WO2019028927A1 - 一种汽车电子机械制动系统实验台 - Google Patents

一种汽车电子机械制动系统实验台 Download PDF

Info

Publication number
WO2019028927A1
WO2019028927A1 PCT/CN2017/097322 CN2017097322W WO2019028927A1 WO 2019028927 A1 WO2019028927 A1 WO 2019028927A1 CN 2017097322 W CN2017097322 W CN 2017097322W WO 2019028927 A1 WO2019028927 A1 WO 2019028927A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
pedal
brake system
brake disc
test bench
Prior art date
Application number
PCT/CN2017/097322
Other languages
English (en)
French (fr)
Inventor
靳华伟
张新
徐少洋
Original Assignee
安徽理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽理工大学 filed Critical 安徽理工大学
Publication of WO2019028927A1 publication Critical patent/WO2019028927A1/zh
Priority to ZA2019/06857A priority Critical patent/ZA201906857B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles

Definitions

  • the invention belongs to an experimental device, in particular to an experimental platform for an automobile electronic mechanical brake system.
  • automotive wire control technology With the rapid development of automotive intelligence, automotive wire control technology emerged as the times require, and it has a wide range of applications in the entire vehicle. It is a new control system based on information interaction system and real-time control. As a branch of automotive wire control technology, the automotive electronic mechanical brake system replaces the traditional hydraulic and pneumatic brake system. Its structural principle and control algorithm are very different from the traditional brake system. It is a brand new. Car brake concept. Automotive electronic mechanical brake system has been widely studied in foreign automobile companies for its advantages of energy saving, environmental protection and fast braking response. Its theoretical research, test and test platform and prototype manufacturing started late in China, but after several years of development, There has also been a considerable breakthrough in development. With the rapid development of highways and the continuous improvement of speed, modern vehicles require higher comfort, safety and stability, which also puts higher requirements on automotive electronic mechanical brake control technology.
  • the brake system of the automobile electronic machinery is inconsistent with the basic structure of the traditional brake system test bench, and has a single function, which can no longer meet the requirements of use. Therefore, a test bench is required to be made by real automobile electromechanical system. Based on the dynamic system, it fully demonstrates the composition and working process of the automotive electronic mechanical brake system, and is convenient for measuring the braking force of the electronic mechanical brake system and its response efficiency.
  • the present invention provides the following technical solutions:
  • An experimental platform for an automotive electronic mechanical brake system comprising: a test bench, a simulated vehicle travel module, a brake system actuator module, a brake signal acquisition module and a pedal simulator provided on the test bench Module.
  • the simulated automobile travel module includes a motor, a clutch, and a brake disk, and an output shaft of the motor is coupled to the brake disk central shaft through a clutch, and the power input to the brake disk by the motor is cut off and transmitted by the clutch.
  • the brake system actuator module includes a brake block 1 disposed on the inner and outer sides of the brake disc, a brake block 2, and a movable support platform disposed on the test bench, and the brake block 2 is connected
  • the rod assembly is connected to the support platform, and the support platform is provided with a torque motor, the output shaft of the torque motor is connected with the input shaft of the reducer, and the output shaft of the reducer passes through the ball of the flexible coupling and the ball screw pair
  • the lead screw is connected, and the ball screw nut is fixedly connected with the pressure plate of the brake block 1; the support platform can reciprocate along the axial direction of the ball screw on the experimental bench.
  • the pedal simulator includes a transmission portion and a sensing portion
  • the transmission portion includes a brake pedal, a brake link, a return spring, a spring snap, and a pedal rotation axis;
  • the movable pedal and the brake link are fixedly connected to receive the pedal braking force;
  • the return spring and the brake link are connected by a spring snap to support the brake link and provide a braking reaction force;
  • the brake link It can move around a certain angle of the pedal rotation axis;
  • the sensing portion includes a rotating arm, a rocker arm, a driving arm and a stroke sensor; the rotating arm is fixedly connected with the pedal rotating shaft center, and the rotating arm, the rocker arm and the driving arm are sequentially connected by a hinge, and the driving arm is connected a stroke sensor; the other end of the stroke sensor is fixed on the bottom of the pedal, the pedal simulator converts the angle change of the brake pedal around the axis of rotation of the pedal into a voltage change of the stroke sensor; converts the angle change of the pedal into a voltage signal, Used to input a variable voltage to an analog actuator in a brake system.
  • u is the output voltage of the stroke sensor
  • is the angle between the initial position of the arm and the vertical direction
  • a is the length of the arm
  • U 0 is the input voltage of the stroke sensor
  • L is the total length of the resistance of the stroke sensor. Turn the angle of the brake pedal.
  • a caliper body is disposed above the brake disc, the caliper body includes a pair of sliding beams parallel to the axial direction of the brake disc, and the brake block 1 and the brake block 2 are respectively provided with lifting lugs. The lifting lug slides over the sliding beam of the caliper body.
  • the link assembly includes a fixed seat and an "L" shaped clearance fit fixed to the movable support platform, and the clearance fit body vertical plate is embedded between the brake block 2 and the caliper side beam for dialing Dynamic brake block II.
  • the brake signal acquisition module comprises a digital display, a displacement sensor and a pressure sensor, and the displacement sensor is symmetrically installed between the brake block 1 and the brake block lifting lug of the brake block 2 for collecting two systems.
  • the amount of displacement change between the moving blocks; the digital display device can simultaneously display the pressure and displacement value changes at the same time.
  • the brake disc is uniformly arranged with a weight hole, and a brake disc weight detachably connected with the weight hole is arranged, and the number of the weight of the brake disc on the brake disc is changed. The change in inertial mass of the brake disc.
  • the brake disc weight is fixedly embedded in the weight hole of the brake disc by screws.
  • the invention realizes the variable braking force of the automobile through the output voltage of the pedal simulator, realizes the variable of the vehicle load by changing the number of the mass blocks on the brake disc, realizes the variable speed of the automobile by changing the rotating speed of the three-phase asynchronous motor, and performs the change by changing
  • the brake motor parameters and the reduction ratio of the reducer can realize the variable braking model of the small car and the mini SUV.
  • This test bench can simulate the working process of the automotive electronic mechanical brake system. It has a simple structure, low manufacturing cost and easy implementation. The versatility is good, and it is convenient to measure the brake pressure of the electromechanical brake system and the brake clearance elimination time test test.
  • FIG. 1 is a schematic structural view of a test bench of an automotive electronic mechanical brake system according to the present invention.
