WO2020164110A1 - 通信方法、装置及系统 - Google Patents

通信方法、装置及系统 Download PDF

Info

Publication number
WO2020164110A1
WO2020164110A1 PCT/CN2019/075224 CN2019075224W WO2020164110A1 WO 2020164110 A1 WO2020164110 A1 WO 2020164110A1 CN 2019075224 W CN2019075224 W CN 2019075224W WO 2020164110 A1 WO2020164110 A1 WO 2020164110A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
condition
nprach
random access
format2
Prior art date
Application number
PCT/CN2019/075224
Other languages
English (en)
French (fr)
Inventor
罗之虎
苏俞婉
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/075224 priority Critical patent/WO2020164110A1/zh
Publication of WO2020164110A1 publication Critical patent/WO2020164110A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • This application relates to the field of communication, and in particular to a communication method, device and system.
  • the narrowband internet of things (NB-IoT) system is used to support communication with a larger coverage area.
  • the network device sends downlink data to the terminal device through two HARQ processes (HARQ process #0 and HARQ process #1), where the suffix "#0" marked in Figure 1 represents HARQ Process #0, "#1" represents HARQ process #1.
  • the downlink data of the two HARQ processes are respectively carried through different narrowband physical downlink shared channels (NPDSCH), that is, NPDSCH#0 and NPDSCH#1 in Figure 1.
  • NPDSCH narrowband physical downlink shared channels
  • the network device Before sending the NPDSCH, the network device also sends downlink control information (DCI) to the terminal device.
  • the DCI carries NPDSCH scheduling information, and the DCI is carried by a narrowband physical downlink control channel (NPDCCH).
  • NPDCCH narrowband physical downlink control channel
  • DCI#0 carries NPDSCH#0 scheduling information
  • DCI#1 carries NPDSCH#1 scheduling information.
  • the terminal device After detecting DCI#0 and DCI#1, the terminal device receives NPDSCH#0 according to the scheduling information of DCI#0, and receives NPDSCH#1 according to the scheduling information of DCI#1.
  • the terminal device After receiving NPDSCH#0 and NPDSCH#1, the terminal device sends an acknowledgement/negative acknowledgement (ACK/NACK) to the network device (represented by A/N#0 and A/N#1, respectively).
  • ACK/NACK acknowledgement/negative acknowledgement
  • the positions of the time-frequency resources transmitted by A/N#0 and A/N#1 are indicated by DCI#0 and DCI#1, respectively.
  • A/N#0 is transmitted after NPDSCH#1, and the minimum 1ms timing relationship is satisfied between the transmission end time of NPDSCH#1 and the transmission start time of A/N#0.
  • NPDSCH#1 transmission is downlink transmission
  • A/N#0 transmission is uplink transmission.
  • the purpose of limiting the above-mentioned minimum 1ms timing relationship is to reserve time for terminal equipment to switch from downlink transmission to uplink transmission. On the other hand, It is to reserve time for the terminal equipment to make timing advance (TA) adjustment during uplink transmission.
  • TA timing advance
  • the maximum range of TA adjustment is related to the design of the random access channel.
  • NB-IoT supports narrowband physical random access channel (NPRACH) format (format )0 and NPRACH format1.
  • NPRACH narrowband physical random access channel
  • the maximum supported cell radius is 40km
  • the minimum conversion delay from downstream transmission to upstream transmission is 733 ⁇ s.
  • NPRACH format2 For applications facing open areas, such as smart agriculture, animal husbandry monitoring, smart lakes (such as pollution monitoring, aquatic life monitoring, etc.), a larger community radius is required. For this reason, a new NPRACH format, NPRACH format2, is introduced in Rel15 of the NB-IoT system.
  • the maximum cell radius supported by it is 120km, and the maximum value of TA is 24576Ts, which is 800 ⁇ s.
  • NPRACH format2 when using two HARQ process communication technologies, if the minimum time sequence between the transmission end time of NPDSCH#1 and the transmission start time of A/N#0 is 1ms, the terminal equipment will start from the downlink
  • the minimum conversion delay of the transmission to the upstream transmission conversion is only 200 ⁇ s. The significant reduction in the conversion delay has a greater impact on the hardware capabilities of the existing terminal equipment, and will increase the hardware cost and processing complexity of the terminal equipment.
  • the embodiments of the present application provide a communication method, device, and system, which are used to enable a terminal device supporting NPRACH format 2 to use two HARQ process communication technologies without greatly increasing hardware cost and processing complexity.
  • a communication method including: a terminal device receives configuration information from a network device, the configuration information is used to indicate that the terminal device can use two hybrid automatic repeat request HARQ processes; the terminal device receives downlink control information from the network device DCI, DCI is used to schedule one HARQ process or two HARQ processes of the two HARQ processes; the terminal device determines that the network device meets the first condition and the terminal device meets the second condition, or the terminal device determines that the terminal device meets the third condition, Or, if the terminal device determines that the terminal device meets the fourth condition, the terminal device determines that it is not necessary to receive the downlink transmission in the first q downlink subframes before the start time of the narrowband physical uplink shared channel format 2NPUSCH format2 transmission, where the first condition And the second condition includes support for narrowband random access channel format 2NPRACH format2 transmission, and the third condition includes that the terminal device performs random access on the NPRACH format2 random access resource, or the terminal device has performed random access on the
  • the fourth condition includes that the timing adjustment of the terminal device is greater than Or equal to the preset value, or the timing adjustment is greater than the preset value, q is a positive integer greater than 1, and NPUSCH format2 transmission is an uplink transmission performed by a terminal device in one HARQ process or one HARQ process of two HARQ processes.
  • the first q downlink subframes before the start time of NPUSCH format2 transmission can be used by the terminal device to complete the downlink transmission upward
  • q is a positive integer greater than 1, that is, the conversion delay of downlink transmission to uplink transmission is greater than or equal to 2ms.
  • the minimum conversion delay of the horizontal transmission conversion is 1200 ⁇ s.
  • the conversion delay is more relaxed.
  • the minimum value of the conversion delay of the terminal device from downlink transmission to uplink transmission is greater than 1200 ⁇ s.
  • the conversion delay will be even greater Loose. Therefore, for terminal devices that support NPRACH format2, by increasing the conversion delay of the downlink transmission to the uplink transmission conversion, there is no need to make changes to the hardware, and thus the hardware cost and processing complexity will not be greatly increased.
  • the method further includes: the terminal device determines that the network device meets the fifth condition and/or the terminal device meets the sixth condition, or the terminal device determines that the terminal device meets the seventh condition, or the terminal device determines If the terminal device satisfies the eighth condition, the terminal device determines that it does not need to receive the downlink transmission in the previous downlink subframe before the start time of the NPUSCH format2 transmission, where the fifth and sixth conditions include not supporting NPRACH format2 transmission.
  • Seven conditions include that the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not sent on the NPRACH format2 random access resource Random access preamble, or the terminal device has not sent a random access preamble on NPRACH format2 random access resources
  • the eighth condition includes that the timing adjustment amount of the terminal device is less than or equal to the preset value, or the timing adjustment amount is less than the preset value. Set value.
  • the terminal device and/or the network device does not support NPRACH format2 transmission, so the terminal device can only perform random access through the NPRACH format 0 or NPRACH format 1 random access preamble.
  • the minimum value of the conversion delay of the device from downlink transmission to uplink transmission is the same as the minimum value of the conversion delay from downlink transmission to uplink transmission in Rel-14NB-IoT, which is 733 ⁇ s. Therefore, for the terminal device, there is no need to make changes in the hardware, so it will not increase the hardware cost and processing complexity
  • the terminal device determining that the network device satisfies the first condition includes: the terminal device determines that the system message received from the network device includes random access resource configuration information for NPRACH format2 transmission; the terminal device determines the terminal After the device meets the second condition, it further includes: the terminal device sends instruction information to the network device, the instruction information is used to indicate that the terminal device has NPRACH format2 capability; the terminal device determines that the network device meets the fifth condition, including: the terminal device determines to receive from the network device The system message does not include the random access resource configuration information for NPRACH format2 transmission; after the terminal device determines that the terminal device meets the sixth condition, it further includes: the terminal device determines that it does not need to send instruction information to the network device, and the instruction information is used to indicate The terminal equipment has NPRACH format2 capability.
  • This embodiment provides a possible way to satisfy the first condition, the second condition, the fifth condition, and the sixth condition.
  • the second condition or the third condition further includes: the NPRACH coverage level of the terminal device is coverage level 1 or coverage level 2.
  • the sixth condition or the seventh condition further includes: the NPRACH coverage level of the terminal device is coverage level 0. This embodiment further provides a possible way of the second condition, the third condition, the sixth condition, and the seventh condition.
  • the second condition or the third condition further includes: the NPRACH coverage level of the terminal device is coverage level 2.
  • the sixth condition or the seventh condition further includes: the NPRACH coverage level of the terminal device is coverage level 0 or coverage level 1. This embodiment further provides another possible way of the second condition, the third condition, the sixth condition, and the seventh condition.
  • the NPRACH coverage level is the NPRACH coverage level when the random access procedure of the terminal device succeeds, or the NPRACH coverage level when the random access procedure is started, or the nearest in time to the DCI scheduling. And the NPRACH coverage level when the random access procedure is successful.
  • This embodiment provides several possible ways of NPRACH coverage level.
  • the method further includes: the terminal device receives the timing advance command from the network device, and the terminal device determines the timing adjustment amount according to the timing advance command, where the timing adjustment amount is a positive number to indicate that the uplink transmission timing advance
  • the second condition or the third condition further includes: the timing adjustment amount is greater than or equal to the preset value; the sixth condition or the seventh condition further includes: the timing adjustment amount is less than the preset value.
  • This embodiment further provides another possible way of the second condition, the third condition, the sixth condition, and the seventh condition.
  • the method further includes: the terminal device receives the timing advance command from the network device, and the terminal device determines the timing adjustment amount according to the timing advance command, where the timing adjustment amount is a positive number to indicate that the uplink transmission timing advance ;
  • the second condition or the third condition further includes: the timing adjustment amount is greater than the preset value;
  • the sixth condition or the seventh condition further includes: the timing adjustment amount is less than or equal to the preset value.
  • This embodiment further provides yet another possible way of the second condition, the third condition, the sixth condition, and the seventh condition.
  • the terminal device determines that the network device meets the first condition and the terminal device meets the second condition, or the terminal device determines that the terminal device meets the third condition, or the terminal device determines that the terminal device meets the fourth condition
  • the method also includes: the terminal device determines that it is not necessary to receive the downlink transmission in the first q downlink subframes before the start time of the narrowband physical uplink shared channel format 1NPUSCH format1 transmission, and the NPUSCH format1 transmission is the terminal device in one HARQ process or two Uplink transmission performed on a HARQ process in the HARQ process.
  • the first q downlink subframes before the start time of NPUSCH format1 transmission can be used by the terminal device to complete the conversion of downlink transmission to uplink transmission
  • Q is a positive integer greater than 1, that is, the conversion delay of downlink transmission to uplink transmission is greater than or equal to 2ms.
  • the terminal device switches from downlink transmission to uplink transmission.
  • the minimum conversion delay is 1200 ⁇ s. Compared with the minimum conversion delay (733 ⁇ s) of the downstream transmission in Rel-14NB-IoT, the conversion delay is more relaxed.
  • the terminal equipment when q>2, the terminal equipment The minimum conversion delay for downstream transmission to upstream transmission conversion is greater than 1200 ⁇ s. Compared with the minimum conversion delay for downstream transmission to upstream transmission conversion in Rel-14NB-IoT (ie 733 ⁇ s), the conversion delay will be more relaxed. Therefore, for terminal devices that support NPRACH format2, by increasing the conversion delay of the downlink transmission to the uplink transmission conversion, there is no need to make changes to the hardware, and thus the hardware cost and processing complexity will not be greatly increased.
  • a communication method including: a network device sends configuration information to a terminal device, the configuration information is used to indicate that the terminal device can use two hybrid automatic repeat request HARQ processes; the network device sends downlink control information to the terminal device DCI, DCI is used to schedule one HARQ process or two HARQ processes of the two HARQ processes; the network device determines that the network device meets the first condition and the terminal device meets the second condition, or the network device determines that the terminal device meets the third condition, Or, if the network device determines that the terminal device meets the fourth condition, the network device determines that it is not necessary to perform downlink transmission in the first q downlink subframes before the start time of the narrowband physical uplink shared channel format 2NPUSCH format2 transmission, where the first condition And the second condition includes support for narrowband random access channel format 2NPRACH format2 transmission, and the third condition includes that the terminal device performs random access on the NPRACH format2 random access resource, or the terminal device has performed random access on the N
  • the fourth condition includes that the timing adjustment of the terminal device is greater than Or equal to the preset value, or the timing adjustment is greater than the preset value, q is a positive integer greater than 1, and NPUSCH format2 transmission is an uplink transmission performed by a terminal device in one HARQ process or one HARQ process of two HARQ processes.
  • the first q downlink subframes before the start time of NPUSCH format2 transmission can be used by the terminal device to complete the downlink transmission upward
  • q is a positive integer greater than 1, that is, the conversion delay of downlink transmission to uplink transmission is greater than or equal to 2ms.
  • the minimum conversion delay of the horizontal transmission conversion is 1200 ⁇ s.
  • the conversion delay is more relaxed.
  • the minimum value of the conversion delay of the terminal device from downlink transmission to uplink transmission is greater than 1200 ⁇ s.
  • the conversion delay will be even greater Loose. Therefore, for terminal devices that support NPRACH format2, by increasing the conversion delay of the downlink transmission to the uplink transmission conversion, there is no need to make changes to the hardware, and the hardware cost and processing complexity will not be greatly increased.
  • the method further includes: the network device determines that the network device satisfies the fifth condition and/or the terminal device satisfies the sixth condition, or the network device determines that the terminal device satisfies the seventh condition, or the network device determines If the terminal device meets the eighth condition, the network device determines that it does not need to perform downlink transmission in the previous downlink subframe before the start time of NPUSCH format2 transmission, where the fifth and sixth conditions include not supporting NPRACH format2 transmission, and the first Seven conditions include that the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not sent on the NPRACH format2 random access resource Random access preamble, or the terminal device has not sent a random access preamble on NPRACH format2 random access resources, the eighth condition includes that the timing adjustment amount of the terminal device is less than or equal to the preset value, or the timing adjustment amount is less than the preset value, or the timing
  • the terminal device and/or the network device does not support NPRACH format2 transmission, so the terminal device can only perform random access through the NPRACH format 0 or NPRACH format 1 random access preamble.
  • the minimum value of the conversion delay of the device from downlink transmission to uplink transmission is the same as the minimum value of the conversion delay from downlink transmission to uplink transmission in Rel-14NB-IoT, which is 733 ⁇ s. Therefore, for the terminal device, there is no need to make changes to the hardware, so the hardware cost and processing complexity will not be increased.
  • the network device after the network device determines that the network device meets the first condition, it further includes: the network device sends a system message to the terminal device, the system message includes random access resource configuration information used for NPRACH format2 transmission; network The device determining that the terminal device satisfies the second condition includes: the network device receives instruction information from the terminal device, the instruction information is used to indicate that the terminal device has the NPRACH format2 capability; after the network device determines that the network device meets the fifth condition, it further includes: The device sends a system message, and the system message does not include the random access resource configuration information used for NPRACH format2 transmission; the network device determines that the terminal device meets the sixth condition, including: the network device determines that it has not received the indication information from the terminal device, and the indication information is used for Indicates that the terminal device has NPRACH format2 capability.
  • This embodiment provides a possible way to satisfy the first condition, the second condition, the fifth condition, and the sixth condition.
  • the method further includes: the network device determines the NPRACH coverage level of the terminal device; the second condition or the third condition further includes: the NPRACH coverage level of the terminal device is coverage level 1 or coverage level 2; The sixth condition or the seventh condition further includes: the NPRACH coverage level of the terminal device is coverage level 0.
  • This embodiment further provides a possible way of the second condition, the third condition, the sixth condition, and the seventh condition.
  • the method further includes: the network device determines the NPRACH coverage level of the terminal device; the second condition or the third condition further includes: the NPRACH coverage level of the terminal device is coverage level 2; the sixth condition or The seventh condition further includes: the NPRACH coverage level of the terminal device is coverage level 0 or coverage level 1.
  • This embodiment further provides another possible way of the second condition, the third condition, the sixth condition, and the seventh condition.
  • the NPRACH coverage level is the NPRACH coverage level when the random access procedure of the terminal device succeeds, or the NPRACH coverage level when the random access procedure is started, or the nearest in time to the DCI scheduling. And the NPRACH coverage level when the random access procedure is successful.
  • This embodiment provides several possible ways of NPRACH coverage level.
  • the method further includes: the network device determines a timing adjustment amount, and the network device sends a timing advance command to the terminal device, where a positive timing adjustment amount indicates that the uplink transmission timing is advanced; the second condition or The third condition further includes: the timing adjustment amount is greater than or equal to the preset value; the sixth condition or the seventh condition further includes: the timing adjustment amount is less than the preset value.
  • This embodiment further provides another possible way of the second condition, the third condition, the sixth condition, and the seventh condition.
  • the method further includes: the network device determines a timing adjustment amount, and the network device sends a timing advance command to the terminal device, where a positive timing adjustment amount indicates that the uplink transmission timing is advanced; the second condition or The third condition further includes: the timing adjustment amount is greater than a preset value; the sixth condition or the seventh condition further includes: the timing adjustment amount is less than or equal to the preset value.
  • This embodiment further provides yet another possible way of the second condition, the third condition, the sixth condition, and the seventh condition.
  • the network device determines that the network device meets the first condition and the terminal device meets the second condition, or the network device determines that the terminal device meets the third condition, or the network device determines that the terminal device meets the fourth condition,
  • the method also includes: the network device determines that it is not necessary to perform downlink transmission in the first q downlink subframes before the start time of the narrowband physical uplink shared channel format 1 NPUSCH format1 transmission, where the NPUSCH format1 transmission means that the terminal device is in a HARQ process or Uplink transmission performed on one of the two HARQ processes.
  • the first q downlink subframes before the start time of NPUSCH format2 transmission can be used for the terminal device to complete the conversion of downlink transmission to uplink transmission
  • Q is a positive integer greater than 1, that is, the conversion delay of downlink transmission to uplink transmission is greater than or equal to 2ms.
  • the terminal device switches from downlink transmission to uplink transmission.
  • the minimum conversion delay is 1200 ⁇ s. Compared with the minimum conversion delay (733 ⁇ s) of the downstream transmission in Rel-14NB-IoT, the conversion delay is more relaxed.
  • the terminal equipment when q>2, the terminal equipment The minimum conversion delay for downstream transmission to upstream transmission conversion is greater than 1200 ⁇ s. Compared with the minimum conversion delay for downstream transmission to upstream transmission conversion in Rel-14NB-IoT (ie 733 ⁇ s), the conversion delay will be more relaxed. Therefore, for terminal devices that support NPRACH format2, by increasing the conversion delay of the downlink transmission to the uplink transmission conversion, there is no need to make changes to the hardware, and thus the hardware cost and processing complexity will not be greatly increased.
  • a communication method including: a terminal device sends instruction information to a network device, the instruction information is used to indicate that the terminal device has the ability to support narrowband random access channel NPRACH format2; the terminal device receives system messages from the network device, and the system The message includes random access resource configuration information for NPRACH format2 transmission; the terminal device determines that the first condition is met, the terminal device receives configuration information from the network device, and the configuration information is used to instruct the terminal device to use two hybrid automatic repeat requests HARQ process; the terminal device receives downlink control information DCI from the network device, and the DCI is used to schedule one HARQ process or two HARQ processes of the two HARQ processes.
  • the communication method provided in the embodiments of this application supports NPRACH format2 transmission for both network equipment and terminal equipment.
  • the use of two HARQ communication technologies for terminal equipment adds some restrictions, such as restricting only terminal equipment with good coverage levels to those close to the base station.
  • the terminal equipment that is, the terminal equipment with a smaller TA can use the two HARQ process communication technology, so there is no need to increase the conversion delay of the terminal equipment from downlink transmission to upstream transmission, which can ensure that the terminal equipment can realize the transmission from downlink transmission to upstream transmission Conversion.
  • Terminal devices that meet these constraints do not need to make changes to the hardware to ensure that there is sufficient conversion delay for the downstream transmission to the upstream transmission, thereby not greatly increasing the hardware cost and processing complexity.
  • the first condition includes that the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device The random access preamble has not been sent on the NPRACH format 2 random access resource, or the terminal device has not sent the random access preamble on the NPRACH format 2 random access resource.
  • the first condition includes: the NPRACH coverage level of the terminal device is coverage level 0; or, the first condition includes: the NPRACH coverage level of the terminal device is coverage level 0 or coverage level 1.
  • This embodiment provides several other possible ways of the first condition.
  • the first condition further includes: the NPRACH coverage level of the terminal device is coverage level 0; or, the first condition further includes: the NPRACH coverage level of the terminal device is coverage level 0 or coverage level 1. .
  • This embodiment further provides several possible ways of the first condition.
  • the NPRACH coverage level is the NPRACH coverage level when the random access procedure of the terminal device succeeds, or the NPRACH coverage level when the random access procedure is started, or the nearest in time to the DCI scheduling. And the NPRACH coverage level when the random access procedure is successful.
  • This embodiment provides several possible ways of NPRACH coverage level.
  • the method further includes: the terminal device receives the timing advance command from the network device, and the terminal device determines the timing adjustment amount according to the timing advance command, where the timing adjustment amount is a positive number to indicate that the uplink transmission timing advance ;
  • the first condition includes: the timing adjustment is less than a preset value, or, the first condition includes: the timing adjustment is less than or equal to the preset value.
  • the method further includes: the terminal device receives the timing advance command from the network device, and the terminal device determines the timing adjustment amount according to the timing advance command, where the timing adjustment amount is a positive number to indicate that the uplink transmission timing advance ;
  • the first condition further includes: the timing adjustment is less than a preset value, or the first condition further includes: the timing adjustment is less than or equal to the preset value.
  • a communication method including: a network device receives instruction information from a terminal device, the instruction information is used to indicate that the terminal device has the ability to support narrowband random access channel NPRACH format2; the network device sends a system message to the terminal device, and the system The message includes the random access resource configuration information used for NPRACH format2 transmission; the network device determines that the first condition is met, the network device sends configuration information to the terminal device, and the configuration information is used to instruct the terminal device to use two hybrid automatic repeat requests HARQ Process: The network device sends downlink control information DCI to the terminal device. The DCI is used to schedule one HARQ process or two HARQ processes in the two HARQ processes.
  • the communication method provided in the embodiments of this application supports NPRACH format2 transmission for both network equipment and terminal equipment.
  • the use of two HARQ communication technologies for terminal equipment adds some restrictions, such as restricting only terminal equipment with good coverage levels to those close to the base station.
  • the terminal equipment that is, the terminal equipment with a smaller TA can use the two HARQ process communication technology, so there is no need to increase the conversion delay of the terminal equipment from downlink transmission to upstream transmission, which can ensure that the terminal equipment can realize the transmission from downlink transmission to upstream transmission Conversion.
  • Terminal devices that meet these constraints do not need to make changes to the hardware to ensure that there is sufficient conversion delay for the downstream transmission to the upstream transmission, thereby not greatly increasing the hardware cost and processing complexity.
  • the first condition includes that the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device The random access preamble has not been sent on the NPRACH format 2 random access resource, or the terminal device has not sent the random access preamble on the NPRACH format 2 random access resource.
  • the method further includes: the network device determines the NPRACH coverage level of the terminal device; the first condition includes: the NPRACH coverage level of the terminal device is coverage level 0; or, the first condition includes: The NPRACH coverage level is coverage level 0 or coverage level 1.
  • the method further includes: the network device determines the NPRACH coverage level of the terminal device; the first condition further includes: the NPRACH coverage level of the terminal device is coverage level 0; or the first condition further includes : The NPRACH coverage level of the terminal equipment is coverage level 0 or coverage level 1.
  • the network device determines the NPRACH coverage level of the terminal device; the first condition further includes: the NPRACH coverage level of the terminal device is coverage level 0; or the first condition further includes : The NPRACH coverage level of the terminal equipment is coverage level 0 or coverage level 1.
  • the NPRACH coverage level is the NPRACH coverage level when the random access procedure of the terminal device succeeds, or the NPRACH coverage level when the random access procedure is started, or the nearest in time to the DCI scheduling. And the NPRACH coverage level when the random access procedure is successful.
  • This embodiment provides several possible ways of NPRACH coverage level.
  • the method further includes: the network device determines the timing adjustment amount of the terminal device, and the network device sends a timing advance command to the terminal device, where a positive timing adjustment amount indicates that the uplink transmission timing is advanced;
  • a condition includes: the timing adjustment amount is less than a preset value, or the first condition includes: the timing adjustment amount is less than or equal to the preset value.
  • the method further includes: the network device determines the timing adjustment amount of the terminal device, and the network device sends a timing advance command to the terminal device, where a positive timing adjustment amount indicates that the uplink transmission timing is advanced;
  • a condition further includes: the timing adjustment amount is less than a preset value, or the first condition further includes: the timing adjustment amount is less than or equal to the preset value.
  • a terminal device including a transceiver module and a processing module; the transceiver module is used to receive configuration information from the network device, and the configuration information is used to instruct the terminal device to use two hybrid automatic repeat request HARQ processes; The module is also used to receive the downlink control information DCI from the network device. The DCI is used to schedule one HARQ process or two HARQ processes of the two HARQ processes; the processing module is used to determine that the network device meets the first condition and the terminal device meets the first condition.
  • the transceiver module does not need to be the first q downlink sub-channels before the start time of the narrowband physical uplink shared channel format 2NPUSCH format2 transmission
  • the downlink transmission is received in the frame, where the first condition and the second condition include support for narrowband random access channel format 2NPRACH format2 transmission
  • the third condition includes the terminal device performing random access on the NPRACH format2 random access resource, or the terminal device is in Random access has been performed on the NPRACH format2 random access resource, or the terminal device has sent a random access preamble on the NPRACH format2 random access resource, or the terminal device has sent a random access preamble on the NPRACH format2 random access resource
  • the fourth condition includes that the timing adjustment amount of the terminal device is greater than or equal to the preset value, or the timing adjustment amount is greater than the preset value, q is a positive integer greater than 1, and
  • the processing module is further configured to determine that the network device meets the fifth condition and/or the terminal device meets the sixth condition, or that the terminal device meets the seventh condition, or that the terminal device meets the eighth condition.
  • the processing module is also used to determine that the transceiver module does not need to receive the downlink transmission in the previous downlink subframe before the start time of NPUSCH format2 transmission, where the fifth and sixth conditions include not supporting NPRACH format2 transmission,
  • the seventh condition includes that the terminal device has not performed random access on NPRACH format2 random access resources, or the terminal device has not performed random access on NPRACH format2 random access resources, or the terminal device has not performed random access on NPRACH format2 random access resources.
  • the random access preamble is sent, or the terminal device has not sent the random access preamble on the NPRACH format2 random access resource.
  • the eighth condition includes that the timing adjustment amount of the terminal device is less than or equal to the preset value, or the timing adjustment amount is less than default value.
  • the processing module configured to determine that the network device meets the first condition, includes: determining that the system message received from the network device includes random access resource configuration information for NPRACH format2 transmission; processing After the module determines that the terminal device meets the second condition, it further includes: sending instruction information to the network device through the transceiver module, where the instruction information is used to indicate that the terminal device has the NPRACH format2 capability.
  • the fifth condition includes: the processing module determines that the system message received from the network device does not include the random access resource configuration information for NPRACH format2 transmission; after the processing module determines that the terminal device meets the sixth condition, it further includes: the processing module determines not The transceiver module is required to send instruction information to the network device, and the instruction information is used to indicate that the terminal device has the capability of NPRACH format2.
  • the second condition or the third condition further includes: the NPRACH coverage level of the terminal device is coverage level 1 or coverage level 2.
  • the sixth condition or the seventh condition further includes: the NPRACH coverage level of the terminal device is coverage level 0.
  • the second condition or the third condition further includes: the NPRACH coverage level of the terminal device is coverage level 2.
  • the sixth condition or the seventh condition further includes: the NPRACH coverage level of the terminal device is coverage level 0 or coverage level 1.
  • the NPRACH coverage level is the NPRACH coverage level when the random access procedure of the terminal device succeeds, or the NPRACH coverage level when the random access procedure is started, or the nearest in time to the DCI scheduling. And the NPRACH coverage level when the random access procedure is successful.
  • the transceiver module is also used to receive the timing advance command from the network device, and the processing module is also used to determine the timing adjustment amount according to the timing advance command, where the timing adjustment amount is a positive number, which means uplink The transmission timing is advanced;
  • the second condition or the third condition further includes: the timing adjustment amount is greater than or equal to a preset value.
  • the sixth condition or the seventh condition further includes: the timing adjustment amount is less than a preset value.
  • the transceiver module is also used to receive the timing advance command from the network device, and the processing module is also used to determine the timing adjustment amount according to the timing advance command, where the timing adjustment amount is a positive number, which means uplink The transmission timing is advanced;
  • the second condition or the third condition further includes: the timing adjustment amount is greater than a preset value.
  • the sixth condition or the seventh condition further includes: the timing adjustment amount is less than or equal to a preset value.
  • the processing module determines that the network device meets the first condition and the terminal device meets the second condition, or determines that the terminal device meets the third condition, or determines that the terminal device meets the fourth condition, the processing module, further Used to determine that the transceiver module does not need to receive downlink transmissions in the first q downlink subframes before the start time of the narrowband physical uplink shared channel format 1NPUSCH format1 transmission.
  • the NPUSCH format1 transmission is for the terminal device in one HARQ process or two HARQ processes Uplink transmission on a HARQ process.
  • a network device including a transceiver module and a processing module; the transceiver module is used to send configuration information to the terminal device, the configuration information is used to instruct the terminal device to use two hybrid automatic repeat request HARQ processes; The module is also used to send downlink control information DCI to the terminal equipment.
  • the DCI is used to schedule one HARQ process or two HARQ processes in the two HARQ processes; the processing module is used to determine that the network equipment meets the first condition and the terminal equipment meets the first condition.
  • the transceiver module does not need to be the first q downlink sub-channels before the start time of the narrowband physical uplink shared channel format 2NPUSCH format2 transmission
  • the first condition and the second condition include support for narrowband random access channel format 2NPRACH format2 transmission
  • the third condition includes the terminal device performing random access on the NPRACH format2 random access resource, or the terminal device is in Random access has been performed on the NPRACH format2 random access resource, or the terminal device has sent a random access preamble on the NPRACH format2 random access resource, or the terminal device has sent a random access preamble on the NPRACH format2 random access resource
  • the fourth condition includes that the timing adjustment amount of the terminal device is greater than or equal to the preset value, or the timing adjustment amount is greater than the preset value, q is a positive integer greater than 1, and N
  • the processing module is further configured to determine that the network device meets the fifth condition and/or the terminal device meets the sixth condition, or that the terminal device meets the seventh condition, or that the terminal device meets the eighth condition, then the processing module It is also used to determine that the transceiver module does not need to perform downlink transmission in the previous downlink subframe before the start time of NPUSCH format2 transmission, where the fifth condition and the sixth condition include not supporting NPRACH format2 transmission, and the seventh condition includes the terminal The device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not sent a random access preamble on the NPRACH format2 random access resource Code, or the terminal device has not sent the random access preamble on the NPRACH format2 random access resource, the eighth condition includes that the timing adjustment amount of the terminal device is less than or equal to the preset value, or the timing adjustment amount is less than the preset value.
  • the processing module determines that the network device meets the first condition, it further includes: sending a system message to the terminal device through the transceiver module, and the system message includes random access resource configuration information used for NPRACH format2 transmission;
  • the processing module is used to determine that the terminal device satisfies the second condition, including: receiving instruction information from the terminal device through the transceiver module, the instruction information being used to indicate that the terminal device has the NPRACH format2 capability.
