WO2019028862A1 - 无人机控制方法及装置、无人机和核心网设备 - Google Patents

无人机控制方法及装置、无人机和核心网设备 Download PDF

Info

Publication number
WO2019028862A1
WO2019028862A1 PCT/CN2017/097178 CN2017097178W WO2019028862A1 WO 2019028862 A1 WO2019028862 A1 WO 2019028862A1 CN 2017097178 W CN2017097178 W CN 2017097178W WO 2019028862 A1 WO2019028862 A1 WO 2019028862A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
information
fly
core network
fly zone
Prior art date
Application number
PCT/CN2017/097178
Other languages
English (en)
French (fr)
Inventor
洪伟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP17920925.9A priority Critical patent/EP3667453A4/en
Priority to PCT/CN2017/097178 priority patent/WO2019028862A1/zh
Priority to US16/638,133 priority patent/US20200241572A1/en
Priority to CN201780000845.2A priority patent/CN109451810B/zh
Publication of WO2019028862A1 publication Critical patent/WO2019028862A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • G05D1/0077Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements using redundant signals or controls
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0021Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located in the aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0039Modification of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0056Navigation or guidance aids for a single aircraft in an emergency situation, e.g. hijacking
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/006Navigation or guidance aids for a single aircraft in accordance with predefined flight zones, e.g. to avoid prohibited zones
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0065Navigation or guidance aids for a single aircraft for taking-off
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/02Automatic approach or landing aids, i.e. systems in which flight data of incoming planes are processed to provide landing data
    • G08G5/025Navigation or guidance aids
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • the present disclosure relates to the field of terminal technologies, and in particular, to a drone control method and apparatus, a drone, a core network device, and a computer readable storage medium.
  • the present disclosure provides a drone control method and apparatus, a drone, a core network device, and a computer readable storage medium to solve the deficiencies in the related art.
  • a drone control method suitable for a drone comprising:
  • the foregoing drone control method further includes:
  • the foregoing drone control method further includes:
  • determining, according to the relationship between the current location of the UAV and the no-fly zone, determining whether the UAV is flying includes:
  • the foregoing drone control method further includes:
  • the drone In the case where it is determined that the drone is not flightable, if the drone is flying, the drone is controlled to land.
  • the foregoing drone control method further includes:
  • the prompt information is returned to the device that sent the command.
  • a drone control method including:
  • the foregoing drone control method further includes:
  • the foregoing drone control method further includes:
  • the information about obtaining the no-fly no-fly area from the preset server includes:
  • a drone control apparatus suitable for a drone, the method comprising:
  • a request sending module configured to send attach request information to a core network
  • the information receiving module is configured to receive information about the no-fly no-fly area acquired by the core network from the preset server;
  • the flight determining module is configured to determine whether the drone is capable of flying according to a relationship between a current location of the drone and the no-fly zone.
  • the drone control device further includes:
  • the information sending module is configured to: when the request sending module sends the attach request information to the core network, send information about the current location of the drone to the core network;
  • the information receiving module is further configured to receive the current location of the drone and the no-fly zone generated by the core network when receiving information of the no-fly zone acquired by the core network from the preset server. Information about the relationship.
  • the drone control device further includes:
  • a location acquisition module configured to acquire information about a current location of the drone before the flight determination module determines whether the drone is flightable
  • a relationship generation module configured to generate information of a relationship between a current location of the drone and the no-fly zone.
  • the flight determining module is configured to determine that the drone is not flightable if the current position of the drone is located in the no-fly zone; the current location of the drone is located In the case of the outside of the no-fly zone, it is determined that the drone can fly.
  • the drone control device further includes:
  • a control module configured to control the drone to land if the drone is flying if it is determined that the drone is not flightable.
  • the drone control device further includes:
  • the prompting module is configured to, when it is determined that the drone is not flightable, receive an instruction to control the drone to take off, and return a prompt message to the device that sends the instruction.
  • a drone control apparatus including:
  • a request receiving module configured to receive attachment request information sent by the drone
  • the no-fly acquisition module is configured to acquire information of the no-fly no-fly area from the preset server;
  • An information sending module configured to send information of the no-fly zone to the drone.
  • the drone control device further includes:
  • the information receiving module is configured to receive information about a current location of the drone when the request receiving module receives the attach request information;
  • a relationship generation module configured to generate information about a relationship between a current location of the drone and the no-fly zone
  • the information sending module is further configured to send the information of the relationship to the drone when transmitting the information of the no-fly zone to the drone.
  • the drone control device further includes:
  • a location receiving module configured to receive information about a current location of the drone when the request receiving module receives the attach request information
  • the no-fly acquisition module is configured to acquire, from the preset server, information of a no-fly zone whose boundary to a current distance of the drone is less than a preset distance.
  • a drone including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • a core network device including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the following steps:
  • a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the following steps:
  • the UAV of the present disclosure can obtain the information of the no-flying area of the UAV from the preset server by accessing the core network, and can determine the self according to the relationship between the current location and the no-flying area. Is it possible to fly? For example, if the current location is in the no-fly zone, it is determined that it is not flightable; if the current location is outside the no-fly zone, it is determined that it is possible to fly. Therefore, relying on the core network, the relationship between the UAV and the no-fly zone is accurately determined, and the effective management of all UAVs connected to the core network is realized.
  • FIG. 1 is a schematic flow chart of a drone control method according to an exemplary embodiment.
  • FIG. 2 is a schematic flow chart of another drone control method according to an exemplary embodiment.
