell 8 means that the condensed water generated by the cooling of the off gas is reused in the fuel cell 8, the temperature of the makeup water to the elevated tank 4 is the success or failure of the water self-sustaining of the fuel cell 8 Closely related to
  • a raw fuel (city gas) G, air A, and water (reforming water) W are supplied to the fuel cell main body 24. Then, a reformed gas is produced by causing the raw fuel (city gas mainly containing methane gas) G and water (steam) W to undergo a steam reforming reaction to produce a reformed gas containing hydrogen, which is contained in the reformed gas.
  • the hydrogen and oxygen in the air are chemically reacted in the cell stack to generate electricity.
  • an anode off gas and a cathode off gas are generated as the power is generated, but these gases are supplied to the combustor and then discharged as a combustion off gas.
  • the combustion off gas is passed through an air preheater disposed upstream of the cell stack and used to preheat cathode air.
  • a separator tank 28 is provided on the outlet side of the off gas from the off gas heat exchanger 25, and gas-liquid separation of the off gas passed through the off gas heat exchanger 25 is achieved. Then, the condensed water after the gas-liquid separation can be re-supplied to the reformer of the fuel cell main body 24 through the supply pump 29 as reformed water W to the fuel cell main body 24. As a result, the fuel cell 8 is capable of water self-sustaining operation capable of continuing power generation without replenishment water from the outside.
  • the anode off gas and the cathode off gas after gas-liquid separation are supplied to the combustor, and the combustion off gas after gas-liquid separation is discharged to the outside.
  • the raw fuel G and the water vapor are mixed in the mixing unit. Then, the mixed gas is supplied to the catalyst layer of the reforming unit to generate a reformed gas containing hydrogen.
  • the reformed gas obtained in the reforming section is sent to the anode side of the cell stack as an anode fuel.
  • the off-gas heat exchanger 25 can perform the gas-liquid separation of the off-gas in the off-gas heat exchanger 25 instead of the separator tank 28 by devising the structure and the way of flowing the fluid.
  • a branch line for exhaust is connected to the outlet side of the off gas from the off gas heat exchanger 25.
  • the circulating fluid circuit 23 circulates the coolant between the off-gas heat exchanger 25 and the preheating heat exchanger 26. Specifically, the cooling fluid is supplied from the preheating heat exchanger 26 to the off gas heat exchanger 25 via the cooling fluid feed path 23A, and the cooling from the off gas heat exchanger 25 to the preheating heat exchanger 26 is performed. The coolant is returned through the liquid return path 23B. Then, the coolant is circulated between the off-gas heat exchanger 25 and the preheating heat exchanger 26 by operating the circulation pump 30 provided in the coolant delivery path 23A (or the coolant return path 23B). it can.
  • the hot water in the hot water tank 5 is supplied to one or more hot water demand points in the building 2 and made available.
  • a hot water supply circulation pipe 9 for circulating the hot water stored in the hot water tank 5 is laid in the building 2, and the hot water can be taken out from the hot water outlet 37 provided in the hot water supply circulation pipe 9 It is assumed.
  • Each branch pipe 9X is a pipe for supplying the hot water from the trunk pipe (hot water supply circulation pipe 9) to the hot water discharge portion 37.
  • the hot-water outlet 37 is, for example, a mixing plug 37A provided in a wash basin, a bathroom, a kitchen or the like.
  • the water supply piping 10 of cold water is separately laid from the elevated tank 4 to each floor. Water supply from the elevated tank 4 to each floor via the water supply pipe 10 can also be naturally performed using the water head pressure difference.
  • FIG. 3 is a schematic view showing a third embodiment of the fuel cell system 1 of the present invention, and shows an example applied to a quick water circulation facility of a building 2.