  • FIGS. 2 and 3 are partial enlarged views of an actuator of an automotive electronic mechanical brake system of the present invention.
  • FIG. 4 is a schematic view showing the structure of a brake disc with a mass according to the present invention.
  • Figure 5 is a schematic view showing the structure of the brake disc and the brake block of the present invention.
  • Fig. 6 is a schematic view showing a pressure sensor and a displacement sensor in cooperation with a brake disc and a brake block.
  • Fig. 6(a) is a schematic view showing the overall structure of the brake disc and the brake block
  • (b) is a schematic diagram of the pressure sensor
  • (c) is a schematic diagram of the pressure sensor fixing plate.
  • Fig. 7 is a schematic structural view of a brake pedal simulator of the present invention.
  • Fig. 7(a) is a schematic view of a three-dimensional structure
  • (b) is a schematic diagram.
  • Figure 8 is a schematic view showing the structure of the brake pad of the present invention.
  • Figure 9 is a schematic view showing the structure of the movable link assembly of the present invention.
  • an experimental platform for an automobile electronic mechanical brake system includes a test bench gantry 2, which is provided with an electromechanical brake system actuator module, a simulated automobile travel module, and a brake signal acquisition.
  • the module and the pedal simulator module are provided with a universal wheel 1 at the bottom of the test bench, and a caster self-locking device is arranged on the universal wheel.
  • the electromechanical brake system actuator module includes a brake block 25 disposed outside the brake disk 18, and a permanent magnet DC brushless torque motor 12, a planetary gear reducer 11, a ball screw 19, and a screw nut. 21, pressure plate 22.
  • a caliper body 29 is disposed above the brake disc 18, and the caliper body 29 includes a pair of sliding beams parallel to the axial direction of the brake disc.
  • the brake block 25 and the brake block 20 are respectively provided with lifting lugs 31, and the lifting lugs 31 are slid It is lapped on the sliding beam of the caliper body 29.
  • the permanent magnet DC brushless torque motor 12 is driven by the pedal simulator output control voltage, and the output shaft of the permanent magnet DC brushless torque motor 12 is connected with the input shaft of the planetary gear reducer 11, and the output shaft of the planetary gear reducer 11 is connected with the ball screw pair.
  • the ball screw pair includes a ball screw 19 and a ball screw nut 21, and the ball screw nut 21 is fixedly connected to the pressure plate 22, and the pressure plate 22 is braked in contact with the brake block 25 when braking.
  • the permanent magnet DC brushless torque motor 12, the planetary gear reducer 11 and the ball screw pair are supported by the support base 20 and the support base 24, and are fixed on the support platform 26, and the entire support platform 26 is fixed on the fixed component 35, and fixed.
  • the bottom of the assembly 35 is provided with a slider 13
  • the test bench gantry 2 is provided with a slide rail 14 slidably engaged with the slider 13 , and the support platform 26 can be horizontally moved along the slide rail on the test bench gantry 2 , the horizontal movement direction It is in line with the axial direction of the brake disc.
  • the pedal simulator output control voltage drive that is, the original voltage outputted by the stroke sensor 48 of the pedal simulator described above, is controlled by the existing control system to control the motor drive.
  • the connecting rod assembly 9 includes a fixing base 32 , a connecting rod 33 and a clearance matching body 34 .
  • the fixing base 32 is fixed to the supporting base 20 by bolts, and the supporting base 2 includes The support body 2 body 24 and the support seat cover 23 are disassembled, and a limiting hole is formed between the support base 2 body 24 and the support seat cover 23; the connecting rod 33 of the connecting rod assembly penetrates the limiting hole, and the clearance fit body 34 In the case of an L-shaped structure, its riser is embedded in the gap between the side beam 8 of the caliper body 29 and the brake block 30.
  • the actuator module drives the support base 20 to move to the right, and the fixed base 32 drives the link assembly to move, and the brake block 2 moves to drive the brake block 2 to contact the brake disc 18.
  • the simulated automobile running module includes a three-phase asynchronous motor 4, an electromagnetic clutch 5, and a brake disc 18 with a brake disc weight 27, and the brake disc weight 27 and the brake disc 18 are composed of
  • the brake disc weight setting screw 28 is fixed, and the change of the number of brake disc weights 27 realizes the change of the inertia quality of the brake disc.
  • the analog control power source 17 can adjust the control voltage of the three-phase asynchronous motor 4 by the control system 16 in real time. Simulate changes in wheel speed.
  • the brake disc 18 is connected to the speed regulating inverter 3 through the input end of the three-phase asynchronous motor 4, and the output shaft and the electromagnetic end of the electromagnetic clutch 5 are connected by a connection key, and the three-phase asynchronous motor 4 and the brake disc 18 are attached through the two ends.
  • the bearing with the bearing housing 6 is supported on the test bench, and the flange end of the electromagnetic clutch 5 is connected with the central axis of the brake disc through a connecting key.
  • a 1.5KW-220AC frequency converter 3 is set for the three-phase asynchronous motor, and the control system 16 adjusts the relationship between the frequency value of the frequency converter and the wheel speed.
  • the specific formula is as follows :
  • n is the motor speed, rpm, f is the frequency, s is the slip, generally 0.01-0.02; p is the number of electromagnetic poles of the motor, the pole of the two-pole motor is 1, the four-pole motor is 2, take 2 here.
  • the frequency f is 50Hz under normal conditions, and the normal wheel speed is simulated.
  • the frequency value can be adjusted according to the requirements of the test condition object to realize the change of the wheel speed.
  • the brake signal acquisition module comprises a digital display 15, a displacement sensor 36 (KSC-8mm displacement sensor) and a pressure sensor 37.
  • the displacement sensor 36 is symmetrically mounted on the brake block 25 and brake.
  • Block brake lug 31 of block two 30, the displacement sensing terminal abuts the brake block 25 back plate, the bottom terminal abuts the brake block 2 30;
  • the limit side beam 8 and the pressure plate 22 cooperate with the brake block A 25 and a brake block two 30 ensure that the displacement sensor 36 is pre-tightened horizontally, and the spring of the displacement sensor 36 acts on the four brake block lifting ears 31 to ensure the brake return position, and the digital display device can simultaneously display the same moment. Pressure and displacement values change.
  • the pressure sensor 37 has a threaded hole on the side thereof and is fixed to the corresponding pressure sensor fixing plate 38 by a screw connection.
  • the fixing plate 38 has the same structure as the brake block 25 and has a friction braking function.
  • the lifting lug 39 is hung on the caliper body, but the thickness is small.
  • the inner side of the brake disc 18 is disposed, and the inductive embossing head is closely attached to the outer side of the fixing plate, and the digital display device can simultaneously display The pressure and displacement values at the same time change.
  • the pedal simulator mainly has a transmission portion and a sensing portion, and converts the angular change of the brake pedal 40 around the pedal rotation axis 44 into a voltage change of the stroke sensor 48.
  • the transmission portion includes a brake pedal 40, a brake link 41, a return spring 42, a spring catch 43, and a pedal rotation axis 44.