  • the processing module determines that the network device meets the fifth condition, it further includes: sending a system message to the terminal device through the transceiver module, and the system message does not include the random access resource configuration information used for NPRACH format2 transmission; the processing module is used to determine the terminal device Satisfying the sixth condition includes: determining that the indication information is not received from the terminal device, and the indication information is used to indicate that the terminal device has the NPRACH format2 capability.
  • the processing module is further used to determine the NPRACH coverage level of the terminal device; the second condition or the third condition further includes: the NPRACH coverage level of the terminal device is coverage level 1 or coverage level 2.
  • the sixth condition or the seventh condition further includes: the NPRACH coverage level of the terminal device is coverage level 0.
  • the processing module is further used to determine the NPRACH coverage level of the terminal device; the second condition or the third condition further includes: the NPRACH coverage level of the terminal device is coverage level 2.
  • the sixth condition or the seventh condition further includes: the NPRACH coverage level of the terminal equipment is coverage level 0 or coverage level 1.
  • the NPRACH coverage level is the NPRACH coverage level when the random access procedure of the terminal device succeeds, or the NPRACH coverage level when the random access procedure is started, or the nearest in time to the DCI scheduling. And the NPRACH coverage level when the random access procedure is successful.
  • the processing module is also used to determine the timing adjustment amount, and the transceiver module is also used to send a timing advance command to the terminal device, where the timing adjustment amount is a positive number to indicate that the uplink transmission timing is advanced;
  • the second condition or the third condition further includes: the timing adjustment amount is greater than or equal to a preset value.
  • the sixth condition or the seventh condition further includes: the timing adjustment amount is less than a preset value.
  • the processing module is also used to determine the timing adjustment amount, and the transceiver module is also used to send a timing advance command to the terminal device, where the timing adjustment amount is a positive number to indicate that the uplink transmission timing is advanced;
  • the second condition or the third condition further includes: the timing adjustment amount is greater than a preset value.
  • the sixth condition or the seventh condition further includes: the timing adjustment amount is less than or equal to a preset value.
  • the processing module determines that the network device meets the first condition and the terminal device meets the second condition, or determines that the terminal device meets the third condition, or determines that the terminal device meets the fourth condition, the processing module, further It is used to determine that the transceiver module does not need to perform downlink transmission in the first q downlink subframes before the start time of the narrowband physical uplink shared channel format 1 NPUSCH format1 transmission, where the NPUSCH format1 transmission means that the terminal device is in one HARQ process or two HARQ Uplink transmission on a HARQ process in the process.
  • a terminal device including a transceiver module and a processing module; the transceiver module is used to send instruction information to the network device, the instruction information is used to indicate that the terminal device has the ability to support narrowband random access channel NPRACH format2; transceiver module , Is also used to receive system messages from network devices, the system messages include random access resource configuration information used for NPRACH format2 transmission; the processing module is used to determine that the first condition is met, and the transceiver module is used to receive configuration information from the network device , The configuration information is used to indicate that the terminal device can use two hybrid automatic repeat request HARQ processes; the transceiver module is also used to receive downlink control information DCI from the network device, and the DCI is used to schedule one HARQ process or two of the two HARQ processes HARQ process.
  • the first condition includes that the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device The random access preamble has not been sent on the NPRACH format 2 random access resource, or the terminal device has not sent the random access preamble on the NPRACH format 2 random access resource.
  • the first condition includes: the NPRACH coverage level of the terminal device is coverage level 0; or, the first condition includes: the NPRACH coverage level of the terminal device is coverage level 0 or coverage level 1.
  • the first condition further includes: the NPRACH coverage level of the terminal device is coverage level 0; or, the first condition further includes: the NPRACH coverage level of the terminal device is coverage level 0 or coverage level 1. .
  • the NPRACH coverage level is the NPRACH coverage level when the random access procedure of the terminal device succeeds, or the NPRACH coverage level when the random access procedure is started, or the nearest in time to the DCI scheduling. And the NPRACH coverage level when the random access procedure is successful.
  • the transceiver module is also used to receive the timing advance command from the network device, and the processing module is also used to determine the timing adjustment amount according to the timing advance command, where the timing adjustment amount is a positive number to indicate the uplink transmission timing Advance; the first condition includes: the timing adjustment amount is less than a preset value, or, the first condition includes: the timing adjustment amount is less than or equal to the preset value.
  • the transceiver module is also used to receive the timing advance command from the network device, and the processing module is also used to determine the timing adjustment amount according to the timing advance command, where the timing adjustment amount is a positive number to indicate the uplink transmission timing Advance;
  • the first condition further includes: the timing adjustment amount is less than a preset value, or, the first condition, further includes: the timing adjustment amount is less than or equal to the preset value.
  • a network device including a transceiver module and a processing module; the transceiver module is used to receive instruction information from the terminal device, the instruction information is used to indicate that the terminal device has the ability to support the narrowband random access channel NPRACH format2; the transceiver module , Is also used to send a system message to the terminal device, the system message includes the random access resource configuration information used for NPRACH format2 transmission; the processing module is used to determine that the first condition is met, and the transceiver module is also used to send configuration information to the terminal device , The configuration information is used to indicate that the terminal device can use two hybrid automatic repeat request HARQ processes; the transceiver module is also used to send downlink control information DCI to the terminal device, and the DCI is used to schedule one HARQ process or two of the two HARQ processes. A HARQ process.
  • the first condition includes that the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device The random access preamble has not been sent on the NPRACH format 2 random access resource, or the terminal device has not sent the random access preamble on the NPRACH format 2 random access resource.
  • the method further includes: the network device determines the NPRACH coverage level of the terminal device; the first condition includes: the NPRACH coverage level of the terminal device is coverage level 0; or, the first condition includes: The NPRACH coverage level is coverage level 0 or coverage level 1.
  • the processing module is further configured to determine the NPRACH coverage level of the terminal device; the first condition further includes: the NPRACH coverage level of the terminal device is coverage level 0; or the first condition further includes: The NPRACH coverage level of the terminal equipment is coverage level 0 or coverage level 1.
  • the NPRACH coverage level is the NPRACH coverage level when the random access procedure of the terminal device succeeds, or the NPRACH coverage level when the random access procedure is started, or the nearest in time to the DCI scheduling. And the NPRACH coverage level when the random access procedure is successful.
  • the processing module is also used to determine the timing adjustment amount of the terminal device, and the transceiver module is also used to send a timing advance command to the terminal device, where the timing adjustment amount is a positive number to indicate the uplink transmission timing Advance;
  • the first condition includes: the timing adjustment amount is less than a preset value, or, the first condition includes: the timing adjustment amount is less than or equal to the preset value.
  • the processing module is also used to determine the timing adjustment amount of the terminal device, and the transceiver module is also used to send a timing advance command to the terminal device, where the timing adjustment amount is a positive number to indicate the uplink transmission timing Advance;
  • the first condition further includes: the timing adjustment amount is less than a preset value, or, the first condition, further includes: the timing adjustment amount is less than or equal to the preset value.
  • a communication device including: a processor and a memory, the memory is used to store a program, and the processor calls the program stored in the memory to execute the communication method as described in the first or third aspect.
  • a communication device including a processor and a memory, the memory is used to store a program, and the processor calls the program stored in the memory to execute the communication method as described in the second or fourth aspect.
  • a computer-readable storage medium stores instructions.
  • the computer or the processor executes the first aspect or its The communication method in any possible implementation manner, or the communication method in the second aspect or any of its possible implementation manners, or the communication in the third aspect or any of its possible implementation manners Method, or implement the communication method as in the fourth aspect or any one of its possible implementation manners.
  • a computer program product containing instructions when the instructions are run on a computer or a processor, the computer or the processor executes the communication as in the first aspect or any one of its possible implementations.
  • a communication system which includes the terminal device described in the fifth aspect and the network device described in the sixth aspect, or includes the terminal device described in the seventh aspect and the network device described in the eighth aspect
  • the network equipment may include the communication device according to the ninth aspect and the communication device according to the tenth aspect.
  • the technical effects of the fifth aspect to the thirteenth aspect may refer to the content of the various possible implementation manners of the first aspect to the fourth aspect.
  • FIG. 1 is a schematic diagram of the conversion delay of a terminal device in the prior art from downlink transmission to uplink transmission;
  • FIG. 2 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • FIG. 3 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 4 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • Figure 5 is a schematic diagram of NPRACH coverage levels provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of the time domain of NPRACH format2 provided by an embodiment of the application.
  • FIG. 7 is a first schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram from the first qth subframe to the first subframe of a subframe provided by an embodiment of the application;
  • FIG. 9 is a schematic diagram of scheduling patterns corresponding to peak rates of two downlink HARQ processes provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of the conversion delay of a terminal device from downlink transmission to uplink transmission according to an embodiment of the application;
  • FIG. 11 is a second schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 12 is a third schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 13 is a fourth schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 14 is a fifth schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 15 is a sixth flowchart of a communication method provided by an embodiment of this application.
  • 16 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 17 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • TDD time division duplexing
  • FDD frequency division duplexing
  • the embodiments of this application rely on the 5G network scenario in the wireless communication network. It should be noted that the solutions in the embodiments of this application can also be applied to other wireless communication networks, and the corresponding names can also be used in other wireless communication networks. Replace the name of the corresponding function.
  • LTE long term evolution
  • LTE Advanced LTE-A
  • GSM global system for mobile communication
  • UMTS mobile communication system
  • CDMA code division multiple access
  • the communication system 100 provided by the embodiment of the present application includes a network device 101 and at least two terminal devices 102-107.
  • the terminal device involved in the embodiments of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • a wireless terminal can communicate with one or more core networks via a radio access network (RAN).
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal For example, they can be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the wireless access network.
  • Wireless terminal can also be called system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point, Remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), user equipment (user device), or user equipment (user equipment).
  • the terminal device may be a high-speed rail communication device 102, a smart air conditioner 103, a smart tanker 104, a mobile phone 105, a smart teacup 106, a printer 107, etc., which are not limited in this application.
  • the network device involved in the embodiments of this application may be a base station, which can be used to convert received air frames and Internet protocol (IP) packets to each other, and act as a router between the wireless terminal and the rest of the access network , Where the rest of the access network can include IP network equipment.
  • the base station can also coordinate the attribute management of the air interface.
  • the base station can be a base transceiver station (BTS) in GSM or CDMA, a base station (NodeB) in wideband code division multiple access (WCDMA), or an evolution in LTE
  • BTS base transceiver station
  • NodeB base station
  • WCDMA wideband code division multiple access
  • a type base station evolutional Node B, eNB or e-NodeB
  • the terminal device is taken as an example of a mobile phone to describe the structure of the terminal device.
  • the terminal device 105 may include: a radio frequency (RF) circuit 110, a memory 120, an input unit 130, a display unit 140, a sensor 150, an audio circuit 160, a wireless fidelity (Wi-Fi) module 170, and a processor 180, Bluetooth module 181, and power supply 190 and other components.
  • RF radio frequency
  • the RF circuit 110 can be used for receiving and sending signals in the process of sending and receiving information or talking. It can receive the downlink data of the base station and then transfer it to the processor 180 for processing; it can send the uplink data to the base station.
  • the RF circuit includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and other devices.
  • the memory 120 can be used to store software programs and data.
  • the processor 180 executes various functions and data processing of the terminal device 105 by running a software program or data stored in the memory 120.
  • the memory 120 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the memory 120 stores an operating system that enables the terminal device 105 to run, such as the one developed by Apple Operating system, developed by Google Open source operating system, developed by Microsoft Operating system, etc.
  • the memory 120 may store an operating system and various application programs, and may also store codes for executing the methods described in the embodiments of the present application.
  • the input unit 130 may be used to receive input digital or character information, and generate signal input related to user settings and function control of the terminal device 105.
  • the input unit 130 may include a touch screen 131 provided on the front of the terminal device 105, and may collect user touch operations on or near it.
  • the display unit 140 (ie, the display screen) may be used to display information input by the user or information provided to the user, and a graphical user interface (GUI) of various menus of the terminal device 105.
  • the display unit 140 may include a display screen 141 provided on the front of the terminal device 105. Among them, the display screen 141 may be configured in the form of a liquid crystal display, a light emitting diode, or the like.
  • the display unit 140 may be used to display various graphical user interfaces described in this application.
  • the touch screen 131 may be overlaid on the display screen 141, or the touch screen 131 and the display screen 141 may be integrated to realize the input and output functions of the terminal device 105. After integration, it may be referred to as a touch display screen.
  • the terminal device 105 may also include at least one sensor 150, such as a light sensor and a motion sensor.
  • the terminal device 105 may also be configured with other sensors such as a gyroscope, a barometer, a hygrometer, a thermometer, and an infrared sensor.
  • the audio circuit 160, the speaker 161, and the microphone 162 can provide an audio interface between the user and the terminal device 105.
  • the audio circuit 160 can transmit the electrical signal converted from the received audio data to the speaker 161, which is converted into a sound signal for output by the speaker 161; on the other hand, the microphone 162 converts the collected sound signal into an electrical signal, and the audio circuit 160 After being received, it is converted into audio data, and then the audio data is output to the RF circuit 110 to be sent to, for example, another terminal, or the audio data is output to the memory 120 for further processing.
  • Wi-Fi is a short-distance wireless transmission technology.
  • the terminal device 105 can help users send and receive e-mails, browse web pages, and access streaming media through the Wi-Fi module 170. It provides users with wireless broadband Internet access.
  • the processor 180 is the control center of the terminal device 105. It uses various interfaces and lines to connect the various parts of the entire terminal. 105 various functions and processing data.
  • the processor 180 may include one or more processing units; the processor 180 may also integrate an application processor and a baseband processor.
  • the application processor mainly processes the operating system, user interface, and application programs.
  • the processor mainly deals with wireless communication. It can be understood that the aforementioned baseband processor may not be integrated into the processor 180.
  • the processor 180 in this application can run an operating system, application programs, user interface display and touch response, and the communication method described in the embodiments of this application.
  • the Bluetooth module 181 is used for information interaction with other Bluetooth devices with Bluetooth modules through the Bluetooth protocol.
  • the terminal device 105 can establish a Bluetooth connection with a wearable electronic device (such as a smart watch) that also has a Bluetooth module through the Bluetooth module 181, so as to perform data interaction.
  • a wearable electronic device such as a smart watch
  • the terminal device 105 also includes a power source 190 (such as a battery) for supplying power to various components.
  • the power supply can be logically connected to the processor 180 through the power management system, so that functions such as charging, discharging, and power consumption can be managed through the power management system.
  • the network device 200 includes: at least one processor 201, at least one memory 202, and at least one communication interface 203. Among them, at least one processor 201, at least one memory 202, and at least one communication interface 203 may be connected by a bus.
  • the memory 202 is used to store computer program codes.
  • the processor 201 is configured to call the computer program code stored in the memory 202 to execute the functions of the network device in the following method embodiments.
  • the communication interface 203 is used to communicate with other communication devices such as terminal equipment.
  • the communication interface 203 can communicate in a wireless communication manner.
  • the Internet of Things is the "Internet of Things". It expands the user end of the Internet to any item and item for information exchange and communication. Such a communication method is also called machine type communications (MTC), and the communication node is called an MTC terminal.
  • MTC machine type communications
  • Typical IoT applications include possible applications including smart grids, smart agriculture, smart transportation, smart homes, and environmental detection. Since the Internet of Things needs to be applied in a variety of scenarios, such as from outdoor to indoor, from above ground to underground, many special requirements are put forward for the design of the Internet of Things.
  • Coverage enhancement Many MTC terminals are used in environments with poor coverage. For example, electricity meters and water meters are usually installed indoors or even basements and other places with poor wireless network signals. At this time, coverage enhancement technologies are needed to solve them.
  • the number of MTC terminals is much larger than the number of devices for human-to-human communication, but the transmitted data packets are small and are not sensitive to delay.
  • MTC terminals are powered by batteries. But at the same time, in many scenarios, it is required that the MTC terminal can be used for more than ten years without changing the battery. This requires MTC terminals to work with extremely low power consumption.
  • the 3rd Generation Partnership Project (3GPP) of the Mobile Communication Standardization Organization passed a new research topic at the GERAN#62 plenary meeting to study the support of extremely low complexity and A low-cost Internet of Things method, and was established as an NB-IOT topic at the RAN#69 meeting.
  • the scheduling strategies of the base station will be completely different for terminal devices in different communication environments.
  • the wireless channel conditions of the terminal in the center of the cell are better, the base station can establish a reliable communication link with a smaller power, and can use large transmission code blocks, high-order modulation, carrier binding and other technical means such as fast Complete data transfer.
  • the wireless channel quality is poor.
  • the base station may need to use a larger power to maintain the link, and it needs to use small code blocks, low-level modulation, and multiple repeated transmissions during data transmission. And spread spectrum and other technologies can complete data transmission.
  • the NB-IoT system introduces the concept of coverage level, which can also be called enhanced coverage level, coverage enhancement level, repetition level, etc., which is not limited in this application.
  • the channel transmission conditions of terminals in the same coverage level are similar.
  • the base station can use similar scheduling parameters for such users, and the control signaling overhead they occupy is also similar.
  • the NB-IoT system currently only introduces the concept of coverage levels for NPRACH, and supports up to three NPRACH coverage levels: coverage level 0, coverage level 1, and coverage level 2, as shown in Figure 5.
  • Each random access resource is mapped to a NPRACH coverage level.
  • the mapping between random access resources and NPRACH coverage levels increases with the number of NPRACH repetitions, that is, NPRACH repetitions in random access resources associated with coverage level 0 Times ⁇ NPRACH repetition times in random access resources associated with coverage level 1 ⁇ NPRACH repetition times in random access resources associated with coverage level 2.
  • the number of NPRACH repetitions is configured by the network device, and the parameter name is numRepetitionsPerPreambleAttempt.
  • the terminal device compares the measured narrowband reference signal received power (NRSRP) value with the NRSRP threshold configured by the base station to determine which coverage level the terminal device belongs to.
  • NRSRP narrowband reference signal received power
  • NPRACH format2 includes 6 symbol groups in the time domain. Each symbol group includes a cyclic prefix (CP) and 3 symbols. The CP length is 800 ⁇ s, and the length of each symbol is also 800 ⁇ s. The sub-carrier bandwidth is 1.25kHz, the maximum supported TA is 800 ⁇ s, and the theoretically supported cell radius can reach 120km.
  • CP cyclic prefix
  • an embodiment of the present application provides a communication method, including:
  • the network device sends configuration information to the terminal device.
  • the terminal device receives configuration information from the network device.
  • the configuration information is used to indicate that the terminal device can use two HARQ processes.
  • the network device sends DCI to the terminal device.
  • the terminal device receives DCI from the network device.
  • the above-mentioned DCI is used to schedule at least one of the two HARQ processes, that is, the DCI can schedule one HARQ process or two HARQ processes of the two HARQ processes.
  • the DCI can be one DCI, that is, one DCI schedules two HARQ processes.
  • the DCI may include at least one of the first DCI and the second DCI, the first DCI includes the identifier of the first HARQ process, the second DCI includes the identifier of the second HARQ process, and the first DCI is used to schedule the first HARQ process, The second DCI is used to schedule the first HARQ process.
  • the first HARQ process and the second HARQ process refer to two processes of the two HARQ processes.
  • the network device determines that the network device satisfies the first condition and the terminal device satisfies the second condition, or the network device determines that the terminal device satisfies the third condition, or the network device determines that the terminal device satisfies the fourth condition, then the network device determines that it is not necessary to In narrowband physical uplink shared channel format 2 (narrowband physical uplink control channel format2, NPUSCH format2), downlink transmission is performed in the first q downlink subframes before the start time of transmission.
  • narrowband physical uplink shared channel format 2 narrowband physical uplink control channel format2, NPUSCH format2
  • the first condition and the second condition include support for NPRACH format2 transmission, that is, the network device meeting the first condition includes the network device supporting NPRACH format2 transmission, and the terminal device meeting the second condition includes the terminal device supporting NPRACH format2 transmission.
  • the third condition includes that the terminal device performs random access on the NPRACH format2 random access resource, or the terminal device has performed random access on the NPRACH format2 random access resource, or the terminal device sends random access on the NPRACH format2 random access resource. Enter the preamble, or the terminal device has sent the random access preamble on the NPRACH format2 random access resource.
  • the fourth condition includes that the timing adjustment amount of the terminal device is greater than or equal to the preset value, or the timing adjustment amount is greater than the preset value.
  • the preset value may be a value greater than or equal to 8192.
  • the preset value is 8192.
  • the NPUSCH format2 transmission is uplink transmission performed by the terminal device in one HARQ process or one HARQ process of two HARQ processes.
  • NPUSCH format2 is used to carry ACK/NACK.
  • q is a positive integer greater than 1.
  • the conversion from downlink transmission to uplink transmission can be completed in the first q downlink subframes before the start time of NPUSCH format2 transmission.
  • 1 subframe occupies 1ms, and q is a positive integer greater than 1, so for the terminal device, the transition delay from downlink transmission to uplink transmission can be greater than or equal to 2ms.
  • the start time of NPUSCH format2 transmission is subframe n (also called the nth subframe, or the subframe with frame number n)
  • the start of NPUSCH format2 transmission The first q downlink subframes before time refer to the subframe nq (also called the nqth subframe, or the subframe with the frame number of nq) to the subframe n-1 (also called the n-1th subframe).
  • Subframe the subframe whose frame number is n-1). That is, the first q subframes are before the start time of NPUSCH format2 transmission, and are close in time to the start time of NPUSCH format2 transmission.
  • q 2 in the embodiment of this application.
  • the transmission block (TB) carried by NPDSCH#0 and NPDSCH#1 occupies 2536 bits, of which 2536 bits are current
  • the NB-IoT system can support the maximum transport block size (TBS) for scheduling.
  • TBS transport block size
  • the scheduling period is 40ms
  • the NB-IoT downlink rate can reach the maximum value.
  • the rate at this time is also called the peak rate.
  • the time delay between the end time of NPDSCH#2 and the start time of A/N#1 is q ms. If q is greater than 2, the scheduling period will be greater than 40ms, resulting in the NB-IoT system unable to schedule the peak rate of 126.8kbps.
  • the minimum conversion delay of the terminal device from downlink transmission to uplink transmission is 1200 ⁇ s, which is compared with Rel-14NB-IoT in downlink transmission upward
  • the minimum value of the conversion delay of the line transmission conversion that is, 733 ⁇ s
  • the conversion delay is more relaxed, so it has almost no impact on the hardware cost and processing complexity of the existing terminal equipment.
  • the terminal device determines that the network device satisfies the first condition and the terminal device satisfies the second condition, or the terminal device determines that the terminal device satisfies the third condition, or the terminal device determines that the terminal device satisfies the fourth condition, then the terminal device determines that it does not need to
  • the downlink transmission is received in the first q downlink subframes before the start time of the NPUSCH format2 transmission.
  • the first q downlink subframes before the start time of NPUSCH format2 transmission can be used by the terminal device to complete the downlink transmission upward
  • q is a positive integer greater than 1, that is, the conversion delay of downlink transmission to uplink transmission is greater than or equal to 2ms.
  • the minimum conversion delay of the horizontal transmission conversion is 1200 ⁇ s.
  • the conversion delay is more relaxed.
  • the minimum value of the conversion delay of the terminal device from downlink transmission to uplink transmission is greater than 1200 ⁇ s.
  • the conversion delay will be even greater Loose. Therefore, for terminal devices that support NPRACH format2, by increasing the conversion delay of the downlink transmission to the uplink transmission conversion, there is no need to make changes to the hardware, and thus the hardware cost and processing complexity will not be greatly increased.
  • the communication method further includes:
  • the network device determines that the network device meets the fifth condition and/or the terminal device meets the sixth condition, or the network device determines that the terminal device meets the seventh condition, or the network device determines that the terminal device meets the eighth condition, then the network device determines not The downlink transmission needs to be performed in the previous downlink subframe before the start time of NPUSCH format2 transmission.
  • the fifth condition and the sixth condition include not supporting NPRACH format2 transmission, that is, the network device meeting the fifth condition includes the network device not supporting NPRACH format2 transmission, and the terminal device meeting the sixth condition includes the terminal device not supporting NPRACH format2 transmission.
  • the seventh condition includes that the terminal device has not performed random access on NPRACH format2 random access resources, or the terminal device has not performed random access on NPRACH format2 random access resources, or the terminal device has not performed random access on NPRACH format2 random access resources Send the random access preamble, or the terminal device has not sent the random access preamble on the NPRACH format2 random access resource.
  • the eighth condition includes that the timing adjustment amount of the terminal device is less than or equal to the preset value, or the timing adjustment amount is less than the preset value.
  • the preset value may be a value greater than or equal to 8192.
  • the preset value is 8192.
  • the previous downlink subframe before the start time of NPUSCH format2 transmission may refer to a Type B half-duplex frequency division duplex (Type B half-duplex FDD) guard period.
  • Type B half-duplex FDD Type B half-duplex frequency division duplex
  • the conversion from downlink transmission to uplink transmission can be completed in the previous downlink subframe before the start time of NPUSCH format2 transmission.
  • 1 subframe occupies 1ms. Since the terminal device needs to adjust the TA before sending the uplink transmission within 1ms, the maximum value of the transition delay from the downlink transmission to the uplink transmission for the terminal device is 1ms. Because the terminal device and/or the network device does not support NPRACH format2 transmission, the terminal device can only use NPRACH format 0 or NPRACH format 1 random access preamble for random access. In this case, the terminal device transmits from downlink to uplink.
  • the minimum value of the conversion delay of the transmission conversion is the same as the minimum value of the conversion delay of the downlink transmission and the uplink transmission conversion in Rel-14NB-IoT, which is 733 ⁇ s. Therefore, for the terminal device, there is no need to make changes to the hardware, so the hardware cost and processing complexity will not be increased.
  • Downlink transmission includes, but is not limited to, NPDSCH, NPDCCH and other downlink transmissions.
  • the HARQ process corresponding to downlink transmission may be the same or different from the HARQ process corresponding to NPUSCH format2 transmission.
  • the terminal device determines that the network device meets the fifth condition and/or the terminal device meets the sixth condition, or the terminal device determines that the terminal device meets the seventh condition, or the terminal device determines that the terminal device meets the eighth condition, then the terminal device determines not The downlink transmission needs to be received in the previous downlink subframe before the start time of the NPUSCH format2 transmission.
  • the conversion from downlink transmission to uplink transmission can be completed in the previous downlink subframe before the start time of NPUSCH format2 transmission.
  • 1 subframe occupies 1ms. Since the terminal device needs to adjust the TA before sending the uplink transmission within 1ms, the maximum value of the transition delay from the downlink transmission to the uplink transmission for the terminal device is 1ms. Because the terminal device and/or the network device does not support NPRACH format2 transmission, the terminal device can only use NPRACH format 0 or NPRACH format 1 random access preamble for random access. In this case, the terminal device transmits from downlink to uplink.
  • the minimum value of the conversion delay of the transmission conversion is the same as the minimum value of the conversion delay of the downlink transmission and the uplink transmission conversion in Rel-14NB-IoT, which is 733 ⁇ s. Therefore, for the terminal device, there is no need to make changes to the hardware, so the hardware cost and processing complexity will not be increased.
  • the communication method further includes:
  • the network device determines that the network device meets the first condition and the terminal device meets the second condition, or the network device determines that the terminal device meets the third condition, or the network device determines that the terminal device meets the fourth condition, then the network device determines that it does not need to Downlink transmission is performed in the first q downlink subframes before the start time of NPUSCH format1 transmission.
  • NPUSCH format1 transmission is uplink transmission performed by the terminal device in one HARQ process or one HARQ process of two HARQ processes. NPUSCH format1 transmission is used to transmit uplink data.
  • the start time of NPUSCH format1 transmission is subframe m (also called the m-th subframe, or the subframe with frame number m)
  • the first q downlinks before the start time of NPUSCH format1 transmission The subframe refers to the subframe mq (also called the mqth subframe, or the subframe with the frame number mq) to the subframe m-1 (also called the m-1th subframe, and the frame number is m -1 subframe). That is, the first q subframes are before the start time of NPUSCH format1 transmission, and are close in time to the start time of NPUSCH format1 transmission.
  • the HARQ process corresponding to downlink transmission may be the same as or different from the HARQ process corresponding to NPUSCH format 1 transmission.
  • the terminal device determines that the network device satisfies the first condition and the terminal device satisfies the second condition, or the terminal device determines that the terminal device satisfies the third condition, or the terminal device determines that the terminal device satisfies the fourth condition, then the terminal device determines that it does not need to
  • the downlink transmission is received in the first q downlink subframes before the start time of the NPUSCH format1 transmission.
  • the terminal device transmits from downlink transmission to uplink transmission
  • the minimum conversion delay of conversion is greater than 1200 ⁇ s. Compared with the minimum conversion delay (733 ⁇ s) of the downstream transmission in Rel-14NB-IoT, the conversion delay will be more relaxed. Therefore, for terminal devices that support NPRACH format2, by increasing the conversion delay of the downlink transmission to the uplink transmission conversion, there is no need to make changes to the hardware, and thus the hardware cost and processing complexity will not be greatly increased.
  • the network device determines that the network device meets the fifth condition and/or the terminal device meets the sixth condition, or the network device determines that the terminal device meets the seventh condition, or the network device determines that the terminal device meets the eighth condition, then the network device determines not The downlink transmission needs to be performed in the previous downlink subframe before the start time of NPUSCH format1 transmission.
  • the terminal device determines that the network device meets the fifth condition and/or the terminal device meets the sixth condition, or the terminal device determines that the terminal device meets the seventh condition, or the terminal device determines that the terminal device meets the eighth condition, then the terminal device determines not The downlink transmission needs to be received in the previous downlink subframe before the start time of the NPUSCH format1 transmission.
  • steps S1201-S1204 described in steps S1201 to S1204 can also be performed to control the reception of downlink transmissions for NPUSCH format1 transmission, and then the steps S703-S706 to control the reception of downlink transmissions for NPRACH format2 transmissions are further performed.
  • the network device meets the first condition or the fifth condition according to whether the network device supports NPRACH format2 transmission, and whether the terminal device meets the second condition or the sixth condition is determined according to whether the terminal device supports NPRACH format2 transmission.
  • the system message sent by the network device to the terminal device includes the random access resource configuration information used for NPRACH format2 transmission. If the terminal device supports NPRACH format2 transmission, the terminal device sends instruction information to the network device, and the instruction information is used to indicate that the terminal device has the NPRACH format2 capability (nprach-Format2 capability).
  • the system message sent by the network device to the terminal device does not include the random access resource configuration information used for NPRACH format2 transmission. If the terminal device supports NPRACH format2 transmission, the terminal device determines not to send instruction information to the network device, and the instruction information is used to indicate that the terminal device has the NPRACH format2 capability (nprach-Format2 capability).
  • the network device after the network device determines that the network device meets the first condition (including the network device determines that the network device supports NPRACH format2 transmission), the network device sends a system message to the terminal device, and the system message includes Random access resource configuration information transmitted by NPRACH format2.
  • the terminal device determining that the network device satisfies the first condition includes: the terminal device determining that the system message received from the network device includes random access resource configuration information used for NPRACH format2 transmission.
  • the random access resource configuration information may be NPRACH-ParametersListFmt2-NB
  • the system message carrying the random access resource configuration information may be At least one of SystemInformationBlockType2-NB and SystemInformationBlockType23-NB.
  • the method further includes: the terminal device sends instruction information to the network device, and the instruction information is used to indicate that the terminal device has NPRACH format2 capability.
  • the network device determining that the terminal device satisfies the second condition includes: the network device receives instruction information from the terminal device, and the instruction information is used to indicate that the terminal device has the NPRACH format2 capability.
  • the network device after the network device determines that the network device meets the fifth condition (including the network device determines that the network device does not support NPRACH format2 transmission), the network device sends a system message to the terminal device, and the system message does not Including random access resource configuration information used for NPRACH format2 transmission.
  • the terminal device determining that the network device meets the fifth condition includes: the terminal device determining that the system message received from the network device does not include the random access resource configuration information used for NPRACH format2 transmission.