  • the third embodiment is also basically the same as the first embodiment (or the second embodiment). So, below, it demonstrates centering on a different point of both, and abbreviate
  • the same reference numerals are given to portions corresponding to the two embodiments.
  • the reservoir water in the warm water tank 5 can be heated to a desired temperature by operating the water replenishment pump 39 with the on-off valve closed if desired. For example, based on the warm water temperature in warm water tank 5, the number of operating water replenishment pumps 39 and main heat source unit 6 can be changed, and the warm water in warm water tank 5 can be maintained at the set temperature.
  • the water receiving tank 3 was maintained at the predetermined water level by the constant water level valve 12, but the water supply valve provided in the water supply pipe 11 based on the detection signal of the water level sensor provided in the water receiving tank 3. May be controlled automatically. In this case, if the water supply valve is opened, water is supplied to the water receiving tank 3 by the water supply pressure from the water distribution pipe.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

補水管(16)を介して常温水が補給される温水タンク(5)と;補水管(16)を流通する常温水を加熱可能な主熱源機(6)と、を建築設備として有する建築物(2)で利用される燃料電池システム(1)である。建築物(2)内に給電可能な燃料電池(8)と、主熱源機(6)の加熱位置よりも上流側で補水管(16)の途中に配設した予熱タンク(7)と、を備える。燃料電池(8)のオフガスの熱回収により、予熱タンク(7)内の貯留水を予熱しながらオフガスを冷却可能に構成する。補水管(16)を介して補給される常温水を予熱タンク(7)でオフガスの冷却用熱源として利用する。オフガスの冷却により生成させた凝縮水を燃料電池(8)で再利用する。

Description

燃料電池システム
 本発明は、建築物で利用される燃料電池システムに関するものである。
 都市ガス等の炭化水素燃料を原燃料とする燃料電池は、燃料のエネルギーが電気と熱に変換されるコジェネレーション装置である。燃料電池を事業所や各種施設などの分散電源として使用する場合には、電力負荷に応じた電主熱従運転が基本となる。そして、燃料電池の効率(総合効率)は、発電効率と熱回収効率との合計によって決まる。そのため、発電に伴って発生するオフガス廃熱をうまく利用できなければ、総合効率の低下を招くことになる。
 また、燃料電池は、原燃料の水蒸気改質反応によって水素ガスを生成し、その水素ガスをセルスタックに供給して発電している。この際、水蒸気改質反応に使用する改質水は、下記特許文献1に開示されるように、オフガス中の水分を凝縮させることにより確保される(水自立)。そのため、オフガスを露点温度以下に冷却し続けることができなければ、燃料電池の発電を継続することができない。
 このように、燃料電池をコジェネレーション装置として成立させるためには、事業所や各種施設などの様々な熱利用形態に合わせて、オフガス廃熱の熱利用と冷却を同時に確立する必要がある。
特許第5593948号公報(図5)
 建築物の給湯設備として、たとえば即湯循環設備が知られている。即湯循環設備は、蒸気ボイラ等を主熱源機とする温水タンクと、この温水タンク内の温水を温水需要箇所に送る給湯循環配管とを備えた設備である。そして、このような既存の給湯設備が存在する建築物において、後から燃料電池を設置したい場合がある。すなわち、既存の給湯設備を活用しながら、燃料電池の熱回収を可能にし、更には燃料電池の水自立を成立させたい場合がある。
 このような要求に応えるシステムとして、出願人は、先に、次のようなシステムを提案し、既に特許出願を済ませている(特願2016-64802)。すなわち、この先願のシステムでは、燃料電池の熱回収により製造した温水と、主熱源機により製造した温水とを、並列に給湯循環配管に供給可能とし、かつ燃料電池側の温水を優先的に利用しようとするものである。しかしながら、このシステムには、次のような課題が残る。
 (a)燃料電池側の温水を優先利用させる補助機器(減圧弁やポンプ等)が必要となる。また、その補助機器による圧力損失や電力消費の大きさによっては、システム全体の効率が低下するおそれがある。
 (b)燃料電池側の湯切れ時に給水を遮断する補助機器(温度センサおよび遮断弁)が必要となる。なお、燃料電池は、分散電源として発電出力を基準に選定される。そのため、燃料電池の廃熱量、すなわち熱出力は大きくないので、温水需要の大きい施設では頻繁に湯切れを起こすおそれがある。
 そこで、本発明が解決しようとする課題は、上記のような補助機器を必要とせず、既存の設備環境を利用できる簡易な構成で、燃料電池の熱回収と水自立を両立させた燃料電池システムを提供することにある。
 本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、補水管を介して常温水が補給される温水タンクと;前記補水管を流通する常温水を加熱可能な主熱源機と、を建築設備として有する建築物で利用される燃料電池システムであって、前記建築物内に給電可能な燃料電池と、前記主熱源機の加熱位置よりも上流側で前記補水管の途中に配設した予熱タンクと、を備え、前記燃料電池のオフガスの熱回収により、前記予熱タンク内の貯留水を予熱しながら前記オフガスを冷却可能に構成し、前記補水管を介して補給される常温水を前記予熱タンクで前記オフガスの冷却用熱源として利用し、前記オフガスの冷却により生成させた凝縮水を前記燃料電池で再利用することを特徴とする燃料電池システムである。
 請求項1に記載の発明によれば、温水タンクへの補水管には、補水管を流れる水を加熱可能に主熱源機が設けられると共に、その主熱源機の加熱位置よりも上流側に予熱タンクが設けられる。そして、この予熱タンク内の貯留水ひいては温水タンクへの補給水を、燃料電池の廃熱で予熱しながら、燃料電池のオフガスを冷却して水自立を図ることができる。また、仮に、燃料電池による温水と主熱源機による温水とを並列に出湯可能とする場合には、燃料電池側の温水を優先利用したり、燃料電池側の湯切れ時に給水を遮断したりするための構成が必要となるが、温水タンクへの補給水を、主熱源機の加熱位置よりも上流側において燃料電池の廃熱で予熱するので、簡易な構成で、燃料電池の廃熱を優先利用した温水を得ることができる。なお、温水タンク、主熱源機および補水管として、建築物の既存建築設備を利用することもでき、その既存建築設備に、燃料電池および予熱タンクを新設して構成することができる。
 請求項2に記載の発明は、前記建築物は、屋上又は上層階に設置される高架タンクを有する多層階施設とされ、前記高架タンクは、常温水が補給され、前記温水タンクは、前記高架タンクよりも下層階に設置されると共に、前記高架タンクと前記補水管で接続されて常温水が降水されることを特徴とする請求項1に記載の燃料電池システムである。
 請求項2に記載の発明によれば、高架タンクから温水タンクへの補水管には、補水管を流れる水を加熱可能に主熱源機が設けられると共に、その主熱源機の加熱位置よりも上流側に予熱タンクが設けられる。そして、この予熱タンク内の貯留水ひいては温水タンクへの補給水を、燃料電池の廃熱で予熱しながら、燃料電池のオフガスを冷却して水自立を図ることができる。しかも、多層階施設において、高架タンクから予熱タンクを介した温水タンクへの給水を、ポンプを用いることなく、水頭圧差を用いて自然に行うことができる。なお、高架タンク、温水タンク、主熱源機および補水管として、多層階施設の既存建築設備を利用することもでき、その既存建築設備に、燃料電池および予熱タンクを新設して構成することができる。
 請求項3に記載の発明は、前記建築物は、屋上又は上層階に設置される高架タンクを有する多層階施設とされ、前記高架タンクは、常温水が補給され、前記温水タンクは、前記高架タンクと同一層階に設置されると共に、前記高架タンクと前記補水管で接続されて常温水が補給されることを特徴とする請求項1に記載の燃料電池システムである。