  • FIG. 3 is a schematic flow chart of still another drone control method according to an exemplary embodiment.
  • FIG. 4 is a schematic flow chart of still another drone control method according to an exemplary embodiment.
  • FIG. 5 is a schematic flow chart of still another drone control method according to an exemplary embodiment.
  • FIG. 6 is a schematic flow chart of still another drone control method according to an exemplary embodiment.
  • FIG. 7 is a schematic flow chart of a drone control method according to an exemplary embodiment.
  • FIG. 8 is a schematic flow chart of another drone control method according to an exemplary embodiment.
  • FIG. 9 is a schematic flow chart of still another drone control method according to an exemplary embodiment.
  • FIG. 10 is a schematic block diagram of a drone control apparatus, according to an exemplary embodiment.
  • FIG. 11 is a schematic block diagram of another drone control apparatus, according to an exemplary embodiment.
  • FIG. 12 is a schematic block diagram of still another drone control apparatus according to an exemplary embodiment.
  • FIG. 13 is a schematic block diagram of still another drone control apparatus, according to an exemplary embodiment.
  • FIG. 14 is a schematic block diagram of still another drone control apparatus, according to an exemplary embodiment.
  • FIG. 15 is a schematic block diagram of a drone control apparatus according to an exemplary embodiment.
  • FIG. 16 is a schematic block diagram of another drone control apparatus, according to an exemplary embodiment.
  • FIG. 17 is a schematic block diagram of still another drone control apparatus, according to an exemplary embodiment.
  • FIG. 18 is a schematic block diagram of an apparatus for controlling a drone, according to an exemplary embodiment.
  • 19 is a schematic block diagram of an apparatus for controlling a drone, according to an exemplary embodiment.
  • FIG. 1 is a schematic flow chart of a drone control method according to an exemplary embodiment.
  • the drone control method described in this embodiment can be applied to a drone, and the drone can access the core network corresponding to the cellular network through the base station.
  • the drone control method includes the following steps.
  • step S11 the attachment request information is transmitted to the core network.
  • the drone may send the attach request information to the core network upon startup, or may send the attach request information to the core network when receiving the request instruction, where the request command may be from the drone control Remote control device, or application in a terminal such as a mobile phone.
  • the attachment request information may be the attached attachment request information or the implicit attachment request information.
  • step S12 information about the no-flyer no-fly area acquired by the core network from the preset server is received.
  • the core network may send request information for acquiring information of the no-flyer no-fly area to the preset server, and the preset server receives the request. After the information, the information of the no-flyer no-fly area can be sent to the core network.
  • the core network may send the information of the no-fly zone to the drone, or may generate the current location of the drone according to the information of the current location of the drone and the information of the no-fly zone. Information about the relationship of the no-fly zone and send the information of the relationship to the drone.
  • step S13 it is determined whether the drone can fly according to the relationship between the current position of the drone and the no-fly zone.
  • the drone may receive information of the no-fly zone from the core network, and generate information about the relationship between the current location and the no-fly zone according to the information of the current location and the information of the no-fly zone;
  • the machine can also directly receive information about the relationship between the current location of the drone generated by the core network and the no-fly zone.
  • the information of the no-flyer no-fly area stored in the preset server may be updated in real time, for example, some areas may be added. As a no-flyer no-fly zone, certain areas can also be removed from the no-flyer no-fly zone.
  • the drone can access the core network, and the information of the no-fly no-fly area can be obtained from the preset server through the core network, and then it can determine whether it can be based on the relationship between the current location and the no-fly area. flight. For example, if the current location is in the no-fly zone, it is determined that it is not flightable; if the current location is outside the no-fly zone, it is determined that it is possible to fly. Therefore, relying on the core network, the relationship between the UAV and the no-fly zone is accurately determined, and the effective management of all UAVs connected to the core network is realized.
  • FIG. 2 is a schematic flow chart of another drone control method according to an exemplary embodiment. As shown in FIG. 2, on the basis of the embodiment shown in FIG. 1, the UAV control method further includes:
  • step S14 when the attach request information is sent to the core network, the information about the current location of the drone is sent to the core network;
  • step S15 when receiving the information of the no-fly zone acquired by the core network from the preset server, receiving information about the relationship between the current location of the UAV and the no-fly zone generated by the core network.
  • the drone's current location information can be sent to the core network.
  • the core network may generate information about the relationship between the current location of the UAV and the no-fly zone according to the information of the current location of the UAV and the information of the no-fly zone, such as no one.
  • the current position of the machine is located in the no-fly zone, or the current position of the drone is outside the no-fly zone, and information about the relationship between the current position of the drone and the no-fly zone is sent to the drone.
  • the UAV is not required to determine the relationship between the current position of the UAV and the no-fly zone, but the relationship between the current position of the UAV and the no-fly zone can be determined according to the information sent by the core network, which is beneficial to reducing the operation of the UAV. burden.
  • step S14 may be performed after step S11 as shown in FIG. 2, or may be set to be performed in parallel with step S11 as needed.
  • Step S15 may be performed after step S12 as shown in FIG. 2, or may be set to be performed in parallel with step S12 as needed.
  • FIG. 3 is a schematic flow chart of still another drone control method according to an exemplary embodiment. As shown in FIG. 3, on the basis of the embodiment shown in FIG. 1, the UAV control method further includes:
  • step S16 acquiring information about the current location of the drone before determining whether the drone is flightable
  • step S17 information on the relationship between the current position of the drone and the no-fly zone is generated.