  • the terminal device determines that the terminal device satisfies the sixth condition (including the terminal device determining that the terminal device does not support NPRACH format2 transmission), it further includes: the terminal device determines that it does not need to send instruction information to the network device, and the instruction information is used to indicate that the terminal device has NPRACH format2 capability .
  • the network device determining that the terminal device satisfies the sixth condition includes: the network device determines that the terminal device has not received instruction information from the terminal device, and the instruction information is used to indicate that the terminal device has the NPRACH format2 capability.
  • the NPRACH coverage level of the terminal device may also be combined to determine that the terminal device meets the second condition or the third condition, or it is determined that the terminal device meets the sixth condition or the seventh condition .
  • the NPRACH coverage level is the NPRACH coverage level when the random access procedure of the terminal equipment succeeds, or the NPRACH coverage level when the random access procedure is started, or the nearest NPRACH coverage level, or the nearest in time to the DCI scheduling, and NPRACH coverage level when the random access procedure is successful.
  • the network device can determine the NPRACH coverage level of the terminal device. Specifically, the network device will configure multiple NPRACH resources, each NPRACH resource corresponds to a NPRACH coverage level, the terminal device performs random access on the NPRACH resource corresponding to the NPRACH coverage level, and the network device determines the NPRACH resource randomly accessed by the terminal device NPRACH coverage level of terminal equipment.
  • the second condition or the third condition further includes: the NPRACH coverage level of the terminal device is coverage level 1 or coverage level 2.
  • the sixth condition or the seventh condition further includes: the NPRACH coverage level of the terminal device is coverage level 0.
  • the significance of this embodiment is: for the terminal equipment with the coverage level of NPRACH coverage level 0, it is closer to the network equipment (such as the base station) and the TA is small, so there is no need to increase the conversion delay of the terminal equipment from downlink transmission to uplink transmission. , It can also ensure that the terminal equipment can realize the conversion from downlink transmission to uplink transmission. For the terminal equipment with coverage level 1 or 2, which is far from the network equipment (such as base station), the TA is larger. Therefore, the conversion delay of the terminal equipment from downlink transmission to uplink transmission is increased to ensure the terminal equipment It can realize the conversion from downstream transmission to upstream transmission.
  • the second condition or the third condition further includes: the NPRACH coverage level of the terminal device is coverage level 2.
  • the sixth condition or the seventh condition further includes: the NPRACH coverage level of the terminal device is coverage level 0 or coverage level 1.
  • the significance of this embodiment is: for the terminal equipment with coverage level 0 or coverage level 1 of the NPRACH coverage level, it is closer to the network equipment (such as base station) and the TA is small, so there is no need to increase the terminal equipment to switch from downlink transmission to uplink transmission.
  • the conversion delay can also ensure that the terminal device can realize the conversion from downlink transmission to uplink transmission.
  • the timing adjustment can be combined to determine that the terminal device meets the second condition or the third condition, or it is determined that the terminal device meets the sixth condition Or the seventh condition.
  • the communication method further includes:
  • the network device determines the timing adjustment value of the terminal device.
  • the terminal device sends a random access preamble to the network device, and the network device performs TA estimation according to the random access preamble, thereby determining the timing adjustment of the terminal device the amount.
  • the terminal device after the random access process is completed, the terminal device sends uplink data to the network device, and the network device determines the timing adjustment amount of the terminal device according to the uplink data.
  • the network device sends a timing advance command (timing advance command) to the terminal device.
  • the terminal device receives the timing advance command from the network device.
  • the timing advance command is obtained according to the timing adjustment amount.
  • the number of bits occupied by the timing advance command is 11 bits.
  • the number of bits occupied by the timing advance command is 6 bits.
  • the terminal device determines the timing adjustment amount according to the timing advance command.
  • the uplink transmission timing is advanced.
  • the current timing adjustment amount N TA,old can be saved by the terminal device.
  • the network device may also save the current timing adjustment amount N TA,old of the terminal device.
  • the second condition or the third condition further includes: the timing adjustment amount is greater than or equal to a preset value.
  • the sixth condition or the seventh condition further includes: the timing adjustment amount is less than a preset value.
  • the preset value may be a value greater than or equal to 8192.
  • the preset value is 8192.
  • the significance of this embodiment is that when the timing adjustment is less than the preset value, that is, the TA is small, and the terminal device is closer to the network device (such as the base station), so there is no need to increase the conversion delay of the terminal device from downlink transmission to uplink transmission. It can also ensure that the terminal device can realize the conversion from downlink transmission to uplink transmission.
  • the timing adjustment amount is greater than or equal to the preset value, that is, the TA is larger, and the terminal device is far from the network device (such as the base station). Therefore, the conversion delay of the terminal device from downlink transmission to uplink transmission is increased to ensure that the terminal device can achieve Conversion from downstream transmission to upstream transmission.
  • the sixth condition or the seventh condition further includes: the timing adjustment amount is less than or equal to a preset value.
  • the second condition or the third condition further includes: the timing adjustment amount is greater than a preset value.
  • the significance of this embodiment is: when the timing adjustment is less than or equal to the preset value, that is, the TA is small, and the terminal device is closer to the network device (such as the base station), so there is no need to increase the conversion time of the terminal device from downlink transmission to uplink transmission. It can also ensure that the terminal device can realize the conversion from downlink transmission to uplink transmission.
  • the timing adjustment is greater than the preset value, that is, the TA is larger, and the terminal device is far from the network device (such as the base station). Therefore, the conversion delay of the terminal device from downlink transmission to uplink transmission is increased, thereby ensuring that the terminal device can realize the downlink Transmit the conversion of upstream transmission.
  • the embodiment of the present application provides another communication method. As shown in FIG. 14, the communication method includes steps S1401-S1404:
  • the terminal device sends instruction information to the network device.
  • the network device receives the instruction information from the terminal device.
  • the indication information is used to indicate that the terminal device has the ability to support NPRACH format2.
  • the network device sends a system message to the terminal device.
  • the terminal device receives system messages from the network device.
  • the system message includes random access resource configuration information used for NPRACH format2 transmission.
  • the network device determines that the first condition is satisfied, and the network device sends configuration information to the terminal device.
  • the terminal device determines that the first condition is satisfied, the terminal device receives the configuration information from the network device.
  • the configuration information is used to indicate that the terminal device can use two HARQ processes.
  • the first condition includes: the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal The device has not sent the random access preamble on the NPRACH format2 random access resource, or the terminal device has not sent the random access preamble on the NPRACH format2 random access resource.
  • the network device can determine the NPRACH coverage level of the terminal device. Specifically, the terminal device performs random access on the random access resource corresponding to the NPRACH coverage level, and the network device determines the NPRACH coverage level of the terminal device according to the random access resource randomly accessed by the terminal device.
  • the NPRACH coverage level is the NPRACH coverage level when the random access procedure of the terminal equipment succeeds, or the NPRACH coverage level when the random access procedure is started, or the nearest NPRACH coverage level, or the nearest in time to the DCI scheduling, and NPRACH coverage level when the random access procedure is successful.
  • the first condition includes: the NPRACH coverage level of the terminal equipment is coverage level 0.
  • the significance of this implementation is that for a terminal device with a coverage level of coverage level 0, it is closer to a network device (such as a base station) and has a smaller TA, so there is no need to increase the conversion delay of the terminal device from downlink transmission to uplink transmission, that is, It can ensure that the terminal equipment can realize the conversion from downlink transmission to uplink transmission.
  • a network device such as a base station
  • the first condition includes: the NPRACH coverage level of the terminal device is coverage level 0 or coverage level 1.
  • the significance of this embodiment is: for the terminal equipment with coverage level 0 or coverage level 1, which is closer to the network equipment (such as base station), the TA is small, and there is no need to increase the conversion of the terminal equipment from downlink transmission to uplink transmission.
  • the time delay can ensure that the terminal equipment can realize the conversion from downlink transmission to uplink transmission.
  • the communication method may further include steps S1501-S1503:
  • the network device determines the timing adjustment value of the terminal device.
  • step S1301 for this step which will not be repeated here.
  • the network device sends a timing advance command to the terminal device.
  • the terminal device receives the timing advance command from the network device.
  • step S1302 for this step, which will not be repeated here.
  • the terminal device determines the timing adjustment amount according to the timing advance command.
  • step S1303 for this step, which will not be repeated here.
  • the first condition includes: the timing adjustment amount is less than the preset value.
  • the first condition includes: the timing adjustment amount is less than or equal to a preset value.
  • the preset value may be a value greater than or equal to 8192.
  • the preset value is 8192.
  • the significance of this embodiment is: when the timing adjustment amount is less than the preset value, or when the timing adjustment amount is less than or equal to the preset value, that is, the TA is small, and the terminal device is closer to the network device (such as a base station), and there is no need to add a terminal device
  • the conversion delay from downlink transmission to uplink transmission can ensure that the terminal device can realize the conversion from downlink transmission to uplink transmission.
  • the first condition includes: the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not performed random access on the NPRACH format2 random access resource.
  • the random access preamble is sent on the NPRACH format2 random access resource, or the terminal device has not sent the random access preamble on the NPRACH format2 random access resource.
  • the first condition further includes: the NPRACH coverage level of the terminal device is coverage level 0, or the first condition further includes: the NPRACH coverage level of the terminal device is coverage level 0 or coverage level 1.
  • the first condition further includes: the timing adjustment amount is less than a preset value, or the first condition further includes: the timing adjustment amount is less than or equal to the preset value.
  • the network device sends DCI to the terminal device.
  • the terminal device receives DCI from the network device.
  • the DCI is used to schedule one HARQ process or two HARQ processes of the two HARQ processes.
  • step S702 For the description of DCI, refer to step S702, which will not be repeated here.
  • the communication method provided in the embodiments of this application supports NPRACH format2 transmission for both network equipment and terminal equipment.
  • the use of two HARQ communication technologies for terminal equipment adds some restrictions, such as restricting only terminal equipment with good coverage levels to those close to the base station.
  • the terminal equipment that is, the terminal equipment with a smaller TA can use the two HARQ process communication technology, so there is no need to increase the conversion delay of the terminal equipment from downlink transmission to upstream transmission, which can ensure that the terminal equipment can realize the transmission from downlink transmission to upstream transmission Conversion.
  • Terminal devices that meet these constraints do not need to make changes to the hardware to ensure that there is sufficient conversion delay for the downstream transmission to the upstream transmission, thereby not greatly increasing the hardware cost and processing complexity.
  • the methods and/or steps implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be used in the terminal device, and the methods and/or steps implemented by the network device can also be implemented by a network device. It can also be implemented by components that can be used in network devices.
  • an embodiment of the present application also provides a communication device, which is used to implement the foregoing various methods.
  • the communication device may be the terminal device in the foregoing method embodiment, or a device including the foregoing terminal device, or a component that can be used in the terminal device; or, the communication device may be the network device in the foregoing method embodiment, or include the foregoing A device of a network device, or a component that can be used in a network device.
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the communication device into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 16 shows a schematic structural diagram of a terminal device 160.
  • the terminal device 160 includes a processing module 1601 and a transceiver module 1602.
  • the transceiver module 1602 may also be referred to as a transceiver unit to implement sending and/or receiving functions, and may be, for example, a transceiver circuit, transceiver, transceiver, or communication interface.
  • the transceiver module 1602 is configured to receive configuration information from a network device, and the configuration information is used to instruct the terminal device to use two hybrid automatic repeat request HARQ processes.
  • the transceiver module 1602 is also used to receive downlink control information DCI from the network device, and the DCI is used to schedule one HARQ process or two HARQ processes of the two HARQ processes.
  • the processing module 1601 is used to determine that the network device meets the first condition and the terminal device meets the second condition, or that the terminal device meets the third condition, or that the terminal device meets the fourth condition, then determines that the transceiver module 1602 does not need to be in the narrowband Physical uplink shared channel format 2NPUSCH format2
  • the first q downlink subframes before the start time of transmission receive downlink transmission where the first condition and the second condition include support for narrowband random access channel format 2NPRACH format2 transmission, and the third condition includes The terminal device performs random access on the NPRACH format2 random access resource, or the terminal device performs random access on the NPRACH format2 random access resource, or the terminal device sends a random access preamble on the NPRACH format2 random access resource, Or the terminal device has sent the random access preamble on the NPRACH format2 random access resource, and the fourth condition includes that the timing adjustment amount of the terminal device is greater than or equal to the preset value, or the timing adjustment amount is greater than the preset value, and
  • the processing module 1601 is further configured to determine that the network device meets the fifth condition and/or the terminal device meets the sixth condition, or that the terminal device meets the seventh condition, or that the terminal device meets the eighth condition, then process The module 1601 is also used to determine that the transceiver module 1602 does not need to receive the downlink transmission in the previous downlink subframe before the start time of the NPUSCH format2 transmission, where the fifth and sixth conditions include not supporting NPRACH format2 transmission, and the seventh The conditions include that the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not sent random access on the NPRACH format2 random access resource.
  • the eighth condition includes that the timing adjustment amount of the terminal device is less than or equal to the preset value, or the timing adjustment amount is less than the preset value value.
  • the processing module 1601 is configured to determine that the network device meets the first condition, including: determining that the system message received from the network device includes random access resource configuration information for NPRACH format2 transmission; the processing module 1601 determines the terminal After the device meets the second condition, it further includes: sending instruction information to the network device through the transceiver module 1602, where the instruction information is used to indicate that the terminal device has the NPRACH format2 capability.
  • the fifth condition includes: the processing module 1601 determines that the system message received from the network device does not include the random access resource configuration information for NPRACH format2 transmission; after the processing module 1601 determines that the terminal device meets the sixth condition, it further includes: a processing module 1601 determines that the transceiver module 1602 is not required to send instruction information to the network device, and the instruction information is used to indicate that the terminal device has the NPRACH format2 capability.
  • the second condition or the third condition further includes: the NPRACH coverage level of the terminal device is coverage level 1 or coverage level 2.
  • the sixth condition or the seventh condition further includes: the NPRACH coverage level of the terminal device is coverage level 0.
  • the second condition or the third condition further includes: the NPRACH coverage level of the terminal device is coverage level 2.
  • the sixth condition or the seventh condition further includes: the NPRACH coverage level of the terminal device is coverage level 0 or coverage level 1.
  • the NPRACH coverage level is the NPRACH coverage level when the random access process of the terminal device is successful, or the NPRACH coverage level when the random access process is started, or the closest in time to the DCI scheduling and the random access process NPRACH coverage level when successful.
  • the transceiver module 1602 is also used to receive the timing advance command from the network device, and the processing module 1601 is also used to determine the timing adjustment amount according to the timing advance command, where the timing adjustment amount is a positive number to indicate that the uplink transmission timing is advanced ;
  • the second condition or the third condition further includes: the timing adjustment amount is greater than or equal to a preset value.
  • the sixth condition or the seventh condition further includes: the timing adjustment amount is less than a preset value.
  • the transceiver module 1602 is also used to receive the timing advance command from the network device, and the processing module 1601 is also used to determine the timing adjustment amount according to the timing advance command, where the timing adjustment amount is a positive number to indicate that the uplink transmission timing is advanced ;
  • the second condition or the third condition further includes: the timing adjustment amount is greater than a preset value.
  • the sixth condition or the seventh condition further includes: the timing adjustment amount is less than or equal to a preset value.
  • the processing module 1601 determines that the network device meets the first condition and the terminal device meets the second condition, or determines that the terminal device meets the third condition, or determines that the terminal device meets the fourth condition, and the processing module 1601 is further configured to determine
  • the transceiver module 1602 does not need to receive downlink transmissions in the first q downlink subframes before the start time of the narrowband physical uplink shared channel format 1 NPUSCH format1 transmission.
  • the NPUSCH format1 transmission is one of the terminal equipment in one HARQ process or one of two HARQ processes. Uplink transmission on the HARQ process.
  • the transceiver module 1602 is used to send instruction information to the network device, and the instruction information is used to indicate that the terminal device has the ability to support narrowband random access channel NPRACH format2; the transceiver module 1602 is also used to receive system messages from the network device.
  • the message includes the random access resource configuration information used for NPRACH format2 transmission; the processing module 1601 is used to determine that the first condition is met, then the transceiver module 1602 is also used to receive configuration information from the network device, and the configuration information is used to instruct the terminal device Two HARQ processes of hybrid automatic repeat request can be used; the transceiver module 1602 is also used to receive downlink control information DCI from the network device, and the DCI is used to schedule one HARQ process or two HARQ processes of the two HARQ processes.
  • the first condition includes that the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not performed random access on the NPRACH format2 random access resource.
  • the random access preamble is sent on the access resource, or the terminal device has not sent the random access preamble on the NPRACH format2 random access resource.
  • the first condition includes: the NPRACH coverage level of the terminal device is coverage level 0; or, the first condition includes: the NPRACH coverage level of the terminal device is coverage level 0 or coverage level 1.
  • the first condition further includes: the NPRACH coverage level of the terminal device is coverage level 0; or, the first condition further includes: the NPRACH coverage level of the terminal device is coverage level 0 or coverage level 1.
  • the NPRACH coverage level is the NPRACH coverage level when the random access process of the terminal device is successful, or the NPRACH coverage level when the random access process is started, or the closest in time to the DCI scheduling and the random access process NPRACH coverage level when successful.
  • the transceiver module 1602 is also used to receive the timing advance command from the network device, and the processing module 1601 is also used to determine the timing adjustment amount according to the timing advance command, where the timing adjustment amount is a positive number to indicate that the uplink transmission timing is advanced ;
  • the first condition includes: the timing adjustment is less than a preset value, or, the first condition includes: the timing adjustment is less than or equal to the preset value.
  • the transceiver module 1602 is also used to receive the timing advance command from the network device, and the processing module 1601 is also used to determine the timing adjustment amount according to the timing advance command, where the timing adjustment amount is a positive number to indicate that the uplink transmission timing is advanced ;
  • the first condition further includes: the timing adjustment is less than a preset value, or the first condition further includes: the timing adjustment is less than or equal to the preset value.
  • the terminal device 160 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the terminal device 160 may take the form of the terminal device 105 shown in FIG. 3.
  • the processor 180 in the terminal device 105 shown in FIG. 3 may invoke the computer execution instruction stored in the memory 120 to make the terminal device 105 execute the communication method in the foregoing method embodiment.
  • the functions/implementation process of the processing module 1601 and the transceiver module 1602 in FIG. 16 may be implemented by the processor 180 in the terminal device 105 shown in FIG. 3 calling the computer execution instructions stored in the memory 120.
  • the function/implementation process of the processing module 1601 in FIG. 16 can be implemented by the processor 180 in the terminal device 105 shown in FIG. 3 calling a computer execution instruction stored in the memory 120, and the function of the transceiver module 1602 in FIG. /The implementation process can be implemented by the RF circuit 110 in the terminal device 105 shown in FIG. 3.
  • the terminal device 160 provided in this embodiment can perform the above-mentioned communication method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and details are not described herein again.
  • FIG. 17 shows a schematic structural diagram of a network device 170.
  • the network device 170 includes a processing module 1701 and a transceiver module 1702.
  • the transceiver module 1702 may also be referred to as a transceiver unit to implement sending and/or receiving functions.
  • it may be a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the transceiver module 1702 is configured to send configuration information to the terminal device, and the configuration information is used to indicate that the terminal device can use two hybrid automatic repeat request HARQ processes.
  • the transceiver module 1702 is also used to send downlink control information DCI to the terminal device.
  • the DCI is used to schedule one HARQ process or two HARQ processes of the two HARQ processes.
  • the processing module 1701 is used to determine that the network device meets the first condition and the terminal device meets the second condition, or that the terminal device meets the third condition, or that the terminal device meets the fourth condition, then determines that the transceiver module 1702 does not need to be in the narrowband Physical uplink shared channel format 2 NPUSCH format2 transmission start time before downlink transmission in the first q downlink subframes, where the first condition and the second condition include support for narrowband random access channel format 2NPRACH format2 transmission, and the third condition includes The terminal device performs random access on the NPRACH format2 random access resource, or the terminal device performs random access on the NPRACH format2 random access resource, or the terminal device sends a random access preamble on the NPRACH format2 random access resource, Or the terminal device has sent the random access preamble on the NPRACH format2 random access resource, and the fourth condition includes that the timing adjustment amount of the terminal device is greater than or equal to the preset value, or the timing adjustment amount is greater than the preset value, and q is greater
  • the processing module 1701 is further configured to determine that the network device meets the fifth condition and/or the terminal device meets the sixth condition, or that the terminal device meets the seventh condition, or that the terminal device meets the eighth condition, then process The module 1701 is also used to determine that the transceiver module 1702 does not need to perform downlink transmission in the previous downlink subframe before the start time of NPUSCH format2 transmission, where the fifth and sixth conditions include not supporting NPRACH format2 transmission, and the seventh The conditions include that the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not sent random access on the NPRACH format2 random access resource.
  • the eighth condition includes that the timing adjustment amount of the terminal device is less than or equal to the preset value, or the timing adjustment amount is less than the preset value value.
  • processing module 1701 determines that the network device meets the first condition, it further includes: sending a system message to the terminal device through the transceiver module 1702, and the system message includes random access resource configuration information for NPRACH format2 transmission; processing module 1701 , Used to determine that the terminal device satisfies the second condition, includes: receiving instruction information from the terminal device through the transceiver module 1702, the instruction information is used to indicate that the terminal device has NPRACH format2 capability.
  • the processing module 1701 determines that the network device meets the fifth condition, it further includes: sending a system message to the terminal device through the transceiver module 1702, the system message does not include the random access resource configuration information used for NPRACH format2 transmission; the processing module 1701 is used for Determining that the terminal device satisfies the sixth condition includes: determining that the terminal device has not received instruction information from the terminal device, and the instruction information is used to indicate that the terminal device has an NPRACH format2 capability.
  • the processing module 1701 is further configured to determine the NPRACH coverage level of the terminal device; the second condition or the third condition further includes: the NPRACH coverage level of the terminal device is coverage level 1 or coverage level 2.
  • the sixth condition or the seventh condition further includes: the NPRACH coverage level of the terminal device is coverage level 0.
  • the processing module 1701 is further configured to determine the NPRACH coverage level of the terminal device; the second condition or the third condition further includes: the NPRACH coverage level of the terminal device is coverage level 2.
  • the sixth condition or the seventh condition further includes: the NPRACH coverage level of the terminal equipment is coverage level 0 or coverage level 1.
  • the NPRACH coverage level is the NPRACH coverage level when the random access process of the terminal device is successful, or the NPRACH coverage level when the random access process is started, or the closest in time to the DCI scheduling and the random access process NPRACH coverage level when successful.
  • the processing module 1701 is also used to determine the timing adjustment, and the transceiver module 1702 is also used to send a timing advance command to the terminal device, where a positive timing adjustment indicates that the uplink transmission timing is advanced; the second condition or The third condition further includes: the timing adjustment amount is greater than or equal to a preset value.
  • the sixth condition or the seventh condition further includes: the timing adjustment amount is less than a preset value.
  • the processing module 1701 is also used to determine the timing adjustment, and the transceiver module 1702 is also used to send a timing advance command to the terminal device, where a positive timing adjustment indicates that the uplink transmission timing is advanced; the second condition or The third condition further includes: the timing adjustment amount is greater than a preset value.
  • the sixth condition or the seventh condition further includes: the timing adjustment amount is less than or equal to a preset value.
  • the processing module 1701 determines that the network device meets the first condition and the terminal device meets the second condition, or determines that the terminal device meets the third condition, or determines that the terminal device meets the fourth condition, and the processing module 1701 is further configured to determine
  • the transceiver module 1702 does not need to perform downlink transmission in the first q downlink subframes before the start time of the narrowband physical uplink shared channel format 1 NPUSCH format1 transmission, where the NPUSCH format1 transmission means that the terminal device is in one HARQ process or two HARQ processes Uplink transmission on a HARQ process.
  • the transceiver module 1702 is used to receive instruction information from the terminal device, and the instruction information is used to indicate that the terminal device has the ability to support narrowband random access channel NPRACH format2; the transceiver module 1702 is also used to send system messages to the terminal device.
  • the message includes the random access resource configuration information used for NPRACH format2 transmission; the processing module 1701 is used to determine that the first condition is met, then the transceiver module 1702 is also used to send configuration information to the terminal device, and the configuration information is used to indicate that the terminal device can Use two hybrid automatic repeat request HARQ processes; the transceiver module 1702 is also used to send downlink control information DCI to the terminal device, and the DCI is used to schedule one HARQ process or two HARQ processes of the two HARQ processes.
  • the first condition includes that the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not performed random access on the NPRACH format2 random access resource, or the terminal device has not performed random access on the NPRACH format2 random access resource.
  • the random access preamble is sent on the access resource, or the terminal device has not sent the random access preamble on the NPRACH format2 random access resource.
  • the processing module 1701 is further configured to determine the NPRACH coverage level of the terminal device; the first condition includes: the NPRACH coverage level of the terminal device is coverage level 0; or, the first condition includes: the NPRACH coverage level of the terminal device is coverage Level 0 or coverage level 1.
  • the processing module 1701 is further configured to determine the NPRACH coverage level of the terminal device; the first condition further includes: the NPRACH coverage level of the terminal device is coverage level 0; or the first condition further includes: the NPRACH coverage level of the terminal device The coverage level is coverage level 0 or coverage level 1.
  • the NPRACH coverage level is the NPRACH coverage level when the random access process of the terminal device is successful, or the NPRACH coverage level when the random access process is started, or the closest in time to the DCI scheduling and the random access process NPRACH coverage level when successful.
  • the processing module 1701 is also used to determine the timing adjustment, and the transceiver module 1702 is also used to send a timing advance command to the terminal device, where the timing adjustment is a positive number to indicate that the uplink transmission timing is advanced; the first condition, Including: the timing adjustment amount is less than the preset value, or the first condition includes: the timing adjustment amount is less than or equal to the preset value.
  • the processing module 1701 is also used to determine the timing adjustment, and the transceiver module 1702 is also used to send a timing advance command to the terminal device, where the timing adjustment is a positive number to indicate that the uplink transmission timing is advanced; the first condition, It further includes: the timing adjustment amount is less than a preset value, or the first condition further includes: the timing adjustment amount is less than or equal to the preset value.
  • This embodiment further provides several other possible ways of the first condition.
  • the network device 170 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the network device 170 may take the form of the network device 200 shown in FIG. 4.
  • the processor 201 in the network device 200 shown in FIG. 4 may invoke the computer execution instructions stored in the memory 202 to make the network device 200 execute the communication method in the foregoing method embodiment.
  • the function/implementation process of the processing module 1701 and the transceiver module 1702 in FIG. 17 can be implemented by the processor 201 in the network device 200 shown in FIG. 4 calling the computer execution instructions stored in the memory 202.
  • the function/implementation process of the processing module 1701 in FIG. 17 can be implemented by the processor 201 in the network device 200 shown in FIG. 4 calling a computer execution instruction stored in the memory 202, and the function of the transceiver module 1702 in FIG. /The implementation process can be implemented by the transceiver 203 in the network device 200 shown in FIG. 4.
  • the network device 170 provided in this embodiment can perform the above-mentioned communication method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and will not be repeated here.
  • An embodiment of the present application also provides a communication device, including: a processor and a memory, the memory is used to store a program, and the processor calls the program stored in the memory to make the communication device execute the terminal in FIGS. 7, 11-15 The communication method of the device.
  • An embodiment of the present application also provides a communication device, including: a processor and a memory, the memory is used to store a program, and the processor calls the program stored in the memory to make the communication device execute the network in FIGS. 7, 11-15 The communication method of the device.
  • the embodiment of the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the instructions run on a computer or a processor, the computer or the processor executes Figures 7, 11-15 The communication method of the terminal device or network device in the middle.
  • the embodiments of the present application also provide a computer program product containing instructions.
  • the instructions run on a computer or a processor, the computer or the processor executes the communication method of the terminal device or the network device in FIGS. 7, 11-15.
  • the embodiment of the present application provides a chip system, which includes a processor, and is used for a communication device to execute the communication method of the terminal device in FIGS. 7 and 11-15.
  • the terminal device receives configuration information from the network device, the configuration information is used to indicate that the terminal device can use two hybrid automatic repeat request HARQ processes;
  • the terminal device receives the downlink control information DCI from the network device, and the DCI is used to schedule two HARQ processes One HARQ process or two HARQ processes;
  • the terminal device determines that the network device meets the first condition and the terminal device meets the second condition, or the terminal device determines that the terminal device meets the third condition, or the terminal device determines that the terminal device meets the fourth condition ,
  • the terminal device determines that it does not need to receive the downlink transmission in the first q downlink subframes before the start time of the narrowband physical uplink shared channel format 2NPUSCH format2 transmission, where the first condition and the second condition include support for narrowband random access channel Format 2 NPRACH format2 transmission
  • the fourth condition includes that the timing adjustment amount of the terminal device is greater than or equal to the preset value, or the timing adjustment amount It is greater than the preset value, q is a positive integer greater than 1, and NPUSCH format2 transmission is uplink transmission performed by the terminal device on one HARQ process or one HARQ process of two HARQ processes.
  • the chip system also includes a memory, which is used to store necessary program instructions and data for the terminal device.
  • the chip system may include a chip, an integrated circuit, or a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • An embodiment of the present application provides a chip system, which includes a processor, and is used for a communication device to execute the communication method of the network device in FIGS. 7 and 11-15.
  • a network device sends configuration information to a terminal device, and the configuration information is used to indicate that the terminal device can use two hybrid automatic repeat request HARQ processes;
  • the network device sends downlink control information DCI to the terminal device, and DCI is used to schedule two HARQ processes One HARQ process or two HARQ processes;
  • the network device determines that the network device meets the first condition and the terminal device meets the second condition, or the network device determines that the terminal device meets the third condition, or the network device determines that the terminal device meets the fourth condition ,
  • the network device determines that it is not necessary to perform downlink transmission in the first q downlink subframes before the start time of the transmission of the narrowband physical uplink shared channel format 2NPUSCH format2, where the first condition and the second condition include support for narrowband random access channel Format 2 NPRACH format2
  • the fourth condition includes that the timing adjustment amount of the terminal device is greater than or equal to the preset value, or the timing adjustment amount It is greater than the preset value, q is a positive integer greater than 1, and NPUSCH format2 transmission is uplink transmission performed by the terminal device on one HARQ process or one HARQ process of two HARQ processes.
  • the chip system further includes a memory for storing necessary program instructions and data for the network device.
  • the chip system may include a chip, an integrated circuit, or a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the communication device, computer storage medium, computer program product, or chip system provided in the present application are all used to execute the communication method described above. Therefore, the beneficial effects that can be achieved can be referred to in the embodiments provided above The beneficial effects of, will not be repeated here.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the computer may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法、装置及系统,涉及通信领域,用于使支持NPRACH format2的终端设备在使用两个HARQ进程通信技术时不会大幅提高硬件成本以及处理复杂度。通信方法包括:终端设备从网络设备接收配置信息,配置信息用于指示终端设备能够使用两个混合自动重传请求HARQ进程;终端设备从网络设备接收下行控制信息DCI,DCI用于调度两个HARQ进程中的一个HARQ进程或者两个HARQ进程;终端设备确定网络设备满足第一条件和终端设备满足第二条件,或者,终端设备确定终端设备满足第三条件,则终端设备确定不需要在窄带物理上行共享信道格式2NPUSCH format2传输的起始时间之前的前q个下行子帧内接收下行传输,第一条件和第二条件包括支持窄带随机接入信道格式2NPRACH format2传输。