 請求項3に記載の発明によれば、高架タンクから温水タンクへの補水管には、補水管を流れる水を加熱可能に主熱源機が設けられると共に、その主熱源機の加熱位置よりも上流側に予熱タンクが設けられる。そして、この予熱タンク内の貯留水ひいては温水タンクへの補給水を、燃料電池の廃熱で予熱しながら、燃料電池のオフガスを冷却して水自立を図ることができる。しかも、多層階施設において、温水タンクと高架タンクとを、同一階層に設置することができる。なお、高架タンク、温水タンク、主熱源機および補水管として、多層階施設の既存建築設備を利用することもでき、その既存建築設備に、燃料電池および予熱タンクを新設して構成することができる。
 請求項4に記載の発明は、前記建築物は、配水管に接続された給水管を備え、前記温水タンクは、地上又は地下階の床上に設置されると共に、前記給水管からなる前記補水管を介して常温水が補給されることを特徴とする請求項1に記載の燃料電池システムである。
 請求項4に記載の発明によれば、配水場からの配水管に接続された給水管を、温水タンクへの補水管として用い、その補水管には、補水管を流れる水を加熱可能に主熱源機が設けられると共に、その主熱源機の加熱位置よりも上流側に予熱タンクが設けられる。そして、この予熱タンク内の貯留水ひいては温水タンクへの補給水を、燃料電池の廃熱で予熱しながら、燃料電池のオフガスを冷却して水自立を図ることができる。なお、温水タンク、主熱源機および補水管として、建築物の既存建築設備を利用することもでき、その既存建築設備に、燃料電池および予熱タンクを新設して構成することができる。
 請求項5に記載の発明は、前記温水タンク内の温水を、前記予熱タンクと前記主熱源機の加熱位置との間の前記補水管に返送する再加熱管を備えることを特徴とする請求項1~4のいずれか1項に記載の燃料電池システムである。
 請求項5に記載の発明によれば、温水タンク内の温水を、再加熱管を介して主熱源機に戻して、再加熱することができる。これにより、温水タンク内の温水を所望温度に維持することができる。
 請求項6に記載の発明は、前記温水タンク内の温水を再加熱可能な副熱源機を備えることを特徴とする請求項1~4のいずれか1項に記載の燃料電池システムである。
 請求項6に記載の発明によれば、温水タンク内の温水を、副熱源機にて再加熱することができる。これにより、温水タンク内の温水を所望温度に維持することができる。
 請求項7に記載の発明は、前記燃料電池は、改質器、セルスタックおよびオフガス熱交換器を有し、前記オフガス熱交換器において、前記オフガスと冷却液との熱交換によりオフガスを露点温度以下に冷却して、オフガス中の水分を凝縮させ、その凝縮水を前記改質器に再供給し、前記改質器において、原燃料と前記凝縮水を水蒸気改質反応させることにより水素を含有する改質ガスを生成し、前記セルスタックにおいて、前記改質ガス中の水素と空気中の酸素を化学反応させて発電することを特徴とする請求項1~6のいずれか1項に記載の燃料電池システムである。
 請求項7に記載の発明によれば、オフガス熱交換器において、オフガス中の水分を凝縮させてその凝縮水を改質器に再供給することで、外部からの補給水なしで運転できる水自立可能な燃料電池システムとなる。
 請求項8に記載の発明は、前記予熱タンク内の前記貯留水を予熱する予熱用熱交換器と、前記オフガス熱交換器と前記予熱用熱交換器との間で、前記冷却液を循環させる循環液回路と、を備えることを特徴とする請求項7に記載の燃料電池システムである。
 請求項8に記載の発明によれば、燃料電池側のオフガス熱交換器と、予熱タンク内の予熱用熱交換器との間で、冷却液を循環させる。そして、オフガス熱交換器において、オフガスと冷却液とを熱交換して、オフガスを冷却しつつ冷却液を加熱し、この加熱された冷却液の熱で、予熱用熱交換器において、予熱タンク内の貯留水を加熱することができる。
 請求項9に記載の発明は、前記燃料電池は、固体酸化物形の燃料電池であることを特徴とする請求項1~8のいずれか1項に記載の燃料電池システムである。
 燃料電池には、固体酸化物形(SOFC)の他、リン酸形(PAFC)や固体高分子形(PEFC)もあるが、請求項9に記載の発明によれば、SOFCが用いられる。SOFCは、高温型の動作温度が650~800℃、中温型の動作温度が450~650℃と高いため、セルスタック保護の観点から、起動・昇温後は停止させることなく、電主熱従運転させるのが基本である。そのため、発生し続けるオフガス廃熱の回収を可能とすることで、高い総合効率を維持することができる。但し、SOFCはPAFCやPEFCに比べて発電効率が高い分、同じ発電出力で比較するとオフガス廃熱量が少なく、単独では建築物の温水需要には応えられないおそれがある。ところが、主熱源機を介した温水タンクへの補給水の予熱にオフガス廃熱を利用することで、建築物の電力需要と温水需要を同時に満足するシステムを構築することができる。
 さらに、請求項10に記載の発明は、前記建築設備は、前記温水タンク内に貯留された温水を循環可能に接続された給湯循環配管と;前記給湯循環配管を幹管として当該幹管から温水需要箇所に温水を送る枝管と、を更に含むことを特徴とする請求項1~9のいずれか1項に記載の燃料電池システムである。
 請求項10に記載の発明によれば、温水タンク内に貯留された温水を給湯循環配管(幹管)に循環させておくことで、その循環配管から分岐した枝管を介して、温水需要箇所にて温水を迅速に取り出すことができる。
 本発明によれば、既存の設備環境を利用できる簡易な構成で、燃料電池の熱回収と水自立を両立させた燃料電池システムを実現することができる。
本発明の燃料電池システムの実施例1を示す概略図であり、建築物の即湯循環設備に適用した例を示している。 本発明の燃料電池システムの実施例2を示す概略図であり、建築物の即湯循環設備に適用した例を示している。 本発明の燃料電池システムの実施例3を示す概略図であり、建築物の即湯循環設備に適用した例を示している。
 以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
 図1は、本発明の燃料電池システム1の実施例1を示す概略図であり、建築物2の即湯循環設備に適用した例を示している。
 本実施例の燃料電池システム1は、公共的施設,産業施設,住宅施設等の建築物2における建築設備の一部として利用される。特に、多層階施設における建築設備の一部として利用される。
 多層階施設は、地下も含めて三以上の階を備えた建築物2であり、典型的には地上3階建て以上の建築物2である。具体的には、中層建築物(3~5階層)または高層建築物(6階層以上)とされる。図1では、地下1階B1の他、地上1階F1、2階F2、および最上階(ここでは6階F6)が示されており、途中の階(3階~5階)は、2階と同様として図示を省略している。
 建築設備とは、人が生活を営むうえで必要になる様々な機能を果たすために、建築物2に一体化されて機能する機器および装置をいう。建築設備には、建築基準法第2条第3号に定義されている設備等のほか、建築物利用者のニーズに応じた各種設備(たとえば、ボイラ設備や通信設備など)を含み得る。
 本実施例の建築物2は、建築設備として、給水源から給水可能な受水タンク3と、この受水タンク3から給水可能な高架タンク4と、この高架タンク4から給水可能な温水タンク5と、高架タンク4から温水タンク5への給水を加熱可能な主熱源機6と、この主熱源機6の加熱位置よりも上流側に設けられる予熱タンク7と、この予熱タンク7内の貯留水の加熱にオフガス廃熱が用いられる燃料電池8と、温水タンク5内に貯留された温水を各階に循環させる給湯循環配管9と、高架タンク4内に貯留された常温水を各階に供給する水供給配管10とを備える。そして、これらの建築設備のうち、燃料電池8および予熱タンク7が燃料電池システム1の主要部を構成している。
 本実施例では、受水タンク3、温水タンク5および主熱源機6は、地下階(ここでは地下1階B1)に設置され、高架タンク4は、屋上または上層階(典型的には最上階)に設置され、予熱タンク7および燃料電池8は、中途階(ここでは地上1階F1などの地上階)に設置される。但し、受水タンク3および温水タンク5が高架タンク4よりも下層階に設置される限り、各構成の設置階は適宜に変更可能である。また、場合により、屋内に限らず、屋外に設置されてもよい。
 受水タンク3は、本実施例では開放型タンク(大気開放されたタンク)とされる。受水タンク3には、配水管(図示省略)に接続された給水管11を介して、水道水が供給され貯留される。本実施例では、定水位弁(ボールタップ)12を用いて、受水タンク3への給水の有無が切り替えられ、受水タンク3内は所定水位に維持される。なお、配水管とは、配水場から給水区域まで水を送る管をいい、給水管11とは、配水管から分岐して各家庭など需要者に水を供給する管をいう。配水管から給水管11へは、常温の水道水(通常5~30℃の範囲で季節により成行き)が供給される。
 高架タンク4は、本実施例では開放型タンクとされる。高架タンク4には、受水タンク3から揚水配管13を介して、水が供給され貯留される。揚水配管13には、受水タンク3の出口部に揚水ポンプ14が設けられており、この揚水ポンプ14を作動させることで、受水タンク3内の水を高架タンク4へ供給することができる。高架タンク4に設けた水位検出器(たとえば水位電極棒やフロートスイッチ)15の検出信号に基づき揚水ポンプ14を自動制御することで、高架タンク4内を所定水位に維持することができる。たとえば、水位検出器15にて、下限水位と上限水位とを検出可能としておき、下限水位を下回れば揚水ポンプ14を作動させる一方、上限水位を上回れば揚水ポンプ14を停止させればよい。
