WO2018120619A1 - 数据调度传输方法、调度实体、传输装置、基站及终端 - Google Patents

数据调度传输方法、调度实体、传输装置、基站及终端 Download PDF

Info

Publication number
WO2018120619A1
WO2018120619A1 PCT/CN2017/085930 CN2017085930W WO2018120619A1 WO 2018120619 A1 WO2018120619 A1 WO 2018120619A1 CN 2017085930 W CN2017085930 W CN 2017085930W WO 2018120619 A1 WO2018120619 A1 WO 2018120619A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
scheduling
downlink
minislot
user equipment
Prior art date
Application number
PCT/CN2017/085930
Other languages
English (en)
French (fr)
Inventor
王三新
Original Assignee
深圳市金立通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市金立通信设备有限公司 filed Critical 深圳市金立通信设备有限公司
Publication of WO2018120619A1 publication Critical patent/WO2018120619A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal

Definitions

  • the present invention relates to the field of mobile communications technologies, and in particular, to a data scheduling method, a data transmission method, a scheduling entity, a data transmission device, a base station, and a terminal.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcast.
  • a typical wireless communication system may employ multiple access techniques capable of supporting communication with multiple user equipment by sharing available system resources (eg, bandwidth, transmit power). Examples of such multiple access techniques include Code Division Multiple Access (CDMA) systems, Time Division Multiple Access (TDMA) systems, Frequency Division Multiple Access (FDMA) systems, Orthogonal Frequency Division Multiple Access (OFDMA) systems, and single carrier frequency division. Address (SC-FDMA) system and Time Division Synchronous Code Division Multiple Access (TD-SCDMA) system.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Time Division Synchronous Code Division Multiple Access
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • LTE/LTE-A Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP Third Generation Partnership Project
  • LTE/LTE-A is designed to better support mobile broadband Internet access by improving spectral efficiency, reducing cost, improving service, utilizing new spectrum, and using OFDMA on the downlink (DL), on the uplink (UL) uses SC-FDMA and other open standards using Multiple Input Multiple Output (MIMO) antenna technology for better integration.
  • MIMO Multiple Input Multiple Output
  • 5G is a multi-technology convergence communication that meets the needs of a wide range of data and connectivity services through technology changes and innovations.
  • One of the main design goals of 5G is: faster system feedback to provide lower end-to-end transmission delays.
  • the fastest feedback time is about 1 ms, which cannot meet the requirement of 5G low delay.
  • Embodiments of the present invention provide a data scheduling method, a data transmission method, a scheduling entity, a data transmission device, and a base. Station and terminal.
  • a data scheduling method adopts a time division duplexing technique, and the method includes:
  • scheduling information includes downlink control information and downlink data information of the user equipment scheduled by the downlink control information;
  • the half subframe includes a downlink control symbol, two mini slots, a guard interval, and an uplink control symbol, where the downlink control symbol is used by the bearer
  • the two mini-slots are used to carry the downlink data information
  • the mini-slot is a basic scheduling unit configured for data
  • the uplink control symbol is used to carry the acknowledgement information.
  • a data transmission method adopts a time division duplexing technique, and the method includes:
  • the scheduling information includes downlink control information, downlink data information of the user equipment scheduled by the downlink control information
  • the half subframe includes a downlink control symbol, Two micro-slots, a guard interval, and an uplink control symbol, where the downlink control symbol is used to carry the downlink control information, and the two mini-slots are used to carry at least the downlink data information, and the mini-slot
  • a basic scheduling unit configured for the data, where the uplink control symbol is used to carry the acknowledgement information.
  • a scheduling entity adopts a time division duplexing technology, and the scheduling entity includes:
  • transceiver unit configured to receive a scheduling request initiated by at least one user equipment
  • An information generating unit configured to generate scheduling information according to the scheduling request, where the scheduling information includes downlink control information and downlink data information of the user equipment scheduled by the downlink control information;
  • the transceiver unit is further configured to send the scheduling information in one half subframe and receive the acknowledgement information, where the half subframe includes a downlink control symbol, two minislots, a guard interval, and an uplink control symbol.
  • the downlink control symbol is used to carry the downlink control information
  • the two mini-slots are used to carry at least the downlink data information
  • the mini-slot is a basic scheduling unit configured for data
  • the uplink control symbol is used by The confirmation information is carried.
  • a data transmission apparatus adopts a time division duplexing technique, and the apparatus includes:
  • a sending unit configured to send a scheduling request
  • a receiving unit configured to receive scheduling information in one half subframe
  • the sending unit is further configured to feed back confirmation information in a half subframe that receives the scheduling information
  • the scheduling information includes downlink control information, downlink data information of the user equipment scheduled by the downlink control information, and the half subframe includes a downlink control symbol, two mini slots, a guard interval, and an uplink control symbol.
  • the downlink control symbol is used to carry the downlink control information
  • the two mini-slots are used to carry at least the downlink data information
  • the mini-slot is a basic scheduling unit configured for data
  • the uplink control symbol is used by The confirmation information is carried.
  • a base station including: a processor, a memory, a communication interface, and a bus; the processor, the memory, and the communication interface are connected by the bus and complete communication with each other; the memory is stored Executable program code; the processor running a program corresponding to the executable program code by reading executable program code stored in the memory for executing the aforementioned data scheduling method.
  • a terminal including: a processor, a memory, a communication interface, and a bus; the processor, the memory, and the communication interface are connected by the bus and complete communication with each other; the memory is stored Executable program code; the processor executing a program corresponding to the executable program code by reading executable program code stored in the memory for executing the aforementioned data transfer method.
  • the half subframe structure as described above is adopted, and the uplink control symbol configuration confirmation information of each half subframe is System feedback is completed in the frame, which achieves faster system feedback, reduces end-to-end transmission delay, and meets the requirement of 5G low delay.
  • FIG. 1 is a schematic diagram of a self-contained subframe structure according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the structure of a half subframe of the self-contained subframe structure shown in FIG. 1;
  • FIG. 3 is a schematic diagram of a half subframe structure shown in FIG. 2 in a frequency domain, exemplarily showing only eight subcarriers therein;
  • FIG. 4 is a schematic diagram of scheduling of a half subframe structure shown in FIG. 2;
  • FIG. 5 is a schematic diagram of bursty traffic scheduling of the half subframe structure shown in FIG. 1;
  • FIG. 6 is a schematic flowchart of a data scheduling method of a scheduling entity according to a first embodiment of the present invention
  • FIG. 7 is a schematic diagram of uplink feedback in FIG. 4.
  • FIG. 8 is a schematic structural diagram of a scheduling entity according to a first embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a data transmission method according to a first embodiment of the present invention.
  • FIG. 10 is a specific flowchart of step S901 shown in FIG. 9;
  • FIG. 11 is a schematic flowchart of a data transmission apparatus according to a first embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the term “if” can be interpreted as “when” or “on” or “in response to determining” or “in response to detecting” depending on the context. .
  • the phrase “if determined” or “if detected [condition or event described]” may be interpreted in context to mean “once determined” or “in response to determining” or “once detected [condition or event described] ] or “in response to detecting [conditions or events described]”.
  • a user equipment refers to a user equipment terminal (eg, a cellular telephone or smart phone) that can utilize a wireless communication system to transmit and receive data for two-way communication.
  • the user equipment terminal can communicate with the base station via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the base station to the terminal
  • the uplink (or reverse link) refers to the communication link from the terminal to the base station.
  • the user equipment terminal may include a transmitter for data transmission and a receiver for data reception.
  • the transmitter can modulate the transmit Local Oscillator (LO) signal with data to obtain a modulated Radio Frequency (RF) signal, and amplify the modulated RF signal to obtain proper transmission.
  • the RF signal is output at the power level and the output RF signal is transmitted to the base station via the antenna.
  • the receiver can obtain the received RF signal via an antenna, amplify and downconvert the received RF signal with the received LO signal, and process the downconverted signal to recover the data transmitted by the base station.
  • the user equipment terminal can support communication with multiple wireless systems of different Radio Access Technology (RAT) (eg, LTE/LTE-A and NR).
  • RAT Radio Access Technology
  • LTE/LTE-A refers to LTE-Advanced (LTE-A)
  • NR refers to next-generation 5G networks.
  • Each wireless system may have certain characteristics and requirements to efficiently support simultaneous communication of wireless systems utilizing different RATs.
  • User equipment terminals may include mobile stations, terminals, access terminals, subscriber units, stations, and the like.
  • the user equipment terminal can also be a cellular phone, a smart phone, a tablet computer, a wireless modem, a Personal Digital Assistant (PDA), a handheld device, a laptop computer, a smartbook, a netbook, a cordless phone, a wireless local loop ( Wireless local loop, WLL) site, Bluetooth device, and more.
  • the user equipment terminal may be capable of communicating with the wireless system, and may also be capable of receiving signals from a broadcast station, one or more satellites in a Global Navigation Satellite System (GNSS), or the like.
  • GNSS Global Navigation Satellite System
  • the user equipment terminal can support one or more RATs for wireless communication, such as GSM, WCDMA, CDMA2000, LTE/LTE-A, 802.11, and the like.
  • radio access technology RAT
  • radio technology radio technology
  • air interface air interface
  • standard the terms “radio access technology”, “RAT”, “radio technology”, “air interface” and “standard” are often used interchangeably.
  • SC-FDMA Single-Carrier Frequency-Division Multiple Access
  • CP Cyclic Prefix
  • 3GPP 3rd Generation Partnership Project
  • SI Study Item
  • 5G New Airspace Research According to the division of vertical scenes by 5G, 3GPP mainly studies new air interface technologies from three aspects: Enhanced Mobile BroadBand (EMBB) and Ultra-reliable Low-latency Communications (URLLC).
  • EMBB Enhanced Mobile BroadBand
  • URLLC Ultra-reliable Low-latency Communications
  • MMTC Massive Machine Type Communications
  • the embodiment of the present invention mainly discusses an Ultra-reliable Low-latency Communications (URLLC) service in the NR system.
  • the main principle of the embodiment of the present invention is to propose a mini-slot (Self-Slotted) sub-frame structure design method in a URLLC (high-reliability low-latency) scenario, which is 1 ms in length.
  • the sub-frame contains two time slots, each time slot includes an uplink and downlink symbol and a guard interval; in each time slot, a mini-slot is used as a basic scheduling unit, and a part of the physical downlink is reserved for the URLLC burst service.
  • the Control Downlink Control Channel (PDCCH) resource guarantees the Key Performance Indicators (KPI) of the URLLC.
  • KPI Key Performance Indicators
  • a first embodiment of the present invention provides a self-contained subframe structure, which is applicable to a high-reliability low-latency scenario, and has a length of 1 ms and a carrier spacing of 15 kHz.
  • the self-contained subframe structure includes: two half subframes, that is, a first half subframe and a second half subframe. Each half of the subframe has a length of 0.5 ms. Further, as shown, each half subframe includes a downlink control symbol (DL Control), two mini-slots, a guard interval (GP), and an uplink control symbol (UL).
  • DL Control downlink control symbol
  • GP guard interval
  • UL uplink control symbol
  • the downlink control symbol (DL Control) is used to configure downlink control information
  • the two mini-slots are used to configure downlink data information (DL Data) and uplink control symbols (UL) of the user equipment of the downlink control information.
  • DL Data downlink data information
  • UL uplink control symbols
  • each mini-slot is a basic scheduling unit.
  • the basic scheduling unit is a minimum resource unit that can be allocated to the user equipment terminal by the scheduling entity (for example, a base station, etc.), that is, when the resource is allocated to the user equipment terminal, the micro-slot is used as a basic unit. Specifically, as shown in FIG.
  • each half subframe includes a first minislot (Mini-slot1) and a second minislot (Mini-slot2), and the first minislot (Mini-slot1) is adjacent to the downlink control symbol. .
  • the first minislot (Mini-slot1) is configured to configure downlink data of the user equipment service with a high delay priority
  • the second minislot (Mini-slot2) is configured to configure the user equipment service with a low delay priority.
  • the first minislot (Mini-slot1) and the second minislot (Mini-slot2) each include two symbols, for example, the first minislot (Mini-slot1) includes the first symbol from left to right. Second symbol, second microslot (Mini-slot2) The first symbol and the second symbol are included from left to right.
  • the second downlink scheduling resource is reserved in the bandwidth of the second symbol of the first minislot (Mini-slot1), as shown in FIG. 3, and the secondary downlink scheduling resource is used to send downlink control of the burst service user equipment.
  • the information and the cancellation message of the resource user equipment are preempted, and the downlink control information of the burst service user equipment is used to indicate that the burst service is occupied by the second minislot (Mini-slot 2) of the current half subframe. Time-frequency resources.
  • the secondary downlink scheduling resource is only used to send downlink control information of the burst service user equipment and the cancel message of the preempted resource user equipment, in the first minislot (Mini-slot1).
  • the downlink data of the user equipment transmitted in the network cannot occupy the secondary downlink scheduling resources.
  • the bursty service preempts the user equipment resources: (1) based on the delay priority, the bursty service will preempt the resources of the user equipment with low delay priority; (2) The delay requirement is used as a benchmark.
  • the bursty service will occupy the resources of the lower EMBB user equipment service.
  • the downlink scheduling resource is reserved in the first minislot (Mini-slot1). Specifically, please refer to FIG. 3 and FIG. 4. As shown in the figure, a part of the resource is reserved in the second symbol of the first minislot (Mini-slot1) as the secondary downlink scheduling resource (DC2), which is only used for downlink control of the burst service user equipment.
  • DC2 secondary downlink scheduling resource
  • the information and the cancellation message of the preempted resource user equipment, the user equipment data scheduled in the first minislot (Mini-slot1) cannot occupy the secondary downlink scheduling resource (DC2), in the first minislot (Mini-slot1)
  • the downlink data of the user equipment transmitted within can only be sent on time-frequency resources other than the secondary downlink scheduling resource (DC2).
  • the sudden URL LC service preempts the resources of the user equipment in the original second minislot (Mini-slot 2)
  • the original user equipment needs to be notified in the secondary downlink scheduling resource (DC2).
  • the original user equipment scheduling cancellation message is sent in the secondary downlink scheduling resource (DC2), and the original user equipment will no longer receive data in the second minislot (Mini-slot2).
  • the user equipment 4 has a bursty service, and preempts the time-frequency resources of the user equipment 3 in the original second mini-slot (Mini-slot 2), and therefore, in the first mini-slot ( In the second symbol of the Mini-slot 1), the message that the user equipment 3 schedules cancellation is sent in the secondary downlink scheduling resource (DC2), and the user equipment 3 no longer performs data reception in the second minislot (Mini-slot 2).
  • the second symbol is within the entire bandwidth, and only part of the frequency resource is used as the secondary scheduling resource.
  • the system bandwidth is 20 MHz, including 1200 15 kHz spaced subcarriers, there may be only a part of the intermediate subcarriers, for example, the middle.
  • the second symbol of the 72 subcarriers is set as the secondary downlink scheduling resource, and the user equipment data cannot be transmitted.
  • the second symbol of the other subcarriers can be used to transmit the user equipment resources. An exemplary description of this portion will be described in detail in subsequent embodiments. Also That is to say, in the frequency resource of the entire bandwidth, only the second symbol of a part of the subcarriers may be reserved as the secondary downlink scheduling resource (DC2).
  • DC2 secondary downlink scheduling resource
  • the uplink control symbol (UL) of each half subframe is used to configure user equipment acknowledgement/non-acknowledgment feedback information of the current half subframe or the upper half subframe.
  • the terminal performs ACK/NACK of data of the current half subframe/upper half subframe (determined by the resource time domain location occupied by the terminal downlink control symbol). Feedback, that is, confirm/do not confirm the character feedback.
  • the user equipment scheduled in the first minislot has a long distance from the uplink control symbol (UL), and the user equipment has sufficient time for receiving processing, so
  • the frame is fed back, that is, ACK/NACK feedback is performed on the uplink control symbol of the current half subframe; the user equipment scheduled in the second minislot (Mini-slot 2), and the uplink control symbol (UL)
  • the frame feedback method is adopted, that is, the ACK/NACK feedback is performed on the uplink control symbol (UL) of the next half subframe, or the uplink of the current half subframe.
  • the ACK/NACK feedback of the upper half of the subframe is performed on the control symbol (UL).
  • the embodiment of the invention provides a novel self-contained subframe structure based on mini-slot (micro-slot), which can be applied to a highly reliable low-latency scenario, which includes two half subframes, each of which The half subframe includes a downlink control symbol (DL Control), two mini-slots, a guard interval (GP), and an uplink control symbol (UL), and an uplink control symbol (UL) for each half subframe is used for
  • the configuration confirmation information is used to complete the system feedback in half subframes, which achieves faster system feedback, reduces the end-to-end transmission delay, and satisfies the requirement of 5G low delay.
  • each microslot includes two symbols, and the microslot is used as a basic scheduling unit, and the time slot in the LTE frame structure is a basic scheduling unit, and the slot in the embodiment of the present invention is compared to the basic scheduling unit.
  • the inclusion of a sub-frame structure allows for faster system feedback and meets the 5G low latency requirement.
  • the length of each half subframe of the self-contained subframe structure is 0.5 milliseconds, the length is reserved for the base station or the terminal in the case of satisfying the delay requirement of the high reliability low latency (URLLC) scenario. Processing time reduces the complexity of hardware and software processing.
  • the secondary downlink scheduling resource (DC2) is reserved in the second symbol of the first minislot (Mini-slot1), which satisfies the requirement of the bursty service.
  • the method of secondary downlink scheduling can better meet the delay requirement of the URLLC scenario.
  • FIG. 6 is a schematic flowchart of a data scheduling method of a scheduling entity according to a first embodiment of the present invention.
  • the scheduling entity refers to a node or device that performs transmission scheduling in a sub-mobile communication network.
  • the scheduling entity may be, but is not limited to, a base station, a network node, a User Equipment (UE), or any other suitable node.
  • UE User Equipment
  • the data scheduling method can be used for highly reliable low latency scenarios and employs a self-contained subframe structure as previously described. As shown in the figure, the method mainly includes:
