WO2019029030A1 - 疏油涂层材料、油水分离功能材料、其制备方法及用途 - Google Patents

疏油涂层材料、油水分离功能材料、其制备方法及用途 Download PDF

Info

Publication number
WO2019029030A1
WO2019029030A1 PCT/CN2017/109948 CN2017109948W WO2019029030A1 WO 2019029030 A1 WO2019029030 A1 WO 2019029030A1 CN 2017109948 W CN2017109948 W CN 2017109948W WO 2019029030 A1 WO2019029030 A1 WO 2019029030A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
compound
water
coating material
water separation
Prior art date
Application number
PCT/CN2017/109948
Other languages
English (en)
French (fr)
Inventor
靳健
朱玉长
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州纳米技术与纳米仿生研究所 filed Critical 中国科学院苏州纳米技术与纳米仿生研究所
Publication of WO2019029030A1 publication Critical patent/WO2019029030A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/056Forming hydrophilic coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D139/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Coating compositions based on derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D105/00Coating compositions based on polysaccharides or on their derivatives, not provided for in groups C09D101/00 or C09D103/00
    • C09D105/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/18Homopolymers or copolymers of nitriles
    • C08J2433/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers

Definitions

  • the invention belongs to the fields of chemistry, chemical materials, functional materials and nanotechnology, and particularly relates to an ionic oleophobic coating material with super hydrophilic and underwater super oleophobic and ultra low oil adhesion properties, and based on the oleophobic oil Oil-water separation functional material of coating material, preparation method and use thereof.
  • Oil-water mixed systems are widely found in many fields of industrial production and residential life, especially in industries such as oil exploration, petrochemical, textile, metal processing, transportation, and energy.
  • accidents such as oil spills also produce a large amount of oil-water mixture.
  • Direct discharge of these oily wastewaters will cause serious damage to the ecological environment and also cause great waste of resources. Recycling and utilizing the useful phase in the oily wastewater can effectively improve the utilization efficiency of resources and reduce the treatment cost in the process of oily wastewater treatment.
  • these oily wastewaters are complex in composition and easily adhere to the surface of the material, causing contamination of the surface of the material and loss of performance of the material, which is one of the most difficult wastewater treatments.
  • the traditional oil-water/emulsion separation process is mainly based on gravity separation, oil-absorbing resin material adsorption, air flotation flocculation, mechanical scraping, etc. It has complex separation operation, low efficiency, high energy consumption, long time consumption, secondary pollution and high cost. Many problems.
  • the membrane separation technology is used to treat oily wastewater, which is easy to operate, high in efficiency, low in energy consumption, short in time consumption and less in secondary pollution, and has attracted wide interest.
  • membrane separation flux and membrane fouling have become the main problems that people urgently need to solve and restrict the further application of membrane technology in the field of oily wastewater treatment.
  • micro/nano structure on the surface of the separation membrane often requires a complicated preparation process, the process is complicated, the cost is high, and it is difficult to achieve large-area preparation.
  • One of the objects of the present invention is to provide an oleophobic coating material having super-hydrophilic, underwater superoleophobic, and having an ultra-low oil adhesion surface and a method of preparing the same.
  • Another object of the present invention is to provide a water-oil separation functional material.
  • a third object of the present invention is to provide the use of the aforementioned oleophobic coating material in separating oil-water mixing systems or surface protection.
  • the technical solution adopted by the present invention includes:
  • Embodiments of the present invention provide an oleophobic coating material comprising a crosslinked network structure formed by intermolecular interactions of two or more ionic compounds, and wherein at least two ionic compounds carry opposite charges.
  • the ionic compound includes more than one anionic compound and one or more cationic compounds.
  • the embodiment of the invention further provides a preparation method of the foregoing oleophobic coating material, which comprises:
  • a solution containing one or more first ionic compounds and a solution containing one or more second ionic compounds are alternately coated on a substrate to form one or more first ionic compounds and one or more second ionic compounds
  • a crosslinked network structure is formed by intermolecular interactions in which at least one of the first ionic compound and the at least one second ionic compound carry opposite charges.
  • any of the first ionic compound and the second ionic compound is an anionic compound and the other is a cationic compound.
  • Embodiments of the invention also provide oleophobic coating materials prepared by the foregoing methods.
  • An embodiment of the present invention further provides an oil-water separation functional material comprising a porous substrate and an oleophobic coating material as described above, the oleophobic coating material being distributed at least on a surface of the substrate and a through-hole wall on.
  • Embodiments of the present invention also provide the use of the oleophobic coating material in the field of surface protection or oil-water separation.
  • the embodiment of the invention further provides a method for separating oil and water, comprising: separating the oil-water mixing system by using the aforementioned oil-water separation functional material.
  • an embodiment of the present invention further provides a water-oil separation device, including:
  • the present invention provides an oleophobic coating material having an ultra-hydrophilic and underwater super-oleophobic property and an ultra-low oil adhesion property in an air environment, and an oil-water separation membrane which is water-soluble and has a pH range It can remain stable in the acid-base environment of 2 ⁇ 10 and in various salt ion solutions with a concentration of up to 1M, and the surface of the underwater coating is anti-sticky to oil or organic liquid which is immiscible with water. With anti-adsorption properties, it can be applied in oil exploitation, petrochemical, marine oil spill treatment, textile wastewater treatment and other fields involving oil-resistant surfaces, self-cleaning surfaces, oil/water separation, oil-water emulsion demulsification, etc.
  • the preparation method of the oleophobic coating material provided by the invention is simple and the preparation process is environmentally friendly and non-polluting, and the oleophobic coating material disclosed in the invention can be constructed on the surface of the substrate film with different pore diameters, and the prepared oleophobic coating material is prepared.
  • the oil-water separation membrane has excellent hydrophilic properties and underwater oleophobic properties, and has high separation flux, good anti-pollution performance, stable operation for a long time, and is suitable for industrial production.
  • Figure 1 is a SEM photograph of the surface of a polyvinylidene fluoride microfiltration membrane obtained in Example 1 of the present invention.
  • Example 2 is a schematic view showing the composition of surface elements of a polyvinylidene fluoride microfiltration membrane obtained in Example 1 of the present invention.
  • Fig. 3 is a P element distribution diagram of the surface composition of the polyvinylidene fluoride microfiltration membrane obtained in Example 1 of the present invention.
  • Fig. 4 is a view showing the change of the surface water contact angle of the polyvinylidene fluoride microfiltration membrane obtained in Example 1 of the present invention with time.
  • Fig. 5 is a graph showing the adhesion force of the surface of the polyvinylidene fluoride microfiltration membrane obtained in Example 1 of the present invention to crude oil under water.
  • Fig. 6 is a graph showing the change of the separation flux with the number of cycles when the polyvinylidene fluoride microfiltration membrane obtained in Example 1 of the present invention separates the oil-water emulsion.
  • an oleophobic coating material comprising a crosslinked network structure formed by intermolecular interaction of two or more ionic compounds, and at least two ions thereof Type compounds carry opposite charges.
  • the oleophobic coating material is formed by a plurality of components which are attracted to each other by intermolecular electrostatic interaction and cross-link with each other to form a crosslinked network structure with strong hydrophilic/oleophobic properties.
  • the ionic compound comprises more than one anionic compound (ie, a negatively charged ionic compound) and one or more cationic compounds (ie, a positively charged ionic compound).
  • the positively charged ionic compound (also referred to as a class A compound) is polyethyleneimine, chitosan and/or chitosan derivative, polyvinylamine hydrochloride, polyimidazole ionic liquid
  • a cationic compound such as a polyquaternary ammonium ionic liquid, polydimethyldiallylammonium chloride, or polydimethylaminoethyl methacrylate, but is not limited thereto
  • Negatively charged ionic compounds (also known as class B compounds) contain carboxylate or carboxylic acid groups, phosphate Or one or more of a phosphate group, a phosphonate or phosphonic acid group, a sulfate or sulfuric acid group, a compound or an ion of a sulfonate or a sulfonic acid group, such as ethylenediaminetetraacetic acid, hydroxyethylidene
  • the negatively charged ionic compound (also referred to as a class A compound) is polyacrylic acid and salts thereof, polystyrene sulfonic acid and salts thereof, polyanionic cellulose, alginic acid, sodium alginate
  • the positively charged ionic compound (also referred to as a class B compound) is a calcium ion, a magnesium ion, a copper ion, a divalent or polyvalent metal.
  • an ion, a polyamine compound, an imidazole ionic liquid, a quaternary ammonium type ionic liquid, a hyperbranched polyamide, or the like but is not limited thereto.
  • the cationic compound and/or the anionic compound is selected from the group consisting of water-soluble polymers.
  • the water-soluble polymer has a weight average molecular weight of 1 to 1,000,000.
  • the oleophobic coating material of the invention has super hydrophilic property in an air environment, super oleophobicity under water, anti-adhesion and anti-adsorption property to oil or organic liquid which is immiscible with water on the surface of the underwater coating layer, It has excellent acid and alkali resistance and salt resistance and properties, such as:
  • the oleophobic coating material has a contact angle with water of less than 20° in air and approaches 0°, a contact angle with oil under water of more than 150°, and adhesion to oil under water.
  • the force is less than 2 ⁇ N.
  • the oleophobic coating material has excellent acid and alkali salt resistance stability, for example, the material is capable of acidic or basic conditions in a wide pH range of pH 2 to 10 and a salt concentration of 1 mol.
  • the high-concentration salt ion solution above /L can maintain its oil-resistant adhesion stability, and can be applied to oil-water/emulsion separation processes in a variety of complex environments, and can be applied to oil extraction, petrochemical, marine oil spill treatment. , textile wastewater treatment, etc. involve oil-resistant surface, self-cleaning surface, oil/water separation, oil-water emulsion demulsification and many other fields.
  • the method further relates to a method for preparing the oleophobic coating material, which is mainly capable of being porous in a plurality of different materials, different pore size structures and pore sizes by a simple coating/spraying process.
  • the surface of the substrate and the inner wall of the pore are modified to have a strong hydration behavior, thereby achieving superhydrophilization of the membrane surface and underwater oil resistance.
  • the preparation method of the present invention comprises:
  • a solution containing one or more first ionic compounds and a solution containing one or more second ionic compounds are alternately coated on a substrate to form one or more first ionic compounds and one or more second ionic compounds
  • a crosslinked network structure is formed by intermolecular interactions in which at least one of the first ionic compound and the at least one second ionic compound carry opposite charges.
  • any one of the first ionic compound and the second ionic compound is an anionic compound, and the other is a cationic compound.
  • the cationic compound (also referred to as a compound A) is polyethyleneimine, chitosan and/or chitosan derivative, polyvinylamine hydrochloride, polyimidazole ionic liquid, polyquaternium One or more of a cationic compound such as a ionic liquid, polydimethyldiallylammonium chloride or polydimethylaminoethyl methacrylate, but is not limited thereto, the anionic compound ( Also known as a class B compound) is a compound containing a carboxylate or carboxylic acid group, a phosphate or phosphate group, a phosphonate or phosphonic acid group, a sulfate or sulfuric acid group, a sulfonate group or a sulfonic acid group or One or more of ions, such as ethylenediaminetetraacetic acid, hydroxyethylidene diphosphate, sodium tripolyphosphate, aminotrimethylenephosphonic acid, di
  • the anionic compound (also referred to as a compound A) is a polyanionic acid such as polyacrylic acid and salts thereof, polystyrenesulfonic acid and salts thereof, polyanionic cellulose, alginic acid, sodium alginate, and the like.
  • the cationic compound (also referred to as a B compound) is a calcium ion, a magnesium ion, a copper ion, a divalent or polyvalent metal ion, a polyamine compound, or an imidazole.
  • an ionic liquid, a quaternary ammonium type ionic liquid, a hyperbranched polyamide, etc. but is not limited thereto.
  • the cationic compound and/or the anionic compound is selected from the group consisting of water-soluble polymers.
  • the water-soluble polymer has a weight average molecular weight of 1 to 1,000,000.
  • the preparation method comprises:
  • preparation method further includes:
  • steps (1) to (2) are repeated n times, and n is a positive integer, preferably 2 to 10.
  • the solution containing the one or more first ionic compounds and/or the solution containing the one or more second ionic compounds has a concentration of 0.2 to 10% by weight.
  • the method for preparing the oleophobic coating material of the present invention may comprise the following steps:
  • step (1) applying the aqueous solution disposed in the step (1) to the substrate by dip coating (or spraying), drying, washing, and then drying in an oven;
  • Steps (3) and (4) are alternately repeated to obtain a multilayer coating (the number of layers can be adjusted between 2 and 10 layers) until the oleophobic coating material is obtained.
  • the substrate may be stainless steel, other non-ferrous metals, plastics, ceramics, rubber, etc., but is not limited thereto, and the substrate may be in the form of a regular shape such as a flat plate, a cylinder, a cylinder, or the like, and other irregular shapes.
  • an oleophobic coating material prepared by the aforementioned method is also provided.
  • the oleophobic coating material can be used for the anti-contamination, anti-adhesion coating of the surface of the substrate.
  • an oil-water separation functional material comprising a porous substrate and an oleophobic coating material as described above, the oleophobic coating material being at least distributed on the substrate Surface and through hole wall.
  • the oil-water separation functional material is composed of the aforementioned oleophobic coating material and the porous substrate
  • the porous substrate may be various sieves and foams having a pore diameter ranging from 1 to 100 ⁇ m according to the pore size range. It may also be a ceramic membrane or a fiber membrane having a pore diameter ranging from 1 to 50 ⁇ m, a microfiltration membrane having a pore diameter ranging from 0.1 to 5 ⁇ m, an ultrafiltration membrane having a pore diameter ranging from 2 to 100 nm, and a pore diameter of less than 2 nm. Nanofiltration membrane, reverse osmosis membrane, etc.
  • the material of the screen and the foam may be metal (for example, stainless steel wire mesh, copper mesh, nickel mesh, foam iron, copper foam, nickel foam, etc.), polymer mesh (for example, nylon mesh, polyester mesh, etc.) , various woven fabrics, PP cotton, non-woven fabrics, etc., but are not limited thereto.
  • metal for example, stainless steel wire mesh, copper mesh, nickel mesh, foam iron, copper foam, nickel foam, etc.
  • polymer mesh for example, nylon mesh, polyester mesh, etc.
  • various woven fabrics for example, PP cotton, non-woven fabrics, etc., but are not limited thereto.
  • the substrate of the oil-water separation membrane may be in the form of a flat plate, a column, a tube or a hollow fiber.
  • the oil-water separation functional material is an oil-water separation membrane.
  • Another aspect of an embodiment of the present invention also provides the use of the aforementioned oleophobic coating material in the field of surface protection or oil-water separation.
  • an embodiment of the present invention further provides a method for separating oil and water, comprising: separating the oil-water mixing system by using the foregoing oil-water separation functional material.
  • the oil-water mixing system comprises an oil-water dispersion system or an oil-water emulsion system.
  • the oil-water mixing system comprises water and an oil and/or organic solvent that is incompatible with water.
  • the porous material modified with such an oleophobic coating material can be used for oil-water separation and resistance against different kinds of oils or mixtures of water-incompatible organic solvents and water, including dispersion systems and emulsion systems. Oil adhered or adsorbed coating.
  • oil-water mixing system is selected from the group consisting of oily wastewater.
  • the oil-water separation membrane of the present invention can be applied to the treatment of oily wastewater such as oil field refill water, thermal power plant cooling water tower, ship ballast water, non-ferrous metal surface cleaning wastewater, and wool washing wastewater in the textile industry, but is not limited to these applications.
  • oily wastewater such as oil field refill water, thermal power plant cooling water tower, ship ballast water, non-ferrous metal surface cleaning wastewater, and wool washing wastewater in the textile industry, but is not limited to these applications.
  • the use comprises: preparing a water-oil separation device with the oil-water separation functional material.
  • an embodiment of the present invention further provides a water-oil separation device, including:
  • the oil-water separation functional material placed in the fluid passage.
  • the first step dissolving polydimethyldiallylammonium chloride having a molecular weight of 10,000 in pure water to form an aqueous solution having a concentration of 1% by weight, and then adjusting the pH of the aqueous solution to 4 by using a 0.1 M diluted hydrochloric acid solution.
  • the prepared solution is labeled as component A solution;
  • the second step dissolving the commercially available ethylenediaminetetraacetic acid in pure water, disposing it into an aqueous solution having a concentration of 1% by weight, and then adjusting the pH of the aqueous solution to 4 by using a 0.1 M diluted hydrochloric acid solution.
  • the third step the polyvinylidene fluoride microfiltration membrane with a pore diameter of 0.45 ⁇ m is washed with ethanol and pure water for 10 min, and then dried for use; the fourth step: immersing the cleaned polyvinylidene fluoride microfiltration membrane into the components. In solution A, let stand for 30 min, then take it out to dry; then immerse the stainless steel wire mesh in pure water for 10 min, then take it out and dry it in an oven at 60 ° C;
  • Step 5 Immerse the polyvinylidene fluoride microfiltration membrane obtained in the fourth step into the component B solution, let stand for 30 minutes, then take it out to dry, and then immerse the polyvinylidene fluoride membrane in pure water. After washing for 10 minutes, it was taken out and dried in an oven placed at 60 ° C;
  • Step 6 Repeat steps 4 and 5 until the number of cycles is 2, and obtain an oil-resistant oil-water separation microfiltration membrane with an ultra-low oil adhesion coating on the inner surface of the surface and the channel.
  • the polyvinylidene fluoride microfiltration membrane obtained in this example was a flat membrane.
  • the polyvinylidene fluoride microfiltration membrane flat membrane obtained by the present example was characterized by scanning electron microscopy, and its surface morphology is shown in Fig. 1.
  • the surface constituent elements and the distribution of constituent elements are shown in Fig. 2 and Fig. 3.
  • the surface water contact angle of the polyvinylidene fluoride microfiltration membrane flat membrane obtained by the present example as a function of time and its underwater crude oil adhesion are shown in Figs. 4 and 5.
  • the flux of the oil-water emulsion was 4000-6000 Lm ⁇ 2 h ⁇ 1 bar ⁇ 1 at a pressure of 0.1 bar, and the cycle separation experiment was carried out. See Figure 6 for the plot of flux versus cycle number.
  • the first step dissolving polydimethyldiallylammonium chloride having a molecular weight of 100,000 in pure water to form an aqueous solution having a concentration of 5 wt%, and then adjusting the pH of the aqueous solution to 4 by using a 0.1 M diluted hydrochloric acid solution.
  • the prepared solution is labeled as component A solution;
  • the second step dissolving the commercially available ethylenediaminetetraacetic acid in pure water, and disposing it into an aqueous solution having a concentration of 3 wt%, and then adjusting the pH of the aqueous solution to 4 by using a 0.1 M diluted hydrochloric acid solution.
  • the third step ultrasonically clean the porous ceramic membrane with a pore size of 10 ⁇ m with ethanol and pure water for 10 min, and then dry it for use;
  • Step 4 The dried porous ceramic membrane is immersed in the component A solution, allowed to stand for 30 minutes, and then taken out to dry; then the porous ceramic membrane is immersed in pure water for 10 minutes, and then taken out and placed at 80 ° C. Drying in an oven;
  • Step 5 Immerse the porous ceramic membrane obtained in the fourth step into the component B solution, let stand for 30 minutes, and then take it out to dry. Then, the porous ceramic membrane was further immersed in pure water for 10 minutes, and then taken out and dried in an oven placed at 80 ° C;
  • Step 6 Repeat steps 4 and 5 until the number of cycles is 5, and obtain an oil-resistant oil-water separation ceramic porous film whose surface and the inner wall of the membrane channel are coated with an ultra-low oil adhesion coating.
  • the first step dissolving polydimethyldiallylammonium chloride having a molecular weight of 500,000 in pure water to form an aqueous solution having a concentration of 2.5 wt%, and then adjusting the pH of the aqueous solution with a 0.1 M diluted hydrochloric acid solution. 4, the prepared solution is labeled as component A solution;
  • the second step dissolving the commercially available ethylenediaminetetraacetic acid in pure water, disposing it into an aqueous solution having a concentration of 10% by weight, and then adjusting the pH of the aqueous solution to 4 by using a 0.1 M diluted hydrochloric acid solution.
  • the third step ultrasonically clean the nylon mesh with the mesh number of 2000 mesh with ethanol and pure water for 10 min, then dry it for use;
  • the fourth step immersing the dried nylon mesh into the component A solution, letting it stand for 10 minutes, then taking it out to dry; then immersing the nylon mesh in pure water for 10 minutes, then taking it out and placing it at 80 °C. Drying in an oven;
  • Step 5 Dip the nylon mesh obtained in the fourth step into the component B solution, let stand for 5 min, then take it out to dry, then immerse the nylon mesh in pure water for 10 min, then remove it and place it on Drying in an oven at 80 ° C;
  • Step 6 Repeat steps 4 and 5 until the number of cycles is 10 to obtain an oil-resistant oil-water separation screen film coated with an ultra-low oil adhesion coating.
  • the first step dissolving polydimethyldiallylammonium chloride having a molecular weight of 1 million in pure water to form an aqueous solution having a concentration of 2% by weight, and then adjusting the pH of the aqueous solution to 2 by using a 0.1 M diluted hydrochloric acid solution.
  • the prepared solution is labeled as component A solution;
  • the second step dissolving the commercially available ethylenediaminetetraacetic acid in pure water, disposing it into an aqueous solution having a concentration of 10% by weight, and then adjusting the pH of the aqueous solution to 8 by using a 0.1 M sodium hydroxide solution. Labeled as component B solution;
  • the third step ultrasonically clean the 304 stainless steel mesh with a mesh size of 400 mesh for 10 minutes with ethanol and pure water, then dry it for use;
  • the fourth step immersing the dried stainless steel wire mesh into the component A solution, letting it stand for 5 minutes, then taking it out to dry; then immersing the stainless steel wire mesh in pure water for 10 minutes, then taking it out and placing it at 45 ° C. Drying in an oven;
  • Step 5 Dip the stainless steel wire mesh obtained in the fourth step into the component B solution, let stand for 5 minutes, then take it out to dry, then immerse the stainless steel wire mesh in pure water for 10 minutes, then take it out and place it. Drying in an oven at 45 ° C;
  • Step 6 Repeat steps 4 and 5 until the number of cycles is 10 to obtain an oil-resistant oil-water separation screen film coated with an ultra-low oil adhesion coating.
  • the first step dissolving polydimethyldiallyl ammonium chloride having a molecular weight of 10,000 in pure water to form water having a concentration of 0.2% by weight. a solution, after which the pH of the aqueous solution is adjusted to 6 with a 0.1 M diluted hydrochloric acid solution, and the prepared solution is labeled as a component A solution;
  • the second step dissolving the commercially available ethylenediaminetetraacetic acid in pure water, disposing it into an aqueous solution having a concentration of 0.2% by weight, and then adjusting the pH of the aqueous solution to 8 by using a 0.1 M sodium hydroxide solution.
  • the solution is labeled as component B solution;
  • the third step ultrasonically clean the commercial polyacrylonitrile ultrafiltration membrane with ethanol and pure water for 10 min, then dry it for use;
  • the fourth step immersing the dried polyacrylonitrile ultrafiltration membrane into the component A solution, allowing to stand for 5 min, then taking it out to dry; then immersing the polyacrylonitrile ultrafiltration membrane in pure water for 10 min, then Take out and dry in an oven placed at 45 ° C;
  • Step 5 Immerse the polyacrylonitrile ultrafiltration membrane obtained in the fourth step into the component B solution, let stand for 5 minutes, then take it out to dry, then immerse the polyacrylonitrile ultrafiltration membrane in pure water. After 10 min, it was taken out and dried in an oven placed at 45 ° C;
  • Step 6 Repeat steps 4 and 5 until the number of cycles is 6, to obtain an oil-resistant oil-water separation ultrafiltration membrane coated with an ultra-low oil adhesion coating on the inner wall of the surface and the tunnel.
  • the first step dissolving polydimethyldiallylammonium chloride having a molecular weight of 50,000 in pure water to form an aqueous solution having a concentration of 10% by weight, and then adjusting the pH of the aqueous solution with a 0.1 M sodium hydroxide solution. 8, the prepared solution is labeled as component A solution;
  • the second step dissolving the commercially available ethylenediaminetetraacetic acid in pure water, and disposing it into an aqueous solution having a concentration of 10% by weight, and then adjusting the pH of the aqueous solution to 5 by using a 0.1 M diluted hydrochloric acid solution.
  • the third step the commercial nanofiltration membrane is washed with ethanol and pure water for 10 min, and then dried for use;
  • the fourth step immersing the dried nanofiltration membrane into the component A solution, letting it stand for 5 minutes, then taking it out to dry; then immersing the nanofiltration membrane in pure water for 10 minutes, then taking it out and placing it at 45 °C. Drying in an oven;
  • Step 5 Immerse the nanofiltration membrane obtained in the fourth step into the component B solution, let stand for 5 minutes, then take it out to dry, then immerse the nanofiltration membrane in pure water for 10 minutes, then take it out and place it. Drying in an oven at 45 ° C;
  • Step 6 Repeat steps 4 and 5 until the number of cycles is 5, and obtain an oil-resistant oil-water separation nanofiltration membrane coated with an ultra-low oil adhesion coating.
  • the first step dissolving polydimethyldiallyl ammonium chloride having a molecular weight of 200,000 in pure water to form an aqueous solution having a concentration of 3 wt%, and then adjusting the pH of the aqueous solution with a 0.1 M sodium hydroxide solution. 8, the prepared solution is labeled as component A solution;
  • the second step dissolving the commercially available ethylenediaminetetraacetic acid in pure water, disposing it into an aqueous solution having a concentration of 5 wt%, and then adjusting the pH of the aqueous solution to 4 by using a 0.1 M dilute hydrochloric acid solution.
  • the third step the commercial reverse osmosis membrane is washed with ethanol and pure water for 10 min, and then dried for use;
  • Step 4 The dried reverse osmosis membrane is immersed in the component A solution, allowed to stand for 10 min, and then taken out to dry; then the reverse osmosis membrane is immersed in pure water for 10 min, and then taken out and placed at 45 ° C. Drying in an oven;
  • Step 5 The reverse osmosis membrane obtained in the fourth step is immersed in the component B solution, allowed to stand for 20 min, then taken out to dry, and then the reverse osmosis membrane is immersed in pure water for 10 min, and then taken out and placed. Drying in an oven at 45 ° C;
  • Step 6 Repeat steps 4 and 5 until the number of cycles is 5, and obtain an anti-oil-adhesive oil-water separation reverse osmosis membrane coated with an ultra-low oil adhering coating.
  • the first step dissolving alginic acid having a molecular weight of 200,000 in pure water to form an aqueous solution having a concentration of 2 wt%, and then adjusting the pH of the aqueous solution to 8 with a 0.1 M sodium hydroxide solution, and the prepared solution is labeled as a component.
  • the second step dissolving the commercial calcium chloride in pure water, disposing it into an aqueous solution having a concentration of 0.5 wt%, and configuring the solution to be labeled as the component B solution;
  • the third step the commercial 0.45 micron PVDF microfiltration membrane was washed with ethanol and pure water for 10 min, and then dried for use;
  • the fourth step immersing the dried PVDF microfiltration membrane into the component A solution, letting it stand for 10 minutes, then taking it out to dry; then immersing the PVDF microfiltration membrane in pure water for 10 minutes, then taking it out and placing it at 45 Drying in an oven at °C;
  • Step 5 The PVDF microfiltration membrane obtained in the fourth step is immersed in the component B solution, allowed to stand for 20 min, then taken out to dry, and then the PVDF microfiltration membrane is immersed in pure water for 10 min, and then taken out. Placed in an oven at 45 ° C to dry;
  • Step 6 Repeat steps 4 and 5 until the number of cycles is 5, and obtain an oil-resistant oil-water separation PVDF microfiltration membrane coated with an ultra-low oil adhesion coating.
  • the first step dissolving calcium alginate having a molecular weight of 200,000 in pure water to form an aqueous solution having a concentration of 2% by weight, and the prepared solution is labeled as a component A solution;
  • the second step dissolving the commercial copper nitrate in pure water, disposing it into an aqueous solution having a concentration of 0.5 wt%, and configuring the solution to be labeled as the component B solution;
  • the third step the commercial 0.45 micron PVDF microfiltration membrane was washed with ethanol and pure water for 10 min, and then dried for use;
  • the fourth step immersing the dried PVDF microfiltration membrane into the component A solution, letting it stand for 10 minutes, then taking it out to dry; then immersing the PVDF microfiltration membrane in pure water for 10 minutes, then taking it out and placing it at 45 Drying in an oven at °C;
  • Step 5 The PVDF microfiltration membrane obtained in the fourth step is immersed in the component B solution, allowed to stand for 20 min, then taken out to dry, and then the PVDF microfiltration membrane is immersed in pure water for 10 min, and then taken out. Placed in an oven at 45 ° C to dry;
  • Step 6 Repeat steps 4 and 5 until the number of cycles is 5, and obtain an oil-resistant oil-water separation PVDF microfiltration membrane coated with an ultra-low oil adhesion coating.
  • the oil-water separation membrane is prepared by spraying, and the specific steps are as follows:
  • the first step dissolving polydimethyldiallylammonium chloride having a molecular weight of 1 million in pure water to form an aqueous solution having a concentration of 2% by weight, and then adjusting the pH of the aqueous solution to 2 by using a 0.1 M diluted hydrochloric acid solution.
  • the prepared solution is labeled as component A solution;
  • the second step dissolving the commercially available ethylenediaminetetraacetic acid in pure water, disposing it into an aqueous solution having a concentration of 10% by weight, and then adjusting the pH of the aqueous solution to 8 by using a 0.1 M sodium hydroxide solution. Labeled as component B solution;
  • the third step ultrasonically clean the 304 stainless steel mesh with a mesh size of 400 mesh for 10 minutes with ethanol and pure water, then dry it for use;
  • the fourth step the stainless steel wire mesh after drying is fixed at both ends, and then the pressure of the air pressure system is adjusted to 0.6 Mpa, the distance between the spray gun head and the surface of the stainless steel wire mesh is 12 cm, and the moving speed of the spray gun is 5 cm/s.
  • the component A solution was then sprayed onto the surface of the stainless steel wire mesh with a spray gun. After that, the stainless steel wire mesh is taken off and dried; then the stainless steel wire mesh is immersed in pure water for 10 minutes, and then taken out and dried in an oven placed at 60 ° C;
  • Step 5 Fix the stainless steel wire mesh obtained in the fourth step to the spray booth again, and spray the component B solution onto both sides of the stainless steel wire mesh in the same process parameters as in step 4, then remove and dry, then The stainless steel wire mesh is further immersed in pure water for 10 minutes, and then taken out and dried in an oven placed at 60 ° C to complete a spraying cycle;
  • Step 6 Repeat steps 4 and 5 until the number of cycles is 7, to obtain an oil-resistant oil-water separation screen film coated with an ultra-low oil adhesion coating.
  • Example 1 - Example 10 the inventors of the present invention conducted experiments with reference to the other materials and conditions listed in the present specification in the manner of Example 1 - Example 10, and also obtained super-hydrophilic and underwater oil-resistance in an air environment. Oil-water separation membrane with performance, ultra-low oil adhesion and other characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种疏油涂层材料、油水分离功能材料、其制备方法及用途。该疏油涂层材料包括由两种以上的离子型化合物通过分子间相互作用形成的交联网络结构,且其中至少两种离子型化合物带有相反的电荷。该油水分离功能材料包括多孔基材以及该疏油涂层材料,该疏油涂层材料至少分布在该基材的表面和通孔孔壁上。该疏油涂层材料、油水分离功能材料具有超亲水、水下超疏油及低油粘附性的特点,且在酸碱以及多种盐溶液环境下性能稳定,可应用在抗油污染表面、自清洁表面、油/水分离、油水乳液破乳等诸多领域。

Description

疏油涂层材料、油水分离功能材料、其制备方法及用途 技术领域
本发明属于化学化工、功能材料及纳米技术领域,特别涉及一种离子型的具有超亲水及水下超疏油、超低油粘附力性质的疏油涂层材料,以及基于此疏油涂层材料的油水分离功能材料及其制备方法与用途。
背景技术
油水混合体系广泛存在于工业生产和居民生活的诸多领域,特别是在石油开采、石油化工、纺织、金属加工、交通运输、能源等行业中。此外,石油泄漏等事故也产生大量的油水混合物。直接排放这些含油废水会造成生态环境的严重破坏,也造成了资源的极大浪费。回收和利用含油废水中的有用相,可以有效地提升资源的利用效率,降低含油废水处理过程中的处理成本。然而这些含油废水成分复杂,极易粘附在材料表面,造成材料表面的污染,使材料的性能丧失,是目前最难以处理的废水之一。
传统的油水/乳液分离过程主要基于重力分离、吸油树脂材料吸附、气浮絮凝、机械刮板等技术,其具有分离操作复杂、效率低、能耗高、耗时长、存在二次污染以及成本高等诸多问题。而基于膜分离技术来处理含油废水,其操作简单、效率高、能耗低、耗时短且二次污染少,引起人们的广泛兴趣。然而随着膜分离技术在含油废水处理领域的应用,膜分离通量低以及膜污染成为人们目前急需解决的、制约膜技术在含油废水处理领域进一步应用的主要问题。目前,科学家们通过研究发现,提升膜表面的亲水性可以有效的提升分离膜对于油的抗污染性能以及膜分离通量。目前,为了获得高亲水性的分离膜材料,基于表面微纳结构的超浸润分离膜材料得到了大量的研究。由于膜材料表面微纳结构的存在,能够极大提升分离膜材料的亲水性,使得分离膜呈现超亲水‐水下超疏油的特性。然而,这种基于表面微纳结构的超浸润分离膜材料,极易在使用过程中遭受胶体、微生物等的污染,导致膜表面的浸润性质丧失。另外,在分离膜表面构筑微纳结构往往需要复杂的制备过程,工艺复杂,成本较高,难以实现大面积制备。
发明内容
本发明的目的之一在于提供一种具有超亲水、水下超疏油,并且具有超低油粘附力表面的疏油涂层材料及其制备方法。
本发明的目的之二在于提供一种油水分离功能材料。
本发明的目的之三在于提供前述疏油涂层材料在分离油水混合体系或表面防护中的用途。
为实现前述发明目的,本发明采用的技术方案包括:
本发明实施例提供了一种疏油涂层材料,其包括由两种以上的离子型化合物通过分子间相互作用形成的交联网络结构,且其中至少两种离子型化合物带有相反的电荷。
在一些实施例中,所述离子型化合物包括一种以上阴离子型化合物以及一种以上阳离子型化合物。
本发明实施例还提供了前述疏油涂层材料的制备方法,其包括:
将包含有一种以上第一离子型化合物的溶液和包含有一种以上第二离子型化合物的溶液交替涂覆在基材上,使一种以上第一离子型化合物及一种以上第二离子型化合物通过分子间相互作用形成交联网络结构,其中至少一种第一离子型化合物和至少一种第二离子型化合物带有相反的电荷。
在一些实施例中,所述第一离子型化合物和第二离子型化合物中的任一者为阴离子型化合物,另一者为阳离子型化合物。
本发明实施例还提供了由前述方法制备的疏油涂层材料。
本发明实施例还提供了一种油水分离功能材料,其包括多孔基材以及如前述的疏油涂层材料,所述疏油涂层材料至少分布在所述基材的表面和通孔孔壁上。
本发明实施例还提供了所述的疏油涂层材料于表面防护领域或油水分离领域的用途。
本发明实施例还提供了一种油水分离方法,其包括:以前述的油水分离功能材料对油水混合体系进行分离。
例如,本发明实施例还提供了一种油水分离装置,其包括:
可供油水混合体系通过的流体通道;以及
置于所述流体通道内的、前述的油水分离功能材料。
与现有技术相比,本发明的优点包括:
1)本发明提供了一种具有在空气环境超亲水和水下超疏油、超低油粘附性等特点的疏油涂层材料以及油水分离膜,其为水溶性,在pH范围为2~10的酸碱环境下以及在浓度高达1M的各种盐离子溶液中仍能保持稳定,且在水下涂层表面对与水不互溶的油或有机液体具有抗粘 附以及抗吸附性能,可应用在石油开采、石化、海洋溢油处理、纺织废水处理等涉及抗油污染表面、自清洁表面、油/水分离、油水乳液破乳等诸多领域;
2)本发明提供的疏油涂层材料制备工艺简单且制备过程环保无污染,可以在各种不同孔径的衬底膜表面实现构筑本发明所公开的疏油涂层材料,且其所制备得到的油水分离膜具有优异的亲水性能以及水下疏油性质,其分离通量高,抗污染性能好,可长时间稳定运行,适宜工业化生产。
附图说明
图1是本发明实施例1所获聚偏氟乙烯微滤膜表面的SEM图片。
图2是本发明实施例1所获聚偏氟乙烯微滤膜表面元素组成示意图。
图3是本发明实施例1所获聚偏氟乙烯微滤膜表面组成P元素分布图。
图4是本发明实施例1所获聚偏氟乙烯微滤膜表面水接触角随时间的变化情况示意图。
图5是本发明实施例1所获聚偏氟乙烯微滤膜表面在水下对原油粘附力曲线图。
图6是本发明实施例1所获聚偏氟乙烯微滤膜分离油水乳液时的分离通量随循环次数的变化曲线图。
具体实施方式
鉴于现有油水分离材料的诸多缺陷,本案发明人经长期研究和实践,得以探知本发明的技术方案,如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
作为本发明技术方案的一个方面,其所涉及的系一种疏油涂层材料,其包括由两种以上的离子型化合物通过分子间相互作用形成的交联网络结构,且其中至少两种离子型化合物带有相反的电荷。
其中,所述的疏油涂层材料,其形成过程系多种组份通过分子间静电相互作用,彼此吸引,相互交联,最终形成一个交联网络状结构,具有强亲水/疏油特性。
在一些实施例中,所述离子型化合物包括一种以上阴离子型化合物(亦即带负电荷的离子型化合物)以及一种以上阳离子型化合物(亦即带正电荷的离子型化合物)。
若所述的带正电荷的离子型化合物(也可以称为A类化合物)为聚乙烯亚胺、壳聚糖和/或壳聚糖衍生物、聚乙烯胺盐酸盐、聚咪唑类离子液体、聚季铵型离子液体、聚二甲基二烯丙基氯化铵、聚甲基丙烯酸二甲氨基乙酯等阳离子型化合物中的一种或几种,但不限于此,则所述的带负电荷的离子型化合物(也可以称为B类化合物)为含有羧酸根或羧酸基团、磷酸根 或磷酸基团、膦酸根或膦酸基团、硫酸根或硫酸基团、磺酸根或磺酸基团的化合物或离子等其中的一种或几种,如乙二胺四乙酸、羟基亚乙基二磷酸、三聚磷酸钠、氨基三亚甲基膦酸、二乙烯三胺五亚甲基膦酸、植酸、腐殖酸等,但不限于此。
若所述的带负电荷的离子型化合物(也可以称为A类化合物)为聚丙烯酸及其盐类、聚苯乙烯磺酸及其盐类、聚阴离子纤维素类、海藻酸、海藻酸钠等聚阴离子型化合物中的一种或几种时,所述的带正电荷的离子型化合物(也可以称为B类化合物)为钙离子、镁离子、铜离子、二价或多价的金属离子、多元胺类化合物、咪唑类离子液体、季铵型离子液体、超支化聚酰胺等中的一种或几种,但不限于此。
进一步的,所述阳离子型化合物和/或所述阴离子型化合物选自水溶性高分子。
优选的,所述水溶性高分子的重均分子量为1~100万。
本发明的疏油涂层材料在空气环境具有超亲水性质、在水下具有超疏油、在水下涂层表面对与水不互溶的油或有机液体具有抗粘附以及抗吸附性能,且具有优异的耐酸碱性及抗盐、性能,例如:
(1)所述疏油涂层材料在空气中与水的接触角小于20°,且趋近于0°,在水下与油的接触角大于150°,并且在水下对油的粘附力小于2μN。
(2)所述疏油涂层材料具有优异的耐酸碱耐盐稳定性,例如,该材料能够在pH值为2~10的宽泛的pH范围内的酸性或碱性条件以及盐浓度在1mol/L以上的高浓度盐离子溶液环境下仍能保持其抗油粘附性能的稳定,能够适用于多种复杂环境下的油水/乳液分离过程,可应用在石油开采、石化、海洋溢油处理、纺织废水处理等涉及抗油污染表面、自清洁表面、油/水分离、油水乳液破乳等诸多领域。
作为本发明技术方案的另一个方面,其还涉及所述疏油涂层材料的制备方法,其主要是通过简单的涂覆/喷涂工艺可以在多种不同材料、不同孔径结构和孔径大小的多孔衬底表面及孔道内壁修饰上具有强水合性行为的物质,实现膜表面的超亲水化以及水下抗油粘附性能力。
具体的讲,本发明的制备方法包括:
将包含有一种以上第一离子型化合物的溶液和包含有一种以上第二离子型化合物的溶液交替涂覆在基材上,使一种以上第一离子型化合物及一种以上第二离子型化合物通过分子间相互作用形成交联网络结构,其中至少一种第一离子型化合物和至少一种第二离子型化合物带有相反的电荷。
优选的,所述第一离子型化合物和第二离子型化合物中的任一者为阴离子型化合物,另一者为阳离子型化合物。
若所述的阳离子型化合物(也可以称为A类化合物)为聚乙烯亚胺、壳聚糖和/或壳聚糖衍生物、聚乙烯胺盐酸盐、聚咪唑类离子液体、聚季铵型离子液体、聚二甲基二烯丙基氯化铵、聚甲基丙烯酸二甲氨基乙酯等阳离子型化合物中的一种或几种,但不限于此,则所述的阴离子型化合物(也可以称为B类化合物)为含有羧酸根或羧酸基团、磷酸根或磷酸基团、膦酸根或膦酸基团、硫酸根或硫酸基团、磺酸根或磺酸基团的化合物或离子等其中的一种或几种,如乙二胺四乙酸、羟基亚乙基二磷酸、三聚磷酸钠、氨基三亚甲基膦酸、二乙烯三胺五亚甲基膦酸、植酸、腐殖酸等,但不限于此。
若所述的阴离子型化合物(也可以称为A类化合物)为聚丙烯酸及其盐类、聚苯乙烯磺酸及其盐类、聚阴离子纤维素类、海藻酸、海藻酸钠等聚阴离子型化合物中的一种或几种时,所述的阳离子型化合物(也可以称为B类化合物)为钙离子、镁离子、铜离子、二价或多价的金属离子、多元胺类化合物、咪唑类离子液体、季铵型离子液体、超支化聚酰胺等中的一种或几种,但不限于此。
进一步的,所述阳离子型化合物和/或所述阴离子型化合物选自水溶性高分子。
优选的,所述水溶性高分子的重均分子量为1~100万。
在一些实施例中,所述的制备方法包括:
(1)将包含有一种以上第一离子型化合物的溶液涂覆在基材上后烘干;
(2)将经步骤(1)处理后的基材在包含有一种以上第二离子型化合物的溶液中浸渍后取出或者将包含有一种以上第二离子型化合物的溶液涂覆在经步骤(1)处理后的基材上,之后烘干。
进一步的,所述的制备方法还包括:
(3)重复步骤(1)~步骤(2)的操作n次,n为正整数,优选为2~10。
进一步的,所述包含有一种以上第一离子型化合物的溶液和/或包含有一种以上第二离子型化合物的溶液的浓度为0.2~10wt%。
更加具体的,本发明的疏油涂层材料的制备方法可以包括以下步骤:
(1)将A类化合物溶于纯水中,配置成浓度为0.2~10wt%的水溶液;
(2)将B类化合物溶于纯水中,配置成浓度为0.2~10wt%的水溶液;
(3)将步骤(1)中所配置的水溶液利用浸涂(或喷涂)的方式涂覆于基材上,经干燥、清洗后,放置于烘箱中烘干;
(4)将步骤(3)中所得到的基材浸入到步骤(2)所配置的溶液中或将(2)所配置的溶液喷涂后,经干燥、清洗后,放置于烘箱中烘干,完成一次循环操作得到1层涂层;
(5)交替重复步骤(3)和(4),得到多层涂层(层数可在2~10层之间调控),直至得到所述疏油涂层材料。
在一些实施例中,所述基材可以为不锈钢、其它有色金属、塑料、陶瓷、橡胶等但不限于此,基材形式可以为平板、圆柱、圆筒等规则形状以及其它不规则形状。
作为本发明技术方案的另一个方面,还提供了由前述的方法制备的疏油涂层材料。所述疏油涂层材料可用于基材表面的抗污染、抗粘附涂层使用。
作为本发明技术方案的另一个方面,其还涉及一种油水分离功能材料,其包括多孔基材以及如前述的疏油涂层材料,所述疏油涂层材料至少分布在所述基材的表面和通孔孔壁上。
在一些实施例中,所述的油水分离功能材料由前述的疏油涂层材料与多孔基材共同构成,多孔基材根据孔径范围,可以是孔径范围为1~100μm的各种筛网、泡沫,也可以是孔径范围为1~50μm的陶瓷膜、纤维膜,也可以是孔径范围为0.1~5μm的微滤膜,也可以是孔径范围为2~100nm的超滤膜,以及孔径小于2nm的纳滤膜、反渗透膜等。
其中,所述的筛网、泡沫的材质可以为金属(例如不锈钢丝网、铜网、镍网、泡沫铁、泡沫铜、泡沫镍等)、聚合物丝网(例如尼龙网、涤纶网等)、各种编织布、PP棉、无纺布等,但不限于此。
进一步的,所述的油水分离膜的基材的形式可以为平板、柱状、管式或者中空纤维状。
优选的,所述油水分离功能材料为油水分离膜。
本发明实施例的另一方面还提供了前述疏油涂层材料于表面防护领域或油水分离领域的用途。
相应的,本发明实施例还提供了一种油水分离方法,其包括:以前述的油水分离功能材料对油水混合体系进行分离。
优选的,所述油水混合体系包括油水分散体系或油水乳液体系。
进一步优选的,所述油水混合体系包括水以及与水不相容的油和/或有机溶剂。藉由前述制备工艺,修饰有这种疏油涂层材料的多孔材料可用于针对不同种类的油或与水不相容有机溶剂与水的混合物(包括分散体系和乳液体系)的油水分离以及抗油粘附或吸附的涂层。
进一步的,所述油水混合体系选自含油废水。
例如,本发明油水分离膜可应用于油田回注水、火电厂冷却水塔、轮船压舱水、有色金属表面清洗废水、纺织工业中的洗毛废水等含油废水的处理,但不限于这些应用。
优选的,所述的用途包括:以所述油水分离功能材料制备油水分离装置。
例如,本发明实施例还提供了一种油水分离装置,其包括:
可供油水混合体系通过的流体通道;以及
置于所述流体通道内的油水分离功能材料。
以下结合若干较佳实施例及附图对本发明的技术方案作更为详细的解释说明。
实施例1
第一步:将分子量为1万的聚二甲基二烯丙基氯化铵溶解于纯水中,形成浓度为1wt%的水溶液,之后利用0.1M的稀盐酸溶液将水溶液的pH调成4,所配制溶液标记为组分A溶液;
第二步:将商品化的乙二胺四乙酸溶解溶于纯水中,配置成浓度为1wt%的水溶液,之后利用0.1M的稀盐酸溶液将水溶液的pH调成4,所配置的溶液标记为组分B溶液;
第三步:将孔径为0.45μm的聚偏氟乙烯微滤膜用乙醇、纯水分别清洗10min,之后晾干备用;第四步:将清洗后的聚偏氟乙烯微滤膜浸入到组分A溶液中,静置30min,之后取出晾干;然后将不锈钢丝网再浸入到纯水中清洗10min,之后取出放置于60℃的烘箱中烘干;
第五步:将第四步中所得到的聚偏氟乙烯微滤膜浸入到B组分溶液中,静置30min,之后取出晾干,然后将聚偏氟乙烯滤膜再浸入到纯水中清洗10min,之后取出放置于60℃的烘箱中烘干;
第六步:重复步骤四和步骤五,至循环次数为2,得到表面和孔道内壁涂覆有超低油粘附涂层的抗油粘附油水分离微滤膜。本实施例所得到的聚偏氟乙烯微滤膜为平板膜。
由本实施例所得到的聚偏氟乙烯微滤膜平板膜经扫描电子显微镜表征,其表面形貌见图1,其表面组成元素以及组成元素分布见图2和图3。由本实施例所得到的聚偏氟乙烯微滤膜平板膜表面水接触角随时间的变化情况以及其水下原油粘附力参见图4和图5。利用本实施例所得到的聚偏氟乙烯微滤膜平板膜分离油水乳液时,在0.1bar压力下,其分离油水乳液的通量为4000‐6000Lm‐2h‐1bar‐1时,循环分离实验中,通量随循环次数的变化曲线图参见图6。
实施例2
第一步:将分子量为10万的聚二甲基二烯丙基氯化铵溶解于纯水中,形成浓度为5wt%的水溶液,之后利用0.1M的稀盐酸溶液将水溶液的pH调成4,所配制溶液标记为组分A溶液;
第二步:将商品化的乙二胺四乙酸溶解溶于纯水中,配置成浓度为3wt%的水溶液,之后利用0.1M的稀盐酸溶液将水溶液的pH调成4,所配置的溶液标记为组分B溶液;
第三步:将孔径为10μm的多孔陶瓷膜用乙醇、纯水分别超声清洗10min,之后晾干备用;
第四步:将晾干后的多孔陶瓷膜浸入到组分A溶液中,静置30min,之后取出晾干;然后将多孔陶瓷膜再浸入到纯水中清洗10min,之后取出放置于80℃的烘箱中烘干;
第五步:将第四步中所得到的多孔陶瓷膜浸入到组分B溶液中,静置30min,之后取出晾干, 然后将多孔陶瓷膜再浸入到纯水中清洗10min,之后取出放置于80℃的烘箱中烘干;
第六步:重复步骤四和步骤五,至循环次数为5,得到表面和膜孔道内壁涂覆有超低油粘附涂层的抗油粘附油水分离陶瓷多孔膜。
实施例3
第一步:将分子量为50万的聚二甲基二烯丙基氯化铵溶解于纯水中,形成浓度为2.5wt%的水溶液,之后利用0.1M的稀盐酸溶液将水溶液的pH调成4,所配制溶液标记为组分A溶液;
第二步:将商品化的乙二胺四乙酸溶解溶于纯水中,配置成浓度为10wt%的水溶液,之后利用0.1M的稀盐酸溶液将水溶液的pH调成4,所配置的溶液标记为组分B溶液;
第三步:将目数为2000目的尼龙丝网用乙醇、纯水分别超声清洗10min,之后晾干备用;
第四步:将晾干后的尼龙丝网浸入到组分A溶液中,静置10min,之后取出晾干;然后将尼龙丝网再浸入到纯水中清洗10min,之后取出放置于80℃的烘箱中烘干;
第五步:将第四步中所得到的尼龙丝网浸入到组分B溶液中,静置5min,之后取出晾干,然后将尼龙丝网再浸入到纯水中清洗10min,之后取出放置于80℃的烘箱中烘干;
第六步:重复步骤四和步骤五,至循环次数为10,得到表面涂覆有超低油粘附涂层的抗油粘附油水分离丝网膜。
实施例4
第一步:将分子量为100万的聚二甲基二烯丙基氯化铵溶解于纯水中,形成浓度为2wt%的水溶液,之后利用0.1M的稀盐酸溶液将水溶液的pH调成2,所配制溶液标记为组分A溶液;
第二步:将商品化的乙二胺四乙酸溶解溶于纯水中,配置成浓度为10wt%的水溶液,之后利用0.1M的氢氧化钠溶液将水溶液的pH调成8,所配置的溶液标记为组分B溶液;
第三步:将目数为400目的304不锈钢丝网用乙醇、纯水分别超声清洗10min,之后晾干备用;
第四步:将晾干后的不锈钢丝网浸入到组分A溶液中,静置5min,之后取出晾干;然后将不锈钢丝网再浸入到纯水中清洗10min,之后取出放置于45℃的烘箱中烘干;
第五步:将第四步中所得到的不锈钢丝网浸入到组分B溶液中,静置5min,之后取出晾干,然后将不锈钢丝网再浸入到纯水中清洗10min,之后取出放置于45℃的烘箱中烘干;
第六步:重复步骤四和步骤五,至循环次数为10,得到表面涂覆有超低油粘附涂层的抗油粘附油水分离丝网膜。
实施例5
第一步:将分子量为1万的聚二甲基二烯丙基氯化铵溶解于纯水中,形成浓度为0.2wt%的水 溶液,之后利用0.1M的稀盐酸溶液将水溶液的pH调成6,所配制溶液标记为组分A溶液;
第二步:将商品化的乙二胺四乙酸溶解溶于纯水中,配置成浓度为0.2wt%的水溶液,之后利用0.1M的氢氧化钠溶液将水溶液的pH调成8,所配置的溶液标记为组分B溶液;
第三步:将商品化的聚丙烯腈超滤膜用乙醇、纯水分别超声清洗10min,之后晾干备用;
第四步:将晾干后的聚丙烯腈超滤膜浸入到组分A溶液中,静置5min,之后取出晾干;然后将聚丙烯腈超滤膜再浸入到纯水中清洗10min,之后取出放置于45℃的烘箱中烘干;
第五步:将第四步中所得到的聚丙烯腈超滤膜浸入到组分B溶液中,静置5min,之后取出晾干,然后将聚丙烯腈超滤膜再浸入到纯水中清洗10min,之后取出放置于45℃的烘箱中烘干;
第六步:重复步骤四和步骤五,至循环次数为6,得到表面和孔道内壁涂覆有超低油粘附涂层的抗油粘附油水分离超滤膜。
实施例6
第一步:将分子量为5万的聚二甲基二烯丙基氯化铵溶解于纯水中,形成浓度为10wt%的水溶液,之后利用0.1M的氢氧化钠溶液将水溶液的pH调成8,所配制溶液标记为组分A溶液;
第二步:将商品化的乙二胺四乙酸溶解溶于纯水中,配置成浓度为10wt%的水溶液,之后利用0.1M的稀盐酸溶液将水溶液的pH调成5,所配置的溶液标记为组分B溶液;
第三步:将商品化的纳滤膜用乙醇、纯水分别清洗10min,之后晾干备用;
第四步:将晾干后的纳滤膜浸入到组分A溶液中,静置5min,之后取出晾干;然后将纳滤膜再浸入到纯水中清洗10min,之后取出放置于45℃的烘箱中烘干;
第五步:将第四步中所得到的纳滤膜浸入到组分B溶液中,静置5min,之后取出晾干,然后将纳滤膜再浸入到纯水中清洗10min,之后取出放置于45℃的烘箱中烘干;
第六步:重复步骤四和步骤五,至循环次数为5,得到表面涂覆有超低油粘附涂层的抗油粘附油水分离纳滤膜。
实施例7
第一步:将分子量为20万的聚二甲基二烯丙基氯化铵溶解于纯水中,形成浓度为3wt%的水溶液,之后利用0.1M的氢氧化钠溶液将水溶液的pH调成8,所配制溶液标记为组分A溶液;
第二步:将商品化的乙二胺四乙酸溶解溶于纯水中,配置成浓度为5wt%的水溶液,之后利用0.1M的稀盐酸溶液将水溶液的pH调成4,所配置的溶液标记为组分B溶液;
第三步:将商品化的反渗透膜用乙醇、纯水分别清洗10min,之后晾干备用;
第四步:将晾干后的反渗透膜浸入到组分A溶液中,静置10min,之后取出晾干;然后将反渗透膜再浸入到纯水中清洗10min,之后取出放置于45℃的烘箱中烘干;
第五步:将第四步中所得到的反渗透膜浸入到组分B溶液中,静置20min,之后取出晾干,然后将反渗透膜再浸入到纯水中清洗10min,之后取出放置于45℃的烘箱中烘干;
第六步:重复步骤四和步骤五,至循环次数为5,得到表面涂覆有超低油粘附涂层的抗油粘附油水分离反渗透膜。
实施例8
第一步:将分子量为20万的海藻酸溶解于纯水中,形成浓度为2wt%的水溶液,之后利用0.1M的氢氧化钠溶液将水溶液的pH调成8,所配制溶液标记为组分A溶液;
第二步:将商品化的氯化钙溶解溶于纯水中,配置成浓度为0.5wt%的水溶液,所配置的溶液标记为组分B溶液;
第三步:将商品化的0.45微米的PVDF微滤膜用乙醇、纯水分别清洗10min,之后晾干备用;
第四步:将晾干后的PVDF微滤膜浸入到组分A溶液中,静置10min,之后取出晾干;然后将PVDF微滤膜再浸入到纯水中清洗10min,之后取出放置于45℃的烘箱中烘干;
第五步:将第四步中所得到的PVDF微滤膜浸入到组分B溶液中,静置20min,之后取出晾干,然后将PVDF微滤膜再浸入到纯水中清洗10min,之后取出放置于45℃的烘箱中烘干;
第六步:重复步骤四和步骤五,至循环次数为5,得到表面涂覆有超低油粘附涂层的抗油粘附油水分离PVDF微滤膜。
实施例9
第一步:将分子量为20万的海藻酸钙溶解于纯水中,形成浓度为2wt%的水溶液,所配制溶液标记为组分A溶液;
第二步:将商品化的硝酸铜溶于纯水中,配置成浓度为0.5wt%的水溶液,所配置的溶液标记为组分B溶液;
第三步:将商品化的0.45微米的PVDF微滤膜用乙醇、纯水分别清洗10min,之后晾干备用;
第四步:将晾干后的PVDF微滤膜浸入到组分A溶液中,静置10min,之后取出晾干;然后将PVDF微滤膜再浸入到纯水中清洗10min,之后取出放置于45℃的烘箱中烘干;
第五步:将第四步中所得到的PVDF微滤膜浸入到组分B溶液中,静置20min,之后取出晾干,然后将PVDF微滤膜再浸入到纯水中清洗10min,之后取出放置于45℃的烘箱中烘干;
第六步:重复步骤四和步骤五,至循环次数为5,得到表面涂覆有超低油粘附涂层的抗油粘附油水分离PVDF微滤膜。
实施例10
本实施例以喷涂的方式来制备油水分离膜,具体步骤为:
第一步:将分子量为100万的聚二甲基二烯丙基氯化铵溶解于纯水中,形成浓度为2wt%的水溶液,之后利用0.1M的稀盐酸溶液将水溶液的pH调成2,所配制溶液标记为组分A溶液;
第二步:将商品化的乙二胺四乙酸溶解溶于纯水中,配置成浓度为10wt%的水溶液,之后利用0.1M的氢氧化钠溶液将水溶液的pH调成8,所配置的溶液标记为组分B溶液;
第三步:将目数为400目的304不锈钢丝网用乙醇、纯水分别超声清洗10min,之后晾干备用;
第四步:晾干后的不锈钢丝网两端固定,然后调节空压系统的压力为0.6Mpa,喷枪枪头与不锈钢丝网表面之间的距离为12cm,喷枪来回移动速度为5cm/s。然后用喷枪将组分A溶液喷涂到不锈钢丝网的表面。之后将不锈钢丝网取下晾干;然后将不锈钢丝网再浸入到纯水中清洗10min,之后取出放置于60℃的烘箱中烘干;
第五步:将第四步中所得到的不锈钢丝网再次固定到喷涂支架上,以步骤四同样的工艺参数将组分B溶液喷涂到不锈钢丝网的两面,之后取下晾干,然后将不锈钢丝网再浸入到纯水中清洗10min,之后取出放置于60℃的烘箱中烘干,完成一次喷涂循环;
第六步:重复步骤四和步骤五,至循环次数为7,得到表面涂覆有超低油粘附涂层的抗油粘附油水分离丝网膜。
此外,本案发明人还参照实施例1‐实施例10的方式,以本说明书中列出的其它原料和条件等进行了试验,并同样制得了具有在空气环境超亲水和水下抗油粘附性能、超低油粘附性等特点的油水分离膜。
应当理解,以上仅是本发明的具体应用范例,对本发明的保护范围不构成任何限制。凡采用等同变换或者等效替换而形成的技术方案,均落在本发明权利保护范围之内。

Claims (50)

  1. 一种疏油涂层材料,其特征在于包括由两种以上的离子型化合物通过分子间相互作用形成的交联网络结构,且其中至少两种离子型化合物带有相反的电荷。
  2. 根据权利要求1所述的疏油涂层材料,其特征在于:所述离子型化合物包括一种以上阴离子型化合物以及一种以上阳离子型化合物。
  3. 根据权利要求2所述的疏油涂层材料,其特征在于:所述阳离子型化合物包括聚乙烯亚胺、壳聚糖和/或壳聚糖衍生物、聚乙烯胺盐酸盐、聚咪唑类离子液体、聚季铵型离子液体、聚二甲基二烯丙基氯化铵和聚甲基丙烯酸二甲氨基乙酯中的任意一种或两种以上的组合。
  4. 根据权利要求2所述的疏油涂层材料,其特征在于:所述阳离子型化合物包括金属离子化合物、多元胺类化合物、咪唑类离子液体、季铵型离子液体和超支化聚酰胺中的任意一种或两种以上的组合。
  5. 根据权利要求4所述的疏油涂层材料,其特征在于:所述金属离子化合物中的金属离子包括二价或多价金属离子。
  6. 根据权利要求5所述的疏油涂层材料,其特征在于:所述金属离子包括钙离子、镁离子、铜离子中的任意一种或两种以上的组合。
  7. 根据权利要求2所述的疏油涂层材料,其特征在于:所述阴离子型化合物包括含有羧酸根、羧酸基团、磷酸根、磷酸基团、膦酸根、膦酸基团、硫酸根、硫酸基团、磺酸根和磺酸基团中的任意一种或两种以上离子或基团的离子型化合物。
  8. 根据权利要求7所述的疏油涂层材料,其特征在于:所述阴离子型化合物包括乙二胺四乙酸、羟基亚乙基二磷酸、三聚磷酸钠、氨基三亚甲基膦酸、二乙烯三胺五亚甲基膦酸、植酸和腐殖酸中的任意一种或两种以上的组合。
  9. 根据权利要求7所述的疏油涂层材料,其特征在于:所述阴离子型化合物包括聚丙烯酸和/或聚丙烯酸盐类化合物、聚苯乙烯磺酸和/或聚苯乙烯磺酸盐类化合物、聚阴离子纤维素类化合物、海藻酸和海藻酸钠中的任意一种或两种以上的组合。
  10. 根据权利要求2所述的疏油涂层材料,其特征在于:所述阳离子型化合物和/或所述阴离子型化合物选自水溶性高分子。
  11. 根据权利要求10所述的疏油涂层材料,其特征在于:所述水溶性高分子的重均分子量为1~100万。
  12. 根据权利要求1-11中任一项所述的疏油涂层材料,其特征在于:所述疏油涂层材料在空 气中与水的接触角小于20°,在水下与油的接触角大于150°,并且在水下对油的粘附力小于2μN。
  13. 根据权利要求1-11中任一项所述的疏油涂层材料,其特征在于:所述疏油涂层材料能够耐受pH值为2~10的酸性或碱性条件以及盐浓度在1mol/L以上的高盐环境。
  14. 一种疏油涂层材料的制备方法,其特征在于包括:将包含有一种以上第一离子型化合物的溶液和包含有一种以上第二离子型化合物的溶液交替涂覆在基材上,使一种以上第一离子型化合物及一种以上第二离子型化合物通过分子间相互作用形成交联网络结构,其中至少一种第一离子型化合物和至少一种第二离子型化合物带有相反的电荷。
  15. 根据权利要求14所述的制备方法,其特征在于:所述第一离子型化合物和第二离子型化合物中的任一者为阴离子型化合物,另一者为阳离子型化合物。
  16. 根据权利要求15所述的制备方法,其特征在于:所述阳离子型化合物包括聚乙烯亚胺、壳聚糖和/或壳聚糖衍生物、聚乙烯胺盐酸盐、聚咪唑类离子液体、聚季铵型离子液体、聚二甲基二烯丙基氯化铵和聚甲基丙烯酸二甲氨基乙酯中的任意一种或两种以上的组合。
  17. 根据权利要求16所述的制备方法,其特征在于:所述阳离子型化合物包括金属离子化合物、多元胺类化合物、咪唑类离子液体、季铵型离子液体和超支化聚酰胺中的任意一种或两种以上的组合。
  18. 根据权利要求17所述的制备方法,其特征在于:所述金属离子化合物中的金属离子包括二价或多价金属离子。
  19. 根据权利要求18所述的制备方法,其特征在于:所述金属离子包括钙离子、镁离子、铜离子中的任意一种或两种以上的组合。
  20. 根据权利要求15所述的制备方法,其特征在于:所述阴离子型化合物包括含有羧酸根、羧酸基团、磷酸根、磷酸基团、膦酸根、膦酸基团、硫酸根、硫酸基团、磺酸根和磺酸基团中的任意一种或两种以上离子或基团的离子型化合物。
  21. 根据权利要求20所述的制备方法,其特征在于:所述阴离子型化合物包括乙二胺四乙酸、羟基亚乙基二磷酸、三聚磷酸钠、氨基三亚甲基膦酸、二乙烯三胺五亚甲基膦酸、植酸和腐殖酸中的任意一种或两种以上的组合。
  22. 根据权利要求20所述的制备方法,其特征在于:所述阴离子型化合物包括聚丙烯酸和/或聚丙烯酸盐类化合物、聚苯乙烯磺酸和/或聚苯乙烯磺酸盐类化合物、聚阴离子纤维素类化合物、海藻酸和海藻酸钠中的任意一种或两种以上的组合。
  23. 根据权利要求15所述的制备方法,其特征在于:所述阳离子型化合物和/或所述阴离子型 化合物选自水溶性高分子。
  24. 根据权利要求23所述的制备方法,其特征在于:所述水溶性高分子的重均分子量为1~100万。
  25. 根据权利要求14所述的制备方法,其特征在于包括:
    (1)将包含有一种以上第一离子型化合物的溶液涂覆在基材上后烘干;
    (2)将经步骤(1)处理后的基材在包含有一种以上第二离子型化合物的溶液中浸渍后取出或者将包含有一种以上第二离子型化合物的溶液涂覆在经步骤(1)处理后的基材上,之后烘干。
  26. 根据权利要求25所述的制备方法,其特征在于还包括:
    (3)重复步骤(1)~步骤(2)的操作n次,n为正整数。
  27. 根据权利要求26所述的制备方法,其特征在于:n为2~10。
  28. 根据权利要求14-26中任一项所述的制备方法,其特征在于:所述包含有一种以上第一离子型化合物的溶液和/或包含有一种以上第二离子型化合物的溶液的浓度为0.2~10wt%。
  29. 根据权利要求14-26中任一项所述的制备方法,其特征在于:所述基材包括不锈钢、有色金属、塑料、陶瓷、橡胶中的任意一种。
  30. 根据权利要求14-26中任一项所述的制备方法,其特征在于:所述基材的形状包括规则形状或不规则形状。
  31. 根据权利要求30所述的制备方法,其特征在于:所述规则形状包括平板、圆柱或圆筒。
  32. 由权利要求14-31中任一项所述方法制备的疏油涂层材料。
  33. 一种油水分离功能材料,其特征在于包括多孔基材以及如权利要求1-13及32中任一项所述的疏油涂层材料,所述疏油涂层材料至少分布在所述基材的表面和通孔孔壁上。
  34. 根据权利要求33所述的油水分离功能材料,其特征在于:所述多孔基材包括筛网、泡沫、陶瓷膜、纤维膜、微滤膜、超滤膜、纳滤膜、反渗透膜中的任意一种或两种以上的组合。
  35. 根据权利要求34所述的油水分离功能材料,其特征在于:所述筛网或泡沫的孔径为1~100μm。
  36. 根据权利要求34所述的油水分离功能材料,其特征在于:所述陶瓷膜或纤维膜的孔径为1~50μm。
  37. 根据权利要求34所述的油水分离功能材料,其特征在于:所述微滤膜的孔径为0.1~5μm。
  38. 根据权利要求34所述的油水分离功能材料,其特征在于:所述超滤膜的孔径为2~100nm。
  39. 根据权利要求34所述的油水分离功能材料,其特征在于:纳滤膜或反渗透膜的孔径在2nm 以下。
  40. 根据权利要求34所述的油水分离功能材料,其特征在于:所述筛网或泡沫的材质选自金属、聚合物丝网、编织布、PP棉或无纺布。
  41. 根据权利要求40所述的油水分离功能材料,其特征在于:所述金属选自不锈钢丝网、铜网、镍网、泡沫铁、泡沫铜或泡沫镍。
  42. 根据权利要求40所述的油水分离功能材料,其特征在于:所述聚合物丝网选自尼龙网或涤纶网。
  43. 根据权利要求33所述的油水分离功能材料,其特征在于:所述多孔基材的形状包括平板、柱状、管式或者中空纤维状。
  44. 根据权利要求33所述的油水分离功能材料,其特征在于:所述油水分离功能材料为油水分离膜。
  45. 权利要求1-13及32中任一项所述的疏油涂层材料于表面防护领域或油水分离领域的用途。
  46. 一种油水分离方法,其特征在于包括:以权利要求33-44中任一项所述的油水分离功能材料对油水混合体系进行分离。
  47. 根据权利要求46所述的油水分离方法,其特征在于:所述油水混合体系包括油水分散体系或油水乳液体系。
  48. 根据权利要求46所述的油水分离方法,其特征在于:所述油水混合体系包括水以及与水不相容的油和/或有机溶剂。
  49. 根据权利要求46所述的油水分离方法,其特征在于:所述油水混合体系选自含油废水。
  50. 一种油水分离装置,其特征在于包括:
    可供油水混合体系通过的流体通道;以及
    置于所述流体通道内的、如权利要求33-44中任一项所述的油水分离功能材料。
PCT/CN2017/109948 2017-08-10 2017-11-08 疏油涂层材料、油水分离功能材料、其制备方法及用途 WO2019029030A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710681093.2 2017-08-10
CN201710681093.2A CN109385173A (zh) 2017-08-10 2017-08-10 疏油涂层材料、油水分离功能材料、其制备方法及用途

Publications (1)

Publication Number Publication Date
WO2019029030A1 true WO2019029030A1 (zh) 2019-02-14

Family

ID=65273100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109948 WO2019029030A1 (zh) 2017-08-10 2017-11-08 疏油涂层材料、油水分离功能材料、其制备方法及用途

Country Status (2)

Country Link
CN (1) CN109385173A (zh)
WO (1) WO2019029030A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113600152A (zh) * 2021-08-27 2021-11-05 佛山科学技术学院 亲水-疏水非对称的三维材料及其制备方法和应用
CN115785806A (zh) * 2022-11-04 2023-03-14 鼎钰玻璃(扬州)有限公司 一种涂覆有机-无机杂化涂层的光伏玻璃及其加工工艺

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111364428B (zh) * 2018-12-25 2021-08-06 深圳市百安百科技有限公司 一种现役海洋设施水下结构防海生物污损的方法
CN110314829A (zh) * 2019-07-08 2019-10-11 河北大学 一种自灭火、超亲水、水下超疏油涂层的制备方法
CN111207299B (zh) * 2020-01-08 2021-08-06 中国石油大学(北京) 一种油田集输管道的表面改性方法
CN113171691A (zh) * 2020-03-26 2021-07-27 佛山科学技术学院 一种超亲水/水下超疏油的pa@pei改性pvdf膜及其制备方法和应用
CN111450576B (zh) * 2020-04-15 2022-02-01 中国石油化工股份有限公司 一种油水分离装置及油水分离方法
CN111423246A (zh) * 2020-05-27 2020-07-17 山东科技大学 一种用于含油污水处理的生态多孔混凝土的制备方法
CN114380356A (zh) * 2021-12-17 2022-04-22 中国石油大学(华东) 一种具有超低原油粘附性的荷电凝胶涂层的制备方法
CN114505061B (zh) * 2022-01-24 2023-01-06 华南理工大学 一种超亲水/水下超疏油铜网及其制备方法与应用
CN116199506B (zh) * 2022-12-24 2024-04-05 深圳市吉迩科技有限公司 多孔陶瓷的制备方法、多孔陶瓷及雾化装置
CN115920862A (zh) * 2022-12-26 2023-04-07 江苏理工学院 一种用于油水分离的超疏水木质纤维素复合物及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104548970A (zh) * 2013-10-22 2015-04-29 中国石油化工股份有限公司 一种纳滤膜及其制备方法和应用
CN104802488A (zh) * 2014-01-27 2015-07-29 中国科学院过程工程研究所 用于油水分离的具有阶层粗糙结构的超疏水涂层、超疏水材料及其制备方法
CN105964014A (zh) * 2016-06-28 2016-09-28 西北大学 一种亲水/疏油型油水分离不锈钢网膜的制备方法
WO2016205621A1 (en) * 2015-06-19 2016-12-22 Hollingsworth & Vose Company Filter media and elements with fine staple fibers
CN106413836A (zh) * 2014-05-15 2017-02-15 霍林斯沃思和沃斯有限公司 表面改性的过滤介质
CN106457148A (zh) * 2014-05-15 2017-02-22 霍林斯沃思和沃斯有限公司 预聚结的多层过滤介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2264803A1 (en) * 1996-10-03 1998-04-09 Cytec Technology Corp. Aqueous dispersions
US7456025B2 (en) * 2001-08-28 2008-11-25 Porex Corporation Sintered polymer membrane for analyte detection device
JP2005087795A (ja) * 2003-09-12 2005-04-07 Toyoda Mach Works Ltd 油水分離方法及び油水分離装置
CN102716676A (zh) * 2012-05-10 2012-10-10 清华大学 一种具有水下超疏油性质的油水分离网膜及其制备方法
CN103421480B (zh) * 2012-05-16 2015-08-12 中国石油化工股份有限公司 驱油用表面活性剂组合物及其制备方法
CN105999768B (zh) * 2016-05-27 2018-12-11 中国科学院宁波材料技术与工程研究所 亲水-疏油材料及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104548970A (zh) * 2013-10-22 2015-04-29 中国石油化工股份有限公司 一种纳滤膜及其制备方法和应用
CN104802488A (zh) * 2014-01-27 2015-07-29 中国科学院过程工程研究所 用于油水分离的具有阶层粗糙结构的超疏水涂层、超疏水材料及其制备方法
CN106413836A (zh) * 2014-05-15 2017-02-15 霍林斯沃思和沃斯有限公司 表面改性的过滤介质
CN106457148A (zh) * 2014-05-15 2017-02-22 霍林斯沃思和沃斯有限公司 预聚结的多层过滤介质
WO2016205621A1 (en) * 2015-06-19 2016-12-22 Hollingsworth & Vose Company Filter media and elements with fine staple fibers
CN105964014A (zh) * 2016-06-28 2016-09-28 西北大学 一种亲水/疏油型油水分离不锈钢网膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, XIAOKONG: "Ion-Specific Oil Repellency of Polyelectrolyte Multila- yers in Water: Molecular Insights into the Hydrophilicity of Charged Surfa- ces", ANGEWANDTE CHEMIE -INTERNATIONAL EDITION, vol. 54, 13 April 2015 (2015-04-13), pages 4851 - 4856, XP055574957 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113600152A (zh) * 2021-08-27 2021-11-05 佛山科学技术学院 亲水-疏水非对称的三维材料及其制备方法和应用
CN113600152B (zh) * 2021-08-27 2023-10-31 佛山科学技术学院 亲水-疏水非对称的三维材料及其制备方法和应用
CN115785806A (zh) * 2022-11-04 2023-03-14 鼎钰玻璃(扬州)有限公司 一种涂覆有机-无机杂化涂层的光伏玻璃及其加工工艺
CN115785806B (zh) * 2022-11-04 2023-08-04 鼎钰玻璃(扬州)有限公司 一种涂覆有机-无机杂化涂层的光伏玻璃及其加工工艺

Also Published As

Publication number Publication date
CN109385173A (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
WO2019029030A1 (zh) 疏油涂层材料、油水分离功能材料、其制备方法及用途
Guo et al. A robust cotton textile-based material for high-flux oil–water separation
Ge et al. Rational design of materials interface at nanoscale towards intelligent oil–water separation
Su et al. Recent progress in electrospun nanofibrous membranes for oil/water separation
Abu-Thabit et al. Superhydrophobic nanohybrid sponges for separation of oil/water mixtures
Zhang et al. Superwetting porous materials for wastewater treatment: from immiscible oil/water mixture to emulsion separation
Ma et al. Recent development of advanced materials with special wettability for selective oil/water separation
Li et al. Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation
Yoon et al. Gravity-driven hybrid membrane for oleophobic–superhydrophilic oil–water separation and water purification by graphene
Xie et al. Ultrafast separation of oil/water mixtures with layered double hydroxide coated stainless steel meshes (LDH-SSMs)
Wang et al. Ultrafast fabrication of metal–organic framework-functionalized superwetting membrane for multichannel oil/water separation and floating oil collection
You et al. A novel superhydrophilic–underwater superoleophobic Zn-ZnO electrodeposited copper mesh for efficient oil/water separation
WO2018000361A1 (zh) 聚磺酰胺纳滤或反渗透复合膜的分子层层组装制备方法
Yin et al. Bioinspired anti-oil-fouling hierarchical structured membranes decorated with urchin-like α-FeOOH particles for efficient oil/water mixture and crude oil-in-water emulsion separation
CN111978856B (zh) 超亲水/水下超疏油铜网及其制备方法与分离乳化水包油的应用
Zhu et al. Sprayed superamphiphilic copper foams for long term recoverable oil-water separation
Liu et al. Bioinspired membranes for multi-phase liquid and molecule separation
Gong et al. Janus smart materials with asymmetrical wettability for on-demand oil/water separation: a comprehensive review
Yuan et al. Ultrahigh-flux (> 190,000 L· m− 2h− 1) separation of oil and water by a robust and durable Cu (OH) 2 nanoneedles mesh with inverse wettability
Wu et al. TiO2@ HNTs robustly decorated PVDF membrane prepared by a bioinspired accurate-deposition strategy for complex corrosive wastewater treatment
Shami et al. Durable light-driven three-dimensional smart switchable superwetting nanotextile as a green scaled-up oil–water separation technology
Wang et al. Durable superwetting materials through layer-by-layer assembly: multiple separations towards water/oil mixtures, water-in-oil and oil-in-water emulsions
Zhang et al. Superhydrophilic sandwich structure aerogel membrane for emulsion separation and heavy metal ion removal
Zhou et al. Superwettable amidoximed polyacrylonitrile-based nanofibrous nonwovens for rapid and highly efficient separation of oil/water emulsions
Wang et al. Preparation of superhydrophilic/underwater superoleophobic membranes for separating oil-in-water emulsion: mechanism, progress, and perspective

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921042

Country of ref document: EP

Kind code of ref document: A1