 ここで、高架タンク4への補給水は、受水タンク3からの常温水である。そのため、高架タンク4には、燃料電池8のオフガスの露点温度(たとえば40℃)以下の水が補給されることになる。後述するように、高架タンク4の貯留水は、予熱タンク7でオフガスの冷却用熱源として利用される。燃料電池8の水自立とは、オフガスの冷却により生成させた凝縮水を燃料電池8で再利用するものであるため、高架タンク4への補給水の温度は、燃料電池8の水自立の成否と密接に関係している。
 温水タンク5は、本実施例では開放型タンクとされる。温水タンク5には、高架タンク4から補水管16を介して、水が供給され貯留される。温水タンク5は高架タンク4よりも下層階に設置されるため、高架タンク4から温水タンク5への給水は、水頭圧差を用いて自然になされる。そのため、補水管16にポンプを設置する必要はない。なお、補水管16について、説明の便宜上、高架タンク4から主熱源機6の加熱位置までを第一補水管16Aといい、主熱源機6の加熱位置から温水タンク5までを第二補水管16Bということがある。
 補水管16には補水弁17が設けられており、この補水弁17の開閉により、高架タンク4から温水タンク5への給水の有無を切り替えることができる。温水タンク5に設けた水位検出器(たとえば水位電極棒やフロートスイッチ)18の検出信号に基づき補水弁17を自動制御することで、温水タンク5内を設定水位に維持することができる。たとえば、水位検出器18にて、下限水位と上限水位とを検出可能としておき、下限水位を下回れば補水弁17を開放する一方、上限水位を上回れば補水弁17を閉鎖すればよい。
 高架タンク4から補水管16を介した温水タンク5への給水は、主熱源機6により加熱可能とされる。後述するように、温水タンク5への給水は燃料電池8のオフガス廃熱を用いても加熱されるが、この加熱がなくても(つまり燃料電池8の発電が停止していても)、主熱源機6は、温水タンク5への給水を所望温度に維持でき、建築物2内への温水供給には影響を及ぼさない加熱能力を有する。言い換えれば、主熱源機6は、単独で建築物2の温水需要を賄うことのできる熱出力を有する。
 主熱源機6は、特に問わないが、本実施例では、ガス給湯器とされる。図示例では、主熱源機6として、同一構成のガス給湯器が、並列に複数台(たとえば4台)設置されている。言い換えれば、複数台のガス給湯器により、主熱源機群が構成されている。そして、各主熱源機6は、第一補水管16Aを介して高架タンク4と接続される一方、第二補水管16Bを介して温水タンク5と接続される。その際、第一補水管16Aは、下流側(主熱源機6側)で分岐され、各分岐管が補水弁17を介して主熱源機6に接続される。一方、第二補水管16Bは、上流側(主熱源機6側)で分岐され、各分岐管が主熱源機6に接続される。
 補水弁17を開けることで、高架タンク4から主熱源機6を介して、温水タンク5に降水することができる。その際、温水タンク5内の温水需要に合わせて、補水弁17の開放個数を変更することで、温水タンク5への給水流量を変更することができる。すなわち、温水タンク5内の水位が下がるほど、補水弁17の開放個数を増加させて、温水タンク5への給水流量を増加させることができる。そして、補水弁17を開放中、その開放中の補水弁17と対応した主熱源機6(つまり補水弁17の開放により通水される主熱源機6)を作動させて、設定温度の温水として温水タンク5へ供給することができる。
 このようにして、温水タンク5内には、建築物2内に供給するための温水が貯留される。そして、温水タンク5内に貯留された温水は、後述するように、給湯循環配管9を通じて建築物2の各階に循環される。そのため、循環温水のレジオネラ汚染防止など衛生上の観点からは、主熱源機6(さらには後述する副熱源機19)による加熱時の設定温度を60℃以上にしておくのが望ましい。
 予熱タンク7は、高架タンク4から温水タンク5への補水管16の内、主熱源機6の加熱位置よりも上流側(ここでは各補水弁17より上流の第一補水管16A)に設けられる。予熱タンク7は、本実施例では密閉型タンク(大気開放されないタンク)とされる。予熱タンク7は、第一補水管16Aの内、上流側配管16Auを介して高架タンク4と接続される一方、下流側配管16Adを介して主熱源機6と接続される。そのため、高架タンク4からの水は、第一補水管16Aの上流側配管16Auを介して予熱タンク7を満たし、下流側配管16Adを介して主熱源機6へ供給可能とされる。前述した補水弁17を開けることで、高架タンク4内の水を、第一補水管16Aの上流側配管16Au、予熱タンク7および下流側配管16Adを介した後、主熱源機6を通して温水タンク5へ供給することができる。つまり、補水弁17の開放により、予熱タンク7から温水タンク5へ給水しつつ、その給水分の水を高架タンク4から予熱タンク7へ補給することができる。
 予熱タンク7内の貯留水は、燃料電池8のオフガス廃熱を用いて加熱されるが、その際、予熱タンク7内には温度成層(上部ほど高温で下部ほど低温の状態)が形成される。この温度成層を乱さないために、予熱タンク7には、図示例のように、下部に、高架タンク4からの上流側配管16Auが接続され、上部に、主熱源機6への下流側配管16Adが接続されるのが好ましい。
 上流側配管16Auと下流側配管16Adとは、所望によりバイパス配管16Cで接続される。この場合、高架タンク4からの水を、予熱タンク7を介して温水タンク5へ供給するか、予熱タンク7を介さずにバイパス配管16Cを介して温水タンク5へ供給するかを切替可能とされる。そのために、本実施例では、上流側配管16Auには、バイパス配管16Cとの分岐部より下流に入口弁20が設けられる一方、下流側配管16Adには、バイパス配管16Cとの合流部より上流に出口弁21が設けられる。さらに、バイパス配管16Cには、バイパス弁22が設けられる。これら入口弁20、出口弁21およびバイパス弁22は、本実施例では手動弁から構成される。そして、通常、バイパス弁22が閉じられると共に、入口弁20および出口弁21が開かれた状態に維持される。従って、高架タンク4内の水は、バイパス配管16Cを介することなく、上流側配管16Auを介して予熱タンク7へ供給され、予熱タンク7内の水が、下流側配管16Adを介して温水タンク5へ供給される。
 一方、所望時には、バイパス弁22を開ける一方、入口弁20および出口弁21を閉じた状態として、高架タンク4内の水を、予熱タンク7を介することなく、バイパス配管16Cを介して温水タンク5へ供給可能とされる。たとえば、予熱タンク7や後述する循環液回路23などをメンテナンスする際、バイパス弁22を開ける一方、入口弁20および出口弁21を閉じた状態としておけばよい。その場合、高架タンク4からの水は、主熱源機6にて加熱されて温水タンク5へ供給可能であるから、温水需要箇所への湯切れを防止することができる。
 予熱タンク7内の貯留水は、燃料電池8のオフガス廃熱を用いて加熱可能とされる。そのために、本実施例では、燃料電池8(より具体的には後述する燃料電池本体24)のオフガスとその冷却液とを熱交換するオフガス熱交換器25と、このオフガス熱交換器25で加熱された冷却液で予熱タンク7内の貯留水を加熱する予熱用熱交換器26と、オフガス熱交換器25と予熱用熱交換器26との間で冷却液を循環させる循環液回路23とを備える。循環液回路23を循環する冷却液は、ここでは水であるが、その他の液体(たとえばエチレングリコールなどを主成分とする不凍液)であってもよい。
 燃料電池8は、オフガス熱交換器25の他、燃料電池本体24、パワーコンディショナ(図示省略)および各種の補機(図示省略)などを備える。燃料電池本体24は、改質器(図示省略)およびセルスタック(図示省略)などを備える。具体的には、燃料電池本体24は、発電に使用する主要機器を断熱容器に収容した発電モジュールとして構成されており、主要機器には、(I)蒸発部、混合部および改質部を有する改質器;(II)複数の発電セルよりなるセルスタック;(III)アノードオフガスとカソードオフガスを燃焼させる燃焼器;(IV)燃焼オフガスとアノード空気を熱交換させる空気予熱器などが含まれる。
 燃料電池本体24には、原燃料(都市ガス)G、空気A、および水(改質水)Wが供給される。そして、原燃料(メタンガスを主成分とする都市ガス)Gと水(水蒸気)Wとを改質器において水蒸気改質反応させることにより水素を含有する改質ガスを生成し、改質ガス中の水素と空気中の酸素とをセルスタックにおいて化学反応させて発電する。セルスタックでは、発電に伴ってアノードオフガスおよびカソードオフガスが生成されるが、これらのガスは、燃焼器に供給されたのち、燃焼オフガスとなって排出される。この燃焼オフガスは、セルスタックの前段に配置された空気予熱器に通され、カソード空気の予熱に利用される。
 セルスタックの電池出力は、パワーコンディショナで調整された後に、建築物2内に給電される。パワーコンディショナは、セルスタックから出力された直流電圧を昇圧するDC/DCコンバータ(昇圧回路)と、DC/DCコンバータで昇圧された直流電圧を系統電源と同期の取れた交流電圧に変換する系統連系インバータ(電圧変換回路)と、セルスタックの出力電流を制御する出力電流制御部(出力制御回路)と、を有している。系統連系インバータは、建築物2内に設置された商用電力系統の配電盤と電気的に接続されている。系統連系インバータと配電盤とは、系統連系用のスイッチを介して並列・解列を切換可能である。配電盤には、系統電源および複数の分電盤が電気的に接続されている。分電盤には、建築物2の各階で使用する照明器具、動力装置、コンセント等の負荷機器が電気的に接続されている。
