WO2019029331A1 - 光学镜头、摄像模组及其组装方法 - Google Patents

光学镜头、摄像模组及其组装方法 Download PDF

Info

Publication number
WO2019029331A1
WO2019029331A1 PCT/CN2018/096306 CN2018096306W WO2019029331A1 WO 2019029331 A1 WO2019029331 A1 WO 2019029331A1 CN 2018096306 W CN2018096306 W CN 2018096306W WO 2019029331 A1 WO2019029331 A1 WO 2019029331A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
sub
optical
structural
barrel
Prior art date
Application number
PCT/CN2018/096306
Other languages
English (en)
French (fr)
Inventor
王明珠
姚立锋
郭楠
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710687361.1A external-priority patent/CN109387921A/zh
Priority claimed from CN201721004423.6U external-priority patent/CN207336902U/zh
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to CN201880052149.0A priority Critical patent/CN110998405B/zh
Priority to JP2020508008A priority patent/JP2020530592A/ja
Priority to EP18845018.3A priority patent/EP3667386A4/en
Priority to KR1020207006205A priority patent/KR102443493B1/ko
Publication of WO2019029331A1 publication Critical patent/WO2019029331A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/62Optical apparatus specially adapted for adjusting optical elements during the assembly of optical systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/023Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/025Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue

Definitions

  • the present invention relates to the field of optical technology, and in particular to a solution for an optical lens and a camera module.
  • the field song is also called "image field bending.”
  • image field bending When the lens has field curvature, the intersection of the entire beam does not coincide with the ideal image point. Although a clear image point is obtained at each specific point, the entire image plane is a curved surface.
  • the photosensitive element is flat, the curved image surface cannot coincide with the photosensitive surface of the photosensitive element, so that when the central field of view coincides, the resolution of the central field of view is high, the imaging is clear, and the field of view with field curvature is due to the image.
  • the surface is curved and cannot overlap with the photosensitive surface of the photosensitive element, resulting in low resolution and reduced image quality; and vice versa, when the field of view of the field curvature coincides with the photosensitive surface of the photosensitive element, the resolution of the peripheral field of view is high, imaging Clear, and the central field of view cannot overlap with the photosensitive surface of the photosensitive element, resulting in low resolution and reduced imaging quality.
  • the photosensitive member is not flat, as long as the degree of bending of the image forming surface of the optical lens does not match the degree of bending of the photosensitive surface of the photosensitive member, a relative difference between the two, that is, field curvature, which affects the above situation, occurs. same.
  • the influence of the curvature of field makes the image surface of the lens not match well with the photosensitive surface of the photosensitive element, resulting in a decrease in the image formed by the photosensitive element relative to the optimum imaging quality.
  • the field curvature of the camera module is generated during the manufacturing process of the optical imaging lens and the module packaging process.
  • the field curvature produced in any one of the processes will not be eliminated, which will cause the image quality to decline.
  • the field curvature of the two processes will be superimposed and deteriorated, and the solution process cannot be viewed in isolation.
  • the manufacturing process of the optical imaging lens is separate from the process of module packaging, and this situation is inconsistent with the field curvature of the two processes.
  • the field curvature comes from: the error of each component and its assembly, including the optical surface thickness of each lens unit, the optical surface height, the optical surface radius of curvature, etc.
  • errors depend on The ability to control the accuracy of the mold and the accuracy of the molding; and the thickness of the spacer elements depend on the processing accuracy of the components; and the fit of the lenses, depending on the dimensional tolerances of the assembled components and the assembly accuracy of the lens; and the refractive index of the lens material.
  • the change depends on the stability of the material and the consistency of the batch.
  • each of the above components affects the phenomenon that the error of the field curvature is cumulatively deteriorated, and this cumulative error increases as the number of lenses increases.
  • the existing field curvature solution achieves the purpose of reducing the field curvature for batch control and matching of the components with relatively high sensitivity to the field curvature, but because of the batch setting adjustment, the adjustment variables are small, and the adjusted components are single. Moreover, it is limited by the structure of a single lens barrel, the degree of freedom of adjustment is low, and the feedback period is long, which can only adjust the center value of the field curvature distribution of large-volume products, but cannot converge the width of the field curvature distribution, that is, cannot improve the process of the field curvature process.
  • the index of capability, the process capability index (CPK) of the field curvature is low, and the fluctuation is large, so the defect rate of the resolution caused by the field curvature is high.
  • the field curvature distribution of the existing optical imaging lens is basically +/-10 ⁇ m, and the optimal distribution is also +/-7 ⁇ m.
  • the distribution range is Will reach +/-15 ⁇ m.
  • the market demand for image quality requires a field curvature distribution of less than +/- 5 ⁇ m.
  • the field curvature is caused by the bending of the photosensitive surface of the photosensitive element or the difference in curvature of the target image surface.
  • the source of the difference includes: the thickness of the photosensitive element, the thickness and flatness of the circuit substrate, the limitation of the size of the module and the structural strength depending on the manufacturing capability of the component; and the thickness, uniformity and thermal expansion of the bonding material of the photosensitive member. Coefficient, depending on material properties and patching process; and thickness, uniformity and refractive index of the incident light-transmitting optics, depending on material properties and processing accuracy; and stress distortion caused by shrinkage of the packaging material, depending on material properties, module Size reduction and structural strength.
  • the existing field curvature solution is to increase the structural strength of each of the above components and reduce the amount of deformation and contraction. In fact, these methods cannot effectively solve the aforementioned problems. Because there are many factors affecting the field curvature, there are many components, and the control of each factor has the limit of manufacturing precision. If the strength of each component is simply increased, the lifting capacity is limited, the lifting cost is high, and the residual field curvature cannot be Meet the increasing imaging quality needs of the market. In this case, the field curvature of the existing camera module fluctuates greatly, the distribution is basically +/- 12 ⁇ m, and the better distribution is also +/- 8 ⁇ m, in the case where the components of the components and the assembly precision thereof are not well controlled. The distribution range will reach +/-17 ⁇ m. The market demand for image quality requires a field curvature distribution of less than +/- 5 ⁇ m.
  • the present invention is directed to providing a solution that overcomes at least one of the above-discussed deficiencies of the prior art.
  • an optical lens assembly method comprising:
  • first sub-lens Preparing a first sub-lens and a second sub-lens; wherein the first sub-lens includes a first lens barrel and at least one first lens, the second sub-lens includes a second lens barrel and at least one second lens;
  • the first sub-lens and the second sub-lens are connected such that a relative distance of the first sub-lens and the second sub-lens in the optical axis direction remains unchanged.
  • the step of matching the measured image plane with the target surface comprises: acquiring at least one position moved to by moving the first sub-lens in the optical axis direction relative to the second sub-lens
  • the measured field curvature of the optical system imaging described below matches the measured field curvature with the target field curvature.
  • the measured field curvature is an axial deviation value of the measured image plane of the selected test field relative to the measured image plane of the reference field of view.
  • the target field curvature is a position of the target surface corresponding to the test field of view relative to a position of the target surface corresponding to the reference field of view. Axial deviation value.
  • the matching the measured field curvature to the target field curvature comprises: the difference between the measured field curvature and the target field curvature is in a range of +/- 5 ⁇ m.
  • the target surface is a plane.
  • the target surface is a convex or concave curved surface or a wavy curved surface.
  • At least one field of view is selected as the test field of view.
  • the test field of view is a field of view within a range of 40% field of view to 85% field of view.
  • matching the measured image plane with the target surface comprises: selecting 2-10 fields of view as the test field of view, for each selected test field of view The difference between the measured field curvature and the target field curvature is in the range of +/- 5 ⁇ m.
  • matching the measured image plane with the target surface comprises: controlling the convergence of the measured field curvature in at least one of the sagittal direction and the meridional direction to +/ -5 ⁇ m or less.
  • the step of matching the measured image plane with the target surface includes:
  • Determining whether the measured field curvature under the current measured position matches the target field curvature if yes, performing the connecting step, and if not, continuing to perform the sub-step of moving the first sub-lens relative to the second sub-lens And obtaining a substep of the measured field curvature of the optical system imaging until the measured field curvature at the current measured position matches the target field curvature.
  • the first sub-lens and the second sub-lens are connected by a bonding process.
  • the first sub-lens and the second sub-lens are connected by a soldering process.
  • the welding process includes laser welding or ultrasonic welding.
  • an optical lens comprising: a first sub-lens, the first sub-lens including a first lens barrel and at least one first lens; and a second sub-lens, the The two sub-lens includes a second lens barrel and at least one second lens; wherein the first sub-lens is disposed on an optical axis of the second sub-lens, and comprises the at least one first lens and the at least one first An imageable optical system of two lenses; the first sub-lens and the second sub-lens are fixed together and have a structural gap between the first sub-lens and the second sub-lens, the structural gap having A size value in the optical axis direction that matches the image plane imaged by the optical system with the target surface.
  • the first sub-lens and the second sub-lens each have an optical surface belonging to the optical system and a structural surface other than the optical surface, and the structural gap is a structural surface of the first sub-lens a gap between the structural faces of the second sub-lens.
  • the first sub-lens has a first structural surface that is closest to the second sub-lens in the optical axis direction and is within a projection range of the second sub-lens in the optical axis direction
  • the second sub-lens has a second structural surface that is closest to the first sub-lens in the optical axis direction and is located within a projection range of the first sub-lens
  • the structural gap is an average structural gap
  • the average The structural gap is the average gap between the first structural face and the second structural face on a section through the optical face.
  • the structural gap has a dimension value in the optical axis direction of less than 500 ⁇ m.
  • first structural surface is located in the first lens barrel
  • second structural surface is located in the second lens barrel
  • first structural surface is located in the first lens
  • second structural surface is located in the second lens barrel
  • first structural surface is located in the first lens barrel
  • second structural surface is located in the second lens
  • first structural surface is located in the first lens and the second structural surface is located in the second lens.
  • the first structural surface is located in the first lens structure attachment
  • the first lens structure attachment comprises a first spacer mounted on the first barrel, or the first spacer is bonded to the a glue of the first lens barrel or the first lens, or a glue material that bonds the first lens to the first lens barrel
  • the second structural surface is located at the second lens barrel.
  • the first structural surface is located in the first lens structure attachment
  • the first lens structure attachment comprises a first spacer mounted on the first barrel, or the first spacer is bonded to the a glue of the first lens barrel or the first lens, or a glue that bonds the first lens to the first lens barrel
  • the second structural surface is located at the second lens.
  • first structural surface is located in the first lens barrel; and the second structural surface is located in the second lens structure attachment, and the second lens structure attachment includes a second separation surface mounted on the second lens barrel Looping, or bonding the second spacer to the glue of the second barrel or the second lens, or bonding the second lens to the glue of the second barrel.
  • first structural surface is located in the first lens; and the second structural surface is located in the second lens structure attachment, and the second lens structure attachment comprises a second spacer mounted on the second lens barrel Or bonding the second spacer to the glue of the second barrel or the second lens, or bonding the second lens to the glue of the second barrel.
  • the first structural surface is located in the first lens structure attachment
  • the first lens structure attachment comprises a first spacer mounted on the first barrel, or the first spacer is bonded to the a glue material of the first lens barrel or the first lens, or a glue material bonding the first lens to the first lens barrel
  • the second structural surface is located at the second lens structure attachment
  • the second lens structure attachment includes a second spacer mounted to the second barrel, or a glue that bonds the second spacer to the second barrel or the second lens, or the second lens a glue bonded to the second barrel.
  • first sub-lens and the second sub-lens are fixed together by bonding.
  • first sub-lens and the second sub-lens are fixed together by welding.
  • the welding comprises laser welding or ultrasonic welding.
  • an optical lens assembled by the optical lens assembly method described above, wherein a structure gap is formed between the first sub-lens and the second sub-lens of the optical lens;
  • a structure gap is formed between the first sub-lens and the second sub-lens of the optical lens;
  • the plurality of optical lenses of the same design at least a first optical lens and a second optical lens, a size value of a structure gap of the first optical lens in an optical axis direction and a structure gap of the second optical lens
  • the size values in the optical axis direction have a difference of 2 ⁇ m to 60 ⁇ m.
  • the first sub-lens and the second sub-lens each have an optical surface belonging to the optical system and a structural surface other than the optical surface, and the structural gap is a structural surface of the first sub-lens a gap between the structural faces of the second sub-lens.
  • the first sub-lens has a first structural surface that is closest to the second sub-lens in the optical axis direction and is within a projection range of the second sub-lens in the optical axis direction
  • the second sub-lens has a second structural surface that is closest to the first sub-lens in the optical axis direction and is located within a projection range of the first sub-lens
  • the structural gap is an average structural gap
  • the average The structural gap is the average gap between the first structural face and the second structural face on a section through the optical face.
  • a method for assembling a camera module including:
  • first subassembly Preparing a first subassembly and a second subassembly; wherein the first subassembly includes a first sub-lens, the first sub-lens includes a first lens barrel and at least one first lens, and the second sub-assembly includes a second sub-lens, the second sub-lens includes a second lens barrel and at least one second lens;
  • the first sub-assembly and the second sub-assembly are connected such that a relative distance of the first sub-lens and the second sub-lens in the optical axis direction remains unchanged.
  • the step of preparing the first sub-assembly and the second sub-assembly, the second sub-assembly further comprises a photosensitive element
  • the step of matching the actual image plane with the target surface it is recognized whether the measured image plane matches the target surface based on the image output by the photosensitive element.
  • the second sub-assembly further comprises a color filter element between the photosensitive element and the second lens.
  • matching the measured image surface with the target surface includes: obtaining an actual measured field curvature of the module by the image output by the photosensitive element, so that the module is The measured field curvature is in the range of +/- 5 ⁇ m.
  • the target surface is a plane.
  • the target surface is a convex or concave curved surface or a wavy curved surface.
  • At least one field of view is selected as the test field of view.
  • the selected field of view is a field of view within a range of 40% field of view to 85% field of view.
  • matching the measured image plane with the target surface comprises: selecting 2-10 fields of view as the test field of view, for each selected test field of view
  • the measured field curvature of the module is in the range of +/- 5 ⁇ m.
  • matching the measured image plane with the target surface includes: controlling convergence of the measured field curvature of the module in at least one of a sagittal direction and a meridional direction Within +/-5 ⁇ m.
  • the step of matching the measured image plane with the target surface includes:
  • a camera module comprising: a first subassembly including a first sub-lens, the first sub-lens including a first lens barrel and at least one first lens; a second subassembly comprising a second sub-lens, the second sub-lens comprising a second lens barrel and at least one second lens; wherein the first sub-lens is disposed on an optical axis of the second sub-lens, Forming an imageable optical system comprising the at least one first lens and the at least one second lens; the first sub-lens and the second sub-lens are fixed together and the first sub-lens and the There is a structural gap between the second sub-lenses, the structural gap having a size value in the optical axis direction that matches the image plane imaged by the optical system with the target surface.
  • the second sub-assembly further includes a photosensitive element, wherein, for a size value of the structural gap in the optical axis direction, the matching the image plane imaged by the optical system with the target surface comprises: According to the image output by the photosensitive element, the measured field curvature of the optical imaging module is obtained at at least one position moved to, and the measured field curvature of the module is in the range of +/- 5 ⁇ m.
  • the second subassembly further comprises a color filter element between the photosensitive element and the second lens.
  • the first sub-lens and the second sub-lens each have an optical surface belonging to the optical system and a structural surface other than the optical surface, and the structural gap is a structural surface of the first sub-lens a gap between the structural faces of the second sub-lens.
  • the first sub-lens has a first structural surface that is closest to the second sub-lens in the optical axis direction and is within a projection range of the second sub-lens in the optical axis direction
  • the second sub-lens has a second structural surface that is closest to the first sub-lens in the optical axis direction and is located within a projection range of the first sub-lens
  • the structural gap is an average structural gap
  • the average The structural gap is the average gap between the first structural face and the second structural face on a section through the optical face.
  • first structural surface is located in the first lens barrel
  • second structural surface is located in the second lens barrel
  • first structural surface is located in the first lens
  • second structural surface is located in the second lens barrel
  • first structural surface is located in the first lens barrel
  • second structural surface is located in the second lens
  • first structural surface is located in the first lens and the second structural surface is located in the second lens.
  • the first structural surface is located in the first lens structure attachment
  • the first lens structure attachment comprises a first spacer mounted on the first barrel, or the first spacer is bonded to the a glue of the first lens barrel or the first lens, or a glue material that bonds the first lens to the first lens barrel
  • the second structural surface is located at the second lens barrel.
  • the first structural surface is located in the first lens structure attachment
  • the first lens structure attachment comprises a first spacer mounted on the first barrel, or the first spacer is bonded to the a glue of the first lens barrel or the first lens, or a glue that bonds the first lens to the first lens barrel
  • the second structural surface is located at the second lens.
  • first structural surface is located in the first lens barrel; and the second structural surface is located in the second lens structure attachment, and the second lens structure attachment includes a second separation surface mounted on the second lens barrel Looping, or bonding the second spacer to the glue of the second barrel or the second lens, or bonding the second lens to the glue of the second barrel.
  • first structural surface is located in the first lens; and the second structural surface is located in the second lens structure attachment, and the second lens structure attachment comprises a second spacer mounted on the second lens barrel Or bonding the second spacer to the glue of the second barrel or the second lens, or bonding the second lens to the glue of the second barrel.
  • the first structural surface is located in the first lens structure attachment
  • the first lens structure attachment comprises a first spacer mounted on the first barrel, or the first spacer is bonded to the a glue material of the first lens barrel or the first lens, or a glue material bonding the first lens to the first lens barrel
  • the second structural surface is located at the second lens structure attachment
  • the second lens structure attachment includes a second spacer mounted to the second barrel, or a glue that bonds the second spacer to the second barrel or the second lens, or the second lens a glue bonded to the second barrel.
  • the structural gap has a dimension value in the optical axis direction of less than 500 ⁇ m.
  • a camera module assembled by using the assembly method of the camera module, wherein a first gap between the first sub-lens and the second sub-lens of the camera module has a structural gap;
  • the plurality of the camera modules are designed to have at least a first camera module and a second camera module, and the size value of the structure gap of the first camera module in the optical axis direction and the second camera mode
  • the structural gap of the group has a difference in size values in the optical axis direction, and the difference is 2 ⁇ m to 60 ⁇ m.
  • the first sub-lens and the second sub-lens each have an optical surface belonging to the optical system and a structural surface other than the optical surface, and the structural gap is a structural surface of the first sub-lens a gap between the structural faces of the second sub-lens.
  • the first sub-lens has a first structural surface that is closest to the second sub-lens in the optical axis direction and is within a projection range of the second sub-lens in the optical axis direction
  • the second sub-lens has a second structural surface that is closest to the first sub-lens in the optical axis direction and is located within a projection range of the first sub-lens
  • the structural gap is an average structural gap
  • the average The structural gap is the average gap between the first structural face and the second structural face on a section through the optical face.
  • the present invention has at least one of the following technical effects:
  • the invention adjusts the axial distance of the two sub-lenses during the assembly process of the split optical lens and the corresponding camera module, so that the field curvature of the assembled optical lens and the corresponding camera module is effectively reduced.
  • the invention can converge the field curvature distribution of the mass-produced optical lens or camera module, and improve the process capability index (CPK).
  • the invention can adjust the field curvature of the optical lens or the camera module in real time during the assembly process, thereby reducing the fluctuation of the field curvature, reducing the defect rate caused by the field curvature, reducing the production cost, and improving the imaging quality.
  • the present invention can loosen the requirements for the accuracy of each component of the optical imaging lens and the module and the assembly accuracy thereof, and reduce the overall cost of the optical imaging lens and the module.
  • the present invention provides a structure gap and defines a range of a plurality of the structure gaps, preferably less than 500 ⁇ m, providing space for multi-axis adjustment between a plurality of lens units, making multi-axis adjustable possible.
  • the present invention defines a structure gap, and limits the difference range of the structure gap of the split optical lens and the camera module thereof, 2 ⁇ m to 50 ⁇ m, preferably 2 ⁇ m to 20 ⁇ m, and the optical imaging lens and the module thereof
  • the difference in the field curvature is compensated by the use of the structural gap to compensate for the difference in the gap of the structure, so that the consistency of the field curvature of the mass-produced product is improved.
  • FIG. 1 is a schematic view showing an embodiment of an optical lens assembling method provided by the present invention
  • FIG. 3 is a schematic diagram showing a correspondence relationship between a target surface and an actually imaged image plane and a plurality of fields of view;
  • FIG. 4 is an enlarged schematic view showing a region in the vicinity of a structural gap of an optical lens in an embodiment of the present invention
  • FIG. 5 is an enlarged schematic view showing a region in the vicinity of a structural gap of an optical lens in another embodiment of the present invention.
  • FIG. 6 is an enlarged schematic view showing a region in the vicinity of a structural gap of an optical lens in another embodiment of the present invention.
  • Figure 7 is an enlarged schematic view showing a region in the vicinity of a structural gap of an optical lens in another embodiment of the present invention.
  • FIG. 8 is an enlarged schematic view showing a region in the vicinity of a structural gap of an optical lens in another embodiment of the present invention.
  • Figure 9 is an enlarged schematic view showing a region in the vicinity of a structural gap of an optical lens in another embodiment of the present invention.
  • Figure 10 is an enlarged schematic view showing a region in the vicinity of a structural gap of an optical lens in another embodiment of the present invention.
  • Figure 11 is an enlarged schematic view showing a region in the vicinity of a structural gap of an optical lens in another embodiment of the present invention.
  • Figure 12 is an enlarged schematic view showing a region in the vicinity of a structural gap of an optical lens in another embodiment of the present invention.
  • Figure 13 is an enlarged schematic view showing a region in the vicinity of a structural gap of an optical lens in another embodiment of the present invention.
  • FIG. 14 illustrates a method of assembling a camera module according to another embodiment of the present invention.
  • FIG. 15 is a schematic view showing that the measured image plane of the camera module completely coincides with the target surface.
  • first, second, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first subject discussed below may also be referred to as a second subject, without departing from the teachings of the present application.
  • the optical lens assembling method includes the following steps 1-4.
  • Step 1 Prepare the first sub-lens 100 and the second sub-lens 200.
  • the first sub-lens 100 includes a first lens barrel 101 and at least one first lens 102 mounted in the first lens barrel 101.
  • the number of the first lenses 102 in this embodiment is two, but it should be noted that the present invention is not limited thereto.
  • the number of first lenses 102 can also be one, three, four, and the like.
  • the second sub-lens 200 includes a second barrel 201 and at least one second lens 202 mounted in the second barrel 201.
  • the number of the second lenses 202 in this embodiment is three, but it should be noted that the present invention is not limited thereto.
  • the number of second lenses 202 can also be one, two, four, and the like.
  • Step 2 arranging the first sub-lens 100 on the optical axis 500 of the second sub-lens 200 to form an imageable optical system including the at least one first lens 102 and the at least one second lens 202 .
  • the optical system includes an object square target 400, two first lenses 102, three second lenses 202, and an image square target 300.
  • the image side target 300 may be a photodetector for testing, and the photodetector has a light detecting surface 301.
  • the photodetector contains photosensitive elements for testing.
  • the photosensitive surface of the photodetector is the light detecting surface 301. With the light detecting surface 301, the image plane of the optical system can be detected.
  • the optical lens is usually assembled with other components such as a photosensitive element to form a camera module, but in the optical system constructed in this step, the image-targeting target 300 is only a target for testing, and It is not the module photosensitive element in the camera module that the optical lens actually corresponds to.
  • the square target 300 can also be other types of targets such as a reticle.
  • the photodetector can be used as an object target. Since the optical path is reversible, this variant can also detect the image plane of the optical system.
  • Step 3 Matching the measured image plane with the target surface by moving the first sub-lens 100 relative to the second sub-lens 200 in the direction of the optical axis 500.
  • the target surface is flat.
  • the desired imaging surface of the optical lens is also a plane for achieving optimal imaging quality, that is, the target surface is flat at this time.
  • the target surface may also be a convex or concave curved surface, or a wavy curved surface.
  • the target surface of the photosensitive element of the camera module corresponding to the optical lens is a convex or concave curved surface
  • the target surface should also be a convex or concave curved surface for optimal imaging quality
  • the photosensitive surface of the photosensitive element of the corresponding camera module is a wave-shaped curved surface
  • the target surface should also be a wave-shaped curved surface.
  • FIG. 2a shows a case where the measured image plane does not match the target surface when the axial distance between the first sub-lens 100 and the second sub-lens 200 is D1.
  • the target surface is a plane
  • the measured field curvature is F1
  • F1 is not 0.
  • Fig. 2b shows a case where the measured image plane matches the target surface when the axial distance between the first sub-lens 100 and the second sub-lens 200 is D2. Referring to FIG. 2b, it can be seen that the measured image plane coincides with the target surface at this time, and the measured field curvature F2 is 0.
  • the target field curvature can be used to describe the degree of curvature of the target surface
  • the measured field curvature is used to describe the degree of curvature of the image surface actually measured by the image square target 300 during optical lens assembly.
  • the shape of the measured image plane can be considered to match the shape of the desired image plane. In this state, superior image quality can be obtained.
  • the target surface is a plane
  • the target field curvature is 0.
  • the target field curvature is not zero.
  • FIG. 3 is a schematic diagram showing the correspondence between the target surface and the actually imaged image plane and the plurality of fields of view, wherein the two curves respectively represent the target surface and the image plane actually imaged, wherein the dotted curve represents the target surface, which is a solid line
  • the curve represents the image plane of the actual image.
  • Multiple fields of view from 0 to 1 are marked on both the target and image planes (the field contains 0 field of view, 0.1 field of view, 0.2 field of view, 0.3 field of view, 0.4 field of view, 0.5 field of view, 0.6 field of view) , 0.7 field of view, 0.8 field of view, 0.9 field of view, 1 field of view) corresponding position.
  • the image surface of the actual image can be obtained by measuring the field curvature.
  • the image plane corresponding to each field of view (each field of view corresponding to a ring image plane) relative to the 0 field image can be obtained.
  • the axial direction (optical axis direction) of the surface is offset.
  • the shape of the entire image plane can be obtained based on the axial position of the annular image plane corresponding to each field of view.
  • the measured field curvature of the optical system image is acquired at at least one position moved to, and the measured field image is identified according to the measured field curvature to match whether the measured image plane matches the target surface.
  • at least one field of view is selected as the test field of view.
  • the measured field curvature corresponding to the test field of view is an axial offset value of the measured image plane of the test field of view relative to the measured image plane of the reference field of view (the axis refers to the direction of the optical axis 500).
  • the measured image plane is the image plane actually received by the image side target 300.
  • the field of view is preferably a field of view of 40% field of view to 85% field of view.
  • the reference field of view can be a zero field of view (or referred to as a central field of view). It should be noted, however, that the reference field of view of the present invention is not limited to a zero field of view.
  • the target field curvature is an axial deviation value of the position of the target surface corresponding to the test field of view relative to the position of the target surface corresponding to the reference field of view.
  • the measured image plane and the target surface match comprise: the difference between the measured field curvature and the target field curvature is in a range of +/- 5 ⁇ m. That is to say, when the difference between the measured field curvature and the target field curvature is in the range of +/- 5 ⁇ m, it is regarded that the measured image plane and the target surface match. It should be noted that when comparing the measured image surface with the target surface, the same test field of view and the same reference field of view should be selected. In one embodiment, only one of the test fields of view may be selected.
  • the selected test field of view may be multiple, such as 2-10.
  • the difference between the measured field curvature and the target field curvature is in the range of +/- 5 ⁇ m, and the measured field curvature is regarded as matching the target field curvature.
  • the measured image plane and the target plane are considered to match.
  • step 3 includes the following sub-steps.
  • Step 31 Moving the object square target or the image side target along the optical axis to make the optical system clear, that is, complete the focusing of the optical system.
  • the central field of view is selected for focusing.
  • Step 32 Move the first sub-lens 100 relative to the second sub-lens 200 in the direction of the optical axis 500 and stay at a measured position.
  • the second sub-lens 200 may be stationary, and move the first sub-lens 100 along the optical axis 500.
  • the first sub-lens 100 may not move, and move along the optical axis 500.
  • the sub-lens 200 it is also possible that both the first sub-lens 100 and the second sub-lens move along the optical axis 500.
  • the second sub-lens 200 is fixed, and the first sub-lens 100 is clamped by the clamping device 600 to move the clamping device 600 along the z-axis (ie, along the optical axis 500). Moving, the first sub-lens 100 is moved relative to the second sub-lens 200 in the direction of the optical axis 500.
  • the clamping device 600 can also be replaced by an adsorption device.
  • Step 33 Acquire the measured field curvature of the optical system imaging at the current measured position.
  • the first sub-lens 100 and the second sub-lens 200 stop relative movement.
  • the measured field curvature of the optical system measured by the square target 300 is measured.
  • the corresponding resolution power defocus curve can be obtained by the image target 300, which is simply referred to as the test field defocus curve.
  • the corresponding resolution power defocus curve can also be obtained by the image target 300, which is simply referred to as the reference field of view defocus curve.
  • each measurement point corresponds to one defocus curve
  • the average value of the vertex positions of the plurality of defocus curves of the plurality of measurement points is separated from the reference field of view.
  • the axial deviation of the focal point of the focal curve (when the reference field of view is 0 field of view) (the axial deviation is a vector) is the measured field curvature corresponding to the test field of view.
  • the axial deviation is the deviation in the direction of the optical axis 500.
  • the deviation can be regarded as a deviation value of the measured image plane of the test field of view relative to the measured image plane of the reference field of view.