  • a scheduling request initiated by at least one user equipment is received.
  • the base station detects that there are three user equipments at the current time, for example, the user equipment 1, the user equipment 2, and the user equipment 3 initiate a scheduling request to the base station, and the base station receives the scheduling request.
  • S202 Generate scheduling information according to the scheduling request, where the scheduling information includes downlink control information and downlink data information of the user equipment scheduled by the downlink control information.
  • the half subframe has a length of 0.5 milliseconds and a carrier interval of 15 kHz; the half subframe includes a downlink control symbol (DL Control), a first minislot (Mini-slot 1), and a second minislot. (Mini-slot2), guard interval (GP) and uplink control symbol (UL), with the first minislot (Mini-slot1) or the second minislot (Mini-slot2) as the basic scheduling unit.
  • the downlink control symbol (DL Control) is used to carry the downlink control information
  • the first minislot (Mini-slot1) and the second minislot (Mini-slot2) are used to carry at least the downlink data information.
  • the uplink control symbol is used to carry the acknowledgement information.
  • the acknowledgment information includes acknowledgment/non-acknowledgment character feedback information of the user equipment scheduled for the current half subframe, or acknowledgment/non-acknowledgment character feedback information of the user equipment scheduled by the upper half subframe.
  • the delay priority of the services of multiple user equipments is obtained according to the scheduling request. Specifically, when the base station receives the scheduling request of the user equipment 1, the user equipment 2, and the user equipment 3, the base station acquires the delays of the user equipment 1, the user equipment 2, and the user equipment 3. For example, the delay of the service to the user equipment 1 is t1, the delay of the service of the user equipment 2 is t2, and the delay of the service of the user equipment 3 is t3. Further, the user equipment is determined according to the specific delay. The latency of the service is high or low. For example, in this embodiment, the delay priority of the service of the user equipment 1 is determined to be high, and the delay priority of the user equipment 2 and the user equipment 3 is low.
  • the first minislot (Mini-slot1) and the second minislot (Mini-slot2) are both defined as two symbols, for example, the first minislot (Mini-slot1) includes the first from left to right.
  • a symbol, a second symbol, and a second minislot (Mini-slot 2) include a first symbol and a second symbol from left to right.
  • the first minislot will be (Mini-slot1) is allocated to the user equipment with high delay priority, and the second minislot (Mini-slot2) is allocated to the user equipment with low delay priority.
  • the user equipment 1 with high delay priority is assigned the first minislot (Mini-slot1), and the user equipment 2 and the user equipment 3 with low delay priority are allocated.
  • Two micro-slots (Mini-slot2). That is, the time-frequency resource and the mini-slot index of the user equipment in the two mini-slots are determined according to the delay priority.
  • the time-frequency resource of the user equipment 1 with a higher delay priority is the first micro-
  • the time-frequency resource corresponding to the time slot (Mini-slot1) has a micro-slot index of Mini-slot1;
  • the time-frequency resource of the user equipment 2 and the user equipment 3 with a lower delay priority is the second mini-slot (Mini- Slot2)
  • the corresponding time-frequency resource whose micro-slot index is Mini-slot2.
  • downlink control information is generated according to the time-frequency resource and the micro-slot index. It should be noted that, in the subframe structure shown in FIG. 4, downlink control symbols of different user equipments occupy different subcarrier resources.
  • the base station When performing normal scheduling, the base station sends downlink control information in a downlink control symbol (DL Control), and transmits downlink data information of the user equipment scheduled by the downlink control information in two mini-slots, and is in an uplink control symbol (UL) Receive confirmation information.
  • DL Control downlink control symbol
  • UL uplink control symbol
  • the network side or the scheduling entity side has a situation in which bursty traffic occurs.
  • the base station needs to issue a burst of control naming.
  • a secondary downlink scheduling resource is reserved in the second symbol of the first minislot (Mini-slot1), and when the bursty service is generated in the current half subframe, the downlink is sent in two minislots.
  • the downlink data information of the user equipment that controls the information scheduling specifically includes:
  • the indication of the downlink control information sends downlink data information of other user equipments.
  • the downlink control information is sent to the user equipment by using the downlink control symbol (DL Control), and the downlink data of the user equipment scheduled in the first minislot cannot occupy the secondary downlink scheduling resource.
  • DL Control downlink control symbol
  • the downlink data is sent according to the indication of the downlink control information in the downlink control symbol on the time-frequency resources of the first and second mini-slots other than the time-frequency resources preempted by the burst service user equipment.
  • Downstream data information of other user equipments Specifically, as shown in FIG. 5, the burst service user equipment is the user equipment 4, and the downlink control information of the user equipment 4 is sent on the secondary downlink scheduling resource (DC2), and is indicated in the downlink control information of the user equipment 4.
  • the second microslot (Mini-slot2) transmits downlink data of the user equipment 4 on the time-frequency resource.
  • the user equipment 4 preempts the time-frequency resources of the user equipment 3 (shown in FIG. 4), and therefore sends the scheduling cancellation information of the user equipment 3 on the secondary downlink scheduling resource (DC2), and the user equipment 3 is no longer the second micro- Downlink data reception is performed in the time slot (Mini-slot 2).
  • DC2 secondary downlink scheduling resource
  • the downlink data information of the other user equipment is sent according to the downlink control information in the downlink control symbol (DL Control), such as the downlink data of the user equipment 1 and the user equipment 2 in FIG. 5 .
  • the terminal performs the current half subframe/the upper half subframe (specifically, the resource time domain location occupied by the terminal downlink control symbol) Determines the ACK/NACK feedback of the data, that is, confirms/does not confirm the character feedback.
  • the user equipment scheduled in the first minislot (Mini-slot1), such as the user equipment 1 in FIG.
  • the frame feedback mode is adopted, that is, the ACK/NACK feedback is performed on the uplink control symbol (UL) of the current half subframe; in the second minislot (
  • the user equipment that is adjusted in the Mini-slot 2), such as the user equipment 2 and the user equipment 3 in FIG. 4, is close to the uplink control symbol (UL), and the user equipment does not have time to receive processing, so the interlaced frame is used.
  • the manner of feedback is to perform ACK/NACK feedback on the uplink control symbol (UL) of the next half subframe, or to perform the last ACK/NACK feedback on the uplink control symbol (UL) of the current half subframe.
  • the uplink feedback diagram is shown in Figure 7.
  • the user equipment 1 performs ACK/NACK feedback through the uplink control symbol (UL) of the current half subframe, and the user equipment 2 and the user equipment 3 perform the uplink control symbol (UL) of the next half subframe.
  • ACK/NACK feedback is not shown in the figure.
  • each downlink data is not limited by the sequence. Although the steps are written in sequence, the downlink data transmission of the burst service and the transmission of the normal service downlink data are simultaneously in the same minislot. ongoing.
  • the data scheduling method of the embodiment of the present invention adopts a novel self-contained sub-frame structure based on mini-slot, each The uplink control symbols of the half subframes are used to configure the acknowledgment information, thereby completing the system feedback in half of the subframes, achieving faster system feedback, reducing the end-to-end transmission delay, and meeting the requirement of 5G low delay.
  • each microslot includes two symbols, and the microslot is used as a basic scheduling unit, and the time slot in the LTE frame structure is a basic scheduling unit, and the slot in the embodiment of the present invention is compared to the basic scheduling unit.
  • the inclusion of a sub-frame structure allows for faster system feedback and meets the 5G low latency requirement.
  • each half subframe of the self-contained subframe structure is 0.5 milliseconds
  • the length is reserved for the base station or the terminal in the case of satisfying the delay requirement of the high reliability low latency (URLLC) scenario. Processing time reduces the complexity of hardware and software processing.
  • the secondary downlink scheduling resource reserved in the second symbol of the first minislot satisfies the requirement of the bursty service, and the method of secondary downlink scheduling The delay requirements of the URLLC scenario can be better met.
  • FIG. 8 is a schematic diagram of a scheduling entity according to a first embodiment of the present invention.
  • the scheduling entity refers to a node or device that performs transmission scheduling in a sub-mobile communication network.
  • the scheduling entity may be, but is not limited to, a base station, a network node, a User Equipment (UE), or any other suitable node.
  • UE User Equipment
  • the scheduling entity adopts time division duplexing technology and can be applied to a highly reliable low latency scenario.
  • the scheduling entity may include a transceiver unit 11 and an information generating unit 13.
  • the transceiver unit 11 includes a sending unit 111 and a receiving unit 113.
  • the information generating unit 13 includes an obtaining unit 131 and an allocating unit 133.
  • the receiving unit 113 is configured to receive a scheduling request initiated by at least one user equipment. Specifically, in this embodiment, a scheduling request initiated by multiple user equipments is received. For example, the base station detects that there are three user equipments at the current time, for example, the user equipment 1, the user equipment 2, and the user equipment 3 initiate a scheduling request to the base station, and the base station receives the scheduling request.
  • the information generating unit 13 is configured to generate scheduling information according to the scheduling request, where the scheduling information includes downlink control information and downlink data information of the user equipment scheduled by the downlink control information.
  • the transceiver unit 11 is configured to send the scheduling information and receive the confirmation information in one half subframe.
  • the sending unit 111 is configured to send the downlink control information in the downlink control symbol, and send the downlink data information in the two minislots;
  • the receiving unit 113 is configured to be in the uplink.
  • the control symbol receives confirmation information.
  • the half subframe has a length of 0.5 milliseconds and a carrier interval of 15 kHz; the half subframe includes a downlink control symbol (DL Control), a first minislot (Mini-slot 1), and a second minislot.
  • the downlink control symbol (DL Control) is configured to carry the downlink control information
  • the second minislot (Mini-slot2) is configured to carry at least the downlink data information
  • the uplink control symbol is used to carry the acknowledgement information.
  • the acknowledgment information includes acknowledgment/non-acknowledgment character feedback information of the user equipment scheduled for the current half subframe, or acknowledgment/non-acknowledgment character feedback information of the user equipment scheduled by the upper half subframe.
  • the acquiring unit 131 is configured to acquire a delay priority of services of multiple user equipments according to the scheduling request. Specifically, when the base station receives the scheduling request of the user equipment 1, the user equipment 2, and the user equipment 3, the base station acquires the delays of the user equipment 1, the user equipment 2, and the user equipment 3. For example, the delay of the service to the user equipment 1 is t1, the delay of the service of the user equipment 2 is t2, and the delay of the service of the user equipment 3 is t3. Further, the user equipment is determined according to the specific delay. The latency of the service is high or low. For example, in this embodiment, the delay priority of the service of the user equipment 1 is determined to be high, and the delay priority of the user equipment 2 and the user equipment 3 is low.
  • the allocating unit 133 is configured to determine a time-frequency resource and a mini-slot index of the multiple user equipments in the two mini-slots according to the delay priority, and generate the downlink control information according to the time-frequency resource and the micro-slot index.
  • the first minislot is allocated to the user equipment with a high delay priority
  • the second time slot is allocated to the user equipment with a low delay priority.
  • the first minislot (Mini-slot1) and the second minislot (Mini-slot2) are both defined as two symbols, for example, the first minislot (Mini-slot1) includes the first from left to right.
  • a symbol, a second symbol, and a second minislot include a first symbol and a second symbol from left to right. Therefore, in combination with the foregoing self-contained subframe structure and the determined delay priority, the first minislot (Mini-slot1) is allocated to the user equipment with high delay priority, and the second minislot (Mini- Slot2) is assigned to user equipment with low latency priority. For example, as shown in FIG. 4, the user equipment 1 with high delay priority is assigned the first minislot (Mini-slot1), and the user equipment 2 and the user equipment 3 with low delay priority are allocated. Two micro-slots (Mini-slot2).
  • the time-frequency resource and the mini-slot index of the user equipment in the two mini-slots are determined according to the delay priority.
  • the time-frequency resource of the user equipment 1 with a higher delay priority is the first micro-
  • the time-frequency resource corresponding to the time slot (Mini-slot1) has a micro-slot index of Mini-slot1;
  • the time-frequency resource of the user equipment 2 and the user equipment 3 with a lower delay priority is the second mini-slot (Mini- Slot2)
  • the corresponding time-frequency resource whose micro-slot index is Mini-slot2.
  • downlink control information is generated according to the time-frequency resource and the micro-slot index. It should be noted that, in the subframe structure shown in FIG. 4, downlink control symbols of different user equipments occupy different subcarrier resources.
  • the sending unit 111 sends a downlink control information to the downlink control symbol (DL Control), and sends downlink data information of the user equipment scheduled by the downlink control information in two mini-slots, and the receiving Unit 113 receives the acknowledgement information at the uplink control symbol (UL).
  • DL Control downlink control symbol
  • UL uplink control symbol
  • the network side or the scheduling entity side has a situation in which bursty traffic occurs.
  • the base station needs to issue a burst of control.
  • System name For example, in the business scenario of the Internet of Vehicles, it is necessary to send data and other unexpected situations to the in-vehicle chip. Therefore, the secondary downlink scheduling resource is reserved in the second symbol of the first minislot (Mini-slot1), and is used in the sending unit 111 when the bursty service is generated in the current half subframe.
  • the indication of the downlink control information sends downlink data information of other user equipments.
  • transceiver unit 11 Specifically, the function and workflow of the transceiver unit 11 are illustrated as follows:
  • the sending unit 111 sends the downlink control information to the user equipment by using the downlink control symbol (DL Control), and the downlink data of the user equipment scheduled in the first minislot cannot occupy the second data.
  • DL Control downlink control symbol
  • the sending unit 111 sends the downlink data of the burst service user equipment in the second frequency slot indicated by the second downlink control information, and the secondary downlink scheduling resource and the burst service user equipment.
  • downlink data information of other user equipments is sent according to the indication of the downlink control information in the downlink control symbols.
  • the burst service user equipment is the user equipment 4, and the downlink control information of the user equipment 4 is sent on the secondary downlink scheduling resource (DC2), and is indicated in the downlink control information of the user equipment 4.
  • DC2 secondary downlink scheduling resource
  • the second microslot (Mini-slot2) transmits downlink data of the user equipment 4 on the time-frequency resource.
  • the user equipment 4 preempts the time-frequency resources of the user equipment 3 (shown in FIG. 4), and therefore sends the scheduling cancellation information of the user equipment 3 on the secondary downlink scheduling resource (DC2), and the user equipment 3 is no longer the second micro- Downlink data reception is performed in the time slot (Mini-slot 2).
  • DC2 downlink scheduling resource
  • the downlink data information of the other user equipment is sent according to the downlink control information in the downlink control symbol (DL Control), such as the downlink data of the user equipment 1 and the user equipment 2 in FIG. 5 .
  • DL Control downlink control symbol
  • the receiving unit 113 receives the current half subframe or the upper half subframe of the user equipment by using the uplink control symbol. Confirm/do not confirm the character feedback information.
  • the terminal performs the current half subframe/the upper half subframe (specifically, the resource time domain location occupied by the terminal downlink control symbol) Determines the ACK/NACK feedback of the data, that is, confirms/does not confirm the character feedback.
  • the user equipment scheduled in the first minislot (Mini-slot1), such as the user equipment 1 in FIG.
  • the frame feedback mode is adopted, that is, the ACK/NACK feedback is performed on the uplink control symbol (UL) of the current half subframe; in the second minislot (
  • the user equipment that is adjusted in the Mini-slot 2), such as the user equipment 2 and the user equipment 3 in FIG. 4, is close to the uplink control symbol (UL), and the user equipment does not have time to receive processing, so the interlaced frame is used.
  • the manner of feedback is to perform ACK/NACK feedback on the uplink control symbol (UL) of the next half subframe, or to perform the last ACK/NACK feedback on the uplink control symbol (UL) of the current half subframe.
  • the uplink feedback diagram is shown in Figure 7.
  • the user equipment 1 performs ACK/NACK feedback through the uplink control symbol (UL) of the current half subframe, and the user equipment 2 and the user equipment 3 perform the uplink control symbol (UL) of the next half subframe.
  • ACK/NACK feedback is not shown in the figure.
  • each downlink data is not limited by the sequence. Although the steps are written in sequence, the downlink data transmission of the burst service and the transmission of the normal service downlink data are simultaneously in the same minislot. ongoing.
  • the scheduling entity of the embodiment of the present invention adopts a novel self-contained subframe structure based on mini-slot, and the uplink control symbols of each half subframe are used for configuration confirmation information, thereby completing system feedback in half subframes.
  • Faster system feedback reduces end-to-end transmission delay and meets 5G low latency requirements.
  • each microslot includes two symbols, and the microslot is used as a basic scheduling unit, and the time slot in the LTE frame structure is a basic scheduling unit, and the slot in the embodiment of the present invention is compared to the basic scheduling unit.
  • the inclusion of a sub-frame structure allows for faster system feedback and meets the 5G low latency requirement.
  • each half subframe of the self-contained subframe structure is 0.5 milliseconds
  • the length is reserved for the base station or the terminal in the case of satisfying the delay requirement of the high reliability low latency (URLLC) scenario. Processing time reduces the complexity of hardware and software processing.
  • the secondary downlink scheduling resource reserved in the second symbol of the first minislot satisfies the requirement of the bursty service, and the method of secondary downlink scheduling The delay requirements of the URLLC scenario can be better met.
  • FIG. 9 is a schematic flowchart of a data transmission method according to a first embodiment of the present invention.
  • the data scheduling method is applicable to user equipment, and can be used in a highly reliable low-latency scenario, and adopts a self-contained subframe structure as described above. As shown in the figure, the method mainly includes:
  • S901 Send a scheduling request.
  • the user equipment sends a scheduling request to the base station or the scheduling entity.
  • the scheduling information includes downlink control information and downlink data information of the user equipment scheduled by the downlink control information.
  • the downlink control information includes a mini-slot index and a frequency domain location occupied by the user equipment.