 燃料電池本体24の種類は、特に問わないが、好適には固体酸化物形(SOFC)とされる。SOFCは、高温型の動作温度が650~800℃、中温型の動作温度が450~650℃と高いため、セルスタック保護の観点から、起動・昇温後は停止させることなく、電主熱従運転させるのが基本である。そのため、発生し続けるオフガス廃熱の回収を可能とすることで、高い総合効率を維持することができる。但し、SOFC(固体酸化物形)はPAFC(リン酸形)やPEFC(固体高分子形)に比べて発電効率が高い分、同じ発電出力で比較するとオフガス廃熱量が少なく、単独では建築物の温水需要には応えられないおそれがある。ところが、主熱源機6を介した温水タンク5への補給水の予熱にオフガス廃熱を利用することで、建築物2の電力需要と温水需要を同時に満足するシステムを構築することができる。
 オフガス熱交換器25は、燃料電池本体24からのオフガスとその冷却液とを混ぜることなく熱交換する間接熱交換器である。そのために、オフガス熱交換器25には、燃料電池本体24からオフガス配管27を介してオフガスが通されると共に、循環液回路23の循環液がオフガスの冷却液として通される。これにより、オフガス熱交換器25において、オフガスは循環冷却液により冷却され、オフガス中の水分(水蒸気)の凝縮が図られる。一方、循環液回路23の循環冷却液は、オフガス熱交換器25において、オフガスと熱交換することで加熱される。
 オフガス熱交換器25での熱交換の対象となるオフガスは、燃料電池本体24で発生する水蒸気を含むオフガスである。具体的には、(i)セルスタックのアノード側から排出されるアノードオフガス;(ii)セルスタックのカソード側から排出されるカソードオフガス;(iii)燃焼器から排出される燃焼オフガスから選ばれた一種以上を熱交換の対象とすることができる。オフガス熱交換器25に通されるオフガスは、空気予熱器等で部分的に熱回収された後の状態であってもよい。
 SOFCセルスタックのアノード側では、水素と酸素の化学反応が起こるので、アノードオフガスには水蒸気が含まれる。SOFCセルスタックのカソード側に供給される空気には大気の水蒸気が含まれるので、カソードオフガスにも水蒸気が含まれる。燃焼オフガスには、アノードオフガスおよびカソードオフガスに由来する水蒸気のほか、アノードオフガス中の残留水素とカソードオフガス中の残留酸素の燃焼反応によって生成した水蒸気が含まれる。そのため、いずれのオフガスを熱交換の対象とした場合でも、露点温度以下に冷却することで凝縮水を得ることができる。
 オフガス熱交換器25からのオフガスの出口側には、セパレータタンク28が設けられており、オフガス熱交換器25に通されたオフガスの気液分離が図られる。そして、気液分離後の凝縮水は、燃料電池本体24への改質水Wとして、供給ポンプ29を介して燃料電池本体24の改質器へ再供給可能とされる。これにより、燃料電池8は、外部からの補給水なしで発電を継続できる水自立運転が可能になっている。なお、気液分離後のアノードオフガスおよびカソードオフガスは燃焼器に供給され、気液分離後の燃焼オフガスは外部に排出される。
 燃料電池8の水自立運転において、改質器では、蒸発部で改質水Wとしての凝縮水が気化された後、混合部で原燃料Gと水蒸気が混合される。そして、この混合ガスが改質部の触媒層に供給されて、水素を含有する改質ガスが生成される。改質部で得られた改質ガスは、アノード燃料としてセルスタックのアノード側に送られる。
 また、オフガス熱交換器25は、その構造や流体の流し方を工夫することにより、オフガスの気液分離をセパレータタンク28ではなく、オフガス熱交換器25内で行うようにすることもできる。その場合、オフガス熱交換器25からのオフガスの出口側に、排気用の分岐ラインを接続する。
 予熱用熱交換器26は、予熱タンク7内に配置され、予熱タンク7内の貯留水とオフガス熱交換器25からの循環冷却液とを混ぜることなく熱交換する間接熱交換器(たとえば伝熱コイル)である。予熱用熱交換器26は、予熱タンク7の内部領域のうち、少なくとも常温水が流入する下層領域(たとえば底部から30~50%の高さ領域)を加熱可能に配置される。これにより、予熱用熱交換器26において、予熱タンク7内の貯留水が加熱される一方、循環液回路23の循環冷却液は冷却される。
 循環液回路23は、オフガス熱交換器25と予熱用熱交換器26との間で、冷却液を循環させる。具体的には、予熱用熱交換器26からオフガス熱交換器25へは、冷却液送り路23Aを介して冷却液が供給され、オフガス熱交換器25から予熱用熱交換器26へは、冷却液戻し路23Bを介して冷却液が戻される。そして、冷却液送り路23A(または冷却液戻し路23B)に設けた循環ポンプ30を作動させることで、オフガス熱交換器25と予熱用熱交換器26との間で冷却液を循環させることができる。
 本実施例では、冷却液送り路23Aには、予熱用熱交換器26からオフガス熱交換器25へ向けて順に、ラジエータ31および循環ポンプ30が設けられている。なお、循環ポンプ30は、冷却液送り路23Aに設けられる代わりに、冷却液戻し路23Bに設けられてもよい。
 ラジエータ31は、オフガス熱交換器25への冷却液とファン32による通風との熱交換器である。所望時にラジエータ31のファン32を作動させることで、オフガス熱交換器25へ供給する冷却液を、外気で冷却することができる。たとえば予熱タンク7でオフガス廃熱の熱回収が十分にできない場合に、ラジエータ31の冷却作用によってオフガス熱交換器25への冷却液温度をオフガスの露点温度以下にすることで、オフガス熱交換器25においてオフガス中の水分を凝縮させ、燃料電池8の水自立を図ることができる。
 ラジエータ31は、好ましくは、通風量を調整可能とされる。本実施例では、ファン32の駆動モータをDCモータとすると共に、冷却液送り路23Aに複数台のラジエータ31を配置している(図示例では1台のみの配置例を記載)。この構成では、ファン32を一定速度で駆動する。ラジエータ31の稼動台数、すなわちファン32の駆動台数を制御することで、通風量を調整することができる。
 また、ラジエータ31を1台で構成する場合には、ファン32の駆動モータをブラシレスDCモータとし、このDCモータをパルス幅変調(PWM)により可変速制御するように構成してもよい。ファン32の作動中、DCモータの駆動電圧パルスのデューティ比を変化させることで、通風量を調整することができる。
 また、ラジエータ31を1台で構成する場合には、ファン32の駆動モータをACモータとし、このACモータをインバータ装置により可変電圧可変周波数制御(VVVF制御)するように構成してもよい。ファン32の作動中、ACモータの駆動周波数または駆動電圧を変化させることで、通風量を調整することができる。
 循環ポンプ30は、冷却液の流量を調整可能に構成されていることが好ましい。本実施例では、循環ポンプ30の駆動モータをブラシレスDCモータとし、このDCモータをパルス幅変調(PWM)により可変速制御するように構成している。循環ポンプ30の作動中、DCモータの駆動電圧パルスのデューティ比を変化させることで、循環液回路23内の循環流量を調整することができる。
 また、循環ポンプ30の駆動モータをACモータとし、このACモータをインバータ装置により可変電圧可変周波数制御(VVVF制御)するように構成してもよい。循環ポンプ30の作動中、ACモータの駆動周波数または駆動電圧を変化させることで、循環液回路23内の循環流量を調整することができる。
 また、DCかACかに関わらず駆動モータを一定速度で駆動する場合には、オフガス熱交換器25から予熱用熱交換器26への冷却液戻し路23B、または予熱用熱交換器26からオフガス熱交換器25への冷却液送り路23Aに、比例制御弁が設けられる。循環ポンプ30の作動中、比例制御弁の開度を調整することで、循環液回路23内の循環流量を調整することができる。
 冷却液送り路23Aには、ラジエータ31の出口側に第一温度センサ33が設けられる一方、冷却液戻し路23Bには、第二温度センサ34が設けられる。第一温度センサ33は、オフガス熱交換器25の入口側の冷却液の温度を検出し、第二温度センサ34は、オフガス熱交換器25の出口側の冷却液の温度を検出する。
 燃料電池8の稼働時、循環ポンプ30を作動させる。これにより、オフガス熱交換器25と予熱用熱交換器26との間で冷却液が循環される。オフガス熱交換器25において、燃料電池本体24からのオフガスが冷却される一方、予熱用熱交換器26への冷却液が加熱される。一方、予熱用熱交換器26において、オフガス熱交換器25からの冷却液で、予熱タンク7内の貯留水が加熱される。このようにして、燃料電池8のオフガス廃熱を、予熱タンク7内の貯留水の加熱に用いて、熱回収することができる。
 循環ポンプ30の作動中、第一温度センサ33の検出温度を第一目標温度範囲(たとえば35~40℃の設定範囲)に維持するように、複数台のラジエータ31におけるファン32の駆動台数が増減される。この駆動台数の増減には、たとえばフィードフォワード制御が用いられる。具体的には、第一温度センサ33の検出温度が上限設定値(たとえば40℃)以上となり、その状態で第一設定時間(たとえば10秒)が継続すると1台を起動する一方で、第一温度センサ33の検出温度が下限設定値(たとえば35℃)以下となり、その状態で第二設定時間(たとえば10秒)が経過すると1台を停止する。これにより、冷却液の温度が高まり過ぎるのを防止して、水自立を確実に図ることができる。すなわち、オフガス熱交換器25においてオフガスを露点温度以下に冷却して、オフガス中の水分を凝縮させ、その凝縮水を前記改質器へ再供給することができる。