  • the brake pedal 40 and the brake link 41 are fixedly connected to receive the pedal braking force; the return spring 42 and the brake link 41 are connected by the spring snap 43 to support the brake link 41 and provide a brake reaction force;
  • the rotating shaft center 44 is disposed on the base platform, and the brake link 41 is rotatably coupled to the pedal rotating shaft center 44 to be movable within a certain angle around the pedal rotating shaft center 44.
  • the sensing portion includes a boom 45, a rocker arm 46, a drive arm 47, and a stroke sensor 48.
  • the rotating arm is fixedly connected with the pedal rotating shaft center, the rotating arm 45, the rocker arm 46 and the driving arm 47 are sequentially connected by a hinge, the driving arm is connected with the stroke sensor; the other end of the stroke sensor is fixed on the base platform, and the stroke sensor 48 adopts the resistance sensor principle.
  • the resistance value is changed by the drive arm 47.
  • the brake pedal 40 is proportionally changed around the angle of the pedal rotation axis 44, and the voltage of the stroke sensor 48 is calculated as follows:
  • u is the output voltage of the stroke sensor 48
  • is the angle between the initial position of the arm 45 and the vertical direction
  • a is the length of the arm 45
  • U 0 is the input voltage of the stroke sensor 48
  • L is the stroke sensor. 48 total length of resistance
  • the fixed assembly 35 is moved to the limit position, the pressure plate 22 is separated from the brake block by about 0.1 mm, the electromagnetic clutch 5 is turned on, and the electromagnetic clutch 5 is closed, so that the brake disk 18 is under the design speed and design load.
  • Operation adjusting the output frequency of the inverter 3, changing the rotational speed of the three-phase asynchronous motor 4, simulating the wheel running speed under the test condition, changing the number of the mass 27 on the brake disk 18, realizing the variable inertia analog design load change, the digital display 15 Display the speed of a single wheel in real time.
  • the torque and gear ratio parameters of the continuous stalling of the actuator can be changed, simulating the braking model changes of the small car and the mini SUV.
  • the model of the torque motor 12 is J110LYX04A
  • the permanent magnet DC brushless motor and the speed reducer 11 are NGW planetary gear reduction mechanism and the transmission ratio is 4.3
  • the simulation is a small car.
  • the torque of continuous blocking is 3.2Nm.
  • the transmission ratio is 4.3; when the torque of the torque motor 12 is more than 3.2Nm, and the transmission ratio is 4.3-7.9, the simulated mini SUV model.
  • the pedal simulator converts the angular change of the brake pedal 40 about the pedal rotation axis 44 into a voltage change of the stroke sensor 48, the voltage and angle varying as shown in equation (2).
  • is 30°
  • a length is 3 cm
  • U 0 is 12 V
  • the total length L of the stroke sensor is 12 cm. It is measured by an angle gauge.
  • the pedal simulator outputs a variable voltage to the control system 16 by the stroke sensor 48 according to the change of the pedal rotation angle.
  • the control system 16 outputs a control voltage to drive the permanent magnet DC brushless torque motor, and the permanent magnet DC brushless torque motor 12 is at a variable voltage.
  • the output variable torque is output, and after being reduced and increased by the planetary gear reducer 11, the ball screw pair is used as a motion converting device to convert the large torque transmitted by the planetary gear reducer 11 into the variable axial thrust of the screw nut 21, and pushes
  • the brake block 25 moves toward the brake disc 18, and when the brake block 25 contacts the brake disc 18 to generate a contact force, the contact force acts on the ball screw pair to generate a reaction force, and the permanent magnet DC brushless torque motor 12
  • the planetary gear reducer 11 and the ball screw pair are mounted on the support platform 26, and the support platform 26 moves along the guide rail 14 away from the brake disk 18 under the reaction force, because the brake link assembly is fixedly connected with the support base 20.
  • the clearance matching body of the brake link assembly drives the brake block 228 to move to the brake disk 18, and when the brake block 25 and the brake block 20 are in contact with the brake disk 18, a variable system is produced. Dynamic pressure Until the brake is completed.
  • the digital display instrument 15 monitors the pedal output voltage, the pedal rotation angle change, the brake pressure value, the displacement sensor change value and the time information thereof in real time, and calculates the brake clamping force and the brake gap elimination time according to the comparison, and the brake regulation is reflected. Braking effect of the brake actuator.
  • the three-phase asynchronous AC motor 4 drives the automobile brake disc 18 with the weight 27 to simulate the actual running process of the whole vehicle.
  • the three-phase asynchronous AC motor 4 and the automobile brake disc 18 are connected by the electromagnetic clutch 5, and the electromagnetic clutch is passed. 5
  • the on/off control of the current realizes the connection and disconnection of the three-phase asynchronous AC motor 4 and the brake disc 18 of the automobile.
  • the control of the torque motor 12 is achieved by changing the angle of the brake pedal 40 of the pedal simulator, and the relationship between the output voltage and the angle of the brake pedal 40 is shown in equation (2).
  • the digital display displays the voltage value, pressure sensor and displacement sensor value of the brake pedal simulator in real time.
  • the support platform was fixed on the guide rail 14, and the system actuator and the test stand bracket did not slide relative to each other.
  • the pressure plate 22 acts directly on the pressure head of the pressure sensor 37.
  • the brake pedal 40 angle was separately controlled, and voltage values of 2V, 4V, 6V, 8V, 10V, and 12V were applied to the torque motor, and the pressure sensor 37 was recorded to display numerical values as shown in Table 1.
  • the experimental value of the brake clamping force is not much different from the theoretical value and the simulated value, indicating that the test design fully meets the requirements for the braking force test. Under the three conditions, the braking and clamping force increases with the increase of the blocking voltage, which is approximately proportionally changing. This is also the advantage that the electromechanical braking system can adjust the braking force by adjusting the voltage.
  • the experimental value is slightly smaller, mainly due to installation errors during the test, mechanical characteristics of the motor itself, and complex environmental conditions of the outside world.
  • Table 1 The theoretical values in Table 1 are calculated by mechanical mechanics according to the torque motor, reducer and screw nut structure shown in Figure 2; the simulation values are obtained by ADAMS simulation modeling analysis.
  • the system actuator module is divided into two processes: the motor starts from the start to the maximum no-load speed and the motor runs at a constant speed during the elimination of the brake gap. Since the brake clearance time is very short, the gap between the brake pad and the brake disc is 0.1mm, and the total brake clearance is 0.2mm. It is difficult to accurately set 0.1mm on both sides of the brake disc. The gap is 2.5 mm, and the inner and outer gaps are 5 mm in total.
  • test procedure is as follows:
  • the maximum speed of the brake block in the stage of eliminating the brake gap is 2.53 mm/s, which meets the requirements of the brake regulation of 2 mm/s.
  • the torque motor running to the maximum no-load speed response time is 0.04s, and the braking block moving distance is about 0.05mm in this response time period, then the vehicle electronic mechanical brake system actuator is eliminated.
  • the brake clearance time is about 0.10s, which meets the requirements of the brake clearance clearance time of 0.05-0.15s.

Abstract

一种汽车电子机械制动系统实验台,包括实验台架(2)、以及设在实验台架(2)上的模拟汽车行驶模块、制动系统执行器模块、制动信号采集模块和踏板模拟器模块。通过改变汽车行驶模块中踏板模拟器的制动踏板(40)角度输出制动电压值控制制动力矩电机(12)变化,通过改变汽车行驶模块中制动盘(18)上配重块(27)数量实现汽车负载转动惯量的可变,通过改变汽车行驶模块中变频器(3)输出控制三相异步电动机(4)的转速实现汽车车速的可变,通过改变制动系统执行器力矩电机(12)和减速器(11)改变执行器模块参数实现模拟车型的可变。本试验台可真实模拟汽车电子机械制动系统工作过程,结构简单、制造成本低且易于实施,方便测量电子机械制动系统制动力及制动间隙消除时间。

Description

一种汽车电子机械制动系统实验台 技术领域
本发明属于一种实验设备,特别涉及一种汽车电子机械制动系统实验台。
背景技术
随着汽车智能化的飞速发展,汽车线控技术应运而生,并且在整车上具有广泛应用,它是基于信息交互系统和实时控制的新型控制系统。汽车电子机械制动系统作为汽车线控技术的一个分支,用以取代传统的液压和气压制动系统,其结构原理和控制算法上都与传统制动系统有很大的区别,是一种全新的汽车制动理念。汽车电子机械制动系统凭借其节能、环保和制动响应快速等优点而优先在国外汽车企业得到广泛研究,其理论研究、试验测试平台和样机制造在国内起步较晚,但是经过近些年的发展也有了相当的突破。伴随着高速公路的快速发展以及车速的不断提高,现代车辆要求具有更高的舒适性、安全性以及稳定性,这也对汽车电子机械制动控制技术提出了更高的要求。
汽车电子机械制动系统作为一种新型的制动方法,传统的制动系统实验台基础结构与其不一致,且功能单一,已不能满足使用要求,故需要一种实验台以真实的汽车电子机械制动系统为基础,充分展示汽车电子机械制动系统的组成结构和工作过程,方便测量电子机械制动系统制动力及其响应效能。
发明内容
本发明的目的在于提供一种汽车电子机械制动系统实验台,以克服上述不足。
为解决上述技术问题,本发明提供以下技术方案:
一种汽车电子机械制动系统实验台,其结构特点在于,包括实验台架、以及设在实验台架上的模拟汽车行驶模块、制动系统执行器模块、制动信号采集模块和踏板模拟器模块。
进一步,所述模拟汽车行驶模块包括电机、离合器和制动盘,所述电机的输出轴通过离合器与制动盘中心轴连接,并通过离合器切断和传递电机向制动盘输入的动力。
进一步,所述制动系统执行器模块包括设置在制动盘内外两侧的制动块一、制动块二以及设在实验台架上的可移动支撑平台,所述制动块二通过连杆组件与支撑平台连接,所述支撑平台上设有力矩电机,所述力矩电机的输出轴与减速器输入轴连接,所述减速器输出轴通过挠性联轴器与滚珠丝杠副的滚珠丝杠连接,滚珠丝杠副螺母与正对于制动块一的压盘固定连接;所述支撑平台在实验台架上可沿滚珠丝杠副轴向往复移动。
进一步,所述踏板模拟器包括传动部分和传感部分,
所述传动部分包括制动踏板、制动连杆、回位弹簧、弹簧卡扣和踏板旋转轴心;所述制 动踏板和制动连杆固定连接,接收踏板制动力;所述回位弹簧和制动连杆通过弹簧卡扣连接,支撑制动连杆,并提供制动反力;所述制动连杆可围绕踏板旋转轴心在一定角度内运动;
所述传感部分包括转臂、摇臂、驱动臂和行程传感器;所述转臂与踏板旋转轴心固定连接,所述转臂、摇臂和驱动臂采用铰链顺序连接,所述驱动臂连接行程传感器;所述行程传感器另一端固定在踏板底上,所述踏板模拟器将制动踏板围绕踏板旋转轴心的角度变化转化为行程传感器的电压变化;将踏板的角度变化转化为电压信号,用于向制动系统中模拟执行器输入可变电压。
进一步,所述踏板模拟器输出电压与踏板转角的关系公式如下:
Figure PCTCN2017097322-appb-000001
式中,u为行程传感器的输出电压,θ为转臂初始位置与竖直方向夹角,a为转臂长度,U0为行程传感器的输入电压,L为行程传感器的电阻总长度,
Figure PCTCN2017097322-appb-000002
为制动踏板转动角度。
进一步,所述制动盘上方设有钳体,所述钳体包括一对与制动盘轴向平行的滑梁,所述制动块一和制动块二分别设有吊耳,所述吊耳滑动搭接在钳体的滑梁上。
进一步,所述连杆组件包括与可移动支撑平台固定的固定座和“L”形间隙配合体,所述间隙配合体竖向板嵌入制动块二与钳体边梁之间,用于拨动制动块二。
进一步,所述制动信号采集模块包括数字显示仪、位移传感器和压力传感器,所述位移传感器对称安装在制动块一和制动块二的制动块吊耳间,用于采集两个制动块间的位移变化量;所述数字显示仪可同时显示同一时刻的压力及位移数值变化。
进一步,所述所述制动盘上均匀布置有配重块孔,设置与配重块孔可拆卸连接的制动盘配重块,通过制动盘上制动盘配重块数量的变化实现制动盘惯性质量的变化。
进一步,所述制动盘配重块通过螺钉嵌入式固定在制动盘的配重块孔中。
与现有技术相比,本发明的有益效果在于:
本发明通过踏板模拟器输出电压实现汽车制动力可变,通过改变制动盘上质量块的数量实现汽车载荷的可变,通过改变三相异步电动机的转速实现汽车车速的可变,通过改变执行器制动电机参数、减速器的减速比参数实现模拟小型汽车和迷你SUV的制动车型可变,本试验台可真实模拟汽车电子机械制动系统工作过程,结构简单、制造成本低且易于实施,通用性较好,方便测量电子机械制动系统制动压力及其制动间隙消除时间测试试验。
附图说明
图1为本发明汽车电子机械制动系统实验台结构示意图。
图2、图3为本发明的汽车电子机械制动系统执行器局部放大图。
图4是本发明附有质量块的制动盘结构示意图。
图5是本发明制动盘与制动块配合处结构示意图。
图6是制动盘与制动块配合处设有压力传感器和位移传感器的示意图。
图6中(a)为制动盘与制动块配合处整体结构示意图,(b)为压力传感器示意图,(c)为压力传感器固定板示意图。
图7是本发明制动踏板模拟器的结构示意图。
图7中(a)为立体结构示意图,(b)为原理图。
图8是本发明制动块结构示意图。
图9是本发明动连杆组件结构示意图。