  • the half subframe has a length of 0.5 milliseconds and a carrier interval of 15 kHz.
  • the half subframe includes a downlink control symbol (DL Control), a first minislot (Mini-slot 1), and a second.
  • the mini-slot 2, the guard interval (GP), and the uplink control symbol (UL) are based on the first minislot (Mini-slot1) or the second minislot (Mini-slot2).
  • the downlink control symbol (DL Control) is used to carry the downlink control information, and the first minislot (Mini-slot1) and the second minislot (Mini-slot2) are used to carry at least the downlink data information.
  • the uplink control symbol is used to carry the acknowledgement information.
  • the acknowledgment information includes acknowledgment/non-acknowledgment character feedback information of the user equipment scheduled for the current half subframe, or acknowledgment/non-acknowledgment character feedback information of the user equipment scheduled by the upper half subframe.
  • S902 specifically includes the following steps:
  • S9021 Receive downlink scheduling information in the downlink control symbol.
  • the first minislot (Mini-slot1) and the second minislot (Mini-slot2) each include a first symbol and a second symbol.
  • bursty traffic occurs on the network side or on the scheduling entity side.
  • the base station needs to issue a burst of control naming.
  • a secondary downlink scheduling resource is reserved in a bandwidth of the second symbol of the first minislot, where the secondary scheduling control information includes secondary downlink control information and/or a scheduling cancellation message.
  • downlink data information is received in at least one of the two mini-slots according to the indication of the downlink control information. For example, if it is the user equipment 3 shown in FIG. 4, the downlink data information is received in the second minislot according to the indication of the downlink control information of the user equipment 3. It should be further noted that, if the downlink control information indicates that downlink data information is received in the first minislot, time-frequency resource reception only in the second downlink scheduling resource of the first minislot Downstream data information. That is to say, the secondary downlink scheduling resource of the second symbol of the first minislot is only used to transmit/receive secondary scheduling control information.
  • the secondary downlink scheduling information of the secondary downlink scheduling resource receiving the burst service, and the time-frequency resource indicated by the secondary downlink control information, in the current half Downlink data is received in the second minislot of the frame.
  • the secondary downlink control information of the burst service that is, the downlink control information of the user equipment 4, and the second time of the user equipment 4, in the secondary downlink scheduling resource of the second symbol of the first minislot.
  • the slot preempts the downlink data resource of the user equipment 3, and the downlink data resource of the original user equipment 3 receives the downlink data of the user equipment 4.
  • the user equipment 3 receives the secondary downlink control information of the burst service in the secondary downlink scheduling resource of the second symbol of the first minislot,
  • the user equipment that is preempted by the resource receives the scheduling cancellation message in the secondary downlink scheduling resource, and cancels the reception of the downlink data in the second minislot.
  • the user equipment 3 in FIG. 5 receives the scheduling cancellation information in the secondary downlink scheduling resource of the second symbol of the first minislot, and cancels the reception of the downlink data in the second minislot.
  • the acknowledgment information is acknowledgment/non-confirmation character feedback information of the current half-subframe downlink data, or acknowledgment/non-confirmation character feedback information of the upper half sub-frame downlink data.
  • the user equipment performs the current half subframe/the upper half subframe in the uplink control symbol (UL) of each half subframe (the resource time domain occupied by the terminal downlink control symbol).
  • the position determines the ACK/NACK feedback of the data, that is, confirms/does not confirm the character feedback. For example, referring to FIG.
  • the user equipment scheduled in the first minislot (Mini-slot1), such as the user equipment 1 in FIG. 4, and the uplink control symbol (UL)
  • the frame feedback mode is adopted, that is, the ACK/NACK feedback is performed on the uplink control symbol (UL) of the current half subframe; in the second minislot (
  • the user equipment that is adjusted in the Mini-slot 2), such as the user equipment 2 and the user equipment 3 in FIG. 4, is close to the uplink control symbol (UL), and the user equipment does not have time to receive processing, so the interlaced frame is used.
  • the manner of feedback is to perform ACK/NACK feedback on the uplink control symbol (UL) of the next half subframe, or to perform the last ACK/NACK feedback on the uplink control symbol (UL) of the current half subframe.
  • the uplink feedback diagram is shown in Figure 7.
  • the user equipment 1 performs ACK/NACK feedback through the uplink control symbol (UL) of the current half subframe, and the user equipment 2 and the user equipment 3 perform the uplink control symbol (UL) of the next half subframe.
  • ACK/NACK feedback is not shown in the figure.
  • the data transmission method provided by the embodiment of the present invention is applicable to a high-reliability and low-latency scenario, and adopts a novel self-contained subframe structure based on mini-slot, and an uplink control symbol of each half-subframe is used for configuration confirmation.
  • Information so that system feedback is completed in half a sub-frame, which achieves faster system feedback, reduces end-to-end transmission delay, and meets the requirement of 5G low delay.
  • each microslot includes two symbols, and the microslot is used as a basic scheduling unit, and the time slot in the LTE frame structure is a basic scheduling unit, and the slot in the embodiment of the present invention is compared to the basic scheduling unit.
  • the structure can achieve faster system feedback and meet the requirements of 5G low latency.
  • the length of each half subframe of the self-contained subframe structure is 0.5 milliseconds, the length is reserved for the base station or the terminal in the case of satisfying the delay requirement of the high reliability low latency (URLLC) scenario. Processing time reduces the complexity of hardware and software processing.
  • the secondary downlink scheduling resource reserved in the second symbol of the first minislot satisfies the requirement of the bursty service, and the method of secondary downlink scheduling The delay requirements of the URLLC scenario can be better met.
  • FIG. 11 is a schematic diagram of a data transmission apparatus according to a first embodiment of the present invention.
  • the data transmission device adopts a time division duplexing technique, can be used for a highly reliable low latency scene, and adopts a self-contained subframe structure as described above.
  • the device mainly includes a transmitting unit 31 and a receiving unit 33.
  • the sending unit 31 is configured to send a scheduling request. Specifically, the sending unit 31 is configured to send a scheduling request to a base station or other scheduling entity.
  • the receiving unit 33 is configured to receive scheduling information in one half subframe.
  • the receiving unit 33 is configured to receive scheduling information sent by a scheduling entity.
  • the scheduling information includes downlink control information and downlink data information of the user equipment scheduled by the downlink control information.
  • the downlink control information includes a mini-slot index and a frequency domain location occupied by the user equipment.
  • the half subframe has a length of 0.5 milliseconds and a carrier interval of 15 kHz.
  • the half subframe includes a downlink control symbol (DL Control), a first minislot (Mini-slot 1), and a second.
  • the mini-slot 2, the guard interval (GP), and the uplink control symbol (UL) are based on the first minislot (Mini-slot1) or the second minislot (Mini-slot2).
  • the downlink control symbol (DL Control) is used to carry the downlink control information
  • the first minislot (Mini-slot1) and the second minislot (Mini-slot2) are used to carry at least the downlink data information. .
  • the sending unit 31 is further configured to feed back the confirmation information in a half subframe that receives the scheduling information.
  • the acknowledgment information includes acknowledgment/non-acknowledgment character feedback information of the user equipment scheduled for the current half subframe, or acknowledgment/non-acknowledgment character feedback information of the user equipment scheduled by the upper half subframe.
  • the receiving unit 33 specifically includes a first receiving unit 331 and a second receiving unit 333.
  • the first receiving unit 331 is configured to receive the downlink scheduling information in the downlink control symbol
  • the second receiving unit 333 is configured to receive downlink data information and/or secondary scheduling control in the two minislots. information.
  • the first minislot (Mini-slot1) and the second minislot (Mini-slot2) each include a first symbol and a second symbol.
  • bursty traffic occurs on the network side or on the scheduling entity side.
  • the base station needs to issue a burst of control naming.
  • a secondary downlink scheduling resource is reserved in a bandwidth of the second symbol of the first minislot, and the secondary scheduling control signal
  • the information includes secondary downlink control information and/or scheduling cancellation message.
  • downlink data information is received in at least one of the two mini-slots according to the indication of the downlink control information. For example, if it is the user equipment 3 shown in FIG. 4, the downlink data information is received in the second minislot according to the indication of the downlink control information of the user equipment 3. It should be further noted that, if the downlink control information indicates that downlink data information is received in the first minislot, time-frequency resource reception only in the second downlink scheduling resource of the first minislot Downstream data information. That is to say, the secondary downlink scheduling resource of the second symbol of the first minislot is only used to transmit/receive secondary scheduling control information.
  • the secondary downlink scheduling information of the secondary downlink scheduling resource receiving the burst service, and the time-frequency resource indicated by the secondary downlink control information, in the current half Downlink data is received in the second minislot of the frame. For example, as shown in FIG. 5, if the bursty service of the user equipment 4 occurs in the current half subframe, the user equipment 4 schedules the resource to receive the burst service in the second downlink of the second symbol of the first minislot.
  • the second downlink control information that is, the downlink control information of the user equipment 4, and the user equipment 4 preempt the downlink data resources of the user equipment 3 in the second minislot, and the downlink data resources of the original user equipment 3 receive the downlink data of the user equipment 4.
  • the user equipment 3 receives the secondary downlink control information of the burst service in the secondary downlink scheduling resource of the second symbol of the first minislot,
  • the user equipment that is preempted by the resource receives the scheduling cancellation message in the secondary downlink scheduling resource, and cancels the reception of the downlink data in the second minislot.
  • the user equipment 3 in FIG. 5 receives the scheduling cancellation information in the secondary downlink scheduling resource of the second symbol of the first minislot, and cancels the reception of the downlink data in the second minislot.
  • the sending unit When receiving the downlink data information in the two minislots, the sending unit sends the acknowledgement information in the uplink control symbol according to the receiving condition of the downlink data.
  • the acknowledgment information is acknowledgment/non-confirmation character feedback information of the current half-subframe downlink data, or acknowledgment/non-confirmation character feedback information of the upper half sub-frame downlink data.
  • the user equipment performs the current half subframe/the upper half subframe in the uplink control symbol (UL) of each half subframe (the resource time domain occupied by the terminal downlink control symbol).
  • the position determines the ACK/NACK feedback of the data, that is, confirms/does not confirm the character feedback. For example, referring to FIG.
  • the user equipment scheduled in the first minislot (Mini-slot1), such as the user equipment 1 in FIG. 4, and the uplink control symbol (UL)
  • the frame feedback mode is adopted, that is, the ACK/NACK feedback is performed on the uplink control symbol (UL) of the current half subframe; in the second minislot (
  • the user equipment adjusted in Mini-slot 2) such as user equipment 2 and user equipment 3 in FIG. 4, is close to the uplink control symbol (UL), and is used.
  • the device does not have time to receive processing.
  • the frame feedback method is adopted, that is, ACK/NACK feedback is performed on the uplink control symbol (UL) of the next half subframe, or on the uplink control symbol (UL) of the current half subframe. Perform the last ACK/NACK feedback.
  • the uplink feedback diagram is shown in Figure 7. As can be seen in the figure, the user equipment 1 performs ACK/NACK feedback through the uplink control symbol (UL) of the current half subframe, and the user equipment 2 and the user equipment 3 perform the uplink control symbol (UL) of the next half subframe. ACK/NACK feedback is not shown in the figure.
  • the data transmission apparatus of the embodiment of the present invention adopts a novel self-contained subframe structure based on mini-slot, and an uplink control symbol of each half subframe is used for configuring acknowledgement information, thereby completing system feedback in a half subframe. It achieves faster system feedback, reduces end-to-end transmission delay, and meets the requirements of 5G low latency.
  • each microslot includes two symbols, and the microslot is used as a basic scheduling unit, and the time slot in the LTE frame structure is a basic scheduling unit, and the slot in the embodiment of the present invention is compared to the basic scheduling unit.
  • the inclusion of a sub-frame structure allows for faster system feedback and meets the 5G low latency requirement.
  • each half subframe of the self-contained subframe structure is 0.5 milliseconds
  • the length is reserved for the base station or the terminal in the case of satisfying the delay requirement of the high reliability low latency (URLLC) scenario. Processing time reduces the complexity of hardware and software processing.
  • the secondary downlink scheduling resource reserved in the second symbol of the first minislot satisfies the requirement of the bursty service, and the method of secondary downlink scheduling The delay requirements of the URLLC scenario can be better met.
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station includes: at least one processor 201, such as a CPU, at least one communication interface 203, a memory 204, and at least one bus 202.
  • the bus 202 is used to implement connection communication between these components.
  • the communication interface 203 can include a display and a keyboard.
  • the optional communication interface 203 can also include a standard wired interface and a wireless interface.
  • the memory 204 may include a Volotile Memory, such as a Random Access Memory (RAM); the memory may also include a Non-Volatile Memory, such as a Read Only Memory (Read-Only).
  • RAM Random Access Memory
  • Read-Only Read Only Memory
  • the memory 204 may also include a combination of the above types of memories.
  • the memory 204 can also optionally be at least one storage device located remotely from the aforementioned processor 201. Wherein the memory 204 stores a set of program codes, and the processor 201 calls the program code stored in the memory 204 for performing the following operations:
  • scheduling information includes downlink control information and downlink data information of the user equipment scheduled by the downlink control information;
  • the half subframe includes a downlink control symbol, two mini slots, a guard interval, and an uplink control symbol, where the downlink control symbol is used by the bearer
  • the two mini-slots are used to carry the downlink data information
  • the mini-slot is a basic scheduling unit configured for data
  • the uplink control symbol is used to carry the acknowledgement information.
  • the two mini-slots are respectively a first minislot and a second minislot, and the downlink control symbol, the first minislot and the second microslot are sequentially set, and the processor 201 further uses Do the following:
  • the generating the scheduling information according to the scheduling request specifically includes:
  • Determining time-frequency resources and micro-slot indexes of the plurality of user equipments in the two mini-slots according to the delay priority, and generating the downlink control according to the time-frequency resources and the micro-slot index The information, wherein the first minislot is allocated to the user equipment with a high delay priority, and the second minislot is allocated to the user equipment with a low delay priority.
  • processor 201 is specifically configured to perform the following operations:
  • the confirmation information is received at the uplink control symbol.
  • first minislot and the second minislot each include a first symbol and a second symbol, and a second downlink scheduling resource is reserved in a bandwidth of the second symbol of the first minislot.
  • the processor 201 is specifically configured to perform the following operations:
  • the downlink data information is transmitted only in the first minislot and the second microslot of the time-frequency resource other than the secondary downlink scheduling resource.
  • first minislot and the second minislot each include a first symbol and a second symbol, and a second downlink scheduling resource is reserved in a bandwidth of the second symbol of the first minislot.
  • the processor 201 is specifically configured to perform the following operations:
  • the indication of the downlink control information sends downlink data information of other user equipments.
  • FIG. 13 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the terminal includes at least one processor 401, such as a CPU, at least one communication interface 403, a memory 404, and at least one bus 402.
  • the bus 402 is used to implement connection communication between these components.
  • the user equipment interface 403 may include a display and a keyboard.
  • the optional communication interface 403 may further include a standard wired interface and a wireless interface.
  • the memory 404 may include a Volotile Memory, such as a Random Access Memory (RAM); the memory may also include a Non-Volatile Memory, such as a Read Only Memory (Read-Only).
  • RAM Random Access Memory
  • Read-Only Read Only Memory
  • the memory 404 may also include a combination of the above types of memories. .
  • the memory 404 can optionally also be at least one storage device located remotely from the aforementioned processor 401.
  • the memory 404 stores a set of program codes, and the processor 401 calls the program code stored in the memory 404 for performing the following operations:
  • the scheduling information includes downlink control information, downlink data information of the user equipment scheduled by the downlink control information
  • the half subframe includes a downlink control symbol, Two micro-slots, a guard interval, and an uplink control symbol, where the downlink control symbol is used to carry the downlink control information, and the two mini-slots are used to carry at least the downlink data information, and the mini-slot
  • a basic scheduling unit configured for the data, where the uplink control symbol is used to carry the acknowledgement information.
  • processor 401 is further configured to perform the following operations:
  • the acknowledgement information is sent in the uplink control symbol according to the reception status of the downlink data.
  • the two minislots are a first minislot and a second minislot, respectively, and the downlink control symbol, a microslot and a second minislot are sequentially disposed, and the first minislot and the second minislot each include a first symbol and a second symbol, and the second symbol of the first minislot
  • a secondary downlink scheduling resource is reserved in the bandwidth, where the secondary scheduling control information includes a secondary downlink control information and/or a scheduling cancellation message, and the processor 401 is further configured to:
  • processor 201 is specifically configured to perform the following operations:
  • the downlink control information indicates that the downlink data information is received in the first minislot, the downlink data information is received only by the time-frequency resource other than the secondary downlink scheduling resource of the first minislot.
  • the disclosed terminal and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or may be each Units exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the units in the terminal in the embodiment of the present invention may be combined, divided, and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种数据调度方法,包括:接收至少一个用户设备发起的调度请求;根据所述调度请求生成调度信息,所述调度信息包括下行控制信息及该下行控制信息调度的所述用户设备的下行数据信息;在一个半子帧内发送所述调度信息并接收确认信息。本发明实施例的方法在半子帧内完成系统反馈,实现了更快的系统反馈,降低了端到端的传输时延,满足了低时延的要求。本发明实施例同时公开了一种数据传输方法、调度实体、数据传输装置、基站及终端。

Description

数据调度传输方法、调度实体、传输装置、基站及终端 技术领域
本发明涉及移动通信技术领域,尤其涉及一种数据调度方法、数据传输方法、调度实体、数据传输装置、基站及终端。
背景技术
无线通信系统被广泛地部署以提供诸如电话、视频、数据、消息传送和广播之类的各种电信服务。典型的无线通信系统可以采用能够通过共享可用的系统资源(例如,带宽、发射功率)来支持与多个用户设备的通信的多址技术。这种多址技术的示例包括码分多址(CDMA)系统、时分多址(TDMA)系统、频分多址(FDMA)系统、正交频分多址(OFDMA)系统、单载波频分多址(SC-FDMA)系统和时分同步码分多址(TD-SCDMA)系统。
在各种电信标准中已采纳这些多址技术,以提供使得不同的无线设备能够在城市、国家、地区、甚至全球层面上进行通信的公共协议。一种新兴的电信标准的例子是长期演进(LTE/LTE-A)。LTE/LTE-A是由第三代合作伙伴计划(3GPP)发布的通用移动通信系统(UMTS)移动标准的增强集合。LTE/LTE-A被设计为通过提高谱效率、降低费用、改善服务、利用新频谱来更好地支持移动宽带互联网接入,并且与在下行链路(DL)上使用OFDMA、在上行链路(UL)上使用SC-FDMA以及使用多输入多输出(MIMO)天线技术的其它开放标准进行更好地整合。但是,随着对移动宽带接入的需求持续增加,存在对LTE技术中的进一步改进的需求。当前,世界范围内已着手开始对第五代通信技术(5th-Generation,5G)的研究了。
5G是一种多技术融合的通信,通过技术的更迭和创新来满足广泛的数据、连接业务的需求。5G的主要设计目标之一是:更快的系统反馈,从而提供更低的端到端传输时延。然而,在现有的TD-LTE帧结构的多种配置中,最快的反馈时间大约为1ms,无法满足5G低时延的要求。
发明内容
本发明实施例提供一种数据调度方法、数据传输方法、调度实体、数据传输装置、基 站及终端。
第一方面,提供一种数据调度方法,该数据调度方法采用时分双工技术,该方法包括:
接收至少一个用户设备发起的调度请求;
根据所述调度请求生成调度信息,所述调度信息包括下行控制信息及该下行控制信息调度的所述用户设备的下行数据信息;
在一个半子帧内发送所述调度信息并接收确认信息;其中,所述半子帧包括下行控制符号、两个微时隙、保护间隔以及上行控制符号,所述下行控制符号用于承载所述下行控制信息,所述两个微时隙至少用于承载所述下行数据信息,且所述微时隙为数据配置的基本调度单元,所述上行控制符号用于承载所述确认信息。
第二方面,提供一种数据传输方法,该数据传输方法采用时分双工技术,该方法包括:
发送调度请求;
在一个半子帧内接收调度信息并反馈确认信息,其中,所述调度信息包括下行控制信息、该下行控制信息调度的所述用户设备的下行数据信息,所述半子帧包括下行控制符号、两个微时隙、保护间隔以及上行控制符号,所述下行控制符号用于承载所述下行控制信息,所述两个微时隙至少用于承载所述下行数据信息,且所述微时隙为数据配置的基本调度单元,所述上行控制符号用于承载所述确认信息。
第三方面,提供一种调度实体,该调度实体采用时分双工技术,所述调度实体包括:
收发单元,用于接收至少一个用户设备发起的调度请求;
信息生成单元,用于根据所述调度请求生成调度信息,所述调度信息包括下行控制信息及该下行控制信息调度的所述用户设备的下行数据信息;
所述收发单元,还用于在一个半子帧内发送所述调度信息并接收确认信息;其中,所述半子帧包括下行控制符号、两个微时隙、保护间隔以及上行控制符号,所述下行控制符号用于承载所述下行控制信息,所述两个微时隙至少用于承载所述下行数据信息,且所述微时隙为数据配置的基本调度单元,所述上行控制符号用于承载所述确认信息。
第四方面,提供一种数据传输装置,该数据传输装置采用时分双工技术,该装置包括:
发送单元,用于发送调度请求;
接收单元,用于在一个半子帧内接收调度信息,
所述发送单元,还用于在接收所述调度信息的半子帧内反馈确认信息,
其中,所述调度信息包括下行控制信息、该下行控制信息调度的所述用户设备的下行数据信息,所述半子帧包括下行控制符号、两个微时隙、保护间隔以及上行控制符号,所述下行控制符号用于承载所述下行控制信息,所述两个微时隙至少用于承载所述下行数据信息,且所述微时隙为数据配置的基本调度单元,所述上行控制符号用于承载所述确认信息。
第五方面,提供一种基站,包括:处理器、存储器、通信接口和总线;所述处理器、所述存储器和所述通信接口通过所述总线连接并完成相互间的通信;所述存储器存储可执行程序代码;所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于执行前述的数据调度方法。
第六方面,提供一种终端,包括:处理器、存储器、通信接口和总线;所述处理器、所述存储器和所述通信接口通过所述总线连接并完成相互间的通信;所述存储器存储可执行程序代码;所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于执行前述的数据传输方法。
本发明实施例所提供的数据调度方法、调度实体、数据传输方法及装置中,采用了如前所述的半子帧结构,每个半子帧的上行控制符号配置确认信息,从而在半子帧内完成系统反馈,实现了更快的系统反馈,降低了端到端的传输时延,满足了5G低时延的要求。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明第一实施例提供的自包含子帧结构的示意图;
图2是图1所示自包含子帧结构的半子帧结构示意图;
图3是图2所示半子帧结构在频域上的示意图,示例性地仅示出其中八个子载波;
图4是图2所示半子帧结构的调度示意图;
图5是图1所示半子帧结构的突发性业务调度示意图;
图6是本发明第一实施例提供的调度实体的数据调度方法示意流程图;
图7是图4中上行反馈示意图;
图8是本发明第一实施例提供的调度实体的结构示意图;
图9是本发明第一实施例提供的数据传输方法的示意流程图;
图10是图9所示步骤S901的具体流程图;
图11是本发明第一实施例提供的数据传输装置的示意流程图;
图12是本发明实施例提供的基站的结构示意图。
图13是本发明实施例提供的终端的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在此本发明说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本发明。如在本发明说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本发明说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
本文所描述的技术中,用户设备指的是用户设备终端(例如,蜂窝电话或者智能电话)可以利用无线通信系统来发射和接收数据以用于双路通信。该用户设备终端可以通过下行链路和上行链路与基站进行通信。下行链路(或前向链路)是指从基站到终端的通信链路,而上行链路(或反向链路)是指从终端到基站的通信链路。
进一步地,用户设备终端可以包括用于数据发射的发射机以及用于数据接收的接收机。对于数据发射,发射机可以利用数据对发射本地振荡器(Local Oscillator,LO)信号进行调制以获得经调制的射频(Radio Frequency,RF)信号,对经调制的RF信号进行放大以获得具有恰当发射功率级别的输出RF信号,并且经由天线将输出RF信号发射给基站。对于数据接收,接收机可以经由天线来获得所接收的RF信号,放大并利用接收LO信号将所接收的RF信号下变频,并且处理经下变频的信号以恢复由基站发送的数据。
该用户设备终端可以支持与不同无线电接入技术(Radio Access Technology,RAT)的多个无线系统的通信(例如LTE/LTE-A和NR)。其中,LTE/LTE-A指的是高级LTE(LTE-A),NR指的是下一代5G网络。每个无线系统可能具有某些特性和要求,能够高效地支持利用不同RAT的无线系统的同时通信。用户设备终端可以包括移动台、终端、接入终端、订户单元、站点,等等。用户设备终端还可以是蜂窝电话、智能电话、平板计算机、无线调制解调器、个人数字助理(Personal Digital Assistant,PDA)、手持式设备、膝上型计算机、智能本、上网本、无绳电话、无线本地回路(wireless local loop,WLL)站点、蓝牙设备,等等。用户设备终端可以能够与无线系统进行通信,还可以能够从广播站、一个或多个全球导航卫星系统(Global Navigation Satellite System,GNSS)中的卫星等接收信号。用户设备终端可以支持用于无线通信的一个或多个RAT,诸如GSM、WCDMA、CDMA2000、LTE/LTE-A、802.11,等等。术语“无线电接入技术”、“RAT”、“无线电技术”、“空中接口”和“标准”经常可互换地被使用。需要说明的是,在LTE/LTE-A系统中,上/下行载波分别采用单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)/OFDM以及循环前缀(Cyclic Prefix,CP)。进一步地,在RAN71次会议中,第三代合作伙伴计划(3GPP)成立了关于5G新空口研究的学习课题(Study Item,SI)。根据5G对于垂直场景的划分,3GPP主要从三个方面进行新空口技术的研究:增强的移动宽带业务(Enhanced Mobile BroadBand,EMBB)、高可靠低时延业务(Ultra-reliable Low-latency Communications,URLLC)和大量的机器类通信(Massive Machine Type Communications,MMTC)。这三种场景所针对的业务类型不一样,其需求也不一样。其中,对于EMBB业务,其两个主要的指标是高带宽和低时延,在未来的高频通信上,可能支持100MHz的大带宽,而且很可能某个时刻整个带宽都直接分配给一个用户设备。而上行调度时延和混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)反馈时延也会带 来时延影响。对于mMTC业务,其需要的是窄带服务,需要电池寿命很长,这种业务就需要更小粒度的频域和更宽粒度的时域资源。对于URLLC业务,其时延要求是0.5ms,也需要减少时域调度粒度,以及减少上行调度时延和混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)反馈时延带来的时延影响。
需要说明的是,本发明实施例主要讨论NR系统中的高可靠低时延(Ultra-reliable Low-latency Communications,URLLC)业务。本发明实施例的主要原理是:提出一种URLLC(高可靠低时延)场景下基于mini-slot(微时隙)的Self-contained(自包含)子帧结构设计方法,在长度为1ms的子帧内包含两个时隙,每个时隙包含上下行符号和保护间隔;在每个时隙内,以mini-slot为基本调度单元,且为URLLC突发业务预留部分物理下行链路控制信道(Physical Downlink Control Channel,PDCCH)资源,保证URLLC的时延关键性能指标(Key Performance Indicators,KPI)。
请参考图1,是本发明第一实施例提供一种自包含子帧结构的示意图,该自包含子帧结构可适用于高可靠低时延场景,其长度为1ms、载波间隔为15KHz。如图所示,该自包含子帧结构包括:两个半子帧,即前半子帧和后半子帧。每半子帧的长度均为0.5ms。进一步地,如图所示,每半子帧包括下行控制符号(DL Control)、两个微时隙(Mini-slot)、保护间隔(GP)及上行控制符号(UL)。其中,下行控制符号(DL Control)用于配置下行控制信息,两个微时隙(Mini-slot)用于配置该下行控制信息的用户设备的下行数据信息(DL Data),上行控制符号(UL)用于配置确认信息,且每一微时隙(Mini-slot)为基本调度单元。其中,基本调度单元是指调度实体(例如基站等)可以给用户设备终端分配的最小资源单位,即,给用户设备终端分配资源时,以微时隙为基本单位。具体地,如图2所示,每半子帧包括第一微时隙(Mini-slot1)及第二微时隙(Mini-slot2),第一微时隙(Mini-slot1)紧邻下行控制符号。该半子帧的结构中,从左至右依次是:下行控制符号(DL Control)、第一微时隙(Mini-slot1)、第二微时隙(Mini-slot2)、保护间隔(GP)及上行控制符号(UL)。其中,第一微时隙(Mini-slot1)用于配置时延优先级高的用户设备业务的下行数据,第二微时隙(Mini-slot2)用于配置时延优先级低的用户设备业务的下行数据。
进一步地,第一微时隙(Mini-slot1)和第二微时隙(Mini-slot2)均包括两个符号,例如,第一微时隙(Mini-slot1)从左至右包括第一符号、第二符号,第二微时隙(Mini-slot2) 从左至右包含第一符号、第二符号。第一微时隙(Mini-slot1)的第二符号的带宽内预留二次下行调度资源(如图3所示),该二次下行调度资源用于发送突发性业务用户设备的下行控制信息以及被抢占资源用户设备的取消消息,且突发性业务用户设备的下行控制信息用于指示该突发性业务在当前半子帧的第二微时隙(Mini-slot2)中所占用的时频资源。需要说明的是,在本实施例中,二次下行调度资源仅用于发送突发性业务用户设备的下行控制信息以及被抢占资源用户设备的取消消息,在第一微时隙(Mini-slot1)内发送的用户设备下行数据是不能占用二次下行调度资源的。此外,突发性业务抢占用户设备资源的情况一般有以下两种:(1)以时延优先级为基准,突发性业务会抢占时延优先级低的用户设备的资源;(2)以时延要求作为基准,当URLLC和EMBB两种场景共存时,突发性业务会占用时延要求较低EMBB的用户设备业务的资源。
具体地,在URLLC场景中,为了保证业务的实时性,对于突发性业务,需要考虑如何满足其时延。在本发明实施例所涉及的子帧结构中,固定为突发性业务在第一微时隙(Mini-slot1)预留了下行调度资源。具体地,请参考图3及图4。如图所示,在第一微时隙(Mini-slot1)的第二符号内预留了一部分资源,作为二次下行调度资源(DC2),仅用于发送突发性业务用户设备的下行控制信息以及被抢占资源用户设备的取消消息,在第一微时隙(Mini-slot1)内调度的用户设备数据不能占用二次下行调度资源(DC2),在第一微时隙(Mini-slot1)内发送的用户设备下行数据只能在二次下行调度资源(DC2)以外的时频资源上发送。进一步地,请结合图5,当突发性URLLC业务抢占了原第二微时隙(Mini-slot2)内用户设备的资源时,在二次下行调度资源(DC2)内需要通知原用户设备,即在二次下行调度资源(DC2)内发送原用户设备调度取消消息,原用户设备将不再在第二微时隙(Mini-slot2)进行数据接收。如图4及图5所示,用户设备4出现了突发性业务,抢占了原第二微时隙(Mini-slot2)内用户设备3的时频资源,因此,在第一微时隙(Mini-slot1)的第二符号内,即二次下行调度资源(DC2)内发送用户设备3调度取消的消息,且用户设备3不再在第二微时隙(Mini-slot2)进行数据接收。需要说明的是,第二符号在整个带宽内,只有部分频率资源作为二次调度资源,例如,假设系统带宽为20MHz,包括1200个15KHz间隔的子载波,可能只有中间的部分子载波,例如中间的72个子载波的第二符号会被设置为二次下行调度资源,而不能传送用户设备数据,其它子载波的第二符号是可以用来传送用户设备资源的。对于该部分的示例性说明将在后续实施例中进行详述。也就 是说,在整个带宽的频率资源中,可以只选择其中一部分子载波的第二符号预留为二次下行调度资源(DC2)。
进一步地,每个半子帧的上行控制符号(UL)用于配置当前半子帧或上一半子帧的用户设备确认/不确认反馈信息。具体地,在每个半子帧的上行控制符号(UL)符号内,终端进行当前半子帧/上一半子帧(具体由终端下行控制符号占用的资源时域位置决定)数据的ACK/NACK反馈,即确认/不确认字符反馈。举例来说,在第一微时隙(Mini-slot1)内进行调度的用户设备,其与上行控制符号(UL)之间的距离较远,用户设备有足够的时间来做接收处理,因此采用当帧反馈的方式,即在当前半子帧的上行控制符号上进行ACK/NACK反馈;在第二微时隙(Mini-slot2)内进行调度的用户设备,其与上行控制符号(UL)之间的距离较近,用户设备来不及做接收处理,因此采用隔帧反馈的方式,即在下一半子帧的上行控制符号(UL)上进行ACK/NACK反馈,或者说,在当前半子帧的上行控制符号(UL)上进行上一半子帧的ACK/NACK反馈。
本发明实施例提供了一种基于mini-slot(微时隙)的新型Self-contained(自包含)子帧结构,可适用于高可靠低时延场景,其包含两个半子帧,每个半子帧包括下行控制符号(DL Control)、两个微时隙(Mini-slot)、保护间隔(GP)及上行控制符号(UL),每个半子帧的上行控制符号(UL)用于配置确认信息,从而在半子帧内完成系统反馈,实现了更快的系统反馈,降低了端到端的传输时延,满足了5G低时延的要求。进一步地,每个微时隙包括两个符号,且以微时隙为基本调度单元,与LTE帧结构中以包括七个符号的时隙作为基本调度单元相比,本发明实施例中的自包含子帧结构可以达到更快的系统反馈,满足5G低时延的要求。此外,由于自包含子帧结构的每个半子帧的长度为0.5毫秒,在满足高可靠低时延(URLLC)场景的时延要求的情况下,该长度给基站或终端预留了足够的处理时间,降低了软硬件处理的复杂度。另外,本发明实施例所设计的帧结构中,在第一微时隙(Mini-slot1)的第二符号内预留了二次下行调度资源(DC2),满足了突发性业务的需求,且二次下行调度的方法可以更好地满足URLLC场景的时延要求。
请参考图6,是本发明第一实施例提供一种调度实体的数据调度方法的示意流程图。所述调度实体是指子移动通信网络中进行传输调度的节点或者设备。所述调度实体可以是,但不限于基站、网络节点、用户设备(UE)或者其他任何适合的节点。
该数据调度方法可用于高可靠低时延场景,并采用了如前所述的自包含子帧结构。如图所示,该方法主要包括:
S201,接收至少一个用户设备发起的调度请求。具体地,在本实施方式中,接收多个用户设备所发起的调度请求。例如,基站检测到当前时刻有3个用户设备,例如用户设备1、用户设备2及用户设备3向基站发起了调度请求,基站接收该调度请求。
S202,根据所述调度请求生成调度信息,所述调度信息包括下行控制信息及该下行控制信息调度的所述用户设备的下行数据信息。
S203,在一个半子帧内发送所述调度信息并接收确认信息。其中,所述半子帧的长度为0.5毫秒,且其载波间隔为15KHz;所述半子帧包括下行控制符号(DL Control)、第一微时隙(Mini-slot1)、第二微时隙(Mini-slot2)、保护间隔(GP)及上行控制符号(UL),以第一微时隙(Mini-slot1)或第二微时隙(Mini-slot2)为基本调度单元。所述下行控制符号(DL Control)用于承载所述下行控制信息,所述第一微时隙(Mini-slot1)及第二微时隙(Mini-slot2)至少用于承载所述下行数据信息,所述上行控制符号用于承载所述确认信息。该确认信息包括当前半子帧调度的用户设备的确认/不确认字符反馈信息,或者上一半子帧调度的用户设备的确认/不确认字符反馈信息。
进一步地,在S202中,具体包括:
根据调度请求获取多个用户设备的业务的时延优先级。具体地,基站接收到用户设备1、用户设备2及用户设备3的调度请求的同时,会获取到用户设备1、用户设备2及用户设备3的时延。例如获取到用户设备1的业务的时延为t1、用户设备2的业务的时延为t2及用户设备3的业务的时延为t3,进一步地,会根据该具体的时延确定用户设备的业务的时延优先级为高或低。举例来说,本实施例中,确定用户设备1的业务的时延优先级为高,用户设备2及用户设备3的时延优先级为低。
根据时延优先级确定多个用户设备在两个微时隙中的时频资源以及微时隙索引,并根据时频资源及微时隙索引生成所述下行控制信息,其中,第一微时隙分配给时延优先级高的用户设备,将第二时隙分配给时延优先级低的用户设备。具体地,将第一微时隙(Mini-slot1)和第二微时隙(Mini-slot2)均定义为两个符号,例如,第一微时隙(Mini-slot1)从左至右包括第一符号、第二符号,第二微时隙(Mini-slot2)从左至右包含第一符号、第二符号。因此,结合前述的自包含子帧结构及所确定的时延优先级,将第一微时隙 (Mini-slot1)分配给时延优先级高的用户设备,将第二微时隙(Mini-slot2)分配给时延优先级低的用户设备。举例来说,如图4所示,时延优先级高的用户设备1被分配了第一微时隙(Mini-slot1),时延优先级低的用户设备2及用户设备3被分配了第二微时隙(Mini-slot2)。也就是说,根据时延优先级确定了用户设备在两个微时隙中的时频资源以及微时隙索引,例如,时延优先级较高的用户设备1的时频资源是第一微时隙(Mini-slot1)对应的时频资源,其微时隙索引为Mini-slot1;时延优先级较低的用户设备2和用户设备3的时频资源是第二微时隙(Mini-slot2)对应的时频资源,其微时隙索引为Mini-slot2。进一步地,根据该时频资源及微时隙索引生成下行控制信息。需要说明的是,在图4所示的子帧结构中,不同用户设备的下行控制符号占用了不同的子载波资源。
其中,当进行正常调度时,基站在下行控制符号(DL Control)发送下行控制信息,在两个微时隙发送由所述下行控制信息调度的用户设备的下行数据信息,并在上行控制符号(UL)接收确认信息。而在某些业务场景下,网络侧或者调度实体侧存在产生突发性业务的情况。例如,在工业控制时,基站需要下发一个突发的控制命名。又如,在车联网的业务场景中,需要向车载芯片发送数据等突发情况。因此,在第一微时隙(Mini-slot1)的第二符号内预留了二次下行调度资源,当在当前半子帧有突发性业务产生时,在两个微时隙发送该下行控制信息调度的用户设备的下行数据信息具体包括:
在所述二次下行调度资源发送突发业务用户设备的二次下行控制信息,所述二次下行控制信息用于指示该突发性业务在当前半子帧的所述第二微时隙中所占用的时频资源;
在所述二次下行调度资源发送被抢占资源用户设备的调度取消消息;
在所述突发性业务用户设备的下行控制信息指示的所述第二微时隙中时频资源发送突发性业务用户设备的下行数据;以及
在所述二次下行调度资源以及被突发性业务用户设备抢占的时频资源以外的所述第一微时隙、第二微时隙的时频资源上,按照所述下行控制符号中的下行控制信息的指示发送其他用户设备的下行数据信息。
具体地,对S203的具体流程举例说明如下:
(1)在前半子帧的起始时刻,通过下行控制符号(DL Control)发送下行控制信息至用户设备,同时在第一微时隙内调度的用户设备下行数据不能占用二次下行调度资源。
(2)在二次下行控制信息指示的第二微时隙中时频资源发送突发性业务用户设备的 下行数据,在二次下行调度资源以及被突发性业务用户设备抢占的时频资源以外的第一、第二微时隙的时频资源上,按照下行控制符号中的下行控制信息的指示发送其他用户设备的下行数据信息。具体地,如图5所示,突发性业务用户设备为用户设备4,在二次下行调度资源(DC2)上发送用户设备4的下行控制信息,并在用户设备4的下行控制信息中指示的第二微时隙(Mini-slot2)时频资源上发送用户设备4的下行数据。且,用户设备4抢占了用户设备3(图4所示)的时频资源,因此在二次下行调度资源(DC2)上发送用户设备3的调度取消信息,且用户设备3不再第二微时隙(Mini-slot2)内进行下行数据接收。此外,在二次下行调度资源(DC2)以及被突发性业务抢占的时频资源以外的第一微时隙(Mini-slot1)、第二微时隙(Mini-slot2)的时频资源上,按照下行控制符号(DL Control)中的下行控制信息发送其他用户设备的下行数据信息,如图5中的用户设备1及用户设备2的下行数据的发送。
(3)接收用户设备通过上行控制符号进行的当前半子帧或上一半子帧的确认/不确认字符反馈信息。具体地,用户设备接收下行数据过程中,在每个半子帧的上行控制符号(UL)内,终端进行当前半子帧/上一半子帧(具体由终端下行控制符号占用的资源时域位置决定)数据的ACK/NACK反馈,即确认/不确认字符反馈。举例来说,结合参阅图4及图7,在第一微时隙(Mini-slot1)内进行调度的用户设备,如图4中的用户设备1,其与上行控制符号(UL)之间的距离较远,用户设备有足够的时间来做接收处理,因此采用当帧反馈的方式,即在当前半子帧的上行控制符号(UL)上进行ACK/NACK反馈;在第二微时隙(Mini-slot2)内进行调的用户设备,如图4中的用户设备2及用户设备3,其与上行控制符号(UL)之间的距离较近,用户设备来不及做接收处理,因此采用隔帧反馈的方式,即在下一半子帧的上行控制符号(UL)上进行ACK/NACK反馈,或者说,在当前半子帧的上行控制符号(UL)上进行上一次的ACK/NACK反馈。其中,上行反馈示意图如图7所示。在图中可以看出,用户设备1通过当前半子帧的上行控制符号(UL)进行ACK/NACK反馈,而用户设备2及用户设备3是通过下一半子帧的上行控制符号(UL)进行ACK/NACK反馈,在图中并未示出。
需要说明的是,各下行数据的发送不受顺序的限制,虽然步骤是按顺序写的,但突发性业务的下行数据的发送与正常业务下行数据的发送在同一个微时隙内是同时进行的。
本发明实施例的数据调度方法,采用了一种基于mini-slot的新型自包含子帧结构,每 个半子帧的上行控制符号用于配置确认信息,从而在半子帧内完成系统反馈,实现了更快的系统反馈,降低了端到端的传输时延,满足了5G低时延的要求。进一步地,每个微时隙包括两个符号,且以微时隙为基本调度单元,与LTE帧结构中以包括七个符号的时隙作为基本调度单元相比,本发明实施例中的自包含子帧结构可以达到更快的系统反馈,满足5G低时延的要求。此外,由于自包含子帧结构的每个半子帧的长度为0.5毫秒,在满足高可靠低时延(URLLC)场景的时延要求的情况下,该长度给基站或终端预留了足够的处理时间,降低了软硬件处理的复杂度。另外,本发明实施例在进行下行数据传输时,在第一微时隙的第二符号内所预留的二次下行调度资源,满足了突发性业务的需求,且二次下行调度的方法可以更好地满足URLLC场景的时延要求。
请参考图8,是本发明第一实施例提供的调度实体的示意图。所述调度实体是指子移动通信网络中进行传输调度的节点或者设备。所述调度实体可以是,但不限于基站、网络节点、用户设备(UE)或者其他任何适合的节点。
该调度实体采用时分双工技术,可适用于高可靠低时延场景。如图所示,该调度实体可以包括收发单元11及信息生成单元13。所述收发单元11包括发送单元111及接收单元113;所述信息生成单元13包括获取单元131及分配单元133。
所述接收单元113用于接收至少一个用户设备发起的调度请求。具体地,在本实施方式中,接收多个用户设备所发起的调度请求。例如,基站检测到当前时刻有3个用户设备,例如用户设备1、用户设备2及用户设备3向基站发起了调度请求,基站接收该调度请求。
所述信息生成单元13用于根据所述调度请求生成调度信息,所述调度信息包括下行控制信息及该下行控制信息调度的所述用户设备的下行数据信息。
所述收发单元11用于在一个半子帧内发送所述调度信息并接收确认信息。具体地,所述发送单元111用于在所述下行控制符号发送所述下行控制信息,以及在所述两个微时隙发送所述下行数据信息;所述接收单元113用于在所述上行控制符号接收确认信息。其中,所述半子帧的长度为0.5毫秒,且其载波间隔为15KHz;所述半子帧包括下行控制符号(DL Control)、第一微时隙(Mini-slot1)、第二微时隙(Mini-slot2)、保护间隔(GP)及上行控制符号(UL),以第一微时隙(Mini-slot1)或第二微时隙(Mini-slot2)为基本调度单元。所述下行控制符号(DL Control)用于承载所述下行控制信息,所述第一微时隙(Mini-slot1) 及第二微时隙(Mini-slot2)至少用于承载所述下行数据信息,所述上行控制符号用于承载所述确认信息。该确认信息包括当前半子帧调度的用户设备的确认/不确认字符反馈信息,或者上一半子帧调度的用户设备的确认/不确认字符反馈信息。
进一步地,所述获取单元131用于根据调度请求获取多个用户设备的业务的时延优先级。具体地,基站接收到用户设备1、用户设备2及用户设备3的调度请求的同时,会获取到用户设备1、用户设备2及用户设备3的时延。例如获取到用户设备1的业务的时延为t1、用户设备2的业务的时延为t2及用户设备3的业务的时延为t3,进一步地,会根据该具体的时延确定用户设备的业务的时延优先级为高或低。举例来说,本实施例中,确定用户设备1的业务的时延优先级为高,用户设备2及用户设备3的时延优先级为低。
所述分配单元133用于根据时延优先级确定多个用户设备在两个微时隙中的时频资源以及微时隙索引,并根据时频资源及微时隙索引生成所述下行控制信息,其中,第一微时隙分配给时延优先级高的用户设备,将第二时隙分配给时延优先级低的用户设备。具体地,将第一微时隙(Mini-slot1)和第二微时隙(Mini-slot2)均定义为两个符号,例如,第一微时隙(Mini-slot1)从左至右包括第一符号、第二符号,第二微时隙(Mini-slot2)从左至右包含第一符号、第二符号。因此,结合前述的自包含子帧结构及所确定的时延优先级,将第一微时隙(Mini-slot1)分配给时延优先级高的用户设备,将第二微时隙(Mini-slot2)分配给时延优先级低的用户设备。举例来说,如图4所示,时延优先级高的用户设备1被分配了第一微时隙(Mini-slot1),时延优先级低的用户设备2及用户设备3被分配了第二微时隙(Mini-slot2)。也就是说,根据时延优先级确定了用户设备在两个微时隙中的时频资源以及微时隙索引,例如,时延优先级较高的用户设备1的时频资源是第一微时隙(Mini-slot1)对应的时频资源,其微时隙索引为Mini-slot1;时延优先级较低的用户设备2和用户设备3的时频资源是第二微时隙(Mini-slot2)对应的时频资源,其微时隙索引为Mini-slot2。进一步地,根据该时频资源及微时隙索引生成下行控制信息。需要说明的是,在图4所示的子帧结构中,不同用户设备的下行控制符号占用了不同的子载波资源。
其中,当进行正常调度时,所述发送单元111下行控制符号(DL Control)发送下行控制信息,在两个微时隙发送由所述下行控制信息调度的用户设备的下行数据信息,所述接收单元113在上行控制符号(UL)接收确认信息。而在某些业务场景下,网络侧或者调度实体侧存在产生突发性业务的情况。例如,在工业控制时,基站需要下发一个突发的控 制命名。又如,在车联网的业务场景中,需要向车载芯片发送数据等突发情况。因此,在第一微时隙(Mini-slot1)的第二符号内预留了二次下行调度资源,当在当前半子帧有突发性业务产生时,在所述发送单元111具体用于:
在所述二次下行调度资源发送突发业务用户设备的二次下行控制信息,所述二次下行控制信息用于指示该突发性业务在当前半子帧的所述第二微时隙中所占用的时频资源;
在所述二次下行调度资源发送被抢占资源用户设备的调度取消消息;
在所述突发性业务用户设备的下行控制信息指示的所述第二微时隙中时频资源发送突发性业务用户设备的下行数据;以及
在所述二次下行调度资源以及被突发性业务用户设备抢占的时频资源以外的所述第一微时隙、第二微时隙的时频资源上,按照所述下行控制符号中的下行控制信息的指示发送其他用户设备的下行数据信息。
具体地,对收发单元11的作用及工作流程举例说明如下:
(1)在前半子帧的起始时刻,所述发送单元111通过下行控制符号(DL Control)发送下行控制信息至用户设备,同时在第一微时隙内调度的用户设备下行数据不能占用二次下行调度资源。
(2)所述发送单元111在二次下行控制信息指示的第二微时隙中时频资源发送突发性业务用户设备的下行数据,在二次下行调度资源以及被突发性业务用户设备抢占的时频资源以外的第一、第二微时隙的时频资源上,按照下行控制符号中的下行控制信息的指示发送其他用户设备的下行数据信息。具体地,如图5所示,突发性业务用户设备为用户设备4,在二次下行调度资源(DC2)上发送用户设备4的下行控制信息,并在用户设备4的下行控制信息中指示的第二微时隙(Mini-slot2)时频资源上发送用户设备4的下行数据。且,用户设备4抢占了用户设备3(图4所示)的时频资源,因此在二次下行调度资源(DC2)上发送用户设备3的调度取消信息,且用户设备3不再第二微时隙(Mini-slot2)内进行下行数据接收。此外,在二次下行调度资源(DC2)以及被突发性业务抢占的时频资源以外的第一微时隙(Mini-slot1)、第二微时隙(Mini-slot2)的时频资源上,按照下行控制符号(DL Control)中的下行控制信息发送其他用户设备的下行数据信息,如图5中的用户设备1及用户设备2的下行数据的发送。
(3)接收单元113接收用户设备通过上行控制符号进行的当前半子帧或上一半子帧的 确认/不确认字符反馈信息。具体地,用户设备接收下行数据过程中,在每个半子帧的上行控制符号(UL)内,终端进行当前半子帧/上一半子帧(具体由终端下行控制符号占用的资源时域位置决定)数据的ACK/NACK反馈,即确认/不确认字符反馈。举例来说,结合参阅图4及图7,在第一微时隙(Mini-slot1)内进行调度的用户设备,如图4中的用户设备1,其与上行控制符号(UL)之间的距离较远,用户设备有足够的时间来做接收处理,因此采用当帧反馈的方式,即在当前半子帧的上行控制符号(UL)上进行ACK/NACK反馈;在第二微时隙(Mini-slot2)内进行调的用户设备,如图4中的用户设备2及用户设备3,其与上行控制符号(UL)之间的距离较近,用户设备来不及做接收处理,因此采用隔帧反馈的方式,即在下一半子帧的上行控制符号(UL)上进行ACK/NACK反馈,或者说,在当前半子帧的上行控制符号(UL)上进行上一次的ACK/NACK反馈。其中,上行反馈示意图如图7所示。在图中可以看出,用户设备1通过当前半子帧的上行控制符号(UL)进行ACK/NACK反馈,而用户设备2及用户设备3是通过下一半子帧的上行控制符号(UL)进行ACK/NACK反馈,在图中并未示出。
需要说明的是,各下行数据的发送不受顺序的限制,虽然步骤是按顺序写的,但突发性业务的下行数据的发送与正常业务下行数据的发送在同一个微时隙内是同时进行的。
本发明实施例的调度实体,采用了一种基于mini-slot的新型自包含子帧结构,每个半子帧的上行控制符号用于配置确认信息,从而在半子帧内完成系统反馈,实现了更快的系统反馈,降低了端到端的传输时延,满足了5G低时延的要求。进一步地,每个微时隙包括两个符号,且以微时隙为基本调度单元,与LTE帧结构中以包括七个符号的时隙作为基本调度单元相比,本发明实施例中的自包含子帧结构可以达到更快的系统反馈,满足5G低时延的要求。此外,由于自包含子帧结构的每个半子帧的长度为0.5毫秒,在满足高可靠低时延(URLLC)场景的时延要求的情况下,该长度给基站或终端预留了足够的处理时间,降低了软硬件处理的复杂度。另外,本发明实施例在进行下行数据传输时,在第一微时隙的第二符号内所预留的二次下行调度资源,满足了突发性业务的需求,且二次下行调度的方法可以更好地满足URLLC场景的时延要求。
请参考图9,是本发明第一实施例提供一种数据传输方法的示意流程图。该数据调度方法适用于用户设备,可用于高可靠低时延场景,并采用了如前所述的自包含子帧结构。如图所示,该方法主要包括:
S901,发送调度请求。用户设备向基站或调度实体发送调度请求。
S902,在一个半子帧内接收调度信息并反馈确认信息。所述调度信息包括下行控制信息及该下行控制信息调度的所述用户设备的下行数据信息。该下行控制信息包括用户设备占用的微时隙(Mini-slot)索引和频域位置。其中,所述半子帧的长度为0.5毫秒,且其载波间隔为15KHz;所述半子帧包括依次设置的下行控制符号(DL Control)、第一微时隙(Mini-slot1)、第二微时隙(Mini-slot2)、保护间隔(GP)及上行控制符号(UL),以第一微时隙(Mini-slot1)或第二微时隙(Mini-slot2)为基本调度单元。所述下行控制符号(DL Control)用于承载所述下行控制信息,所述第一微时隙(Mini-slot1)及第二微时隙(Mini-slot2)至少用于承载所述下行数据信息,所述上行控制符号用于承载所述确认信息。该确认信息包括当前半子帧调度的用户设备的确认/不确认字符反馈信息,或者上一半子帧调度的用户设备的确认/不确认字符反馈信息。
请参阅图10,其中,S902具体包括如下步骤:
S9021,在所述下行控制符号接收下行调度信息;
S9022,在所述两个微时隙接收下行数据信息和/或二次调度控制信息。所述第一微时隙(Mini-slot1)及第二微时隙(Mini-slot2)均包括第一符号及第二符号。在某些业务场景下,网络侧或者调度实体侧存在产生突发性业务的情况。例如,在工业控制时,基站需要下发一个突发的控制命名。又如,在车联网的业务场景中,需要向车载芯片发送数据等突发情况。因此,在所述第一微时隙的所述第二符号的带宽内预留二次下行调度资源,所述二次调度控制信息包括二次下行控制信息和/或调度取消消息。
在没有突发性业务的情况下,则根据所述下行控制信息的指示在两个微时隙的其中至少一个接收下行数据信息。例如,若为图4所示的用户设备3,则根据用户设备3的下行控制信息的指示,在第二微时隙接收下行数据信息。需进一步说明的是,若所述下行控制信息指示在所述第一微时隙接收下行数据信息,则仅在所述第一微时隙的所述二次下行调度资源以外的时频资源接收下行数据信息。也就是说,第一微时隙的第二符号的二次下行调度资源仅用于发送/接收二次调度控制信息。
若在当前半子帧发生了突发性业务,则在所述二次下行调度资源接收突发业务的二次下行控制信息,以及根据二次下行控制信息指示的时频资源,在当前半子帧的所述第二微时隙中接收下行数据。例如,如图5所示,若在当前半子帧发生了用户设备4的突发性业 务,则用户设备4在第一微时隙的第二符号的二次下行调度资源接收突发业务的二次下行控制信息,即用户设备4下行控制信息,以及用户设备4在第二微时隙抢占了用户设备3的下行数据资源,在原用户设备3的下行数据资源接收用户设备4的下行数据。用户设备3在第一微时隙的第二符号的二次下行调度资源接收突发业务的二次下行控制信息,
若在当前半子帧发生了突发性业务,被抢占资源的用户设备在所述二次下行调度资源接收调度取消消息,以及取消在第二微时隙的下行数据的接收。例如,图5中的用户设备3在第一微时隙的第二符号的二次下行调度资源接收调度取消信息,并取消在第二微时隙的下行数据的接收。
S9023,当在所述两个微时隙接收下行数据信息时,则根据下行数据的接收情况在所述上行控制符号发送确认信息。所述确认信息为对当前半子帧下行数据的确认/不确认字符反馈信息,或者上一半子帧下行数据的确认/不确认字符反馈信息。具体地,用户设备接收下行数据过程中,在每个半子帧的上行控制符号(UL)内,用户设备进行当前半子帧/上一半子帧(具体由终端下行控制符号占用的资源时域位置决定)数据的ACK/NACK反馈,即确认/不确认字符反馈。举例来说,结合参阅图4及图7,在第一微时隙(Mini-slot1)内进行调度的用户设备,如图4中的用户设备1,其与上行控制符号(UL)之间的距离较远,用户设备有足够的时间来做接收处理,因此采用当帧反馈的方式,即在当前半子帧的上行控制符号(UL)上进行ACK/NACK反馈;在第二微时隙(Mini-slot2)内进行调的用户设备,如图4中的用户设备2及用户设备3,其与上行控制符号(UL)之间的距离较近,用户设备来不及做接收处理,因此采用隔帧反馈的方式,即在下一半子帧的上行控制符号(UL)上进行ACK/NACK反馈,或者说,在当前半子帧的上行控制符号(UL)上进行上一次的ACK/NACK反馈。其中,上行反馈示意图如图7所示。在图中可以看出,用户设备1通过当前半子帧的上行控制符号(UL)进行ACK/NACK反馈,而用户设备2及用户设备3是通过下一半子帧的上行控制符号(UL)进行ACK/NACK反馈,在图中并未示出。
本发明实施例所提供的数据传输方法,可适用于高可靠低时延场景,采用了一种基于mini-slot的新型自包含子帧结构,每个半子帧的上行控制符号用于配置确认信息,从而在半子帧内完成系统反馈,实现了更快的系统反馈,降低了端到端的传输时延,满足了5G低时延的要求。进一步地,每个微时隙包括两个符号,且以微时隙为基本调度单元,与LTE帧结构中以包括七个符号的时隙作为基本调度单元相比,本发明实施例中的自包含子帧结 构可以达到更快的系统反馈,满足5G低时延的要求。此外,由于自包含子帧结构的每个半子帧的长度为0.5毫秒,在满足高可靠低时延(URLLC)场景的时延要求的情况下,该长度给基站或终端预留了足够的处理时间,降低了软硬件处理的复杂度。另外,本发明实施例在进行下行数据传输时,在第一微时隙的第二符号内所预留的二次下行调度资源,满足了突发性业务的需求,且二次下行调度的方法可以更好地满足URLLC场景的时延要求。
请参考图11,是本发明第一实施例提供一种数据传输装置的示意图。该数据传输装置采用时分双工技术,可用于高可靠低时延场景,并采用了如前所述的自包含子帧结构。如图所示,该装置主要包括发送单元31及接收单元33。
所述发送单元31用于发送调度请求。具体地,所述发送单元31用于向基站或者其他调度实体发送调度请求。
所述接收单元33用于在一个半子帧内接收调度信息。所述接收单元33用于接收调度实体发送的调度信息。所述调度信息包括下行控制信息及该下行控制信息调度的所述用户设备的下行数据信息。该下行控制信息包括用户设备占用的微时隙(Mini-slot)索引和频域位置。其中,所述半子帧的长度为0.5毫秒,且其载波间隔为15KHz;所述半子帧包括依次设置的下行控制符号(DL Control)、第一微时隙(Mini-slot1)、第二微时隙(Mini-slot2)、保护间隔(GP)及上行控制符号(UL),以第一微时隙(Mini-slot1)或第二微时隙(Mini-slot2)为基本调度单元。所述下行控制符号(DL Control)用于承载所述下行控制信息,所述第一微时隙(Mini-slot1)及第二微时隙(Mini-slot2)至少用于承载所述下行数据信息。
所述发送单元31还用于在接收所述调度信息的半子帧内反馈确认信息。该确认信息包括当前半子帧调度的用户设备的确认/不确认字符反馈信息,或者上一半子帧调度的用户设备的确认/不确认字符反馈信息。
其中,接收单元33具体包括第一接收单元331及第二接收单元333。所述第一接收单元331用于在所述下行控制符号接收所述下行调度信息;所述第二接收单元333用于在所述两个微时隙接收下行数据信息和/或二次调度控制信息。所述第一微时隙(Mini-slot1)及第二微时隙(Mini-slot2)均包括第一符号及第二符号。在某些业务场景下,网络侧或者调度实体侧存在产生突发性业务的情况。例如,在工业控制时,基站需要下发一个突发的控制命名。又如,在车联网的业务场景中,需要向车载芯片发送数据等突发情况。因此,在所述第一微时隙的所述第二符号的带宽内预留二次下行调度资源,所述二次调度控制信 息包括二次下行控制信息和/或调度取消消息。
在没有突发性业务的情况下,则根据所述下行控制信息的指示在两个微时隙的其中至少一个接收下行数据信息。例如,若为图4所示的用户设备3,则根据用户设备3的下行控制信息的指示,在第二微时隙接收下行数据信息。需进一步说明的是,若所述下行控制信息指示在所述第一微时隙接收下行数据信息,则仅在所述第一微时隙的所述二次下行调度资源以外的时频资源接收下行数据信息。也就是说,第一微时隙的第二符号的二次下行调度资源仅用于发送/接收二次调度控制信息。
若在当前半子帧发生了突发性业务,则在所述二次下行调度资源接收突发业务的二次下行控制信息,以及根据二次下行控制信息指示的时频资源,在当前半子帧的所述第二微时隙中接收下行数据。例如,如图5所示,若在当前半子帧发生了用户设备4的突发性业务,则用户设备4在第一微时隙的第二符号的二次下行调度资源接收突发业务的二次下行控制信息,即用户设备4下行控制信息,以及用户设备4在第二微时隙抢占了用户设备3的下行数据资源,在原用户设备3的下行数据资源接收用户设备4的下行数据。用户设备3在第一微时隙的第二符号的二次下行调度资源接收突发业务的二次下行控制信息,
若在当前半子帧发生了突发性业务,被抢占资源的用户设备在所述二次下行调度资源接收调度取消消息,以及取消在第二微时隙的下行数据的接收。例如,图5中的用户设备3在第一微时隙的第二符号的二次下行调度资源接收调度取消信息,并取消在第二微时隙的下行数据的接收。
当在所述两个微时隙接收下行数据信息时,所述发送单元则根据下行数据的接收情况在所述上行控制符号发送确认信息。所述确认信息为对当前半子帧下行数据的确认/不确认字符反馈信息,或者上一半子帧下行数据的确认/不确认字符反馈信息。具体地,用户设备接收下行数据过程中,在每个半子帧的上行控制符号(UL)内,用户设备进行当前半子帧/上一半子帧(具体由终端下行控制符号占用的资源时域位置决定)数据的ACK/NACK反馈,即确认/不确认字符反馈。举例来说,结合参阅图4及图7,在第一微时隙(Mini-slot1)内进行调度的用户设备,如图4中的用户设备1,其与上行控制符号(UL)之间的距离较远,用户设备有足够的时间来做接收处理,因此采用当帧反馈的方式,即在当前半子帧的上行控制符号(UL)上进行ACK/NACK反馈;在第二微时隙(Mini-slot2)内进行调的用户设备,如图4中的用户设备2及用户设备3,其与上行控制符号(UL)之间的距离较近,用 户设备来不及做接收处理,因此采用隔帧反馈的方式,即在下一半子帧的上行控制符号(UL)上进行ACK/NACK反馈,或者说,在当前半子帧的上行控制符号(UL)上进行上一次的ACK/NACK反馈。其中,上行反馈示意图如图7所示。在图中可以看出,用户设备1通过当前半子帧的上行控制符号(UL)进行ACK/NACK反馈,而用户设备2及用户设备3是通过下一半子帧的上行控制符号(UL)进行ACK/NACK反馈,在图中并未示出。
本发明实施例的数据传输装置,采用了一种基于mini-slot的新型Self-contained子帧结构,每个半子帧的上行控制符号用于配置确认信息,从而在半子帧内完成系统反馈,实现了更快的系统反馈,降低了端到端的传输时延,满足了5G低时延的要求。进一步地,每个微时隙包括两个符号,且以微时隙为基本调度单元,与LTE帧结构中以包括七个符号的时隙作为基本调度单元相比,本发明实施例中的自包含子帧结构可以达到更快的系统反馈,满足5G低时延的要求。此外,由于自包含子帧结构的每个半子帧的长度为0.5毫秒,在满足高可靠低时延(URLLC)场景的时延要求的情况下,该长度给基站或终端预留了足够的处理时间,降低了软硬件处理的复杂度。另外,本发明实施例在进行下行数据传输时,在第一微时隙的第二符号内所预留的二次下行调度资源,满足了突发性业务的需求,且二次下行调度的方法可以更好地满足URLLC场景的时延要求。
图12是本发明实施例中提供的一种基站的结构示意图,如图所示,该基站包括:至少一个处理器201,例如CPU,至少一个通信接口203,存储器204,至少一个总线202。其中,总线202用于实现这些组件之间的连接通信。其中,通信接口203可以包括显示屏(Display)、键盘(Keyboard),可选通信接口203还可以包括标准的有线接口、无线接口。存储器204可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random Access Memory,RAM);存储器也可以包括非易失性存储器(Non-Volatile Memory),例如只读存储器(Read-Only Memory,ROM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);存储器204还可以包括上述种类的存储器的组合。存储器204可选的还可以是至少一个位于远离前述处理器201的存储装置。其中存储器204中存储一组程序代码,且处理器201调用存储器204中存储的程序代码,用于执行以下操作:
接收至少一个用户设备发起的调度请求;
根据所述调度请求生成调度信息,所述调度信息包括下行控制信息及该下行控制信息调度的所述用户设备的下行数据信息;
在一个半子帧内发送所述调度信息并接收确认信息;其中,所述半子帧包括下行控制符号、两个微时隙、保护间隔以及上行控制符号,所述下行控制符号用于承载所述下行控制信息,所述两个微时隙至少用于承载所述下行数据信息,且所述微时隙为数据配置的基本调度单元,所述上行控制符号用于承载所述确认信息。
进一步地,所述两个微时隙分别为第一微时隙及第二微时隙,所述下行控制符号、第一微时隙及第二微时隙依次设置,该处理器201还用于执行以下操作:
接收多个用户设备所发起的调度请求;
根据所述调度请求生成调度信息具体包括:
根据所述调度请求获取多个所述用户设备的业务的时延优先级;
根据所述时延优先级确定多个所述用户设备在所述两个微时隙中的时频资源以及微时隙索引,并根据所述时频资源及微时隙索引生成所述下行控制信息,其中,将所述第一微时隙分配给时延优先级高的所述用户设备,将所述第二微时隙分配给时延优先级低的所述用户设备。
进一步地,该处理器201具体用于执行以下操作:
在所述下行控制符号发送所述下行控制信息;
在所述两个微时隙发送所述下行数据信息;以及
在所述上行控制符号接收确认信息。
进一步地,所述第一微时隙和第二微时隙均包括第一符号及第二符号,所述第一微时隙的所述第二符号的带宽内预留二次下行调度资源,该处理器201具体用于执行以下操作:
仅在所述二次下行调度资源以外的第一微时隙及第二微时隙的时频资源发送所述下行数据信息。
进一步地,所述第一微时隙和第二微时隙均包括第一符号及第二符号,所述第一微时隙的所述第二符号的带宽内预留二次下行调度资源,该处理器201具体用于执行以下操作:
在所述二次下行调度资源发送突发业务用户设备的二次下行控制信息,所述二次下行控制信息用于指示该突发性业务在当前半子帧的所述第二微时隙中所占用的时频资源;
在所述二次下行调度资源发送被抢占资源用户设备的调度取消消息;
在所述突发性业务用户设备的下行控制信息指示的所述第二微时隙中时频资源发送突发性业务用户设备的下行数据;以及
在所述二次下行调度资源以及被突发性业务用户设备抢占的时频资源以外的所述第一微时隙、第二微时隙的时频资源上,按照所述下行控制符号中的下行控制信息的指示发送其他用户设备的下行数据信息。
图13是本发明实施例中提供的一种终端的结构示意图,如图所示,该终端包括:至少一个处理器401,例如CPU,至少一个通信接口403,存储器404,至少一个总线402。其中,总线402用于实现这些组件之间的连接通信。其中,用户设备接口403可以包括显示屏(Display)、键盘(Keyboard),可选通信接口403还可以包括标准的有线接口、无线接口。存储器404可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random Access Memory,RAM);存储器也可以包括非易失性存储器(Non-Volatile Memory),例如只读存储器(Read-Only Memory,ROM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);存储器404还可以包括上述种类的存储器的组合。。存储器404可选的还可以是至少一个位于远离前述处理器401的存储装置。其中存储器404中存储一组程序代码,且处理器401调用存储器404中存储的程序代码,用于执行以下操作:
发送调度请求;
在一个半子帧内接收调度信息并反馈确认信息,其中,所述调度信息包括下行控制信息、该下行控制信息调度的所述用户设备的下行数据信息,所述半子帧包括下行控制符号、两个微时隙、保护间隔以及上行控制符号,所述下行控制符号用于承载所述下行控制信息,所述两个微时隙至少用于承载所述下行数据信息,且所述微时隙为数据配置的基本调度单元,所述上行控制符号用于承载所述确认信息。
进一步地,所述处理器401还用于执行以下操作:
在所述下行控制符号接收下行调度信息;
在所述两个微时隙接收下行数据信息和/或二次调度控制信息;以及
当在所述两个微时隙接收下行数据信息时,则根据下行数据的接收情况在所述上行控制符号发送确认信息。
进一步地,所述两个微时隙分别为第一微时隙及第二微时隙,所述下行控制符号、第 一微时隙及第二微时隙依次设置,所述第一微时隙和第二微时隙均包括第一符号及第二符号,所述第一微时隙的所述第二符号的带宽内预留二次下行调度资源,所述二次调度控制信息包括二次下行控制信息和/或调度取消消息,该处理器401还用于执行以下操作:
根据所述下行控制信息的指示在两个微时隙的其中至少一个接收下行数据信息;或者
在所述二次下行调度资源接收突发业务的二次下行控制信息,以及根据二次下行控制信息指示的时频资源,在当前半子帧的所述第二微时隙中接收下行数据;或者
在所述二次下行调度资源接收调度取消消息,以及取消在第二微时隙的下行数据的接收。
进一步地,该处理器201具体用于执行以下操作:
若所述下行控制信息指示在所述第一微时隙接收下行数据信息,则仅在所述第一微时隙的所述二次下行调度资源以外的时频资源接收下行数据信息。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
此外,在本申请所提供的几个实施例中,应该理解到,所揭露的、终端和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各 个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例终端中的单元可以根据实际需要进行合并、划分和删减。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (28)

  1. 一种数据调度方法,该数据调度方法采用时分双工技术,其特征在于,该方法包括:
    接收至少一个用户设备发起的调度请求;
    根据所述调度请求生成调度信息,所述调度信息包括下行控制信息及该下行控制信息调度的所述用户设备的下行数据信息;
    在一个半子帧内发送所述调度信息并接收确认信息;其中,所述半子帧包括下行控制符号、两个微时隙、保护间隔以及上行控制符号,所述下行控制符号用于承载所述下行控制信息,所述两个微时隙至少用于承载所述下行数据信息,且所述微时隙为数据配置的基本调度单元,所述上行控制符号用于承载所述确认信息。
  2. 如权利要求1所述的方法,其特征在于,所述两个微时隙分别为第一微时隙及第二微时隙,所述下行控制符号、第一微时隙及第二微时隙依次设置,其中,接收至少一个用户设备发起的调度请求具体为:
    接收多个用户设备所发起的调度请求;
    根据所述调度请求生成调度信息具体包括:
    根据所述调度请求获取多个所述用户设备的业务的时延优先级;
    根据所述时延优先级确定多个所述用户设备在所述两个微时隙中的时频资源以及微时隙索引,并根据所述时频资源及微时隙索引生成所述下行控制信息,其中,将所述第一微时隙分配给时延优先级高的所述用户设备,将所述第二微时隙分配给时延优先级低的所述用户设备。
  3. 如权利要求1所述的方法,其特征在于,在一个半子帧内发送所述调度信息并接收确认信息包括:
    在所述下行控制符号发送所述下行控制信息;
    在所述两个微时隙发送所述下行数据信息;以及
    在所述上行控制符号接收确认信息。
  4. 如权利要求3所述的方法,其特征在于,所述第一微时隙和第二微时隙均包括第一 符号及第二符号,所述第一微时隙的所述第二符号的带宽内预留二次下行调度资源,在所述两个微时隙发送所述下行数据信息具体为:
    仅在所述二次下行调度资源以外的第一微时隙及第二微时隙的时频资源发送所述下行数据信息。
  5. 如权利要求3所述的方法,其特征在于,所述第一微时隙和第二微时隙均包括第一符号及第二符号,所述第一微时隙的所述第二符号的带宽内预留二次下行调度资源,在所述两个微时隙发送所述下行数据信息包括:
    在所述二次下行调度资源发送突发业务用户设备的二次下行控制信息,所述二次下行控制信息用于指示该突发性业务在当前半子帧的所述第二微时隙中所占用的时频资源;
    在所述二次下行调度资源发送被抢占资源用户设备的调度取消消息;
    在所述突发性业务用户设备的下行控制信息指示的所述第二微时隙中时频资源发送突发性业务用户设备的下行数据;以及
    在所述二次下行调度资源以及被突发性业务用户设备抢占的时频资源以外的所述第一微时隙、第二微时隙的时频资源上,按照所述下行控制符号中的下行控制信息的指示发送其他用户设备的下行数据信息。
  6. 如权利要求1所述的方法,其特征在于,所述确认信息包括当前半子帧调度的所述用户设备的确认/不确认字符反馈信息,或者上一半子帧调度的用户设备的确认/不确认字符反馈信息。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述半子帧的长度为0.5毫秒,且其载波间隔为15KHz。
  8. 一种数据传输方法,该数据传输方法采用时分双工技术,其特征在于,该方法包括:
    发送调度请求;
    在一个半子帧内接收调度信息并反馈确认信息,其中,所述调度信息包括下行控制信息、该下行控制信息调度的所述用户设备的下行数据信息,所述半子帧包括下行控制符号、 两个微时隙、保护间隔以及上行控制符号,所述下行控制符号用于承载所述下行控制信息,所述两个微时隙至少用于承载所述下行数据信息,且所述微时隙为数据配置的基本调度单元,所述上行控制符号用于承载所述确认信息。
  9. 如权利要求8所述的方法,其特征在于,在一个半子帧内接收调度信息并反馈确认信息包括:
    在所述下行控制符号接收下行调度信息;
    在所述两个微时隙接收下行数据信息和/或二次调度控制信息;以及
    当在所述两个微时隙接收下行数据信息时,则根据下行数据的接收情况在所述上行控制符号发送确认信息。
  10. 如权利要求9所述的方法,其特征在于,所述两个微时隙分别为第一微时隙及第二微时隙,所述下行控制符号、第一微时隙及第二微时隙依次设置,所述第一微时隙和第二微时隙均包括第一符号及第二符号,所述第一微时隙的所述第二符号的带宽内预留二次下行调度资源,所述二次调度控制信息包括二次下行控制信息和/或调度取消消息,在所述两个微时隙接收下行数据信息和/或二次调度控制信息包括:
    根据所述下行控制信息的指示在两个微时隙的其中至少一个接收下行数据信息;或者
    在所述二次下行调度资源接收突发业务的二次下行控制信息,以及根据二次下行控制信息指示的时频资源,在当前半子帧的所述第二微时隙中接收下行数据;或者
    在所述二次下行调度资源接收调度取消消息,以及取消在第二微时隙的下行数据的接收。
  11. 如权利要求10所述的方法,其特征在于,若所述下行控制信息指示在所述第一微时隙接收下行数据信息,则仅在所述第一微时隙的所述二次下行调度资源以外的时频资源接收下行数据信息。
  12. 如权利要求8所述的方法,其特征在于,所述确认信息为对当前半子帧下行数据的确认/不确认字符反馈信息,或者上一半子帧下行数据的确认/不确认字符反馈信息。
  13. 如权利要求8-12任一项所述的方法,其特征在于,所述半子帧的长度为0.5毫秒,且其载波间隔为15KHz。
  14. 一种调度实体,该调度实体采用时分双工技术,其特征在于,所述调度实体包括:
    收发单元,用于接收至少一个用户设备发起的调度请求;
    信息生成单元,用于根据所述调度请求生成调度信息,所述调度信息包括下行控制信息及该下行控制信息调度的所述用户设备的下行数据信息;
    所述收发单元,还用于在一个半子帧内发送所述调度信息并接收确认信息;其中,所述半子帧包括下行控制符号、两个微时隙、保护间隔以及上行控制符号,所述下行控制符号用于承载所述下行控制信息,所述两个微时隙至少用于承载所述下行数据信息,且所述微时隙为数据配置的基本调度单元,所述上行控制符号用于承载所述确认信息。
  15. 如权利要求14所述的调度实体,其特征在于,所述两个微时隙分别为第一微时隙及第二微时隙,所述下行控制符号、第一微时隙及第二微时隙依次设置,所述收发单元具体用于接收多个用户设备所发起的调度请求;所述信息生成单元具体包括:
    获取单元,用于根据所述调度请求获取多个所述用户设备的时延优先级;
    分配单元,用于根据所述时延优先级确定多个所述用户设备在所述两个微时隙中的时频资源以及微时隙索引,并根据所述时频资源及微时隙索引生成所述下行控制信息,其中,所述第一微时隙分配给时延优先级高的所述用户设备,将所述第二微时隙分配给时延优先级低的所述用户设备。
  16. 如权利要求14所述的调度实体,其特征在于,所述收发单元具体包括:
    发送单元,用于在所述下行控制符号发送所述下行控制信息,以及在所述两个微时隙发送所述下行数据信息;
    接收单元,用于接收所述调度请求,以及在所述上行控制符号接收确认信息。
  17. 如权利要求16所述的调度实体,其特征在于,所述第一微时隙和第二微时隙均包 括第一符号及第二符号,所述第一微时隙的所述第二符号的带宽内预留二次下行调度资源,所述发送单元仅在所述二次下行调度资源以外的第一微时隙及第二微时隙的时频资源发送所述下行数据信息。
  18. 如权利要求16所述的调度实体,其特征在于,所述第一微时隙和第二微时隙均包括第一符号及第二符号,所述第一微时隙的所述第二符号的带宽内预留二次下行调度资源,所述发送单元具体用于:
    在所述二次下行调度资源发送突发业务用户设备的二次下行控制信息,所述二次下行控制信息用于指示该突发性业务在当前半子帧的所述第二微时隙中所占用的时频资源;
    在所述二次下行调度资源发送被抢占资源用户设备的调度取消消息;
    在所述突发性业务用户设备的下行控制信息指示的所述第二微时隙中时频资源发送突发性业务用户设备的下行数据;以及
    在所述二次下行调度资源以及被突发性业务用户设备抢占的时频资源以外的所述第一微时隙及第二微时隙的时频资源上,按照所述下行控制符号中的下行控制信息的指示发送其他用户设备的下行数据信息。
  19. 如权利要求14所述的调度实体,其特征在于,所述确认信息包括当前半子帧调度的用户设备的确认/不确认字符反馈信息,或者上一半子帧调度的用户设备的确认/不确认字符反馈信息。
  20. 如权利要求14-19任一项所述的调度实体,其特征在于,每个所述半子帧的长度为0.5毫秒,且其载波间隔为15KHz。
  21. 一种数据传输装置,该数据传输装置采用时分双工技术,其特征在于,该装置包括:
    发送单元,用于发送调度请求;
    接收单元,用于在一个半子帧内接收调度信息;
    所述发送单元,还用于在接收所述调度信息的半子帧内反馈确认信息;
    其中,所述调度信息包括下行控制信息、该下行控制信息调度的所述用户设备的下行 数据信息,所述半子帧包括下行控制符号、两个微时隙、保护间隔以及上行控制符号,所述下行控制符号用于承载所述下行控制信息,所述两个微时隙至少用于承载所述下行数据信息,且所述微时隙为数据配置的基本调度单元,所述上行控制符号用于承载所述确认信息。
  22. 如权利要求21所述的装置,其特征在于,所述接收单元包括:
    第一接收单元,用于在所述下行控制符号接收下行控制信息;以及
    第二接收单元,用于在所述两个微时隙接收下行数据信息和/或二次调度控制信息;
    在所述两个微时隙接收下行数据信息时,所述发送单元具体用于根据下行数据的接收情况在所述上行控制符号发送确认信息。
  23. 如权利要求22所述的装置,其特征在于,所述两个微时隙分别为第一微时隙及第二微时隙,所述下行控制符号、第一微时隙及第二微时隙依次设置,所述第一微时隙和第二微时隙均包括第一符号及第二符号,所述第一微时隙的所述第二符号的带宽内预留二次下行调度资源,所述二次调度控制信息包括二次下行控制信息和/或调度取消消息,所述第二接收单元具体用于:
    根据所述下行控制信息的指示在两个微时隙的其中至少一个接收下行数据信息;或者
    在所述二次下行调度资源接收突发业务的二次下行控制信息,以及根据二次下行控制信息指示的时频资源,在当前半子帧的所述第二微时隙中接收下行数据;或者
    在所述二次下行调度资源接收调度取消消息,以及取消在第二微时隙的下行数据的接收。
  24. 如权利要求22所述的装置,其特征在于,若所述下行控制信息指示在所述第一微时隙接收下行数据信息,所述第二接收单元仅在所述第一微时隙的所述二次下行调度资源以外的时频资源接收下行数据信息。
  25. 如权利要求21所述的装置,其特征在于,所述确认信息为对当前半子帧下行数据的确认/不确认字符反馈信息,或者上一半子帧下行数据的确认/不确认字符反馈信息。
  26. 如权利要求21-25任一项所述的装置,其特征在于,所述半子帧的长度为0.5毫秒,且其载波间隔为15KHz。
  27. 一种基站,其特征在于,包括:处理器、存储器、通信接口和总线;所述处理器、所述存储器和所述通信接口通过所述总线连接并完成相互间的通信;所述存储器存储可执行程序代码;所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于执行一种数据调度方法;其中,所述方法为如权利要求1至7任一项所述的方法。
  28. 一种终端,其特征在于,包括:处理器、存储器、通信接口和总线;所述处理器、所述存储器和所述通信接口通过所述总线连接并完成相互间的通信;所述存储器存储可执行程序代码;所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于执行一种数据传输方法;其中,所述方法为如权利要求8至13任一项所述的方法。
PCT/CN2017/085930 2016-12-29 2017-05-25 数据调度传输方法、调度实体、传输装置、基站及终端 WO2018120619A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611249306.6 2016-12-29
CN201611249306.6A CN108259139A (zh) 2016-12-29 2016-12-29 数据调度传输方法、调度实体、传输装置、基站及终端

Publications (1)

Publication Number Publication Date
WO2018120619A1 true WO2018120619A1 (zh) 2018-07-05

Family

ID=62706857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085930 WO2018120619A1 (zh) 2016-12-29 2017-05-25 数据调度传输方法、调度实体、传输装置、基站及终端

Country Status (2)

Country Link
CN (1) CN108259139A (zh)
WO (1) WO2018120619A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115462023A (zh) * 2020-04-29 2022-12-09 华为技术有限公司 一种通信方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11991709B2 (en) 2018-08-06 2024-05-21 Beijing Xiaomi Mobile Software Co., Ltd. Information scheduling methods and apparatuses, transceiving methods and apparatuses, base stations and user equipment
CN110913481B (zh) * 2018-09-17 2023-02-10 华为技术有限公司 数据传输方法及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2270815A (en) * 1992-09-18 1994-03-23 Roke Manor Research Improvements in or relating to cellular mobile radio system
CN1941666A (zh) * 2005-09-30 2007-04-04 华为技术有限公司 基于中转站实现带宽分配和调度管理的方法和系统
CN101944971A (zh) * 2009-07-03 2011-01-12 北方电讯网络有限公司 无线通信帧结构和设备
CN106165522A (zh) * 2014-03-03 2016-11-23 华为技术有限公司 用于预留u‑lte和wi‑fi的共存的信道的系统和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2270815A (en) * 1992-09-18 1994-03-23 Roke Manor Research Improvements in or relating to cellular mobile radio system
CN1941666A (zh) * 2005-09-30 2007-04-04 华为技术有限公司 基于中转站实现带宽分配和调度管理的方法和系统
CN101944971A (zh) * 2009-07-03 2011-01-12 北方电讯网络有限公司 无线通信帧结构和设备
CN106165522A (zh) * 2014-03-03 2016-11-23 华为技术有限公司 用于预留u‑lte和wi‑fi的共存的信道的系统和方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115462023A (zh) * 2020-04-29 2022-12-09 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN108259139A (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
US11671973B2 (en) 5G NR data delivery for flexible radio services
KR102331681B1 (ko) 자립식 시간 분할 듀플렉스 (tdd) 서브프레임 구조
WO2019091233A1 (zh) 一种带宽切换方法及装置
JP6932928B2 (ja) 無線通信装置、無線通信方法及びコンピュータプログラム
CN111818649B (zh) 直接通信中的数据传输设备及方法
JP5992638B2 (ja) Tddシステムでttiバンドリングを実行する方法と装置
CN109600850B (zh) 用于增强覆盖范围的方法和装置
EP3198767A1 (en) Synchronous licensed assisted access
WO2018030158A1 (ja) 通信装置、通信方法及びプログラム
WO2018030076A1 (ja) 通信装置、通信方法及びプログラム
CN109565709B (zh) 通信设备、通信方法和记录介质
CN112399374B (zh) 通信方法和通信装置
EP3404978B1 (en) Data transmission methods and related wireless network devices
WO2021147798A1 (en) Method and device used for drx in wireless communication
CN111757459A (zh) 一种通信方法及装置
WO2014185836A1 (en) A network node and method therein for harq processes in a d2d communication
EP4024734A1 (en) Electronic apparatus, wireless communication method, and computer readable storage medium
CN109076463A (zh) 上行参考信号发送方法、上行参考信号接收方法和装置
WO2018120619A1 (zh) 数据调度传输方法、调度实体、传输装置、基站及终端
WO2013135144A1 (zh) 时分双工自适应帧结构的重传方法、网络及终端侧设备
WO2018059170A1 (zh) 通信方法、基站以及终端
CN107113814A (zh) 无线通信的方法、网络设备和终端设备
US10693614B2 (en) Data transmission method, terminal device, and network device
CN115190637A (zh) 一种被用于无线通信的节点中的方法和装置
WO2015139269A1 (zh) 一种信息的传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886716

Country of ref document: EP

Kind code of ref document: A1