  • the reference field of view defocus curve vertex position refers to the average of the vertex positions of the plurality of defocus curves of the plurality of reference points on the reference field of view.
  • Step 34 judging whether the measured image plane under the current measured position matches the target surface, if yes, directly performing the step 4, and if not, continuing to perform the sub-step 32 and the sub-step 33 until the measured image plane under the current measured position Matches the target face.
  • the method for judging the matching of the measured image surface with the target surface is as described above, and will not be described here.
  • step 3 after the end of step 3, other adjustment steps may be selectively performed, and after the other adjustment steps are completed, step 4 is performed.
  • Step 4 The first sub-lens 100 and the second sub-lens 200 are connected such that the relative distances of the first sub-lens 100 and the second sub-lens 200 in the direction of the optical axis 500 remain unchanged. After the connection is completed, the first sub-lens 100 and the second sub-lens 200 are fixed together to form a complete optical lens.
  • one complete optical lens is formed by two sub-lenses, and in other embodiments, a complete optical lens can be constructed by a larger number of sub-lenses.
  • the assembly method of the above embodiment can converge the field curvature distribution of the mass-produced optical lens or camera module, and improve the process capability index (CPK).
  • the above embodiment can adjust the field curvature of the optical lens or the camera module in real time during the assembly process, thereby reducing the fluctuation of the field curvature, reducing the defect rate caused by the field curvature, reducing the production cost, and improving the imaging quality.
  • the above embodiments can also loosen the requirements for the accuracy of the optical imaging lens and the various components of the module and the assembly accuracy thereof, and reduce the overall cost of the optical imaging lens and the module.
  • the process of connecting the first sub-lens and the second sub-lens may be selected according to circumstances.
  • the first sub-lens and the second sub-lens are joined by a bonding process.
  • the first sub-lens and the second sub-lens are connected by a laser welding process.
  • the first sub-lens and the second sub-lens are connected by an ultrasonic welding process.
  • other welding processes are also available. It should be noted that in the present invention, the term "connected" is not limited to direct connection.
  • the first sub-lens and the second sub-lens may be connected by an intermediary (the intermediary may be a rigid intermediary) as long as such a connection through the intermediary enables the first sub-lens 100 and The relative distance of the second sub-lens 200 in the direction of the optical axis 500 remains unchanged, then within the meaning of the term "connected".
  • the first sub-lens 100 may be connected to the second sub-lens 200 through a third sub-lens, and the third sub-lens may be regarded as an intermediary.
  • an optical lens is also provided. Still referring to FIG. 1, the optical lens includes a first sub-lens 100 and a second sub-lens 200.
  • the first sub-lens 100 includes a first barrel 101 and at least one first lens 102
  • the second sub-lens 200 includes a second barrel 201 and at least one second lens 202.
  • the first sub-lens 100 is disposed on the optical axis 500 of the second sub-lens 200 to form an imageable optical system including the at least one first lens 102 and the at least one second lens 202.
  • the number of first lenses 102 is two and the number of second lenses 202 is three.
  • the number of first lenses 102 can also be one, three, four, and the like.
  • the number of second lenses 202 can also be one, two or four, and the like.
  • the first sub-lens 102 and the second sub-lens 202 are fixed together and a structural gap is formed between the first sub-lens 102 and the second sub-lens 202.
  • the optical axis direction has a size value that matches a measured image plane of the optical system with a target surface. It is possible to determine whether the measured image plane and the target surface match based on the measured field curvature and the target field curvature.
  • the measured field curvature can be obtained by actual measurement.
  • the target field curvature is obtained based on the target surface corresponding to the optical lens.
  • the structural gap between the first sub-lens and the second sub-lens is determined by the characteristics of the first sub-lens and the second sub-lens in the optical lens.
  • the size value of the structure gap in the optical axis direction is determined by the optical characteristics of the first sub-lens and the second sub-lens itself in the optical lens. In other words, for different first sub-lens and second sub-lens combinations, there may be a large difference in the size values of the structural gap in the optical axis direction.
  • Fig. 4 is an enlarged schematic view showing a region in the vicinity of a structural gap of an optical lens in an embodiment of the present invention.
  • the first sub-lens 100 and the second sub-lens 200 each have an optical surface and a structural surface.
  • the optical surface is the surface through which the effective light on the lens passes.
  • the surface of the lens that does not belong to the optical surface is a structural surface.
  • the faces on the lens barrel are all structural surfaces.
  • the first sub-lens 100 includes a first barrel 101 and a first lens 102.
  • the first lens 102 has a first lens optical surface 1022 and a first lens structure surface 1021
  • the first lens barrel 101 has a first barrel structure surface 1011 thereon.
  • the second lens 202 has a second lens optic surface 2022 and a second lens structure surface 2021.
  • the second barrel 201 has a second barrel structural surface 2011.
  • the structure gap is a gap between a structural surface of the first sub-lens and a structural surface of the second sub-lens. The gap between the optical faces or the gap between the optical faces and the structural faces does not belong to the structural gaps described. In the embodiment of FIG.
  • the structural gap is a gap between the first barrel structure surface 1011 and the second barrel structure surface 2011.
  • the structural gap between the two determines the degree of curvature of the image plane of the optical lens.
  • the size of the adapted structural gap in the direction of the optical axis can match the image plane of the optical lens to the target surface.
  • the first sub-lens 100 and the second sub-lens 200 are bonded together by the glue 700.
  • the glue 700 itself does not belong to the first sub-lens 100 nor to the second sub-lens 200. That is, the face of the glue 700 is neither the structural face of the first sub-lens 100 nor the structural face of the second sub-lens 200.
  • the dimension value of the structure gap in the optical axis direction is less than 500 ⁇ m.
  • Fig. 5 is an enlarged schematic view showing a region in the vicinity of a structural gap of an optical lens in another embodiment of the present invention.
  • the first sub-lens 100 includes a first barrel 101 and a first lens 102.
  • the first lens 102 has a first lens optical surface 1022 and a first lens structure surface 1021
  • the first lens barrel 101 has a first barrel structure surface 1011 thereon.
  • the second lens 202 has a second lens optic surface 2022 and a second lens structure surface 2021.
  • the second barrel 201 has a second barrel structure surface 2011.
  • the first structural surface is the structural surface closest to the second sub-lens on the first sub-lens
  • the second structural surface is the structural surface closest to the first sub-lens on the second sub-lens. Since the first lens structure surface 1021 is closer to the second lens barrel 200 than the first barrel structure surface 1011, the first lens structure surface 1021 is the first structural surface.
  • the second barrel structure surface 2011 is a second structural surface. Therefore, the structural gap is a gap between the first lens structure surface 1021 and the second barrel structure surface 2011.
  • the glue 700 itself does not belong to the first sub-lens 100 nor to the second sub-lens 200. That is, the face of the glue 700 is neither the structural face of the first sub-lens 100 nor the structural face of the second sub-lens 200.
  • the first sub-lens 100 includes a first barrel 101 and a first lens 102.
  • the first lens 102 has a first lens optical surface 1022 and a first lens structure surface 1021
  • the first lens barrel 101 has a first barrel structure surface 1011 thereon.
  • the second lens 202 has a second lens optic surface 2022 and a second lens structure surface 2021.
  • the second barrel 201 has a second barrel structure surface 2011.
  • the first structural surface is the structural surface closest to the second sub-lens on the first sub-lens
  • the second structural surface is the structural surface closest to the first sub-lens on the second sub-lens. Since the first lens structure surface 1021 is closer to the second lens barrel 200 than the first barrel structure surface 1011, the first lens structure surface 1021 is the first structural surface.
  • the first sub-lens 100 further has a first lens structure attachment 1023
  • the second sub-lens 202 further has a second lens structure attachment 2023.
  • the second structural surface is located on the second lens structure attachment 2023.
  • the structural gap D is a gap between the structural surfaces of the first lens structure surface 1021 and the second lens structure attachment 2023.
  • the second lens structure attachment 2023 and the first lens structure attachment 1023 are both spacers mounted on the lens barrel.
  • the lens structure attachment of the embodiment is not limited thereto, for example, the first lens structure attachment may include a first spacer installed on the first barrel, or the first spacer is bonded to a glue of the first barrel or the first lens, or a glue that bonds the first lens to the first barrel.
  • the second lens structure attachment further includes a second spacer mounted on the second barrel, or a glue that bonds the second spacer to the second barrel or the second lens, or the The second lens is bonded to the glue of the second barrel.
  • Fig. 7 is an enlarged schematic view showing a region in the vicinity of a structural gap of an optical lens in another embodiment of the present invention.
  • the first sub-lens 100 includes a first spacer 1014. It is easy to see that the distance between the first spacer 1014 and the second sub-lens 200 is greater than the distance between the first barrel structure surface 1011 and the second barrel structure surface 2011, so the first spacer 1014 does not affect the structure.
  • the size of the gap is a gap between the first barrel structure surface 1011 and the second barrel structure surface 2011.
  • Fig. 8 is an enlarged schematic view showing a region in the vicinity of a structural gap of an optical lens in another embodiment of the present invention.
  • the first barrel 101 has three first barrel structure faces 1011a, 1011b, 1011c
  • the second barrel 201 has two second barrel structure faces 2011a, 2011b.
  • the structural gap D is a gap between the first barrel structure surface 1011a and the second barrel structure surface 2011a.
  • the gap between the first barrel structure face 1011b and the second barrel structure face 2011b is the smallest, the gap between them is radial (i.e., perpendicular to the optical axis direction).
  • the effect of matching the image plane with the target surface is obtained by defining the dimension value of the axial direction of the structural gap (ie, the direction along the optical axis). Therefore, the gap between the first barrel structure surface 1011a and the second barrel structure surface 2011a having the shortest axial distance serves as the structure gap D.
  • Fig. 9 is an enlarged schematic view showing a region in the vicinity of a structural gap of an optical lens in another embodiment of the present invention.
  • the first barrel 101 has two first barrel structure faces 1011a, 1011b
  • the second barrel 201 has two second barrel structure faces 2011a, 2011b.
  • the first lens 102 has a first lens structure face 1021 and the second lens 202 has a second lens structure attachment 2023.
  • the first barrel structure face 1011b is closest to the second barrel structure face 2011b, but the gap between them is a radial gap rather than an axial gap.
  • the effect of obtaining the image plane matching the target surface is achieved by defining the axial dimension value of the structural gap.
  • the gap between the first barrel structure surface 1011b and the second barrel structure surface 2011b is not a structural gap.
  • the two axially closest structural faces are the first lens structural face 1021 and the structural face of the second lens structural accessory 2023, respectively.
  • the structural gap D in this embodiment is the gap between the two structural faces.
  • the second barrel structure surface 2011a of the second barrel 201 is disposed outside the first barrel 101, which results in the first barrel 101 having no corresponding structural surface in the axial direction. Therefore, the second barrel structure surface 2011a is not a structural surface defining the structure gap D.
  • the first structural surface should be located within the projection range of the second sub-lens in the optical axis direction, and the second structural surface should be located at the optical axis of the first sub-lens Within the projection range of the direction.
  • Fig. 10 is an enlarged schematic view showing a region in the vicinity of a structural gap of an optical lens in another embodiment of the present invention.
  • the first barrel 101 has two first barrel structure faces 1011a, 1011b
  • the second barrel 201 has two second barrel structure faces 2011a, 2011b.
  • the first barrel structure surface 1011b and the second barrel structure surface 2011b are both sloped surfaces. It can be seen that the spacing of the two inclined faces in the axial direction is smaller than the spacing between the first barrel structure face 1011a and the second barrel structure face 2011a. Therefore, the structural gap D is a gap between the first barrel structure surface 1011b and the second barrel structure surface 2011b.
  • the two inclined surfaces of the first barrel structure surface 1011b and the second barrel structure surface 2011b are not parallel, and the axial distance between the first barrel structure surface 1011b and the second barrel structure surface 2011b is the smallest. It is the size value of the structural gap in the axial direction. It should be noted that this method of value is not unique.
  • the dimension value of the structural gap in the axial direction may also be the axial distance between the first structural surface and the second structural surface. average of.
  • Fig. 11 is an enlarged schematic view showing a region in the vicinity of a structural gap of an optical lens in another embodiment of the present invention.
  • the first barrel 101 has two first barrel structure faces 1011a, 1011b
  • the second barrel 201 has two second barrel structure faces 2011a, 2011b.
  • the first barrel structure surface 1011b and the second barrel structure surface 2011b are both sloped surfaces. It can be seen that the spacing of the two inclined faces in the axial direction is not less than the spacing between the first barrel structure face 1011a and the second barrel structure face 2011a. Therefore, the structural gap D is a gap between the first barrel structure surface 1011a and the second barrel structure surface 2011a.
  • Fig. 12 is an enlarged schematic view showing a region in the vicinity of a structural gap of an optical lens in another embodiment of the present invention.
  • the first sub-lens 100 includes a first spacer 1014.
  • the difference from the embodiment of FIG. 7 is that the distance between the first spacer 1014 and the second barrel structure surface 2011 is smaller than the distance between the first barrel structure surface 1011 and the second barrel structure surface 2011. Therefore, in the present embodiment, the structural gap D is a gap between the structural surface of the first spacer 1014 and the second barrel structure surface 2011. That is, in some cases, the structural face of the lens attachment structure may affect the value of the structural gap D.
  • Fig. 13 is an enlarged schematic view showing a region in the vicinity of a structural gap of an optical lens in another embodiment of the present invention.
  • the first sub-lens 100 includes a first spacer 1014 and a first glue 1015.
  • the first adhesive material 1015 bonds the first spacer 1014 to the first lens barrel 101.
  • the first adhesive material 1015 should be regarded as a part of the first sub-lens 100, and therefore the structural surface of the first adhesive material 1015 also belongs to a part of the first sub-lens 100.
  • the structural surface of the first adhesive material 1015 is the structural surface closest to the second sub-lens 200 in the axial direction
  • the structural surface of the first adhesive material 1015 is used as the first structural surface in the present embodiment
  • the corresponding surface is The two barrel structure surface 2011 is used as the second structural surface.
  • the structural gap D is the gap between the structural surface of the first rubber 1015 and the second barrel structure surface 2011.
  • the structural surface of the first rubber material 1015 is not parallel to the second barrel structure surface 2011, the average distance between the structural surface of the first rubber material 1015 and the second barrel structure surface 2011 may be used as a structural gap.
  • the glue 700 for bonding the first sub-lens and the second sub-lens does not belong to the first sub-lens 100 nor to the second sub-lens 200. That is, the face of the glue 700 is neither the structural face of the first sub-lens 100 nor the structural face of the second sub-lens 200.
  • the above embodiment describes various embodiments of the vicinity of the structural gap of the optical lens of the present invention.
  • the above embodiments are merely exemplary, and other situations exist in the present invention.
  • the structural gap can be defined as follows.
  • the first sub-lens is located closest to the second sub-lens in the optical axis direction and is located within a projection range of the second sub-lens in the optical axis direction a first structural surface; for the second sub-lens, a structural surface of the second sub-lens that is closest to the first sub-lens in the optical axis direction and located within a projection range of the first sub-lens as a second structure surface.
  • the average structural gap of the first structural face and the second structural face is taken as the structural gap.
  • the average structural gap is an average gap between the first structural face and the second structural face on a section through the optical face.
  • the first structural surface may be located in a first lens structure attachment, the first lens structure attachment comprising a first spacer mounted on the first barrel, or bonding the first spacer a glue to the first barrel or the first lens, or a glue to the first lens to the first lens barrel.
  • the second structural surface may be located at a second lens structure attachment, the second lens structure attachment comprising a second spacer mounted to the second barrel, or the second spacer being bonded a glue to the second barrel or the second lens, or a glue to the second lens to the second lens barrel.
  • the glue 700 for bonding the first sub-lens and the second sub-lens does not belong to the first sub-lens 100 nor to the second sub-lens 200. That is, the glue 700 that bonds the first sub-lens and the second sub-lens cannot be confused with the glue that is the attachment of the first or second lens structure.
  • the surface of the rubber material 700 is neither the structural surface of the first sub-lens 100 nor the structural surface of the second sub-lens 200.
  • the first sub-lens and the second sub-lens may be fixed together by welding. It is not necessary to use the glue 700 at this time.
  • the welding method may be laser welding or ultrasonic welding.
  • an optical lens assembled based on the optical lens assembling method in the foregoing embodiment is further provided according to an embodiment of the present invention.
  • the optical lens produced by this assembly method has a structural gap between the first sub-lens and the second sub-lens.
  • the dimensional parameters of multiple products of the same design are highly consistent.
  • the measured field curvature is The target field curvature matches, which allows individual products of the same design to have different structural gaps.
  • the optical surface thickness, the optical surface height, and the optical surface radius of curvature of each lens may have tolerances; due to the limitation of the processing precision of the components, the lens There may be tolerances in the thickness of the spacer elements; due to the dimensional tolerances of the assembled components and the accuracy of the assembly of the lens, there may be tolerances in the assembly fit of the lenses; due to material stability and batch consistency limitations, the refractive index of the lens material may be Variety.
  • any sub-lens cause any sub-lens to be unique, so for each combination of the first sub-lens and the second sub-shot, the measured field curvature can be matched with the target field curvature, the first sub-lens and The relative distance of the second sub-lens in the direction of the optical axis is also unique. Therefore, the dimensional values of the structural gaps of the optical lenses mass-produced by the assembly method of the present embodiment in the optical axis direction are different. The difference is from 2 ⁇ m to 60 ⁇ m. For example, multiple optical lenses of the same design. They have structural gaps D 1 , D 2 , ..., D n , respectively .
  • At least two of D 1 , D 2 , ..., D n can be found, and the difference between them is in the range of 2 ⁇ m to 60 ⁇ m.
  • at least the first optical lens and the second optical lens are included in the plurality of optical lenses of the same design, and the size of the structural gap of the first optical lens in the optical axis direction is The structural gap of the second optical lens has a difference in size values in the optical axis direction, and the difference is 2 ⁇ m to 60 ⁇ m.
  • the same design refers to the same set of optical design and the same set of structural design. Only attachments, labels, and the like are not considered to be different designs.
  • the first sub-lens has a first one that is closest to the second sub-lens in the optical axis direction and is within a projection range of the second sub-lens in the optical axis direction.
  • a second sub-lens having a second structural surface that is closest to the first sub-lens in the optical axis direction and located within a projection range of the first sub-lens, the structural gap being an average structural gap
  • the average structural gap is an average gap between the first structural surface and the second structural surface on a cross section through the optical surface.
  • FIG. 14 illustrates a method of assembling a camera module according to another embodiment of the present invention.
  • the assembly method of the camera module includes steps 10-40.
  • Step 10 Prepare the first sub-assembly 1000 and the second sub-assembly 2000.
  • the first sub-assembly 1000 includes a first sub-lens 100.
  • the second subassembly includes a second sub-lens 200 and a module photosensitive element 800.
  • a color filter element 900 is also mounted between the second sub-lens 200 and the module photosensitive element 800.
  • the first sub-lens 100 includes a first lens barrel 101 and at least one first lens 102 mounted in the first lens barrel 101.
  • the number of the first lenses 102 in this embodiment is two, but it should be noted that the present invention is not limited thereto. For example, in other embodiments, the number of first lenses 102 can also be one, three, four, and the like.
  • the second sub-lens 200 includes a second barrel 201 and at least one second lens 202 mounted in the second barrel 201.
  • the number of the second lenses 202 in this embodiment is three, but it should be noted that the present invention is not limited thereto.
  • the number of second lenses 202 can also be one, two, four, and the like.
  • Step 20 arranging the first sub-lens 100 on the optical axis 500 of the second sub-lens 200 to form an imageable optical system including the at least one first lens 102 and the at least one second lens 202 .
  • the optical system includes an object square target 400, two first lenses 102, three second lenses 202, and a photosensitive element 800.
  • the photosensitive element 800 has a photosensitive surface 801. The image surface of the optical system can be detected by the photosensitive surface 801.
  • the photosensitive element 800 is a photosensitive element built in the assembled camera module.
  • Step 30 Matching the image plane of the optical system imaging with the target surface by moving the first sub-lens 100 relative to the second sub-lens 200 in the direction of the optical axis 500.
  • the target surface For the assembled camera module, there will be a desired imaging surface, and this desired imaging surface will be referred to herein as the target surface.
  • the target surface is flat.
  • the desired imaging surface of the optical lens is also a flat surface for optimal imaging quality, that is, the target surface is planar at this time.
  • the target surface may also be a convex or concave curved surface, or a wavy curved surface.
  • the target surface of the photosensitive element of the camera module is a convex or concave curved surface
  • the target surface should also be a convex or concave curved surface for optimal imaging quality
  • the photosensitive element of the camera module The photosensitive surface is a wavy curved surface, and the target surface should also be a wavy curved surface.
  • step 30 based on the image outputted by the photosensitive element 800, it is recognized whether the measured image plane imaged by the optical system matches the target surface.
  • the shape of the photosensitive surface 801 of the photosensitive member 800 is the shape of the desired imaging surface. That is to say, the photosensitive surface 801 is the target surface, and thus the image received through the photosensitive surface 801 already implies the bending information of the target surface. Therefore, in order to improve the image quality, the field curvature obtained from the image outputted by the photosensitive member 800 should be as small as possible.
  • the field curvature obtained from the image output by the photosensitive element 800 is referred to herein as a module measured field curvature. When the measured field curvature of the module approaches 0, it is considered that the shape of the image plane formed by the imaging of the optical system matches the target surface. In this state, superior image quality can be obtained.
  • At least one field of view is selected as the test field of view.
  • the measured field curvature corresponding to the test field of view is an axial offset value of the measured image plane of the test field of view relative to the measured image plane of the reference field of view.
  • the measured image plane is the image plane actually received by the image side target 300.
  • the field of view is preferably a field of view of 40% field of view to 85% field of view.
  • the reference field of view can be a zero field of view (or referred to as a central field of view). It should be noted, however, that the reference field of view of the present invention is not limited to a zero field of view.
  • the matching the image surface to the target surface comprises: the measured field curvature of the module is in a range of +/- 5 ⁇ m. That is to say, when the measured field curvature of the module is in the range of +/- 5 ⁇ m, it is regarded that the measured image plane matches the target surface. In one embodiment, only one of the test fields of view may be selected.
  • the selected test field of view may be multiple, such as 2-10. For each of the test fields of view, if the measured field curvature of the module is in the range of +/- 5 ⁇ m, it is considered that the measured image plane matches the target surface.
  • the measured image plane is considered to match the target surface.
  • step 30 includes the following sub-steps.
  • Step 310 Moving the object square target or the image side target along the optical axis to make the optical system clear, that is, complete the focusing of the optical system.
  • the central field of view is selected for focusing.
  • Step 320 Move the first sub-lens 100 relative to the second sub-lens 200 in the direction of the optical axis 500 and stay at a measured position.
  • the second sub-lens 200 may be stationary, and move the first sub-lens 100 along the optical axis 500.
  • the first sub-lens 100 may not move, and move along the optical axis 500.
  • the sub-lens 200 it is also possible that both the first sub-lens 100 and the second sub-lens move along the optical axis 500.
  • the second sub-lens 200 is fixed, and the first sub-lens 100 is clamped by the clamping device 600 to move the clamping device 600 along the z-axis (ie, along the optical axis 500). Moving, the first sub-lens 100 is moved relative to the second sub-lens 200 in the direction of the optical axis 500.
  • the clamping device 600 can also be replaced by an adsorption device.
  • Step 330 Acquire a measured field curvature of the module imaged by the optical system at the current measured position.
  • the first sub-lens 100 and the second sub-lens 200 stop relative movement.
  • the module of the optical system measured by the module photosensitive element 800 measures the field curvature.
  • the corresponding resolution force defocus curve can be obtained by the module photosensitive element 800, which is simply referred to as the test field of view defocus curve.
  • the corresponding resolution power defocus curve can also be obtained by the module photosensitive element 800, which is simply referred to as the reference field of view defocus curve.
  • each measurement point corresponds to one defocus curve
  • the average value of the vertex positions of the plurality of defocus curves of the plurality of measurement points is separated from the reference field of view.
  • the axial deviation of the focal point of the focal curve (when the reference field of view is 0 field of view) (the axial deviation is a vector) is the measured field curvature corresponding to the test field of view.
  • the axial deviation is the deviation in the direction of the optical axis 500.
  • the deviation can be regarded as a deviation value of the measured image plane of the test field of view relative to the measured image plane of the reference field of view.
  • the reference field of view defocus curve vertex position refers to the average of the vertex positions of the plurality of defocus curves of the plurality of reference points on the reference field of view.
  • Step 340 Determine whether the measured field curvature of the module under the current measured position is within the target range. If yes, perform step 40 directly. If not, continue to perform sub-step 320 and sub-step 330 until the current measured position is The group measured field music is within the target range.
  • the target range is in the range of +/- 5 [mu]m. When the measured field curvature of the module is 0, it means that the measured image surface completely coincides with the target surface.
  • Fig. 15 is a view showing a completely coincident image of the image of the camera module and the target surface.
  • step 30 after the end of step 30, other adjustment steps may be selectively performed, and after the other adjustment steps are completed, step 40 is performed.
  • Step 40 The first sub-lens 100 and the second sub-lens 200 are connected such that the relative distances of the first sub-lens 100 and the second sub-lens 200 in the direction of the optical axis 500 remain unchanged. After the connection is completed, the first sub-lens 100 and the second sub-lens 200 are fixed together to form a complete optical lens.
  • one complete optical lens is formed by two sub-lenses, and in other embodiments, a complete optical lens can be constructed by a larger number of sub-lenses.
  • the assembly method of the above embodiment enables the field curvature distribution of the mass-produced camera module to converge and the process capability index (CPK) to be improved.
  • the above embodiment can adjust the field curvature of the camera module in real time during the assembly process, thereby reducing the fluctuation of the field curvature, reducing the defect rate caused by the field curvature, reducing the production cost, and improving the image quality.
  • the above embodiments can also make the requirements for the accuracy of each component of the camera module and the assembly precision thereof loose, and reduce the overall cost of the camera module.
  • the process of connecting the first sub-lens and the second sub-lens may be selected according to circumstances.
  • the first sub-lens and the second sub-lens are joined by a bonding process.
  • the first sub-lens and the second sub-lens are connected by a laser welding process.
  • the first sub-lens and the second sub-lens are connected by an ultrasonic welding process.
  • other welding processes are also available.
  • the first sub-lens and the second sub-lens may be directly connected or connected by an intermediary such as a rigid medium.
  • the first sub-lens may be connected to the second sub-lens through a third sub-lens (or a third sub-assembly).
  • the third sub-lens (or the third sub-assembly) can be regarded as an intermediary.
  • a camera module including: a first sub-assembly and a second sub-assembly.
  • the first subassembly includes a first sub-lens, the first sub-lens including a first lens barrel and at least one first lens.
  • the second subassembly includes a second sub-lens and a photosensitive element, and the second sub-lens includes a second barrel and at least one second lens.
  • first sub-lens is disposed on an optical axis of the second sub-lens to form an imageable optical system including the at least one first lens and the at least one second lens; the first sub-lens And the second sub-lens are fixed together and have a structural gap between the first sub-lens and the second sub-lens, the structural gap having a matching surface of the optical system with the target surface The size value in the direction of the optical axis.
  • the second subassembly may also include a color filter element between the photosensitive element and the second lens.
  • the matching the measured image surface of the optical system to the target surface comprises: outputting according to the photosensitive element And obtaining an actual measured field curvature of the optical imaging module at at least one position moved to, the module measuring field curvature in a range of +/- 5 ⁇ m.
  • the first sub-lens and the second sub-lens each have an optical surface belonging to the optical system and a structural surface other than the optical surface, and the structural gap is a structural surface of the first sub-lens a gap between the structural faces of the second sub-lens.
  • the first sub-lens has a second sub-lens in the optical axis direction and is within a projection range of the second sub-lens in the optical axis direction.
  • a first structural surface the second sub-lens having a second structural surface that is closest to the first sub-lens in the optical axis direction and located within a projection range of the first sub-lens
  • the structural gap is An average structural gap, which is an average gap between the first structural face and the second structural face on a section through the optical face.
  • the structural gap of the camera module may be a structural gap as shown in FIGS. 4-13. These structural gaps have been described in detail above and will not be described here.
  • the structural gap has a dimension value in the optical axis direction of less than 500 ⁇ m.
  • an image pickup module assembled by the assembly method of the foregoing camera module is further provided.
  • the dimensional parameters of multiple products of the same design are highly consistent.
  • the measured image surface is Target surface matching, which allows individual products of the same design to have different structural gaps.
  • the same design refers to the same set of optical design and the same set of structural design. Only attachments, labels, and the like are not considered to be different designs.
  • the first sub-lens and the second sub-lens each have an optical surface belonging to the optical system and a structural surface other than the optical surface, and the structural gap is the first sub-lens a gap between the structural face and the structural face of the second sub-lens.
  • the first sub-lens has a first one that is closest to the second sub-lens in the optical axis direction and is within a projection range of the second sub-lens in the optical axis direction.
  • a second sub-lens having a second structural surface that is closest to the first sub-lens in the optical axis direction and located within a projection range of the first sub-lens, the structural gap being an average structural gap
  • the average structural gap is an average gap between the first structural surface and the second structural surface on a cross section through the optical surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Lenses (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本发明提供了一种光学镜头组装方法,包括:准备第一子镜头和第二子镜头;第一子镜头包括第一镜筒和至少一个第一镜片,第二子镜头包括第二镜筒和至少一个第二镜片;将所述第一子镜头布置于所述第二子镜头的光轴,构成可成像的光学系;通过使所述第一子镜头相对于所述第二子镜头在所述光轴方向上移动,使所述光学系成像的实测像面与目标面匹配;以及连接所述第一子镜头和所述第二子镜头,使得所述第一子镜头和所述第二子镜头在所述光轴方向上的相对距离保持不变。本发明还提供了相应的光学镜头以及摄像模组及其组装方法。本发明能够使场曲被有效减小;能够使过程能力指数提升;能够使得各个元件精度及其装配精度的要求变宽松。

Description

光学镜头、摄像模组及其组装方法
相关申请的交叉引用
本申请要求于2017年8月11日向中国国家知识产权局提交的第201710687361.1号和201721004423.6号中国专利申请的优先权和权益,该申请的全部内容通过引用并入本文。
技术领域
本发明涉及光学技术领域,具体地说,本发明涉及光学镜头和摄像模组的解决方案。
背景技术
随着移动电子设备的普及,被应用于移动电子设备的用于帮助使用者获取影像(例如视频或者图像)的摄像模组的相关技术得到了迅猛的发展和进步,并且在近年来,摄像模组在诸如医疗、安防、工业生产等诸多的领域都得到了广泛的应用。
为了满足越来越广泛的市场需求,高像素,小尺寸,大光圈是现有摄像模组不可逆转的发展趋势。市场对摄像模组的成像质量提出了越来越高的需求。影响既定光学设计的摄像模组解像力的因素包括光学成像镜头的品质和模组封装过程中的制造误差。其中光学成像镜头的场曲以及模组封装制造误差形成的场曲都会影响到摄像模组的解像力。在行业内,场曲问题目前并没有有效的解决方案。
场曲又称“像场弯曲”。当透镜存在场曲时,整个光束的交点不与理想像点重合,虽然在每个特定点都能得到清晰的像点,但整个像平面则是一个曲面。当感光元件是平面时,弯曲的像面不能和感光元件的感光面重合,以至于,当中心视场重合时,中心视场的解像力高,成像清晰,而周边有场曲的视场由于像面弯曲而不能与感光元件的感光面重合,造成解像力低,成像品质下降;反之亦然,当周边有场曲 的视场与感光元件的感光面重合时,该周边视场的解像力高,成像清晰,而中心视场由于不能与感光元件的感光面重合,造成解像力低,成像品质下降。即使感光元件不是平面,只要光学镜头的成像面的弯曲程度与感光元件的感光面的弯曲程度不匹配,就会出现此两者之间的相对差异,即场曲,其造成的影响与上述情况一样。
所以场曲的影响使得镜头的成像像面不能与感光元件的感光面很好的匹配而造成被感光元件所成的像相对于最佳成像品质有所下降。
因摄像模组的场曲产生于光学成像镜头的制造过程以及模组封装的过程中。其中任何一个过程中所产生的场曲没有被消除都会引起成像质量的下降,两个过程的场曲存在叠加恶化的情况,解决的过程不能够孤立看待。然而现产业链中,光学成像镜头的制造过程与模组封装的过程是分开的,这一现状与所述两个过程的场曲不应被孤立解决相矛盾。
下面,从上述两大过程中分别论述现有场曲解决方案及现状:
(一)(1)传统的光学成像镜头中的一体式镜头,多个透镜被逐次固定在镜筒中,透镜一旦被安装在镜筒中,位置不可再调整,镜头整体的性能确定,对成像质量的控制只能通过控制部件公差来实现。(2)传统的光学成像镜头中的分体镜头,多个镜头单元无间隙紧密承靠于某一安装面,以此获得移动基准,其安装面平行于成像面,因此,其移动带来的调整只能是沿所承靠的安装面的平行于成像面的调整。不能解决场曲问题。
在光学成像镜头的制造过程中,场曲来自于:各元件及其装配的误差,包含各镜片单体的光学面厚度,光学面矢高,光学面面型曲率半径等方面的误差,这些误差取决于模具精度与成型精度的控制能力;以及镜片间隔元件厚度,取决于元件的加工精度;以及各镜片的装配配合,取决于被装配元件的尺寸公差以及镜头的装配精度;以及镜片材料折射率的变化,取决于材料的稳定性以及批次一致性。并且,上述各个元件影响场曲的误差存在累积恶化的现象,这个累计误差会随着透镜数量的增多而不断增大。现有场曲解决方案为对于对场曲相对敏感度高的元件的尺寸进行批量控制、匹配来达到降低场曲的目的, 但是由于是批量性定值调整,调整变量少,被调整的元件单一且受限于单一镜筒的结构,调整自由度低,反馈周期长,造成只能对大批量产品场曲分布的中心值进行调整,但不能收敛场曲分布宽度,即不能改善场曲过程制程能力的指数,场曲的过程能力指数(CPK)低、波动大,因此由场曲造成的解像力的不良率高。且如上所述,因为影响场曲的因素非常多,存在于多个元件中,每个因素的控制都存在制造精度的极限,如果只是单纯提升各个元件的精度,提升能力有限,提升成本高昂,而且残留场曲不能满足市场日益提高的成像品质需求。在这种情况下,现有光学成像镜头的场曲分布基本在+/-10μm,较优的分布也在+/-7μm,在各元件部品及其装配精度控制不好的情况下,分布范围会达到+/-15μm。而市场对成像品质需求要求场曲分布小于+/-5μm。
(二)在摄像模组的封装制造过程中,场曲来自于感光元件的感光面弯曲或目标像面存在弯曲度差异。差异来源包含:感光元件的厚度、电路基板的厚度及平整度,取决于元件的制造能力,模组尺寸小型化的限制和结构强度;以及粘接感光元件的胶材的厚度,均匀度及热膨胀系数,取决于材料特性和贴付工艺;以及附属透光光学元件的厚度、均匀度与折射率,取决于材料特性和加工精度;以及封装材料收缩带来应力变形,取决于材料特性、模组尺寸小型化的限制和结构强度。现有场曲解决方案为提升上述各个元件的结构强度,降低变形收缩量。事实上这些办法并不能有效解决前述问题。因为影响场曲的因素非常多,存在于多个元件中,每个因素的控制都存在制造精度的极限,如果只是单纯提升各个元件的强度,提升能力有限,提升成本高昂,而且残留场曲不能满足市场日益提高的成像品质需求。在这种情况下,现有摄像模组的场曲波动大,分布基本在+/-12μm,较优的分布也在+/-8μm,在各元件部品及其装配精度控制不好的情况下,分布范围会达到+/-17μm。而市场对成像品质需求要求场曲分布小于+/-5μm。
发明内容
本发明旨在提供一种能够克服现有技术的上述至少一个缺陷的解决方案。
根据本发明的一个方面,提供了一种光学镜头组装方法,包括:
准备第一子镜头和第二子镜头;其中所述第一子镜头包括第一镜筒和至少一个第一镜片,所述第二子镜头包括第二镜筒和至少一个第二镜片;
将所述第一子镜头布置于所述第二子镜头的光轴,构成包含所述至少一个第一镜片和所述至少一个第二镜片的可成像的光学系;
通过使所述第一子镜头相对于所述第二子镜头在所述光轴方向上移动,使所述光学系成像的实测像面与目标面匹配;以及
连接所述第一子镜头和所述第二子镜头,使得所述第一子镜头和所述第二子镜头在所述光轴方向上的相对距离保持不变。
其中,使所述实测像面与目标面匹配的步骤包括:通过使所述第一子镜头相对于所述第二子镜头在所述光轴方向上移动,获取在所移动至的至少一个位置下所述光学系成像的实测场曲,使所述实测场曲与目标场曲匹配。
其中,在使所述实测像面与目标面匹配的步骤中,所述实测场曲是所选择的测试视场的实测像面相对于参考视场的实测像面的轴向偏离值。
其中,在使所述实测像面与目标面匹配的步骤中,所述目标场曲是目标面对应于所述测试视场的位置相对于目标面对应于所述参考视场的位置的轴向偏离值。
其中,在使所述实测像面与目标面匹配的步骤中,所述实测场曲与目标场曲匹配包括:所述实测场曲与所述目标场曲之差处于+/-5μm范围内。
其中,在使所述实测像面与目标面匹配的步骤中,所述目标面为平面。
其中,在使所述实测像面与目标面匹配的步骤中,所述目标面为凸形或凹形的曲面或者波浪形的曲面。
其中,在使所述实测像面与目标面匹配的步骤中,选择至少一个视场作为所述的测试视场。
其中,在使所述实测像面与目标面匹配的步骤中,所述测试视场是40%视场到85%视场范围内的视场。
其中,在使所述实测像面与目标面匹配的步骤中,使所述实测像面与目标面匹配包括:选择2-10个视场作为测试视场,对于每个所选择的测试视场,所述实测场曲与所述目标场曲之差均处于+/-5μm范围内。
其中,在使所述实测像面与目标面匹配的步骤中,使所述实测像面与目标面匹配包括:使在弧矢方向和子午方向中至少一个方向的实测场曲收敛控制在+/-5μm以内。
其中,使所述实测像面与目标面匹配的步骤包括:
使所述第一子镜头相对于所述第二子镜头在所述光轴方向上移动并停留在一个实测位置;
获取在当前实测位置下所述光学系成像的实测场曲;以及
判断当前实测位置下的实测场曲是否与目标场曲匹配,如果是则执行所述连接步骤,如果否,则继续执行使所述第一子镜头相对于所述第二子镜头移动的子步骤和获取光学系成像的实测场曲的子步骤,直至当前实测位置下的实测场曲与目标场曲匹配。
其中,在使所述第一子镜头相对于所述第二子镜头在所述光轴方向上移动的步骤之前,沿着所述光轴移动物方标靶或像方标靶,使所述光学系成像清晰。
其中,在所述连接步骤中,通过粘结工艺连接所述第一子镜头和所述第二子镜头。
其中,在所述连接步骤中,通过焊接工艺连接所述第一子镜头和所述第二子镜头。
其中,所述焊接工艺包括激光焊或超声焊。
根据本发明的另一方面,还提供了一种光学镜头,包括:第一子镜头,所述第一子镜头包括第一镜筒和至少一个第一镜片;以及第二 子镜头,所述第二子镜头包括第二镜筒和至少一个第二镜片;其中,所述第一子镜头布置于所述第二子镜头的光轴,构成包含所述至少一个第一镜片和所述至少一个第二镜片的可成像的光学系;所述第一子镜头和所述第二子镜头固定在一起并且所述第一子镜头和所述第二子镜头之间具有结构间隙,所述结构间隙具有使所述光学系成像的像面与目标面匹配的在所述光轴方向上的尺寸值。
其中,所述第一子镜头和所述第二子镜头均具有属于所述光学系的光学面以及所述光学面以外的结构面,所述结构间隙是所述第一子镜头的结构面与所述第二子镜头的结构面之间的间隙。
其中,所述第一子镜头具有在所述光轴方向上最靠近所述第二子镜头且位于所述第二子镜头在所述光轴方向的投影范围之内的第一结构面,所述第二子镜头具有在光轴方向上最靠近所述第一子镜头且位于所述第一子镜头的投影范围之内的第二结构面,所述结构间隙是平均结构间隙,所述平均结构间隙是穿过所述光学面的剖面上所述第一结构面与所述第二结构面之间的平均间隙。
其中,所述结构间隙在所述光轴方向上的尺寸值小于500μm。
其中,所述第一结构面位于所述第一镜筒,并且所述第二结构面位于所述第二镜筒。
其中,所述第一结构面位于所述第一镜片,并且所述第二结构面位于所述第二镜筒。
其中,所述第一结构面位于所述第一镜筒,并且所述第二结构面位于所述第二镜片。
其中,所述第一结构面位于所述第一镜片,并且所述第二结构面位于所述第二镜片。
其中,所述第一结构面位于所述第一镜片结构附件,所述第一镜片结构附件包括安装在第一镜筒的第一隔圈,或者将所述第一隔圈粘结至所述第一镜筒或第一镜片的胶材,或者将所述第一镜片粘结至所述第一镜筒的胶材;并且所述第二结构面位于所述第二镜筒。
其中,所述第一结构面位于所述第一镜片结构附件,所述第一镜片结构附件包括安装在第一镜筒的第一隔圈,或者将所述第一隔圈粘 结至所述第一镜筒或第一镜片的胶材,或者将所述第一镜片粘结至所述第一镜筒的胶材;并且所述第二结构面位于所述第二镜片。
其中,所述第一结构面位于所述第一镜筒;并且所述第二结构面位于所述第二镜片结构附件,所述第二镜片结构附件包括安装在第二镜筒的第二隔圈,或者将所述第二隔圈粘结至所述第二镜筒或第二镜片的胶材,或者将所述第二镜片粘结至所述第二镜筒的胶材。
其中,所述第一结构面位于所述第一镜片;并且所述第二结构面位于所述第二镜片结构附件,所述第二镜片结构附件包括安装在第二镜筒的第二隔圈,或者将所述第二隔圈粘结至所述第二镜筒或第二镜片的胶材,或者将所述第二镜片粘结至所述第二镜筒的胶材。
其中,所述第一结构面位于所述第一镜片结构附件,所述第一镜片结构附件包括安装在第一镜筒的第一隔圈,或者将所述第一隔圈粘结至所述第一镜筒或第一镜片的胶材,或者将所述第一镜片粘结至所述第一镜筒的胶材;并且所述第二结构面位于所述第二镜片结构附件,所述第二镜片结构附件包括安装在第二镜筒的第二隔圈,或者将所述第二隔圈粘结至所述第二镜筒或第二镜片的胶材,或者将所述第二镜片粘结至所述第二镜筒的胶材。
其中,所述第一子镜头和所述第二子镜头通过粘结固定在一起。
其中,所述第一子镜头和所述第二子镜头通过焊接固定在一起。
其中,所述焊接包括激光焊接或超声焊接。
根据本发明的另一方面,还提供了一种利用前述光学镜头组装方法组装的光学镜头,所述光学镜头的所述第一子镜头和所述第二子镜头之间具有结构间隙;其中,同一设计的多个所述光学镜头中,至少具有第一光学镜头和第二光学镜头,所述第一光学镜头的结构间隙在光轴方向上的尺寸值与所述第二光学镜头的结构间隙在光轴方向上的尺寸值具有差异,所述差异为2μm-60μm。
其中,所述第一子镜头和所述第二子镜头均具有属于所述光学系的光学面以及所述光学面以外的结构面,所述结构间隙是所述第一子镜头的结构面与所述第二子镜头的结构面之间的间隙。
其中,所述第一子镜头具有在所述光轴方向上最靠近所述第二子镜头且位于所述第二子镜头在所述光轴方向的投影范围之内的第一结构面,所述第二子镜头具有在光轴方向上最靠近所述第一子镜头且位于所述第一子镜头的投影范围之内的第二结构面,所述结构间隙是平均结构间隙,所述平均结构间隙是穿过所述光学面的剖面上所述第一结构面与所述第二结构面之间的平均间隙。
根据本发明的另一方面,还提供了一种摄像模组的组装方法,包括:
准备第一子组件和第二子组件;其中所述第一子组件包括第一子镜头,所述第一子镜头包括第一镜筒和至少一个第一镜片,所述第二子组件包括第二子镜头,所述第二子镜头包括第二镜筒和至少一个第二镜片;
将所述第一子镜头布置于所述第二子镜头的光轴,构成包含所述至少一个第一镜片和所述至少一个第二镜片的可成像的光学系;
通过使第一子镜头相对于第二子镜头在所述光轴方向上移动,获得在所移动至的至少一个位置下所述光学系成像的实测场曲,使所述实测像面与目标面匹配;以及
连接所述第一子组件和所述第二子组件,使得所述第一子镜头和所述第二子镜头在所述光轴方向上的相对距离保持不变。
其中,所述的准备第一子组件和第二子组件的步骤中,所述第二子组件还包括感光元件;
在所述使所述实测像面与目标面匹配的步骤中,根据所述感光元件所输出的图像识别实测像面是否与目标面匹配。
其中,在所述的准备第一子组件和第二子组件的步骤中,所述第二子组件还包括位于所述感光元件与所述第二镜片之间的滤色元件。
其中,在使所述实测像面与目标面匹配的步骤中,使所述实测像面与目标面匹配包括:通过所述感光元件所输出的图像获得模组实测场曲,使所述模组实测场曲处于+/-5μm范围内。
其中,在使所述实测像面与目标面匹配的步骤中,所述目标面为 平面。
其中,在使所述实测像面与目标面匹配的步骤中,所述目标面为凸形或凹形的曲面或者波浪形的曲面。
其中,在使所述实测像面与目标面匹配的步骤中,选择至少一个视场作为测试视场。
其中,在使所述实测像面与目标面匹配的步骤中,所述的所选择的视场是40%视场到85%视场范围内的视场。
其中,在使所述实测像面与目标面匹配的步骤中,使所述实测像面与目标面匹配包括:选择2-10个视场作为测试视场,对于每个所选择的测试视场,所述模组实测场曲均处于+/-5μm范围内。
其中,在使所述实测像面与目标面匹配的步骤中,使所述实测像面与目标面匹配包括:使在弧矢方向和子午方向中至少一个方向的模组实测场曲收敛控制在+/-5μm以内。
其中,使所述实测像面与目标面匹配的步骤包括:
使所述第一子镜头相对于所述第二子镜头在所述光轴方向上移动并停留在一个实测位置;
获取在当前实测位置下所述光学系成像的模组实测场曲;以及
判断当前实测位置下的模组实测场曲是否处于+/-5μm范围内,如果是则执行所述连接步骤,如果否,则继续执行使所述第一子镜头相对于所述第二子镜头移动的子步骤和获取光学系成像的模组实测场曲的子步骤,直至当前实测位置下的模组实测场曲处于+/-5μm范围内。
根据本发明的另一方面,还提供了一种摄像模组,包括:第一子组件,其包括第一子镜头,所述第一子镜头包括第一镜筒和至少一个第一镜片;以及第二子组件,其包括第二子镜头,所述第二子镜头包括第二镜筒和至少一个第二镜片;其中,所述第一子镜头布置于所述第二子镜头的光轴,构成包含所述至少一个第一镜片和所述至少一个第二镜片的可成像的光学系;所述第一子镜头和所述第二子镜头固定在一起并且所述第一子镜头和所述第二子镜头之间具有结构间隙,所述结构间隙具有使所述光学系成像的像面与目标面匹配的在所述光轴 方向上的尺寸值。
其中,所述第二子组件还包括感光元件,其中,对于所述结构间隙的在所述光轴方向上的尺寸值,所述的使所述光学系成像的像面与目标面匹配包括:根据所述感光元件所输出的图像,获得在所移动至的至少一个位置下所述光学系成像的模组实测场曲,该模组实测场曲处于+/-5μm范围内。
其中,所述第二子组件还包括位于所述感光元件与所述第二镜片之间的滤色元件。
其中,所述第一子镜头和所述第二子镜头均具有属于所述光学系的光学面以及所述光学面以外的结构面,所述结构间隙是所述第一子镜头的结构面与所述第二子镜头的结构面之间的间隙。
其中,所述第一子镜头具有在所述光轴方向上最靠近所述第二子镜头且位于所述第二子镜头在所述光轴方向的投影范围之内的第一结构面,所述第二子镜头具有在光轴方向上最靠近所述第一子镜头且位于所述第一子镜头的投影范围之内的第二结构面,所述结构间隙是平均结构间隙,所述平均结构间隙是穿过所述光学面的剖面上所述第一结构面与所述第二结构面之间的平均间隙。
其中,所述第一结构面位于所述第一镜筒,并且所述第二结构面位于所述第二镜筒。
其中,所述第一结构面位于所述第一镜片,并且所述第二结构面位于所述第二镜筒。
其中,所述第一结构面位于所述第一镜筒,并且所述第二结构面位于所述第二镜片。
其中,所述第一结构面位于所述第一镜片,并且所述第二结构面位于所述第二镜片。
其中,所述第一结构面位于所述第一镜片结构附件,所述第一镜片结构附件包括安装在第一镜筒的第一隔圈,或者将所述第一隔圈粘结至所述第一镜筒或第一镜片的胶材,或者将所述第一镜片粘结至所述第一镜筒的胶材;并且所述第二结构面位于所述第二镜筒。
其中,所述第一结构面位于所述第一镜片结构附件,所述第一镜 片结构附件包括安装在第一镜筒的第一隔圈,或者将所述第一隔圈粘结至所述第一镜筒或第一镜片的胶材,或者将所述第一镜片粘结至所述第一镜筒的胶材;并且所述第二结构面位于所述第二镜片。
其中,所述第一结构面位于所述第一镜筒;并且所述第二结构面位于所述第二镜片结构附件,所述第二镜片结构附件包括安装在第二镜筒的第二隔圈,或者将所述第二隔圈粘结至所述第二镜筒或第二镜片的胶材,或者将所述第二镜片粘结至所述第二镜筒的胶材。
其中,所述第一结构面位于所述第一镜片;并且所述第二结构面位于所述第二镜片结构附件,所述第二镜片结构附件包括安装在第二镜筒的第二隔圈,或者将所述第二隔圈粘结至所述第二镜筒或第二镜片的胶材,或者将所述第二镜片粘结至所述第二镜筒的胶材。
其中,所述第一结构面位于所述第一镜片结构附件,所述第一镜片结构附件包括安装在第一镜筒的第一隔圈,或者将所述第一隔圈粘结至所述第一镜筒或第一镜片的胶材,或者将所述第一镜片粘结至所述第一镜筒的胶材;并且所述第二结构面位于所述第二镜片结构附件,所述第二镜片结构附件包括安装在第二镜筒的第二隔圈,或者将所述第二隔圈粘结至所述第二镜筒或第二镜片的胶材,或者将所述第二镜片粘结至所述第二镜筒的胶材。
其中,所述结构间隙在所述光轴方向上的尺寸值小于500μm。
根据本发明的另一方面,还提供一种利用前述摄像模组的组装方法组装的摄像模组,所述摄像模组的第一子镜头和第二子镜头之间具有结构间隙;其中,同一设计的多个所述摄像模组中,至少具有第一摄像模组和第二摄像模组,所述第一摄像模组的结构间隙在光轴方向上的尺寸值与所述第二摄像模组的结构间隙在光轴方向上的尺寸值具有差异,所述差异为2μm-60μm。
其中,所述第一子镜头和所述第二子镜头均具有属于所述光学系的光学面以及所述光学面以外的结构面,所述结构间隙是所述第一子镜头的结构面与所述第二子镜头的结构面之间的间隙。
其中,所述第一子镜头具有在所述光轴方向上最靠近所述第二子 镜头且位于所述第二子镜头在所述光轴方向的投影范围之内的第一结构面,所述第二子镜头具有在光轴方向上最靠近所述第一子镜头且位于所述第一子镜头的投影范围之内的第二结构面,所述结构间隙是平均结构间隙,所述平均结构间隙是穿过所述光学面的剖面上所述第一结构面与所述第二结构面之间的平均间隙。
与现有技术相比,本发明具有下列至少一个技术效果:
1、本发明通过对在分体式光学镜头及相应的摄像模组的组装过程中调节两个子镜头的轴向距离,使得组装后的光学镜头及相应的摄像模组的场曲被有效减小。
2、本发明能够使大批量生产的光学镜头或摄像模组的场曲分布得以收敛,过程能力指数(CPK)提升。
3、本发明能够在组装过程中对光学镜头或摄像模组的场曲进行实时调整,因而降低场曲的波动性,降低由于场曲造成的不良率,降低生产成本,提升成像品质。
4、本发明能够使得对光学成像镜头以及模组的各个元件精度及其装配精度的要求变宽松,降低了光学成像镜头以及模组的整体成本。
5、本发明通过设置一结构间隙,并对多个该结构间隙的范围进行限定,优选为小于500μm,为多个镜头单元之间的多轴可调整提供空间,使得多轴可调整成为可能。
6、本发明通过设置一结构间隙,并对分体式光学镜头及其摄像模组的该结构间隙的差异范围进行限定,2μm到50μm,优选为2μm到20μm,将光学成像镜头及其模组的场曲的差异通过利用结构间隙进行调整弥补转化为该结构间隙的差异,使得大批量生产产品的场曲的一致性得以提升。
附图说明
在参考附图中示出示例性实施例。本文中公开的实施例和附图应被视作说明性的,而非限制性的。
图1示出了本发明所提供的光学镜头组装方法的一个实施例的示意图;
图2a示出了在第一子镜头100与第二子镜头200的轴向距离为D1时,实测像面与目标面不匹配的情形;
图2b示出了在第一子镜头100与第二子镜头200的轴向距离为D2时,实测像面与目标面匹配的情形;
图3示出了目标面和实际成像的像面与多个视场对应关系的示意图;
图4示出了本发明一个实施例中光学镜头的结构间隙附近区域的放大示意图;
图5示出了本发明另一个实施例中光学镜头的结构间隙附近区域的放大示意图;
图6示出了本发明另一个实施例中光学镜头的结构间隙附近区域的放大示意图;
图7示出了本发明另一个实施例中光学镜头的结构间隙附近区域的放大示意图;
图8示出了本发明另一个实施例中光学镜头的结构间隙附近区域的放大示意图;
图9示出了本发明另一个实施例中光学镜头的结构间隙附近区域的放大示意图;
图10示出了本发明另一个实施例中光学镜头的结构间隙附近区域的放大示意图;
图11示出了本发明另一个实施例中光学镜头的结构间隙附近区域的放大示意图;
图12示出了本发明另一个实施例中光学镜头的结构间隙附近区域的放大示意图;
图13示出了本发明另一个实施例中光学镜头的结构间隙附近区域的放大示意图;
图14示出了根据本发明的另一实施例所提供的摄像模组的组装方法;
图15示出了摄像模组的实测像面与目标面完全重合的示意图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一主体也可被称作第二主体。
在附图中,为了便于说明,已稍微夸大了物体的厚度、尺寸和形状。附图仅为示例而并非严格按比例绘制。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
图1示出了本发明所提供的光学镜头组装方法的一个实施例的示意图,参考图1,该光学镜头组装方法包括下列步骤1-4。
步骤1:准备第一子镜头100和第二子镜头200。其中,所述第一子镜头100包括第一镜筒101和安装在所述第一镜筒101内的至少一个第一镜片102。本实施例中第一镜片102的数目为两个,但需要注意,本发明不限于此。例如,在其它实施例中,第一镜片102的数目也可以是一个、三个或四个等。所述第二子镜头200包括第二镜筒201和安装在所述第二镜筒201中的至少一个第二镜片202。本实施例中第二镜片202的数目为三个,但需要注意,本发明不限于此。例如,在其它实施例中,第二镜片202的数目也可以是一个、两个或四个等。
步骤2:将所述第一子镜头100布置于所述第二子镜头200的光轴500,构成包含所述至少一个第一镜片102和所述至少一个第二镜片202的可成像的光学系。本实施例中,所述光学系包含一个物方标靶400、两个第一镜片102、三个第二镜片202以及一个像方标靶300。本实施例中,像方标靶300可以是用于测试的光探测器,光探测器具有光探测面301。光探测器包含用于测试的感光元件。这种情况下,该光探测器的感光面就是所述光探测面301。利用所述光探测面301,可对光学系的像面进行探测。需要注意,光学镜头通常会与感光元件等其它元件组装在一起构成摄像模组,但在本步骤中构建的所述光学系中,像方标靶300仅仅是用于测试的标靶,它并不是光学镜头实际对应的摄像模组中的模组感光元件。
当然,像方标靶300也可以是分划板等其它类型的标靶。当像方标靶300为分划板时,光探测器可作为物方标靶。由于光路是可逆的,这种变形的方案也可以对光学系的像面进行探测。
步骤3:通过使所述第一子镜头100相对于所述第二子镜头200在所述光轴500方向上移动,使所述实测像面与目标面匹配。
对于组装完成的光学镜头,会有一个所期望的成像面,本文中将这个所期望的成像面称为目标面。在一些情形下,目标面为平面。例如,如果光学镜头所对应的摄像模组的感光元件的感光面为平面,那么为达到最佳成像品质,所述光学镜头所期望的成像面也是平面,也就是说,此时目标面为平面。在另一些情形下,所述目标面也可以是凸形或凹形的曲面,或者波浪形的曲面。例如,如果光学镜头所对应的摄像模组的感光元件的感光面为凸形或凹形的曲面,那么为达到最佳成像品质,目标面也应是凸形或凹形的曲面;如果光学镜头所对应的摄像模组的感光元件的感光面为波浪形的曲面,目标面也应是波浪形的曲面。
图2a示出了在第一子镜头100与第二子镜头200的轴向距离为D1时,实测像面与目标面不匹配的情形。图2a中目标面为平面,实测场曲为F1,F1不为0。图2b示出了在第一子镜头100与第二子镜头200的轴向距离为D2时,实测像面与目标面匹配的情形。参考图2b,可以看出,此时实测像面与目标面重合,实测场曲F2为0。
在一个实施例中,可以用目标场曲来描述目标面的弯曲程度,用实测场曲来描述在光学镜头组装过程中利用所述像方标靶300所实际测出的像面的弯曲程度。当实测场曲与目标场曲匹配时,可认为实测的像面的形状与所期望的像面的形状匹配。在此状态下,能够获得较优的成像品质。当目标面为平面时,目标场曲为0。当目标面为曲面时,目标场曲不为0。图3示出了目标面和实际成像的像面与多个视场对应关系的示意图,其中两条曲线分别代表目标面和实际成像的像面,其中虚线状的曲线代表目标面,实线状的曲线代表实际成像的像面。在目标面和像面上均标示出了0到1的多个视场(图中包含0视场、0.1视场、0.2视场、0.3视场、0.4视场、0.5视场、0.6视场、0.7视场、0.8视场、0.9视场、1视场)所对应的位置。其中实际成像的像面可以通过实测场曲得到。例如选择0视场作为参考视场,分别测量多个视场的实测场曲,就可以得到对应于各个视场的像面(每个视场对应于一个环形像面)相对于0视场像面的轴向(光轴方向)偏移。基于对应于各个视场的环形像面的轴向位置,即可获得整个像面的形 状。
进一步地,在一个实施例中,获取在所移动至的至少一个位置下所述光学系成像的实测场曲,根据实测场曲识别所述实测像面是否与目标面匹配。其中,选择至少一个视场作为测试视场。对应于所述测试视场的所述实测场曲是该测试视场的实测像面相对于参考视场的实测像面的轴向偏离值(所述轴向是指光轴500的方向)。这里,实测像面就是利用所述像方标靶300实际接收到的像面。测试视场优选40%视场到85%视场范围内的视场。参考视场可以是0视场(或者称为中心视场)。但需要注意,本发明的参考视场并不限于0视场。例如,当目标面是波浪形的曲面时,可以选择目标面最凸起或最凹陷位置所对应的视场作为参考视场。本实施例中,目标场曲是目标面对应于测试视场的位置相对于目标面对应于参考视场的位置的轴向偏离值。
进一步地,在一个实施例中,所述实测像面和目标面匹配包括:所述实测场曲与所述目标场曲之差处于+/-5μm范围内。也就是说,当所述实测场曲与所述目标场曲之差处于+/-5μm范围内时,视为实测像面和目标面匹配。需注意,所述实测像面和目标面进行比较时,应选择同一测试视场与同一参考视场。在一个实施例中,测试视场可以仅选择一个。
进一步地,在一个实施例中,所选择的测试视场可以是多个,例如2-10个。对于其中每一个测试视场,所述实测场曲与所述目标场曲之差均处于+/-5μm范围内,则视为实测场曲与目标场曲匹配。
进一步地,在一个实施例中,如果在弧矢方向和子午方向中至少一个方向的实测场曲收敛控制在+/-5μm以内,则视为所述实测像面和目标面匹配。
进一步地,所述步骤3包括下列子步骤。
步骤31:沿着所述光轴移动物方标靶或像方标靶,使所述光学系成像清晰,也就是完成光学系的对焦,本实施例选择中心视场进行对焦。
步骤32:使第一子镜头100相对于第二子镜头200在所述光轴500 的方向上移动,并停留在一个实测位置。在具体实现上,可以是第二子镜头200不动,沿着所述光轴500移动第一子镜头100;也可以是第一子镜头100不动,沿着所述光轴500移动第二子镜头200;还可以是第一子镜头100和第二子镜头均沿着所述光轴500移动。
参考图1,本实施例中,第二子镜头200固定不动,利用夹持装置600夹持第一子镜头100,使夹持装置600沿着z轴移动(即沿着所述光轴500移动),即可实现使第一子镜头100相对于第二子镜头200在所述光轴500的方向上移动。在另一实施例中,所述夹持装置600也可以由吸附装置替代。
步骤33:获取在当前实测位置下所述光学系成像的实测场曲。在当前的实测位置,第一子镜头100和第二子镜头200停止相对移动。此时通过像方标靶300测出的所述光学系的实测场曲。对于测试视场,可通过像方标靶300获得相应的解像力离焦曲线,简称为测试视场离焦曲线。对于参考视场,也可以通过像方标靶300获得相应的解像力离焦曲线,简称为参考视场离焦曲线。在实际测量时,每个测试视场上会取多个测量点,每个测量点对应于一条离焦曲线,多个测量点的多条离焦曲线的顶点位置的平均值与参考视场离焦曲线顶点位置(当参考视场为0视场时)的轴向偏离(该轴向偏离是一个矢量),就是对应于所述测试视场的实测场曲。其中轴向偏离是所述光轴500方向上的偏离。该偏离可视为该测试视场的实测像面相对于参考视场的实测像面的偏离值。当参考视场为非0视场时,参考视场离焦曲线顶点位置是指该参考视场上多个参考点的多条离焦曲线的顶点位置的平均值。
步骤34:判断当前实测位置下的实测像面是否与目标面匹配,如果是则直接执行所述步骤4,如果否,则继续执行子步骤32和子步骤33,直至当前实测位置下的实测像面与目标面匹配。实测像面与目标面匹配的判定方式如前文所述,此处不再赘述。
在其他实施例中,步骤3结束后,还可以选择性地再进行其他调整步骤,在其它调整步骤完成后,再执行步骤4。
步骤4:连接第一子镜头100和第二子镜头200,使得第一子镜头100和第二子镜头200在所述光轴500方向上的相对距离保持不变。连接完成后,第一子镜头100和第二子镜头200被固定在一起构成一个完整的光学镜头。
在上述实施例中,通过两个子镜头构成一个完整的光学镜头,而在其它实施例中,可以通过更多数量的子镜头构成一个完整的光学镜头。
上述实施例中,在组装过程中对两个子镜头的轴向距离进行了调节,使得组装后的光学镜头的场曲被有效减小(或者使得光学镜头的场曲更加符合期望)。并且,上述实施例的组装方法能够使大批量生产的光学镜头或摄像模组的场曲分布得以收敛,过程能力指数(CPK)提升。上述实施例能够在组装过程中对光学镜头或摄像模组的场曲进行实时调整,因而降低场曲的波动性,降低由于场曲造成的不良率,降低生产成本,提升成像品质。上述实施例还能够使得对光学成像镜头以及模组的各个元件精度及其装配精度的要求变宽松,降低了光学成像镜头以及模组的整体成本。
本发明中,所述步骤4中,连接第一子镜头和第二子镜头的工艺可以根据情况选择。例如,在一个实施例中,通过粘结工艺连接第一子镜头和第二子镜头。在另一个实施例中,通过激光焊接工艺连接第一子镜头和第二子镜头。在又一个实施例中,通过超声焊工艺连接第一子镜头和第二子镜头。除了上述工艺以外,其它焊接工艺也可供选择。需注意,本发明中,“连接”一词并不限于直接连接。例如,在一个实施例中,第一子镜头和第二子镜头可以通过中介物(该中介物可以是刚性的中介物)连接,只要这种通过中介物的连接能够使第一子镜头100和第二子镜头200在所述光轴500方向上的相对距离保持不变,那么就在“连接”一词的含义之内。例如,所述第一子镜头100可以通过一个第三子镜头连接所述第二子镜头200,此时第三子镜头可以视为一个中介物。
进一步地,根据本发明的另一实施例,还提供了一种光学镜头。仍然参考图1,该光学镜头包括第一子镜头100和第二子镜头200。其中第一子镜头100包括第一镜筒101和至少一个第一镜片102,第二子镜头200包括第二镜筒201和至少一个第二镜片202。所述第一子镜头100布置于所述第二子镜头200的光轴500,构成包含所述至少一个第一镜片102和所述至少一个第二镜片202的可成像的光学系。在图1的光学系中,第一镜片102的数目为两个,第二镜片202的数目为三个。但需要注意,本发明不限于此。例如,在其它实施例中,第一镜片102的数目也可以是一个、三个或四个等。第二镜片202的数目也可以是一个、两个或四个等。
本实施例中,所述第一子镜头102和所述第二子镜头202固定在一起并且所述第一子镜头102和所述第二子镜头202之间具有结构间隙,所述结构间隙在所述光轴方向上具有使得所述光学系的实测像面与目标面匹配的尺寸值。可以基于实测场曲与目标场曲得出实测像面与目标面是否匹配。实测场曲可以通过实测得到。目标场曲则基于该光学镜头所对应的目标面得到。本实施例中,对于任意一个光学镜头,其第一子镜头和第二子镜头之间的结构间隙由该光学镜头中的第一子镜头和第二子镜头本身的特性决定。尤其是,该结构间隙在光轴方向上的尺寸值由该光学镜头中的第一子镜头和第二子镜头本身的光学特性决定。换句话说,对于不同的第一子镜头和第二子镜头组合,结构间隙在光轴方向上的尺寸值可能存在较大差异。
图4示出了本发明一个实施例中光学镜头的结构间隙附近区域的放大示意图。该实施例中,第一子镜头100和第二子镜头200均具有光学面和结构面。在镜头中,光学面是镜片上有效光线所经过的面。镜片上不属于光学面的面为结构面。而位于镜筒的面均为结构面。
参考图4,第一子镜头100包括第一镜筒101和第一镜片102。第一镜片102上具有第一镜片光学面1022和第一镜片结构面1021,第一镜筒101上具有第一镜筒结构面1011。第二镜片202具有第二镜片光学面2022和第二镜片结构面2021。第二镜筒201具有第二镜筒结 构面2011。所述结构间隙是所述第一子镜头的结构面与所述第二子镜头的结构面之间的间隙。光学面之间的间隙或者光学面与结构面之间的间隙不属于所述的结构间隙。在图4的实施例中,所述结构间隙是第一镜筒结构面1011与第二镜筒结构面2011之间的间隙。当第一子镜头100和第二子镜头200已定,则二者之间的结构间隙可决定光学镜头的像面的弯曲程度。适配的结构间隙在光轴方向上的尺寸可以使该光学镜头的像面与目标面匹配。本实施例中,用胶材700将第一子镜头100和第二子镜头200粘结在一起。胶材700本身既不属于第一子镜头100也不属于第二子镜头200。也就是说,胶材700的面既不是第一子镜头100的结构面,也不是第二子镜头200的结构面。本实施例中,所述结构间隙在所述光轴方向上的尺寸值小于500μm。
图5示出了本发明另一个实施例中光学镜头的结构间隙附近区域的放大示意图。参考图5,第一子镜头100包括第一镜筒101和第一镜片102。第一镜片102上具有第一镜片光学面1022和第一镜片结构面1021,第一镜筒101上具有第一镜筒结构面1011。第二镜片202具有第二镜片光学面2022和第二镜片结构面2021。第二镜筒201具有第二镜筒结构面2011。本实施例中,第一结构面是第一子镜头上最靠近第二子镜头的结构面,第二结构面是第二子镜头上最靠近第一子镜头的结构面。由于第一镜片结构面1021比第一镜筒结构面1011更加靠近第二镜筒200,因此第一镜片结构面1021为第一结构面。而第二镜筒结构面2011为第二结构面。因此,所述结构间隙是第一镜片结构面1021与第二镜筒结构面2011之间的间隙。本实施例中,胶材700本身既不属于第一子镜头100也不属于第二子镜头200。也就是说,胶材700的面既不是第一子镜头100的结构面,也不是第二子镜头200的结构面。
参考图6示出了本发明另一个实施例中光学镜头的结构间隙附近区域的放大示意图。参考图6,第一子镜头100包括第一镜筒101和第一镜片102。第一镜片102上具有第一镜片光学面1022和第一镜片结构面1021,第一镜筒101上具有第一镜筒结构面1011。第二镜片202具有第二镜片光学面2022和第二镜片结构面2021。第二镜筒201 具有第二镜筒结构面2011。本实施例中,第一结构面是第一子镜头上最靠近第二子镜头的结构面,第二结构面是第二子镜头上最靠近第一子镜头的结构面。由于第一镜片结构面1021比第一镜筒结构面1011更加靠近第二镜筒200,因此第一镜片结构面1021为第一结构面。特别地,本实施例中,第一子镜头100还具有第一镜片结构附件1023,第二子镜头202还具有第二镜片结构附件2023。其中,第二结构面位于所述第二镜片结构附件2023上。结构间隙D为第一镜片结构面1021与第二镜片结构附件2023的结构面之间的间隙。本实施例中,第二镜片结构附件2023与第一镜片结构附件1023均为安装在镜筒上的隔圈。但需要注意,本实施例的镜片结构附件并不限于此,例如:所述第一镜片结构附件可以包括安装在第一镜筒的第一隔圈,或者将所述第一隔圈粘结至所述第一镜筒或第一镜片的胶材,或者将所述第一镜片粘结至所述第一镜筒的胶材。所述第二镜片结构附件还包括安装在第二镜筒的第二隔圈,或者将所述第二隔圈粘结至所述第二镜筒或第二镜片的胶材,或者将所述第二镜片粘结至所述第二镜筒的胶材。
图7示出了本发明另一个实施例中光学镜头的结构间隙附近区域的放大示意图。如图7所示,该实施例中,第一子镜头100包括第一隔圈1014。容易看出,第一隔圈1014与第二子镜头200之间的距离大于第一镜筒结构面1011与第二镜筒结构面2011之间的距离,因此第一隔圈1014并不影响结构间隙的尺寸。在本实施例中,结构间隙D为第一镜筒结构面1011与第二镜筒结构面2011之间的间隙。
图8示出了本发明另一实施例中光学镜头的结构间隙附近区域的放大示意图。参考图8,该实施例中,第一镜筒101具有三个第一镜筒结构面1011a、1011b、1011c,第二镜筒201具有两个第二镜筒结构面2011a、2011b。结构间隙D为第一镜筒结构面1011a与第二镜筒结构面2011a之间的间隙。在本实施例中,虽然第一镜筒结构面1011b与第二镜筒结构面2011b之间的间隙最小,但是它们之间的间隙是径向(即垂直于光轴方向)的。本实施例中,通过限定结构间隙的轴向(即沿着光轴的方向)尺寸值,来获得像面与目标面相匹配的效果。因此,由轴向距离最短的第一镜筒结构面1011a与第二镜筒结构面 2011a之间的间隙作为结构间隙D。
图9示出了本发明另一实施例中光学镜头的结构间隙附近区域的放大示意图。参考图9,该实施例中,第一镜筒101具有两个第一镜筒结构面1011a、1011b,第二镜筒201具有两个第二镜筒结构面2011a、2011b。第一镜片102具有第一镜片结构面1021,第二镜片202具有第二镜片结构附件2023。在本实施例中,第一镜筒结构面1011b与第二镜筒结构面2011b最接近,但它们之间的间隙是径向间隙而非轴向间隙。如前一实施例所描述的,获得像面与目标面相匹配的效果是通过限定结构间隙的轴向尺寸值来实现的。因此,第一镜筒结构面1011b与第二镜筒结构面2011b之间的间隙并非结构间隙。综合考虑整个第一子镜头100和第二子镜头200,二者之间轴向最接近的两个结构面分别是第一镜片结构面1021和位于第二镜片结构附件2023的结构面,因此,本实施例中的结构间隙D为这两个结构面之间的间隙。特别地,在本实施例中,第二镜筒201的第二镜筒结构面2011a设置在第一镜筒101外部,这导致在轴向方向上第一镜筒101没有与其相对应的结构面,因此,第二镜筒结构面2011a不是确定结构间隙D的结构面。换句话说,本实施例中,第一结构面应位于所述第二子镜头在所述光轴方向的投影范围之内,第二结构面应位于所述第一子镜头在所述光轴方向的投影范围之内。
图10示出了本发明另一实施例中光学镜头的结构间隙附近区域的放大示意图。参考图10,第一镜筒101具有两个第一镜筒结构面1011a、1011b,第二镜筒201具有两个第二镜筒结构面2011a、2011b。其中,第一镜筒结构面1011b和第二镜筒结构面2011b均为斜面。可以看出,这两个斜面在轴向上的间距小于第一镜筒结构面1011a和第二镜筒结构面2011a之间的间距。因此,结构间隙D为第一镜筒结构面1011b和第二镜筒结构面2011b之间的间隙。本实施例中,第一镜筒结构面1011b和第二镜筒结构面2011b这两个斜面不平行,取第一镜筒结构面1011b和第二镜筒结构面2011b之间的轴向距离最小处作为结构间隙在轴向上的尺寸值。需注意的是,这种取值方式并不是唯一的。例如,在另一个实施例中,当第一结构面与第二结构面不平行 时,结构间隙在轴向上的尺寸值也可以是第一结构面与第二结构面在轴向上的距离的平均值。
图11示出了本发明另一实施例中光学镜头的结构间隙附近区域的放大示意图。参考图11,第一镜筒101具有两个第一镜筒结构面1011a、1011b,第二镜筒201具有两个第二镜筒结构面2011a、2011b。其中,第一镜筒结构面1011b和第二镜筒结构面2011b均为斜面。可以看出,这两个斜面在轴向上的间距不小于第一镜筒结构面1011a和第二镜筒结构面2011a之间的间距。因此,结构间隙D为第一镜筒结构面1011a和第二镜筒结构面2011a之间的间隙。
图12示出了本发明另一实施例中光学镜头的结构间隙附近区域的放大示意图。参考图12,该实施例中,第一子镜头100包括第一隔圈1014。与图7的实施例不同的是,第一隔圈1014与第二镜筒结构面2011之间的距离小于第一镜筒结构面1011与第二镜筒结构面2011之间的距离。因此,本实施例中,结构间隙D为第一隔圈1014的结构面与第二镜筒结构面2011之间的间隙。也就是说,在一些情形下,镜片附属结构件的结构面可以影响到结构间隙D的取值。
图13示出了本发明另一实施例中光学镜头的结构间隙附近区域的放大示意图。参考图13,该实施例中,第一子镜头100包括第一隔圈1014和第一胶材1015。其中第一胶材1015把第一隔圈1014粘结在第一镜筒101上。本实施例中,第一胶材1015应视为第一子镜头100的一部分,因此第一胶材1015的结构面也属于第一子镜头100的一部分。由于第一胶材1015的结构面是轴向最靠近第二子镜头200的结构面,因此本实施例中将第一胶材1015的结构面作为第一结构面,而与之相对应的第二镜筒结构面2011被作为第二结构面。这样,结构间隙D为第一胶材1015的结构面与第二镜筒结构面2011之间的间隙。当第一胶材1015的结构面与第二镜筒结构面2011不平行时,可以将第一胶材1015的结构面与第二镜筒结构面2011在轴向上的平均距离作为结构间隙在轴向上的尺寸值。需特别注意的是,用于粘结第一子镜头和第二子镜头的胶材700既不属于第一子镜头100也不属于第二子镜头200。也就是说,胶材700的面既不是第一子镜头100 的结构面,也不是第二子镜头200的结构面。
上述实施例介绍了本发明的光学镜头的结构间隙附近区域的多种实施方式。以上实施方式仅仅是示例性地,在本发明还存在其它情况。例如,在一个实施例中,可以按如下方式定义结构间隙。
对于第一子镜头,将该第一子镜头在所述光轴方向上最靠近所述第二子镜头且位于所述第二子镜头在所述光轴方向的投影范围之内的结构面作为第一结构面;对于第二子镜头,将该第二子镜头在光轴方向上最靠近所述第一子镜头且位于所述第一子镜头的投影范围之内的结构面作为第二结构面。将第一结构面和第二结构面的平均结构间隙作为所述结构间隙。所述平均结构间隙是穿过所述光学面的剖面上所述第一结构面与所述第二结构面之间的平均间隙。
在一些实施例中,所述第一结构面可以位于第一镜片结构附件,所述第一镜片结构附件包括安装在第一镜筒的第一隔圈,或者将所述第一隔圈粘结至所述第一镜筒或第一镜片的胶材,或者将所述第一镜片粘结至所述第一镜筒的胶材。
在一些实施例中,所述第二结构面可以位于第二镜片结构附件,所述第二镜片结构附件包括安装在第二镜筒的第二隔圈,或者将所述第二隔圈粘结至所述第二镜筒或第二镜片的胶材,或者将所述第二镜片粘结至所述第二镜筒的胶材。
需注意的是,用于粘结第一子镜头和第二子镜头的胶材700既不属于第一子镜头100也不属于第二子镜头200。也就是说,粘结第一子镜头和第二子镜头的胶材700不能与作为第一或第二镜片结构附件的胶材混淆。本发明中,胶材700的面既不是第一子镜头100的结构面,也不是第二子镜头200的结构面。
进一步地,在一个实施例中,所述第一子镜头和所述第二子镜头可以通过焊接固定在一起。此时不需要使用胶材700。焊接方式可以是激光焊接或超声焊接等。
进一步地,根据本发明的一个实施例还提供了一种基于前述实施例中的光学镜头组装方法组装的光学镜头。如前文所述,这种组装方 法所生产的光学镜头的第一子镜头和第二子镜头之间具有结构间隙。
通常来说,在传统的组装方案中,同一设计的多个产品的尺寸参数是高度一致的。而在本实施例的组装方法中,由于在所述步骤3中,通过使所述第一子镜头相对于所述第二子镜头在所述光轴方向上移动,使所述实测场曲与目标场曲匹配,这就使得同一设计的各个产品可能具有不同的结构间隙。
对于子镜头,由于模具精度与成型精度的控制能力的限制,各镜片单体的光学面厚度、光学面矢高、光学面面型曲率半径等都可能存在公差;由于元件的加工精度的限制,镜片间隔元件厚度可能存在公差;由于被装配元件的尺寸公差以及镜头的装配精度的限制,各镜片的装配配合也可能存在公差;由于材料的稳定性以及批次一致性的限制,镜片材料折射率可能变化。以上因素导致任何一个子镜头都是独特的,所以对于每个第一子镜头和第二子镜头的组合来说,能够使所述实测场曲与目标场曲匹配的,该第一子镜头与该第二子镜头在所述光轴方向上的相对距离也是独特的。因此,利用本实施例的组装方法批量生产的光学镜头的结构间隙在光轴方向上的尺寸值是具有差异的。所述差异为2μm-60μm。例如,同一设计的多个光学镜头。它们分别具有结构间隙D 1、D 2,…,D n。那么D 1、D 2,…,D n中至少能找出两项,它们之间的差异在2μm-60μm范围内。换句话说,基于本实施例,同一设计的多个所述光学镜头中,至少具有第一光学镜头和第二光学镜头,所述第一光学镜头的结构间隙在光轴方向上的尺寸值与所述第二光学镜头的结构间隙在光轴方向上的尺寸值具有差异,所述差异为2μm-60μm。本实施中,同一设计是指同一套光学设计和同一套结构设计。仅标签、标记等附加物不同不能认为是不同的设计。
在一个实施例中,所述第一子镜头具有在所述光轴方向上最靠近所述第二子镜头且位于所述第二子镜头在所述光轴方向的投影范围之内的第一结构面,所述第二子镜头具有在光轴方向上最靠近所述第一子镜头且位于所述第一子镜头的投影范围之内的第二结构面,所述结构间隙是平均结构间隙,所述平均结构间隙是穿过所述光学面的剖面上所述第一结构面与所述第二结构面之间的平均间隙。
进一步地,图14示出了根据本发明的另一实施例所提供的摄像模组的组装方法。该摄像模组的组装方法包括步骤10-40。
步骤10:准备第一子组件1000和第二子组件2000。其中,第一子组件1000包括第一子镜头100。第二子组件包括第二子镜头200和模组感光元件800。第二子镜头200和模组感光元件800之间还安装由滤色元件900。其中,所述第一子镜头100包括第一镜筒101和安装在所述第一镜筒101内的至少一个第一镜片102。本实施例中第一镜片102的数目为两个,但需要注意,本发明不限于此。例如,在其它实施例中,第一镜片102的数目也可以是一个、三个或四个等。所述第二子镜头200包括第二镜筒201和安装在所述第二镜筒201中的至少一个第二镜片202。本实施例中第二镜片202的数目为三个,但需要注意,本发明不限于此。例如,在其它实施例中,第二镜片202的数目也可以是一个、两个或四个等。
步骤20:将所述第一子镜头100布置于所述第二子镜头200的光轴500,构成包含所述至少一个第一镜片102和所述至少一个第二镜片202的可成像的光学系。本实施例中,所述光学系包含一个物方标靶400、两个第一镜片102、三个第二镜片202以及感光元件800。本实施例中,感光元件800具有感光面801。利用感光面801,可对光学系的像面进行探测。本实施例中,感光元件800就是所组装的摄像模组中内置的感光元件。
步骤30:通过使所述第一子镜头100相对于所述第二子镜头200在所述光轴500方向上移动,使所述光学系成像的像面与目标面匹配。
对于组装完成的摄像模组,会有一个所期望的成像面,本文中将这个所期望的成像面称为目标面。在一些情形下,目标面为平面。例如,如果摄像模组的感光元件的感光面为平面,那么为达到最佳成像品质,所述光学镜头所期望的成像面也是平面,也就是说,此时目标面为平面。在另一些情形下,所述目标面也可以是凸形或凹形的曲面,或者波浪形的曲面。例如,如果摄像模组的感光元件的感光面为凸形或凹形的曲面,那么为达到最佳成像品质,目标面也应是凸形或凹形 的曲面;如果摄像模组的感光元件的感光面为波浪形的曲面,目标面也应是波浪形的曲面。
本实施例中,步骤30中,根据所述感光元件800所输出的图像识别光学系成像的实测像面与目标面是否匹配。由于感光元件800的感光面801的形状就是所期望的成像面的形状。也就是说,感光面801就是目标面,因此通过感光面801接收的图像已经隐含了目标面的弯曲信息。所以,为提高成像品质,根据所述感光元件800所输出的图像得出的场曲应当尽可能小。为便于描述,本文中将根据所述感光元件800所输出的图像得出的场曲称为模组实测场曲。当模组实测场曲趋近于0时,即认为光学系成像所形成的像面的形状与目标面匹配。在此状态下,能够获得较优的成像品质。
进一步地,在一个实施例中,选择至少一个视场作为测试视场。对应于所述测试视场的所述实测场曲是该测试视场的实测像面相对于参考视场的实测像面的轴向偏离值。这里,实测像面就是利用所述像方标靶300实际接收到的像面。测试视场优选40%视场到85%视场范围内的视场。参考视场可以是0视场(或者称为中心视场)。但需要注意,本发明的参考视场并不限于0视场。进一步地,在一个实施例中,所述实测像面与目标面匹配包括:所述模组实测场曲处于+/-5μm范围内。也就是说,当所述模组实测场曲处于+/-5μm范围内时,视为实测像面与目标面匹配。在一个实施例中,测试视场可以仅选择一个。
进一步地,在一个实施例中,所选择的测试视场可以是多个,例如2-10个。对于其中每一个测试视场,所述模组实测场曲处于+/-5μm范围内,则视为实测像面与目标面匹配。
进一步地,在一个实施例中,如果在弧矢方向和子午方向中至少一个方向的模组实测场曲收敛控制在+/-5μm以内,则视为所述实测像面与目标面匹配。
进一步地,所述步骤30包括下列子步骤。
步骤310:沿着所述光轴移动物方标靶或像方标靶,使所述光学系成像清晰,也就是完成光学系的对焦,本实施例选择中心视场进行 对焦。
步骤320:使第一子镜头100相对于第二子镜头200在所述光轴500的方向上移动,并停留在一个实测位置。在具体实现上,可以是第二子镜头200不动,沿着所述光轴500移动第一子镜头100;也可以是第一子镜头100不动,沿着所述光轴500移动第二子镜头200;还可以是第一子镜头100和第二子镜头均沿着所述光轴500移动。
参考图14,本实施例中,第二子镜头200固定不动,利用夹持装置600夹持第一子镜头100,使夹持装置600沿着z轴移动(即沿着所述光轴500移动),即可实现使第一子镜头100相对于第二子镜头200在所述光轴500的方向上移动。在另一实施例中,所述夹持装置600也可以由吸附装置替代。
步骤330:获取在当前实测位置下所述光学系成像的模组实测场曲。在当前的实测位置,第一子镜头100和第二子镜头200停止相对移动。此时通过模组感光元件800测出的所述光学系的模组实测场曲。对于测试视场,可通过模组感光元件800获得相应的解像力离焦曲线,简称为测试视场离焦曲线。对于参考视场,也可以通过模组感光元件800获得相应的解像力离焦曲线,简称为参考视场离焦曲线。在实际测量时,每个测试视场上会取多个测量点,每个测量点对应于一条离焦曲线,多个测量点的多条离焦曲线的顶点位置的平均值与参考视场离焦曲线顶点位置(当参考视场为0视场时)的轴向偏离(该轴向偏离是一个矢量),就是对应于所述测试视场的实测场曲。其中轴向偏离是所述光轴500方向上的偏离。该偏离可视为该测试视场的实测像面相对于参考视场的实测像面的偏离值。当参考视场为非0视场时,参考视场离焦曲线顶点位置是指该参考视场上多个参考点的多条离焦曲线的顶点位置的平均值。
步骤340:判断当前实测位置下的模组实测场曲是否处于目标范围内,如果是则直接执行所述步骤40,如果否,则继续执行子步骤320和子步骤330,直至当前实测位置下的模组实测场曲处于目标范围内。在一个实施例中,所述目标范围为+/-5μm范围。当模组实测场曲为0时,代表实测像面与目标面完全重合。图15示出了摄像模组的实测像 面与目标面完全重合的示意图。
在其它实施例中,步骤30结束后,还可以选择性地再进行其他调整步骤,在其它调整步骤完成后,再执行步骤40。
步骤40:连接第一子镜头100和第二子镜头200,使得第一子镜头100和第二子镜头200在所述光轴500方向上的相对距离保持不变。连接完成后,第一子镜头100和第二子镜头200被固定在一起构成一个完整的光学镜头。
在上述实施例中,通过两个子镜头构成一个完整的光学镜头,而在其它实施例中,可以通过更多数量的子镜头构成一个完整的光学镜头。
上述实施例中,在组装过程中对两个子镜头的轴向距离进行了调节,使得组装后的摄像模组的场曲被有效减小。并且,上述实施例的组装方法能够使大批量生产的摄像模组的场曲分布得以收敛,过程能力指数(CPK)提升。上述实施例能够在组装过程中对摄像模组的场曲进行实时调整,因而降低场曲的波动性,降低由于场曲造成的不良率,降低生产成本,提升成像品质。上述实施例还能够使得对摄像模组的各个元件精度及其装配精度的要求变宽松,降低了摄像模组的整体成本。
本发明中,所述步骤40中,连接第一子镜头和第二子镜头的工艺可以根据情况选择。例如,在一个实施例中,通过粘结工艺连接第一子镜头和第二子镜头。在另一个实施例中,通过激光焊接工艺连接第一子镜头和第二子镜头。在又一个实施例中,通过超声焊工艺连接第一子镜头和第二子镜头。除了上述工艺以外,其它焊接工艺也可供选择。第一子镜头和第二子镜头可直接连接,也可通过中介物(例如刚性中介物)连接。例如,所述第一子镜头可以通过一个第三子镜头(或第三子组件)连接所述第二子镜头。此时第三子镜头(或第三子组件)可视为中介物。
根据本发明的一个实施例,还提供了一种摄像模组,包括:第一子组件和第二子组件。第一子组件包括第一子镜头,所述第一子镜头包括第一镜筒和至少一个第一镜片。第二子组件包括第二子镜头和感光元件,所述第二子镜头包括第二镜筒和至少一个第二镜片。其中,所述第一子镜头布置于所述第二子镜头的光轴,构成包含所述至少一个第一镜片和所述至少一个第二镜片的可成像的光学系;所述第一子镜头和所述第二子镜头固定在一起并且所述第一子镜头和所述第二子镜头之间具有结构间隙,所述结构间隙具有使所述光学系的实测像面与目标面匹配的在所述光轴方向上的尺寸值。所述第二子组件还可以包括位于所述感光元件与所述第二镜片之间的滤色元件。
在一个实施例中,对于所述结构间隙的在所述光轴方向上的尺寸值,所述的使所述光学系成像的实测像面与目标面匹配包括:根据所述感光元件所输出的图像,获得在所移动至的至少一个位置下所述光学系成像的模组实测场曲,该模组实测场曲在+/-5μm范围内。
在一个实施例中,第一子镜头和第二子镜头均具有属于所述光学系的光学面以及所述光学面以外的结构面,所述结构间隙是所述第一子镜头的结构面与所述第二子镜头的结构面之间的间隙。
进一步地,在一个实施例中,所述第一子镜头具有在所述光轴方向上最靠近所述第二子镜头且位于所述第二子镜头在所述光轴方向的投影范围之内的第一结构面,所述第二子镜头具有在光轴方向上最靠近所述第一子镜头且位于所述第一子镜头的投影范围之内的第二结构面,所述结构间隙是平均结构间隙,所述平均结构间隙是穿过所述光学面的剖面上所述第一结构面与所述第二结构面之间的平均间隙。
在一系列实施例中,所述摄像模组的结构间隙可以是如图4~图13所示的结构间隙。这些结构间隙前文已详细描述,此处不再赘述。
在一个实施例中,所述结构间隙在所述光轴方向上的尺寸值小于500μm。
进一步地,根据本发明的一个实施例,还提供了一种利用前述的 摄像模组的组装方法组装的摄像模组。所述摄像模组的第一子组件和第二子组件之间具有结构间隙;其中,同一设计的多个所述光学组件中,至少具有第一光学组件和第二光学组件,所述第一光学组件的结构间隙在光轴方向上的尺寸值与所述第二光学组件的结构间隙在光轴方向上的尺寸值具有差异,所述差异为2μm-60μm。通常来说,在传统的组装方案中,同一设计的多个产品的尺寸参数是高度一致的。而在本实施例的组装方法中,由于在所述步骤30中,通过使所述第一子镜头相对于所述第二子镜头在所述光轴方向上移动,使所述实测像面与目标面匹配,这就使得同一设计的各个产品可能具有不同的结构间隙。本实施例中,同一设计是指同一套光学设计和同一套结构设计。仅标签、标记等附加物不同不能认为是不同的设计。
在一个实施例中,所述第一子镜头和所述第二子镜头均具有属于所述光学系的光学面以及所述光学面以外的结构面,所述结构间隙是所述第一子镜头的结构面与所述第二子镜头的结构面之间的间隙。
在一个实施例中,所述第一子镜头具有在所述光轴方向上最靠近所述第二子镜头且位于所述第二子镜头在所述光轴方向的投影范围之内的第一结构面,所述第二子镜头具有在光轴方向上最靠近所述第一子镜头且位于所述第一子镜头的投影范围之内的第二结构面,所述结构间隙是平均结构间隙,所述平均结构间隙是穿过所述光学面的剖面上所述第一结构面与所述第二结构面之间的平均间隙。
以上描述仅为本申请的较佳实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (67)

  1. 一种光学镜头组装方法,其特征在于,包括:
    准备第一子镜头和第二子镜头;其中所述第一子镜头包括第一镜筒和至少一个第一镜片,所述第二子镜头包括第二镜筒和至少一个第二镜片;
    将所述第一子镜头布置于所述第二子镜头的光轴,构成包含所述至少一个第一镜片和所述至少一个第二镜片的可成像的光学系;
    通过使所述第一子镜头相对于所述第二子镜头在所述光轴方向上移动,使所述光学系成像的实测像面与目标面匹配;以及
    连接所述第一子镜头和所述第二子镜头,使得所述第一子镜头和所述第二子镜头在所述光轴方向上的相对距离保持不变。
  2. 根据权利要求1所述的光学镜头组装方法,其特征在于,使所述实测像面与目标面匹配的步骤包括:通过使所述第一子镜头相对于所述第二子镜头在所述光轴方向上移动,获取在所移动至的至少一个位置下所述光学系成像的实测场曲,使所述实测场曲与目标场曲匹配。
  3. 根据权利要求2所述的光学镜头组装方法,其特征在于,在使所述实测像面与目标面匹配的步骤中,所述实测场曲是所选择的测试视场的实测像面相对于参考视场的实测像面的轴向偏离值。
  4. 根据权利要求3所述的光学镜头组装方法,其特征在于,在使所述实测像面与目标面匹配的步骤中,所述目标场曲是目标面对应于所述测试视场的位置相对于目标面对应于所述参考视场的位置的轴向偏离值。
  5. 根据权利要求4所述的光学镜头组装方法,其特征在于,在使所述实测像面与目标面匹配的步骤中,所述实测场曲与目标场曲匹 配包括:所述实测场曲与所述目标场曲之差处于+/-5μm范围内。
  6. 根据权利要求2所述的光学镜头组装方法,其特征在于,在使所述实测像面与目标面匹配的步骤中,所述目标面为平面。
  7. 根据权利要求2所述的光学镜头组装方法,其特征在于,在使所述实测像面与目标面匹配的步骤中,所述目标面为凸形或凹形的曲面或者波浪形的曲面。
  8. 根据权利要求4所述的光学镜头组装方法,其特征在于,在使所述实测像面与目标面匹配的步骤中,选择至少一个视场作为所述的测试视场。
  9. 根据权利要求6所述的光学镜头组装方法,其特征在于,在使所述实测像面与目标面匹配的步骤中,所述测试视场是40%视场到85%视场范围内的视场。
  10. 根据权利要求9所述的光学镜头组装方法,其特征在于,在使所述实测像面与目标面匹配的步骤中,使所述实测像面与目标面匹配包括:选择2-10个视场作为测试视场,对于每个所选择的测试视场,所述实测场曲与所述目标场曲之差均处于+/-5μm范围内。
  11. 根据权利要求1所述的光学镜头组装方法,其特征在于,在使所述实测像面与目标面匹配的步骤中,使所述实测像面与目标面匹配包括:使在弧矢方向和子午方向中至少一个方向的实测场曲收敛控制在+/-5μm以内。
  12. 根据权利要求2所述的光学镜头组装方法,其特征在于,使所述实测像面与目标面匹配的步骤包括:
    使所述第一子镜头相对于所述第二子镜头在所述光轴方向上移动 并停留在一个实测位置;
    获取在当前实测位置下所述光学系成像的实测场曲;以及
    判断当前实测位置下的实测场曲是否与目标场曲匹配,如果是则执行所述连接步骤,如果否,则继续执行使所述第一子镜头相对于所述第二子镜头移动的子步骤和获取光学系成像的实测场曲的子步骤,直至当前实测位置下的实测场曲与目标场曲匹配。
  13. 根据权利要求12所述的光学镜头组装方法,其特征在于,在使所述第一子镜头相对于所述第二子镜头在所述光轴方向上移动的步骤之前,沿着所述光轴移动物方标靶或像方标靶,使所述光学系成像清晰。
  14. 根据权利要求1所述的光学镜头组装方法,在所述连接步骤中,通过粘结工艺连接所述第一子镜头和所述第二子镜头。
  15. 根据权利要求1所述的光学镜头组装方法,其特征在于,在所述连接步骤中,通过焊接工艺连接所述第一子镜头和所述第二子镜头。
  16. 根据权利要求1所述的光学镜头组装方法,其特征在于,所述焊接工艺包括激光焊或超声焊。
  17. 一种光学镜头,其特征在于,包括:
    第一子镜头,所述第一子镜头包括第一镜筒和至少一个第一镜片;以及
    第二子镜头,所述第二子镜头包括第二镜筒和至少一个第二镜片;
    其中,所述第一子镜头布置于所述第二子镜头的光轴,构成包含所述至少一个第一镜片和所述至少一个第二镜片的可成像的光学系;
    所述第一子镜头和所述第二子镜头固定在一起并且所述第一子镜头和所述第二子镜头之间具有结构间隙,所述结构间隙具有使所述光 学系成像的像面与目标面匹配的在所述光轴方向上的尺寸值。
  18. 根据权利要求17所述的光学镜头,其特征在于,所述第一子镜头和所述第二子镜头均具有属于所述光学系的光学面以及所述光学面以外的结构面,所述结构间隙是所述第一子镜头的结构面与所述第二子镜头的结构面之间的间隙。
  19. 根据权利要求18所述的光学镜头,其特征在于,所述第一子镜头具有在所述光轴方向上最靠近所述第二子镜头且位于所述第二子镜头在所述光轴方向的投影范围之内的第一结构面,所述第二子镜头具有在光轴方向上最靠近所述第一子镜头且位于所述第一子镜头的投影范围之内的第二结构面,所述结构间隙是平均结构间隙,所述平均结构间隙是穿过所述光学面的剖面上所述第一结构面与所述第二结构面之间的平均间隙。
  20. 根据权利要求18或19所述的光学镜头,其特征在于,所述结构间隙在所述光轴方向上的尺寸值小于500μm。
  21. 根据权利要求19所述的光学镜头,其特征在于,所述第一结构面位于所述第一镜筒,并且所述第二结构面位于所述第二镜筒。
  22. 根据权利要求19所述的光学镜头,其特征在于,所述第一结构面位于所述第一镜片,并且所述第二结构面位于所述第二镜筒。
  23. 根据权利要求19所述的光学镜头,其特征在于,所述第一结构面位于所述第一镜筒,并且所述第二结构面位于所述第二镜片。
  24. 根据权利要求19所述的光学镜头,其特征在于,所述第一结构面位于所述第一镜片,并且所述第二结构面位于所述第二镜片。
  25. 根据权利要求19所述的光学镜头,其特征在于,所述第一结构面位于所述第一镜片结构附件,所述第一镜片结构附件包括安装在第一镜筒的第一隔圈,或者将所述第一隔圈粘结至所述第一镜筒或第一镜片的胶材,或者将所述第一镜片粘结至所述第一镜筒的胶材;并且所述第二结构面位于所述第二镜筒。
  26. 根据权利要求19所述的光学镜头,其特征在于,所述第一结构面位于所述第一镜片结构附件,所述第一镜片结构附件包括安装在第一镜筒的第一隔圈,或者将所述第一隔圈粘结至所述第一镜筒或第一镜片的胶材,或者将所述第一镜片粘结至所述第一镜筒的胶材;并且所述第二结构面位于所述第二镜片。
  27. 根据权利要求19所述的光学镜头,其特征在于,所述第一结构面位于所述第一镜筒;并且所述第二结构面位于所述第二镜片结构附件,所述第二镜片结构附件包括安装在第二镜筒的第二隔圈,或者将所述第二隔圈粘结至所述第二镜筒或第二镜片的胶材,或者将所述第二镜片粘结至所述第二镜筒的胶材。
  28. 根据权利要求19所述的光学镜头,其特征在于,所述第一结构面位于所述第一镜片;并且所述第二结构面位于所述第二镜片结构附件,所述第二镜片结构附件包括安装在第二镜筒的第二隔圈,或者将所述第二隔圈粘结至所述第二镜筒或第二镜片的胶材,或者将所述第二镜片粘结至所述第二镜筒的胶材。
  29. 根据权利要求19所述的光学镜头,其特征在于,所述第一结构面位于所述第一镜片结构附件,所述第一镜片结构附件包括安装在第一镜筒的第一隔圈,或者将所述第一隔圈粘结至所述第一镜筒或第一镜片的胶材,或者将所述第一镜片粘结至所述第一镜筒的胶材;并且所述第二结构面位于所述第二镜片结构附件,所述第二镜片结构附件包括安装在第二镜筒的第二隔圈,或者将所述第二隔圈粘结至所 述第二镜筒或第二镜片的胶材,或者将所述第二镜片粘结至所述第二镜筒的胶材。
  30. 根据权利要求18或19所述的光学镜头,其特征在于,所述第一子镜头和所述第二子镜头通过粘结固定在一起。
  31. 根据权利要求18或19所述的光学镜头,其特征在于,所述第一子镜头和所述第二子镜头通过焊接固定在一起。
  32. 根据权利要求31所述的光学镜头,其特征在于,所述焊接包括激光焊接或超声焊接。
  33. 一种利用权利要求1所述的光学镜头组装方法组装的光学镜头,其特征在于,所述光学镜头的所述第一子镜头和所述第二子镜头之间具有结构间隙;其中,同一设计的多个所述光学镜头中,至少具有第一光学镜头和第二光学镜头,所述第一光学镜头的结构间隙在光轴方向上的尺寸值与所述第二光学镜头的结构间隙在光轴方向上的尺寸值具有差异,所述差异为2μm-60μm。
  34. 根据权利要求33所述的光学镜头,其特征在于,所述第一子镜头和所述第二子镜头均具有属于所述光学系的光学面以及所述光学面以外的结构面,所述结构间隙是所述第一子镜头的结构面与所述第二子镜头的结构面之间的间隙。
  35. 根据权利要求34所述的光学镜头,其特征在于,所述第一子镜头具有在所述光轴方向上最靠近所述第二子镜头且位于所述第二子镜头在所述光轴方向的投影范围之内的第一结构面,所述第二子镜头具有在光轴方向上最靠近所述第一子镜头且位于所述第一子镜头的投影范围之内的第二结构面,所述结构间隙是平均结构间隙,所述平均结构间隙是穿过所述光学面的剖面上所述第一结构面与所述第二结 构面之间的平均间隙。
  36. 一种摄像模组的组装方法,其特征在于,包括:
    准备第一子组件和第二子组件;其中所述第一子组件包括第一子镜头,所述第一子镜头包括第一镜筒和至少一个第一镜片,所述第二子组件包括第二子镜头,所述第二子镜头包括第二镜筒和至少一个第二镜片;
    将所述第一子镜头布置于所述第二子镜头的光轴,构成包含所述至少一个第一镜片和所述至少一个第二镜片的可成像的光学系;
    通过使第一子镜头相对于第二子镜头在所述光轴方向上移动,获得在所移动至的至少一个位置下所述光学系成像的实测场曲,使所述实测像面与目标面匹配;以及
    连接所述第一子组件和所述第二子组件,使得所述第一子镜头和所述第二子镜头在所述光轴方向上的相对距离保持不变。
  37. 根据权利要求36所述的摄像模组的组装方法,其特征在于,所述的准备第一子组件和第二子组件的步骤中,所述第二子组件还包括感光元件;
    在所述使所述实测像面与目标面匹配的步骤中,根据所述感光元件所输出的图像识别实测像面是否与目标面匹配。
  38. 根据权利要求36所述的摄像模组的组装方法,其特征在于,在所述的准备第一子组件和第二子组件的步骤中,所述第二子组件还包括位于所述感光元件与所述第二镜片之间的滤色元件。
  39. 根据权利要求37所述的摄像模组的组装方法,其特征在于,在使所述实测像面与目标面匹配的步骤中,使所述实测像面与目标面匹配包括:通过所述感光元件所输出的图像获得模组实测场曲,使所述模组实测场曲处于+/-5μm范围内。
  40. 根据权利要求36所述的摄像模组的组装方法,其特征在于,在使所述实测像面与目标面匹配的步骤中,所述目标面为平面。
  41. 根据权利要求36所述的摄像模组的组装方法,其特征在于,在使所述实测像面与目标面匹配的步骤中,所述目标面为凸形或凹形的曲面或者波浪形的曲面。
  42. 根据权利要求39所述的摄像模组的组装方法,其特征在于,在使所述实测像面与目标面匹配的步骤中,选择至少一个视场作为测试视场。
  43. 根据权利要求42所述的摄像模组的组装方法,其特征在于,在使所述实测像面与目标面匹配的步骤中,所述的所选择的视场是40%视场到85%视场范围内的视场。
  44. 根据权利要求42所述的摄像模组的组装方法,其特征在于,在使所述实测像面与目标面匹配的步骤中,使所述实测像面与目标面匹配包括:选择2-10个视场作为测试视场,对于每个所选择的测试视场,所述模组实测场曲均处于+/-5μm范围内。
  45. 根据权利要求37所述的摄像模组的组装方法,其特征在于,在使所述实测像面与目标面匹配的步骤中,使所述实测像面与目标面匹配包括:使在弧矢方向和子午方向中至少一个方向的模组实测场曲收敛控制在+/-5μm以内。
  46. 根据权利要求37所述的摄像模组的组装方法,其特征在于,使所述实测像面与目标面匹配的步骤包括:
    使所述第一子镜头相对于所述第二子镜头在所述光轴方向上移动并停留在一个实测位置;
    获取在当前实测位置下所述光学系成像的模组实测场曲;以及
    判断当前实测位置下的模组实测场曲是否处于+/-5μm范围内,如果是则执行所述连接步骤,如果否,则继续执行使所述第一子镜头相对于所述第二子镜头移动的子步骤和获取光学系成像的模组实测场曲的子步骤,直至当前实测位置下的模组实测场曲处于+/-5μm范围内。
  47. 根据权利要求46所述的摄像模组的组装方法,其特征在于,在使所述第一子镜头相对于所述第二子镜头在所述光轴方向上移动的步骤之前,沿着所述光轴移动物方标靶或像方标靶,使所述光学系成像清晰。
  48. 一种摄像模组,其特征在于,包括:
    第一子组件,其包括第一子镜头,所述第一子镜头包括第一镜筒和至少一个第一镜片;以及
    第二子组件,其包括第二子镜头,所述第二子镜头包括第二镜筒和至少一个第二镜片;
    其中,所述第一子镜头布置于所述第二子镜头的光轴,构成包含所述至少一个第一镜片和所述至少一个第二镜片的可成像的光学系;
    所述第一子镜头和所述第二子镜头固定在一起并且所述第一子镜头和所述第二子镜头之间具有结构间隙,所述结构间隙具有使所述光学系成像的像面与目标面匹配的在所述光轴方向上的尺寸值。
  49. 根据权利要求48所述的摄像模组,其特征在于,所述第二子组件还包括感光元件,其中,对于所述结构间隙的在所述光轴方向上的尺寸值,所述的使所述光学系成像的像面与目标面匹配包括:根据所述感光元件所输出的图像,获得在所移动至的至少一个位置下所述光学系成像的模组实测场曲,该模组实测场曲处于+/-5μm范围内。
  50. 根据权利要求49所述的摄像模组,其特征在于,所述第二子组件还包括位于所述感光元件与所述第二镜片之间的滤色元件。
  51. 根据权利要求48所述的摄像模组,其特征在于,所述第一子镜头和所述第二子镜头均具有属于所述光学系的光学面以及所述光学面以外的结构面,所述结构间隙是所述第一子镜头的结构面与所述第二子镜头的结构面之间的间隙。
  52. 根据权利要求51所述的摄像模组,其特征在于,所述第一子镜头具有在所述光轴方向上最靠近所述第二子镜头且位于所述第二子镜头在所述光轴方向的投影范围之内的第一结构面,所述第二子镜头具有在光轴方向上最靠近所述第一子镜头且位于所述第一子镜头的投影范围之内的第二结构面,所述结构间隙是平均结构间隙,所述平均结构间隙是穿过所述光学面的剖面上所述第一结构面与所述第二结构面之间的平均间隙。
  53. 根据权利要求49所述的摄像模组,其特征在于,所述第一结构面位于所述第一镜筒,并且所述第二结构面位于所述第二镜筒。
  54. 根据权利要求49所述的摄像模组,其特征在于,所述第一结构面位于所述第一镜片,并且所述第二结构面位于所述第二镜筒。
  55. 根据权利要求49所述的摄像模组,其特征在于,所述第一结构面位于所述第一镜筒,并且所述第二结构面位于所述第二镜片。
  56. 根据权利要求49所述的摄像模组,其特征在于,所述第一结构面位于所述第一镜片,并且所述第二结构面位于所述第二镜片。
  57. 根据权利要求49所述的摄像模组,其特征在于,所述第一结构面位于所述第一镜片结构附件,所述第一镜片结构附件包括安装在第一镜筒的第一隔圈,或者将所述第一隔圈粘结至所述第一镜筒或第一镜片的胶材,或者将所述第一镜片粘结至所述第一镜筒的胶材; 并且所述第二结构面位于所述第二镜筒。
  58. 根据权利要求49所述的摄像模组,其特征在于,所述第一结构面位于所述第一镜片结构附件,所述第一镜片结构附件包括安装在第一镜筒的第一隔圈,或者将所述第一隔圈粘结至所述第一镜筒或第一镜片的胶材,或者将所述第一镜片粘结至所述第一镜筒的胶材;并且所述第二结构面位于所述第二镜片。
  59. 根据权利要求49所述的摄像模组,其特征在于,所述第一结构面位于所述第一镜筒;并且所述第二结构面位于所述第二镜片结构附件,所述第二镜片结构附件包括安装在第二镜筒的第二隔圈,或者将所述第二隔圈粘结至所述第二镜筒或第二镜片的胶材,或者将所述第二镜片粘结至所述第二镜筒的胶材。
  60. 根据权利要求49所述的摄像模组,其特征在于,所述第一结构面位于所述第一镜片;并且所述第二结构面位于所述第二镜片结构附件,所述第二镜片结构附件包括安装在第二镜筒的第二隔圈,或者将所述第二隔圈粘结至所述第二镜筒或第二镜片的胶材,或者将所述第二镜片粘结至所述第二镜筒的胶材。
  61. 根据权利要求49所述的摄像模组,其特征在于,所述第一结构面位于所述第一镜片结构附件,所述第一镜片结构附件包括安装在第一镜筒的第一隔圈,或者将所述第一隔圈粘结至所述第一镜筒或第一镜片的胶材,或者将所述第一镜片粘结至所述第一镜筒的胶材;并且所述第二结构面位于所述第二镜片结构附件,所述第二镜片结构附件包括安装在第二镜筒的第二隔圈,或者将所述第二隔圈粘结至所述第二镜筒或第二镜片的胶材,或者将所述第二镜片粘结至所述第二镜筒的胶材。
  62. 根据权利要求52所述的摄像模组,其特征在于,所述结构 间隙在所述光轴方向上的尺寸值小于500μm。
  63. 一种利用权利要求38所述的摄像模组的组装方法组装的摄像模组,其特征在于,所述摄像模组的第一子镜头和第二子镜头之间具有结构间隙;其中,同一设计的多个所述摄像模组中,至少具有第一摄像模组和第二摄像模组,所述第一摄像模组的结构间隙在光轴方向上的尺寸值与所述第二摄像模组的结构间隙在光轴方向上的尺寸值具有差异,所述差异为2μm-60μm。
  64. 根据权利要求63所述的摄像模组,其特征在于,所述第一子镜头和所述第二子镜头均具有属于所述光学系的光学面以及所述光学面以外的结构面,所述结构间隙是所述第一子镜头的结构面与所述第二子镜头的结构面之间的间隙。
  65. 根据权利要求64所述的摄像模组,其特征在于,所述第一子镜头具有在所述光轴方向上最靠近所述第二子镜头且位于所述第二子镜头在所述光轴方向的投影范围之内的第一结构面,所述第二子镜头具有在光轴方向上最靠近所述第一子镜头且位于所述第一子镜头的投影范围之内的第二结构面,所述结构间隙是平均结构间隙,所述平均结构间隙是穿过所述光学面的剖面上所述第一结构面与所述第二结构面之间的平均间隙。
  66. 一种摄像模组制作方法,其特征在于,包括:
    根据权利要求1~16中任意一项所述的光学镜头组装方法制作光学镜头;
    以及利用所述光学镜头制作摄像模组。
  67. 一种摄像模组制作方法,其特征在于,包括:
    准备权利要求17~35中任一项所述的光学镜头;以及
    利用所述光学镜头组装所述摄像模组。
PCT/CN2018/096306 2017-08-11 2018-07-19 光学镜头、摄像模组及其组装方法 WO2019029331A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880052149.0A CN110998405B (zh) 2017-08-11 2018-07-19 光学镜头、摄像模组及其组装方法
JP2020508008A JP2020530592A (ja) 2017-08-11 2018-07-19 光学レンズ、カメラモジュール及びその組み立て方法
EP18845018.3A EP3667386A4 (en) 2017-08-11 2018-07-19 OPTICAL LENS, CAMERA MODULE AND ASSEMBLY PROCEDURE FOR IT
KR1020207006205A KR102443493B1 (ko) 2017-08-11 2018-07-19 광학 렌즈, 카메라 모듈 및 이의 조립 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710687361.1 2017-08-11
CN201721004423.6 2017-08-11
CN201710687361.1A CN109387921A (zh) 2017-08-11 2017-08-11 光学镜头、摄像模组及其组装方法
CN201721004423.6U CN207336902U (zh) 2017-08-11 2017-08-11 光学镜头及摄像模组

Publications (1)

Publication Number Publication Date
WO2019029331A1 true WO2019029331A1 (zh) 2019-02-14

Family

ID=65273246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096306 WO2019029331A1 (zh) 2017-08-11 2018-07-19 光学镜头、摄像模组及其组装方法

Country Status (4)

Country Link
EP (1) EP3667386A4 (zh)
JP (1) JP2020530592A (zh)
KR (1) KR102443493B1 (zh)
WO (1) WO2019029331A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102410618B1 (ko) 2020-05-14 2022-06-20 이지메카시스템 주식회사 광학렌즈용 배럴과 마그네틱 조립장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050030647A1 (en) * 2002-06-27 2005-02-10 Takahiro Amanai Image pickup lens unit and image pickup device
CN1920657A (zh) * 2005-08-26 2007-02-28 奥林巴斯映像株式会社 数字照相系统和中间适配器
CN102662222A (zh) * 2012-05-10 2012-09-12 无锡凯尔科技有限公司 镜头与微调模组的结构及其组装工艺
CN105445885A (zh) * 2015-10-30 2016-03-30 宁波舜宇光电信息有限公司 可调光学镜头和摄像模组及其制造方法
CN206270575U (zh) * 2016-11-22 2017-06-20 捷西迪(广州)光学科技有限公司 一种单焦镜头筒的调芯装置
CN207336902U (zh) * 2017-08-11 2018-05-08 宁波舜宇光电信息有限公司 光学镜头及摄像模组

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013200459A (ja) * 2012-03-26 2013-10-03 Konica Minolta Inc カメラモジュールの製造方法及びカメラモジュール
US9733447B2 (en) * 2013-11-20 2017-08-15 Sharp Kabushiki Kaisha Imaging module and manufacturing method therefor
JP2016197661A (ja) * 2015-04-03 2016-11-24 株式会社東芝 固体撮像装置およびカメラモジュール
JP6519355B2 (ja) * 2015-06-30 2019-05-29 株式会社デンソー カメラ装置及び車載システム
CN109709747B (zh) * 2015-12-02 2021-08-10 宁波舜宇光电信息有限公司 采用分体式镜头的摄像模组及其组装方法
KR102167287B1 (ko) * 2015-12-16 2020-10-19 닝보 써니 오포테크 코., 엘티디. 렌즈의 조정에 의한 광학 시스템의 결상 품질 보상 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050030647A1 (en) * 2002-06-27 2005-02-10 Takahiro Amanai Image pickup lens unit and image pickup device
CN1920657A (zh) * 2005-08-26 2007-02-28 奥林巴斯映像株式会社 数字照相系统和中间适配器
CN102662222A (zh) * 2012-05-10 2012-09-12 无锡凯尔科技有限公司 镜头与微调模组的结构及其组装工艺
CN105445885A (zh) * 2015-10-30 2016-03-30 宁波舜宇光电信息有限公司 可调光学镜头和摄像模组及其制造方法
CN206270575U (zh) * 2016-11-22 2017-06-20 捷西迪(广州)光学科技有限公司 一种单焦镜头筒的调芯装置
CN207336902U (zh) * 2017-08-11 2018-05-08 宁波舜宇光电信息有限公司 光学镜头及摄像模组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3667386A4 *

Also Published As

Publication number Publication date
EP3667386A1 (en) 2020-06-17
JP2020530592A (ja) 2020-10-22
KR20200033328A (ko) 2020-03-27
KR102443493B1 (ko) 2022-09-14
EP3667386A4 (en) 2020-08-12

Similar Documents

Publication Publication Date Title
CN207336902U (zh) 光学镜头及摄像模组
CN110998405B (zh) 光学镜头、摄像模组及其组装方法
CN111034169B (zh) 摄像模组及其组装方法
TWI720343B (zh) 攝像模組及其組裝方法
TWI720579B (zh) 光學鏡頭、攝像模組及其組裝方法
KR102421830B1 (ko) 광학 어셈블리의 조립 기기와 조립 방법
TWI429978B (zh) 攝像鏡頭、攝像模組、攝像鏡頭之製造方法及攝像模組之製造方法
TWI756521B (zh) 光學鏡頭、攝像模組及其組裝方法
WO2019029331A1 (zh) 光学镜头、摄像模组及其组装方法
WO2019228348A1 (zh) 光学镜头、摄像模组及其组装方法
CN114076999A (zh) 潜望式摄像模组
JPH11344657A (ja) レンズの組立体及びその組立方法
WO2020073736A1 (zh) 光学变焦摄像模组及其组装方法
EP3835843B1 (en) Optical lens, camera module and assembling method
CN110873935A (zh) 光学镜头、摄像模组及组装方法
WO2024104458A1 (zh) 光学镜头及摄像模组
CN113219639B (zh) 光学镜头及摄像设备
WO2019233213A1 (zh) 光学镜头、摄像模组及其组装方法
WO2020088039A1 (zh) 光学镜头、摄像模组及其组装方法
US20190088703A1 (en) Method for manufacturing a camera and a camera
CN104503066A (zh) 一种大视场大数值孔径紫外光投影光刻物镜镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508008

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207006205

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018845018

Country of ref document: EP

Effective date: 20200311