 循環ポンプ30の作動中、第二温度センサ34の検出温度を第二目標温度(たとえば60~75℃から選択された設定値)に維持するように、循環ポンプ30の駆動モータ出力、すなわち循環流量が調整される。この駆動モータ出力の調整には、たとえば速度型PIDアルゴリズムによるフィードバック制御が用いられる。これにより、予熱用熱交換器26へ供給する循環液温度を所定温度に維持して、予熱タンク7内の貯留水を所望温度に加熱することができる。
 ところで、温水タンク5内の温水は、副熱源機(たとえばガス給湯器)19にて再加熱可能とされるのがよい。本実施例では、温水タンク5内の温水は、温水取出し路35Aを介して副熱源機19に供給され、副熱源機19にて設定温度に加熱された後、温水戻し路35Bを介して温水タンク5へ戻される。温水取出し路35A(または温水戻し路35B)に設けた送水ポンプ36を作動させることで、温水タンク5内の温水を副熱源機19に通して、温水タンク5内の温水を設定温度に維持することができる。副熱源機19による加熱目標温度(設定温度)は、主熱源機6による加熱目標温度(設定温度)と同一でもよいし、所定温度だけ高いまたは低い温度でもよい。
 なお、副熱源機19は、好ましくは温水タンク5と同一層階に設置される。また、副熱源機19による温水タンク5内の貯留水の再加熱は、温水タンク5内の貯留水を副熱源機19との間で循環させて行う以外に、温水タンク5内に設けたヒータ(電気ヒータまたは蒸気ヒータなど)により行ってもよい。
 温水タンク5内の温水は、建築物2内の一または複数の温水需要箇所に供給され利用可能とされる。本実施例では、建築物2内には、温水タンク5内に貯留された温水を循環させる給湯循環配管9が敷設されており、その給湯循環配管9に設けた出湯部37から温水を取り出し可能とされている。
 給湯循環配管9は、温水タンク5内の温水を建築物2の各階に行き渡らせるループ配管である。本実施例では、地下の温水タンク5から最上階へ向けて往路9Aが敷設され、最上階から温水タンク5へ向けて復路9Bが敷設される。往路9Aには、温水タンク5からの出口部に、揚水ポンプを兼ねる循環ポンプ38が設けられる。
 ところで、温水タンク5は、典型的には略矩形のボックス状とされ、給湯循環配管9の往路9Aへの給湯口と、復路9Bからの返湯口とが、対角の位置に設けられるのが好ましい。また、温水タンク5は、補水管16からの給水口と、給湯循環配管9の復路9Bからの返湯口とが、隣接して配置されるのが好ましい。これにより、高架タンク4から予熱タンク7および主熱源機6を介した補給水と、給湯循環配管9の復路9Bからの温水との混合を図ることができる。
 建築物2の各階(あるいは所望の階)には、温水需要箇所への出湯部37が設けられる。本実施例では、1階以上の各階には、給湯循環配管9を幹管として、その幹管から温水需要箇所に温水を送る枝管9Xが設けられている。この際、通常、枝管9Xは、幹管の往路9Aから分岐して設けられる。つまり、枝管9Xは、給湯循環配管9に付随する建築設備である。図示例では、各階に一つの枝管9Xのみを示しているが、複数の枝管9Xを設けてもよい。また、所望により、一つの枝管9Xからさらに枝管9Xを分岐させてもよい。
 各枝管9Xは、幹管(給湯循環配管9)からの温水を出湯部37に供給するための配管である。出湯部37としては、たとえば、洗面台、浴室、厨房等に設けられた混合栓37Aである。なお、高架タンク4から各階へは、冷水(常温水)の水供給配管10が別途、敷設されている。高架タンク4から水供給配管10を介した各階への給水も、水頭圧差を用いて自然に行うことができる。そして、各階の混合栓37Aには、温水タンク5から幹管9Aおよび枝管9Xを介した温水と、高架タンク4から水供給配管10を介した冷水とが供給可能とされ、その混合割合を調整することで所望温度の温水を出湯可能とされる。
 次に、本実施例の燃料電池システム1の作用(運転)について、説明する。
 燃料電池8は、系統連系しながら常時発電する電主熱従運転を行っており、建築物2内の電力需要に合わせて、燃料電池8の発電出力(セルスタックの電池出力をパワーコンディショナで調整した出力)が調整される。すなわち、燃料電池8をベースロード電源として使用しつつ、系統電源をピークロード電源として使用している。燃料電池8の運転に伴い、オフガス熱交換器25と予熱用熱交換器26との間の循環液回路23の循環ポンプ30が作動する。また、第一温度センサ33の検出温度を第一目標温度範囲に維持するように、複数台のラジエータ31におけるファン32の駆動台数を増減すると共に、第二温度センサ34の検出温度を第二目標温度に維持するように、循環ポンプ30の駆動モータ出力を自動制御するのは前述したとおりである。これにより、オフガス熱交換器25において、オフガスを露点温度以下に冷却して、確実で安定した水自立を図ることができる。また、予熱用熱交換器26において、予熱タンク7内の貯留水を、所定温度(第二目標温度)の循環冷却液で加熱することができる。
 なお、予熱用熱交換器26での熱交換により、予熱タンク7内の貯留水は最大、第二目標温度まで加熱されることになる。この第二目標温度は、温水タンク5内の設定温度(主熱源機6および/または副熱源機19による加熱目標温度)と同一かそれよりも低い温度とされる。
 温水タンク5には、水位検出器18の検出信号に基づき補水弁17を自動制御することで、所定水位の水が貯留される。高架タンク4から温水タンク5への補水管16には、主熱源機6の加熱位置よりも上流側に予熱タンク7を設けて、燃料電池8のオフガス廃熱が回収されることで、予熱された温水を主熱源機6ひいては温水タンク5へ供給することができる。なお、高架タンク4から予熱タンク7を介した温水タンク5への給水に伴い、高架タンク4には必要に応じて受水タンク3から給水される。
 建築物2内の温水需要に備えて、給湯循環配管9の循環ポンプ38は、作動を継続する。そのため、所望の階の所望の混合栓37Aを開ければ、即座に出湯することができる。その際、温水タンク5からの温水に、高架タンク4から水供給配管10を介した常温水を混合することで、所望の温度で出湯することができる。
 ところで、予熱タンク7では、燃料電池8のオフガス廃熱を温水タンク5への給水予熱に用いて熱回収することで、予熱タンク7内の貯留水を予熱しながらオフガスの冷却が可能とされる。この点について、具体的に説明すると、次のケースが想定される。
 (a)夏場以外で、高架タンク4に滞留中の貯留水、すなわちオフガスの冷却用熱源がオフガスの露点温度を超えない場合、予熱タンク7での熱回収のみでオフガスを露点以下に冷却できる。この場合、循環液回路23では、ラジエータ31のファン32を停止しておけばよい。
 (b)夏場で、高架タンク4に滞留中の貯留水、すなわちオフガスの冷却用熱源がオフガスの露点温度を超える場合、予熱タンク7での熱回収と、ラジエータ31での放熱とにより、オフガスを露点以下に冷却する。但し、夏場であっても建築物2内で温水需要が十分にある場合には、高架タンク4の貯留水は頻繁に入れ替わるため、高架タンク4内の貯留水(ひいては予熱タンク7への給水)がオフガスの露点温度以下になれば、ラジエータ31のファン32を停止させればよい。それにより、温水タンク5への補給水の冷熱利用による水自立を成立させつつ、熱回収効率を高めることができる。
 なお、建築物2内での温水需要が少ない場合には、給水源からの水温とは無関係に十分な熱回収ができないので、ラジエータ31のファン32を作動させて、外気への放熱によりオフガスを露点以下に冷却して水自立を成立させることになる。
 前述したとおり、本実施例の燃料電池システム1では、給湯負荷(出湯部37における出湯)がある場合には、燃料電池8の廃熱回収と主熱源機6での加熱を行いながら温水タンク5に給水する。そして、給湯負荷がない場合などにおいて、温水タンク5内の温度が下がると、副熱源機19に温水を循環させて追い炊きすることができる。
 本実施例の燃料電池システム1を利用する建築物2においては、温水タンク5への給水を、主熱源機6で加熱可能であると共に、主熱源機6の加熱位置よりも上流側で、燃料電池8の廃熱で予熱可能とされる。従って、簡易な構成で、燃料電池8の廃熱を優先利用した温水を得ることができる。また、受水タンク3、高架タンク4、温水タンク5、主熱源機6、補水管16および給湯循環配管9として、建築物2の既存建築設備を利用することもでき、その既存建築設備に、燃料電池8および予熱タンク7を新設して構成することも容易である。
 図2は、本発明の燃料電池システム1の実施例2を示す概略図であり、建築物2の即湯循環設備に適用した例を示している。本実施例2も、基本的には前記実施例1と同様である。そこで、以下においては、両者の異なる点を中心に説明し、同様の箇所については説明を省略する。また、前記実施例1と対応する箇所には、同一の符号を付して説明する。
 前記実施例1では、温水タンク5が高架タンク4よりも下層階に設置されたが、本実施例2では、温水タンク5が高架タンク4と同一層階に設置される。図示例の場合、高架タンク4および温水タンク5の他、主熱源機6、予熱タンク7および燃料電池8も、同一層階(ここでは屋上R)に設置されている。
 本実施例2では、温水タンク5が高架タンク4と同一層階に設置されるので、高架タンク4から温水タンク5への給水を、水頭圧差のみで行うことができない。そこで、本実施例2の第一補水管16A(下流側配管16Ad)には、各主熱源機6の入口側に、前記実施例1の補水弁17に代えて、補水ポンプ39が設けられる。温水タンク5内の水位(具体的には水位検出器18の検出水位)に基づき、補水ポンプ39の稼働台数(さらには補水ポンプ39と連動する主熱源機6の稼働台数)を自動制御することで、温水タンク5内の水位を所望に維持することができる。