  • the drone may obtain information about its current location according to a positioning system such as a GPS (Global Positioning System), and then may obtain information according to its current location.
  • a positioning system such as a GPS (Global Positioning System)
  • the information of the no-fly zone generates information on the relationship between the current position of the drone and the no-fly zone.
  • the core network is not required to generate information on the relationship between the current position of the drone and the no-fly zone, and the information about the relationship between the current position of the drone and the no-fly zone can be generated by the drone, which is beneficial to reducing the operation of the core network. burden.
  • the embodiments shown in FIG. 2 and FIG. 3 may be selected according to actual conditions. For example, when the unmanned aerial vehicle has a strong computing capability and the core network load is large, the embodiment shown in FIG. 3 may be selected, for example, The UAV computing capability is weak, and when the core network load is small, the embodiment shown in FIG. 2 can be selected.
  • FIG. 4 is a schematic flow chart of still another drone control method according to an exemplary embodiment. As shown in FIG. 4, based on the embodiment shown in FIG. 1, determining whether the UAV is flying according to the relationship between the current location of the UAV and the no-fly zone includes:
  • step S131 if the current position of the drone is located in the no-fly zone, it is determined that the drone is not flightable;
  • step S132 if the current position of the drone is outside the no-fly zone, it is determined that the drone can fly.
  • the relationship between the current position of the drone and the no-fly zone mainly includes two relationships, that is, the current position of the drone is located in the no-fly zone and the current location of the drone is outside the no-fly zone.
  • the current position of the drone is in the no-fly zone, since the drone is not allowed to fly in the no-fly zone, it is determined that the drone is not flightable, when the current position of the drone is outside the no-fly zone, The drone is not prohibited from flying, so it is determined that the drone can fly.
  • the no-fly area may be determined by a plurality of coordinates (for example, latitude and longitude coordinates), and according to the relationship between the boundary and the current position of the drone, whether the drone is located in the no-fly area or outside the no-fly area.
  • coordinates for example, latitude and longitude coordinates
  • FIG. 5 is a schematic flow chart of still another drone control method according to an exemplary embodiment. As shown in FIG. 5, on the basis of the embodiment shown in FIG. 4, the drone control method further includes:
  • step S18 in a case where it is determined that the drone is not flightable, if the drone is flying, the drone is controlled to land.
  • the drone can detect its current condition if it determines that it is not flightable.
  • the state, if currently flying, can control its own landing to avoid continuing flight in the no-fly zone and violating the corresponding regulations.
  • FIG. 6 is a schematic flow chart of still another drone control method according to an exemplary embodiment. As shown in FIG. 6, based on the embodiment shown in FIG. 4, the method further includes:
  • step S19 if it is determined that the drone is not flightable, if an instruction to control the drone to take off is received, the prompt information is returned to the device that sent the command.
  • the drone may still receive an instruction sent by the control device, the terminal, or the like to control its takeoff when it determines that it is not flightable, and the drone may send a command to the controller or terminal. Return the prompt message to remind yourself that it is currently in the no-fly zone, so that the drone controller can know in time why the drone can not take off.
  • FIG. 7 is a schematic flow chart of a drone control method according to an exemplary embodiment.
  • the drone control method described in this embodiment can be applied to a core network of a cellular network, and the drone can access the core network through a base station.
  • the drone control method includes the following steps.
  • step S71 receiving the attachment request information sent by the drone
  • step S72 acquiring information of the no-flyer no-fly area from the preset server
  • step S73 the information of the no-fly zone is transmitted to the drone.
  • the core network may send request information for acquiring information of the no-flyer no-fly area to the preset server, and the preset server receives the request. After the information, the information of the no-flyer no-fly area can be sent to the core network.
  • the core network may send the information of the no-fly zone to the drone, so that the drone can receive the information of the no-fly zone from the core network, and ban the information according to its current location.
  • the information of the flight area determines the relationship between its current location and the no-fly zone. Therefore, relying on the core network, the relationship between the UAV and the no-fly zone is accurately determined, and the effective management of all UAVs connected to the core network is realized.
  • FIG. 8 is a schematic flow chart of another drone control method according to an exemplary embodiment. As shown in FIG. 8, on the basis of the embodiment shown in FIG. 7, the drone control method further includes:
  • step S74 when receiving the attach request information, receiving information of a current location of the drone;
  • step S75 information about a relationship between the current location of the drone and the no-fly zone is generated
  • step S76 when the information of the no-fly zone is transmitted to the drone, the relationship is Information is sent to the drone.
  • the core network can simultaneously receive information about the current location of the drone when receiving the attach request information sent by the drone.
  • the information about the relationship between the current location of the drone and the no-fly zone may be generated according to the information of the current position of the drone and the information of the no-fly zone, such as a drone.
  • the current location is in the no-fly zone, or the current location of the drone is outside the no-fly zone, and information about the relationship between the current location of the drone and the no-fly zone is sent to the drone.
  • the UAV is not required to determine the relationship between the current position of the UAV and the no-fly zone, but the relationship between the current position of the UAV and the no-fly zone can be determined according to the information sent by the core network, which is beneficial to reducing the operation of the UAV. burden.
  • FIG. 9 is a schematic flow chart of still another drone control method according to an exemplary embodiment. As shown in FIG. 9, on the basis of the embodiment shown in FIG. 7, the drone control method further includes:
  • step S77 when receiving the attach request information, receiving information of a current location of the drone;
  • the information about obtaining the no-fly no-fly area from the preset server includes:
  • step S721 information of a no-flying area whose boundary to the current position of the drone is less than the preset distance is acquired from the preset server.
  • the core network may only obtain information from the preset server that the minimum distance from the boundary to the current position of the drone is less than the default distance of the no-fly zone, because the drone will not fly in a certain period of time. Large, so the information of the no-fly zone obtained from the preset server may not be the information of all the no-fly zone, but only the information of the no-fly zone with a small distance to the current position of the drone, thereby reducing the acquisition of the no-fly zone. The amount of information in the information speeds up the acquisition.
  • the information of the no-fly zone to be acquired may be determined according to the relationship between the minimum distance of the no-fly zone and the current distance of the UAV and the preset distance.
  • the present disclosure also provides an embodiment of the drone control device.
  • FIG. 10 is a schematic block diagram of a drone control apparatus, according to an exemplary embodiment.
  • the UAV control device in this embodiment can be applied to a UAV, and the UAV can access the core network corresponding to the cellular network through the base station.
  • the drone control device includes:
  • the request sending module 101 is configured to send the attach request information to the core network
  • the information receiving module 102 is configured to receive information about the no-fly no-fly area acquired by the core network from the preset server;
  • the flight determination module 103 is configured to determine whether the drone can fly according to the relationship between the current position of the drone and the no-fly zone.
  • FIG. 11 is a schematic block diagram of another drone control apparatus, according to an exemplary embodiment. As shown in FIG. 11, on the basis of the embodiment shown in FIG. 10, the drone control device further includes:
  • the information sending module 104 is configured to: when the request sending module 101 sends the attach request information to the core network, send information about the current location of the drone to the core network;
  • the information receiving module 102 is further configured to receive the current location of the drone and the no-flying generated by the core network when receiving information of the no-fly zone acquired by the core network from the preset server. Information about the relationship of the area.
  • FIG. 12 is a schematic block diagram of still another drone control apparatus according to an exemplary embodiment. As shown in FIG. 12, on the basis of the embodiment shown in FIG. 10, the drone control device further includes:
  • the location obtaining module 105 is configured to acquire information about a current location of the drone before the flight determining module 103 determines whether the drone is flightable;
  • the relationship generation module 106 is configured to generate information of a relationship between the current location of the drone and the no-fly zone.
  • the flight determining module is configured to determine that the drone is not flightable if the current position of the drone is located in the no-fly zone; the current location of the drone is located In the case of the outside of the no-fly zone, it is determined that the drone can fly.
  • FIG. 13 is a schematic block diagram of still another drone control apparatus, according to an exemplary embodiment. As shown in FIG. 13, the drone control device further includes:
  • the control module 107 is configured to control the drone to land if the drone is flying if it is determined that the drone is not flightable.
  • FIG. 14 is a schematic block diagram of still another drone control apparatus, according to an exemplary embodiment. As shown in FIG. 14, the drone control device further includes:
  • the prompting module 108 is configured to, when it is determined that the drone is not flightable, receive an instruction to control the drone to take off, and return a prompt message to the device that sends the command.
  • FIG. 15 is a schematic block diagram of a drone control apparatus according to an exemplary embodiment.
  • the UAV control device described in this embodiment can be applied to a core network of a cellular network, and the UAV can access the core network through a base station.
  • the request receiving module 151 is configured to receive the attach request information sent by the drone;
  • the no-fly acquisition module 152 is configured to acquire information of the no-fly no-fly area from the preset server;
  • the information sending module 153 is configured to send information of the no-fly zone to the drone.
  • FIG. 16 is a schematic block diagram of another drone control apparatus, according to an exemplary embodiment. As shown in FIG. 16, on the basis of the embodiment shown in FIG. 15, the drone control device further includes:
  • the information receiving module 154 is configured to receive information about a current location of the drone when the request receiving module receives the attach request information;
  • the relationship generation module 155 is configured to generate information about a relationship between the current location of the UAV and the no-fly zone;
  • the information sending module 153 is further configured to send the information of the relationship to the drone when transmitting the information of the no-fly zone to the drone.
  • FIG. 17 is a schematic block diagram of still another drone control apparatus, according to an exemplary embodiment. As shown in FIG. 17, on the basis of the embodiment shown in FIG. 15, the drone control device further includes:
  • the information receiving module 156 is configured to receive information about a current location of the drone when the request receiving module 151 receives the attach request information;
  • the no-fly acquisition module 152 is configured to acquire, from the preset server, information of a no-fly zone whose boundary to the current position of the drone is less than a preset distance.
  • the device embodiment since it basically corresponds to the method embodiment, reference may be made to the partial description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the modules described as separate components may or may not be physically separate, and the components displayed as modules may or may not be physical modules, ie may be located A place, or it can be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the objectives of the present disclosure. Those of ordinary skill in the art can understand and implement without any creative effort.
  • the present disclosure also proposes a drone comprising:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the disclosure also proposes a core network device, including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the present disclosure also proposes a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the following steps:
  • the present disclosure also proposes a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the following steps:
  • FIG. 18 is a schematic block diagram of an apparatus 1800 for controlling a drone, according to an exemplary embodiment.
  • device 1800 can be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a gaming console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • apparatus 1800 can include one or more of the following components: processing component 1802, memory 1804, power component 1806, multimedia component 1808, audio component 1810, input/output (I/O) interface 1812, sensor component 1814, And a communication component 1816.
  • Processing component 1802 typically controls the overall operation of device 1800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 1802 can include one or more processors 1820 to execute instructions to perform all or part of the steps described above.
  • processing component 1802 can include one or more modules to facilitate interaction between component 1802 and other components.
  • processing component 1802 can include a multimedia module to facilitate interaction between multimedia component 1808 and processing component 1802.
  • Memory 1804 is configured to store various types of data to support operation at device 1800. Examples of such data include instructions for any application or method operating on device 1800, contact data, phone book data, messages, pictures, videos, and the like. Memory 1804 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 1806 provides power to various components of device 1800.
  • Power component 1806 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 1800.
  • the multimedia component 1808 includes a screen between the device 1800 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor may sense not only the boundary of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 1808 includes a front camera and/or a rear camera. When the device 1800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1810 is configured to output and/or input an audio signal.
  • audio component 1810 includes a microphone (MIC) that is configured to receive an external audio signal when device 1800 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 1804 or transmitted via communication component 1816.
  • the audio component 1810 also includes a speaker for outputting an audio signal.
  • the I/O interface 1812 provides an interface between the processing component 1802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 1814 includes one or more sensors for providing device 1800 with a status assessment of various aspects.
  • sensor assembly 1814 can detect an open/closed state of device 1800, relative positioning of components, such as the display and keypad of device 1800, and sensor component 1814 can also detect a change in position of one component of device 1800 or device 1800. The presence or absence of contact by the user with the device 1800, the orientation or acceleration/deceleration of the device 1800 and the temperature change of the device 1800.
  • Sensor assembly 1814 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 1814 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 1816 is configured to facilitate wired or wireless communication between device 1800 and other devices.
  • the device 1800 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • communication component 1816 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • the communication component 1816 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 1800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the method illustrated in any of the above-described embodiments of Figures 1 through 6.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the method illustrated in any of the above-described embodiments of Figures 1 through 6.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 1804 comprising instructions executable by processor 1820 of apparatus 1800 to perform the above method.
  • the non-transitory computer readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • FIG. 19 is a schematic block diagram of an apparatus 1900 for controlling a drone, according to an exemplary embodiment.
  • Apparatus 1900 can be provided as a base station.
  • apparatus 1900 includes a processing component 1922, a wireless transmit/receive component 1924, an antenna component 1926, and a signal processing portion specific to the wireless interface.
  • Processing component 1922 can further include one or more processors.
  • One of the processing components 1922 can be configured to perform the method illustrated in any of the above-described embodiments of Figures 7-9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

本公开是关于无人机控制方法和装置,该方法适用于于无人机,所述方法包括:向核心网发送附着请求信息;接收所述核心网从预设服务器获取的无人机禁飞区域的信息;根据所述无人机当前位置和所述禁飞区域的关系,确定所述无人机是否可以飞行。本公开无人机通过接入核心网,可以通过核心网从预设服务器获取无人机禁飞区域的信息,进而可以根据自身当前位置和禁飞区域的关系,确定自身是否可以飞行。例如在自身当前位置处于禁飞区域内的情况下,确定不可飞行;在自身当前位置处于禁飞区域外的情况下,确定可以飞行。从而依托核心网准确地确定了无人机与禁飞区域的关系,实现了对所有接入核心网的无人机有效的管理。

Description

无人机控制方法及装置、无人机和核心网设备 技术领域
本公开涉及终端技术领域,尤其涉及无人机控制方法及装置、无人机、核心网设备和计算机可读存储介质。
背景技术
随着无人机发展,无人机开始应用在越来越多的领域中,无人机的数量也随之大幅度提高。
在实际应用场景中,存在一些禁飞区域不允许无人机飞行,但是针对大量的无人机,难以准确地判断无人机与禁飞区域的关系,管理较为困难。
发明内容
本公开提供无人机控制方法及装置、无人机、核心网设备和计算机可读存储介质,以解决相关技术中的不足。
根据本公开实施例的第一方面,提供一种无人机控制方法,适用于于无人机,所述方法包括:
向核心网发送附着请求信息;
接收所述核心网从预设服务器获取的无人机禁飞区域的信息;
根据所述无人机当前位置和所述禁飞区域的关系,确定所述无人机是否可以飞行。
可选地,上述无人机控制方法还包括:
在向核心网发送附着请求信息时,向所述核心网发送所述无人机当前位置的信息;
在接收所述核心网从预设服务器获取的禁飞区域的信息时,接收所述核心网生 成的所述无人机当前位置和所述禁飞区域的关系的信息。
可选地,上述无人机控制方法还包括:
在确定所述无人机是否可以飞行之前,获取所述无人机当前位置的信息;
生成所述无人机当前位置和所述禁飞区域的关系的信息。
可选地,所述根据所述无人机当前位置和所述禁飞区域的关系,确定所述无人机是否飞行包括:
若所述无人机当前位置位于所述禁飞区域内,确定所述无人机不可飞行;
若所述无人机当前位置位于所述禁飞区域外,确定所述无人机可以飞行。
可选地,上述无人机控制方法还包括:
在确定所述无人机不可飞行的情况下,若所述无人机正在飞行,控制所述无人机降落。
可选地,上述无人机控制方法还包括:
在确定所述无人机不可飞行的情况下,若接收到控制所述无人机起飞的指令,向发送所述指令的设备返回提示信息。
根据本公开实施例的第二方面,提供一种无人机控制方法,包括:
接收无人机发送的附着请求信息;
从预设服务器获取无人机禁飞区域的信息;
将所述禁飞区域的信息发送至所述无人机。
可选地,上述无人机控制方法还包括:
在接收所述附着请求信息时,接收所述无人机当前位置的信息;
生成所述无人机当前位置和所述禁飞区域的关系的信息;
在将所述禁飞区域的信息发送至所述无人机时,将所述关系的信息发送至所述无人机。
可选地,上述无人机控制方法还包括:
在接收所述附着请求信息时,接收所述无人机当前位置的信息;
其中,所述从预设服务器获取无人机禁飞区域的信息包括:
从所述预设服务器获取边界到所述无人机当前位置的最小距离小于预设距离的禁飞区域的信息。
根据本公开实施例的第三方面,提供一种无人机控制装置,适用于于无人机,所述方法包括:
请求发送模块,被配置为向核心网发送附着请求信息;
信息接收模块,被配置为接收所述核心网从预设服务器获取的无人机禁飞区域的信息;
飞行确定模块,被配置为根据所述无人机当前位置和所述禁飞区域的关系,确定所述无人机是否可以飞行。
可选地,上述无人机控制装置还包括:
信息发送模块,被配置为在所述请求发送模块向核心网发送附着请求信息时,向所述核心网发送所述无人机当前位置的信息;
其中,所述信息接收模块还被配置为在接收所述核心网从预设服务器获取的禁飞区域的信息时,接收所述核心网生成的所述无人机当前位置和所述禁飞区域的关系的信息。
可选地,上述无人机控制装置还包括:
位置获取模块,被配置为在所述飞行确定模块确定所述无人机是否可以飞行之前,获取所述无人机当前位置的信息;
关系生成模块,被配置为生成所述无人机当前位置和所述禁飞区域的关系的信息。
可选地,所述飞行确定模块被配置为在所述无人机当前位置位于所述禁飞区域内的情况下,确定所述无人机不可飞行;在所述无人机当前位置位于所述禁飞区域外的情况下,确定所述无人机可以飞行。
可选地,上述无人机控制装置还包括:
控制模块,被配置为在确定所述无人机不可飞行的情况下,若所述无人机正在飞行,控制所述无人机降落。