Description

通信方法、装置及系统 技术领域
本申请涉及通信领域,尤其涉及一种通信方法、装置及系统。
背景技术
在第五代(5th generation,5G)通信技术中,窄带物联网(narrowband internet of things,NB-IoT)系统用于支持较大覆盖范围的通信。
在NB-IoT系统的版本(release,Rel)14中引入了两个混合自动重传请求(hybrid automatic repeat request,HARQ)进程的通信技术,该两个HARQ进程也可以称为two HARQ processes,或,two HARQ进程等,本申请并不限定。示例性的,如图1所示,网络设备通过两个HARQ进程(HARQ进程#0和HARQ进程#1)向终端设备发送下行数据,其中,图1中标注的后缀名“#0”表示HARQ进程#0,“#1”表示HARQ进程#1。两个HARQ进程的下行数据分别通过不同的窄带物理下行共享信道(narrowband physical downlink shared channel,NPDSCH)承载,即图1中NPDSCH#0和NPDSCH#1。网络设备在发送NPDSCH前还向终端设备发送下行控制信息(downlink control information,DCI),DCI中携带NPDSCH的调度信息,DCI通过窄带物理控制信道(narrowband physical downlink control channel,NPDCCH)承载。图1示例中DCI#0携带NPDSCH#0的调度信息,DCI#1携带NPDSCH#1的调度信息。终端设备在检测到DCI#0和DCI#1后,根据DCI#0的调度信息接收NPDSCH#0,根据DCI#1的调度信息接收NPDSCH#1。终端设备在接收NPDSCH#0和NPDSCH#1后,向网络设备发送肯定应答/否定应答(acknowledgement/negative acknowledgement,ACK/NACK)(分别以A/N#0和A/N#1表示)。A/N#0和A/N#1传输的时频资源位置分别通过DCI#0和DCI#1指示。A/N#0在NPDSCH#1之后传输,NPDSCH#1传输结束时间和A/N#0传输起始时间之间满足最小1ms时序关系。
NPDSCH#1传输为下行传输,A/N#0传输为上行传输,限定上述最小1ms时序关系的目的一方面是预留时间给终端设备做下行传输到上行传输转换的转换时延,另一方面是预留时间给终端设备在上行传输时做定时提前(timing advance,TA)调整。
TA调整的最大范围和随机接入信道的设计有关,在NB-IoT系统的版本(release,Rel)14中,NB-IoT支持窄带随机接入信道(narrowband physical random access channel,NPRACH)格式(format)0和NPRACH format1。对于NPRACH format1,其支持的小区半径最大为40km,TA的最大值为8192Ts,其中Ts=1/(15000×2048)秒,即TA约为267us。下行传输到上行传输转换的转换时延最小为733μs。
对于面向开阔区域的应用,比如智能农业、畜牧业监测、智能湖泊(例如污染情况监测、水生生物监测等),需要更大的小区半径。为此NB-IoT系统的Rel15中引入了一种新的NPRACH格式——NPRACH format2,其支持的小区半径最大为120km,TA的最大值为24576Ts,即为800μs。对于支持NPRACH format2的终端设备来说, 在使用两个HARQ进程通信技术时,如果NPDSCH#1传输结束时间到A/N#0传输起始时间之间的最小时序为1ms,则终端设备从下行传输向上行传输转换的转换时延最小只有200μs。转换时延的大幅减小对于现有的终端设备的硬件能力有较大影响,会带来终端设备硬件成本和处理复杂度的增加。
发明内容
本申请实施例提供一种通信方法、装置及系统,用于使支持NPRACH format2的终端设备在使用两个HARQ进程通信技术时不会大幅提高硬件成本以及处理复杂度。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种通信方法,包括:终端设备从网络设备接收配置信息,配置信息用于指示终端设备能够使用两个混合自动重传请求HARQ进程;终端设备从网络设备接收下行控制信息DCI,DCI用于调度两个HARQ进程中的一个HARQ进程或者两个HARQ进程;终端设备确定网络设备满足第一条件和终端设备满足第二条件,或者,终端设备确定终端设备满足第三条件,或者,终端设备确定终端设备满足第四条件,则终端设备确定不需要在窄带物理上行共享信道格式2NPUSCH format2传输的起始时间之前的前q个下行子帧内接收下行传输,其中,第一条件和第二条件包括支持窄带随机接入信道格式2NPRACH format2传输,第三条件包括终端设备在NPRACH format2随机接入资源上进行随机接入,或者终端设备在NPRACH format2随机接入资源上进行过随机接入,或者终端设备在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备在NPRACH format2随机接入资源上发送过随机接入前导码,第四条件包括终端设备的定时调整量大于或等于预设值,或者,定时调整量大于预设值,q为大于1的正整数,NPUSCH format2传输为终端设备在一个HARQ进程或者两个HARQ进程中的一个HARQ进程上进行的上行传输。
本申请实施例提供的通信方法,在使用两个HARQ通信技术时,对于支持NPRACH format2的终端设备,NPUSCH format2传输的起始时间之前的前q个下行子帧可用于该终端设备完成下行传输向上行传输的转换,q为大于1的正整数,即下行传输向上行传输的转换时延大于或者等于2ms,以q=2为例,当TA调整时长最大为800μs时,终端设备从下行传输向上行传输转换的转换时延最小为1200μs,相比Rel-14NB-IoT中下行传输向上行传输转换的转换时延的最小值(即733μs),转换时延更加宽松,类似地,q>2时,终端设备从下行传输向上行传输转换的转换时延最小值大于1200μs,相比Rel-14NB-IoT中下行传输向上行传输转换的转换时延的最小值(即733μs),转换时延会更加宽松。因此对于支持NPRACH format2的终端设备来说,通过增加下行传输向上行传输转换的转换时延,不必在硬件上做出改变,进而不会大幅提高硬件成本以及处理复杂度。
在一种可能的实施方式中,该方法还包括:终端设备确定网络设备满足第五条件和/或终端设备满足第六条件,或者,终端设备确定终端设备满足第七条件,或者,终端设备确定终端设备满足第八条件,则终端设备确定不需要在NPUSCH format2传输的起始时间之前的前一个下行子帧内接收下行传输,其中,第五条件和第六条件包括不支持NPRACH format2传输,第七条件包括终端设备未在NPRACH format2随机接入资源上进行随机接入,或者终端设备未在NPRACH format2随机接入资源上进行过 随机接入,或者终端设备未在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备未在NPRACH format2随机接入资源上发送过随机接入前导码,第八条件包括终端设备的定时调整量小于或等于预设值,或者,定时调整量小于预设值。在该实施方式中,该终端设备和/或该网络设备不支持NPRACH format2传输,因此终端设备只能通过NPRACH format 0或者NPRACH format1随机接入前导码进行随机接入,这种情况下对于该终端设备下行传输到上行传输转换的转换时延的最小值和Rel-14NB-IoT中下行传输向上行传输转换的转换时延的最小值一样,为733μs。因此对于该终端设备来说,不必在硬件上做出改变,因此也就不会提高硬件成本以及处理复杂度
在一种可能的实施方式中,终端设备确定网络设备满足第一条件,包括:终端设备确定从网络设备接收的系统消息中包括用于NPRACH format2传输的随机接入资源配置信息;终端设备确定终端设备满足第二条件之后,进一步包括:终端设备向网络设备发送指示信息,指示信息用于表示终端设备具有NPRACH format2能力;终端设备确定网络设备满足第五条件,包括:终端设备确定从网络设备接收的系统消息中不包括用于NPRACH format2传输的随机接入资源配置信息;终端设备确定终端设备满足第六条件之后,进一步包括:终端设备确定不需要向网络设备发送指示信息,指示信息用于表示终端设备具有NPRACH format2能力。该实施方式提供了满足第一条件、第二条件、第五条件、第六条件的一种可能方式。
在一种可能的实施方式中,第二条件或第三条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级1或覆盖等级2。第六条件或第七条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0。该实施方式进一步提供了第二条件、第三条件、第六条件、第七条件的一种可能方式。
在一种可能的实施方式中,第二条件或第三条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级2。第六条件或第七条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等级1。该实施方式进一步提供了第二条件、第三条件、第六条件、第七条件的另一种可能方式。
在一种可能的实施方式中,NPRACH覆盖等级为终端设备随机接入过程成功时的NPRACH覆盖等级,或者,开始随机接入过程时的NPRACH覆盖等级,或者,距离DCI调度在时间上最近的、且随机接入过程成功时的NPRACH覆盖等级。该实施方式提供了NPRACH覆盖等级的几种可能方式。
在一种可能的实施方式中,该方法还包括:终端设备从网络设备接收到定时提前命令,终端设备根据定时提前命令确定定时调整量,其中,定时调整量为正数时表示上行传输定时提前;第二条件或第三条件,进一步包括:定时调整量大于或等于预设值;第六条件或第七条件,进一步包括:定时调整量小于预设值。该实施方式进一步提供了第二条件、第三条件、第六条件、第七条件的又一种可能方式。
在一种可能的实施方式中,该方法还包括:终端设备从网络设备接收到定时提前命令,终端设备根据定时提前命令确定定时调整量,其中,定时调整量为正数时表示上行传输定时提前;第二条件或第三条件,进一步包括:定时调整量大于预设值;第六条件或第七条件,进一步包括:定时调整量小于或等于预设值。该实施方式进一步提供了第二条件、第三条件、第六条件、第七条件的再一种可能方式。
在一种可能的实施方式中,终端设备确定网络设备满足第一条件和终端设备满足第二条件,或者,终端设备确定终端设备满足第三条件,或者,终端设备确定终端设备满足第四条件,该方法还包括:终端设备确定不需要在窄带物理上行共享信道格式1NPUSCH format1传输的起始时间之前的前q个下行子帧内接收下行传输,NPUSCH format1传输为终端设备在一个HARQ进程或者两个HARQ进程中的一个HARQ进程上进行的上行传输。对于该实施方式,在使用两个HARQ通信技术时,对于支持NPRACH format2的终端设备,NPUSCH format1传输的起始时间之前的前q个下行子帧可用于该终端设备完成下行传输向上行传输的转换,q为大于1的正整数,即下行传输向上行传输的转换时延大于或者等于2ms,以q=2为例,当TA调整时长最大为800μs时,终端设备从下行传输向上行传输转换的转换时延最小为1200μs,相比Rel-14NB-IoT中下行传输向上行传输转换的转换时延的最小值(即733μs),转换时延更加宽松,类似地,q>2时,终端设备从下行传输向上行传输转换的转换时延最小值大于1200μs,相比Rel-14NB-IoT中下行传输向上行传输转换的转换时延的最小值(即733μs),转换时延会更加宽松。因此对于支持NPRACH format2的终端设备来说,通过增加下行传输向上行传输转换的转换时延,不必在硬件上做出改变,进而不会大幅提高硬件成本以及处理复杂度。
第二方面,提供了一种通信方法,包括:网络设备向终端设备发送配置信息,配置信息用于指示终端设备能够使用两个混合自动重传请求HARQ进程;网络设备向终端设备发送下行控制信息DCI,DCI用于调度两个HARQ进程中的一个HARQ进程或者两个HARQ进程;网络设备确定网络设备满足第一条件和终端设备满足第二条件,或者,网络设备确定终端设备满足第三条件,或者,网络设备确定终端设备满足第四条件,则网络设备确定不需要在窄带物理上行共享信道格式2NPUSCH format2传输的起始时间之前的前q个下行子帧内进行下行传输,其中,第一条件和第二条件包括支持窄带随机接入信道格式2NPRACH format2传输,第三条件包括终端设备在NPRACH format2随机接入资源上进行随机接入,或者终端设备在NPRACH format2随机接入资源上进行过随机接入,或者终端设备在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备在NPRACH format2随机接入资源上发送过随机接入前导码,第四条件包括终端设备的定时调整量大于或等于预设值,或者,定时调整量大于预设值,q为大于1的正整数,NPUSCH format2传输为终端设备在一个HARQ进程或者两个HARQ进程中的一个HARQ进程上进行的上行传输。本申请实施例提供的通信方法,在使用两个HARQ通信技术时,对于支持NPRACH format2的终端设备,NPUSCH format2传输的起始时间之前的前q个下行子帧可用于该终端设备完成下行传输向上行传输的转换,q为大于1的正整数,即下行传输向上行传输的转换时延大于或者等于2ms,以q=2为例,当TA调整时长最大为800μs时,终端设备从下行传输向上行传输转换的转换时延最小为1200μs,相比Rel-14NB-IoT中下行传输向上行传输转换的转换时延的最小值(即733μs),转换时延更加宽松,类似地,q>2时,终端设备从下行传输向上行传输转换的转换时延最小值大于1200μs,相比Rel-14NB-IoT中下行传输向上行传输转换的转换时延的最小值(即733μs),转换时延会更加宽松。因此对于支持NPRACH format2的终端设备来说,通过增加下行传输向上行传输转换的转 换时延,不必在硬件上做出改变,进而不会大幅提高硬件成本以及处理复杂度。
在一种可能的实施方式中,该方法还包括:网络设备确定网络设备满足第五条件和/或终端设备满足第六条件,或者,网络设备确定终端设备满足第七条件,或者,网络设备确定终端设备满足第八条件,则网络设备确定不需要在NPUSCH format2传输的起始时间之前的前一个下行子帧内进行下行传输,其中,第五条件和第六条件包括不支持NPRACH format2传输,第七条件包括终端设备未在NPRACH format2随机接入资源上进行随机接入,或者终端设备未在NPRACH format2随机接入资源上进行过随机接入,或者终端设备未在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备未在NPRACH format2随机接入资源上发送过随机接入前导码,第八条件包括终端设备的定时调整量小于或等于预设值,或者,定时调整量小于预设值。在该实施方式中,该终端设备和/或该网络设备不支持NPRACH format2传输,因此终端设备只能通过NPRACH format 0或者NPRACH format1随机接入前导码进行随机接入,这种情况下对于该终端设备下行传输到上行传输转换的转换时延的最小值和Rel-14NB-IoT中下行传输向上行传输转换的转换时延的最小值一样,为733μs。因此对于该终端设备来说,不必在硬件上做出改变,因此也就不会提高硬件成本以及处理复杂度。
在一种可能的实施方式中,网络设备确定网络设备满足第一条件之后,进一步包括:网络设备向终端设备发送系统消息,系统消息中包括用于NPRACH format2传输的随机接入资源配置信息;网络设备确定终端设备满足第二条件,包括:网络设备从终端设备接收指示信息,指示信息用于表示终端设备具有NPRACH format2能力;网络设备确定网络设备满足第五条件之后,进一步包括:网络设备向终端设备发送系统消息,系统消息中不包括用于NPRACH format2传输的随机接入资源配置信息;网络设备确定终端设备满足第六条件,包括:网络设备确定未从终端设备接收指示信息,指示信息用于表示终端设备具有NPRACH format2能力。该实施方式提供了满足第一条件、第二条件、第五条件、第六条件的一种可能方式。
在一种可能的实施方式中,该方法还包括:网络设备确定终端设备的NPRACH覆盖等级;第二条件或第三条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级1或覆盖等级2;第六条件或第七条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0。该实施方式进一步提供了第二条件、第三条件、第六条件、第七条件的一种可能方式。
在一种可能的实施方式中,该方法还包括:网络设备确定终端设备的NPRACH覆盖等级;第二条件或第三条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级2;第六条件或第七条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等级1。该实施方式进一步提供了第二条件、第三条件、第六条件、第七条件的另一种可能方式。
在一种可能的实施方式中,NPRACH覆盖等级为终端设备随机接入过程成功时的NPRACH覆盖等级,或者,开始随机接入过程时的NPRACH覆盖等级,或者,距离DCI调度在时间上最近的、且随机接入过程成功时的NPRACH覆盖等级。该实施方式提供了NPRACH覆盖等级的几种可能方式。
在一种可能的实施方式中,该方法还包括:网络设备确定定时调整量,网络设备 向终端设备发送定时提前命令,其中,定时调整量为正数时表示上行传输定时提前;第二条件或第三条件,进一步包括:定时调整量大于或等于预设值;第六条件或第七条件,进一步包括:定时调整量小于预设值。该实施方式进一步提供了第二条件、第三条件、第六条件、第七条件的又一种可能方式。
在一种可能的实施方式中,该方法还包括:网络设备确定定时调整量,网络设备向终端设备发送定时提前命令,其中,定时调整量为正数时表示上行传输定时提前;第二条件或第三条件,进一步包括:定时调整量大于预设值;第六条件或第七条件,进一步包括:定时调整量小于或等于预设值。该实施方式进一步提供了第二条件、第三条件、第六条件、第七条件的再一种可能方式。
在一种可能的实施方式中,网络设备确定网络设备满足第一条件和终端设备满足第二条件,或者,网络设备确定终端设备满足第三条件,或者,网络设备确定终端设备满足第四条件,该方法还包括:网络设备确定不需要在窄带物理上行共享信道格式1NPUSCH format1传输的起始时间之前的前q个下行子帧内进行下行传输,其中,NPUSCH format1传输为终端设备在一个HARQ进程或者两个HARQ进程中的一个HARQ进程上进行的上行传输。对于该实施方式,在使用两个HARQ通信技术时,对于支持NPRACH format2的终端设备,NPUSCH format2传输的起始时间之前的前q个下行子帧可用于该终端设备完成下行传输向上行传输的转换,q为大于1的正整数,即下行传输向上行传输的转换时延大于或者等于2ms,以q=2为例,当TA调整时长最大为800μs时,终端设备从下行传输向上行传输转换的转换时延最小为1200μs,相比Rel-14NB-IoT中下行传输向上行传输转换的转换时延的最小值(即733μs),转换时延更加宽松,类似地,q>2时,终端设备从下行传输向上行传输转换的转换时延最小值大于1200μs,相比Rel-14NB-IoT中下行传输向上行传输转换的转换时延的最小值(即733μs),转换时延会更加宽松。因此对于支持NPRACH format2的终端设备来说,通过增加下行传输向上行传输转换的转换时延,不必在硬件上做出改变,进而不会大幅提高硬件成本以及处理复杂度。
第三方面,提供了一种通信方法,包括:终端设备向网络设备发送指示信息,指示信息用于表示终端设备具有支持窄带随机接入信道NPRACH format2能力;终端设备从网络设备接收系统消息,系统消息包括用于NPRACH format2传输的随机接入资源配置信息;终端设备确定满足第一条件,则终端设备从网络设备接收到配置信息,配置信息用于指示终端设备能够使用两个混合自动重传请求HARQ进程;终端设备从网络设备接收下行控制信息DCI,DCI用于调度两个HARQ进程中的一个HARQ进程或者两个HARQ进程。本申请实施例提供的通信方法,对于网络设备和终端设备均支持NPRACH format2传输,对终端设备使用两个HARQ通信技术增加了一些限制条件,例如限制只有覆盖等级好的终端设备,距离基站近的终端设备,即TA较小的终端设备才可以使用两个HARQ进程通信技术,这样不必增加终端设备从下行传输向上行传输转换的转换时延,即能保证终端设备能够实现从下行传输向上行传输的转换。满足这些限制条件的终端设备不必在硬件上做出改变,即可保证下行传输向上行传输转换的有足够的转换时延,进而不会大幅提高硬件成本以及处理复杂度。
在一种可能的实施方式中,第一条件包括终端设备未在NPRACH format2随机接 入资源上进行随机接入,或者终端设备未在NPRACH format2随机接入资源上进行过随机接入,或者终端设备未在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备未在NPRACH format2随机接入资源上发送过随机接入前导码。该实施方式提供了第一条件的几种可能方式。
在一种可能的实施方式中,第一条件包括:终端设备的NPRACH覆盖等级为覆盖等级0;或者,第一条件包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等级1。该实施方式提供了第一条件的另外几种可能方式。
在一种可能的实施方式中,第一条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0;或者,第一条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等级1。该实施方式进一步提供了第一条件的几种可能方式。
在一种可能的实施方式中,NPRACH覆盖等级为终端设备随机接入过程成功时的NPRACH覆盖等级,或者,开始随机接入过程时的NPRACH覆盖等级,或者,距离DCI调度在时间上最近的、且随机接入过程成功时的NPRACH覆盖等级。该实施方式提供了NPRACH覆盖等级的几种可能方式。
在一种可能的实施方式中,该方法还包括:终端设备从网络设备接收到定时提前命令,终端设备根据定时提前命令确定定时调整量,其中,定时调整量为正数时表示上行传输定时提前;第一条件,包括:定时调整量小于预设值,或者,第一条件,包括:定时调整量小于或者等于预设值。该实施方式提供了第一条件的另外几种可能方式。
在一种可能的实施方式中,该方法还包括:终端设备从网络设备接收到定时提前命令,终端设备根据定时提前命令确定定时调整量,其中,定时调整量为正数时表示上行传输定时提前;第一条件,进一步包括:定时调整量小于预设值,或者,第一条件,进一步包括:定时调整量小于或者等于预设值。该实施方式进一步提供了第一条件的另外几种可能方式。
第四方面,提供了一种通信方法,包括:网络设备从终端设备接收指示信息,指示信息用于表示终端设备具有支持窄带随机接入信道NPRACH format2能力;网络设备向终端设备发送系统消息,系统消息包括用于NPRACH format2传输的随机接入资源配置信息;网络设备确定满足第一条件,则网络设备向终端设备发送配置信息,配置信息用于指示终端设备能够使用两个混合自动重传请求HARQ进程;网络设备向终端设备发送下行控制信息DCI,DCI用于调度两个HARQ进程中的一个HARQ进程或者两个HARQ进程。本申请实施例提供的通信方法,对于网络设备和终端设备均支持NPRACH format2传输,对终端设备使用两个HARQ通信技术增加了一些限制条件,例如限制只有覆盖等级好的终端设备,距离基站近的终端设备,即TA较小的终端设备才可以使用两个HARQ进程通信技术,这样不必增加终端设备从下行传输向上行传输转换的转换时延,即能保证终端设备能够实现从下行传输向上行传输的转换。满足这些限制条件的终端设备不必在硬件上做出改变,即可保证下行传输向上行传输转换的有足够的转换时延,进而不会大幅提高硬件成本以及处理复杂度。
在一种可能的实施方式中,第一条件包括终端设备未在NPRACH format2随机接入资源上进行随机接入,或者终端设备未在NPRACH format2随机接入资源上进行过 随机接入,或者终端设备未在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备未在NPRACH format2随机接入资源上发送过随机接入前导码。该实施方式提供了第一条件的几种可能方式。
在一种可能的实施方式中,该方法还包括:网络设备确定终端设备的NPRACH覆盖等级;第一条件包括:终端设备的NPRACH覆盖等级为覆盖等级0;或者,第一条件包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等级1。
在一种可能的实施方式中,该方法还包括:网络设备确定终端设备的NPRACH覆盖等级;第一条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0;或者,第一条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等级1。该实施方式进一步提供了第一条件的几种可能方式。
在一种可能的实施方式中,NPRACH覆盖等级为终端设备随机接入过程成功时的NPRACH覆盖等级,或者,开始随机接入过程时的NPRACH覆盖等级,或者,距离DCI调度在时间上最近的、且随机接入过程成功时的NPRACH覆盖等级。该实施方式提供了NPRACH覆盖等级的几种可能方式。
在一种可能的实施方式中,该方法还包括:网络设备确定终端设备的定时调整量,网络设备向终端设备发送定时提前命令,其中,定时调整量为正数时表示上行传输定时提前;第一条件,包括:定时调整量小于预设值,或者,第一条件,包括:定时调整量小于或者等于预设值。该实施方式提供了第一条件的另外几种可能方式。
在一种可能的实施方式中,该方法还包括:网络设备确定终端设备的定时调整量,网络设备向终端设备发送定时提前命令,其中,定时调整量为正数时表示上行传输定时提前;第一条件,进一步包括:定时调整量小于预设值,或者,第一条件,进一步包括:定时调整量小于或者等于预设值。该实施方式进一步提供了第一条件的另外几种可能方式。
第五方面,提供了一种终端设备,包括收发模块和处理模块;收发模块,用于从网络设备接收配置信息,配置信息用于指示终端设备能够使用两个混合自动重传请求HARQ进程;收发模块,还用于从网络设备接收下行控制信息DCI,DCI用于调度两个HARQ进程中的一个HARQ进程或者两个HARQ进程;处理模块,用于确定网络设备满足第一条件和终端设备满足第二条件,或者,确定终端设备满足第三条件,或者,确定终端设备满足第四条件,则确定收发模块不需要在窄带物理上行共享信道格式2NPUSCH format2传输的起始时间之前的前q个下行子帧内接收下行传输,其中,第一条件和第二条件包括支持窄带随机接入信道格式2NPRACH format2传输,第三条件包括终端设备在NPRACH format2随机接入资源上进行随机接入,或者终端设备在NPRACH format2随机接入资源上进行过随机接入,或者终端设备在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备在NPRACH format2随机接入资源上发送过随机接入前导码,第四条件包括终端设备的定时调整量大于或等于预设值,或者,定时调整量大于预设值,q为大于1的正整数,NPUSCH format2传输为终端设备在一个HARQ进程或者两个HARQ进程中的一个HARQ进程上进行的上行传输。
在一种可能的实施方式中,处理模块,还用于确定网络设备满足第五条件和/或终 端设备满足第六条件,或者,确定终端设备满足第七条件,或者,确定终端设备满足第八条件,则处理模块,还用于确定收发模块不需要在NPUSCH format2传输的起始时间之前的前一个下行子帧内接收下行传输,其中,第五条件和第六条件包括不支持NPRACH format2传输,第七条件包括终端设备未在NPRACH format2随机接入资源上进行随机接入,或者终端设备未在NPRACH format2随机接入资源上进行过随机接入,或者终端设备未在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备未在NPRACH format2随机接入资源上发送过随机接入前导码,第八条件包括终端设备的定时调整量小于或等于预设值,或者,定时调整量小于预设值。
在一种可能的实施方式中,处理模块,用于确定网络设备满足第一条件,包括:用于确定从网络设备接收的系统消息中包括用于NPRACH format2传输的随机接入资源配置信息;处理模块确定终端设备满足第二条件之后,进一步包括:通过收发模块向网络设备发送指示信息,指示信息用于表示终端设备具有NPRACH format2能力。第五条件,包括:处理模块确定从网络设备接收的系统消息中不包括用于NPRACH format2传输的随机接入资源配置信息;处理模块确定终端设备满足第六条件之后,进一步包括:处理模块确定不需要收发模块向网络设备发送指示信息,指示信息用于表示终端设备具有NPRACH format2能力。
在一种可能的实施方式中,第二条件或第三条件进一步包括:终端设备的NPRACH覆盖等级为覆盖等级1或覆盖等级2。第六条件或第七条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0。
在一种可能的实施方式中,第二条件或第三条件进一步包括:终端设备的NPRACH覆盖等级为覆盖等级2。第六条件或第七条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等级1。
在一种可能的实施方式中,NPRACH覆盖等级为终端设备随机接入过程成功时的NPRACH覆盖等级,或者,开始随机接入过程时的NPRACH覆盖等级,或者,距离DCI调度在时间上最近的、且随机接入过程成功时的NPRACH覆盖等级。
在一种可能的实施方式中,收发模块,还用于从网络设备接收到定时提前命令,处理模块,还用于根据定时提前命令确定定时调整量,其中,定时调整量为正数时表示上行传输定时提前;第二条件或第三条件进一步包括:定时调整量大于或等于预设值。第六条件或第七条件,进一步包括:定时调整量小于预设值。
在一种可能的实施方式中,收发模块,还用于从网络设备接收到定时提前命令,处理模块,还用于根据定时提前命令确定定时调整量,其中,定时调整量为正数时表示上行传输定时提前;第二条件或第三条件进一步包括:定时调整量大于预设值。第六条件或第七条件,进一步包括:定时调整量小于或等于预设值。
在一种可能的实施方式中,处理模块确定网络设备满足第一条件和终端设备满足第二条件,或者,确定终端设备满足第三条件,或者,确定终端设备满足第四条件,处理模块,还用于确定收发模块不需要在窄带物理上行共享信道格式1NPUSCH format1传输的起始时间之前的前q个下行子帧内接收下行传输,NPUSCH format1传输为终端设备在一个HARQ进程或者两个HARQ进程中的一个HARQ进程上进行的上行传输。
第六方面,提供了一种网络设备,包括收发模块和处理模块;收发模块,用于向终端设备发送配置信息,配置信息用于指示终端设备能够使用两个混合自动重传请求HARQ进程;收发模块,还用于向终端设备发送下行控制信息DCI,DCI用于调度两个HARQ进程中的一个HARQ进程或者两个HARQ进程;处理模块,用于确定网络设备满足第一条件和终端设备满足第二条件,或者,确定终端设备满足第三条件,或者,确定终端设备满足第四条件,则确定收发模块不需要在窄带物理上行共享信道格式2NPUSCH format2传输的起始时间之前的前q个下行子帧内进行下行传输,其中,第一条件和第二条件包括支持窄带随机接入信道格式2NPRACH format2传输,第三条件包括终端设备在NPRACH format2随机接入资源上进行随机接入,或者终端设备在NPRACH format2随机接入资源上进行过随机接入,或者终端设备在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备在NPRACH format2随机接入资源上发送过随机接入前导码,第四条件包括终端设备的定时调整量大于或等于预设值,或者,定时调整量大于预设值,q为大于1的正整数,NPUSCH format2传输为终端设备在一个HARQ进程或者两个HARQ进程中的一个HARQ进程上进行的上行传输。
可选的,处理模块,还用于确定网络设备满足第五条件和/或终端设备满足第六条件,或者,确定终端设备满足第七条件,或者,确定终端设备满足第八条件,则处理模块,还用于确定收发模块不需要在NPUSCH format2传输的起始时间之前的前一个下行子帧内进行下行传输,其中,第五条件和第六条件包括不支持NPRACH format2传输,第七条件包括终端设备未在NPRACH format2随机接入资源上进行随机接入,或者终端设备未在NPRACH format2随机接入资源上进行过随机接入,或者终端设备未在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备未在NPRACH format2随机接入资源上发送过随机接入前导码,第八条件包括终端设备的定时调整量小于或等于预设值,或者,定时调整量小于预设值。
在一种可能的实施方式中,处理模块确定网络设备满足第一条件之后,进一步包括:通过收发模块向终端设备发送系统消息,系统消息中包括用于NPRACH format2传输的随机接入资源配置信息;处理模块,用于确定终端设备满足第二条件,包括:通过收发模块从终端设备接收指示信息,指示信息用于表示终端设备具有NPRACH format2能力。处理模块确定网络设备满足第五条件之后,进一步包括:通过收发模块向终端设备发送系统消息,系统消息中不包括用于NPRACH format2传输的随机接入资源配置信息;处理模块,用于确定终端设备满足第六条件,包括:用于确定未从终端设备接收指示信息,指示信息用于表示终端设备具有NPRACH format2能力。
在一种可能的实施方式中,处理模块,还用于确定终端设备的NPRACH覆盖等级;第二条件或第三条件进一步包括:终端设备的NPRACH覆盖等级为覆盖等级1或覆盖等级2。第六条件或第七条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0。
在一种可能的实施方式中,处理模块,还用于确定终端设备的NPRACH覆盖等级;第二条件或第三条件进一步包括:终端设备的NPRACH覆盖等级为覆盖等级2。第六条件或第七条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等 级1。
在一种可能的实施方式中,NPRACH覆盖等级为终端设备随机接入过程成功时的NPRACH覆盖等级,或者,开始随机接入过程时的NPRACH覆盖等级,或者,距离DCI调度在时间上最近的、且随机接入过程成功时的NPRACH覆盖等级。
在一种可能的实施方式中,处理模块,还用于确定定时调整量,收发模块,还用于向终端设备发送定时提前命令,其中,定时调整量为正数时表示上行传输定时提前;第二条件或第三条件进一步包括:定时调整量大于或等于预设值。第六条件或第七条件,进一步包括:定时调整量小于预设值。
在一种可能的实施方式中,处理模块,还用于确定定时调整量,收发模块,还用于向终端设备发送定时提前命令,其中,定时调整量为正数时表示上行传输定时提前;第二条件或第三条件进一步包括:定时调整量大于预设值。第六条件或第七条件,进一步包括:定时调整量小于或等于预设值。
在一种可能的实施方式中,处理模块确定网络设备满足第一条件和终端设备满足第二条件,或者,确定终端设备满足第三条件,或者,确定终端设备满足第四条件,处理模块,还用于确定收发模块不需要在窄带物理上行共享信道格式1NPUSCH format1传输的起始时间之前的前q个下行子帧内进行下行传输,其中,NPUSCH format1传输为终端设备在一个HARQ进程或者两个HARQ进程中的一个HARQ进程上进行的上行传输。
第七方面,提供了一种终端设备,包括收发模块和处理模块;收发模块,用于向网络设备发送指示信息,指示信息用于表示终端设备具有支持窄带随机接入信道NPRACH format2能力;收发模块,还用于从网络设备接收系统消息,系统消息包括用于NPRACH format2传输的随机接入资源配置信息;处理模块,用于确定满足第一条件,则收发模块用于从网络设备接收到配置信息,配置信息用于指示终端设备能够使用两个混合自动重传请求HARQ进程;收发模块还用于从网络设备接收下行控制信息DCI,DCI用于调度两个HARQ进程中的一个HARQ进程或者两个HARQ进程。
在一种可能的实施方式中,第一条件包括终端设备未在NPRACH format2随机接入资源上进行随机接入,或者终端设备未在NPRACH format2随机接入资源上进行过随机接入,或者终端设备未在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备未在NPRACH format2随机接入资源上发送过随机接入前导码。
在一种可能的实施方式中,第一条件包括:终端设备的NPRACH覆盖等级为覆盖等级0;或者,第一条件包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等级1。
在一种可能的实施方式中,第一条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0;或者,第一条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等级1。
在一种可能的实施方式中,NPRACH覆盖等级为终端设备随机接入过程成功时的NPRACH覆盖等级,或者,开始随机接入过程时的NPRACH覆盖等级,或者,距离DCI调度在时间上最近的、且随机接入过程成功时的NPRACH覆盖等级。
在一种可能的实施方式中,收发模块还用于从网络设备接收到定时提前命令,处 理模块还用于根据定时提前命令确定定时调整量,其中,定时调整量为正数时表示上行传输定时提前;第一条件,包括:定时调整量小于预设值,或者,第一条件,包括:定时调整量小于或者等于预设值。
在一种可能的实施方式中,收发模块还用于从网络设备接收到定时提前命令,处理模块还用于根据定时提前命令确定定时调整量,其中,定时调整量为正数时表示上行传输定时提前;第一条件,进一步包括:定时调整量小于预设值,或者,第一条件,进一步包括:定时调整量小于或者等于预设值。
第八方面,提供了一种网络设备,包括收发模块和处理模块;收发模块,用于从终端设备接收指示信息,指示信息用于表示终端设备具有支持窄带随机接入信道NPRACH format2能力;收发模块,还用于向终端设备发送系统消息,系统消息包括用于NPRACH format2传输的随机接入资源配置信息;处理模块,用于确定满足第一条件,则收发模块还用于向终端设备发送配置信息,配置信息用于指示终端设备能够使用两个混合自动重传请求HARQ进程;收发模块,还用于向终端设备发送下行控制信息DCI,DCI用于调度两个HARQ进程中的一个HARQ进程或者两个HARQ进程。
在一种可能的实施方式中,第一条件包括终端设备未在NPRACH format2随机接入资源上进行随机接入,或者终端设备未在NPRACH format2随机接入资源上进行过随机接入,或者终端设备未在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备未在NPRACH format2随机接入资源上发送过随机接入前导码。
在一种可能的实施方式中,该方法还包括:网络设备确定终端设备的NPRACH覆盖等级;第一条件包括:终端设备的NPRACH覆盖等级为覆盖等级0;或者,第一条件包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等级1。
在一种可能的实施方式中,处理模块,还用于确定终端设备的NPRACH覆盖等级;第一条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0;或者,第一条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等级1。
在一种可能的实施方式中,NPRACH覆盖等级为终端设备随机接入过程成功时的NPRACH覆盖等级,或者,开始随机接入过程时的NPRACH覆盖等级,或者,距离DCI调度在时间上最近的、且随机接入过程成功时的NPRACH覆盖等级。
在一种可能的实施方式中,处理模块,还用于确定终端设备的定时调整量,收发模块,还用于向终端设备发送定时提前命令,其中,定时调整量为正数时表示上行传输定时提前;第一条件,包括:定时调整量小于预设值,或者,第一条件,包括:定时调整量小于或者等于预设值。
在一种可能的实施方式中,处理模块,还用于确定终端设备的定时调整量,收发模块,还用于向终端设备发送定时提前命令,其中,定时调整量为正数时表示上行传输定时提前;第一条件,进一步包括:定时调整量小于预设值,或者,第一条件,进一步包括:定时调整量小于或者等于预设值。
第九方面,提供一种通信装置,包括:处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行如第一方面或第三方面所述的通信方法。
第十方面,提供一种通信装置,包括:处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行如第二方面或第四方面所述的通信方法。
第十一方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机或处理器上运行时,使得计算机或处理器执行如第一方面或者其任一种可能的实施方式中的通信方法,或者执行如第二方面或者其任一种可能的实施方式中的通信方法,或者执行如第三方面或者其任一种可能的实施方式中的通信方法,或者执行如第四方面或者其任一种可能的实施方式中的通信方法。
第十二方面,提供了一种包含指令的计算机程序产品,当该指令在计算机或处理器上运行时,使得计算机或处理器执行如第一方面或者其任一种可能的实施方式中的通信方法,或者执行如第二方面或者其任一种可能的实施方式中的通信方法,或者执行如第三方面或者其任一种可能的实施方式中的通信方法,或者执行如第四方面或者其任一种可能的实施方式中的通信方法。
第十三方面,提供了一种通信系统,包括如第五方面所述的终端设备和如第六方面所述的网络设备,或者,包括如第七方面所述的终端设备和如第八方面所述的网络设备,或者,包括如第九方面所述的通信装置和如第十方面所述的通信装置。
第五方面至第十三方面的技术效果可以参照第一方面至第四方面的各种可能实施方式所述内容。
附图说明
图1为现有技术中终端设备从下行传输向上行传输转换的转换时延的示意图;
图2为本申请实施例提供的一种通信系统的架构示意图;
图3为本申请实施例提供的一种终端设备的结构示意图;
图4为本申请实施例提供的一种网络设备的结构示意图;
图5为本申请实施例提供的NPRACH覆盖等级的示意图;
图6为本申请实施例提供的NPRACH format2的时域示意图;
图7为本申请实施例提供的一种通信方法的流程示意图一;
图8为本申请实施例提供的一个子帧的前第q个子帧到前第一个子帧的示意图;
图9为本申请实施例提供的下行两个HARQ进程峰值速率对应的调度图案的示意图;
图10为本申请实施例提供的终端设备从下行传输向上行传输转换的转换时延的示意图;
图11为本申请实施例提供的一种通信方法的流程示意图二;
图12为本申请实施例提供的一种通信方法的流程示意图三;
图13为本申请实施例提供的一种通信方法的流程示意图四;
图14为本申请实施例提供的一种通信方法的流程示意图五;
图15为本申请实施例提供的一种通信方法的流程示意图六;
图16为本申请实施例提供的一种终端设备的结构示意图;
图17为本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
本申请实施例既可以应用于时分双工(time division duplexing,TDD)的场景,也可以适用于频分双工(frequency division duplexing,FDD)的场景。
本申请实施例依托无线通信网络中5G网络的场景进行说明,应当指出的是,本 申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
本申请实施例可以适用于长期演进(long term evolution,LTE)系统,例如NB-IoT系统中,或者,也可以适用于高级的长期演进(LTE Advanced,LTE-A)系统。也可以适用于其他无线通信系统,例如全球移动通信系统(global system for mobile communication,GSM),移动通信系统(universal mobile telecommunications system,UMTS),码分多址接入(code division multiple access,CDMA)系统,以及新的网络设备系统等。下面以LTE系统为例进行具体实施例的介绍。
如图2所示,本申请实施例提供的通信系统100,包括网络设备101和至少两个终端设备102-107。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,用户设备(user equipment,UE)、个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。无线终端也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、用户设备(user device)、或用户装备(user equipment)。示例性的,终端设备可以为高铁通信设备102、智能空调103、智能加油机104、手机105、智能茶杯106、打印机107等,本申请不作限定。
本申请实施例所涉及网络设备可以为基站,该基站可用于将收到的空中帧与互联网协议(internet protocol,IP)分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络设备。该基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的基站(NodeB),还可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB),还可以是5G中的gNB,本申请实施例并不限定。
如图3所示,以终端设备为手机为例,对终端设备的结构进行说明。
终端设备105可以包括:射频(radio frequency,RF)电路110、存储器120、输入单元130、显示单元140、传感器150、音频电路160、无线保真(Wireless Fidelity,Wi-Fi)模块170、处理器180、蓝牙模块181、以及电源190等部件。
RF电路110可用于在收发信息或通话过程中信号的接收和发送,可以接收基站的下行数据后交给处理器180处理;可以将上行数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等器件。
存储器120可用于存储软件程序及数据。处理器180通过运行存储在存储器120 的软件程序或数据,从而执行终端设备105的各种功能以及数据处理。存储器120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。存储器120存储有使得终端设备105能运行的操作系统,例如苹果公司所开发的
Figure PCTCN2019075224-appb-000001
操作系统,谷歌公司所开发的
Figure PCTCN2019075224-appb-000002
开源操作系统,微软公司所开发的
Figure PCTCN2019075224-appb-000003
操作系统等。本申请中存储器120可以存储操作系统及各种应用程序,还可以存储执行本申请实施例所述方法的代码。
输入单元130(例如触摸屏)可用于接收输入的数字或字符信息,产生与终端设备105的用户设置以及功能控制有关的信号输入。具体地,输入单元130可以包括设置在终端设备105正面的触控屏131,可收集用户在其上或附近的触摸操作。
显示单元140(即显示屏)可用于显示由用户输入的信息或提供给用户的信息以及终端设备105的各种菜单的图形用户界面(graphical user interface,GUI)。显示单元140可包括设置在终端设备105正面的显示屏141。其中,显示屏141可以采用液晶显示器、发光二极管等形式来配置。显示单元140可以用于显示本申请中所述的各种图形用户界面。触控屏131可以覆盖在显示屏141之上,也可以将触控屏131与显示屏141集成而实现终端设备105的输入和输出功能,集成后可以简称触摸显示屏。
终端设备105还可以包括至少一种传感器150,比如光传感器、运动传感器。终端设备105还可配置有陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器。
音频电路160、扬声器161、麦克风162可提供用户与终端设备105之间的音频接口。音频电路160可将接收到的音频数据转换后的电信号,传输到扬声器161,由扬声器161转换为声音信号输出;另一方面,麦克风162将收集的声音信号转换为电信号,由音频电路160接收后转换为音频数据,再将音频数据输出至RF电路110以发送给比如另一终端,或者将音频数据输出至存储器120以便进一步处理。
Wi-Fi属于短距离无线传输技术,终端设备105可以通过Wi-Fi模块170帮助用户收发电子邮件、浏览网页和访问流媒体等,它为用户提供了无线的宽带互联网访问。
处理器180是终端设备105的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器120内的软件程序,以及调用存储在存储器120内的数据,执行终端设备105的各种功能和处理数据。在一些实施例中,处理器180可包括一个或多个处理单元;处理器180还可以集成应用处理器和基带处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,基带处理器主要处理无线通信。可以理解的是,上述基带处理器也可以不集成到处理器180中。本申请中处理器180可以运行操作系统、应用程序、用户界面显示及触控响应,以及本申请实施例所述的通信方法。
蓝牙模块181,用于通过蓝牙协议来与其他具有蓝牙模块的蓝牙设备进行信息交互。例如,终端设备105可以通过蓝牙模块181与同样具备蓝牙模块的可穿戴电子设备(例如智能手表)建立蓝牙连接,从而进行数据交互。
终端设备105还包括给各个部件供电的电源190(比如电池)。电源可以通过电源管理系统与处理器180逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗等功能。
如图4所示,本申请实施例提供了一种网络设备的结构示意图。网络设备200包括:至少一个处理器201、至少一个存储器202、至少一个通信接口203。其中,至少一个处理器201、至少一个存储器202、至少一个通信接口203可以通过总线相连。
存储器202,用于存储计算机程序代码。
处理器201,用于调用存储器202存储的计算机程序代码,以执行下述各方法实施例中网络设备的功能。
通信接口203,用于与其他通信装置例如终端设备之间进行通信。该通信接口203可以以无线通信方式进行通信。
下面对本申请中涉及的概念进行描述:
物联网(internet of things,IoT)是“物物相连的互联网”。它将互联网的用户端扩展到了任何物品与物品之间,进行信息交换和通信。这样的通信方式也称为机器间通信(machine type communications,MTC),通信的节点称为MTC终端。典型的物联网应用包括可能的应用包括智能电网、智能农业、智能交通、智能家居以及环境检测等各个方面。由于物联网需要应用在多种场景中,比如从室外到室内,从地上到地下,因而对物联网的设计提出了很多特殊的要求。
覆盖增强:许多的MTC终端应用在覆盖较差的环境下,比如电表水表等通常安装在室内甚至地下室等无线网络信号很差的地方,这个时候需要覆盖增强的技术来解决。
支持大量低速率设备:MTC终端的数量要远远大于人与人通信的设备数量,但是传输的数据包很小,并且对延时并不敏感。
非常低的成本:许多MTC应用场景要求能够以非常低的成本获得并使用MTC终端,从而能够大规模部署。
低能量消耗:在大多数情况下,MTC终端是通过电池来供电的。但是同时在很多场景下,又要求MTC终端能够使用十年以上而不需要更换电池。这就要求MTC终端能够以极低的电力消耗来工作。
为了满足这些特殊需求,移动通信标准化组织第三代合作伙伴计划(3rd Generation partnership project,3GPP)在GERAN#62次全会上通过了一个新的研究课题来研究在蜂窝网络中支持极低复杂度和低成本的物联网的方法,并且在RAN#69次会议上立项为NB-IOT课题。
由于NB-IoT系统需要支持很大的覆盖范围,对处于不同通信环境下的终端设备,基站的调度策略将完全不同。例如处于小区中心位置的终端无线信道条件较好,基站使用较小的功率就能建立可靠的通信链路,并且可以使用大的传输码块、高阶调制、载波绑定等技术手段等快速的完成数据传输。而对处于小区边缘或者地下室的终端设备,无线信道质量较差,基站可能需要使用较大的功率才能保持链路,并且在传输数据过程中需要使用小码块、低阶调制、多次重复发送和扩频等技术才能完成数据传输。
为了保证通信的可靠性、节省基站的发送功率,需要对不同信道条件的终端进行区分,以方便基站进行调度。为此NB-IoT系统引入了覆盖等级的概念,覆盖等级又可以称为增强覆盖等级、覆盖增强等级、重复等级等,本申请不作限定。处于同一覆盖等级的终端的信道传输条件相似,基站可以对这类用户采用相似的调度参数,它们 占用的控制信令开销也相似。
NB-IoT系统目前只针对NPRACH引入覆盖等级的概念,且支持最多三个NPRACH覆盖等级:覆盖等级0、覆盖等级1、覆盖等级2,示例性的如图5所示。每一个随机接入资源会映射到一个NPRACH覆盖等级,从覆盖等级0开始,随机接入资源和NPRACH覆盖等级的映射随着NPRACH重复次数递增,即覆盖等级0关联的随机接入资源中NPRACH重复次数<覆盖等级1关联的随机接入资源中NPRACH重复次数<覆盖等级2关联的随机接入资源中NPRACH重复次数。NPRACH重复次数通过网络设备配置,参数名称为numRepetitionsPerPreambleAttempt。终端设备根据测量窄带参考信号接收功率(narrowband reference signal received power,NRSRP)值和基站配置的NRSRP门限值进行比较,从而确定本终端设备属于哪个覆盖等级。
对于面向开阔区域的应用,比如智能农业,畜牧业监测,智能湖泊(例如污染情况监测、水生生物监测等),需要更大的小区半径。此外对于NB-IoT系统的典型部署场景,带内部署(in-band)和保护带(guard-band)部署复用已有的站址(比如LTE的站址)。在LTE中,可支持的最大小区半径为100km。因此NB-IoT系统需要支持小区半径大于100km。在这个背景下,Rel-15NB-IoT引入了一种新的NPRACH格式,即NPRACH format2。如图6所示,NPRACH format2在时域上包括6个符号组,每个符号组包括1个循环前缀(cyclic prefix,CP)和3个符号,CP长度为800μs,每个符号的长度也为800μs。子载波带宽为1.25kHz,支持的TA最大为800μs,理论上可以支持的小区半径可以达到120km。
如前文针对图1所描述的,对于支持NPRACH format2的终端设备来说,在使用两个HARQ进程通信技术时,如果NPDSCH#1传输结束时间到A/N#0传输起始时间之间的最小时序为1ms,终端设备从下行传输向上行传输转换的转换时延最小只有200μs。对于现有的终端设备的硬件能力有较大影响,会带来终端设备硬件成本和处理复杂度的增加。
具体的,如图7所示,本申请实施例提供了一种通信方法,包括:
S701、网络设备向终端设备发送配置信息。
相应地,终端设备从网络设备接收配置信息。
其中,配置信息用于指示终端设备能够使用两个HARQ进程。
S702、网络设备向终端设备发送DCI。
相应地,终端设备从网络设备接收DCI。
其中,上述DCI用于调度两个HARQ进程中的至少一个进程,即DCI可以调度两个HARQ进程中的一个HARQ进程或者两个HARQ进程。DCI可以为一个DCI,即由一个DCI调度两个HARQ进程。或者,DCI可以包括第一DCI和第二DCI中的至少一个,第一DCI包括第一HARQ进程的标识,第二DCI包括第二HARQ进程的标识,第一DCI用于调度第一HARQ进程,第二DCI用于调度第一HARQ进程。第一HARQ进程和第二HARQ进程指两个HARQ进程中的两个进程。
S703、网络设备确定网络设备满足第一条件和终端设备满足第二条件,或者,网络设备确定终端设备满足第三条件,或者,网络设备确定终端设备满足第四条件,则网络设备确定不需要在窄带物理上行共享信道格式2(narrowband physical uplink  control channel format2,NPUSCH format2)传输的起始时间之前的前q个下行子帧内进行下行传输。
其中,第一条件和第二条件包括支持NPRACH format2传输,即网络设备满足第一条件包括网络设备支持NPRACH format2传输,终端设备满足第二条件包括终端设备支持NPRACH format2传输。
第三条件包括终端设备在NPRACH format2随机接入资源上进行随机接入,或者终端设备在NPRACH format2随机接入资源上进行过随机接入,或者终端设备在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备在NPRACH format2随机接入资源上发送过随机接入前导码。
第四条件包括终端设备的定时调整量大于或等于预设值,或者,定时调整量大于预设值。其中该预设值可以为大于或者等于8192的数值。优选地,该预设值为8192。
所述NPUSCH format2传输为终端设备在一个HARQ进程或者两个HARQ进程中的一个HARQ进程上进行的上行传输。NPUSCH format2用于承载ACK/NACK。
q为大于1的正整数。
对于该终端设备,可以在NPUSCH format2传输的起始时间之前的前q个下行子帧内完成从下行传输到上行传输的转换。对于NB-IoT系统,1个子帧占用1ms,q为大于1的正整数,因此对于该终端设备,从下行传输到上行传输的转换时延可以大于或者等于2ms。
示例性的,如图8中所示,假设NPUSCH format2传输的起始时间为子帧n(也可称为第n子帧,或者帧号为n的子帧),则NPUSCH format2传输的起始时间之前的前q个下行子帧指的是子帧n-q(也可称为第n-q子帧,或者,帧号为n-q的子帧)到子帧n-1(也可称为第n-1子帧,帧号为n-1的子帧)。即该前q个子帧在NPUSCH format2传输的起始时间之前,并且在时间上紧邻NPUSCH format2传输的起始时间。
优选的,本申请实施例中q=2。如图9中所示,为下行两个HARQ峰值速率对应的调度图案,NPDSCH#0和NPDSCH#1承载的传输块(transmission block,TB)占用的比特数均为2536比特,其中2536比特为目前NB-IoT系统可支持调度的最大传输块大小(transport block size,TBS),当调度周期为40ms时可以NB-IoT下行的速率可以达到最大值,此时的速率,也称为峰值速率,该峰值速率为(2536bit+2536bit)/40ms=126.8kbps。NPDSCH#2结束时间到A/N#1起始时间之间的时延为q ms。如果q大于2,调度周期会大于40ms,从而导致NB-IoT系统无法调度到126.8kbps的峰值速率。
针对图1所示的场景,如图10所示,当q为2时,终端设备从下行传输向上行传输转换的转换时延的最小值为1200μs,相比Rel-14NB-IoT中下行传输向上行传输转换的转换时延的最小值(即733μs),转换时延更加宽松,因此对现有终端设备的硬件成本及处理复杂度能力几乎没有影响。
S704、终端设备确定网络设备满足第一条件和终端设备满足第二条件,或者,终端设备确定终端设备满足第三条件,或者,终端设备确定终端设备满足第四条件,则终端设备确定不需要在NPUSCH format2传输的起始时间之前的前q个下行子帧内接收下行传输。
本申请实施例提供的通信方法,在使用两个HARQ通信技术时,对于支持NPRACH format2的终端设备,NPUSCH format2传输的起始时间之前的前q个下行子帧可用于该终端设备完成下行传输向上行传输的转换,q为大于1的正整数,即下行传输向上行传输的转换时延大于或者等于2ms,以q=2为例,当TA调整时长最大为800μs时,终端设备从下行传输向上行传输转换的转换时延最小为1200μs,相比Rel-14NB-IoT中下行传输向上行传输转换的转换时延的最小值(即733μs),转换时延更加宽松,类似地,q>2时,终端设备从下行传输向上行传输转换的转换时延最小值大于1200μs,相比Rel-14NB-IoT中下行传输向上行传输转换的转换时延的最小值(即733μs),转换时延会更加宽松。因此对于支持NPRACH format2的终端设备来说,通过增加下行传输向上行传输转换的转换时延,不必在硬件上做出改变,进而不会大幅提高硬件成本以及处理复杂度。
可选的,如图11中所示,该通信方法还包括:
S705、网络设备确定网络设备满足第五条件和/或终端设备满足第六条件,或者,网络设备确定终端设备满足第七条件,或者,网络设备确定终端设备满足第八条件,则网络设备确定不需要在NPUSCH format2传输的起始时间之前的前一个下行子帧内进行下行传输。
其中,第五条件和第六条件包括不支持NPRACH format2传输,即网络设备满足第五条件包括网络设备不支持NPRACH format2传输,终端设备满足第六条件包括终端设备不支持NPRACH format2传输。
第七条件包括终端设备未在NPRACH format2随机接入资源上进行随机接入,或者终端设备未在NPRACH format2随机接入资源上进行过随机接入,或者终端设备未在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备未在NPRACH format2随机接入资源上发送过随机接入前导码。
第八条件包括终端设备的定时调整量小于或等于预设值,或者,定时调整量小于预设值。其中该预设值可以为大于或者等于8192的数值。优选地,该预设值为8192。
NPUSCH format2传输的起始时间之前的前一个下行子帧可以指Type B半双工频分双工(Type B half-duplex FDD)保护周期(guard period)。
对该终端设备,可以在NPUSCH format2传输的起始时间之前的前一个下行子帧内完成从下行传输到上行传输的转换。对于NB-IoT系统,1个子帧占用1ms,由于1ms内终端设备在发送上行传输前需要进行TA调整,因此对该终端设备,从下行传输到上行传输的转换时延的最大值为1ms。由于该终端设备和/或该网络设备不支持NPRACH format2传输,因此终端设备只能通过NPRACH format 0或者NPRACH format1随机接入前导码进行随机接入,这种情况下对于该终端设备下行传输到上行传输转换的转换时延的最小值和Rel-14NB-IoT中下行传输向上行传输转换的转换时延的最小值一样,为733μs。因此对于该终端设备来说,不必在硬件上做出改变,因此也就不会提高硬件成本以及处理复杂度。
下行传输包括但不限于NPDSCH、NPDCCH等下行传输。
需要说明的是,下行传输对应的HARQ进程可以和NPUSCH format2传输对应的HARQ进程相同,也可以不同。
S706、终端设备确定网络设备满足第五条件和/或终端设备满足第六条件,或者,终端设备确定终端设备满足第七条件,或者,终端设备确定终端设备满足第八条件,则终端设备确定不需要在NPUSCH format2传输的起始时间之前的前一个下行子帧内接收下行传输。
该实施方式中,对于不支持NPRACH format2的终端设备,可以在NPUSCH format2传输的起始时间之前的前一个下行子帧内完成从下行传输到上行传输的转换。对于NB-IoT系统,1个子帧占用1ms,由于1ms内终端设备在发送上行传输前需要进行TA调整,因此对该终端设备,从下行传输到上行传输的转换时延的最大值为1ms。由于该终端设备和/或该网络设备不支持NPRACH format2传输,因此终端设备只能通过NPRACH format 0或者NPRACH format1随机接入前导码进行随机接入,这种情况下对于该终端设备下行传输到上行传输转换的转换时延的最小值和Rel-14NB-IoT中下行传输向上行传输转换的转换时延的最小值一样,为733μs。因此对于该终端设备来说,不必在硬件上做出改变,因此也就不会提高硬件成本以及处理复杂度。
可选的,如图12中所示,该通信方法还包括:
S1201、网络设备确定网络设备满足第一条件和终端设备满足第二条件,或者,网络设备确定终端设备满足第三条件,或者,网络设备确定终端设备满足第四条件,则网络设备确定不需要在NPUSCH format1传输的起始时间之前的前q个下行子帧内进行下行传输。
其中,NPUSCH format1传输为终端设备在一个HARQ进程或者两个HARQ进程中的一个HARQ进程上进行的上行传输。NPUSCH format1传输用于传输上行数据。
示例性的,假设NPUSCH format1传输的起始时间为子帧m(也可称为第m子帧,或者帧号为m的子帧),则NPUSCH format1传输的起始时间之前的前q个下行子帧指的是子帧m-q(也可称为第m-q子帧,或者,帧号为m-q的子帧)到子帧m-1(也可称为第m-1子帧,帧号为m-1的子帧)。即该前q个子帧在NPUSCH format1传输的起始时间之前,并且在时间上紧邻NPUSCH format1传输的起始时间。
需要说明的是,下行传输对应的HARQ进程可以和NPUSCH format1传输对应的HARQ进程相同,也可以不同。
关于前第q个下行子帧的相关描述,见前面步骤,在此不再重复。
S1202、终端设备确定网络设备满足第一条件和终端设备满足第二条件,或者,终端设备确定终端设备满足第三条件,或者,终端设备确定终端设备满足第四条件,则终端设备确定不需要在NPUSCH format1传输的起始时间之前的前q个下行子帧内接收下行传输。
在使用两个HARQ通信技术时,对于支持NPRACH format2的终端设备,NPUSCH format1传输的起始时间之前的前q个下行子帧可用于该终端设备完成下行传输向上行传输的转换,q为大于1的正整数,即下行传输向上行传输的转换时延大于或者等于2ms,以q=2为例,当TA调整时长最大为800μs时,终端设备从下行传输向上行传输转换的转换时延最小为1200μs,相比Rel-14NB-IoT中下行传输向上行传输转换的转换时延的最小值(即733μs),转换时延更加宽松,类似地,q>2时,终端设备从下行传输向上行传输转换的转换时延最小值大于1200μs,相比Rel-14NB-IoT中下行 传输向上行传输转换的转换时延的最小值(即733μs),转换时延会更加宽松。因此对于支持NPRACH format2的终端设备来说,通过增加下行传输向上行传输转换的转换时延,不必在硬件上做出改变,进而不会大幅提高硬件成本以及处理复杂度。
S1203、网络设备确定网络设备满足第五条件和/或终端设备满足第六条件,或者,网络设备确定终端设备满足第七条件,或者,网络设备确定终端设备满足第八条件,则网络设备确定不需要在NPUSCH format1传输的起始时间之前的前一个下行子帧内进行下行传输。
S1204、终端设备确定网络设备满足第五条件和/或终端设备满足第六条件,或者,终端设备确定终端设备满足第七条件,或者,终端设备确定终端设备满足第八条件,则终端设备确定不需要在NPUSCH format1传输的起始时间之前的前一个下行子帧内接收下行传输。
需要说明的是,也可以先执行步骤S1201-S1204中所述的针对NPUSCH format1传输对接收下行传输进行控制,然后再进一步执行步骤S703-S706所述的针对NPRACH format2传输对接收下行传输进行控制。
下面对前文所述的第一条件至第七条件进行进一步描述。
首先,可以根据网络设备是否支持NPRACH format2传输确定网络设备满足第一条件或满足第五条件,根据终端设备是否支持NPRACH format2传输确定终端设备满足第二条件或满足第六条件。
如果网络设备支持NPRACH format2传输,则网络设备向终端设备发送的系统消息中包括用于NPRACH format2传输的随机接入资源配置信息。如果终端设备支持NPRACH format2传输,则终端设备向网络设备发送指示信息,指示信息用于表示终端设备具有NPRACH format2能力(nprach-Format2capability)。
如果网络设备不支持NPRACH format2传输,则网络设备向终端设备发送的系统消息中不包括用于NPRACH format2传输的随机接入资源配置信息。如果终端设备支持NPRACH format2传输,则终端设备确定不向网络设备发送指示信息,指示信息用于表示终端设备具有NPRACH format2能力(nprach-Format2capability)。
具体的,在一种可能的实施方式中,网络设备确定网络设备满足第一条件(包括网络设备确定网络设备支持NPRACH format2传输)之后,网络设备向终端设备发送系统消息,系统消息中包括用于NPRACH format2传输的随机接入资源配置信息。相应地,终端设备确定网络设备满足第一条件,包括:终端设备确定从网络设备接收的系统消息中包括用于NPRACH format2传输的随机接入资源配置信息。本申请不限定该随机接入资源配置信息或者系统消息的具体形式,示例性的,该随机接入资源配置信息可以为NPRACH-ParametersListFmt2-NB,携带该随机接入资源配置信息的系统消息可以为SystemInformationBlockType2-NB、SystemInformationBlockType23-NB中的至少一个。
终端设备确定终端设备满足第二条件(包括终端设备确定终端设备支持NPRACH format2传输)之后,进一步包括:终端设备向网络设备发送指示信息,指示信息用于表示终端设备具有NPRACH format2能力。相应地,网络设备确定终端设备满足第二条件,包括:网络设备从终端设备接收指示信息,指示信息用于表示终端设备具有 NPRACH format2能力。
具体的,在另一种可能的实施方式中,网络设备确定网络设备满足第五条件(包括网络设备确定网络设备不支持NPRACH format2传输)之后,网络设备向终端设备发送系统消息,系统消息中不包括用于NPRACH format2传输的随机接入资源配置信息。相应地,终端设备确定网络设备满足第五条件,包括:终端设备确定从网络设备接收的系统消息中不包括用于NPRACH format2传输的随机接入资源配置信息。
终端设备确定终端设备满足第六条件(包括终端设备确定终端设备不支持NPRACH format2传输)之后,进一步包括:终端设备确定不需要向网络设备发送指示信息,指示信息用于表示终端设备具有NPRACH format2能力。相应地,网络设备确定终端设备满足第六条件,包括:网络设备确定未从终端设备接收指示信息,指示信息用于表示终端设备具有NPRACH format2能力。
进一步的,在终端设备是否支持NPRACH format2传输的基础上,还可以结合终端设备的NPRACH覆盖等级来确定终端设备满足第二条件或第三条件,或者,确定终端设备满足第六条件或第七条件。
NPRACH覆盖等级为终端设备随机接入过程成功时的NPRACH覆盖等级,或者,开始随机接入过程时的NPRACH覆盖等级,或者,最近的NPRACH覆盖等级,或者,距离DCI调度在时间上最近的、且随机接入过程成功时的NPRACH覆盖等级。
可选的,网络设备可以确定终端设备的NPRACH覆盖等级。具体的,网络设备会配置多个NPRACH资源,每个NPRACH资源对应一个NPRACH覆盖等级,终端设备在NPRACH覆盖等级对应的NPRACH资源上进行随机接入,网络设备根据终端设备随机接入的NPRACH资源确定终端设备的NPRACH覆盖等级。
在一种可能的实施方式中,第二条件或第三条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级1或覆盖等级2。第六条件或第七条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0。
该实施方式的意义在于:对于NPRACH覆盖等级为覆盖等级0的终端设备,其距离网络设备(例如基站)较近,TA较小,因此不用增加终端设备从下行传输向上行传输转换的转换时延,也可以保证终端设备能够实现从下行传输向上行传输的转换。对于覆盖等级为覆盖等级1或覆盖等级2的终端设备,其距离网络设备(例如基站)较远,TA较大,因此增加终端设备从下行传输向上行传输转换的转换时延,从而保证终端设备能够实现从下行传输向上行传输的转换。
在另一种可能的实施方式中,第二条件或第三条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级2。第六条件或第七条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等级1。
该实施方式的意义在于:对于NPRACH覆盖等级为覆盖等级0或覆盖等级1的终端设备,其距离网络设备(例如基站)较近,TA较小,因此不用增加终端设备从下行传输向上行传输转换的转换时延,也可以保证终端设备能够实现从下行传输向上行传输的转换。对于覆盖等级为覆盖等级2的终端设备,其距离网络设备(例如基站)较远,TA较大,因此增加终端设备从下行传输向上行传输转换的转换时延,从而保证终端设备能够实现从下行传输向上行传输的转换。
进一步的,在终端设备是否支持NPRACH format2传输以及终端设备的NPRACH覆盖等级的基础上,还可以结合定时调整量来确定终端设备满足第二条件或第三条件,或者,确定终端设备满足第六条件或第七条件。
可选的,如图13中所示,该通信方法还包括:
S1301、网络设备确定终端设备的定时调整量。
在一种可能的实施方式中,在随机接入过程中,终端设备向网络设备发送随机接入前导码(preamble),网络设备根据随机接入前导码进行TA估计,从而确定终端设备的定时调整量。
在另一种可能的实施方式中,在随机接入过程完成以后,终端设备向网络设备发送上行数据,网络设备根据上行数据确定终端设备的定时调整量。
S1302、网络设备向终端设备发送定时提前命令(timing advance command)。
相应地,终端设备从网络设备接收到定时提前命令。该定时提前命令根据定时调整量得到。
在随机接入过程中,当定时提前命令承载在随机接入响应消息中时,定时提前命令占用的比特位数为11比特。
在随机接入过程完成以后,当定时提前命令不承载在随机接入响应消息中时,定时提前命令占用的比特位数为6比特。
S1303、终端设备根据定时提前命令确定定时调整量。
其中,定时调整量为正数时表示上行传输定时提前。
可选的,在随机接入过程中,当定时提前命令承载在随机接入响应消息中时,终端设备根据定时提前命令确定定时调整量,包括:终端设备根据公式N TA=T A×16确定定时调整量N TA,其中,T A为定时提前命令指示的索引值。
可选的,在随机接入过程完成以后,当定时提前命令不承载在随机接入响应消息中时,终端设备根据公式N TA,new=N TA,old+(T A-31)×16确定定时调整量,即新的定时调整量,其中,N TA,new表示新的定时调整量,N TA,old表示当前的定时调整量,T A为定时提前命令指示的索引值。当前的定时调整量N TA,old可以由终端设备保存。可选地,网络设备也可以保存该终端设备当前的定时调整量N TA,old
在一种可能的实施方式中,第二条件或第三条件,进一步包括:定时调整量大于或等于预设值。第六条件或第七条件,进一步包括:定时调整量小于预设值。
其中该预设值可以为大于或者等于8192的数值。优选地,该预设值为8192。
该实施方式的意义在于:定时调整量小于预设值时,即TA较小,终端设备距离网络设备(例如基站)较近,因此不用增加终端设备从下行传输向上行传输转换的转换时延,也可以保证终端设备能够实现从下行传输向上行传输的转换。定时调整量大于或等于预设值时,即TA较大,终端设备距离网络设备(例如基站)较远,因此增加终端设备从下行传输向上行传输转换的转换时延,从而保证终端设备能够实现从下行传输向上行传输的转换。
在另一种可能的实施方式中,第六条件或第七条件,进一步包括:定时调整量小于或等于预设值。第二条件或第三条件,进一步包括:定时调整量大于预设值。
该实施方式的意义在于:定时调整量小于或等于预设值时,即TA较小,终端设 备距离网络设备(例如基站)较近,因此不用增加终端设备从下行传输向上行传输转换的转换时延,也可以保证终端设备能够实现从下行传输向上行传输的转换。定时调整量大于预设值时,即TA较大,终端设备距离网络设备(例如基站)较远,因此增加终端设备从下行传输向上行传输转换的转换时延,从而保证终端设备能够实现从下行传输向上行传输的转换。
本申请实施例提供了另一种通信方法,如图14所示,该通信方法包括步骤S1401-S1404:
S1401、终端设备向网络设备发送指示信息。
相应地,网络设备从终端设备接收指示信息。
其中,指示信息用于表示终端设备具有支持NPRACH format2能力。
S1402、网络设备向终端设备发送系统消息。
相应地,终端设备从网络设备接收系统消息。
其中,系统消息包括用于NPRACH format2传输的随机接入资源配置信息。
S1403、网络设备确定满足第一条件,则网络设备向终端设备发送配置信息。
相应地,终端设备确定满足第一条件,则终端设备从网络设备接收到配置信息。
其中,配置信息用于指示终端设备能够使用两个HARQ进程。
下面对第一条件可能的几种实施方式进行说明:
在一种可能的实施方式中,第一条件包括:终端设备未在NPRACH format2随机接入资源上进行随机接入,或者终端设备未在NPRACH format2随机接入资源上进行过随机接入,或者终端设备未在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备未在NPRACH format2随机接入资源上发送过随机接入前导码。
在另一种可能的实施方式中,网络设备可以确定终端设备的NPRACH覆盖等级。具体的,终端设备在NPRACH覆盖等级对应的随机接入资源上进行随机接入,网络设备根据终端设备随机接入的随机接入资源确定终端设备的NPRACH覆盖等级。NPRACH覆盖等级为终端设备随机接入过程成功时的NPRACH覆盖等级,或者,开始随机接入过程时的NPRACH覆盖等级,或者,最近的NPRACH覆盖等级,或者,距离DCI调度在时间上最近的、且随机接入过程成功时的NPRACH覆盖等级。
第一条件包括:终端设备的NPRACH覆盖等级为覆盖等级0。
该实施方式的意义在于:对于覆盖等级为覆盖等级0的终端设备,其距离网络设备(例如基站)较近,TA较小,不必增加终端设备从下行传输向上行传输转换的转换时延,即能保证终端设备能够实现从下行传输向上行传输的转换。
或者,第一条件包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等级1。
该实施方式的意义在于:对于覆盖等级为覆盖等级0或覆盖等级1的终端设备,其距离网络设备(例如基站)较近,TA较小,不必增加终端设备从下行传输向上行传输转换的转换时延,即能保证终端设备能够实现从下行传输向上行传输的转换。
在又一种可能的实施方式中,如图15中所示,该通信方法还可以包括步骤S1501-S1503:
S1501、网络设备确定终端设备的定时调整量。
该步骤参照步骤S1301,在此不再重复。
S1502、网络设备向终端设备发送定时提前命令。
相应地,终端设备从网络设备接收到定时提前命令。
该步骤参照步骤S1302,在此不再重复。
S1503、终端设备根据定时提前命令确定定时调整量。
该步骤参照步骤S1303,在此不再重复。
第一条件,包括:定时调整量小于预设值。或者,第一条件,包括:定时调整量小于或者等于预设值。
其中该预设值可以为大于或者等于8192的数值。优选地,该预设值为8192。
该实施方式的意义在于:定时调整量小于预设值时,或者,定时调整量小于或者等于预设值时,即TA较小,终端设备距离网络设备(例如基站)较近,不必增加终端设备从下行传输向上行传输转换的转换时延,即能保证终端设备能够实现从下行传输向上行传输的转换。
需要说明的是,关于第一条件的上述几种可能的实施方式可以进行组合。示例性的:
第一条件包括:终端设备未在NPRACH format2随机接入资源上进行随机接入,或者终端设备未在NPRACH format2随机接入资源上进行过随机接入,或者终端设备未在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备未在NPRACH format2随机接入资源上发送过随机接入前导码。
第一条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0,或者,第一条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等级1。
第一条件,进一步包括:定时调整量小于预设值,或者,第一条件,进一步包括:定时调整量小于或者等于预设值。
S1404、网络设备向终端设备发送DCI。
相应地,终端设备从网络设备接收DCI。
其中,DCI用于调度两个HARQ进程中的一个HARQ进程或者两个HARQ进程。
关于DCI的描述参照步骤S702,在此不再重复。
本申请实施例提供的通信方法,对于网络设备和终端设备均支持NPRACH format2传输,对终端设备使用两个HARQ通信技术增加了一些限制条件,例如限制只有覆盖等级好的终端设备,距离基站近的终端设备,即TA较小的终端设备才可以使用两个HARQ进程通信技术,这样不必增加终端设备从下行传输向上行传输转换的转换时延,即能保证终端设备能够实现从下行传输向上行传输的转换。满足这些限制条件的终端设备不必在硬件上做出改变,即可保证下行传输向上行传输转换的有足够的转换时延,进而不会大幅提高硬件成本以及处理复杂度。
可以理解的是,以上各个实施例中,由终端设备实现的方法和/或步骤,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和/或步骤,也可以由可用于网络设备的部件实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的终端设备,或者包含上述终端设备的装置,或者为可 用于终端设备的部件;或者,该通信装置可以为上述方法实施例中的网络设备,或者包含上述网络设备的装置,或者为可用于网络设备的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以通信装置为上述方法实施例中的终端设备为例。图16示出了一种终端设备160的结构示意图。该终端设备160包括处理模块1601和收发模块1602。收发模块1602,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
收发模块1602,用于从网络设备接收配置信息,配置信息用于指示终端设备能够使用两个混合自动重传请求HARQ进程。
收发模块1602,还用于从网络设备接收下行控制信息DCI,DCI用于调度两个HARQ进程中的一个HARQ进程或者两个HARQ进程。
处理模块1601,用于确定网络设备满足第一条件和终端设备满足第二条件,或者,确定终端设备满足第三条件,或者,确定终端设备满足第四条件,则确定收发模块1602不需要在窄带物理上行共享信道格式2NPUSCH format2传输的起始时间之前的前q个下行子帧内接收下行传输,其中,第一条件和第二条件包括支持窄带随机接入信道格式2NPRACH format2传输,第三条件包括终端设备在NPRACH format2随机接入资源上进行随机接入,或者终端设备在NPRACH format2随机接入资源上进行过随机接入,或者终端设备在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备在NPRACH format2随机接入资源上发送过随机接入前导码,第四条件包括终端设备的定时调整量大于或等于预设值,或者,定时调整量大于预设值,q为大于1的正整数,NPUSCH format2传输为终端设备在一个HARQ进程或者两个HARQ进程中的一个HARQ进程上进行的上行传输。
可选的,处理模块1601,还用于确定网络设备满足第五条件和/或终端设备满足第六条件,或者,确定终端设备满足第七条件,或者,确定终端设备满足第八条件,则处理模块1601,还用于确定收发模块1602不需要在NPUSCH format2传输的起始时间之前的前一个下行子帧内接收下行传输,其中,第五条件和第六条件包括不支持NPRACH format2传输,第七条件包括终端设备未在NPRACH format2随机接入资源上进行随机接入,或者终端设备未在NPRACH format2随机接入资源上进行过随机接入,或者终端设备未在NPRACH format2随机接入资源上发送随机接入前导码,或者 终端设备未在NPRACH format2随机接入资源上发送过随机接入前导码,第八条件包括终端设备的定时调整量小于或等于预设值,或者,定时调整量小于预设值。
可选的,处理模块1601,用于确定网络设备满足第一条件,包括:用于确定从网络设备接收的系统消息中包括用于NPRACH format2传输的随机接入资源配置信息;处理模块1601确定终端设备满足第二条件之后,进一步包括:通过收发模块1602向网络设备发送指示信息,指示信息用于表示终端设备具有NPRACH format2能力。第五条件,包括:处理模块1601确定从网络设备接收的系统消息中不包括用于NPRACH format2传输的随机接入资源配置信息;处理模块1601确定终端设备满足第六条件之后,进一步包括:处理模块1601确定不需要收发模块1602向网络设备发送指示信息,指示信息用于表示终端设备具有NPRACH format2能力。
可选的,第二条件或第三条件进一步包括:终端设备的NPRACH覆盖等级为覆盖等级1或覆盖等级2。第六条件或第七条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0。
可选的,第二条件或第三条件进一步包括:终端设备的NPRACH覆盖等级为覆盖等级2。第六条件或第七条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等级1。
可选的,NPRACH覆盖等级为终端设备随机接入过程成功时的NPRACH覆盖等级,或者,开始随机接入过程时的NPRACH覆盖等级,或者,距离DCI调度在时间上最近的、且随机接入过程成功时的NPRACH覆盖等级。
可选的,收发模块1602,还用于从网络设备接收到定时提前命令,处理模块1601,还用于根据定时提前命令确定定时调整量,其中,定时调整量为正数时表示上行传输定时提前;第二条件或第三条件进一步包括:定时调整量大于或等于预设值。第六条件或第七条件,进一步包括:定时调整量小于预设值。
可选的,收发模块1602,还用于从网络设备接收到定时提前命令,处理模块1601,还用于根据定时提前命令确定定时调整量,其中,定时调整量为正数时表示上行传输定时提前;第二条件或第三条件进一步包括:定时调整量大于预设值。第六条件或第七条件,进一步包括:定时调整量小于或等于预设值。
可选的,处理模块1601确定网络设备满足第一条件和终端设备满足第二条件,或者,确定终端设备满足第三条件,或者,确定终端设备满足第四条件,处理模块1601,还用于确定收发模块1602不需要在窄带物理上行共享信道格式1NPUSCH format1传输的起始时间之前的前q个下行子帧内接收下行传输,NPUSCH format1传输为终端设备在一个HARQ进程或者两个HARQ进程中的一个HARQ进程上进行的上行传输。
另一方面,收发模块1602,用于向网络设备发送指示信息,指示信息用于表示终端设备具有支持窄带随机接入信道NPRACH format2能力;收发模块1602,还用于从网络设备接收系统消息,系统消息包括用于NPRACH format2传输的随机接入资源配置信息;处理模块1601,用于确定满足第一条件,则收发模块1602,还用于从网络设备接收到配置信息,配置信息用于指示终端设备能够使用两个混合自动重传请求HARQ进程;收发模块1602,还用于从网络设备接收下行控制信息DCI,DCI用于调度两个HARQ进程中的一个HARQ进程或者两个HARQ进程。
可选的,第一条件包括终端设备未在NPRACH format2随机接入资源上进行随机接入,或者终端设备未在NPRACH format2随机接入资源上进行过随机接入,或者终端设备未在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备未在NPRACH format2随机接入资源上发送过随机接入前导码。
可选的,第一条件包括:终端设备的NPRACH覆盖等级为覆盖等级0;或者,第一条件包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等级1。
可选的,第一条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0;或者,第一条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等级1。
可选的,NPRACH覆盖等级为终端设备随机接入过程成功时的NPRACH覆盖等级,或者,开始随机接入过程时的NPRACH覆盖等级,或者,距离DCI调度在时间上最近的、且随机接入过程成功时的NPRACH覆盖等级。
可选的,收发模块1602,还用于从网络设备接收到定时提前命令,处理模块1601,还用于根据定时提前命令确定定时调整量,其中,定时调整量为正数时表示上行传输定时提前;第一条件,包括:定时调整量小于预设值,或者,第一条件,包括:定时调整量小于或者等于预设值。