 前記実施例1では、副熱源機19を設けて、温水タンク5内の温水を再加熱可能としたが、本実施例2では、温水タンク5内の温水を主熱源機6との間で循環可能に構成される。具体的には、温水タンク5内の温水を、予熱タンク7と主熱源機6の加熱位置との間の補水管16に返送する再加熱管40を備える。より詳細には、予熱タンク7から主熱源機6への下流側配管16Adの内、各補水ポンプ39よりも上流位置に、温水タンク5からの再加熱管40が接続されている。再加熱管40の接続位置よりも上流側の下流側配管16Adには、開閉弁(図示省略)が設けられる。所望により開閉弁を閉じた状態で補水ポンプ39を作動させることで、温水タンク5内の貯留水を所望温度に加熱することができる。たとえば、温水タンク5内の温水温度に基づき、補水ポンプ39および主熱源機6の稼働台数を自動制御により変更して、温水タンク5内の温水を設定温度に維持することができる。
 本実施例2では、給湯負荷(出湯部37における出湯)がある場合には、燃料電池8の廃熱回収と主熱源機6での加熱を行いながら温水タンク5に給水する。そして、給湯負荷がない場合などにおいて、温水タンク5内の温度が下がると、主熱源機6に温水を循環させて追い炊きすることができる。再加熱管40の接続位置よりも上流側の下流側配管16Adに設けた開閉弁は、温水タンク5への給水を加熱する場合は開放し、温水タンク5内の温水を再加熱する場合は閉鎖する。その他の構成(制御を含む)は、前記実施例1と同様のため、説明を省略する。
 図3は、本発明の燃料電池システム1の実施例3を示す概略図であり、建築物2の即湯循環設備に適用した例を示している。本実施例3も、基本的には前記実施例1(または前記実施例2)と同様である。そこで、以下においては、両者の異なる点を中心に説明し、同様の箇所については説明を省略する。また、両実施例で対応する箇所には、同一の符号を付して説明する。
 前記実施例1では、建築物2は多層階施設とされ、高架タンク4を備えたが、本実施例3では、建築物2は、典型的には、低層建築物(1~2階層)または中層建築物(3~5階層)とされ、高架タンク4を備えない。図示例では、地下1階、地上3階建ての建築物2とされる。
 本実施例3では、受水タンク3、温水タンク5および予熱タンク7は、地下階(ここでは地下1階B1)の床上に架台設置される。また、主熱源機6および燃料電池8も、地下階に設置されている。但し、これら構成の内、いずれか一以上は、場合により、地上(屋外または屋内)に設置されてもよい。たとえば、地下階のない建築物2では、これらタンクは、地上(典型的には地上1階F1)に架台設置される。いずれにしても、受水タンク3と温水タンク5とは、同じ階に併設されるのが好ましい。
 本実施例3では、受水タンク3には、第一給水管11Aを介して給水可能とされる一方、温水タンク5には、第二給水管11Bを介して給水可能とされる。この第二給水管11Bは、前記各実施例における補水管16として機能する。温水タンク5内の水位(具体的には水位検出器18の検出水位)に基づき、後述する補水ポンプ39の稼働台数(さらには補水ポンプ39と連動する主熱源機6の稼働台数)を自動制御することで、温水タンク5内の水位を所望に維持することができる。
 受水タンク3への第一給水管11Aと温水タンク5への第二給水管11B(補水管16)とは、上流側において共通管路11Xとされている。言い換えれば、配水管(図示省略)からの水は、共通管路11Xを介して、第一給水管11Aにより受水タンク3へ供給可能とされると共に、第二給水管11Bからなる補水管16を介して温水タンク5へ供給可能とされる。補水管16を介した温水タンク5への補給水は、前記各実施例と同様に、まず予熱タンク7において燃料電池8のオフガス廃熱により加熱可能とされると共に、その後、主熱源機6により加熱可能とされる。
 本実施例3では、前記実施例2と同様に、第一補水管16Aには、各主熱源機6の入口側に、補水ポンプ39が設けられる。一方、第二補水管16Bには、各主熱源機6からの配管が合流後の位置に、開閉弁41が設けられる。一以上の補水ポンプ39の稼働時、開閉弁41は開けられた状態に維持される。
 本実施例3でも、前記実施例2と同様に、温水タンク5内の温水を主熱源機6との間で循環可能に構成される。具体的には、温水タンク5内の温水を、予熱タンク7と主熱源機6の加熱位置との間の補水管16に返送する再加熱管40を備える。より詳細には、予熱タンク7から主熱源機6への下流側配管16Adの内、各補水ポンプ39よりも上流位置に、温水タンク5からの再加熱管40が接続されている。再加熱管40の接続位置よりも上流側の下流側配管16Adには、開閉弁(図示省略)が設けられる。所望により開閉弁を閉じた状態で補水ポンプ39を作動させることで、温水タンク5内の貯留水を所望温度に加熱することができる。たとえば、温水タンク5内の温水温度に基づき、補水ポンプ39および主熱源機6の稼働台数を変更して、温水タンク5内の温水を設定温度に維持することができる。
 前記各実施例では、各階の混合栓37Aへは、高架タンク4からの水が供給されたが、本実施例3では、受水タンク3からの水が供給される。そのために、受水タンク3には、各階へ向けて水供給配管10が設けられており、この水供給配管10の基端部には、揚水ポンプ14が設けられている。その他の構成(制御を含む)は、前記各実施例と同様のため、説明を省略する。
 本発明の燃料電池システム1は、前記各実施例の構成に限らず、適宜変更可能である。特に、燃料電池システム1を利用する建築物2が、(a)補水管16を介して常温水が補給される温水タンク5と;(b)補水管16を流通する常温水を加熱可能な主熱源機6と、を建築設備として有しており、燃料電池システム1が、(c)建築物2内に給電可能な燃料電池8と、(d)主熱源機6の加熱位置よりも上流側で補水管16の途中に配設した予熱タンク7と、を備え、(e)燃料電池8のオフガスの熱回収により、予熱タンク7内の貯留水を予熱しながらオフガスを冷却可能に構成し、(f)補水管16を介して補給される常温水を予熱タンク7でオフガスの冷却用熱源として利用し、(g)オフガスの冷却により生成させた凝縮水を燃料電池8で再利用するものであれば、その他の構成は適宜に変更可能である。
 たとえば、前記各実施例では、温水タンク5は、開放型タンクにより構成されたが、場合により、密閉型タンクにより構成されてもよい。その場合、温水タンク5への補水弁17(または補水ポンプ39)の設置は不要であり、温水需要箇所での出湯に伴い、その出湯分の温水が予熱タンク7を介して温水タンク5へ供給される。但し、実施例2,3のように、温水タンク5内の温水を主熱源機6との間で循環させて再加熱する場合には、補水ポンプ39の設置は必要となる。
 また、前記各実施例では、受水タンク3は、定水位弁12により所定水位に維持されたが、受水タンク3に設けた水位センサの検出信号に基づき、給水管11に設けた給水弁を自動制御してもよい。この場合、給水弁を開ければ、配水管からの給水圧により、受水タンク3へ給水される。
 また、前記各実施例では、予熱タンク7は、密閉型タンクとされたが、場合により開放型タンクとされてもよい。その場合、予熱タンク7内の水位を設定水位に維持するように、予熱タンク7に定水位弁を設けるか、予熱タンク7への上流側配管16Auに設けた給水弁を自動制御すればよい。
 また、前記各実施例では、予熱タンク7内に予熱用熱交換器26を設置して、循環液回路23の循環冷却液と予熱タンク7内の貯留水とを間接熱交換したが、場合により、予熱用熱交換器26の設置を省略して、予熱タンク7内の貯留水自体をオフガス熱交換器25との間で循環させてもよい。つまり、予熱タンク7内の貯留水を、オフガスの冷却液として、冷却液送り路23Aを介してオフガス熱交換器25に供給して、オフガス熱交換器25においてオフガス廃熱を用いて加熱し、冷却液戻し路23Bを介して予熱タンク7へ戻す循環を繰り返してもよい。
 また、前記各実施例において、受水タンク3は、建築物2内に設置したが、場合により、建築物2に隣接した屋外(地上)に設置してもよい。なお、前記各実施例では、地下として、地下1階B1のみを示したが、地下2階以上にしてもよい。
 さらに、前記実施例1では、副熱源機19を設置することで、温水タンク5内の貯留水を再加熱可能としたが、これに代えてまたはこれに加えて、実施例2,3と同様に、温水タンク5内の貯留水を主熱源機6の加熱位置上流へ戻す再加熱管40を設置して、温水タンク5内の貯留水を主熱源機6との間で循環させることで再加熱可能としてもよい。この場合、再加熱管40には送水ポンプを設置して、温水タンク5内の温水を主熱源機6との間で循環させることになる。
 一方、前記実施例2,3では、再加熱管40を設置することで、温水タンク5内の貯留水を主熱源機6との間で循環させて再加熱可能としたが、これに代えてまたはこれに加えて、実施例1と同様に、温水タンク5内の貯留水を副熱源機19により再加熱可能としてもよい。
  1 燃料電池システム
  2 建築物
  3 受水タンク
  4 高架タンク
  5 温水タンク
  6 主熱源機
  7 予熱タンク
  8 燃料電池
  9 給湯循環配管(9A:往路、9B:復路、9X:枝管)
 10 水供給配管
 11 給水管(11A:第一給水管、11B:第二給水管、11X:共通管路)
 12 定水位弁
 13 揚水配管
 14 揚水ポンプ
 15 水位検出器