其中:1.万向轮 2.台架 3.变频器 4.三相异步电动机 5.电磁离合器 6.轴承座 7.质量块 8.边梁 9.连杆组件 10.联轴器 11.行星齿轮减速器 12.永磁直流无刷力矩电机 13.滑块 14.导轨 15.数字显示仪 16.控制系统 17.模拟控制电源 18.制动盘 19.滚珠丝杠 20.支撑座一 21.丝杠螺母 22.压盘 23.支撑座二盖 24.支撑座二 25.制动块一 26.支撑平台 27.制动盘配重块 28.制动盘配重块定位螺钉 29.钳体 30.制动块二 31.吊耳 32.支撑座一固定座 33.连杆 34.间隙配合体 35.固定组件 36.位移传感器 37.压力传感器 38.压力传感器固定板 39.压力传感器固定板吊耳 40.制动踏板 41.制动连杆 42.回位弹簧 43.弹簧卡扣 44.踏板旋转轴心 45.转臂 46.摇臂 47.驱动臂 48.行程传感器
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,一种汽车电子机械制动系统实验台,包括实验台台架2,该实验台台架上设有电子机械制动系统执行器模块、模拟汽车行驶模块、制动信号采集模块和踏板模拟器模块,实验台台架底部设有万向轮1,万向轮上设置脚轮自锁装置。
以下对本发明中的制动系统执行器模块、模拟汽车行驶模块、制动信号采集模块和踏板模拟器模块的最佳方案作出进一步解释说明,但并非是对其作出的唯一限定,其也可以由其他具有相同功能的现有技术进行替代。
参见图2,电子机械制动系统执行器模块包括设置在制动盘18外侧的制动块一25以及永磁直流无刷力矩电机12、行星齿轮减速器11、滚珠丝杠19、丝杠螺母21、压盘22。
制动盘18上方设有钳体29,钳体29包括一对与制动盘轴向平行的滑梁,制动块一25和制动块二30分别设有吊耳31,吊耳31滑动搭接在钳体29的滑梁上。
永磁直流无刷力矩电机12由踏板模拟器输出控制电压驱动,永磁直流无刷力矩电机12输出轴与行星齿轮减速器11输入轴连接,行星齿轮减速器11输出轴与滚珠丝杠副连接,其中滚珠丝杠副包括滚珠丝杠19、滚珠丝杠副螺母21,滚珠丝杠副螺母21与压盘22固定连接,压盘22制动时与制动块一25接触制动。永磁直流无刷力矩电机12、行星齿轮减速器11和滚珠丝杠副由支撑座一20和支撑座二24支撑,固定在支撑平台26上,整个支撑平台26固定在固定组件35上,固定组件35的底部设有滑块13,试验台台架2上设有与滑块13滑动配合的滑轨14,支撑平台26在试验台台架2上可沿滑轨水平移动,该水平移动方向与制动盘轴向方向一致。
踏板模拟器输出控制电压驱动,即前述踏板模拟器的行程传感器48输出的原始电压,经现有控制系统处理后控制电机驱动。
参见图1,图2,图3,图9,连杆组件9包括固定座32、连杆33和间隙配合体34,固定座32通过螺栓固连于支撑座一20上,支撑座二包括可拆卸安装的支撑座二本体24和支撑座二盖23,支撑座二本体24和支撑座二盖23之间形成限位孔;连杆组件的连杆33贯穿该限位孔,间隙配合体34为L形结构,其竖板嵌入钳体29的边梁8和制动块二30之间的间隙中。
联动时,执行器模块带动支撑座一20向右移动,通过支撑座一固定座32带动连杆组件移动,驱动制动块二30移动实现制动块二与制动盘18的接触。
参见图1,图4,模拟汽车行驶模块包括三相异步电动机4、电磁离合器5和附有制动盘配重块27的制动盘18,制动盘配重块27和制动盘18由制动盘配重块定位螺钉28固定,制动盘配重块27数量的变化实现制动盘惯性质量的变化,模拟控制电源17由控制系统16可实时调节三相异步电动机4的控制电压,模拟车轮转速的变化。制动盘18通过所述三相异步电动机4输入端连接有调速用变频器3,输出轴与电磁离合器5电磁端通过连接键连接,三相异步电动机4和制动盘18通过两端附有轴承座6的轴承支撑在实验台上,电磁离合器5法兰端与制动盘中心轴通过连接键连接。
为准确模拟汽车在任意行驶速度下的状态,对三相异步电动机设置1.5KW-220AC变频调速器3,由控制系统16调节变频调速器的频率值与车轮转速之间关系,具体公式如下:
Figure PCTCN2017097322-appb-000003
式(1)中,n为电机转速,转/分钟,f为频率,s为转差率,一般取0.01-0.02;p为电机的电磁极对数,两极电机p为1,四极电机为2,这里取2。
频率f正常情况下为50Hz,模拟正常车轮转速,可根据试验工况对象的要求,调节频率值实现车轮转速的变化。
参见图1,图5,图6,制动信号采集模块包括数字显示仪15、位移传感器36(KSC-8mm位移传感器)和压力传感器37,位移传感器36对称安装在制动块一25和制动块二30的制动块吊耳31间,位移感应端子紧靠制动块一25背板,底部端子紧靠制动块二30;限位边梁8和压盘22共同作用于制动块一25和制动块二30,在水平上保证位移传感器36预紧,位移传感器36的弹簧作用于四个制动块吊耳31,保证制动回位,数字显示仪可同时显示同一时刻的压力及位移数值变化。
参见图1,图6,所述压力传感器37侧面开有螺纹孔,通过螺纹连接固定在对应的压力传感器固定板38上,固定板38结构等同制动块一25,且具有摩擦制动功能,通过吊耳39挂在钳体上,但厚度较小,实验时,代替制动块一25布置于制动盘18的内侧,感应压头紧贴固定板外侧,所述数字显示仪可同时显示同一时刻的压力及位移数值变化。
参见图7,踏板模拟器主要有传动部分和传感部分组成,将制动踏板40围绕踏板旋转轴心44的角度变化转化为行程传感器48的电压变化。传动部分包括制动踏板40、制动连杆41、回位弹簧42、弹簧卡扣43和踏板旋转轴心44。制动踏板40和制动连杆41固定连接,接收踏板制动力;回位弹簧42和制动连杆41通过弹簧卡扣43连接,支撑制动连杆41,并提供制动反力;踏板旋转轴心44设在底座平台上,制动连杆41与踏板旋转轴心44转动连接,可围绕踏板旋转轴心44在一定角度内运动。
传感部分包括转臂45、摇臂46、驱动臂47和行程传感器48。转臂与踏板旋转轴心固定连接,转臂45、摇臂46和驱动臂47采用铰链顺序连接,驱动臂连接行程传感器;行程传感器另一端固定在底座平台上,行程传感器48采用电阻传感器原理,由驱动臂47驱动改变电阻值。实验中,制动踏板40围绕踏板旋转轴心44角度成比例变化,行程传感器48的电压呈计算方式如下:
踏板模拟器输出电压与踏板转角的关系由如下公式表示:
Figure PCTCN2017097322-appb-000004
式(2)中,u为行程传感器48的输出电压,θ为转臂45初始位置与竖直方向夹角,a为转臂45长度,U0为行程传感器48的输入电压,L为行程传感器48的电阻总长度,
Figure PCTCN2017097322-appb-000005
为制动踏板40转动角度。
本发明方案的工作原理如下:
实验时,移动固定组件35到限位位置,压盘22与制动块一相距0.1mm左右,接通电磁离合器5电源,电磁离合器5闭合,使制动盘18在设计转速和设计负载情况下运行,调节变频器3输出频率改变三相异步电动机4的转速模拟试验工况下车轮行驶转速,改变制动盘18上质量块27的数量实现转动惯量可变模拟设计负载变化,数字显示仪15实时显示单个车轮的转速。
通过更换执行器制动力矩电机12和减速器11,可实现执行器连续堵转的力矩和传动比的参数变化,模拟小型汽车和迷你SUV的制动车型变化。当力矩电机12的型号为J110LYX04A的永磁直流无刷电机、减速器11的型号为NGW行星齿轮减速机构且传动比为4.3时,模拟的是小型汽车,此时连续堵转的力矩为3.2N.m,传动比为4.3;当力矩电机12的连续堵转的力矩大于3.2N.m,且传动比在4.3-7.9时,模拟的迷你SUV车型。
制动时,断开电磁离合器5,切断制动盘18与三相异步电动机4的动力连接。踏板模拟器将制动踏板40围绕踏板旋转轴心44的角度变化转化为行程传感器48的电压变化,电压与角度呈式(2)所示变化。
本实施例中:θ为30°,a长度为3cm,U0为12V,行程传感器的电阻总长度L为12cm,
Figure PCTCN2017097322-appb-000006
通过角度尺测量得到。
踏板模拟器根据踏板转动角度的变化由行程传感器48输出一个可变电压给控制系统16,控制系统16输出控制电压驱动永磁直流无刷力矩电机,永磁直流无刷力矩电机12在可变电压下输出可变转矩,经行星齿轮减速器11减速增矩后,滚珠丝杠副作为运动转换装置将行星齿轮减速器11传递的大扭矩转化成丝杠螺母21的可变轴向推力,推动制动块一25向制动盘18移动,当制动块一25与制动盘18接触产生接触力时,此接触力作用于滚珠丝杠副产生反作用力,永磁直流无刷力矩电机12、行星齿轮减速器11和滚珠丝杠副安装在支撑平台26上,支撑平台26在反作用力下沿导轨14向远离制动盘18方向移动,由于制动连杆组件与支撑座一20固定连接,制动连杆组件的间隙配合体带动制动块二30向制动盘18移动,当制动块一25和制动块二30均与制动盘18接触时,从而产生可变的制动压力,直至制动完成。
数字显示仪15上实时监测踏板输出电压,踏板转角变化、制动压力值、位移传感器变化值及其时间信息,据此计算制动夹紧力和制动间隙消除时间,与制动法规对比反映制动执行器的制动效果。
以下进一步给出本发明系统实验台试验方法及试验结果分析
(1)试验方法
通过三相异步交流电机4带动附有配重块27的汽车制动盘18运转模拟整车实际行驶过程,三相异步交流电机4与汽车制动盘18通过电磁离合器5连接,通过对电磁离合器5电流的通断控制,实现三相异步交流电机4与汽车制动盘18的连接与断开。通过改变踏板模拟器的制动踏板40角度实现对力矩电机12的控制,其输出电压与制动踏板40角度的关系参见式(2)。数字显示仪实时显示制动踏板模拟器输出的电压值、压力传感器和位移传感器值,
(2)制动压力测试试验
试验中支撑平台固定在导轨14上,则系统执行器与试验台支架无相对滑动。制动时,压盘22直接作用于压力传感器37的压头。
分别控制制动踏板40角度,对力矩电机施加2V、4V、6V、8V、10V和12V的电压值,记录压力传感器37显示数值,如表1所示。
表1 制动夹紧力实验值与理论值、仿真值比较
Figure PCTCN2017097322-appb-000007
制动夹紧力实验值与理论值和仿真值相差不大,说明试验设计完全满足制动力测试使用要求。在三种条件下制动夹紧力均随堵转电压的增大而增大,近似呈正比例变化,这也是电子机械制动系统调节电压即可调节制动力的优点所在。实验值略小,主要受试验过程中的安装误差、电机本身的机械特性以及外界的复杂环境条件等因素的影响。
表1中的理论值是按照如图2所示的力矩电机、减速器和丝杠螺母结构通过机械力学知识计算得来;仿真值是通过ADAMS仿真建模分析得来。
(3)制动间隙消除时间测试试验
系统执行器模块在消除制动间隙阶段分为电机从启动到最大空载转速以及电机匀速运转两个过程。由于消除制动间隙时间很短,汽车制动块与制动盘一侧间隙为0.1mm,总制动间隙为0.2mm,精确的在制动盘两侧设置0.1mm很难,故设定原始间隙为2.5mm,则内外侧间隙共5mm。
试验步骤如下:
1)按照小型汽车的制动需要,安装固定好力矩电机12和减速器11;
2)将滑块13固定在导轨14上,确保执行器与试验台支架可相对滑动;
3)布置两个位移传感器36于制动块一25和制动块二30间,将安装有压力传感器37的压力传感器固定板38代替制动块一25,通过其吊耳39挂在嵌体29上,安装固定好连杆组件9;
4)根据试验工况要求,增减制动盘配重块27于制动盘18内;
5)接通电源,调节变频器3,控制电动机4旋转,接通电磁离合器5的电源,电磁离合器5闭合,带动制动盘18转动;
6)改变踏板模拟器踏板40的角度,力矩电机12驱动工作,实现制动。观察数字显示仪上的行程传感器48输出电压值,在电压值为2V、4V、6V、8V、10V和12V时,用角度尺测量踏板40的角度变化,读取压力传感器37输出值,记录在表1中;
7)观察数字显示仪上的行程传感器48输出电压值、位移传感器36的位移变化量以及制动块时间变化,当压盘22接触压力传感器37时,开始记录时间;当位移传感器36显示为2mm、3mm、4mm和5mm时,记录时间于表2中,根据时间-位移公式,计算制动块运行速度,记录在表2中。
8)切断电源,试验结束。
表2 位移传感器测量数据
Figure PCTCN2017097322-appb-000008
根据上述实验结果可以得出制动块在消除制动间隙阶段匀速运行的最大速度为2.53mm/s,满足制动法规2mm/s的使用要求。根据力矩电机厂家提供的检验报告,此型号力矩电机运转至最大空载转速响应时间为0.04s,此响应时间段制动块移动距离约为0.05mm,则此汽车电子机械制动系统执行器消除制动间隙时间约为0.10s,满足制动法规间隙消除时间0.05-0.15s的使用要求。
以上所述仅为本发明的较佳实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内所做的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种汽车电子机械制动系统实验台,其特征在于,包括实验台架(2)、以及设在实验台架(2)上的模拟汽车行驶模块、制动系统执行器模块、制动信号采集模块和踏板模拟器模块。
  2. 根据权利要求1所述的一种汽车电子机械制动系统实验台,其特征在于,所述模拟汽车行驶模块包括电机、离合器和制动盘,所述电机的输出轴通过离合器与制动盘中心轴连接,并通过离合器切断和传递电机向制动盘输入的动力。
  3. 根据权利要求1所述的一种汽车电子机械制动系统实验台,其特征在于,所述制动系统执行器模块包括设置在制动盘(18)内外两侧的制动块一(25)、制动块二(30)以及设在实验台架(2)上的可移动支撑平台(26),所述制动块二(30)通过连杆组件(9)与支撑平台(26)连接,所述支撑平台(26)上设有力矩电机(12),所述力矩电机(12)的输出轴与减速器(11)输入轴连接,所述减速器(11)输出轴通过挠性联轴器(10)与滚珠丝杠副的滚珠丝杠(19)连接,滚珠丝杠副螺母(21)与正对于制动块一(25)的压盘(22)固定连接;所述支撑平台(26)在实验台架(2)上可沿滚珠丝杠副轴向往复移动。
  4. 根据权利要求1所述的一种汽车电子机械制动系统实验台,其特征在于,其特征在于,所述制动盘(18)上方设有钳体(29),所述钳体(29)包括一对与制动盘轴向平行的滑梁,所述制动块一(25)和制动块二(30)分别设有吊耳(31),所述吊耳(31)滑动搭接在钳体(29)的滑梁上。
  5. 根据权利要求4所述的一种汽车电子机械制动系统实验台,其特征在于,所述制动信号采集模块包括数字显示仪(15)、位移传感器(36)和压力传感器(37),所述位移传感器(36)对称安装在制动块一(25)和制动块二(30)的制动块吊耳(31)间,用于采集两个制动块间的位移变化量;所述压力传感器(37)设在制动块一(25)上,用于采集制动块一(25)与压盘间的压力变化值;所述数字显示仪(15)可同时显示同一时刻的压力及位移数值变化。
  6. 根据权利要求1或4所述的一种汽车电子机械制动系统实验台,其特征在于,所述踏板模拟器包括传动部分和传感部分,
    所述传动部分包括制动踏板(40)、制动连杆(41)、回位弹簧(42)、弹簧卡扣(43)和踏板旋转轴心(44);所述制动踏板(40)和制动连杆(41)固定连接,接收踏板制动力;所述回位弹簧(42)和制动连杆(41)通过弹簧卡扣(43)连接,支撑制动连杆(41),并提供制动反力;所述制动连杆(41)可围绕踏板旋转轴心(44)在一定角度内运动;
    所述传感部分包括转臂(45)、摇臂(46)、驱动臂(47)和行程传感器(48);所述转 臂(45)和踏板旋转轴心(44)固定连接,所述转臂(45)、摇臂(46)和驱动臂(47)采用铰链顺序连接,所述驱动臂(47)连接行程传感器(48),所述行程传感器(48)另一端固定在踏板底座上;所述踏板模拟器将制动踏板(40)围绕踏板旋转轴心(44)的角度变化转化为行程传感器(48)的电压变化;将踏板的角度变化转化为电压信号,用于向制动系统中模拟执行器输入可变电压。
  7. 根据权利要求6所述的一种汽车电子机械制动系统实验台,其特征在于,所述踏板模拟器输出电压与踏板转角的关系公式如下:
    Figure PCTCN2017097322-appb-100001
    式中,u为行程传感器(48)的输出电压,θ为转臂(45)初始位置与竖直方向夹角,a为转臂(45)长度,U0为行程传感器(48)的输入电压,L为行程传感器(48)的电阻总长度,
    Figure PCTCN2017097322-appb-100002
    为制动踏板(40)转动角度。
  8. 根据权利要求1所述的一种汽车电子机械制动系统实验台,其特征在于,所述连杆组件(9)包括与可移动支撑平台(26)固定的固定座(32)和“L”形间隙配合体(34),所述间隙配合体竖向板嵌入制动块二(30)与钳体(29)的边梁(8)之间,用于拨动制动块二(30)。
  9. 根据权利要求1所述的一种汽车电子机械制动系统实验台,其特征在于,所述所述制动盘(18)上均匀布置有配重块孔,设置与配重块孔可拆卸连接的制动盘配重块(27),通过制动盘(18)上制动盘配重块(27)数量的变化实现制动盘惯性质量的变化。
  10. 根据权利要求1所述一种汽车电子机械制动系统实验台,其特征在于,所述制动盘配重块(27)通过螺钉嵌入式固定在制动盘(18)的配重块孔中。
PCT/CN2017/097322 2017-08-11 2017-08-14 一种汽车电子机械制动系统实验台 WO2019028927A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2019/06857A ZA201906857B (en) 2017-08-11 2019-10-17 Experimental platform for automotive electromechanical braking system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710685588.2A CN107314906B (zh) 2017-08-11 2017-08-11 一种汽车电子机械制动系统实验台
CN201710685588.2 2017-08-11

Publications (1)

Publication Number Publication Date
WO2019028927A1 true WO2019028927A1 (zh) 2019-02-14

Family

ID=60175672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097322 WO2019028927A1 (zh) 2017-08-11 2017-08-14 一种汽车电子机械制动系统实验台

Country Status (3)

Country Link
CN (1) CN107314906B (zh)
WO (1) WO2019028927A1 (zh)
ZA (1) ZA201906857B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111610019A (zh) * 2020-06-01 2020-09-01 郭顺合 一种减速器装配组装后性能测试系统及测试方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113353050A (zh) * 2020-03-06 2021-09-07 上海汽车集团股份有限公司 制动器测试系统及方法
CN111366364B (zh) * 2020-04-13 2021-12-24 中国人民解放军63921部队 低速重载设备用制动器性能的试验方法及装置
CN113375947B (zh) * 2021-06-04 2022-05-17 浙江佳骏汽车零部件有限公司 汽车制动器生产用检测装置
CN113533959B (zh) * 2021-06-30 2022-08-23 浙江联宜电机有限公司 电机刹车性能检测装置
CN114274966A (zh) * 2021-11-25 2022-04-05 惠州市德赛西威汽车电子股份有限公司 一种基于uwb技术的驾驶行为监控方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996026422A1 (de) * 1995-02-18 1996-08-29 Itt Automotive Europe Gmbh Prüfeinheit mit verbesserter simulationsgüte zur realitätsnahen prüfung der fahrdynamik von kraftfahrzeugen
CN201289432Y (zh) * 2008-09-27 2009-08-12 黄美华 汽车制动间隙自动调整臂测试台的动态制动模拟装置
CN101634608A (zh) * 2009-09-01 2010-01-27 清华大学 一种电动汽车电、液复合制动试验平台
JP5005257B2 (ja) * 2006-05-18 2012-08-22 曙ブレーキ工業株式会社 ブレーキダイナモメータ
CN104048835A (zh) * 2014-06-10 2014-09-17 东北大学 一种汽车制动模拟试验台
CN107290159A (zh) * 2017-08-11 2017-10-24 安徽理工大学 一种汽车电子制动模拟系统
CN107314905A (zh) * 2017-08-11 2017-11-03 安徽理工大学 一种汽车电子制动系统模拟执行器
CN206990223U (zh) * 2017-08-11 2018-02-09 安徽理工大学 一种汽车电子制动系统模拟执行器
CN207181055U (zh) * 2017-08-11 2018-04-03 安徽理工大学 一种汽车电子机械制动系统实验台
CN207215470U (zh) * 2017-08-11 2018-04-10 安徽理工大学 一种汽车电子制动模拟系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7353101B2 (en) * 2006-04-18 2008-04-01 Honeywell International Inc. Methods and apparatus to control electro-mechanical brakes
CN101561354B (zh) * 2009-05-21 2011-01-12 吉林大学 基于电子机械制动系统的硬件在环仿真试验台
CN101561353B (zh) * 2009-05-21 2010-10-13 吉林大学 车辆线控制动线控转向硬件在环试验台
JP6117633B2 (ja) * 2013-06-25 2017-04-19 株式会社日立ビルシステム エレベータ用ブレーキ機構点検装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996026422A1 (de) * 1995-02-18 1996-08-29 Itt Automotive Europe Gmbh Prüfeinheit mit verbesserter simulationsgüte zur realitätsnahen prüfung der fahrdynamik von kraftfahrzeugen
JP5005257B2 (ja) * 2006-05-18 2012-08-22 曙ブレーキ工業株式会社 ブレーキダイナモメータ
CN201289432Y (zh) * 2008-09-27 2009-08-12 黄美华 汽车制动间隙自动调整臂测试台的动态制动模拟装置
CN101634608A (zh) * 2009-09-01 2010-01-27 清华大学 一种电动汽车电、液复合制动试验平台
CN104048835A (zh) * 2014-06-10 2014-09-17 东北大学 一种汽车制动模拟试验台
CN107290159A (zh) * 2017-08-11 2017-10-24 安徽理工大学 一种汽车电子制动模拟系统
CN107314905A (zh) * 2017-08-11 2017-11-03 安徽理工大学 一种汽车电子制动系统模拟执行器
CN206990223U (zh) * 2017-08-11 2018-02-09 安徽理工大学 一种汽车电子制动系统模拟执行器
CN207181055U (zh) * 2017-08-11 2018-04-03 安徽理工大学 一种汽车电子机械制动系统实验台
CN207215470U (zh) * 2017-08-11 2018-04-10 安徽理工大学 一种汽车电子制动模拟系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111610019A (zh) * 2020-06-01 2020-09-01 郭顺合 一种减速器装配组装后性能测试系统及测试方法

Also Published As

Publication number Publication date
ZA201906857B (en) 2020-10-28
CN107314906A (zh) 2017-11-03
CN107314906B (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
WO2019028927A1 (zh) 一种汽车电子机械制动系统实验台
CN100494950C (zh) 盘式制动器模拟试验台
CN203643254U (zh) 基于拉/压、弯曲、疲劳复合载荷材料性能原位测试平台
CN207181055U (zh) 一种汽车电子机械制动系统实验台
CN107290159B (zh) 一种汽车电子制动模拟系统
CN107314905B (zh) 一种汽车电子制动系统模拟执行器
CN104266837A (zh) 基于电机伺服加载的滚珠丝杠性能测试试验台
CN102419291B (zh) 一种在线可控摩擦系数与滑差的滚动摩擦磨损试验机
CN103439045A (zh) 一种鼓式制动器的检测装置
CN102818688B (zh) 模拟柔性构件振动试验的加载装置及方法
CN103115600B (zh) 一种汽车制动间隙自动调整臂自由间隙测试装置
CN103616107A (zh) 一种变负载变惯量电机机械性能测试装置
CN207215470U (zh) 一种汽车电子制动模拟系统
CN109061472A (zh) 多台外转子永磁轮毂电机综合测试平台
CN112362207A (zh) 一种电机扭矩测试装置
CN103335831B (zh) 一种制动器电惯量模拟试验台及其电惯量模拟控制方法
CN206990223U (zh) 一种汽车电子制动系统模拟执行器
CN2708293Y (zh) 汽车abs性能试验台
CN110470485A (zh) 一种模拟电动车再生制动系统的试验台及其试验方法
CN107063908A (zh) 一种可调控水平方向磁场的磁环境摩擦学试验装置
CN208091694U (zh) 一种汽车离合器试验台
CN110749428A (zh) 一种模拟实际工况的提升机制动器可靠性试验台及其试验方法
CN211979141U (zh) 一种轨道车辆驱动电机综合性能试验台
CN101858804A (zh) 道路试验拖滞力矩测量设备
CN209745542U (zh) 一种制动器刹车性能检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921424

Country of ref document: EP

Kind code of ref document: A1