可选的,收发模块1602,还用于从网络设备接收到定时提前命令,处理模块1601,还用于根据定时提前命令确定定时调整量,其中,定时调整量为正数时表示上行传输定时提前;第一条件,进一步包括:定时调整量小于预设值,或者,第一条件,进一步包括:定时调整量小于或者等于预设值。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该终端设备160以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该终端设备160可以采用图3所示的终端设备105的形式。
比如,图3所示的终端设备105中的处理器180可以通过调用存储器120中存储的计算机执行指令,使得终端设备105执行上述方法实施例中的通信方法。
具体的,图16中的处理模块1601和收发模块1602的功能/实现过程可以通过图3所示的终端设备105中的处理器180调用存储器120中存储的计算机执行指令来实现。或者,图16中的处理模块1601的功能/实现过程可以通过图3所示的终端设备105中的处理器180调用存储器120中存储的计算机执行指令来实现,图16中的收发模块1602的功能/实现过程可以通过图3中所示的终端设备105中的RF电路110来实现。
由于本实施例提供的终端设备160可执行上述通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
或者,比如,以通信装置为上述方法实施例中的网络设备为例。图17示出了一种网络设备170的结构示意图。该网络设备170包括处理模块1701和收发模块1702。所述收发模块1702,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收 发电路,收发机,收发器或者通信接口。
收发模块1702,用于向终端设备发送配置信息,配置信息用于指示终端设备能够使用两个混合自动重传请求HARQ进程。
收发模块1702,还用于向终端设备发送下行控制信息DCI,DCI用于调度两个HARQ进程中的一个HARQ进程或者两个HARQ进程。
处理模块1701,用于确定网络设备满足第一条件和终端设备满足第二条件,或者,确定终端设备满足第三条件,或者,确定终端设备满足第四条件,则确定收发模块1702不需要在窄带物理上行共享信道格式2NPUSCH format2传输的起始时间之前的前q个下行子帧内进行下行传输,其中,第一条件和第二条件包括支持窄带随机接入信道格式2NPRACH format2传输,第三条件包括终端设备在NPRACH format2随机接入资源上进行随机接入,或者终端设备在NPRACH format2随机接入资源上进行过随机接入,或者终端设备在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备在NPRACH format2随机接入资源上发送过随机接入前导码,第四条件包括终端设备的定时调整量大于或等于预设值,或者,定时调整量大于预设值,q为大于1的正整数,NPUSCH format2传输为终端设备在一个HARQ进程或者两个HARQ进程中的一个HARQ进程上进行的上行传输。
可选的,处理模块1701,还用于确定网络设备满足第五条件和/或终端设备满足第六条件,或者,确定终端设备满足第七条件,或者,确定终端设备满足第八条件,则处理模块1701,还用于确定收发模块1702不需要在NPUSCH format2传输的起始时间之前的前一个下行子帧内进行下行传输,其中,第五条件和第六条件包括不支持NPRACH format2传输,第七条件包括终端设备未在NPRACH format2随机接入资源上进行随机接入,或者终端设备未在NPRACH format2随机接入资源上进行过随机接入,或者终端设备未在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备未在NPRACH format2随机接入资源上发送过随机接入前导码,第八条件包括终端设备的定时调整量小于或等于预设值,或者,定时调整量小于预设值。
可选的,处理模块1701确定网络设备满足第一条件之后,进一步包括:通过收发模块1702向终端设备发送系统消息,系统消息中包括用于NPRACH format2传输的随机接入资源配置信息;处理模块1701,用于确定终端设备满足第二条件,包括:通过收发模块1702从终端设备接收指示信息,指示信息用于表示终端设备具有NPRACH format2能力。处理模块1701确定网络设备满足第五条件之后,进一步包括:通过收发模块1702向终端设备发送系统消息,系统消息中不包括用于NPRACH format2传输的随机接入资源配置信息;处理模块1701,用于确定终端设备满足第六条件,包括:用于确定未从终端设备接收指示信息,指示信息用于表示终端设备具有NPRACH format2能力。
可选的,处理模块1701,还用于确定终端设备的NPRACH覆盖等级;第二条件或第三条件进一步包括:终端设备的NPRACH覆盖等级为覆盖等级1或覆盖等级2。第六条件或第七条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0。
可选的,处理模块1701,还用于确定终端设备的NPRACH覆盖等级;第二条件或第三条件进一步包括:终端设备的NPRACH覆盖等级为覆盖等级2。第六条件或第 七条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等级1。
可选的,NPRACH覆盖等级为终端设备随机接入过程成功时的NPRACH覆盖等级,或者,开始随机接入过程时的NPRACH覆盖等级,或者,距离DCI调度在时间上最近的、且随机接入过程成功时的NPRACH覆盖等级。
可选的,处理模块1701,还用于确定定时调整量,收发模块1702,还用于向终端设备发送定时提前命令,其中,定时调整量为正数时表示上行传输定时提前;第二条件或第三条件进一步包括:定时调整量大于或等于预设值。第六条件或第七条件,进一步包括:定时调整量小于预设值。
可选的,处理模块1701,还用于确定定时调整量,收发模块1702,还用于向终端设备发送定时提前命令,其中,定时调整量为正数时表示上行传输定时提前;第二条件或第三条件进一步包括:定时调整量大于预设值。第六条件或第七条件,进一步包括:定时调整量小于或等于预设值。
可选的,处理模块1701确定网络设备满足第一条件和终端设备满足第二条件,或者,确定终端设备满足第三条件,或者,确定终端设备满足第四条件,处理模块1701,还用于确定收发模块1702不需要在窄带物理上行共享信道格式1NPUSCH format1传输的起始时间之前的前q个下行子帧内进行下行传输,其中,NPUSCH format1传输为终端设备在一个HARQ进程或者两个HARQ进程中的一个HARQ进程上进行的上行传输。
另一方面,收发模块1702,用于从终端设备接收指示信息,指示信息用于表示终端设备具有支持窄带随机接入信道NPRACH format2能力;收发模块1702,还用于向终端设备发送系统消息,系统消息包括用于NPRACH format2传输的随机接入资源配置信息;处理模块1701,用于确定满足第一条件,则收发模块1702,还用于向终端设备发送配置信息,配置信息用于指示终端设备能够使用两个混合自动重传请求HARQ进程;收发模块1702,还用于向终端设备发送下行控制信息DCI,DCI用于调度两个HARQ进程中的一个HARQ进程或者两个HARQ进程。
可选的,第一条件包括终端设备未在NPRACH format2随机接入资源上进行随机接入,或者终端设备未在NPRACH format2随机接入资源上进行过随机接入,或者终端设备未在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备未在NPRACH format2随机接入资源上发送过随机接入前导码。
可选的,处理模块1701,还用于确定终端设备的NPRACH覆盖等级;第一条件包括:终端设备的NPRACH覆盖等级为覆盖等级0;或者,第一条件包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等级1。
可选的,处理模块1701,还用于确定终端设备的NPRACH覆盖等级;第一条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0;或者,第一条件,进一步包括:终端设备的NPRACH覆盖等级为覆盖等级0或覆盖等级1。
可选的,NPRACH覆盖等级为终端设备随机接入过程成功时的NPRACH覆盖等级,或者,开始随机接入过程时的NPRACH覆盖等级,或者,距离DCI调度在时间上最近的、且随机接入过程成功时的NPRACH覆盖等级。
可选的,处理模块1701,还用于确定定时调整量,收发模块1702,还用于向终端 设备发送定时提前命令,其中,定时调整量为正数时表示上行传输定时提前;第一条件,包括:定时调整量小于预设值,或者,第一条件,包括:定时调整量小于或者等于预设值。
可选的,处理模块1701,还用于确定定时调整量,收发模块1702,还用于向终端设备发送定时提前命令,其中,定时调整量为正数时表示上行传输定时提前;第一条件,进一步包括:定时调整量小于预设值,或者,第一条件,进一步包括:定时调整量小于或者等于预设值。该实施方式进一步提供了第一条件的另外几种可能方式。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该网络设备170以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该网络设备170可以采用图4所示的网络设备200的形式。
比如,图4所示的网络设备200中的处理器201可以通过调用存储器202中存储的计算机执行指令,使得网络设备200执行上述方法实施例中的通信方法。
具体的,图17中的处理模块1701和收发模块1702的功能/实现过程可以通过图4所示的网络设备200中的处理器201调用存储器202中存储的计算机执行指令来实现。或者,图17中的处理模块1701的功能/实现过程可以通过图4所示的网络设备200中的处理器201调用存储器202中存储的计算机执行指令来实现,图17中的收发模块1702的功能/实现过程可以通过图4中所示的网络设备200中的收发器203来实现。
由于本实施例提供的网络设备170可执行上述通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例还提供一种通信装置,包括:处理器和存储器,所述存储器用于存储程序,所述处理器调用存储器存储的程序,以使通信装置执行图7、11-15中的终端设备的通信方法。
本申请实施例还提供一种通信装置,包括:处理器和存储器,所述存储器用于存储程序,所述处理器调用存储器存储的程序,以使通信装置执行图7、11-15中的网络设备的通信方法。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机或处理器上运行时,使得计算机或处理器执行图7、11-15中终端设备或网络设备的通信方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当指令在计算机或处理器上运行时,使得计算机或处理器执行图7、11-15中的终端设备或网络设备的通信方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于通信装置执行图7、11-15中的终端设备的通信方法。例如,终端设备从网络设备接收配置信息,配置信息用于指示终端设备能够使用两个混合自动重传请求HARQ进程;终端设备从网络设备接收下行控制信息DCI,DCI用于调度两个HARQ进程中的一个HARQ进程或 者两个HARQ进程;终端设备确定网络设备满足第一条件和终端设备满足第二条件,或者,终端设备确定终端设备满足第三条件,或者,终端设备确定终端设备满足第四条件,则终端设备确定不需要在窄带物理上行共享信道格式2NPUSCH format2传输的起始时间之前的前q个下行子帧内接收下行传输,其中,第一条件和第二条件包括支持窄带随机接入信道格式2NPRACH format2传输,第三条件包括终端设备在NPRACH format2随机接入资源上进行随机接入,或者终端设备在NPRACH format2随机接入资源上进行过随机接入,或者终端设备在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备在NPRACH format2随机接入资源上发送过随机接入前导码,第四条件包括终端设备的定时调整量大于或等于预设值,或者,定时调整量大于预设值,q为大于1的正整数,NPUSCH format2传输为终端设备在一个HARQ进程或者两个HARQ进程中的一个HARQ进程上进行的上行传输。
在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以包括芯片,集成电路,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于通信装置执行图7、11-15中的网络设备的通信方法。例如,网络设备向终端设备发送配置信息,配置信息用于指示终端设备能够使用两个混合自动重传请求HARQ进程;网络设备向终端设备发送下行控制信息DCI,DCI用于调度两个HARQ进程中的一个HARQ进程或者两个HARQ进程;网络设备确定网络设备满足第一条件和终端设备满足第二条件,或者,网络设备确定终端设备满足第三条件,或者,网络设备确定终端设备满足第四条件,则网络设备确定不需要在窄带物理上行共享信道格式2NPUSCH format2传输的起始时间之前的前q个下行子帧内进行下行传输,其中,第一条件和第二条件包括支持窄带随机接入信道格式2NPRACH format2传输,第三条件包括终端设备在NPRACH format2随机接入资源上进行随机接入,或者终端设备在NPRACH format2随机接入资源上进行过随机接入,或者终端设备在NPRACH format2随机接入资源上发送随机接入前导码,或者终端设备在NPRACH format2随机接入资源上发送过随机接入前导码,第四条件包括终端设备的定时调整量大于或等于预设值,或者,定时调整量大于预设值,q为大于1的正整数,NPUSCH format2传输为终端设备在一个HARQ进程或者两个HARQ进程中的一个HARQ进程上进行的上行传输。
在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以包括芯片,集成电路,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
其中,本申请提供的通信装置、计算机存储介质、计算机程序产品或芯片系统均用于执行上文所述的通信方法,因此,其所能达到的有益效果可参考上文所提供的实施方式中的有益效果,此处不再赘述。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单 元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种通信方法,其特征在于,包括:
    终端设备从网络设备接收配置信息,所述配置信息用于指示所述终端设备能够使用两个混合自动重传请求HARQ进程;
    所述终端设备从所述网络设备接收下行控制信息DCI,所述DCI用于调度所述两个HARQ进程中的一个HARQ进程或者所述两个HARQ进程;
    所述终端设备确定所述网络设备满足第一条件和所述终端设备满足第二条件,或者,所述终端设备确定所述终端设备满足第三条件,或者,所述终端设备确定所述终端设备满足第四条件,则所述终端设备确定不需要在窄带物理上行共享信道格式2 NPUSCH format2传输的起始时间之前的前q个下行子帧内接收下行传输,其中,所述第一条件和所述第二条件包括支持窄带随机接入信道格式2 NPRACH format2传输,所述第三条件包括所述终端设备在NPRACH format2随机接入资源上进行随机接入,或者所述终端设备在所述NPRACH format2随机接入资源上进行过随机接入,或者所述终端设备在所述NPRACH format2随机接入资源上发送随机接入前导码,或者所述终端设备在所述NPRACH format2随机接入资源上发送过所述随机接入前导码,所述第四条件包括所述终端设备的定时调整量大于或等于预设值,或者,所述定时调整量大于所述预设值,q为大于1的正整数,所述NPUSCH format2传输为所述终端设备在所述一个HARQ进程或者所述两个HARQ进程中的一个HARQ进程上进行的上行传输。
  2. 根据权利要求1所述的方法,其特征在于,
    所述终端设备确定所述网络设备满足第一条件,包括:所述终端设备确定从所述网络设备接收的系统消息中包括用于所述NPRACH format2传输的随机接入资源配置信息;
    所述终端设备确定所述终端设备满足所述第二条件之后,进一步包括:所述终端设备向所述网络设备发送指示信息,所述指示信息用于表示所述终端设备具有NPRACH format2能力。
  3. 根据权利要求1-2任一项所述的方法,其特征在于,
    所述第二条件或所述第三条件进一步包括:所述终端设备的NPRACH覆盖等级为覆盖等级1或覆盖等级2。
  4. 根据权利要求1-2任一项所述的方法,其特征在于,
    所述第二条件或所述第三条件进一步包括:所述终端设备的NPRACH覆盖等级为覆盖等级2。
  5. 根据权利要求3-4任一项所述的方法,其特征在于,所述NPRACH覆盖等级为所述终端设备随机接入过程成功时的NPRACH覆盖等级,或者,开始随机接入过程时的NPRACH覆盖等级。
  6. 根据权利要求1-2任一项所述的方法,其特征在于,
    所述方法还包括:所述终端设备从所述网络设备接收到定时提前命令,所述终端设备根据所述定时提前命令确定所述定时调整量,其中,所述定时调整量为正数时表示上行传输定时提前;
    所述第二条件或所述第三条件进一步包括:所述定时调整量大于或等于所述预设值。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述终端设备确定所述网络设备满足所述第一条件和所述终端设备满足所述第二条件,或者,所述终端设备确定所述终端设备满足所述第三条件,或者,所述终端设备确定所述终端设备满足第四条件,所述方法还包括:
    所述终端设备确定不需要在窄带物理上行共享信道格式1 NPUSCH format1传输的起始时间之前的前q个下行子帧内接收下行传输,所述NPUSCH format1传输为所述终端设备在所述一个HARQ进程或者所述两个HARQ进程中的一个HARQ进程上进行的上行传输。
  8. 一种通信方法,其特征在于,包括:
    网络设备向终端设备发送配置信息,所述配置信息用于指示所述终端设备能够使用两个混合自动重传请求HARQ进程;
    所述网络设备向所述终端设备发送下行控制信息DCI,所述DCI用于调度所述两个HARQ进程中的一个HARQ进程或者所述两个HARQ进程;
    所述网络设备确定所述网络设备满足第一条件和所述终端设备满足第二条件,或者,所述网络设备确定所述终端设备满足第三条件,或者,所述网络设备确定所述终端设备满足第四条件,则所述网络设备确定不需要在窄带物理上行共享信道格式2 NPUSCH format2传输的起始时间之前的前q个下行子帧内进行下行传输,其中,所述第一条件和所述第二条件包括支持窄带随机接入信道格式2 NPRACH format2传输,所述第三条件包括所述终端设备在NPRACH format2随机接入资源上进行随机接入,或者所述终端设备在所述NPRACH format2随机接入资源上进行过随机接入,或者所述终端设备在所述NPRACH format2随机接入资源上发送随机接入前导码,或者所述终端设备在所述NPRACH format2随机接入资源上发送过所述随机接入前导码,所述第四条件包括所述终端设备的定时调整量大于或等于预设值,或者,所述定时调整量大于所述预设值,q为大于1的正整数,所述NPUSCH format2传输为所述终端设备在所述一个HARQ进程或者所述两个HARQ进程中的一个HARQ进程上进行的上行传输。
  9. 根据权利要求8所述的方法,其特征在于,
    所述网络设备确定所述网络设备满足第一条件之后,进一步包括:所述网络设备向所述终端设备发送系统消息,所述系统消息中包括用于所述NPRACH format2传输的随机接入资源配置信息;
    所述网络设备确定所述终端设备满足所述第二条件,包括:所述网络设备从所述终端设备接收指示信息,所述指示信息用于表示所述终端设备具有NPRACH format2能力。
  10. 根据权利要求8-9任一项所述的方法,其特征在于,
    所述方法还包括:所述网络设备确定所述终端设备的NPRACH覆盖等级;
    所述第二条件或所述第三条件进一步包括:所述终端设备的NPRACH覆盖等级为覆盖等级1或覆盖等级2。
  11. 根据权利要求8-9任一项所述的方法,其特征在于,
    所述方法还包括:所述网络设备确定所述终端设备的NPRACH覆盖等级;
    所述第二条件或所述第三条件进一步包括:所述终端设备的NPRACH覆盖等级为覆盖等级2。
  12. 根据权利要求10-11任一项所述的方法,其特征在于,所述NPRACH覆盖等级为所述终端设备随机接入过程成功时的NPRACH覆盖等级,或者,开始随机接入过程时的NPRACH覆盖等级。
  13. 根据权利要求9-10任一项所述的方法,其特征在于,
    所述方法还包括:所述网络设备确定所述定时调整量,所述网络设备向所述终端设备发送定时提前命令,其中,所述定时调整量为正数时表示上行传输定时提前;
    所述第二条件或所述第三条件进一步包括:所述定时调整量大于或等于所述预设值。
  14. 根据权利要求8-13任一项所述的方法,其特征在于,所述网络设备确定所述网络设备满足所述第一条件和所述终端设备满足所述第二条件,或者,所述网络设备确定所述终端设备满足所述第三条件,或者,所述网络设备确定所述终端设备满足第四条件,所述方法还包括:
    所述网络设备确定不需要在窄带物理上行共享信道格式1 NPUSCH format1传输的起始时间之前的前q个下行子帧内进行下行传输,其中,所述NPUSCH format1传输为所述终端设备在所述一个HARQ进程或者所述两个HARQ进程中的一个HARQ进程上进行的上行传输。
  15. 一种终端设备,其特征在于,包括收发模块和处理模块;
    所述收发模块,用于从网络设备接收配置信息,所述配置信息用于指示所述终端设备能够使用两个混合自动重传请求HARQ进程;
    所述收发模块,还用于从所述网络设备接收下行控制信息DCI,所述DCI用于调度所述两个HARQ进程中的一个HARQ进程或者所述两个HARQ进程;
    所述处理模块,用于确定所述网络设备满足第一条件和所述终端设备满足第二条件,或者,确定所述终端设备满足第三条件,或者,确定所述终端设备满足第四条件,则确定所述收发模块不需要在窄带物理上行共享信道格式2 NPUSCH format2传输的起始时间之前的前q个下行子帧内接收下行传输,其中,所述第一条件和所述第二条件包括支持窄带随机接入信道格式2 NPRACH format2传输,所述第三条件包括所述终端设备在NPRACH format2随机接入资源上进行随机接入,或者所述终端设备在所述NPRACH format2随机接入资源上进行过随机接入,或者所述终端设备在所述NPRACH format2随机接入资源上发送随机接入前导码,或者所述终端设备在所述NPRACH format2随机接入资源上发送过所述随机接入前导码,所述第四条件包括所述终端设备的定时调整量大于或等于预设值,或者,所述定时调整量大于所述预设值,q为大于1的正整数,所述NPUSCH format2传输为所述终端设备在所述一个HARQ进程或者所述两个HARQ进程中的一个HARQ进程上进行的上行传输。
  16. 根据权利要求15所述的终端设备,其特征在于,
    所述处理模块,用于确定所述网络设备满足第一条件,包括:用于确定从所述网 络设备接收的系统消息中包括用于所述NPRACH format2传输的随机接入资源配置信息;
    所述处理模块确定所述终端设备满足所述第二条件之后,进一步包括:通过所述收发模块向所述网络设备发送指示信息,所述指示信息用于表示所述终端设备具有NPRACH format2能力。
  17. 根据权利要求15-16任一项所述的终端设备,其特征在于,
    所述第二条件或所述第三条件进一步包括:所述终端设备的NPRACH覆盖等级为覆盖等级1或覆盖等级2。
  18. 根据权利要求15-16任一项所述的终端设备,其特征在于,
    所述第二条件或所述第三条件进一步包括:所述终端设备的NPRACH覆盖等级为覆盖等级2。
  19. 根据权利要求17-18任一项所述的终端设备,其特征在于,所述NPRACH覆盖等级为所述终端设备随机接入过程成功时的NPRACH覆盖等级,或者,开始随机接入过程时的NPRACH覆盖等级。
  20. 根据权利要求15-16任一项所述的终端设备,其特征在于,
    所述收发模块,还用于从所述网络设备接收到定时提前命令,所述处理模块,还用于根据所述定时提前命令确定所述定时调整量,其中,所述定时调整量为正数时表示上行传输定时提前;
    所述第二条件或所述第三条件进一步包括:所述定时调整量大于或等于所述预设值。
  21. 根据权利要求15-20任一项所述的终端设备,其特征在于,所述处理模块确定所述网络设备满足所述第一条件和所述终端设备满足所述第二条件,或者,确定所述终端设备满足所述第三条件,或者,确定所述终端设备满足第四条件,
    所述处理模块,还用于确定所述收发模块不需要在窄带物理上行共享信道格式1NPUSCH format1传输的起始时间之前的前q个下行子帧内接收下行传输,所述NPUSCH format1传输为所述终端设备在所述一个HARQ进程或者所述两个HARQ进程中的一个HARQ进程上进行的上行传输。
  22. 一种网络设备,其特征在于,包括收发模块和处理模块;
    所述收发模块,用于向终端设备发送配置信息,所述配置信息用于指示所述终端设备能够使用两个混合自动重传请求HARQ进程;
    所述收发模块,还用于向所述终端设备发送下行控制信息DCI,所述DCI用于调度所述两个HARQ进程中的一个HARQ进程或者所述两个HARQ进程;
    所述处理模块,用于确定所述网络设备满足第一条件和所述终端设备满足第二条件,或者,确定所述终端设备满足第三条件,或者,确定所述终端设备满足第四条件,则确定所述收发模块不需要在窄带物理上行共享信道格式2 NPUSCH format2传输的起始时间之前的前q个下行子帧内进行下行传输,其中,所述第一条件和所述第二条件包括支持窄带随机接入信道格式2 NPRACH format2传输,所述第三条件包括所述终端设备在NPRACH format2随机接入资源上进行随机接入,或者所述终端设备在所述NPRACH format2随机接入资源上进行过随机接入,或者所述终端设备在所述 NPRACH format2随机接入资源上发送随机接入前导码,或者所述终端设备在所述NPRACH format2随机接入资源上发送过所述随机接入前导码,所述第四条件包括所述终端设备的定时调整量大于或等于预设值,或者,所述定时调整量大于所述预设值,q为大于1的正整数,所述NPUSCH format2传输为所述终端设备在所述一个HARQ进程或者所述两个HARQ进程中的一个HARQ进程上进行的上行传输。
  23. 根据权利要求22所述的网络设备,其特征在于,
    所述处理模块确定所述网络设备满足第一条件之后,进一步包括:通过所述收发模块向所述终端设备发送系统消息,所述系统消息中包括用于所述NPRACH format2传输的随机接入资源配置信息;
    所述处理模块,用于确定所述终端设备满足所述第二条件,包括:通过所述收发模块从所述终端设备接收指示信息,所述指示信息用于表示所述终端设备具有NPRACH format2能力。
  24. 根据权利要求22-23任一项所述的网络设备,其特征在于,
    所述处理模块,还用于确定所述终端设备的NPRACH覆盖等级;
    所述第二条件或所述第三条件进一步包括:所述终端设备的NPRACH覆盖等级为覆盖等级1或覆盖等级2。
  25. 根据权利要求22-23任一项所述的网络设备,其特征在于,
    所述处理模块,还用于确定所述终端设备的NPRACH覆盖等级;
    所述第二条件或所述第三条件进一步包括:所述终端设备的NPRACH覆盖等级为覆盖等级2。
  26. 根据权利要求24-25任一项所述的网络设备,其特征在于,所述NPRACH覆盖等级为所述终端设备随机接入过程成功时的NPRACH覆盖等级,或者,开始随机接入过程时的NPRACH覆盖等级。
  27. 根据权利要求23-24任一项所述的网络设备,其特征在于,
    所述处理模块,还用于确定所述定时调整量,所述收发模块,还用于向所述终端设备发送定时提前命令,其中,所述定时调整量为正数时表示上行传输定时提前;
    所述第二条件或所述第三条件进一步包括:所述定时调整量大于或等于所述预设值。
  28. 根据权利要求22-27任一项所述的网络设备,其特征在于,所述处理模块确定所述网络设备满足所述第一条件和所述终端设备满足所述第二条件,或者,确定所述终端设备满足所述第三条件,或者,确定所述终端设备满足第四条件,
    所述处理模块,还用于确定所述收发模块不需要在窄带物理上行共享信道格式1 NPUSCH format1传输的起始时间之前的前q个下行子帧内进行下行传输,其中,所述NPUSCH format1传输为所述终端设备在所述一个HARQ进程或者所述两个HARQ进程中的一个HARQ进程上进行的上行传输。
PCT/CN2019/075224 2019-02-15 2019-02-15 通信方法、装置及系统 WO2020164110A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075224 WO2020164110A1 (zh) 2019-02-15 2019-02-15 通信方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075224 WO2020164110A1 (zh) 2019-02-15 2019-02-15 通信方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2020164110A1 true WO2020164110A1 (zh) 2020-08-20

Family

ID=72044164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075224 WO2020164110A1 (zh) 2019-02-15 2019-02-15 通信方法、装置及系统

Country Status (1)

Country Link
WO (1) WO2020164110A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378953A (zh) * 2012-04-18 2013-10-30 华为技术有限公司 混合自动重传请求方法与装置
CN103873213A (zh) * 2012-12-12 2014-06-18 电信科学技术研究院 一种传输指示信息的方法、装置及系统
WO2018064583A1 (en) * 2016-09-30 2018-04-05 Intel Corporation Ue configured to support up to two harq processes in nb-iot
WO2018138321A1 (en) * 2017-01-27 2018-08-02 Telefonaktiebolaget Lm Ericsson (Publ) Supporting multiple hybrid automatic repeat request processes
WO2018202476A1 (en) * 2017-05-05 2018-11-08 Nokia Solutions And Networks Oy SCHEDULING REQUEST METHOD FOR NARROW BAND IoT

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378953A (zh) * 2012-04-18 2013-10-30 华为技术有限公司 混合自动重传请求方法与装置
CN103873213A (zh) * 2012-12-12 2014-06-18 电信科学技术研究院 一种传输指示信息的方法、装置及系统
WO2018064583A1 (en) * 2016-09-30 2018-04-05 Intel Corporation Ue configured to support up to two harq processes in nb-iot
WO2018138321A1 (en) * 2017-01-27 2018-08-02 Telefonaktiebolaget Lm Ericsson (Publ) Supporting multiple hybrid automatic repeat request processes
WO2018202476A1 (en) * 2017-05-05 2018-11-08 Nokia Solutions And Networks Oy SCHEDULING REQUEST METHOD FOR NARROW BAND IoT

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "DL/UL common aspects of TDD for NB-IoT", 3GPP TSG-RAN WG1 MEETING #92BIS R1-1804166, 20 April 2018 (2018-04-20), XP051426454, DOI: 20190926192250A *
HUAWEI ET AL.: "Corrections on physical layer SR", 3GPP TSG RAN WG1 MEETING #94 R1-1808130, 24 August 2018 (2018-08-24), XP051515532, DOI: 20190926192355A *
HUAWEI ET AL.: "Design for physical layer scheduling request", 3GPP TSG RAN WG1 MEETING #93 R1-1805966, 25 May 2018 (2018-05-25), XP051441185, DOI: 20190926192331A *

Similar Documents

Publication Publication Date Title
US20210212061A1 (en) Service transmission method and apparatus
KR102221648B1 (ko) 물리 하향링크 제어 채널을 송신 또는 수신하는 방법 및 디바이스
JP6910483B2 (ja) 通信方法、ネットワークデバイス、およびユーザ機器
JP2022501904A (ja) ネットワークデバイスにおける方法、及び統合アクセスバックホールノードにおける方法
CN113261320B (zh) 通信方法、装置及系统
CN105519222A (zh) 数据传输方法和设备
WO2018210195A1 (zh) 一种发送和接收指示信息的方法、设备和系统
WO2018082043A1 (zh) 通信方法、终端和网络设备
WO2019029321A1 (zh) 一种资源分配的方法,终端以及网络设备
EP3595384B1 (en) Information transmission method and related device
US10873430B2 (en) Signal sending method and apparatus
WO2018137700A1 (zh) 一种通信方法,装置及系统
KR20220050157A (ko) 리소스 다중화 방법 및 장치
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
EP3288304A1 (en) Data transmission method, apparatus and system
CN108810991B (zh) 子载波间隔类型的确定方法、装置
WO2021155604A1 (zh) 信息处理方法及设备
WO2018120619A1 (zh) 数据调度传输方法、调度实体、传输装置、基站及终端
CN107409383A (zh) 一种载波配置方法及设备
WO2018141091A1 (zh) 发送信息的方法、接收信息的方法和装置
KR102188223B1 (ko) 정보 송신 방법 및 관련 장치
WO2020164110A1 (zh) 通信方法、装置及系统
CN112217617B (zh) 信息传输方法及装置
WO2020199088A1 (zh) 数据传输的方法及通信设备
CN113543324B (zh) 一种目标信息发送方法、接收方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915389

Country of ref document: EP

Kind code of ref document: A1