 16 補水管(16A:第一補水管、16B:第二補水管、16C:バイパス配管)
 17 補水弁
 18 水位検出器
 19 副熱源機
 20 入口弁
 21 出口弁
 22 バイパス弁
 23 循環液回路(23A:冷却液送り路、23B:冷却液戻し路)
 24 燃料電池本体
 25 オフガス熱交換器
 26 予熱用熱交換器
 27 オフガス配管
 28 セパレータタンク
 29 供給ポンプ
 30 循環ポンプ
 31 ラジエータ
 32 ファン
 33 第一温度センサ
 34 第二温度センサ
 35 (35A:温水取出し路、35B:温水戻し路)
 36 送水ポンプ
 37 出湯部(37A:混合栓)
 38 循環ポンプ
 39 補水ポンプ
 40 再加熱管
 41 開閉弁

Claims (10)

  1.  補水管を介して常温水が補給される温水タンクと;前記補水管を流通する常温水を加熱可能な主熱源機と、を建築設備として有する建築物で利用される燃料電池システムであって、
     前記建築物内に給電可能な燃料電池と、
     前記主熱源機の加熱位置よりも上流側で前記補水管の途中に配設した予熱タンクと、を備え、
       前記燃料電池のオフガスの熱回収により、前記予熱タンク内の貯留水を予熱しながら前記オフガスを冷却可能に構成し、
       前記補水管を介して補給される常温水を前記予熱タンクで前記オフガスの冷却用熱源として利用し、
       前記オフガスの冷却により生成させた凝縮水を前記燃料電池で再利用する
     ことを特徴とする燃料電池システム。
  2.  前記建築物は、屋上又は上層階に設置される高架タンクを有する多層階施設とされ、
     前記高架タンクは、常温水が補給され、
     前記温水タンクは、前記高架タンクよりも下層階に設置されると共に、前記高架タンクと前記補水管で接続されて常温水が降水される
     ことを特徴とする請求項1に記載の燃料電池システム。
  3.  前記建築物は、屋上又は上層階に設置される高架タンクを有する多層階施設とされ、
     前記高架タンクは、常温水が補給され、
     前記温水タンクは、前記高架タンクと同一層階に設置されると共に、前記高架タンクと前記補水管で接続されて常温水が補給される
     ことを特徴とする請求項1に記載の燃料電池システム。
  4.  前記建築物は、配水管に接続された給水管を備え、
     前記温水タンクは、地上又は地下階の床上に設置されると共に、前記給水管からなる前記補水管を介して常温水が補給される
     ことを特徴とする請求項1に記載の燃料電池システム。
  5.  前記温水タンク内の温水を、前記予熱タンクと前記主熱源機の加熱位置との間の前記補水管に返送する再加熱管を備える
     ことを特徴とする請求項1~4のいずれか1項に記載の燃料電池システム。
  6.  前記温水タンク内の温水を再加熱可能な副熱源機を備える
     ことを特徴とする請求項1~4のいずれか1項に記載の燃料電池システム。
  7.  前記燃料電池は、改質器、セルスタックおよびオフガス熱交換器を有し、
     前記オフガス熱交換器において、前記オフガスと冷却液との熱交換によりオフガスを露点温度以下に冷却して、オフガス中の水分を凝縮させ、その凝縮水を前記改質器に再供給し、
     前記改質器において、原燃料と前記凝縮水を水蒸気改質反応させることにより水素を含有する改質ガスを生成し、
     前記セルスタックにおいて、前記改質ガス中の水素と空気中の酸素を化学反応させて発電する
     ことを特徴とする請求項1~6のいずれか1項に記載の燃料電池システム。
  8.  前記予熱タンク内の前記貯留水を予熱する予熱用熱交換器と、
     前記オフガス熱交換器と前記予熱用熱交換器との間で、前記冷却液を循環させる循環液回路と、を備える
     ことを特徴とする請求項7に記載の燃料電池システム。
  9.  前記燃料電池は、固体酸化物形の燃料電池である
     ことを特徴とする請求項1~8のいずれか1項に記載の燃料電池システム。
  10.  前記建築設備は、前記温水タンク内に貯留された温水を循環可能に接続された給湯循環配管と;前記給湯循環配管を幹管として当該幹管から温水需要箇所に温水を送る枝管と、を更に含む
     ことを特徴とする請求項1~9のいずれか1項に記載の燃料電池システム。
PCT/JP2017/028814 2017-08-08 2017-08-08 燃料電池システム WO2019030830A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/028814 WO2019030830A1 (ja) 2017-08-08 2017-08-08 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/028814 WO2019030830A1 (ja) 2017-08-08 2017-08-08 燃料電池システム

Publications (1)

Publication Number Publication Date
WO2019030830A1 true WO2019030830A1 (ja) 2019-02-14

Family

ID=65271078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028814 WO2019030830A1 (ja) 2017-08-08 2017-08-08 燃料電池システム

Country Status (1)

Country Link
WO (1) WO2019030830A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186081A (ja) * 2002-12-05 2004-07-02 Sekisui Chem Co Ltd コジェネレーションシステムおよびその運転方法
JP2008164191A (ja) * 2006-12-27 2008-07-17 Toshiba Fuel Cell Power Systems Corp コージェネレーションシステム
JP2008196203A (ja) * 2007-02-13 2008-08-28 Kawamoto Pump Mfg Co Ltd 給水システムの受水用制御装置
JP2015075256A (ja) * 2013-10-07 2015-04-20 Jx日鉱日石エネルギー株式会社 コジェネレーションシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186081A (ja) * 2002-12-05 2004-07-02 Sekisui Chem Co Ltd コジェネレーションシステムおよびその運転方法
JP2008164191A (ja) * 2006-12-27 2008-07-17 Toshiba Fuel Cell Power Systems Corp コージェネレーションシステム
JP2008196203A (ja) * 2007-02-13 2008-08-28 Kawamoto Pump Mfg Co Ltd 給水システムの受水用制御装置
JP2015075256A (ja) * 2013-10-07 2015-04-20 Jx日鉱日石エネルギー株式会社 コジェネレーションシステム

Similar Documents

Publication Publication Date Title
US20060150652A1 (en) Cooling/heating apparatus using waste heat from fuel cell
JP5300717B2 (ja) コージェネレーションシステム
KR100764784B1 (ko) 단위 홈 연료전지시스템
KR100664076B1 (ko) 연료 전지를 이용한 열 공급시스템
RU2331818C2 (ru) Система теплоснабжения и подачи горячей воды (варианты)
JP2016515190A (ja) 加熱設備および加熱設備の動作方法
WO2019008686A1 (ja) 燃料電池システム
JP7249172B2 (ja) 流体を加熱する熱供給装置
JP5525359B2 (ja) 排熱回収装置
JP2018006018A (ja) 燃料電池システム
WO2019030830A1 (ja) 燃料電池システム
JP2018006016A (ja) 燃料電池システム
JP6238099B1 (ja) 燃料電池システム
JP6274607B2 (ja) 燃料電池システム
JP6881062B2 (ja) 燃料電池システム
JP2004139914A (ja) 燃料電池発電・給湯システム
JP7345338B2 (ja) 熱電併給システム
WO2019030831A1 (ja) 燃料電池システム
JP2014055715A (ja) 給湯システム
KR101080311B1 (ko) 분리형 보조 버너를 갖는 연료전지시스템 및 이의 운전 방법
JP2018006017A (ja) 燃料電池システム
JP2020165582A (ja) 燃料電池システム
JP5509671B2 (ja) 燃料電池コージェネレーションシステム
JP7264718B2 (ja) 燃料電池システム
CN115468207B (zh) 利用光伏发电与沙土高温储热的建筑梯级供热系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP