WO2019029212A1 - 通信方法、终端设备和网络设备 - Google Patents

通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2019029212A1
WO2019029212A1 PCT/CN2018/087041 CN2018087041W WO2019029212A1 WO 2019029212 A1 WO2019029212 A1 WO 2019029212A1 CN 2018087041 W CN2018087041 W CN 2018087041W WO 2019029212 A1 WO2019029212 A1 WO 2019029212A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
network device
data
time unit
reference signal
Prior art date
Application number
PCT/CN2018/087041
Other languages
English (en)
French (fr)
Inventor
王达
王键
薛祎凡
丁志明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18842932.8A priority Critical patent/EP3657877B1/en
Priority to US16/638,317 priority patent/US20200229230A1/en
Publication of WO2019029212A1 publication Critical patent/WO2019029212A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1848Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present application relate to communication technologies, and in particular, to a communication method, a terminal device, and a network device.
  • 5G communication systems support the transmission of uplink data using grant free. That is, in the case that there is no uplink grant (UL grant) sent by the network device, the terminal device can directly send uplink data to the network device on the pre-configured resource.
  • UL grant uplink grant
  • the network device may pre-configure a resource for each group of terminal devices, and the terminal device in the group may send the same uplink data to the network device continuously and repeatedly on the resource without the UL grant. If the network device does not correctly receive the uplink data sent by the terminal device, the network device may send a UL grant to the terminal device to instruct the terminal device to resend the uplink data on the resource indicated by the UL grant. .
  • the current process does not limit the manner in which the network device sends the UL grant. Therefore, how to send the UL grant to the terminal device when the network device transmits the uplink data in the grant free transmission mode is an urgent problem to be solved.
  • the embodiment of the present invention provides a communication method, a terminal device, and a network device, which are used to solve the technical problem of how a network device sends a UL grant to a terminal device when transmitting uplink data in a grant free transmission mode in the prior art.
  • an embodiment of the present application provides a communication method, where the method includes:
  • the network device detects, in the first time unit, the reference signal and/or data sent by the terminal device to the network device on the second time unit;
  • the first indication information is sent by the network device in a third time unit after the first time unit, where the first indication information is used to instruct the terminal device to send the resource of the data.
  • the network device when the terminal device transmits data to the network device by using the grant free transmission mode, the network device may have a certain time to try after detecting the RS and/or data sent by the terminal device. The data of the terminal device is correctly received through multiple transmissions of the terminal device. After the network device still cannot correctly receive the data sent by the terminal device, the network device may send the first indication information to the terminal device to indicate that the network device is specifically configured by the network device to send the data. . In this way, the accuracy of the first indication information sent by the network device can be ensured.
  • the second time unit is the same as or different from the first time unit.
  • the reference signal carries first information, where the first information is used to indicate that the reference signal is a reference signal that is sent by the terminal device to the network device for the Nth time, N is a positive integer greater than or equal to 1;
  • the network device may have the opportunity to detect the RS and/or data sent by the terminal device by L times, and may Determining a starting point of the preset duration according to the transmission information carried by the RS sent by the terminal device, thereby constraining the location of the third time unit. After the network device still cannot correctly receive the data sent by the terminal device, the network device may send the first indication information to the terminal device on the third time unit to indicate that the network device is specifically scheduled for the terminal device. The resource for sending the above data. In this way, the accuracy of the first indication information sent by the network device can be ensured.
  • the reference signal carries the second information, where the second information is used to indicate whether the reference signal is a reference signal that is sent by the terminal device to the network device for the first time;
  • the third time unit is a time when the terminal device sends the reference signal to the network device for the Lth time a unit, or the third time unit is an Xth time unit after the time unit that the terminal device sends the reference signal to the network device for the Lth time; the L and the X are both greater than or equal to 1 Positive integer
  • the third time unit is an Mth time unit after the first time unit, and the M is a positive integer greater than or equal to 1.
  • the method further includes:
  • the first time unit, the second time unit, and the third time unit can be flexible and diverse, and the application scenario of the communication method is expanded.
  • the first indication information includes a first field and a second field.
  • the first indication information is used to indicate The network device correctly receives the data; when the first field is an identifier of the data, and the second field indicates a resource, the first indication information is used to indicate that the terminal device is in the Sending the data on the resource;
  • the first indication information may be used for the terminal device to send data, or may be used to indicate that the network device correctly receives the data. Therefore, the terminal device only needs to detect an indication information, and Two indications need to be separately detected, which further reduces the power consumption of the terminal device.
  • an embodiment of the present application provides a communication method, where the method includes:
  • the first indication information is sent by the network device, where the first indication information includes a first field, and when the first field indicates the identifier of the data sent by the terminal device, the first indication information is used to indicate that the terminal device sends the The first indication information is used to indicate that the network device correctly receives the data, when the first field is a preset value or indicates an identifier of data sent by another terminal device.
  • the terminal device sends data and reference signals to the network device multiple times;
  • the terminal device retransmits the data and the reference signal when the first indication information is not detected before the fourth time unit, where the fourth time unit is greater than the terminal device L times to the network
  • the device transmits the data and a time unit of the reference signal.
  • the network device may not detect the data and/or the RS sent by the terminal device at one time. Therefore, the terminal device may retransmit the data and the RS when the first indication information is not detected before the fourth time unit, to prevent the terminal device from detecting the first indication information indefinitely, and may also improve the data transmission of the terminal device. effectiveness.
  • the reference signal carries first information, where the first information is used to indicate that the reference signal is a reference signal that is sent by the terminal device to the network device for the Nth time, N is a positive integer greater than or equal to 1;
  • the network device may have the opportunity to detect the RS and/or data sent by the terminal device by L times, and may Determining a starting point of the preset duration according to the transmission information carried by the RS sent by the terminal device, thereby constraining a location of the third time unit for transmitting the first indication information.
  • the terminal device can determine, according to this, a time unit that can receive the first indication information, and based on this, measure whether to perform the operation of retransmitting data, so as to prevent the terminal device from detecting the first indication information indefinitely.
  • the data transmission efficiency of the terminal device can be improved.
  • the reference signal carries the second information, where the second information is used to indicate whether the reference signal is a reference signal that is sent by the terminal device to the network device for the first time;
  • the fourth time unit is the Mth time unit after the time unit that the terminal device sends the reference signal to the network device last time, and the M is a positive integer greater than or equal to 1, and the value of the M is It is the same as the value of L, or the value of M is the difference between L and 1.
  • the terminal device detects the data after transmitting the data and the reference signal to the network device for the first time.
  • the first indication information sent by the network device.
  • the first indication information may be used for the terminal device to send data, and may also be used to indicate that the network device correctly receives the data. Therefore, the terminal device only needs to detect an indication information. There is no need to separately detect two indication information, which further reduces the power consumption of the terminal device.
  • the sending power used by the terminal device is greater than or equal to the sending power used by the terminal device in the previous time
  • the transmit power is power for transmitting the reference signal, or the transmit power is power for transmitting the reference signal and the data.
  • the transmission power is the power for transmitting the RS
  • the transmission power of the RS can be improved by the foregoing manner, and the probability that the network device successfully detects the RS can be improved, thereby improving the transmission first.
  • the transmission power is the total transmission power of the transmission RS and the data
  • the power of the transmission data can be improved while the transmission power of the RS is increased, and the probability that the network device correctly receives the data can be improved.
  • the terminal device retransmits the data and the reference signal has a maximum number of retransmissions greater than or equal to a number of transmissions when the terminal device sends data and a reference signal to the network device multiple times;
  • the transmission power used by the terminal device to retransmit is greater than or equal to the transmission power used by the terminal device when transmitting multiple times.
  • the transmit power is power for transmitting the reference signal, or the transmit power is power for transmitting the reference signal and the data.
  • the probability of correct reception of the network device can be improved by increasing the number of retransmissions.
  • the transmission power is the power of the RS
  • the transmission power of the RS can be improved by the above manner, and the probability that the network device successfully detects the RS can be improved, thereby improving the efficiency of transmitting the first indication information.
  • the transmission power is the total transmission power of the transmission RS and the data
  • the power of the transmission data can be improved while the transmission power of the RS is increased, and the probability that the network device correctly receives the data can be improved.
  • the fourth time unit is one of an OFDM symbol, a time slot, a mini slot, a subframe, and a frame of an orthogonal frequency division multiplexing (OFDM) technology.
  • OFDM orthogonal frequency division multiplexing
  • the embodiment of the present application provides a communication method, where the method includes:
  • the sending power is power for transmitting the reference signal, or the sending power is power for transmitting the reference signal and the data.
  • the transmission power is the power for transmitting the RS
  • the transmission power of the RS can be improved by the foregoing manner, and the probability that the network device successfully detects the RS can be improved, thereby improving the transmission first.
  • the transmission power is the total transmission power of the transmission RS and the data
  • the power of the transmission data can be improved while the transmission power of the RS is increased, and the probability that the network device correctly receives the data can be improved.
  • an embodiment of the present application provides a communication method, where the method includes:
  • the terminal device sends data and reference signals to the network device at least once;
  • the maximum number of retransmissions of the data and the reference signal is greater than or equal to a number of transmissions when the terminal device sends data and a reference signal to the network device at least once;
  • the transmission power used by the terminal device to retransmit is greater than or equal to the transmission power used by the terminal device when the at least one transmission is performed.
  • the probability of correct reception by the network device can be improved.
  • the sending power is power for transmitting the reference signal, or the sending power is power for transmitting the reference signal and the data.
  • the transmission power is the power for transmitting the RS
  • the transmission power of the RS can be improved by the foregoing manner, and the probability that the network device successfully detects the RS can be improved, thereby improving the transmission first.
  • the transmission power is the total transmission power of the transmission RS and the data
  • the power of the transmission data can be improved while the transmission power of the RS is increased, and the probability that the network device correctly receives the data can be improved.
  • the embodiment of the present application provides a network device, including:
  • a processing module configured to detect, by the first time unit, a reference signal and/or data sent by the terminal device to the network device on the second time unit;
  • a sending module configured to: when the processing module detects the reference signal and/or the data in the first time unit, send the first indication information in a third time unit after the first time unit, The first indication information is used to instruct the terminal device to send the resource of the data.
  • the second time unit is the same as or different from the first time unit.
  • the third time unit sends the terminal device to the network device for the Lth time a time unit of the reference signal, or the third time unit is an Xth time unit after the time unit that the terminal device sends the reference signal to the network device for the Lth time;
  • the third time unit is the Xth time after the first time unit A time unit, wherein L and X are both positive integers greater than or equal to one.
  • the reference signal carries the second information, where the second information is used to indicate whether the reference signal is a reference signal that is sent by the terminal device to the network device for the first time;
  • the third time unit is a time when the terminal device sends the reference signal to the network device for the Lth time a unit, or the third time unit is an Xth time unit after the time unit that the terminal device sends the reference signal to the network device for the Lth time; the L and the X are both greater than or equal to 1 Positive integer
  • the third time unit is an Mth time unit after the first time unit, and the M is a positive integer greater than or equal to 1.
  • the sending module is further configured to send the first indication information to the terminal device, where the first indication information is further used to indicate that the network device correctly receives the data. .
  • the first time unit, the second time unit, and the third time unit are orthogonal frequency division multiplexing OFDM symbols, time slots, mini time slots, subframes, and frames. One of them.
  • the embodiment of the present application provides a network device, including:
  • a sending module configured to send the first indication information, where the first indication information includes a first field, where the first indication information is used to indicate the terminal when the first field indicates an identifier of data sent by the terminal device
  • the device sends the data of the data.
  • the first indication information is used to indicate that the network device correctly receives the data.
  • the embodiment of the present application provides a terminal device, including:
  • a sending module configured to send data and a reference signal to the network device multiple times
  • a processing module configured to: after the sending the data and the reference signal to the network device, the first indication information sent by the network device, where the first indication information is used to indicate that the terminal device sends the The resource of the data, the L being a positive integer greater than or equal to 1.
  • the sending module is further configured to retransmit the data and the reference signal when the first indication information is not detected before the fourth time unit, the fourth time The unit is greater than a time unit in which the terminal device transmits the data and the reference signal to the network device for the Lth time.
  • the reference signal carries first information, where the first information is used to indicate that the reference signal is a reference signal that is sent by the terminal device to the network device for the Nth time, N is a positive integer greater than or equal to 1;
  • the fourth time unit is a time unit in which the terminal device sends a reference signal to the network device last time, or the fourth time unit is a time unit in which the terminal device sends a reference signal to the network device last time.
  • the X is a positive integer greater than or equal to 1.
  • the fourth time unit is the Mth time unit after the time unit that the terminal device sends the reference signal to the network device last time, and the M is a positive integer greater than or equal to 1, and the value of the M is It is the same as the value of L, or the value of M is the difference between L and 1.
  • the processing module is further configured to: when the first indication information is further used to indicate that the network device correctly receives the data, send the network device to the network device for the first time. After the data and the reference signal, the first indication information sent by the network device is detected.
  • the sending power used by the terminal device is greater than or equal to the sending power used by the terminal device in the previous time
  • the transmit power is power for transmitting the reference signal, or the transmit power is power for transmitting the reference signal and the data.
  • the maximum number of retransmissions of the data and the reference signal is greater than or equal to a number of transmissions when the terminal device sends data and a reference signal to the network device multiple times;
  • the transmission power used by the terminal device to retransmit is greater than or equal to the transmission power used by the terminal device when transmitting multiple times.
  • the transmit power is power for transmitting the reference signal, or the transmit power is power for transmitting the reference signal and the data.
  • the fourth time unit is one of orthogonal frequency division multiplexing OFDM symbols, time slots, mini-slots, subframes, and frames.
  • the embodiment of the present application provides a terminal device, including:
  • a receiving module configured to receive first indication information
  • the first indication information includes a first field and a second field.
  • the first indication information is used to indicate The network device correctly receives the data; when the first field is an identifier of the data, and the second field indicates a resource, the first indication information is used to indicate that the terminal device is in the The data is sent on the resource.
  • the embodiment of the present application provides a terminal device, including:
  • the first indication information includes a first field, and when the first field indicates an identifier of data sent by the terminal device, the first indication information is used to indicate that the terminal device sends the resource of the data; When the first field is a preset value or an identifier indicating data sent by another terminal device, the first indication information is used to indicate that the network device correctly receives the data.
  • the embodiment of the present application provides a terminal device, including:
  • a sending module configured to send data and a reference signal to the network device multiple times
  • the transmission power used by the terminal device is greater than or equal to the transmission power used by the terminal device each time.
  • the sending power is power for transmitting the reference signal, or the sending power is power for transmitting the reference signal and the data.
  • the embodiment of the present application provides a terminal device, including:
  • a sending module configured to send data and a reference signal to the network device at least once
  • the sending module is further configured to retransmit the data and the reference signal to a network device;
  • the maximum number of retransmissions of the data and the reference signal is greater than or equal to a number of transmissions when the terminal device sends data and a reference signal to the network device at least once;
  • the transmission power used by the terminal device to retransmit is greater than or equal to the transmission power used by the terminal device when the at least one transmission is performed.
  • the sending power is power for transmitting the reference signal, or the sending power is power for transmitting the reference signal and the data.
  • the embodiment of the present application provides a network device, where the network device includes: a processor, a memory, a transmitter, and a receiver; the transmitter and the receiver are both coupled to the processor, where The processor controls a sending action of the transmitter, and the processor controls a receiving action of the receiver;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the network device to perform the first aspect and the first aspect Communication methods provided by various possible embodiments.
  • the embodiment of the present application provides a network device, where the network device includes: a processor, a memory, a transmitter, and a receiver; the transmitter and the receiver are both coupled to the processor, where The processor controls a sending action of the transmitter, and the processor controls a receiving action of the receiver;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instruction, the instruction causes the network device to perform a communication method as provided by the second aspect .
  • the embodiment of the present application provides a network device, where the network device includes: a processor, a memory, a transmitter, and a receiver; the transmitter and the receiver are both coupled to the processor, where The processor controls a sending action of the transmitter, and the processor controls a receiving action of the receiver;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instruction, the instruction causes the network device to perform a communication method as provided by the third aspect .
  • the embodiment of the present application provides a terminal device, where the terminal device includes: a processor, a memory, a transmitter, and a receiver; the transmitter and the receiver are both coupled to the processor, where The processor controls a sending action of the transmitter, and the processor controls a receiving action of the receiver;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instruction, the instruction causes the terminal device to perform the fourth aspect and the fourth aspect Communication methods provided by various possible embodiments.
  • the embodiment of the present application provides a terminal device, where the terminal device includes: a processor, a memory, a transmitter, and a receiver; the transmitter and the receiver are both coupled to the processor, The processor controls a sending action of the transmitter, and the processor controls a receiving action of the receiver;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instruction, the instruction causes the terminal device to perform a communication method as provided in the fifth aspect .
  • the embodiment of the present application provides a terminal device, where the terminal device includes: a processor, a memory, a transmitter, and a receiver; the transmitter and the receiver are both coupled to the processor, The processor controls a sending action of the transmitter, and the processor controls a receiving action of the receiver;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instruction, the instruction causes the terminal device to perform the seventh aspect and the seventh aspect Communication methods provided by various possible embodiments.
  • the embodiment of the present application provides a terminal device, where the terminal device includes: a processor, a memory, a transmitter, and a receiver; the transmitter and the receiver are both coupled to the processor, The processor controls a sending action of the transmitter, and the processor controls a receiving action of the receiver;
  • the embodiment of the present application provides a network device, including at least one processing element (or chip) for performing the method of the above first aspect.
  • the embodiment of the present application provides a network device, including at least one processing element (or chip) for performing the method of the above third aspect.
  • the embodiment of the present application provides a terminal device, including at least one processing element (or chip) for performing the method of the above fourth aspect.
  • the embodiment of the present application provides a terminal device, including at least one processing element (or chip) for performing the method of the above fifth aspect.
  • the embodiment of the present application provides a terminal device, including at least one processing element (or chip) for performing the method of the above sixth aspect.
  • the embodiment of the present application provides a terminal device, including at least one processing element (or chip) for performing the method of the above seventh aspect.
  • the embodiment of the present application provides a terminal device, including at least one processing element (or chip) for performing the method of the above eighth aspect.
  • an embodiment of the present application provides a program for executing the method of the above first aspect when executed by a processor.
  • the embodiment of the present application provides a program for executing the method of the above third aspect when executed by a processor.
  • the embodiment of the present application provides a program for executing the method of the above fourth aspect when executed by a processor.
  • the embodiment of the present application provides a program for executing the method of the above fifth aspect when executed by a processor.
  • the embodiment of the present application provides a program for executing the method of the sixth aspect above when executed by a processor.
  • the embodiment of the present application provides a program for executing the method of the above seventh aspect when executed by a processor.
  • the embodiment of the present application provides a program for performing the method of the above eighth aspect when executed by a processor.
  • the embodiment of the present application provides a program product, such as a computer readable storage medium, including the program of the thirty-third aspect.
  • the embodiment of the present application provides a program product, such as a computer readable storage medium, including the program of the thirty-fourth aspect.
  • the embodiment of the present application provides a program product, such as a computer readable storage medium, including the program of the thirty-fifth aspect.
  • the embodiment of the present application provides a program product, such as a computer readable storage medium, including the program of the thirty-seventh aspect.
  • the embodiment of the present application provides a program product, such as a computer readable storage medium, including the program of the thirty-eighth aspect.
  • the embodiment of the present application provides a program product, such as a computer readable storage medium, including the program of the fourth aspect.
  • the embodiment of the present application provides a computer readable storage medium, wherein the computer readable storage medium stores instructions, and when executed on a computer, causes the computer to execute the method of the first aspect.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions, and when executed on a computer, causes the computer to execute the method of the fourth aspect.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions, and when executed on a computer, causes the computer to execute the method of the seventh aspect.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions, and when executed on a computer, causes the computer to execute the method of the foregoing eighth aspect.
  • the network device may detect the RS and/or data sent by the terminal device. Try to try to receive the data of the terminal device correctly through multiple transmissions of the terminal device. After the network device still cannot correctly receive the data sent by the terminal device, the network device may send the first indication information to the terminal device to indicate that the network device is specifically configured by the network device to send the data. . In this way, the accuracy of the first indication information sent by the network device can be ensured.
  • FIG. 1 is a frame diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart diagram of another communication method according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of still another communication method according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart diagram of still another communication method according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • FIG. 11 is a structural block diagram of a terminal device provided by a mobile phone according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system includes: a network device 01 and a terminal device 02.
  • Network device 01 and terminal device 02 can communicate using at least one air interface format. among them,
  • the network device may be the foregoing base station, or various wireless access points, or may refer to a device in the access network that communicates with the terminal device through one or more sectors on the air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Global System of Mobile communication (GSM) or a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), or may be a wideband code division multiple access (
  • the base station (NodeB, NB) in the Wideband Code Division Multiple Access (WCDMA) may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in Long Term Evolution (LTE), or a relay station or an access point.
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • Terminal device may be a wireless terminal or a wired terminal, the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem. .
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • it may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • RAN Radio Access Network
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment), and the sensor having the network access function are not limited herein.
  • the above-mentioned air interface format may refer to an air interface having at least one of the following parameters or information (that is, an example of configuration information), specifically:
  • Waveform parameters are parameters that can indicate or determine a waveform.
  • the waveform parameter may include at least one of the following parameters: a waveform parameter used in an Orthogonal Frequency Division Multiplexing (OFDM) technology, and a single carrier frequency division.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Waveform parameters used in Single-carrier Frequency-Division Multiple Access SC-OFDM
  • waveform parameters used in filter Orthogonal Frequency Division Multiplexing filter OFDM
  • general-purpose filters Waveform parameters used in the carrier (Universal Filtered Multi-Carrier, UFMC) technology, waveform parameters used in Filter Bank Multicarrier (FBMC) technology, and Generalized Frequency Division Multiplexing (GFDM) technology Waveform parameters used in etc.
  • UFMC Universal Filtered Multi-Carrier
  • FBMC Filter Bank Multicarrier
  • GFDM Generalized Frequency Division Multiplexing
  • Modulation method In the communication technology, in order to ensure the communication effect and overcome the problem in the long-distance signal transmission, the signal spectrum can be moved to the high-frequency channel for transmission by modulation.
  • the process of loading a signal to be transmitted to a high frequency signal is called modulation.
  • the modulation mode may include at least one of the following: Amplitude Shift Keying (ASK) modulation, Phase Shift Keying (PSK) modulation, and frequency.
  • ASK Amplitude Shift Keying
  • PSK Phase Shift Keying
  • the bandwidth configuration may refer to the usage width on the frequency domain resource required by the air interface.
  • the bandwidth configuration corresponding to the broadband transmission service may refer to the minimum frequency domain resource width required by the air interface, or the number of subcarriers.
  • the bandwidth configuration corresponding to the narrowband transmission service may refer to the maximum frequency domain resource width required by the air interface, or the number of subcarriers.
  • Radio frame configuration mode Subcarrier Spacing (SCS), symbol length, Cyclic Prefix (CP), Timing (such as the length of time between uplink grant and uplink data transmission), duplex mode, transmission Transmission Time Interval (TTI) length, length of radio frame and radio subframe.
  • SCS Subcarrier Spacing
  • CP Cyclic Prefix
  • Timing such as the length of time between uplink grant and uplink data transmission
  • duplex mode transmission Transmission Time Interval (TTI) length, length of radio frame and radio subframe.
  • TTI Transmission Time Interval
  • the duplex mode can be, for example, divided into full-duplex, half-duplex (including half-duplex up-down ratio), or flexible duplex. It should be noted that, in some air interfaces, the duplex mode may be fixed or flexible, and the transmission time interval may be a fixed value or a flexible change, which is not specifically limited in this embodiment of the present application.
  • the resource multiplexing mode may include at least one of the following methods:
  • Frequency Division Multiplexing That is, the total bandwidth for the transmission channel is divided into a number of sub-bands (or sub-channels), and each sub-channel transmits one signal. Frequency division multiplexing requires that the total frequency width is greater than the sum of the frequency of each subchannel, and in order to ensure that the signals transmitted in each subchannel do not interfere with each other, an isolation band should be established between each subchannel, thus ensuring mutual signal mutual Do not interfere (one of the conditions).
  • Time Division Multiplexing uses time as a parameter for signal division, so it is necessary to make the respective signals do not overlap each other on the time axis.
  • Time division multiplexing divides the time for transmitting information to the entire channel into a number of time slices (referred to as time slots), and allocates these time slots to each signal source for use.
  • SDM Space Division Multiplexing
  • the basic technique for realizing spatial segmentation is to use adaptive array antennas to form different beams in different user directions.
  • the space segmentation can be used to distinguish different users, or each beam can provide a unique channel without other user interference, or can divide the space to distinguish different data of the same user, and can also divide the space. To distinguish the same data of the same user for higher gain.
  • CDMA Code Division Multiplexing
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • SCDMA Synchronous Code Division Multiple Access
  • the channel configuration mode may refer to a time-frequency resource, a code domain resource, and an air domain resource (for example, a designated beam) corresponding to one channel.
  • the channel used by the wireless communication may include at least one channel or a combination of multiple channels: a control channel for transmitting control information (eg, may include an uplink control channel and a downlink) A control channel), a data channel for transmitting data (for example, may include an uplink data channel and a downlink data channel), a reference channel for transmitting a reference signal, and an access channel for transmitting access information.
  • Coding is a transformation of a source symbol for the purpose of improving the validity of communication, or a source symbol conversion for reducing or eliminating the source margin. For example, to find a method for the statistical characteristics of the source output symbol sequence, the source output symbol sequence is transformed into the shortest codeword sequence, so that the average information amount of each symbol of the latter is maximized, and at the same time, it can be guaranteed. Restore the original symbol sequence without distortion.
  • the coding mode may include at least one of the following: a Polar Code, a Turbo Code, and a Convolution Code.
  • multiple access technology does not require that the various information be grouped together, but each is modulated and sent to the channel, and each is modulated from the channel.
  • the multiple access method used by the wireless communication may include at least one of the following: FDMA, TDMA, CDMA, SCMA, non-orthogonal multiple access (Non Orthogonal Multiple Access (NOMA), Multi-User Shared Access (MUSA).
  • the foregoing communication system may be an LTE communication system, or may be other communication systems in the future, such as a 5G communication system, and the like, which is not limited herein.
  • the future 5G communication system supports the uplink data using the grant free transmission method. That is, in the case that there is no UL grant sent by the network device, the terminal device can directly send uplink data to the network device on the pre-configured resource.
  • the resources mentioned herein may be, for example, time-frequency resources, frequency domain resources, or time domain resources.
  • the foregoing network device may pre-configure a resource for each group of terminal devices, and the terminal device in the group may pass multiple time units on the pre-configured resource according to the pre-configured transmission times without the UL grant.
  • the network device repeatedly transmits the same uplink data and reference signal (Reference Signal, RS).
  • the RS is used by the auxiliary network device to decode the uplink data.
  • the terminal device may send the uplink data and the RS to the network device once on a time unit.
  • the plurality of time units mentioned above may be a plurality of time units that are consecutive in time, or may be a plurality of time units that are discontinuous in time, and may be determined according to a system configuration.
  • the time unit may be any one of an Orthogonal Frequency Division Multiplexing (OFDM) symbol, a slot, a minislot, a subframe, a frame, and the like.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the network device may send an acknowledgement signal (ACK) to the terminal device to indicate to the terminal device that the network device correctly receives the uplink data. If the ACK is sent to the terminal device before the terminal device sends the uplink data to the network device and the number of transmissions of the RS reaches the pre-configured number of transmissions, the terminal device stops on the pre-configured resource after receiving the ACK. The transmission of the uplink data.
  • ACK acknowledgement signal
  • the network device may send a UL grant to the terminal device to instruct the terminal device to resend the uplink data on the resource indicated by the UL grant. If the UL grant is sent to the terminal device before the terminal device sends the uplink data to the network device and the number of transmissions of the RS reaches the pre-configured transmission times, the terminal device receives the UL grant and is on the pre-configured resource. , stop the transmission of the uplink data.
  • the terminal device If the terminal device does not receive the ACK or UL grant sent by the network device in the process of repeatedly transmitting the uplink data and the RS to the network device according to the pre-configured number of transmissions, the terminal device sends the uplink. After the number of times of data and RS reaches the pre-configured number of transmissions, the transmission of the uplink data is stopped on the pre-configured resource.
  • the RSs used by the terminal devices in the above group are orthogonal to each other. In this way, even if multiple terminal devices in the group simultaneously transmit RSs on the pre-configured resources, no interference occurs between the RSs, so that the network devices can correctly receive the RSs sent by each terminal device in the group. Therefore, the network device may determine the ID of the terminal device by using the resource used by the terminal device to send the RS and the RS sent by the terminal device.
  • the network device may determine the terminal device group corresponding to the resource by using the resource and the corresponding relationship between the resource and the terminal device group, and further determine the RS corresponding to the RS according to the correspondence between the RS and the ID of the terminal device. It is the ID of which terminal device in the terminal device group.
  • the network device when multiple terminal devices in the group simultaneously send RS and uplink data on the pre-configured resource, the network device cannot correctly receive all or part of the terminal device to send uplink data, and the network device can still Through the RSs sent by these terminal devices, it is determined which terminal device has uplink data to be transmitted. In this way, the network device may send the foregoing UL grant to the terminal device to instruct the terminal device to resend the uplink data on the resource scheduled by the network device for the terminal device.
  • the above-mentioned grant free transmission procedure has been adopted in the 5G standard, but the manner in which the above-mentioned network device transmits the UL grant is not limited. Therefore, how the network device sends the UL to the terminal device when transmitting the uplink data in the grant free transmission mode. Grant is an urgent problem to be solved.
  • the embodiment of the present application provides a communication method for solving the above technical problem.
  • the technical solution of the embodiment of the present application is described in detail below by using the communication system shown in FIG. 1 as an example.
  • the following embodiments may be combined with each other, and the same or similar concepts or processes may not be described in some embodiments.
  • FIG. 2 is a schematic flowchart diagram of a communication method according to an embodiment of the present application.
  • the embodiment relates to a process of how the network device sends the first indication information for indicating the resource of the terminal device to send data to the terminal device when the terminal device transmits the uplink data by using the grant free transmission mode.
  • the method may include:
  • the network device detects, in the first time unit, the RS and/or data sent by the terminal device to the network device on the second time unit.
  • the network device sends the first indication information in a third time unit after the first time unit, where the first indication information is used to instruct the terminal device to send the resource of the foregoing data.
  • the terminal device may send data and RS to the network device multiple times. That is, the terminal device may use a grant free transmission mode to repeatedly transmit the data and the RS to the network device through a plurality of time units on the pre-configured resource according to the pre-configured transmission times. Therefore, the network device can detect the data and RS sent by the terminal device on each time unit. It should be noted that the time unit for transmitting the data and the RS by the terminal device may have a time difference with the time unit of the network device detecting the data and/or the RS sent by the terminal device.
  • the time unit in which the network device detects data and/or the RS time unit and the terminal device sends the data and the RS may be the same time unit, or may be two different time units in a time region in which there is overlap in time. It can be two different time units of time zones that do not overlap at all in time.
  • the network device after the network device detects the RS and/or data sent by the terminal device on the second time unit in the first time unit, if the network device is in front of the third time unit, the network device still fails to receive correctly. And sending, by the network device, the first indication information to the terminal device, where the network device is configured to indicate, to the terminal device, the resource that is specifically scheduled by the network device for sending the data. That is to say, after detecting the RS and/or data sent by the terminal device, the network device will have a certain time to try to correctly receive the data of the terminal device through multiple transmissions of the terminal device.
  • the network device may send the foregoing first indication information to the terminal device, to indicate that the network device is a resource specifically scheduled by the network device for sending the foregoing data. In this way, the accuracy of the first indication information sent by the network device can be ensured.
  • the first indication information may carry scheduled resource information and an identifier of the foregoing data.
  • the identifier of the data may be, for example, an identifier of a Hybrid Automatic Repeat Request (HARQ) process used by the terminal device to send the data.
  • HARQ Hybrid Automatic Repeat Request
  • the above first indication information may still use the term UL grant in the 5G mobile communication system, and other terms may be used. Therefore, the naming of the first indication information in each communication system is not limited in the embodiment of the present application.
  • the first time unit, the second time unit, and the third time unit mentioned above are one of an OFDM symbol, a time slot, a mini slot, a subframe, and a frame. It should be noted that the first time unit, the second time unit, and the third time unit may be the same type of time unit (for example, all are time slots), or may be different types of time units. For example, the first time unit may be a mini time slot, the second time unit may be a time slot, and the third time unit may be an OFDM symbol. Additionally, the first time unit, the second time unit, and the third time unit may be different types of time units at different times.
  • the first time unit may be a time slot at some moments, and the first time unit may be a mini time slot or the like at other moments.
  • the first time unit, the second time unit, and the third time unit it may be specifically determined according to the configuration of the system.
  • the relationship between the foregoing first time unit and the second time unit may be referred to the foregoing time unit for transmitting data and RS by the terminal device, and the relationship between the network device receiving the time unit for transmitting the data and/or the RS by the terminal device, Let me repeat.
  • the relationship between the first time unit and the third time unit described above will be mainly described below.
  • a duration can be preset.
  • the third time unit is determined by the preset duration and the first time unit.
  • the preset duration may be, for example, a duration that the terminal device can send the L times data and the RS to the network device. Where L is a positive integer greater than or equal to 1. If the terminal device sends the L times of data and the RS to the network device through the L consecutive time units, the preset duration may be the duration corresponding to the L time units.
  • the terminal device can send data and RS to the network device at least once within the preset duration. Accordingly, the network device can detect the data and RS sent by the terminal device at least once. If the network device does not correctly receive the data sent by the terminal device within the preset time period, it indicates that the terminal device conflicts with the data sent by other terminal devices in the group where the terminal device is located or the channel condition is poor. Even if the terminal device transmits the data again, the probability that the network device cannot correctly receive the data is large. In this case, the network device may send the foregoing first indication information to the terminal device, to indicate that the network device is a resource specifically scheduled by the network device for sending the foregoing data. In this way, the accuracy of the first indication information sent by the network device can be ensured.
  • the terminal device may detect the first indication information after transmitting the data and the RS to the network device for the first time, and then send the data and the RS to the network device after the Lth time, and then detect The foregoing first indication information sent by the network device. In this way, the number of times the terminal device detects the first indication information can be reduced, thereby reducing the power consumption of the terminal device.
  • the time unit for detecting the first indication information by the terminal device may be a time unit for transmitting the data and the RS for the Lth time of the terminal device, or may be a time unit after the time unit of the Lth transmission data and the RS.
  • the relationship between the first time unit and the third time unit may include, for example, the following situations:
  • the first case the RS sent by the terminal device carries the first information.
  • the first information is used to indicate that the RS is an RS that is sent by the terminal device to the network device for the Nth time, and N is a positive integer greater than or equal to 1.
  • the first time unit can obtain the current information of the terminal device through the first information carried by the RS. It is the first time to send data and RS to the network device.
  • the starting point of the preset duration is a time unit in which the terminal device sends data and RS to the network device for the first time (or a time unit for the network device to detect the terminal device to send data and RS for the first time)
  • the end point of the preset duration is a time unit in which the terminal device transmits data and RS to the network device for the Lth time (or a time unit for transmitting the data and the RS for the Lth detection terminal device by the network device).
  • the third time unit is a time unit that the terminal device sends the reference signal to the network device for the Lth time, or the third time unit is the terminal.
  • the above X may be a positive integer greater than or equal to 1.
  • the value of X may be determined according to a configuration of the system, or may be determined according to a delay of receiving and processing data by the network device.
  • FIG. 3 is a schematic flowchart diagram of another communication method according to an embodiment of the present application. As shown in FIG. 3, the method may include:
  • the network device detects RS and/or data sent by the terminal device to the network device on the pre-configured resource, where the RS carries the first information.
  • the network device detects the RS and data sent by the terminal device to the network device on a time unit that each terminal device on the pre-configured resource may send data and RS.
  • the network device detects, in the first time unit, the RS and/or data sent by the terminal device to the network device on the second time unit for the first time.
  • the network device when the network device detects the RS and/or data sent by the terminal device through the second time unit for the first time in the first time unit, the network device may determine the identifier of the terminal device, and the HARQ process of the terminal device transmitting the data. logo.
  • the network device determines whether the data is correctly received. If yes, execute S204. If not, execute S205.
  • the network device may determine that the data sent by the terminal device is not correctly received. If the network device detects the data sent by the terminal device for the first time, the network device may attempt to decode the data. If the network device successfully decodes the data, the network device can determine that the data is correctly received. If the network device fails to decode the data, the network device may determine that the data sent by the terminal device is not correctly received.
  • the network device can indicate to the terminal device through the ACK that the network device correctly receives the data.
  • the terminal device is the first time After sending data and RS to the network device, it is necessary to start detecting ACK.
  • the terminal device may detect the first indication information sent by the network device after transmitting the data and the RS to the network device in the Lth time. In this way, the number of times the terminal device detects the first indication information can be reduced, thereby reducing the power consumption of the terminal device.
  • the network device may send, to the terminal device, the network device, to indicate that the network device correctly receives the data.
  • the first indication of the data is used to indicate that the network device correctly receives the data.
  • the foregoing first indication information may include a first field and a second field.
  • the first field indicates the identifier of the data sent by the terminal device (for example, the identifier of the HARQ process mentioned above), and the second field does not indicate any resource (for example, the second field may be an all-zero field, or an all-one field)
  • the default field defined by the standard is used to indicate that no resource is indicated.
  • the first indication information is used to indicate that the network device correctly receives the data.
  • the first indication information is used to indicate that the terminal device sends the data on the resource.
  • the terminal device may determine, according to the first field and the second field of the first indication information, whether the first indication information is used to indicate that the network device correctly receives the data, or is used for A resource indicating the terminal device to send data.
  • the foregoing first indication information may include a first field.
  • the first indication information is used to indicate the resource that the terminal device sends the data.
  • the first field is a preset value or indicates an identifier of data sent by another terminal device (for example, the first field is a preset field defined in the standard or an identifier of a HARQ process of another terminal device)
  • the first indication information is used by Instructs the network device to correctly receive the data.
  • the terminal device may determine, according to the first field of the first indication information, whether the first indication information is used to indicate whether the network device correctly receives the data, or is used to indicate that the terminal device sends the first indication information.
  • the resources of the data may be used to indicate whether the network device correctly receives the data.
  • the first indication information needs to be detected.
  • the first indication information may be used for the terminal device to send data, and may also be used to indicate that the network device correctly receives the data. Therefore, the terminal device only needs to detect one indication information, and does not need to separately detect two indication information, and further Reduce the power consumption of the terminal device.
  • the first indication information may be used for indicating, according to the foregoing network device, in the foregoing transmission process of the grant free, the terminal device is configured to instruct the terminal device to send data.
  • the network device may use the manner of the embodiment to send a resource for instructing the terminal device to send data to the terminal device, or to indicate that the network device correctly receives the data.
  • the first indication information provided by the embodiment may be used, so that the terminal device only needs to detect one indication information, and does not need to separately detect two indication information, thereby further reducing the power consumption of the terminal device. That is to say, the foregoing first indication information indicating that the network device can correctly receive the data and can indicate the resource for transmitting the data by the terminal device can exist as a separate embodiment, and does not necessarily have to be attached to the foregoing embodiment.
  • the network device determines, according to the first information carried by the RS, whether N is greater than or equal to L. If yes, execute S206, if no, execute S207.
  • the network device may determine, according to the first information carried in the RS sent by the terminal device, whether N is greater than or equal to L, to determine whether N is greater than or equal to L. It is determined whether the preset duration is exceeded, where N indicates that the terminal device transmits the RS and/or data to the network device for the Nth time.
  • the network device sends the first indication information to the terminal device in the Xth time unit after the first time unit.
  • the network device continues to detect the RS and/or data sent by the terminal device to the network device on the pre-configured resource, and starts a timer.
  • the duration of the timer is a preset duration minus a duration of the terminal device from the time unit of transmitting the data and the RS to the second time unit.
  • the network device If the network device detects the data sent by the terminal device before the timer expires, the data may be soft-combined with the previously received data, and the decoding is attempted again.
  • the network device sends the reference signal to the network device in the Lth time when the terminal device does not correctly receive the data sent by the terminal device before the timer expires, or the terminal device sends the reference signal to the network device in the Lth time.
  • the first indication information is sent to the terminal device on the Xth time unit after the time unit.
  • FIG. 4 is a schematic flowchart diagram of still another communication method according to an embodiment of the present application. As shown in FIG. 4, the method may include:
  • the terminal device sends data and RS to the network device multiple times.
  • the transmission power used by the terminal device may be the same or different.
  • the transmission power used by the terminal device may be greater than or equal to the transmission power used by the terminal device each time.
  • the transmission power used by the terminal device may be the sum of the transmission power used by the terminal device and the preset power threshold, or the transmission power used by the terminal device may be the previous time of the terminal device. The product of the transmitted power used and the preset power multiple.
  • the terminal device may use the maximum transmission power of the terminal device as the transmission power used this time.
  • the above-mentioned transmission power may be the power of the transmitting RS.
  • the transmission power of the RS can be improved, and the probability that the network device successfully detects the RS can be improved, thereby improving the efficiency of transmitting the first indication information.
  • the above-mentioned transmission power may also be the total transmission power for transmitting RS and data. In this way, the power of the transmitted data can be increased while the transmission power of the RS is increased, and the probability that the network device correctly receives the data can be improved.
  • the transmission flow of the grant free is taken as an example, and the power used by the terminal device to transmit data and RS to the network device is introduced and described.
  • the foregoing terminal device can adopt the manner of the embodiment, and any scenario that needs to send data and RS to the network device multiple times can be used to improve the network device.
  • the probability of detecting the RS, or increasing the probability that the network device detects the RS and the data. That is to say, the power used by the above terminal device to transmit data and RS to the network device may exist as a separate embodiment, and does not necessarily have to be attached to the foregoing embodiment.
  • the terminal device detects first indication information sent by the network device.
  • the first indication information is used to indicate that the terminal device sends the resource of the data.
  • the terminal device may start detecting the first indication information sent by the network device after transmitting the data and the RS to the network device in the Lth time. If the first indication information is used to indicate that the terminal device sends the data, and the network device can correctly receive the data, the terminal device starts detecting after sending the data and the RS to the network device for the first time. The first indication information sent by the network device.
  • the terminal device determines that the number of times the data and the RS are sent reaches a pre-configured number of transmissions. If yes, execute S304, if no, execute S302.
  • the terminal device may retransmit the data and the RS when the first indication information is not detected before the fourth time unit. If the terminal device determines that the data is sent and the number of RSs is not the last time, the terminal device may continue to detect the first indication information sent by the network device.
  • the terminal device retransmits the data and the RS when the first indication information is not detected before the fourth time unit.
  • the fourth time unit mentioned above may be one of an OFDM symbol, a time slot, a mini slot, a subframe, and a frame. It should be noted that the fourth time unit may be a different type of time unit at different times. For example, the fourth time unit may be a time slot at some time, and the fourth time unit may be a mini time slot or the like at other times, which may be determined according to a configuration of the system.
  • the data retransmitted by the terminal device is the same as the data transmitted before, but the MCS or RV version may be different.
  • changing the MCS or RV version of the data retransmitted by the terminal device may improve the probability that the network device correctly receives data, and specifically, the modulation mode of the terminal device transmitting data to the network device multiple times is 16QAM, and the terminal device retransmits the data.
  • the modulation mode is BPSK or QPSK, which reduces the demodulation threshold of the network device, thereby increasing the probability that the network device correctly receives data.
  • the terminal device may use the maximum transmit power of the terminal device as the transmit power at the time of the retransmission.
  • the second case the RS sent by the terminal device carries the second information.
  • the second information is used to indicate whether the RS is the RS that the terminal device sends to the network device for the first time.
  • the network device can know whether the terminal device is currently the second Send data and RS to the network device at one time.
  • the starting point of the preset duration may be that the terminal device is first to the network.
  • the time unit for transmitting data and RS by the device (or the time unit for detecting the terminal device transmitting data and RS for the first time), the end point of the preset duration is the time when the terminal device sends data and RS to the network device for the Lth time
  • the unit (or the time unit for transmitting the data and the RS for the Lth detection terminal device of the above network device).
  • the third time unit may be a time unit in which the terminal device sends the RS to the network device in the Lth time, or the third time unit is the time unit after the terminal device sends the RS time unit to the network device in the Lth time.
  • X time units may be a time unit in which the terminal device sends the RS to the network device in the Lth time, or the third time unit is the time unit after the terminal device sends the RS time unit to the network device in the Lth time.
  • the starting point of the preset duration may be the first one after the second time unit can be sent to the network.
  • the time unit in which the device transmits the data and the RS (or the first time unit capable of detecting the transmission of the data and the RS by the terminal device after the first time unit), and the end point of the preset duration is the Lth of the terminal device after the second time unit
  • the third time unit may be the Mth time unit after the first time unit. In this case, the value of M is the same as the value of L.
  • FIG. 5 is a schematic flowchart diagram of still another communication method according to an embodiment of the present application. As shown in FIG. 5, the method may include:
  • the network device detects, in the first time unit, the RS and/or data sent by the terminal device to the network device in the second time unit for the first time.
  • the network device determines whether the data is correctly received. If yes, execute S404. If not, execute S405.
  • the network device sends an ACK to the terminal device.
  • the network device determines, according to the second information carried by the RS, whether the RS is sent by the terminal device to the network device for the first time. If yes, execute S406, if no, execute S408.
  • the network device continues to detect the RS and/or data sent by the terminal device to the network device on the pre-configured resource, and starts a timer.
  • the duration of the timer is a preset duration minus the duration of the terminal device transmitting the data and the time unit of the RS to the second time unit.
  • the second time unit is the terminal device.
  • the time unit of data and RS is transmitted for the first time, so the period from the time when the data is first transmitted and the time unit of the RS to the second time unit is equal to zero.
  • the network device If the network device detects the data sent by the terminal device before the timer expires, the data may be soft-combined with the previously received data, and the decoding is attempted again.
  • the first indication information is sent to the terminal device on the Xth time unit after the time unit.
  • the network device continues to detect RS and/or data sent by the terminal device to the network device on the pre-configured resource, and starts a timer.
  • the duration of the timer is a preset duration minus a duration of the second time unit.
  • the duration of the above timer is a preset duration.
  • the network device If the network device detects the data sent by the terminal device before the timer expires, the data may be soft-combined with the previously received data, and the decoding is attempted again.
  • the network device sends the first indication information to the terminal device in the Mth time unit after the first time unit when the data sent by the terminal device is not correctly received before the timer expires.
  • the network device cannot know that the RS is sent to the network device for the first time.
  • the starting point of the preset duration may be a first time unit after the second time unit capable of transmitting data and RS to the network device (or the first one capable of detecting the terminal device after the first time unit to send data and RS The time unit), the end point of the preset duration is the time unit of the Lth device capable of transmitting data and RS to the network device after the second time unit (or the Lth of the network device after the first time unit) A time unit capable of detecting the transmission of data and RS by the terminal device).
  • the third time unit may be the Mth time unit after the first time unit, M is a positive integer greater than or equal to 1, and the value of M is the same as the value of L.
  • FIG. 6 is a schematic flowchart diagram of still another communication method according to an embodiment of the present application. As shown in FIG. 6, the method may include:
  • the network device detects RS and/or data sent by the terminal device to the network device on the pre-configured resource.
  • the network device detects, in the first time unit, the RS and/or data sent by the terminal device to the network device in the second time unit for the first time.
  • the network device determines whether the data is correctly received. If yes, execute S504. If not, execute S505.
  • the network device sends an ACK to the terminal device.
  • S505 The network device continues to detect RS and/or data sent by the terminal device to the network device on the pre-configured resource, and starts a timer.
  • the network device If the network device detects the data sent by the terminal device before the timer expires, the data may be soft-combined with the previously received data, and the decoding is attempted again.
  • the network device sends the first indication information to the terminal device in the Mth time unit after the first time unit when the data sent by the terminal device is not correctly received before the timer expires.
  • the value of the above M is L-1.
  • the value of the above M is equal to the value of L.
  • the network device when the network device detects data and/or RS for the first time, it is sent by the terminal device for the last time. That is, the first time unit is the last time unit of the network device capable of detecting the RS and/or data sent by the terminal device, and based on the foregoing procedure, the network device may send the Mth time unit after the first time unit to the terminal device.
  • the fourth time unit may be, for example, the Mth time unit after the time unit of the RS is last transmitted to the network device by the terminal device.
  • the time unit used by the terminal device in the foregoing embodiment and the time unit used by the network device have some time difference in actual time, but each time unit used by the terminal device is associated with the network device. A certain time unit corresponds. Therefore, in the embodiment of the present application, the time unit on the terminal device side is used in some places, and the time unit on the network device side is used in some places.
  • the two time units can be interchanged with the corresponding time units.
  • the embodiments of the present application can still be implemented on the basis of the interchange, and details are not described herein again.
  • the network device when the terminal device sends the data to the network device by using the grant free transmission mode, the network device may have a certain time to try after detecting the RS and/or data sent by the terminal device. The data of the terminal device is correctly received through multiple transmissions of the terminal device. After the network device still cannot correctly receive the data sent by the terminal device, the network device may send the first indication information to the terminal device to indicate that the network device is specifically configured by the network device to send the data. . In this way, the accuracy of the first indication information sent by the network device can be ensured.
  • the processing module 11 is configured to detect, at the first time unit, the reference signal and/or data sent by the terminal device to the network device on the second time unit; wherein the second time unit is the same as the first time unit , or different.
  • the sending module 12 is configured to: when the processing module detects the reference signal and/or the data in the first time unit, send the first indication information in a third time unit after the first time unit The first indication information is used to instruct the terminal device to send the resource of the data.
  • the reference signal When the reference signal carries the first information, and the first information is used to indicate that the reference signal is the reference signal sent by the terminal device to the network device for the Nth time, if the second time unit is smaller than The time unit that the terminal device sends the reference signal to the network device for the Lth time, wherein the third time unit is a time unit that the terminal device sends the reference signal to the network device for the Lth time, or The third time unit is an Xth time unit after the time unit of the reference signal is sent to the network device by the terminal device for the Lth time.
  • the third time unit is the Xth time after the first time unit
  • the time unit, the N, the L and the X are both positive integers greater than or equal to 1.
  • the reference signal When the reference signal carries the second information, and the second information is used to indicate whether the reference signal is a reference signal that is sent by the terminal device to the network device for the first time, if the reference signal is The reference signal sent by the terminal device to the network device for the first time, the third time unit is a time unit for the terminal device to send the reference signal to the network device for the Lth time, or The third time unit is an Xth time unit after the time unit of the reference signal is sent to the network device by the terminal device for the Lth time; the L and X are both positive integers greater than or equal to 1.
  • the sending module 12 is further configured to send the first indication information to the terminal device, where the first indication information is further used to indicate that the network device correctly receives the data.
  • the first time unit, the second time unit, and the third time unit are one of orthogonal frequency division multiplexing OFDM symbols, time slots, mini time slots, subframes, and frames.
  • the network device provided by the embodiment of the present application may perform the action of the network device in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the sending module is configured to send the first indication information, where the first indication information includes a first field and a second field, where the first field indicates an identifier of data sent by the terminal device, and the second When the field does not indicate a resource, the first indication information is used to indicate that the network device correctly receives the data; when the first field is an identifier of the data, and the second field indicates a resource, The first indication information is used to instruct the terminal device to send the data on the resource.
  • the network device provided by the embodiment of the present application may perform the action of sending the first indication information by the network device in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the embodiment of the present application further provides a network device, where the network device may include: a sending module.
  • the sending module is configured to send the first indication information, where the first indication information includes a first field, where the first indication information is used to indicate the location when the first field indicates the identifier of the data sent by the terminal device. And the first indication information is used to indicate that the network device correctly receives the information, when the first field is a preset value or an identifier indicating data sent by another terminal device. data.
  • the network device provided by the embodiment of the present application may perform the action of sending the first indication information by the network device in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 8 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure. As shown in FIG. 8, the foregoing terminal device may include: a sending module 21 and a processing module 22. among them,
  • the sending module 21 is configured to send data and a reference signal to the network device multiple times;
  • the processing module 22 is configured to: after transmitting the data and the reference signal to the network device, the first indication information that is sent by the network device, where the first indication information is used to indicate that the terminal device sends The resource of the data, the L being a positive integer greater than or equal to 1.
  • the fourth time unit is the terminal device The time unit for transmitting the reference signal to the network device for the last time, or the fourth time unit is the Xth time unit after the time unit of the last time the terminal device sends the reference signal to the network device, the N
  • the X is a positive integer greater than or equal to 1.
  • the fourth time unit is The Mth time unit after the time unit of the reference signal is sent to the network device last time, the M is a positive integer greater than or equal to 1, and the value of the M and the value of the L The same, or the value of M is the difference between L and 1.
  • the processing module 22 is further configured to: when the first indication information is further used to indicate that the network device correctly receives the data, send the data and the data to the network device for the first time After the reference signal, detecting the first indication information sent by the network device.
  • the sending power used by the terminal device is greater than or equal to the sending power used by the terminal device in the previous time; the sending power is the power for transmitting the reference signal, or the sending power. To transmit the reference signal and the power of the data.
  • the number of times that the terminal device retransmits the data and the reference signal has a maximum number of retransmissions greater than or equal to the number of times the terminal device sends data and reference signals to the network device multiple times; and/or
  • the transmission power used when the terminal device retransmits is greater than or equal to the transmission power used by the terminal device when transmitting multiple times.
  • the sending power is the power for transmitting the reference signal, or the sending power is the power for transmitting the reference signal and the data.
  • the fourth time unit is one of orthogonal frequency division multiplexing OFDM symbols, time slots, mini slots, subframes, and frames.
  • the terminal device provided by the embodiment of the present application may perform the action of the terminal device in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the embodiment of the present application further provides a terminal device, where the terminal device may include: a receiving module.
  • the receiving module is configured to receive the first indication information, where the first indication information includes a first field and a second field, where the first field indicates an identifier of data sent by the terminal device, and the second field is not When the resource is indicated, the first indication information is used to indicate that the network device correctly receives the data; when the first field is an identifier of the data, and the second field indicates a resource, the first An indication information is used to instruct the terminal device to send the data on the resource.
  • the embodiment of the present application further provides a terminal device, where the terminal device may include: a receiving module.
  • the receiving module is configured to receive the first indication information, where the first indication information includes a first field, where the first indication information is used to indicate the location when the first field indicates the identifier of the data sent by the terminal device. And the first indication information is used to indicate that the network device correctly receives the information, when the first field is a preset value or an identifier indicating data sent by another terminal device. data.
  • the embodiment of the present application further provides a terminal device, where the terminal device may include: a sending module.
  • the sending module is configured to send data and a reference signal to the network device multiple times.
  • the sending power used by the terminal device is greater than or equal to the sending power used by the terminal device.
  • the terminal device provided by the embodiment of the present application may perform the action of the terminal device to send data and the reference signal in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the embodiment of the present application further provides a terminal device, where the terminal device may include: a sending module.
  • the sending module is configured to send data and a reference signal to the network device at least once;
  • the sending module is further configured to retransmit the data and the reference signal to a network device;
  • the number of times that the terminal device retransmits the data and the maximum number of retransmissions of the reference signal is greater than or equal to the number of times the terminal device sends data and reference signals to the network device at least once; and/or the terminal
  • the transmission power used when the device retransmits is greater than or equal to the transmission power used by the terminal device when the at least one transmission is performed.
  • the terminal device provided by the embodiment of the present application may perform the operations of the terminal device to send data and the reference signal, and retransmit the data and the reference signal in the foregoing method embodiments, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Singnal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Singnal processor
  • FPGA Field Programmable Gate Array
  • the processing component may be a general purpose processor, such as a central processing unit (CPU) or other processor that can call the program code.
  • CPU central processing unit
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 9 is a schematic structural diagram of another network device according to an embodiment of the present application.
  • the network device may include a processor 31 (for example, a CPU), a memory 32, a receiver 33, and a transmitter 34.
  • the receiver 33 and the transmitter 34 are both coupled to the processor 31, and the processor 31 controls reception.
  • the receiving operation of the device 33 controls the transmission operation of the transmitter 34.
  • the memory 32 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various instructions may be stored for performing various processing functions and implementing the methods of embodiments of the present application. step.
  • the network device involved in the embodiment of the present application may further include: a power source 35, a communication bus 36, and a communication port 37.
  • the receiver 33 and the transmitter 34 may be integrated in the transceiver of the network device or may be an independent transceiver antenna on the network device.
  • Communication bus 36 is used to implement a communication connection between components.
  • the communication port 37 is used to implement connection communication between the network device and other peripheral devices.
  • FIG. 10 is a schematic structural diagram of another terminal device according to an embodiment of the present application.
  • the terminal device may include a processor 41 (for example, a CPU), a memory 42, a receiver 43, and a transmitter 44; the receiver 43 and the transmitter 44 are both coupled to the processor 41, and the processor 41 controls reception.
  • the receiving operation of the device 43 controls the transmitting operation of the transmitter 44.
  • the memory 42 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various instructions may be stored for performing various processing functions and implementing the methods of embodiments of the present application. step.
  • the memory 42 is used to store computer executable program code, and the program code includes instructions.
  • the instruction causes the processor 41 to perform the action processed in the foregoing method embodiment, so that the receiver
  • the transmitter 44 is configured to perform the sending operation in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the terminal device in the embodiment of the present application may be a wireless terminal such as a mobile phone or a tablet computer. Therefore, the terminal device is used as a mobile phone as an example.
  • FIG. 11 is a structural block diagram of the terminal device provided by the embodiment of the present disclosure. .
  • the mobile phone may include: a radio frequency (RF) circuit 1110, a memory 1120, an input unit 1130, a display unit 1140, a sensor 1150, an audio circuit 1160, a wireless fidelity (WiFi) module 1170, and processing.
  • RF radio frequency
  • the structure of the handset shown in FIG. 11 does not constitute a limitation to the handset, and may include more or less components than those illustrated, or some components may be combined, or different components may be arranged.
  • the memory 1120 can be used to store software programs and modules, and the processor 1180 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 1120.
  • the memory 1120 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 1120 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the display unit 1140 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 1140 may include a display panel 1141.
  • the display panel 1141 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 1131 can be overlaid on the display panel 1141. When the touch panel 1131 detects a touch operation thereon or nearby, the touch panel 1131 transmits to the processor 1180 to determine the type of the touch event, and then the processor 1180 is The type of touch event provides a corresponding visual output on display panel 1141.
  • touch panel 1131 and the display panel 1141 are used as two independent components to implement the input and input functions of the mobile phone in FIG. 10, in some embodiments, the touch panel 1131 and the display panel 1141 may be integrated. Realize the input and output functions of the phone.
  • the handset may also include at least one type of sensor 1150, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 1141 according to the brightness of the ambient light, and the light sensor may close the display panel 1141 and/or when the mobile phone moves to the ear. Or backlight.
  • the acceleration sensor can detect the acceleration of each direction (usually three axes). When it is still, it can detect the magnitude and direction of gravity. It can be used to identify the gesture of the mobile phone (such as horizontal and vertical screen switching, related games).
  • the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer repeat .
  • Audio circuitry 1160, speaker 1161, and microphone 1162 can provide an audio interface between the user and the handset.
  • the audio circuit 1160 can transmit the converted electrical data of the received audio data to the speaker 1161, and convert it into a sound signal output by the speaker 1161; on the other hand, the microphone 1162 converts the collected sound signal into an electrical signal, and the audio circuit 1160 After receiving, it is converted into audio data, and then processed by the audio data output processor 1180, transmitted to the other mobile phone via the RF circuit 1110, or outputted to the memory 1120 for further processing.
  • the processor 1180 is a control center for the handset, which connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 1120, and invoking data stored in the memory 1120, The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 1180 may include one or more processing units; for example, the processor 1180 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 1180.
  • the handset also includes a power supply 1190 (such as a battery) that powers the various components.
  • a power supply 1190 (such as a battery) that powers the various components.
  • the power supply can be logically coupled to the processor 1180 via a power management system to manage charging, discharging, and power management functions through the power management system.
  • the mobile phone can also include a camera 1200, which can be a front camera or a rear camera.
  • the mobile phone may further include a Bluetooth module, a GPS module, and the like, and details are not described herein again.
  • the processor 1180 included in the mobile phone may be used to implement an embodiment of the upper communication method, and the implementation principle and technical effects are similar, and details are not described herein again.
  • a computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, computer instructions can be wired from a website site, computer, server or data center (eg Coax, fiber, digital subscriber line (DSL) or wireless (eg, infrared, wireless, microwave, etc.) is transmitted to another website, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • Useful media can be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法、终端设备和网络设备,该方法包括:网络设备在第一时间单元检测到终端设备在第二时间单元上向所述网络设备发送的参考信号和/或数据;所述网络设备在所述第一时间单元之后的第三时间单元发送第一指示信息,所述第一指示信息用于指示所述终端设备发送所述数据的资源。本申请实施例提供的通信方法、终端设备和网络设备,终端设备在采用grant free的传输方式,向网络设备发送数据时,可以确保网络设备发送第一指示信息的准确性,还可以减少终端设备盲检第一指示信息的次数,进而可以降低终端设备的功耗。

Description

通信方法、终端设备和网络设备 技术领域
本申请实施例涉及通信技术,尤其涉及一种通信方法、终端设备和网络设备。
背景技术
未来5G通信系统支持上行数据采用免调度授权(grant free)的传输方式。即,在没有网络设备发送的上行链路授权(Uplink grant,UL grant)的情况下,终端设备可以直接在预配置的资源上向网络设备发送上行数据。
具体地,上述网络设备可以为每组终端设备预配置一个资源,该组内的终端设备可以在无UL grant的情况下,在该资源上连续的、且重复的向网络设备发送同一上行数据。若网络设备在该资源上未正确接收到该终端设备发送的上行数据,则网络设备可以向该终端设备发送UL grant,以指示该终端设备在该UL grant所指示的资源上重新发送该上行数据。
然而,目前流程中并未限定上述网络设备发送UL grant的方式,因此,在采用grant free的传输方式传输上行数据时,网络设备如何向终端设备发送UL grant是一个亟待解决的问题。
发明内容
本申请实施例提供一种通信方法、终端设备和网络设备,用于解决现有技术中在采用grant free的传输方式传输上行数据时,网络设备如何向终端设备发送UL grant的技术问题。
第一方面,本申请实施例提供一种通信方法,该方法包括:
网络设备在第一时间单元检测到终端设备在第二时间单元上向所述网络设备发送的参考信号和/或数据;
所述网络设备在所述第一时间单元之后的第三时间单元发送第一指示信息,所述第一指示信息用于指示所述终端设备发送所述数据的资源。
通过第一方面提供的通信方法,终端设备在采用grant free的传输方式,向网络设备发送数据时,网络设备在检测到终端设备发送的RS和/或数据后,会有一定的时间去尝试,通过终端设备的多次传输来正确接收终端设备的数据。在该时间段内网络设备仍然无法正确接收到终端设备发送的数据后,网络设备可以向终端设备发送上述第一指示信息,以指示网络设备为终端设备专门调度的、用于发送上述数据的资源。通过这种方式,可以确保网络设备发送第一指示信息的准确性。
在一种可能的实施方式中,所述第二时间单元与所述第一时间单元相同,或不同。
在一种可能的实施方式中,所述参考信号携带第一信息,所述第一信息用于指示所述参考信号为所述终端设备第N次向所述网络设备发送的参考信号,所述N为大于或等于1的正整数;
若所述第二时间单元小于所述终端设备第L次向所述网络设备发送所述参考信号的时间单元,则所述第三时间单元为所述终端设备第L次向所述网络设备发送所述参考信号的时间单元,或者,所述第三时间单元为所述终端设备第L次向所述网络设备发送所述参考信号的时间单元之后的第X个时间单元;
若所述第二时间单元大于或等于所述终端设备第L次向所述网络设备发送所述参考信号的时间单元,则所述第三时间单元为所述第一时间单元之后的第X个时间单元,所述L和X均为大于或等于1的正整数。
通过该可能的实施方式提供的通信方法,终端设备在采用grant free的传输方式,向网络设备发送数据时,可以约束网络设备具有L次检测终端设备发送的RS和/或数据的机会,并可以根据终端设备所发送的RS所携带的传输信息,确定该预设时长的起点,从而约束第三时间单元的位置。在该时间段内网络设备仍然无法正确接收到终端设备发送的数据后,网络设备可以在第三时间单元上向终端设备发送上述第一指示信息,以指示网络设备为终端设备专门调度的、用于发送上述数据的资源。通过这种方式,可以确保网络设备发送第一指示信息的准确性。
在一种可能的实施方式中,所述参考信号携带有第二信息,所述第二信息用于指示所述参考信号是否为所述终端设备第一次向所述网络设备发送的参考信号;
若所述参考信号为所述终端设备第一次向所述网络设备发送的参考信号,则所述第三时间单元为所述终端设备第L次向所述网络设备发送所述参考信号的时间单元,或者,所述第三时间单元为所述终端设备第L次向所述网络设备发送所述参考信号的时间单元之后的第X个时间单元;所述L和X均为大于或等于1的正整数;
若所述参考信号非所述终端设备第一次向所述网络设备发送的参考信号,则所述第三时间单元为所述第一时间单元之后的第M个时间单元,所述M为大于或等于1的正整数,所述M的取值与所述L的取值相同,或,所述M的取值为所述L与1的差值。
通过该可能的实施方式提供的通信方法,终端设备在采用grant free的传输方式,向网络设备发送数据时,可以约束网络设备具有L次检测终端设备发送的RS和/或数据的机会,并可以根据终端设备所发送的RS所携带的传输信息,确定该预设时长的起点,从而约束第三时间单元的位置。在该时间段内网络设备仍然无法正确接收到终端设备发送的数据后,网络设备可以在第三时间单元上向终端设备发送上述第一指示信息,以指示网络设备为终端设备专门调度的、用于发送上述数据的资源。通过这种方式,可以确保网络设备发送第一指示信息的准确性。
在一种可能的实施方式中,所述第三时间单元为所述第一时间单元之后的第M个时间单元,所述M为大于或等于1的正整数。
通过该可能的实施方式提供的通信方法,终端设备在采用grant free的传输方式,向网络设备发送数据时,可以约束网络设备具有L次检测终端设备发送的RS和/或数据的机会,在终端设备所发送的RS没有携带任何传输信息,可以基于当前时刻确定该预设时长的起点,从而约束第三时间单元的位置。在该时间段内网络设备仍然无法正确接收到终端设备发送的数据后,网络设备可以在第三时间单元上向终端设备发送上述第一指示信息,以指示网络设备为终端设备专门调度的、用于发送上述数据的资源。通过这种方式,可以确保网络设备发送第一指示信息的准确性。
在一种可能的实施方式中,所述方法还包括:
所述网络设备向所述终端设备发送所述第一指示信息,所述第一指示信息还用于指示所述网络设备正确接收到所述数据。
通过该可能的实施方式提供的通信方法,由于第一指示信息既可以用于终端设备发送数据的资源,也可以用于指示网络设备正确接收到该数据,因此,终端设备只需要检测一个指示信息,不需要分别检测两个指示信息,进一步降低了终端设备的功耗。
在一种可能的实施方式中,所述第一时间单元、所述第二时间单元和所述第三时间单元为正交频分复用OFDM符号、时隙、迷你时隙、子帧、帧中的一种。
通过该可能的实施方式提供的通信方法,使得第一时间单元、所述第二时间单元和第三时间单元可以为灵活多样,扩大了通信方法的应用场景。
第二方面,本申请实施例提供一种通信方法,该方法包括:
网络设备发送第一指示信息;
所述第一指示信息包括第一字段和第二字段,当所述第一字段指示终端设备发送的数据的标识、且所述第二字段未指示资源时,所述第一指示信息用于指示所述网络设备正确接收到所述数据;当所述第一字段为所述数据的标识、且所述第二字段指示资源时,所述第一指示信息用于指示所述终端设备在所述资源上发送所述数据;
通过第二方面提供的通信方法,由于第一指示信息既可以用于终端设备发送数据的资源,也可以用于指示网络设备正确接收到该数据,因此,终端设备只需要检测一个指示信息,不需要分别检测两个指示信息,进一步降低了终端设备的功耗。
第三方面,本申请实施例提供一种通信方法,该方法包括:
网络设备发送第一指示信息;所述第一指示信息包括第一字段,当所述第一字段指示终端设备发送的数据的标识时,所述第一指示信息用于指示所述终端设备发送所述数据的资源;当所述第一字段为预设值或者指示其他终端设备发送的数据的标识时,所述第一指示信息用于指示所述网络设备正确接收到所述数据。
通过第三方面提供的通信方法,由于第一指示信息既可以用于终端设备发送数据的资源,也可以用于指示网络设备正确接收到该数据,因此,终端设备只需要检测一个指示信息,不需要分别检测两个指示信息,进一步降低了终端设备的功耗。
第四方面,本申请实施例提供一种通信方法,该方法包括:
终端设备多次向网络设备发送数据和参考信号;
所述终端设备在第L次向所述网络设备发送所述数据和所述参考信号后,检测网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备发送所述数据的资源,所述L为大于或等于1的正整数。
通过第四方面提供的通信方法,上述终端设备可以不用在第一次向网络设备发送数据和RS后,就检测第一指示信息,而是在第L次向网络设备发送数据和RS后,再检测网络设备发送的上述第一指示信息。通过这种方式,可以减少终端设备检测第一指示信息的次数,进而降低终端设备的功耗。
在一种可能的实施方式中,所述方法还包括:
所述终端设备在第四时间单元之前未检测到所述第一指示信息时,重传所述数据和所述参考信号,所述第四时间单元大于所述终端设备第L次向所述网络设备发送所述数据和所述参考信号的时间单元。
通过该可能的实施方式提供的通信方法,上述终端设备在采用grant free的传输方式发送上行数据时,可能存在网络设备一次都没有检测到终端设备发送的数据和/或RS的情况。因此,上述终端设备可以在第四时间单元之前未检测到第一指示信息时,重传上述数据和RS,以避免终端设备无限的检测第一指示信息的情况,也可以提高终端设备的数据传输效率。
在一种可能的实施方式中,所述参考信号携带第一信息,所述第一信息用于指示所述参考信号为所述终端设备第N次向所述网络设备发送的参考信号,所述N为大于或等于1的正整数;
所述第四时间单元为所述终端设备最后一次向所述网络设备发送参考信号的时间单元,或者所述第四时间单元为所述终端设备最后一次向所述网络设备发送参考信号的时间单元之后的第X个时间单元,所述X为大于或等于1的正整数。
通过该可能的实施方式提供的通信方法,终端设备在采用grant free的传输方式,向网络设备发送数据时,可以约束网络设备具有L次检测终端设备发送的RS和/或数据的机会,并可以根据终端设备所发送的RS所携带的传输信息,确定该预设时长的起点,从而约束用于发送第一指示信息的第三时间单元的位置。相应地,终端设备可以基于此,确定最后一个可以接收第一指示信息的时间单元,并基于此来衡量是否执行重传数据的操作,以避免终端设备无限的检测第一指示信息的情况,也可以提高终端设备的数据传输效率。
在一种可能的实施方式中,所述参考信号携带有第二信息,所述第二信息用于指示所述参考信号是否为所述终端设备第一次向所述网络设备发送的参考信号;
所述第四时间单元为所述终端设备最后一次向所述网络设备发送参考信号的时间单元之后的第M个时间单元,所述M为大于或等于1的正整数,所述M的取值与所述L的取值相同,或,所述M的取值为所述L与1的差值。
通过该可能的实施方式提供的通信方法,终端设备在采用grant free的传输方式,向网络设备发送数据时,可以约束网络设备具有L次检测终端设备发送的RS和/或数据的机会,并可以根据终端设备所发送的RS所携带的传输信息,确定该预设时长的起点,从而约束用于发送第一指示信息的第三时间单元的位置。相应地,终端设备可以基于此,确定最后一个可以接收第一指示信息的时间单元,并基于此来衡量是否执行重传数据的操作,以避免终端设备无限的检测第一指示信息的情况,也可以提高终端设备的数据传输效率。
在一种可能的实施方式中,所述第四时间单元为所述终端设备最后一次向所述网络设备发送参考信号的时间单元之后的第M个时间单元,所述M为大于或等于1的正整数。
通过该可能的实施方式提供的通信方法,终端设备在采用grant free的传输方式,向网络设备发送数据时,可以约束网络设备具有L次检测终端设备发送的RS和/或数据的机会,在终端设备所发送的RS没有携带任何传输信息,可以基于当前时刻确定该预设时长的起点,从而约束用于发送第一指示信息的第三时间单元的位置。相应地,终端设备可以基于此,确定最后一个可以接收第一指示信息的时间单元,并基于此来衡量是否执行重传数据的操作,以避免终端设备无限的检测第一指示信息的情况,也可以提高终端设备的数据传输效率。
在一种可能的实施方式中,所述方法还包括:
在所述第一指示信息还用于指示所述网络设备正确接收到所述数据时,所述终端设备在第一次向所述网络设备发送所述数据和所述参考信号后,检测所述网络设备发送的第一指示信息。
通过该可能的实施方式提供的通信方法,由于第一指示信息既可以用于终端设备发送数据的资源,也可以用于指示网络设备正确接收到该数据,因此,终端设备只需要检测一个指示信息,不需要分别检测两个指示信息,进一步降低了终端设备的功耗。
在一种可能的实施方式中,所述终端设备每次所使用的发送功率均大于或等于所述终端设备前一次所使用的发送功率;
所述发送功率为发送所述参考信号的功率,或者,所述发送功率为发送所述参考信号和所述数据的功率。
通过该可能的实施方式提供的通信方法,当发送功率为发送RS的功率时,通过上述方式,可以提高RS的发送功率,进而可以提高网络设备成功检测到RS的概率,从而能够提高 发送第一指示信息的效率。当上述发送功率为发送RS和数据的总发送功率时,通过上述方式,可以在提高RS的发送功率的基础上,提高发送数据的功率,进而也可以提高网络设备正确接收数据的概率。
在一种可能的实施方式中,所述终端设备重传所述数据和所述参考信号的最大重传次数大于或等于所述终端设备多次向网络设备发送数据和参考信号时的发送次数;
和/或,
所述终端设备重传时所使用的发送功率,大于或等于所述终端设备多次发送时所使用的发送功率,
所述发送功率为发送所述参考信号的功率,或者,所述发送功率为发送所述参考信号和所述数据的功率。
通过该可能的实施方式提供的通信方法,通过增加重传次数可以提高网络设备正确接收的概率。当发送功率为发送RS的功率时,通过上述方式,可以提高RS的发送功率,进而可以提高网络设备成功检测到RS的概率,从而能够提高发送第一指示信息的效率。当上述发送功率为发送RS和数据的总发送功率时,通过上述方式,可以在提高RS的发送功率的基础上,提高发送数据的功率,进而也可以提高网络设备正确接收数据的概率。
在一种可能的实施方式中,所述第四时间单元为正交频分复用技术OFDM符号、时隙、迷你时隙、子帧、帧中的一种。
通过该可能的实施方式提供的通信方法,使得第四时间单元可以为灵活多样,扩大了通信方法的应用场景。
第五方面,本申请实施例提供一种通信方法,该方法包括:
终端设备接收第一指示信息;
所述第一指示信息包括第一字段和第二字段,当所述第一字段指示终端设备发送的数据的标识、且所述第二字段未指示资源时,所述第一指示信息用于指示所述网络设备正确接收到所述数据;当所述第一字段为所述数据的标识、且所述第二字段指示资源时,所述第一指示信息用于指示所述终端设备在所述资源上发送所述数据。
上述第五方面所提供的通信方法,其有益效果可以参见上述第二方面所带来的有益效果,在此不再赘述。
第六方面,本申请实施例提供一种通信方法,该方法包括:
终端设备接收第一指示信息;
所述第一指示信息包括第一字段,当所述第一字段指示终端设备发送的数据的标识时,所述第一指示信息用于指示所述终端设备发送所述数据的资源;当所述第一字段为预设值或者指示其他终端设备发送的数据的标识时,所述第一指示信息用于指示所述网络设备正确接收到所述数据。
上述第六方面所提供的通信方法,其有益效果可以参见上述第三方面所带来的有益效果,在此不再赘述。
第七方面,本申请实施例提供一种通信方法,该方法包括:
终端设备多次向网络设备发送数据和参考信号;
所述终端设备每次所使用的发送功率均大于或等于所述终端设备前一次所使用的发送功率。
通过第七方面提供的通信方法,通过提高发送功率的方式,可以提高网络设备正确接收的概率。
在一种可能的实施方式中,所述发送功率为发送所述参考信号的功率,或者,所述发送功率为发送所述参考信号和所述数据的功率。
通过该可能的实施方式提供的通信方法,当发送功率为发送RS的功率时,通过上述方式,可以提高RS的发送功率,进而可以提高网络设备成功检测到RS的概率,从而能够提高发送第一指示信息的效率。当上述发送功率为发送RS和数据的总发送功率时,通过上述方式,可以在提高RS的发送功率的基础上,提高发送数据的功率,进而也可以提高网络设备正确接收数据的概率。
第八方面,本申请实施例提供一种通信方法,该方法包括:
终端设备至少一次向网络设备发送数据和参考信号;
所述终端设备向网络设备重传所述数据和所述参考信号;
所述终端设备重传所述数据和所述参考信号的最大重传次数大于或等于所述终端设备至少一次向网络设备发送数据和参考信号时的发送次数;
和/或,
所述终端设备重传时所使用的发送功率,大于或等于所述终端设备在所述至少一次发送时所使用的发送功率。
通过第八方面提供的通信方法,通过增加重传次数和/或提高发送功率的方式,可以提高网络设备正确接收的概率。
在一种可能的实施方式中,所述发送功率为发送所述参考信号的功率,或者,所述发送功率为发送所述参考信号和所述数据的功率。
通过该可能的实施方式提供的通信方法,当发送功率为发送RS的功率时,通过上述方式,可以提高RS的发送功率,进而可以提高网络设备成功检测到RS的概率,从而能够提高发送第一指示信息的效率。当上述发送功率为发送RS和数据的总发送功率时,通过上述方式,可以在提高RS的发送功率的基础上,提高发送数据的功率,进而也可以提高网络设备正确接收数据的概率。
第九方面,本申请实施例提供一种网络设备,包括:
处理模块,用于在第一时间单元检测终端设备在第二时间单元上向所述网络设备发送的参考信号和/或数据;
发送模块,用于在所述处理模块在所述第一时间单元检测到所述参考信号和/或所述数据时,在所述第一时间单元之后的第三时间单元发送第一指示信息,所述第一指示信息用于指示所述终端设备发送所述数据的资源。
在一种可能的实施方式中,所述第二时间单元与所述第一时间单元相同,或不同。
在一种可能的实施方式中,所述参考信号携带第一信息,所述第一信息用于指示所述参考信号为所述终端设备第N次向所述网络设备发送的参考信号,所述N为大于或等于1的正整数;
若所述第二时间单元小于所述终端设备第L次向所述网络设备发送所述参考信号的时间单元,则所述第三时间单元为所述终端设备第L次向所述网络设备发送所述参考信号的时间单元,或者,所述第三时间单元为所述终端设备第L次向所述网络设备发送所述参考信号的时间单元之后的第X个时间单元;
若所述第二时间单元大于或等于所述终端设备第L次向所述网络设备发送所述参考信号的时间单元,则所述第三时间单元为所述第一时间单元之后的第X个时间单元,所述L和X均为大于或等于1的正整数。
在一种可能的实施方式中,所述参考信号携带有第二信息,所述第二信息用于指示所述参考信号是否为所述终端设备第一次向所述网络设备发送的参考信号;
若所述参考信号为所述终端设备第一次向所述网络设备发送的参考信号,则所述第三时间单元为所述终端设备第L次向所述网络设备发送所述参考信号的时间单元,或者,所述第三时间单元为所述终端设备第L次向所述网络设备发送所述参考信号的时间单元之后的第X个时间单元;所述L和X均为大于或等于1的正整数;
若所述参考信号非所述终端设备第一次向所述网络设备发送的参考信号,则所述第三时间单元为所述第一时间单元之后的第M个时间单元,所述M为大于或等于1的正整数,所述M的取值与所述L的取值相同,或,所述M的取值为所述L与1的差值。
在一种可能的实施方式中,所述第三时间单元为所述第一时间单元之后的第M个时间单元,所述M为大于或等于1的正整数。
在一种可能的实施方式中,所述发送模块,还用于向所述终端设备发送所述第一指示信息,所述第一指示信息还用于指示所述网络设备正确接收到所述数据。
在一种可能的实施方式中,所述第一时间单元、所述第二时间单元和所述第三时间单元为正交频分复用OFDM符号、时隙、迷你时隙、子帧、帧中的一种。
上述第九方面以及第九方面的各可能的实施方式所提供的网络设备,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第十方面,本申请实施例提供一种网络设备,包括:
发送模块,用于发送第一指示信息;其中,所述第一指示信息包括第一字段和第二字段,当所述第一字段指示终端设备发送的数据的标识、且所述第二字段未指示资源时,所述第一指示信息用于指示所述网络设备正确接收到所述数据;当所述第一字段为所述数据的标识、且所述第二字段指示资源时,所述第一指示信息用于指示所述终端设备在所述资源上发送所述数据。
上述第十方面所提供的网络设备,其有益效果可以参见上述第二方面所带来的有益效果,在此不再赘述。
第十一方面,本申请实施例提供一种网络设备,包括:
发送模块,用于发送第一指示信息;所述第一指示信息包括第一字段,当所述第一字段指示终端设备发送的数据的标识时,所述第一指示信息用于指示所述终端设备发送所述数据的资源;当所述第一字段为预设值或者指示其他终端设备发送的数据的标识时,所述第一指示信息用于指示所述网络设备正确接收到所述数据。
上述第十一方面所提供的网络设备,其有益效果可以参见上述第三方面所带来的有益效果,在此不再赘述。
第十二方面,本申请实施例提供一种终端设备,包括:
发送模块,用于多次向网络设备发送数据和参考信号;
处理模块,用于在第L次向所述网络设备发送所述数据和所述参考信号后,检测网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备发送所述数据的资源,所述L为大于或等于1的正整数。
在一种可能的实施方式中,所述发送模块,还用于在第四时间单元之前未检测到所述第一指示信息时,重传所述数据和所述参考信号,所述第四时间单元大于所述终端设备第L次向所述网络设备发送所述数据和所述参考信号的时间单元。
在一种可能的实施方式中,所述参考信号携带第一信息,所述第一信息用于指示所述参 考信号为所述终端设备第N次向所述网络设备发送的参考信号,所述N为大于或等于1的正整数;
所述第四时间单元为所述终端设备最后一次向所述网络设备发送参考信号的时间单元,或者所述第四时间单元为所述终端设备最后一次向所述网络设备发送参考信号的时间单元之后的第X个时间单元,所述X为大于或等于1的正整数。
在一种可能的实施方式中,所述参考信号携带有第二信息,所述第二信息用于指示所述参考信号是否为所述终端设备第一次向所述网络设备发送的参考信号;
所述第四时间单元为所述终端设备最后一次向所述网络设备发送参考信号的时间单元之后的第M个时间单元,所述M为大于或等于1的正整数,所述M的取值与所述L的取值相同,或,所述M的取值为所述L与1的差值。
在一种可能的实施方式中,所述第四时间单元为所述终端设备最后一次向所述网络设备发送参考信号的时间单元之后的第M个时间单元,所述M为大于或等于1的正整数。
在一种可能的实施方式中,所述处理模块,还用于在所述第一指示信息还用于指示所述网络设备正确接收到所述数据时,在第一次向所述网络设备发送所述数据和所述参考信号后,检测所述网络设备发送的第一指示信息。
在一种可能的实施方式中,所述终端设备每次所使用的发送功率均大于或等于所述终端设备前一次所使用的发送功率;
所述发送功率为发送所述参考信号的功率,或者,所述发送功率为发送所述参考信号和所述数据的功率。
在一种可能的实施方式中,
所述终端设备重传所述数据和所述参考信号的最大重传次数大于或等于所述终端设备多次向网络设备发送数据和参考信号时的发送次数;
和/或,
所述终端设备重传时所使用的发送功率,大于或等于所述终端设备多次发送时所使用的发送功率,
所述发送功率为发送所述参考信号的功率,或者,所述发送功率为发送所述参考信号和所述数据的功率。
在一种可能的实施方式中,所述第四时间单元为正交频分复用OFDM符号、时隙、迷你时隙、子帧、帧中的一种。
上述第十二方面以及第十二方面的各可能的实施方式所提供的终端设备,其有益效果可以参见上述第四方面和第四方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第十三方面,本申请实施例提供一种终端设备,包括:
接收模块,用于接收第一指示信息;
所述第一指示信息包括第一字段和第二字段,当所述第一字段指示终端设备发送的数据的标识、且所述第二字段未指示资源时,所述第一指示信息用于指示所述网络设备正确接收到所述数据;当所述第一字段为所述数据的标识、且所述第二字段指示资源时,所述第一指示信息用于指示所述终端设备在所述资源上发送所述数据。
上述第十三方面所提供的终端设备,其有益效果可以参见上述第五方面所带来的有益效果,在此不再赘述。
第十四方面,本申请实施例提供一种终端设备,包括:
接收模块,用于接收第一指示信息;
所述第一指示信息包括第一字段,当所述第一字段指示终端设备发送的数据的标识时,所述第一指示信息用于指示所述终端设备发送所述数据的资源;当所述第一字段为预设值或者指示其他终端设备发送的数据的标识时,所述第一指示信息用于指示所述网络设备正确接收到所述数据。
上述第十四方面所提供的终端设备,其有益效果可以参见上述第六方面所带来的有益效果,在此不再赘述。
第十五方面,本申请实施例提供一种终端设备,包括:
发送模块,用于多次向网络设备发送数据和参考信号;
所述终端设备每次所使用的发送功率均大于或等于所述终端设备前一次所使用的发送功率。
在一种可能的实施方式中,所述发送功率为发送所述参考信号的功率,或者,所述发送功率为发送所述参考信号和所述数据的功率。
上述第十五方面以及第十五方面的各可能的实施方式所提供的终端设备,其有益效果可以参见上述第七方面和第七方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第十六方面,本申请实施例提供一种终端设备,包括:
发送模块,用于至少一次向网络设备发送数据和参考信号;
所述发送模块,还用于向网络设备重传所述数据和所述参考信号;
所述终端设备重传所述数据和所述参考信号的最大重传次数大于或等于所述终端设备至少一次向网络设备发送数据和参考信号时的发送次数;
和/或,
所述终端设备重传时所使用的发送功率,大于或等于所述终端设备在所述至少一次发送时所使用的发送功率。
在一种可能的实施方式中,所述发送功率为发送所述参考信号的功率,或者,所述发送功率为发送所述参考信号和所述数据的功率。
上述第十六方面以及第十六方面的各可能的实施方式所提供的终端设备,其有益效果可以参见上述第八方面和第八方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第十七方面,本申请实施例提供一种网络设备,所述网络设备包括:处理器、存储器、发送器、接收器;所述发送器和所述接收器均耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
其中,所述存储器用于存储计算机可执行程序代码,所述程序代码包括指令;当所述处理器执行所述指令时,所述指令使所述网络设备执行如第一方面和第一方面的各可能的实施方式所提供的通信方法。
第十八方面,本申请实施例提供一种网络设备,所述网络设备包括:处理器、存储器、发送器、接收器;所述发送器和所述接收器均耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
其中,所述存储器用于存储计算机可执行程序代码,所述程序代码包括指令;当所述处理器执行所述指令时,所述指令使所述网络设备执行如第二方面所提供的通信方法。
第十九方面,本申请实施例提供一种网络设备,所述网络设备包括:处理器、存储器、发送器、接收器;所述发送器和所述接收器均耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
其中,所述存储器用于存储计算机可执行程序代码,所述程序代码包括指令;当所述处 理器执行所述指令时,所述指令使所述网络设备执行如第三方面所提供的通信方法。
第二十方面,本申请实施例提供一种终端设备,所述终端设备包括:处理器、存储器、发送器、接收器;所述发送器和所述接收器均耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
其中,所述存储器用于存储计算机可执行程序代码,所述程序代码包括指令;当所述处理器执行所述指令时,所述指令使所述终端设备执行如第四方面和第四方面的各可能的实施方式所提供的通信方法。
第二十一方面,本申请实施例提供一种终端设备,所述终端设备包括:处理器、存储器、发送器、接收器;所述发送器和所述接收器均耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
其中,所述存储器用于存储计算机可执行程序代码,所述程序代码包括指令;当所述处理器执行所述指令时,所述指令使所述终端设备执行如第五方面所提供的通信方法。
第二十二方面,本申请实施例提供一种终端设备,所述终端设备包括:处理器、存储器、发送器、接收器;所述发送器和所述接收器均耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
其中,所述存储器用于存储计算机可执行程序代码,所述程序代码包括指令;当所述处理器执行所述指令时,所述指令使所述终端设备执行如第六方面所提供的通信方法。
第二十三方面,本申请实施例提供一种终端设备,所述终端设备包括:处理器、存储器、发送器、接收器;所述发送器和所述接收器均耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
其中,所述存储器用于存储计算机可执行程序代码,所述程序代码包括指令;当所述处理器执行所述指令时,所述指令使所述终端设备执行如第七方面和第七方面的各可能的实施方式所提供的通信方法。
第二十四方面,本申请实施例提供一种终端设备,所述终端设备包括:处理器、存储器、发送器、接收器;所述发送器和所述接收器均耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
其中,所述存储器用于存储计算机可执行程序代码,所述程序代码包括指令;当所述处理器执行所述指令时,所述指令使所述终端设备执行如第八方面和第八方面的各可能的实施方式所提供的通信方法。
第二十五方面,本申请实施例提供一种网络设备,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
第二十六方面,本申请实施例提供一种网络设备,包括用于执行以上第二方面的方法的至少一个处理元件(或芯片)。
第二十七方面,本申请实施例提供一种网络设备,包括用于执行以上第三方面的方法的至少一个处理元件(或芯片)。
第二十八方面,本申请实施例提供一种终端设备,包括用于执行以上第四方面的方法的至少一个处理元件(或芯片)。
第二十九方面,本申请实施例提供一种终端设备,包括用于执行以上第五方面的方法的至少一个处理元件(或芯片)。
第三十方面,本申请实施例提供一种终端设备,包括用于执行以上第六方面的方法的至少一个处理元件(或芯片)。
第三十一方面,本申请实施例提供一种终端设备,包括用于执行以上第七方面的方法的至少一个处理元件(或芯片)。
第三十二方面,本申请实施例提供一种终端设备,包括用于执行以上第八方面的方法的至少一个处理元件(或芯片)。
第三十三方面,本申请实施例提供一种程序,该程序在被处理器执行时用于执行以上第一方面的方法。
第三十四方面,本申请实施例提供一种程序,该程序在被处理器执行时用于执行以上第二方面的方法。
第三十五方面,本申请实施例提供一种程序,该程序在被处理器执行时用于执行以上第三方面的方法。
第三十六方面,本申请实施例提供一种程序,该程序在被处理器执行时用于执行以上第四方面的方法。
第三十七方面,本申请实施例提供一种程序,该程序在被处理器执行时用于执行以上第五方面的方法。
第三十八方面,本申请实施例提供一种程序,该程序在被处理器执行时用于执行以上第六方面的方法。
第三十九方面,本申请实施例提供一种程序,该程序在被处理器执行时用于执行以上第七方面的方法。
第四十方面,本申请实施例提供一种程序,该程序在被处理器执行时用于执行以上第八方面的方法。
第四十一方面,本申请实施例提供一种程序产品,例如计算机可读存储介质,包括第三十三方面的程序。
第四十二方面,本申请实施例提供一种程序产品,例如计算机可读存储介质,包括第三十四方面的程序。
第四十三方面,本申请实施例提供一种程序产品,例如计算机可读存储介质,包括第三十五方面的程序。
第四十四方面,本申请实施例提供一种程序产品,例如计算机可读存储介质,包括第三十六方面的程序。
第四十五方面,本申请实施例提供一种程序产品,例如计算机可读存储介质,包括第三十七方面的程序。
第四十六方面,本申请实施例提供一种程序产品,例如计算机可读存储介质,包括第三十八方面的程序。
第四十七方面,本申请实施例提供一种程序产品,例如计算机可读存储介质,包括第三十九方面的程序。
第四十八方面,本申请实施例提供一种程序产品,例如计算机可读存储介质,包括第四十方面的程序。
第四十九方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面的方法。
第五十方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面的方法。
第五十一方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存 储有指令,当其在计算机上运行时,使得计算机执行上述第三方面的方法。
第五十二方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面的方法。
第五十三方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第五方面的方法。
第五十四方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第六方面的方法。
第五十五方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第七方面的方法。
第五十六方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第八方面的方法。
本申请实施例提供的通信方法、终端设备和网络设备,终端设备在采用grant free的传输方式,向网络设备发送数据时,网络设备在检测到终端设备发送的RS和/或数据后,会有一定的时间去尝试,通过终端设备的多次传输来正确接收终端设备的数据。在该时间段内网络设备仍然无法正确接收到终端设备发送的数据后,网络设备可以向终端设备发送上述第一指示信息,以指示网络设备为终端设备专门调度的、用于发送上述数据的资源。通过这种方式,可以确保网络设备发送第一指示信息的准确性。
附图说明
图1为本申请实施例所涉及的一种通信系统的框架图;
图2为本申请实施例提供的一种通信方法的流程示意图;
图3为本申请实施例提供的另一种通信方法的流程示意图;
图4为本申请实施例提供的又一种通信方法的流程示意图;
图5为本申请实施例提供的又一种通信方法的流程示意图;
图6为本申请实施例提供的又一种通信方法的流程示意图;
图7为本申请实施例提供的一种网络设备的结构示意图;
图8为本申请实施例提供的一种终端设备的结构示意图;
图9为本申请实施例提供的另一种网络设备的结构示意图;
图10为本申请实施例提供的另一种终端设备的结构示意图;
图11为本申请实施例提供的终端设备为手机时的结构框图。
具体实施方式
图1为本申请实施例所涉及的一种通信系统的框架图。如图1所示,该通信系统包括:网络设备01和终端设备02。网络设备01和终端设备02可以使用至少一种空口格式进行通信。其中,
网络设备:可以是前述基站,或者各种无线接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与终端设备进行通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple  Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站gNB等,在此并不限定。
终端设备:可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),具有网络接入功能的传感器,在此不作限定。
上述所说的空口格式可以是指以下至少一种参数或信息(即,配置信息的一例)相异的空口,具体地:
波形参数:或者说波形的参数,是指能够指示或者说决定一种波形的参数。作为实例而非限定,在本申请实施例中,该波形参数可以包括以下至少一种参数:正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术中使用的波形参数、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-OFDM)中使用的波形参数、滤波器正交频分复用(filter Orthogonal Frequency Division Multiplexing,filter OFDM)技术中使用的波形参数、通用滤波器多载波(Universal Filtered Multi-Carrier,UFMC)技术中使用的波形参数、滤波器组多载波(Filter Bank Multicarrier,FBMC)技术中使用的波形参数、广义频分复用(Generalized Frequency Division Multiplexing,GFDM)技术中使用的波形参数等。
调制方式:在通信技术中,为了保证通信效果,克服远距离信号传输中的问题,可以通过调制将信号频谱搬移到高频信道中进行传输。这种将要发送的信号加载到高频信号的过程就叫调制。作为实例而非限定,在本申请实施例中,调制方式可以包括以下至少一种方式:幅移键控(Amplitude Shift Keying,ASK)调制、相移键控(Phase Shift Keying,PSK)调制、频移键控(Frequency Shift Keying,FSK)调制、正交振幅调制(Quadrature Amplitude Modulation,QAM)调制、最小频移键控(Minimum Shift Keying,MSK)调制、高斯滤波最小移频键(Gaussian Filtered Minimum Shift Keying,GMSK)调制、OFDM调制。
带宽配置:在本申请实施例中,带宽配置可以指空口所要求的频域资源上的使用宽度。作为实例而非限定,针对宽带传输业务所对应的带宽配置,可以指空口所要求的最小频域资源宽度,或者说子载波数量。针对窄带传输业务所对应的带宽配置,可以指空口所要求的最大频域资源宽度,或者说子载波数量。
无线帧配置方式:子载波间隔(Subcarrier Spacing,SCS)、符号长度、循环前缀(Cyclic Prefix,CP)、定时(Timing,例如上行授权和上行数据发送之间的时间长度)、双工模式、传输时间间隔(Transmission Time Interval,TTI)长度、无线帧和无线子帧的长度。其中, 双工模式例如可以分为全双工、半双工(包括半双工的上下行配比)、或灵活双工等。需要说明的是,在某些空口中,双工模式可以固定也可以灵活变化,传输时间间隔可以是固定值也可以灵活变化,本申请实施例并未特别限定。
资源复用方式:作为实例而非限定,在本申请实施例中,资源复用方式可以包括以下至少一种方式:
频分复用(Frequency Division Multiplexing,FDM)。即,将用于传输信道的总带宽划分成若干个子频带(或称子信道),每一个子信道传输1路信号。频分复用要求总频率宽度大于各个子信道频率之和,同时为了保证各子信道中所传输的信号互不干扰,应在各子信道之间设立隔离带,这样就保证了各路信号互不干扰(条件之一)。
时分复用(Time Division Multiplexing,TDM)。即,采用同一物理连接的不同时段来传输不同的信号,也能达到多路传输的目的。时分多路复用以时间作为信号分割的参量,故必须使各路信号在时间轴上互不重叠。时分复用就是将提供给整个信道传输信息的时间划分成若干时间片(简称:时隙),并将这些时隙分配给每一个信号源使用。
空分复用(Space Division Multiplexing,SDM)。即,让同一个频段在不同的空间内得到重复利用。在移动通信中,能实现空间分割的基本技术就是采用自适应阵列天线,在不同的用户方向上形成不同的波束。并且,可以把空间的分割来区别不同的用户,也可以每个波束可提供一个无其他用户干扰的唯一信道,也可以把空间的分割来区别同一个用户的不同数据,还可以把空间的分割来区别同一个用户的相同数据,以求更高的增益。
码分复用(Code Division Multiplexing,CDM)。即,靠不同的编码来区分各路原始信号的一种复用方式。作为实例而非限定,可以包括以下至少一种:码分多址(Code Division Multiple Access,CDMA)、频分多址(Frequency Division Multiple Access,FDMA)、时分多址(Time Division Multiple Access,TDMA)和同步码分多址(Synchronous Code Division Multiple Access,SCDMA)。
信道配置方式:在本申请实施例中,可以采用不同的信道传输不同种类的数据或信号。从而,信道配置方式可以指一个信道所对应的时频资源、码域资源,空域资源(例如:指定波束)。作为实例而非限定,在本申请实施例中,无线通信所使用的信道可以包括以下至少一个信道或多个信道的组合:用于传输控制信息的控制信道(例如,可以包括上行控制信道和下行控制信道)、用于传输数据的数据信道(例如,可以包括上行数据信道和下行数据信道)、用于传输参考信号的参考信道、用于发送接入信息的接入信道。
编码方式:编码是一种以提高通信有效性为目的而对信源符号进行的变换,或者说为了减少或消除信源利余度而进行的信源符号变换。例如,针对信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列。作为实例而非限定,在本申请实施例中,编码方式可以包括以下至少一种方式:极化码(Polar Code)、拓博码(Turbo Code)、卷积码(Convolution Code)。
协议栈配置方式:协议栈(Protocol Stack)是指网络中各层协议的总和,其形象的反映了一个网络中文件传输的过程。即,由上层协议到底层协议,再由底层协议到上层协议。作为实例而非限定,在本申请实施例中,无线通信所使用的协议栈可以包括以下至少一个协议层或多个协议层的组合:分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路控制(Radio Link Control,RLC)层、媒体接入控制(Media Access Control,MAC)层、物理(Physical)层、无线资源管理(Radio Resource Control,RRC)层。其中,每层协 议都可以存在多种协议实体。
多址接入方式:与多路复用不同,多址接入技术不需要各路信息集中在一起,而是各自经过调制送到信道上去,以及各自从信道上取下经调制而得到的所需信息,作为实例而非限定,在本申请实施例中,无线通信所使用的多址接入方式可以包括以下至少一种:FDMA、TDMA、CDMA、SCMA、非正交多址接入(Non Orthogonal Multiple Access,NOMA)、多用户共享接入(Multi-User Shared Access,MUSA)。
需要说明的是,上述通信系统可以是LTE通信系统,也可以是未来其他通信系统,例如5G通信系统等,在此不作限制。
以未来5G通信系统为例,目前,未来5G通信系统支持上行数据采用grant free的传输方式。即,在没有网络设备发送的UL grant的情况下,终端设备可以直接在预配置的资源上向网络设备发送上行数据。其中,这里所说的资源例如可以为时频资源、频域资源或者时域资源等。
下面对grant free的传输流程进行简单的介绍。具体地,
上述网络设备可以为每组终端设备预配置一个资源,该组内的终端设备可以在无UL grant的情况下,根据预配置的传输次数,在该预配置的资源上通过多个时间单元,向网络设备重复发送同一上行数据和参考信号(Reference Signal,RS)。其中,RS用于辅助网络设备对该上行数据进行解码。其中,终端设备在一个时间单元上,可以向网络设备发送一次上述上行数据和RS。上述所说的多个时间单元可以为在时间上连续的多个时间单元,还可以为在时间上不连续的多个时间单元,具体可以根据系统配置确定。具体实现时,上述时间单元可以为正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、时隙(Slot)、迷你时隙、子帧、帧等中的任一种。
若网络设备正确接收到该终端设备发送的上行数据,则网络设备可以向终端设备发送一个确认信号(Acknowledge,ACK),以向终端设备指示网络设备正确接收到该上行数据。若上述ACK是在终端设备向网络设备发送上行数据和RS的发送次数达到预配置的传输次数之前发送给终端设备的,则终端设备在接收到该ACK后,在该预配置的资源上,停止该上行数据的发送。
若网络设备能够检测到终端设备发送的RS和数据,或者能够检测到终端设备发送的RS,但未正确接收到该终端设备发送的上行数据(即对接收到的数据解码失败,或,未接收到该数据),则网络设备可以向终端设备发送一个UL grant,以指示该终端设备在该UL grant所指示的资源上重新发送该上行数据。若上述UL grant是在终端设备向网络设备发送上行数据和RS的发送次数达到预配置的传输次数之前发送给终端设备的,则终端设备在接收到该UL grant后,在该预配置的资源上,停止该上行数据的发送。
若终端设备根据预配置的传输次数,在该预配置的资源上向网络设备重复发送上行数据和RS的过程中,一直未接收到网络设备发送的ACK或UL grant,则终端设备在发送该上行数据和RS的次数达到预配置的传输次数后,在该预配置的资源上,停止该上行数据的发送。
目前,在采用grant free的传输方式发送上行数据时,上述组内的终端设备所使用的RS相互正交。这样,即便组内的多个终端设备同时在该预配置的资源上发送RS,各RS之间也不会产生干扰,使得网络设备可以正确接收到组内的每个终端设备发送的RS。因此,上述网络设备可以通过终端设备发送RS时所使用的资源,以及,终端设备所发送的RS,来确定终端设备的ID。例如,上述网络设备可以通过资源,以及,资源与终端设备组的对应关系,确定该资源对应的终端设备组,进而可以根据RS,以及RS与终端设备的ID的对应关系,确定该RS对 应的是该终端设备组内的哪个终端设备的ID。
因此,在该场景下,当组内的多个终端设备同时在该预配置的资源上发送RS和上行数据,导致网络设备无法正确接收到所有或部分终端设备发送上行数据时,网络设备仍然可以通过这些终端设备发送的RS,确定是哪个终端设备有上行数据需要发送。这样,网络设备可以向该终端设备发送上述所说的UL grant,以指示终端设备在网络设备为终端设备调度的资源上重新发送该上行数据。
目前,5G标准中已采纳了上述grant free的传输流程,但是还未限定上述网络设备发送UL grant的方式,因此,在采用grant free的传输方式传输上行数据时,网络设备如何向终端设备发送UL grant是一个亟待解决的问题。
考虑到上述问题,本申请实施例提供了一种通信方法,用以解决上述技术问题。下面以上述图1所示的通信系统为例,通过一些实施例对本申请实施例的技术方案进行详细说明。下面这几个实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图2为本申请实施例提供的一种通信方法的流程示意图。本实施例涉及的是终端设备在采用grant free的传输方式传输上行数据时,网络设备如何向终端设备发送用于指示终端设备发送数据的资源的第一指示信息的过程。如图2所示,该方法可以包括:
S101、网络设备在第一时间单元检测到终端设备在第二时间单元上向网络设备发送的RS和/或数据。
S102、网络设备在第一时间单元之后的第三时间单元发送第一指示信息,其中,该第一指示信息用于指示终端设备发送上述数据的资源。
具体的,在本实施例中,上述终端设备可以多次向网络设备发送数据和RS。即,上述终端设备可以采用grant free的传输方式,根据预配置的传输次数,在预配置的资源上通过多个时间单元,向网络设备重复发送上述数据和RS。因此,上述网络设备可以在每个时间单元上,检测终端设备发送的数据和RS。需要说明的是,上述终端设备发送数据和RS的时间单元,与网络设备检测终端设备发送的数据和/或RS的时间单元可能存在时间差。因此,上述网络设备检测数据和/或RS时间单元与终端设备发送该数据和RS的时间单元可以为同一时间单元,也可以为在时间上存在重叠的时间区域的两个不同的时间单元,也可以为在时间上完全不存在重叠的时间区域的两个不同的时间单元。
在本实施例中,当上述网络设备在第一时间单元检测到终端设备在第二时间单元上发送的RS和/或数据后,若上述网络设备在第三时间单元之前,仍然未能正确接收到终端设备发送的数据,则上述网络设备可以在第三时间单元向终端设备发送上述第一指示信息,用于向终端设备指示网络设备为终端设备专门调度的用于发送上述数据的资源。也就是说,网络设备在检测到终端设备发送的RS和/或数据后,会有一定的时间去尝试,通过终端设备的多次传输来正确接收终端设备的数据。若在该时间段内,网络设备仍然无法正确接收到终端设备发送的数据,说明该终端设备与该终端设备所在组内的其他终端设备所发送的数据存在冲突或者信道条件较差。即便终端设备再次发送该数据,网络设备无法正确接收到该数据的概率较大。在这种情况下,网络设备可以向终端设备发送上述第一指示信息,以指示网络设备为终端设备专门调度的、用于发送上述数据的资源。通过这种方式,可以确保网络设备发送第一指示信息的准确性。
其中,上述第一指示信息可以携带有调度的资源信息,以及,上述数据的标识。其中,数据的标识例如可以为:终端设备用于发送该数据的混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)进程的标识。本领域技术人员可以理解的是,上述第一指示信息在 5G移动通信系统可能仍然沿用UL grant的术语,也可能采用其他的术语。因此,本申请实施例对第一指示信息在各个通信系统中的命名不作限定。
其中,上述所说的第一时间单元、第二时间单元和第三时间单元为OFDM符号、时隙、迷你时隙、子帧、帧中的一种。需要说明的是,第一时间单元、第二时间单元和第三时间单元可以为相同类型的时间单元(例如都为时隙),也可以为不同类型的时间单元。例如,第一时间单元可以为迷你时隙,第二时间单元可以为时隙,第三时间单元可以为OFDM符号。另外,第一时间单元、第二时间单元和第三时间单元在不同的时刻可以为不同类型的时间单元。以第一时间单元为例,在某些时刻第一时间单元可以为时隙,在另一些时刻第一时间单元可以为迷你时隙等。关于第一时间单元、第二时间单元和第三时间单元,具体可以根据系统的配置确定。
另外,上述第一时间单元与第二时间单元的关系,可以参见上述关于终端设备发送数据和RS的时间单元,与网络设备接收终端设备发送数据和/或RS的时间单元的关系,对此不再赘述。下面重点介绍上述第一时间单元与第三时间单元的关系。
由于网络设备并不一定能够检测到终端设备每次发送的数据和/或RS。因此,在采用grant free的传输方式传输上行数据的流程中,可以预设一个时长。以通过该预设时长和第一时间单元来确定上述第三时间单元。具体实现时,上述预设时长例如可以为终端设备能够向网络设备发送L次数据和RS的时长。其中,L为大于或等于1的正整数。若终端设备是通过L个连续的时间单元,向网络设备发送L次数据和RS,则上述预设的时长可以为L个时间单元对应的时长。若终端设备是通过L个不连续的时间单元,向网络设备发送L次数据和RS,则上述预设的时长可以为从第1个用于发送数据和RS的时间单元到第L个用于发送数据和RS的时间单元之间对应的总时长。上述L的取值具体可以根据系统的配置确定,例如,上述L可以为小于或等于预配置的传输次数。
这样,在上述预设时长内,终端设备可以至少一次向网络设备发送数据和RS。相应地,网络设备可以至少一次检测终端设备发送的数据和RS。若网络设备在该预设时长内,无法正确接收到终端设备发送的数据,说明该终端设备与该终端设备所在组内的其他终端设备所发送的数据存在冲突或者信道条件较差。即便终端设备再次发送该数据,网络设备无法正确接收到该数据的概率较大。在这种情况下,网络设备可以向终端设备发送上述第一指示信息,以指示网络设备为终端设备专门调度的、用于发送上述数据的资源。通过这种方式,可以确保网络设备发送第一指示信息的准确性。
另外,在该实现方式下,即便上述预设时长是从终端设备第1次向网络设备发送的RS和时间的时间单元开始计算,网络设备第一次向终端设备发送第一指示信息的时间点也会是终端设备在第L次向网络设备发送数据和RS之后。因此,在本实施例中,上述终端设备可以不用在第一次向网络设备发送数据和RS后,就检测第一指示信息,而是在第L次向网络设备发送数据和RS后,再检测网络设备发送的上述第一指示信息。通过这种方式,还可以减少终端设备检测第一指示信息的次数,进而降低终端设备的功耗。可选的,上述终端设备检测第一指示信息的时间单元可以为终端设备第L次发送数据和RS的时间单元,也可以为第L次发送数据和RS的时间单元之后的时间单元等。
因此,基于上述预设时长,上述第一时间单元与第三时间单元的关系,例如可以包括如下几种情况:
第一种情况:终端设备每次发送的RS携带有第一信息。其中,该第一信息用于指示该RS为终端设备第N次向网络设备发送的RS,N为大于或等于1的正整数。
也就是说,上述网络设备第一次在第一时间单元检测到终端设备在第二时间单元上向网络设备发送的RS和/或数据后,通过RS携带的第一信息,可以获知终端设备当前是第几次向网络设备发送数据和RS。因此,在该场景下,上述预设时长的起点为终端设备第一次向网络设备发送数据和RS的时间单元(或者为上述网络设备第一次检测终端设备发送数据和RS的时间单元),上述预设时长的终点为终端设备第L次向网络设备发送数据和RS的时间单元(或者为上述网络设备第L次检测终端设备发送数据和RS的时间单元)。
若第二时间单元小于终端设备第L次向网络设备发送参考信号的时间单元,则第三时间单元为终端设备第L次向网络设备发送参考信号的时间单元,或者,第三时间单元为终端设备第L次向网络设备发送参考信号的时间单元之后的第X个时间单元。若第二时间单元大于或等于终端设备第L次向网络设备发送参考信号的时间单元,则第三时间单元为第一时间单元之后的第X个时间单元,L和X均为大于或等于1的正整数。其中,上述X可以为大于或等于1的正整数,X的取值具体可以根据系统的配置确定,或者根据网络设备接收和处理数据的时延确定。
下面通过一个具体的示例来对本实施例进行说明。图3为本申请实施例提供的另一种通信方法的流程示意图。如图3所示,该方法可以包括:
S201、网络设备在预配置的资源上,检测终端设备向网络设备发送的RS和/或数据,其中,RS携带有第一信息。
具体的,网络设备在预配置的资源上的每个终端设备可能发送数据和RS的时间单元上,检测终端设备向网络设备发送的RS和数据。
S202、网络设备在第一时间单元第一次检测到终端设备在第二时间单元上向网络设备发送的RS和/或数据。
需要说明的是,由于同一组内的终端设备在预配置的资源上所发送的RS相互正交,以避免干扰。因此,网络设备在能够检测到终端设备发送的数据时,通常也会检测到终端设备发送的RS。
另外,当网络设备在第一时间单元,第一次检测到终端设备通过第二时间单元发送的RS和/或数据时,网络设备可以确定终端设备的标识、终端设备传输该数据的HARQ进程的标识。
S203、网络设备确定是否正确接收到该数据。若是,则执行S204。若否,则执行S205。
可选的,若网络设备检测到终端设备发送的RS,但并未检测到终端设备发送的数据,则网络设备可以确定未正确接收到终端设备发送的数据。若网络设备第一次检测到终端设备发送的数据,则网络设备可以尝试对该数据进行解码。若网络设备对该数据解码成功,则网络设备可以确定正确接收到该数据。若网络设备对该数据解码失败,则网络设备可以确定未正确接收到终端设备发送的数据。
S204、网络设备向终端设备发送ACK。
网络设备可以通过该ACK向终端设备指示网络设备正确接收到该数据。当上述ACK和第一指示信息是分开发送的时,即ACK使用独立于发送第一指示信息的信道发送,或者ACK和第一指示信息不在同一个物理资源上发送,则终端设备在第一次向网络设备发送数据和RS之后,就需要开始检测ACK。但是,终端设备可以在第L次向网络设备发送数据和RS后,再检测网络设备发送的上述第一指示信息。通过这种方式,可以减少终端设备检测第一指示信息的次数,进而降低终端设备的功耗。
可选的,在一些实施例中,若上述第一指示信息也用于指示网络设备正确接收到该数据,则在步骤S204中,网络设备可以向终端设备发送用于指示网络设备正确接收到该数据的第一 指示信息。
具体实现时,上述第一指示信息可以包括第一字段和第二字段。当第一字段指示终端设备发送的数据的标识(例如上述所说的HARQ进程的标识)、且第二字段未指示任何资源时(例如,第二字段可以为全零字段、或者、全1字段、或者、标准定义的预设字段,用来表示未指示任何资源),第一指示信息用于指示网络设备正确接收到数据。当第一字段为数据的标识、且第二字段指示资源时,第一指示信息用于指示终端设备在资源上发送数据。相应地,终端设备接收第一指示信息后,可以根据第一指示信息的第一字段和第二字段,来判断该第一指示信息当前是用于指示网络设备正确接收到该数据,还是用于指示终端设备发送数据的资源。
或者,上述第一指示信息可以包括第一字段。当第一字段指示终端设备发送的数据的标识时,第一指示信息用于指示终端设备发送数据的资源。当第一字段为预设值或者指示其他终端设备发送的数据的标识时(例如,第一字段为标准中定义的预设字段或者为其他终端设备的HARQ进程的标识),第一指示信息用于指示网络设备正确接收到数据。相应地,终端设备接收第一指示信息后,可以根据第一指示信息的第一字段,来判断该第一指示信息当前是用于指示网络设备正确接收到该数据,还是用于指示终端设备发送数据的资源。
或者,上述第一指示信息可以包括第一字段。当第一字段指示该第一指示信息用于指示终端设备发送数据的资源,或指示该第一指示信息用于指示网络设备正确接收到数据。例如,该第一字段为1比特,当第一字段等于1时表示第一指示信息用于指示终端设备发送数据的资源,当第一字段等于0时表示该第一指示信息用于指示网络设备正确接收到数据。或者,当第一字段等于0时表示第一指示信息用于指示终端设备发送数据的资源,当第一字段等于1时表示该第一指示信息用于指示网络设备正确接收到数据。
或者,上述第一指示信息可以包括第一字段。当第一字段指示终端设备发送的数据的调制与编码策略(Modulation and Coding Scheme,MCS)和/或冗余版本(redundancy version,RV)时,第一指示信息用于指示终端设备发送数据的资源。当第一字段为预设值时(例如,第一字段为标准中定义的预设字段或预留字段),第一指示信息用于指示网络设备正确接收到数据。
在该实现方式下,上述终端设备在第一次向网络设备发送数据和RS之后,就需要检测第一指示信息。由于第一指示信息既可以用于终端设备发送数据的资源,也可以用于指示网络设备正确接收到该数据,因此,终端设备只需要检测一个指示信息,不需要分别检测两个指示信息,进一步降低了终端设备的功耗。
需要说明的是,本申请实施例虽然以上述网络设备在上述grant free的传输流程中,向终端设备发送用于指示终端设备发送数据的资源的基础上,对第一指示信息还可以用于指示网络设备正确接收到该数据的情况进行了介绍和说明。但是本领域技术人员可以理解的是,上述网络设备可以采用本实施例的方式,在任意存在向终端设备发送用于指示终端设备发送数据的资源,或,用于指示网络设备正确接收到该数据的指示信息的场景,均可以采用本实施例所提供的第一指示信息,以使得终端设备只需要检测一个指示信息,不需要分别检测两个指示信息,进一步降低了终端设备的功耗。也就是说,上述既可以指示网络设备正确接收到该数据,又可以指示终端设备发送数据的资源的第一指示信息可以作为一个单独的实施例存在,并不一定要依附于前述实施例。
S205、网络设备根据该RS携带的第一信息,确定N是否大于或等于L。若是,则执行S206,若否,则执行S207。
具体的,若网络设备无法正确接收到该数据,则网络设备可以根据终端设备此次发送的RS中携带的第一信息,确定N是否大于或等于L,以通过N是否大于或等于L,来判断是否超过了预设时长,其中N表示此次为终端设备第N次向网络设备发送RS和/或数据。
S206、网络设备在第一时间单元之后的第X个时间单元向终端设备发送第一指示信息。
S207、网络设备在预配置的资源上,继续检测终端设备向网络设备发送的RS和/或数据,并开启定时器。
其中,上述定时器的时长为预设时长减去终端设备从第一次发送数据和RS的时间单元至第二时间单元的这段时长。
若网络设备在定时器超时前,又检测到终端设备发送的数据,则可以将该数据与之前接收到的数据进行软合并,并再次尝试解码。
S208、网络设备在定时器超时前未正确接收到终端设备发送的数据时,在终端设备第L次向网络设备发送参考信号的时间单元,或者,终端设备第L次向网络设备发送参考信号的时间单元之后的第X个时间单元上,向终端设备发送第一指示信息。
如前述实施例所说,上述终端设备在采用grant free的传输方式发送上行数据时,可以根据预配置的传输次数,向网络设备发送数据和RS。因此,在终端设备发送该上行数据和RS的次数达到预配置的传输次数后,网络设备可能一次都没有检测到终端设备发送的数据和/或RS的情况。因此,为了避免终端设备无限的检测第一指示信息的情况,上述终端设备可以在第四时间单元之前未检测到第一指示信息时,重传上述数据和RS。其中,第四时间单元可以大于终端设备第L次向网络设备发送数据和RS的时间单元。
下面通过一个具体的示例来对终端设备侧的行为进行说明。图4为本申请实施例提供的又一种通信方法的流程示意图。如图4所示,该方法可以包括:
S301、终端设备多次向网络设备发送数据和RS。
上述终端设备在多次向网络设备发送数据和RS的过程中,终端设备每次所使用的发送功率可以相同,也可以不同。例如,终端设备每次所使用的发送功率可以大于或等于终端设备前一次所使用的发送功率。示例性的,终端设备每次所使用的发送功率可以为终端设备前一次所使用的发送功率与预设功率阈值之和,或者,终端设备每次所使用的发送功率可以为终端设备前一次所使用的发送功率与预设功率倍数之积等。当通过上述方式计算的功率大于终端设备的最大发送功率时,上述终端设备可以将终端设备的最大发送功率作为此次所使用的发送功率。
其中,上述所说的发送功率可以为发送RS的功率。通过这种方式,可以提高RS的发送功率,进而可以提高网络设备成功检测到RS的概率,从而能够提高发送第一指示信息的效率。
上述所说的发送功率也可以为发送RS和数据的总发送功率。通过这种方式,可以在提高RS的发送功率的基础上,提高发送数据的功率,进而也可以提高网络设备正确接收数据的概率。
需要说明的是,本申请实施例虽然以grant free的传输流程为例,对上述终端设备向网络设备发送数据和RS所使用的功率进行了介绍和说明。但是本领域技术人员可以理解的是,上述终端设备可以采用本实施例的方式,在任意需要向网络设备多次发送数据和RS的场景,均可以采用本步骤所提供的方式,以提高网络设备检测RS的概率,或者,提高网络设备检测RS和数据的概率。也就是说,上述终端设备向网络设备发送数据和RS所使用的功率可以作为一个单独的实施例存在,并不一定要依附于前述实施例。
S302、终端设备检测网络设备发送的第一指示信息。其中,第一指示信息用于指示终端设备发送该数据的资源。
若当上述ACK和第一指示信息是分开发送的时,则上述终端设备可以在第L次向网络设备发送数据和RS后,开始检测网络设备发送的第一指示信息。若上述第一指示信息既可以用于指示终端设备发送数据的资源,也可以用于指示网络设备正确接收到该数据时,则终端设备在第一次向网络设备发送数据和RS后,开始检测网络设备发送的第一指示信息。
S303、终端设备确定发送该数据和RS的次数达到预配置的传输次数。若是,则执行S304,若否,则执行S302。
也就是说,终端设备确定发送该数据和RS的次数为最后一次时,终端设备可以在第四时间单元之前未检测到第一指示信息时,重传数据和RS。若终端设备确定发送该数据和RS次数不是最后一次时,终端设备可以继续检测网络设备发送的第一指示信息。
S304、终端设备在第四时间单元之前未检测到第一指示信息时,重传数据和RS。
其中,上述所说的第四时间单元可以为OFDM符号、时隙、迷你时隙、子帧、帧中的一种。需要说明的是,第四时间单元在不同的时刻可以为不同类型的时间单元。例如,在某些时刻第四时间单元可以为时隙,在另一些时刻第四时间单元可以为迷你时隙等,具体可以根据系统的配置确定。此外,终端设备重传的数据与其之前传输的数据,信息内容上是一样的,但是有可能MCS或者RV版本不一样。例如,改变终端设备重传的数据的MCS或者RV版本,可以提高网络设备正确接收数据的概率,具体可以为终端设备多次向网络设备发送数据的调制方式为16QAM,而终端设备重传数据的调制方式为BPSK或QPSK,降低了网络设备的解调门限,从而提高网络设备正确接收数据的概率。
可选的,在一些实施例,上述终端设备在重传数据和RS时,重传数据和RS的最大重传次数可以大于或等于终端设备多次向网络设备发送数据和RS时的发送次数。和/或,终端设备重传时所使用的发送功率,可以大于或等于终端设备多次发送时所使用的发送功率。示例性的,终端设备重传时所使用的发送功率可以为终端设备在S301中多次发送时所使用的发送功率与预设功率阈值之和,或者,终端设备重传时所使用的发送功率可以为终端设备在S301中多次发送时所使用的发送功率与预设功率倍数之积等。当通过上述方式计算的功率大于终端设备的最大发送功率时,上述终端设备可以将终端设备的最大发送功率作为此次重传时的发送功率。
通过增加重传次数,可以提高网络设备检测RS的概率,也可以提高正确接收数据的概率。可选的,上述所说的发送功率可以为发送RS的功率。通过增加发送RS的功率,可以提高RS的发送功率,进而可以提高网络设备成功检测到RS的概率,从而能够提高发送第一指示信息的效率。可选的,上述所说的发送功率也可以为发送RS和数据的总发送功率。通过增加发送RS和数据的总发送功率,可以在提高RS的发送功率的基础上,提高发送数据的功率,进而也可以提高网络设备正确接收数据的概率。
需要说明的是,本申请实施例虽然以grant free的传输流程为例,对上述终端设备向网络设备重传数据和RS的次数,以及,所使用的功率进行了介绍和说明。但是本领域技术人员可以理解的是,上述终端设备可以采用本实施例的方式,在任意需要向网络设备重传数据和RS的场景,均可以采用本步骤所提供的方式,以提高网络设备检测RS的概率,或者,提高网络设备检测RS和数据的概率。也就是说,上述终端设备向网络设备重传数据和RS的次数,以及,所使用的功率可以作为一个单独的实施例存在,并不一定要依附于前述实施例。
另外,需要强调的是,上述终端设备重传时所使用的资源与当前所使用的资源可能不同, 因此,重传时所发送的RS可以与当前发送的RS相同,也可以不同,具体可以根据重传时所使用的资源确定,本申请实施例不对此进行区分。
在上述实现方式下,当网络设备第一次检测到数据和/或RS,为终端设备最后一次发送的。即,第一时间单元为网络设备能够检测终端设备发送的RS和/或数据的最后一个时间单元,则基于上述流程,网络设备可以在第一时间单元之后的第X个时间单元向终端设备发送第一指示信息。在该场景下,上述第四时间单元例如可以为终端设备最后一次向网络设备发送RS的时间单元之后的第X个时间单元。
可选的,在一些实施例中,若上述网络设备对数据处理的速度较快,使得网络设备可以在第一时间单元完成对数据的处理,并在第一时间单元上向终端设备发送第一指示信息。则在该实现方式下,上述第四时间单元例如可以为终端设备最后一次向网络设备发送RS的时间单元。
第二种情况:终端设备每次发送的RS携带有第二信息。其中,该第二信息用于指示RS是否为终端设备第一次向网络设备发送的RS。
也就是说,上述网络设备在第一时间单元检测到终端设备在第二时间单元上向网络设备发送的RS和/或数据后,通过RS携带的第二信息,可以获知终端设备当前是否是第一次向网络设备发送数据和RS。
因此,在该场景下,当网络设备通过RS携带的第二信息,确定该RS是终端设备第一次向网络设备发送的RS时,上述预设时长的起点可以为终端设备第一次向网络设备发送数据和RS的时间单元(或者为上述网络设备第一次检测终端设备发送数据和RS的时间单元),上述预设时长的终点为终端设备第L次向网络设备发送数据和RS的时间单元(或者为上述网络设备第L次检测终端设备发送数据和RS的时间单元)。在该实现方式下,上述第三时间单元可以为终端设备第L次向网络设备发送RS的时间单元,或者,第三时间单元为终端设备第L次向网络设备发送RS的时间单元之后的第X个时间单元。
当网络设备通过RS携带的第二信息,确定该RS非终端设备第一次向网络设备发送的RS时,上述预设时长的起点可以为第二时间单元(或者为第一时间单元),上述预设时长的终点为终端设备在第二时间单元之后的第L-1个能够向网络设备发送数据和RS的时间单元(或者为上述网络设备在第一时间单元之后的第L-1个能够检测终端设备发送数据和RS的时间单元)。在该实现方式下,上述第三时间单元可以为第一时间单元之后的第M个时间单元,M为大于或等于1的正整数,M的取值为L与1的差值。
或者,当网络设备通过RS携带的第二信息,确定该RS非终端设备第一次向网络设备发送的RS时,上述预设时长的起点可以为第二时间单元之后的第一个能够向网络设备发送数据和RS的时间单元(或者为第一时间单元之后第一个能够检测终端设备发送数据和RS的时间单元),上述预设时长的终点为终端设备在第二时间单元之后的第L个能够向网络设备发送数据和RS的时间单元(或者为上述网络设备在第一时间单元之后的第L个能够检测终端设备发送数据和RS的时间单元)。在该实现方式下,上述第三时间单元可以为第一时间单元之后的第M个时间单元,此时,M的取值与L的取值相同。
下面通过一个具体的示例来对本实施例进行说明。图5为本申请实施例提供的又一种通信方法的流程示意图。如图5所示,该方法可以包括:
S401、网络设备在预配置的资源上,检测终端设备向网络设备发送的RS和/或数据,其中,RS携带有第二信息。
S402、网络设备在第一时间单元第一次检测到终端设备在第二时间单元向网络设备发送 的RS和/或数据。
S403、网络设备确定是否正确接收到该数据。若是,则执行S404。若否,则执行S405。
S404、网络设备向终端设备发送ACK。
S405、网络设备根据该RS携带的第二信息,确定RS是否为终端设备第一次发送给网络设备的。若是,则执行S406,若否,则执行S408。
S406、网络设备在预配置的资源上,继续检测终端设备向网络设备发送的RS和/或数据,并开启定时器。
其中,上述定时器的时长为预设时长减去终端设备从第一次发送数据和RS的时间单元至第二时间单元的这段时长,例如在此步骤中,第二时间单元即为终端设备第一次发送数据和RS的时间单元,因此从第一次发送数据和RS的时间单元至第二时间单元的这段时长等于零。
若网络设备在定时器超时前,又检测到终端设备发送的数据,则可以将该数据与之前接收到的数据进行软合并,并再次尝试解码。
S407、网络设备在定时器超时前未正确接收到终端设备发送的数据时,在终端设备第L次向网络设备发送参考信号的时间单元,或者,终端设备第L次向网络设备发送参考信号的时间单元之后的第X个时间单元上,向终端设备发送第一指示信息。
S408、网络设备在预配置的资源上,继续检测终端设备向网络设备发送的RS和/或数据,并开启定时器。
其中,上述定时器的时长为预设时长减去第二时间单元所占时长。或者,上述定时器的时长为预设时长。
若网络设备在定时器超时前,又检测到终端设备发送的数据,则可以将该数据与之前接收到的数据进行软合并,并再次尝试解码。
S409、网络设备在定时器超时前未正确接收到终端设备发送的数据时,在第一时间单元之后的第M个时间单元,向终端设备发送第一指示信息。
在上述实现方式下,当网络设备第一次检测到数据和/或RS,为终端设备最后一次发送的。即,第一时间单元为网络设备能够检测终端设备发送的RS和/或数据的最后一个时间单元,则基于上述流程,网络设备可以在第一时间单元之后的第M个时间单元向终端设备发送第一指示信息。在该场景下,上述第四时间单元例如可以为终端设备最后一次向网络设备发送RS的时间单元之后的第M个时间单元。
第三种情况:终端设备每次发送的RS没有携带关于发送次数的信息。
也就是说,上述网络设备在第一时间单元检测到终端设备在第二时间单元上向网络设备发送的RS和/或数据后,无法获知该RS为终端设备第几次发送给网络设备的。
因此,在该场景下,上述预设时长的起点可以为第二时间单元(或者为第一时间单元),上述预设时长的终点为终端设备在第二时间单元之后的第L-1个能够向网络设备发送数据和RS的时间单元(或者为上述网络设备在第一时间单元之后的第L-1个能够检测终端设备发送数据和RS的时间单元)。在该实现方式下,上述第三时间单元可以为第一时间单元之后的第M个时间单元,M为大于或等于1的正整数,M的取值为L与1的差值。
或者,上述预设时长的起点可以为第二时间单元之后的第一个能够向网络设备发送数据和RS的时间单元(或者为第一时间单元之后的第一个能够检测终端设备发送数据和RS的时间单元),上述预设时长的终点为终端设备在第二时间单元之后的第L个能够向网络设备发送数据和RS的时间单元(或者为上述网络设备在第一时间单元之后的第L个能够检测终端 设备发送数据和RS的时间单元)。在该实现方式下,上述第三时间单元可以为第一时间单元之后的第M个时间单元,M为大于或等于1的正整数,M的取值与L的取值相同。
下面通过一个具体的示例来对本实施例进行说明。图6为本申请实施例提供的又一种通信方法的流程示意图。如图6所示,该方法可以包括:
S501、网络设备在预配置的资源上,检测终端设备向网络设备发送的RS和/或数据。
S502、网络设备在第一时间单元第一次检测到终端设备在第二时间单元向网络设备发送的RS和/或数据。
S503、网络设备确定是否正确接收到该数据。若是,则执行S504。若否,则执行S505。
S504、网络设备向终端设备发送ACK。
S505、网络设备在预配置的资源上,继续检测终端设备向网络设备发送的RS和/或数据,并开启定时器。
其中,上述定时器的时长为预设时长减去第二时间单元所占时长,或者,上述定时器的时长为预设时长。
若网络设备在定时器超时前,又检测到终端设备发送的数据,则可以将该数据与之前接收到的数据进行软合并,并再次尝试解码。
S506、网络设备在定时器超时前未正确接收到终端设备发送的数据时,在第一时间单元之后的第M个时间单元,向终端设备发送第一指示信息。
当上述定时器的时长为预设时长减去第二时间单元所占时长,则上述M的取值为L-1。当上述定时器的时长为预设时长,则上述M的取值等于L的取值。
在上述实现方式下,当网络设备第一次检测到数据和/或RS,为终端设备最后一次发送的。即,第一时间单元为网络设备能够检测终端设备发送的RS和/或数据的最后一个时间单元,则基于上述流程,网络设备可以在第一时间单元之后的第M个时间单元向终端设备发送第一指示信息。在该场景下,上述第四时间单元例如可以为终端设备最后一次向网络设备发送RS的时间单元之后的第M个时间单元。
需要说明的是,前述实施例所说的终端设备所使用的时间单元与网络设备所使用的时间单元,在实际时间上存在一些时间差,但是终端设备所使用的每个时间单元都与网络设备的某一时间单元对应。因此,在本申请实施例中,有些地方会沿用终端设备侧的时间单元,有些地方会沿用网络设备侧的时间单元。但是,本领域技术人员可以理解的是,两个时间单元可以与其对应的时间单元互换,在互换的基础上,仍然可以实现本申请实施例,对此不再赘述。
本申请实施例提供的通信方法,终端设备在采用grant free的传输方式,向网络设备发送数据时,网络设备在检测到终端设备发送的RS和/或数据后,会有一定的时间去尝试,通过终端设备的多次传输来正确接收终端设备的数据。在该时间段内网络设备仍然无法正确接收到终端设备发送的数据后,网络设备可以向终端设备发送上述第一指示信息,以指示网络设备为终端设备专门调度的、用于发送上述数据的资源。通过这种方式,可以确保网络设备发送第一指示信息的准确性。
图7为本申请实施例提供的一种网络设备的结构示意图。如图7所示,上述网络设备可以包括:处理模块11和发送模块12。其中,
处理模块11,用于在第一时间单元检测终端设备在第二时间单元上向所述网络设备发送的参考信号和/或数据;其中,所述第二时间单元与所述第一时间单元相同,或不同。
发送模块12,用于在所述处理模块在所述第一时间单元检测到所述参考信号和/或所述数 据时,在所述第一时间单元之后的第三时间单元发送第一指示信息,所述第一指示信息用于指示所述终端设备发送所述数据的资源。
当所述参考信号携带第一信息、且上述第一信息用于指示所述参考信号为所述终端设备第N次向所述网络设备发送的参考信号时,若所述第二时间单元小于所述终端设备第L次向所述网络设备发送所述参考信号的时间单元,则所述第三时间单元为所述终端设备第L次向所述网络设备发送所述参考信号的时间单元,或者,所述第三时间单元为所述终端设备第L次向所述网络设备发送所述参考信号的时间单元之后的第X个时间单元。若所述第二时间单元大于或等于所述终端设备第L次向所述网络设备发送所述参考信号的时间单元,则所述第三时间单元为所述第一时间单元之后的第X个时间单元,所述N、所述L和X均为大于或等于1的正整数。
当所述参考信号携带有第二信息、且所述第二信息用于指示所述参考信号是否为所述终端设备第一次向所述网络设备发送的参考信号时,若所述参考信号为所述终端设备第一次向所述网络设备发送的参考信号,则所述第三时间单元为所述终端设备第L次向所述网络设备发送所述参考信号的时间单元,或者,所述第三时间单元为所述终端设备第L次向所述网络设备发送所述参考信号的时间单元之后的第X个时间单元;所述L和X均为大于或等于1的正整数。若所述参考信号非所述终端设备第一次向所述网络设备发送的参考信号,则所述第三时间单元为所述第一时间单元之后的第M个时间单元,所述M为大于或等于1的正整数,所述M的取值与所述L的取值相同,或,所述M的取值为所述L与1的差值。
当所述参考信号未携带有任何关于发送次数的信息时,上述第三时间单元为所述第一时间单元之后的第M个时间单元,所述M为大于或等于1的正整数。
可选的,上述发送模块12,还用于向所述终端设备发送所述第一指示信息,所述第一指示信息还用于指示所述网络设备正确接收到所述数据。
可选的,所述第一时间单元、所述第二时间单元和所述第三时间单元为正交频分复用OFDM符号、时隙、迷你时隙、子帧、帧中的一种。
本申请实施例提供的网络设备,可以执行前述方法实施例中网络设备的动作,其实现原理和技术效果类似,在此不再赘述。
本申请实施例还提供了一种网络设备,该网络设备可以包括:发送模块。
其中,该发送模块用于发送第一指示信息;其中,所述第一指示信息包括第一字段和第二字段,当所述第一字段指示终端设备发送的数据的标识、且所述第二字段未指示资源时,所述第一指示信息用于指示所述网络设备正确接收到所述数据;当所述第一字段为所述数据的标识、且所述第二字段指示资源时,所述第一指示信息用于指示所述终端设备在所述资源上发送所述数据。
本申请实施例提供的网络设备,可以执行前述方法实施例中网络设备发送第一指示信息的动作,其实现原理和技术效果类似,在此不再赘述。
本申请实施例还提供了一种网络设备,该网络设备可以包括:发送模块。
其中,该发送模块用于发送第一指示信息;所述第一指示信息包括第一字段,当所述第一字段指示终端设备发送的数据的标识时,所述第一指示信息用于指示所述终端设备发送所述数据的资源;当所述第一字段为预设值或者指示其他终端设备发送的数据的标识时,所述第一指示信息用于指示所述网络设备正确接收到所述数据。
本申请实施例提供的网络设备,可以执行前述方法实施例中网络设备发送第一指示信息的动作,其实现原理和技术效果类似,在此不再赘述。
图8为本申请实施例提供的一种终端设备的结构示意图。如图8所示,上述终端设备可以包括:发送模块21和处理模块22。其中,
发送模块21,用于多次向网络设备发送数据和参考信号;
处理模块22,用于在第L次向所述网络设备发送所述数据和所述参考信号后,检测网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备发送所述数据的资源,所述L为大于或等于1的正整数。
可选的,上述发送模块21,还用于在第四时间单元之前未检测到所述第一指示信息时,重传所述数据和所述参考信号,所述第四时间单元大于所述终端设备第L次向所述网络设备发送所述数据和所述参考信号的时间单元。
当上述参考信号携带第一信息、且第一信息用于指示所述参考信号为所述终端设备第N次向所述网络设备发送的参考信号时,所述第四时间单元为所述终端设备最后一次向所述网络设备发送参考信号的时间单元,或者所述第四时间单元为所述终端设备最后一次向所述网络设备发送参考信号的时间单元之后的第X个时间单元,所述N、所述X均为大于或等于1的正整数。
当上述参考信号携带有第二信息、且所述第二信息用于指示所述参考信号是否为所述终端设备第一次向所述网络设备发送的参考信号时,所述第四时间单元为所述终端设备最后一次向所述网络设备发送参考信号的时间单元之后的第M个时间单元,所述M为大于或等于1的正整数,所述M的取值与所述L的取值相同,或,所述M的取值为所述L与1的差值。
当所述参考信号未携带有任何关于发送次数的信息时,所述第四时间单元为所述终端设备最后一次向所述网络设备发送参考信号的时间单元之后的第M个时间单元,所述M为大于或等于1的正整数。
可选的,所述处理模块22,还用于在所述第一指示信息还用于指示所述网络设备正确接收到所述数据时,在第一次向所述网络设备发送所述数据和所述参考信号后,检测所述网络设备发送的第一指示信息。
可选的,所述终端设备每次所使用的发送功率均大于或等于所述终端设备前一次所使用的发送功率;所述发送功率为发送所述参考信号的功率,或者,所述发送功率为发送所述参考信号和所述数据的功率。
可选的,所述终端设备重传所述数据和所述参考信号的最大重传次数大于或等于所述终端设备多次向网络设备发送数据和参考信号时的发送次数;和/或,所述终端设备重传时所使用的发送功率,大于或等于所述终端设备多次发送时所使用的发送功率。其中,所述发送功率为发送所述参考信号的功率,或者,所述发送功率为发送所述参考信号和所述数据的功率。
可选的,所述第四时间单元为正交频分复用OFDM符号、时隙、迷你时隙、子帧、帧中的一种。
本申请实施例提供的终端设备,可以执行前述方法实施例中终端设备的动作,其实现原理和技术效果类似,在此不再赘述。
本申请实施例还提供了一种终端设备,该终端设备可以包括:接收模块。
其中,接收模块,用于接收第一指示信息;所述第一指示信息包括第一字段和第二字段,当所述第一字段指示终端设备发送的数据的标识、且所述第二字段未指示资源时,所述第一指示信息用于指示所述网络设备正确接收到所述数据;当所述第一字段为所述数据的标识、且所述第二字段指示资源时,所述第一指示信息用于指示所述终端设备在所述资源上发送所述数据。
本申请实施例提供的终端设备,可以执行前述方法实施例中终端设备接收第一指示信息的动作,其实现原理和技术效果类似,在此不再赘述。
本申请实施例还提供了一种终端设备,该终端设备可以包括:接收模块。
其中,接收模块,用于接收第一指示信息;所述第一指示信息包括第一字段,当所述第一字段指示终端设备发送的数据的标识时,所述第一指示信息用于指示所述终端设备发送所述数据的资源;当所述第一字段为预设值或者指示其他终端设备发送的数据的标识时,所述第一指示信息用于指示所述网络设备正确接收到所述数据。
本申请实施例提供的终端设备,可以执行前述方法实施例中终端设备接收第一指示信息的动作,其实现原理和技术效果类似,在此不再赘述。
本申请实施例还提供了一种终端设备,该终端设备可以包括:发送模块。
其中,发送模块,用于多次向网络设备发送数据和参考信号;其中,所述终端设备每次所使用的发送功率均大于或等于所述终端设备前一次所使用的发送功率。
可选的,所述发送功率为发送所述参考信号的功率,或者,所述发送功率为发送所述参考信号和所述数据的功率。
本申请实施例提供的终端设备,可以执行前述方法实施例中终端设备发送数据和参考信号的动作,其实现原理和技术效果类似,在此不再赘述。
本申请实施例还提供了一种终端设备,该终端设备可以包括:发送模块。
其中,发送模块,用于至少一次向网络设备发送数据和参考信号;
所述发送模块,还用于向网络设备重传所述数据和所述参考信号;
其中,所述终端设备重传所述数据和所述参考信号的最大重传次数大于或等于所述终端设备至少一次向网络设备发送数据和参考信号时的发送次数;和/或,所述终端设备重传时所使用的发送功率,大于或等于所述终端设备在所述至少一次发送时所使用的发送功率。
可选的,所述发送功率为发送所述参考信号的功率,或者,所述发送功率为发送所述参考信号和所述数据的功率。
本申请实施例提供的终端设备,可以执行前述方法实施例中终端设备发送数据和参考信号,以及重传数据和参考信号的动作,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上发送模块实际实现时可以为发送器,接收模块实际实现时可以为接收器,而处理模块可以以软件通过处理元件调用的形式实现;也可以以硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述设备的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述设备的存储器中,由上述设备的某一个处理元件调用并执行以上处理模块的功能。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,简称CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,简称SOC)的形式实现。
图9为本申请实施例提供的另一种网络设备的结构示意图。如图9所示,该网络设备可以包括:处理器31(例如CPU)、存储器32、接收器33、发送器34;接收器33和发送器34均耦合至处理器31,处理器31控制接收器33的接收动作、控制发送器34的发送动作。存储器32可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器32中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的网络设备还可以包括:电源35、通信总线36以及通信端口37。接收器33和发送器34可以集成在网络设备的收发信机中,也可以为网络设备上独立的收发天线。通信总线36用于实现元件之间的通信连接。上述通信端口37用于实现网络设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器32用于存储计算机可执行程序代码,程序代码包括指令;当处理器31执行指令时,指令使处理器31执行上述方法实施例中处理的动作,使接收器33执行上述方法实施例中的接收动作,使发送器34执行上述方法实施例中的发送动作,其实现原理和技术效果类似,在此不再赘述。
图10为本申请实施例提供的另一种终端设备的结构示意图。如图10所示,该终端设备可以包括:处理器41(例如CPU)、存储器42、接收器43和发送器44;接收器43和发送器44均耦合至处理器41,处理器41控制接收器43的接收动作、控制发送器44的发送动作。存储器42可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器42中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的终端设备还可以包括:电源45、通信总线46以及通信端口47。接收器43和发送器44可以集成在终端设备的收发信机中,也可以为终端设备上独立的收发天线。通信总线46用于实现元件之间的通信连接。上述通信端口47用于实现终端设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器42用于存储计算机可执行程序代码,程序代码包括指令;当处理器41执行指令时,指令使处理器41执行上述方法实施例中处理的动作,使接收器43执行上述方法实施例中的接收动作,使发送器44执行上述方法实施例中的发送动作,其实现原理和技术效果类似,在此不再赘述。
正如上述实施例,本申请实施例涉及的终端设备可以是手机、平板电脑等无线终端,因此,以终端设备为手机为例:图11为本申请实施例提供的终端设备为手机时的结构框图。参考图11,该手机可以包括:射频(Radio Frequency,RF)电路1110、存储器1120、输入单元1130、显示单元1140、传感器1150、音频电路1160、无线保真(wireless fidelity,WiFi)模块1170、处理器1180、以及电源1190等部件。本领域技术人员可以理解,图11中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图11对手机的各个构成部件进行具体的介绍:
RF电路1110可用于收发信息或通话过程中,信号的接收和发送,例如,将基站的下行信息接收后,给处理器1180处理;另外,将上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路1110还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division  Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE))、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器1120可用于存储软件程序以及模块,处理器1180通过运行存储在存储器1120的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器1120可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元1130可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元1130可包括触控面板1131以及其他输入设备1132。触控面板1131,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1131上或在触控面板1131附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板1131可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1180,并能接收处理器1180发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1131。除了触控面板1131,输入单元1130还可以包括其他输入设备1132。具体地,其他输入设备1132可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元1140可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元1140可包括显示面板1141,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1141。进一步的,触控面板1131可覆盖于显示面板1141之上,当触控面板1131检测到在其上或附近的触摸操作后,传送给处理器1180以确定触摸事件的类型,随后处理器1180根据触摸事件的类型在显示面板1141上提供相应的视觉输出。虽然在图10中,触控面板1131与显示面板1141是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板1131与显示面板1141集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器1150,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1141的亮度,光传感器可在手机移动到耳边时,关闭显示面板1141和/或背光。作为运动传感器的一种,加速度传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路1160、扬声器1161以及传声器1162可提供用户与手机之间的音频接口。音频电路1160可将接收到的音频数据转换后的电信号,传输到扬声器1161,由扬声器1161转换为声音信号输出;另一方面,传声器1162将收集的声音信号转换为电信号,由音频电路1160接收后转换为音频数据,再将音频数据输出处理器1180处理后,经RF电路1110以发送给比如另一手机,或者将音频数据输出至存储器1120以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块1170可以帮助用户收发电子邮件、 浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图11示出了WiFi模块1170,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变本申请实施例的本质的范围内而省略。
处理器1180是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器1120内的软件程序和/或模块,以及调用存储在存储器1120内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器1180可包括一个或多个处理单元;例如,处理器1180可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1180中。
手机还包括给各个部件供电的电源1190(比如电池),可选的,电源可以通过电源管理系统与处理器1180逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
手机还可以包括摄像头1200,该摄像头可以为前置摄像头,也可以为后置摄像头。尽管未示出,手机还可以包括蓝牙模块、GPS模块等,在此不再赘述。
在本申请实施例中,该手机所包括的处理器1180可以用于执行上通信方法的实施例,其实现原理和技术效果类似,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本发明实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (32)

  1. 一种通信方法,其特征在于,包括:
    网络设备在第一时间单元检测到终端设备在第二时间单元上向所述网络设备发送的参考信号和/或数据;
    所述网络设备在所述第一时间单元之后的第三时间单元发送第一指示信息,所述第一指示信息用于指示所述终端设备发送所述数据的资源。
  2. 根据权利要求1所述的方法,其特征在于,所述第二时间单元与所述第一时间单元相同,或不同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述参考信号携带第一信息,所述第一信息用于指示所述参考信号为所述终端设备第N次向所述网络设备发送的参考信号,所述N为大于或等于1的正整数;
    若所述第二时间单元小于所述终端设备第L次向所述网络设备发送所述参考信号的时间单元,则所述第三时间单元为所述终端设备第L次向所述网络设备发送所述参考信号的时间单元,或者,所述第三时间单元为所述终端设备第L次向所述网络设备发送所述参考信号的时间单元之后的第X个时间单元;
    若所述第二时间单元大于或等于所述终端设备第L次向所述网络设备发送所述参考信号的时间单元,则所述第三时间单元为所述第一时间单元之后的第X个时间单元,所述L和X均为大于或等于1的正整数。
  4. 根据权利要求1或2所述的方法,其特征在于,所述参考信号携带有第二信息,所述第二信息用于指示所述参考信号是否为所述终端设备第一次向所述网络设备发送的参考信号;
    若所述参考信号为所述终端设备第一次向所述网络设备发送的参考信号,则所述第三时间单元为所述终端设备第L次向所述网络设备发送所述参考信号的时间单元,或者,所述第三时间单元为所述终端设备第L次向所述网络设备发送所述参考信号的时间单元之后的第X个时间单元;所述L和X均为大于或等于1的正整数;
    若所述参考信号非所述终端设备第一次向所述网络设备发送的参考信号,则所述第三时间单元为所述第一时间单元之后的第M个时间单元,所述M为大于或等于1的正整数,所述M的取值与所述L的取值相同,或,所述M的取值为所述L与1的差值。
  5. 根据权利要求1或2所述的方法,其特征在于,所述第三时间单元为所述第一时间单元之后的第M个时间单元,所述M为大于或等于1的正整数。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送所述第一指示信息,所述第一指示信息还用于指示所述网络设备正确接收到所述数据。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一时间单元、所述第二时间单元和所述第三时间单元为正交频分复用OFDM符号、时隙、迷你时隙、子帧、帧中的一种。
  8. 一种通信方法,其特征在于,包括:
    网络设备发送第一指示信息;
    所述第一指示信息包括第一字段和第二字段,当所述第一字段指示终端设备发送的数据的标识、且所述第二字段未指示资源时,所述第一指示信息用于指示所述网络设备正确接收 到所述数据;当所述第一字段为所述数据的标识、且所述第二字段指示资源时,所述第一指示信息用于指示所述终端设备在所述资源上发送所述数据。
  9. 一种通信方法,其特征在于,包括:
    网络设备发送第一指示信息;所述第一指示信息包括第一字段,当所述第一字段指示终端设备发送的数据的标识时,所述第一指示信息用于指示所述终端设备发送所述数据的资源;当所述第一字段为预设值或者指示其他终端设备发送的数据的标识时,所述第一指示信息用于指示所述网络设备正确接收到所述数据。
  10. 一种通信方法,其特征在于,包括:
    终端设备多次向网络设备发送数据和参考信号;
    所述终端设备在第L次向所述网络设备发送所述数据和所述参考信号后,检测网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备发送所述数据的资源,所述L为大于或等于1的正整数。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述终端设备在第四时间单元之前未检测到所述第一指示信息时,重传所述数据和所述参考信号,所述第四时间单元大于所述终端设备第L次向所述网络设备发送所述数据和所述参考信号的时间单元。
  12. 根据权利要求11所述的方法,其特征在于,
    所述参考信号携带第一信息,所述第一信息用于指示所述参考信号为所述终端设备第N次向所述网络设备发送的参考信号,所述N为大于或等于1的正整数;
    所述第四时间单元为所述终端设备最后一次向所述网络设备发送所述参考信号的时间单元,或者所述第四时间单元为所述终端设备最后一次向所述网络设备发送所述参考信号的时间单元之后的第X个时间单元,所述X为大于或等于1的正整数。
  13. 根据权利要求11所述的方法,其特征在于,
    所述参考信号携带有第二信息,所述第二信息用于指示所述参考信号是否为所述终端设备第一次向所述网络设备发送的参考信号;
    所述第四时间单元为所述终端设备最后一次向所述网络设备发送所述参考信号的时间单元之后的第M个时间单元,所述M为大于或等于1的正整数,所述M的取值与所述L的取值相同,或,所述M的取值为所述L与1的差值。
  14. 根据权利要求11所述的方法,其特征在于,所述第四时间单元为所述终端设备最后一次向所述网络设备发送所述参考信号的时间单元之后的第M个时间单元,所述M为大于或等于1的正整数。
  15. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    在所述第一指示信息还用于指示所述网络设备正确接收到所述数据时,所述终端设备在第一次向所述网络设备发送所述数据和所述参考信号后,检测所述网络设备发送的第一指示信息。
  16. 根据权利要求10所述的方法,其特征在于,所述终端设备每次所使用的发送功率均大于或等于所述终端设备前一次所使用的发送功率;
    所述发送功率为发送所述参考信号的功率,或者,所述发送功率为发送所述参考信号和所述数据的功率。
  17. 根据权利要求11所述的方法,其特征在于,
    所述终端设备重传所述数据和所述参考信号的最大重传次数大于或等于所述终端设备多 次向网络设备发送数据和参考信号时的发送次数;
    和/或,
    所述终端设备重传时所使用的发送功率,大于或等于所述终端设备多次发送时所使用的发送功率,
    所述发送功率为发送所述参考信号的功率,或者,所述发送功率为发送所述参考信号和所述数据的功率。
  18. 根据权利要求10-17任一项所述的方法,其特征在于,所述第四时间单元为正交频分复用OFDM符号、时隙、迷你时隙、子帧、帧中的一种。
  19. 一种通信方法,其特征在于,包括:
    终端设备接收第一指示信息;
    所述第一指示信息包括第一字段和第二字段,当所述第一字段指示终端设备发送的数据的标识、且所述第二字段未指示资源时,所述第一指示信息用于指示所述网络设备正确接收到所述数据;当所述第一字段为所述数据的标识、且所述第二字段指示资源时,所述第一指示信息用于指示所述终端设备在所述资源上发送所述数据。
  20. 一种通信方法,其特征在于,包括:
    终端设备接收第一指示信息;
    所述第一指示信息包括第一字段,当所述第一字段指示终端设备发送的数据的标识时,所述第一指示信息用于指示所述终端设备发送所述数据的资源;当所述第一字段为预设值或者指示其他终端设备发送的数据的标识时,所述第一指示信息用于指示所述网络设备正确接收到所述数据。
  21. 一种通信方法,其特征在于,包括:
    终端设备多次向网络设备发送数据和参考信号;
    所述终端设备每次所使用的发送功率均大于或等于所述终端设备前一次所使用的发送功率。
  22. 根据权利要求21所述的方法,其特征在于,所述发送功率为发送所述参考信号的功率,或者,所述发送功率为发送所述参考信号和所述数据的功率。
  23. 一种通信方法,其特征在于,包括:
    终端设备至少一次向网络设备发送数据和参考信号;
    所述终端设备向网络设备重传所述数据和所述参考信号;
    所述终端设备重传所述数据和所述参考信号的最大重传次数大于或等于所述终端设备至少一次向网络设备发送数据和参考信号时的发送次数;
    和/或,
    所述终端设备重传时所使用的发送功率,大于或等于所述终端设备在所述至少一次发送时所使用的发送功率。
  24. 根据权利要求23所述的方法,其特征在于,所述发送功率为发送所述参考信号的功率,或者,所述发送功率为发送所述参考信号和所述数据的功率。
  25. 一种网络设备,其特征在于,所述网络设备包括:处理器、存储器、发送器、接收器;所述发送器和所述接收器均耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
    其中,所述存储器用于存储计算机可执行程序代码,所述程序代码包括指令;当所述处理器执行所述指令时,所述指令使所述网络设备执行如权利要求1-7任一项所述的通信方法。
  26. 一种网络设备,其特征在于,所述网络设备包括:处理器、存储器、发送器、接收器;所述发送器和所述接收器均耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
    其中,所述存储器用于存储计算机可执行程序代码,所述程序代码包括指令;当所述处理器执行所述指令时,所述指令使所述网络设备执行如权利要求8所述的通信方法。
  27. 一种网络设备,其特征在于,所述网络设备包括:处理器、存储器、发送器、接收器;所述发送器和所述接收器均耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
    其中,所述存储器用于存储计算机可执行程序代码,所述程序代码包括指令;当所述处理器执行所述指令时,所述指令使所述网络设备执行如权利要求9所述的通信方法。
  28. 一种终端设备,其特征在于,所述终端设备包括:处理器、存储器、发送器、接收器;所述发送器和所述接收器均耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
    其中,所述存储器用于存储计算机可执行程序代码,所述程序代码包括指令;当所述处理器执行所述指令时,所述指令使所述终端设备执行如权利要求10-18任一项所述的通信方法。
  29. 一种终端设备,其特征在于,所述终端设备包括:处理器、存储器、发送器、接收器;所述发送器和所述接收器均耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
    其中,所述存储器用于存储计算机可执行程序代码,所述程序代码包括指令;当所述处理器执行所述指令时,所述指令使所述终端设备执行如权利要求19所述的通信方法。
  30. 一种终端设备,其特征在于,所述终端设备包括:处理器、存储器、发送器、接收器;所述发送器和所述接收器均耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
    其中,所述存储器用于存储计算机可执行程序代码,所述程序代码包括指令;当所述处理器执行所述指令时,所述指令使所述终端设备执行如权利要求20所述的通信方法。
  31. 一种终端设备,其特征在于,所述终端设备包括:处理器、存储器、发送器、接收器;所述发送器和所述接收器均耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
    其中,所述存储器用于存储计算机可执行程序代码,所述程序代码包括指令;当所述处理器执行所述指令时,所述指令使所述终端设备执行如权利要求21-22任一项所述的通信方法。
  32. 一种终端设备,其特征在于,所述终端设备包括:处理器、存储器、发送器、接收器;所述发送器和所述接收器均耦合至所述处理器,所述处理器控制所述发送器的发送动作,所述处理器控制所述接收器的接收动作;
    其中,所述存储器用于存储计算机可执行程序代码,所述程序代码包括指令;当所述处理器执行所述指令时,所述指令使所述终端设备执行如权利要求23-24任一项所述的通信方法。
PCT/CN2018/087041 2017-08-11 2018-05-16 通信方法、终端设备和网络设备 WO2019029212A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18842932.8A EP3657877B1 (en) 2017-08-11 2018-05-16 Communication method and network device
US16/638,317 US20200229230A1 (en) 2017-08-11 2018-05-16 Communication Method, Terminal Device, and Network Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710686698.0A CN109391378B (zh) 2017-08-11 2017-08-11 通信方法、终端设备和网络设备
CN201710686698.0 2017-08-11

Publications (1)

Publication Number Publication Date
WO2019029212A1 true WO2019029212A1 (zh) 2019-02-14

Family

ID=65271103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087041 WO2019029212A1 (zh) 2017-08-11 2018-05-16 通信方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20200229230A1 (zh)
EP (1) EP3657877B1 (zh)
CN (1) CN109391378B (zh)
WO (1) WO2019029212A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023272469A1 (zh) * 2021-06-29 2023-01-05 华为技术有限公司 一种通信方法和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110445521B (zh) * 2018-05-04 2022-12-27 华为技术有限公司 信息传输方法及设备
WO2021217531A1 (zh) * 2020-04-29 2021-11-04 华为技术有限公司 一种通信方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105284172A (zh) * 2013-03-08 2016-01-27 华为技术有限公司 用于上行链路免授权传输方案的系统和方法
US20160100430A1 (en) * 2014-10-02 2016-04-07 Qualcomm Incorporated Contention based uplink transmissions for latency reduction

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102438320B (zh) * 2010-09-29 2015-03-11 电信科学技术研究院 一种下行调度信息的配置方法和设备
CN105637955A (zh) * 2014-09-24 2016-06-01 华为技术有限公司 数据传输方法和设备
US9699803B2 (en) * 2014-12-03 2017-07-04 Telefonaktiebolaget L M Ericsson (Publ) Methods providing coordination for uplink (UL) coordinated multipoint (CoMP) reception and related network nodes
US10333654B2 (en) * 2015-04-09 2019-06-25 Samsung Electronics Co., Ltd. Method for supporting HARQ in communication system using unlicensed frequency band and device having applied same
US10135562B2 (en) * 2015-05-28 2018-11-20 Huawei Technologies Co., Ltd. Apparatus and method for link adaptation in uplink grant-less random access
CN106788912B (zh) * 2016-11-04 2019-06-07 北京展讯高科通信技术有限公司 基站、用户设备及上行数据传输方法
CN106954276B (zh) * 2017-03-07 2021-07-09 上海华为技术有限公司 一种重传调度的方法、设备及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105284172A (zh) * 2013-03-08 2016-01-27 华为技术有限公司 用于上行链路免授权传输方案的系统和方法
US20160100430A1 (en) * 2014-10-02 2016-04-07 Qualcomm Incorporated Contention based uplink transmissions for latency reduction

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on Grant-free Uplink Transmission", 3GPPTSG RAN WG 1 MEETING #89. RL-1707655, 19 May 2017 (2017-05-19), XP051261995 *
LG ELECTRONICS: "Discussion on UL Transmission without Grant", 3 GPPTSG RAN WG 1 MEETING AD-HOC. RL-1710327, 30 June 2017 (2017-06-30), XP051299543 *
NOKIA ET AL.: "Procedure Design for Contention based access", 3GPP TSG-RAN WG1 #86. RL-167255, 26 August 2016 (2016-08-26), XP051140603 *
See also references of EP3657877A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023272469A1 (zh) * 2021-06-29 2023-01-05 华为技术有限公司 一种通信方法和装置

Also Published As

Publication number Publication date
CN109391378B (zh) 2022-01-11
CN109391378A (zh) 2019-02-26
EP3657877A4 (en) 2020-11-25
EP3657877B1 (en) 2021-10-27
US20200229230A1 (en) 2020-07-16
EP3657877A1 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
US11096200B2 (en) Methods, devices and systems for device to device (D2D) data transmission and retransmission
US11438776B2 (en) Control channel monitoring method, monitoring indication method, user equipment and network device
EP3965497B1 (en) Uplink control information sending and receiving methods, terminal, and network side device
TWI433497B (zh) 混合式自動重送請求時序判定
WO2019095834A1 (zh) 一种上行控制信道的资源配置方法和装置
WO2020063576A1 (zh) 传输块与码字的对应关系、相关设备以及系统
WO2018202159A1 (zh) 一种发送上行信息的方法、终端设备以及接入网设备
WO2019051715A1 (zh) 带宽部分bwp的激活方法及相关产品
US10382243B2 (en) OFDM subframe transmission method and device using determined transport block sizes
WO2019137379A1 (zh) 一种uci发送方法和移动终端
EP3515142A1 (en) Data transmission method, related device and system
EP3657877B1 (en) Communication method and network device
WO2018126833A1 (zh) 无线通信的方法和设备
WO2018027997A1 (zh) 上行信号传输方法、终端设备和网络设备
JP7221408B2 (ja) 非許可周波数帯域の上りリンク伝送方法、端末及びネットワーク機器
EP3528579B1 (en) Data transmission method, network side device and terminal
JP7125431B6 (ja) フィードバック応答情報の長さ確定方法及び関連製品
CN113473610A (zh) 一种反馈方法及设备
WO2018228409A1 (zh) 控制信息的传输方法、终端设备和网络设备
CN111278032B (zh) Pucch的发送方法、接收方法、终端和网络侧设备
WO2022213900A1 (zh) 上行控制信息传输方法及相关装置
US20230361942A1 (en) Uplink data sending method and configuration method, terminal, and network side device
WO2020164110A1 (zh) 通信方法、装置及系统
WO2018191868A1 (zh) 一种指示子帧配置的方法及装置
WO2018202000A1 (zh) 控制信道的发送方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018842932

Country of ref document: EP

Effective date: 20200219