可选地,上述无人机控制装置还包括:
提示模块,被配置为在确定所述无人机不可飞行的情况下,若接收到控制所述无人机起飞的指令,向发送所述指令的设备返回提示信息。
根据本公开实施例的第四方面,提供一种无人机控制装置,包括:
请求接收模块,被配置为接收无人机发送的附着请求信息;
禁飞获取模块,被配置为从预设服务器获取无人机禁飞区域的信息;
信息发送模块,被配置为将所述禁飞区域的信息发送至所述无人机。
可选地,上述无人机控制装置还包括:
信息接收模块,被配置为在所述请求接收模块接收所述附着请求信息时,接收所述无人机当前位置的信息;
关系生成模块,被配置为生成所述无人机当前位置和所述禁飞区域的关系的信息;
其中,所述信息发送模块还被配置为在将所述禁飞区域的信息发送至所述无人机时,将所述关系的信息发送至所述无人机。
可选地,上述无人机控制装置还包括:
位置接收模块,被配置为在所述请求接收模块接收所述附着请求信息时,接收所述无人机当前位置的信息;
其中,所述禁飞获取模块被配置为从所述预设服务器获取边界到所述无人机当前位置的最小距离小于预设距离的禁飞区域的信息。
根据本公开实施例的第五方面,提供一种无人机,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
向核心网发送附着请求信息;
接收所述核心网从预设服务器获取的无人机禁飞区域的信息;
根据所述无人机当前位置和所述禁飞区域的关系,确定所述无人机是否可以飞行。
根据本公开实施例的第六方面,提供一种核心网设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收无人机发送的附着请求信息;
从预设服务器获取无人机禁飞区域的信息;
将所述禁飞区域的信息发送至所述无人机。
根据本公开实施例的第七方面,提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
向核心网发送附着请求信息;
接收所述核心网从预设服务器获取的无人机禁飞区域的信息;
根据所述无人机当前位置和所述禁飞区域的关系,确定所述无人机是否可以飞行。
根据本公开实施例的第八方面,提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
接收无人机发送的附着请求信息;
从预设服务器获取无人机禁飞区域的信息;
将所述禁飞区域的信息发送至所述无人机。
本公开的实施例提供的技术方案可以包括以下有益效果:
由上述实施例可知,本公开无人机通过接入核心网,可以通过核心网从预设服务器获取无人机禁飞区域的信息,进而可以根据自身当前位置和禁飞区域的关系,确定自身是否可以飞行。例如在自身当前位置处于禁飞区域内的情况下,确定不可飞行;在自身当前位置处于禁飞区域外的情况下,确定可以飞行。从而依托核心网准确地确定了无人机与禁飞区域的关系,实现了对所有接入核心网的无人机有效的管理。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据一示例性实施例示出的一种无人机控制方法的示意流程图。
图2是根据一示例性实施例示出的另一种无人机控制方法的示意流程图。
图3是根据一示例性实施例示出的又一种无人机控制方法的示意流程图。
图4是根据一示例性实施例示出的又一种无人机控制方法的示意流程图。
图5是根据一示例性实施例示出的又一种无人机控制方法的示意流程图。
图6是根据一示例性实施例示出的又一种无人机控制方法的示意流程图。
图7是根据一示例性实施例示出的一种无人机控制方法的示意流程图。
图8是根据一示例性实施例示出的另一种无人机控制方法的示意流程图。
图9是根据一示例性实施例示出的又一种无人机控制方法的示意流程图。
图10是根据一示例性实施例示出的一种无人机控制装置的示意框图。
图11是根据一示例性实施例示出的另一种无人机控制装置的示意框图。
图12是根据一示例性实施例示出的又一种无人机控制装置的示意框图。
图13是根据一示例性实施例示出的又一种无人机控制装置的示意框图。
图14是根据一示例性实施例示出的又一种无人机控制装置的示意框图。
图15是根据一示例性实施例示出的一种无人机控制装置的示意框图。
图16是根据一示例性实施例示出的另一种无人机控制装置的示意框图。
图17是根据一示例性实施例示出的又一种无人机控制装置的示意框图。
图18是根据一示例性实施例示出的一种用于控制无人机的装置的示意框图。
图19是根据一示例性实施例示出的一种用于控制无人机的装置的示意框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
图1是根据一示例性实施例示出的一种无人机控制方法的示意流程图。本实施例所述的无人机控制方法可以适用于无人机,该无人机可以通过基站接入蜂窝网络对应的核心网。如图1所示,该无人机控制方法包括以下步骤。
在步骤S11中,向核心网发送附着请求信息。
在一个实施例中,无人机可以在启动时向核心网发送附着请求信息,也可以在接收到请求指令时向核心网发送附着请求信息,其中,该请求指令可以来自用于控制无人机的遥控设备,或者手机等终端中的应用。
其中,附着请求信息可以是显示的附着请求信息,也可以是隐式的附着请求信息。
在步骤S12中,接收所述核心网从预设服务器获取的无人机禁飞区域的信息。
在一个实施例中,核心网在接收到无人机发送的附着请求信息后,可以向预设服务器发送用于获取无人机禁飞区域的信息的请求信息,预设服务器在接收到该请求信息后,可以将无人机禁飞区域的信息发送至核心网。
核心网在接收到上述禁飞区域的信息后,可以将禁飞区域的信息发送至无人机,也可以根据无人机当前位置的信息和禁飞区域的信息,生成无人机当前位置和禁飞区域的关系的信息,并将该关系的信息发送至无人机。
在步骤S13中,根据所述无人机当前位置和所述禁飞区域的关系,确定所述无人机是否可以飞行。
在一个实施例中,无人机可以从核心网接收禁飞区域的信息,并根据自身当前位置的信息和禁飞区域的信息,生成当前位置和禁飞区域的关系的信息;另外,无人机也可以直接接收核心网生成的无人机当前位置和禁飞区域的关系的信息。其中,预设服务器中存储的无人机禁飞区域的信息可以是实时更新的,例如可以添加某些区域 作为无人机禁飞区域,也可以从无人机禁飞区域中移除某些区域。
在一个实施例中,无人机通过接入核心网,可以通过核心网从预设服务器获取无人机禁飞区域的信息,进而可以根据自身当前位置和禁飞区域的关系,确定自身是否可以飞行。例如在自身当前位置处于禁飞区域内的情况下,确定不可飞行;在自身当前位置处于禁飞区域外的情况下,确定可以飞行。从而依托核心网准确地确定了无人机与禁飞区域的关系,实现了对所有接入核心网的无人机有效的管理。
图2是根据一示例性实施例示出的另一种无人机控制方法的示意流程图。如图2所示,在图1所示实施例的基础上,所述无人机控制方法还包括:
在步骤S14中,在向核心网发送附着请求信息时,向所述核心网发送所述无人机当前位置的信息;
在步骤S15中,在接收所述核心网从预设服务器获取的禁飞区域的信息时,接收所述核心网生成的所述无人机当前位置和所述禁飞区域的关系的信息。
在一个实施例中,无人机在向核心网发送附着请求信息时,可以将无人机当前位置的信息一同发送至核心网。核心网在从预设服务器获取到禁飞区域的信息后,可以根据无人机当前位置的信息和禁飞区域的信息,生成无人机当前位置和禁飞区域的关系的信息,例如无人机当前位置位于禁飞区域内,或无人机当前位置位于禁飞区域外,并将无人机当前位置和禁飞区域的关系的信息发送至无人机。
基于此,无需无人机确定无人机当前位置和禁飞区域的关系,而可以根据核心网发送的信息来确定无人机当前位置和禁飞区域的关系,有利于减少无人机的运算负担。
需要说明的是,步骤S14可以如图2所示在步骤S11之后执行,也可以根据需要设置为与步骤S11并列执行。步骤S15可以如图2所示在步骤S12之后执行,也可以根据需要设置为与步骤S12并列执行。
图3是根据一示例性实施例示出的又一种无人机控制方法的示意流程图。如图3所示,在图1所示实施例的基础上,所述无人机控制方法还包括:
在步骤S16中,在确定所述无人机是否可以飞行之前,获取所述无人机当前位置的信息;
在步骤S17中,生成所述无人机当前位置和所述禁飞区域的关系的信息。
在一个实施例中,无人机在接收到核心网发送的禁飞区域的信息后,可以根据GPS(全球定位系统)等定位系统获取自身当前位置的信息,进而可以根据自身当前位置的信息和禁飞区域的信息,生成无人机当前位置和所述禁飞区域的关系的信息。
基于此,无需核心网生成无人机当前位置和禁飞区域的关系的信息,而可以由无人机来生成无人机当前位置和禁飞区域的关系的信息,有利于减少核心网的运算负担。
需要说明的是,图2和图3所示的实施例,可以根据实际情况选择,例如无人机运算能力较强,而核心网负荷较大时,可以选用图3所示的实施例,例如无人机运算能力较弱,而核心网负荷较小时,可以选用图2所示的实施例。
图4是根据一示例性实施例示出的又一种无人机控制方法的示意流程图。如图4所示,在图1所示实施例的基础上,所述根据所述无人机当前位置和所述禁飞区域的关系,确定所述无人机是否飞行包括:
在步骤S131中,若所述无人机当前位置位于所述禁飞区域内,确定所述无人机不可飞行;
在步骤S132中,若所述无人机当前位置位于所述禁飞区域外,确定所述无人机可以飞行。
在一个实施例中,无人机当前位置和禁飞区域的关系主要包括两种关系,也即无人机当前位置位于禁飞区域内和无人机当前位置位于禁飞区域外。当无人机当前位置位于禁飞区域内,由于禁飞区域内不允许无人机飞行,因此确定无人机不可飞行,当无人机当前位置位于禁飞区域外,由于禁飞区域外并不禁止无人机飞行,因此确定无人机可以飞行。
具体地,禁飞区域可以由多个坐标(例如经纬度坐标)确定其边界,并根据该边界和无人机当前位置的关系,确定无人机位于禁飞区域内还是禁飞区域外。
图5是根据一示例性实施例示出的又一种无人机控制方法的示意流程图。如图5所示,在图4所示实施例的基础上,所述无人机控制方法还包括:
在步骤S18中,在确定所述无人机不可飞行的情况下,若所述无人机正在飞行,控制所述无人机降落。
在一个实施例中,无人机在确定自身不可飞行的情况下,可以检测自身当前的 状态,若当前正在飞行,则可以控制自身降落,以避免在禁飞区域中继续飞行而违反相应规定。
图6是根据一示例性实施例示出的又一种无人机控制方法的示意流程图。如图6所示,在图4所示实施例的基础上,还包括:
在步骤S19中,在确定所述无人机不可飞行的情况下,若接收到控制所述无人机起飞的指令,向发送所述指令的设备返回提示信息。
在一个实施例中,无人机在确定自身不可飞行的情况下,仍可能会接收到控制设备、终端等设备发送的控制其起飞的指令,那么无人机可以向发送指令的控制器或终端返回提示信息,以提示自身当前正处于禁飞区域内,便于无人机的控制者能够及时地了解无人机不能起飞的原因。
图7是根据一示例性实施例示出的一种无人机控制方法的示意流程图。本实施例所述的无人机控制方法可以适用于蜂窝网络的核心网,无人机可以通过基站接入该核心网。如图7所示,该无人机控制方法包括以下步骤。
在步骤S71中,接收无人机发送的附着请求信息;
在步骤S72中,从预设服务器获取无人机禁飞区域的信息;
在步骤S73中,将所述禁飞区域的信息发送至所述无人机。
在一个实施例中,核心网在接收到无人机发送的附着请求信息后,可以向预设服务器发送用于获取无人机禁飞区域的信息的请求信息,预设服务器在接收到该请求信息后,可以将无人机禁飞区域的信息发送至核心网。
核心网在接收到上述禁飞区域的信息后,可以将禁飞区域的信息发送至无人机,使得无人机可以从核心网接收禁飞区域的信息,并根据自身当前位置的信息和禁飞区域的信息,确定自身当前位置和禁飞区域的关系。从而依托核心网准确地确定了无人机与禁飞区域的关系,实现了对所有接入核心网的无人机有效的管理。
图8是根据一示例性实施例示出的另一种无人机控制方法的示意流程图。如图8所示,在图7所示实施例的基础上,无人机控制方法还包括:
在步骤S74中,在接收所述附着请求信息时,接收所述无人机当前位置的信息;
在步骤S75中,生成所述无人机当前位置和所述禁飞区域的关系的信息;
在步骤S76中,在将所述禁飞区域的信息发送至所述无人机时,将所述关系的 信息发送至所述无人机。
在一个实施例中,核心网在接收无人机发送的附着请求信息时,可以同时接受无人机当前位置的信息。进而在从预设服务器获取到禁飞区域的信息后,可以根据无人机当前位置的信息和禁飞区域的信息,生成无人机当前位置和禁飞区域的关系的信息,例如无人机当前位置位于禁飞区域内,或无人机当前位置位于禁飞区域外,并将无人机当前位置和禁飞区域的关系的信息发送至无人机。
基于此,无需无人机确定无人机当前位置和禁飞区域的关系,而可以根据核心网发送的信息来确定无人机当前位置和禁飞区域的关系,有利于减少无人机的运算负担。
图9是根据一示例性实施例示出的又一种无人机控制方法的示意流程图。如图9所示,在图7所示实施例的基础上,无人机控制方法还包括:
在步骤S77中,在接收所述附着请求信息时,接收所述无人机当前位置的信息;
其中,所述从预设服务器获取无人机禁飞区域的信息包括:
在步骤S721中,从所述预设服务器获取边界到所述无人机当前位置的最小距离小于预设距离的禁飞区域的信息。
在一个实施例中,核心网可以仅从预设服务器获取边界到该无人机当前位置的最小距离小于预设距离的禁飞区域的信息,由于无人机在一定时间内飞行范围不会过大,因此从预设服务器获取的禁飞区域的信息,可以不是所有禁飞区域的信息,而仅是到无人机当前位置的距离较小的禁飞区域的信息,从而降低获取禁飞区域的信息的数据量,加快获取速度。
具体地,可以根据禁飞区域的边界到无人机当前位置的最小距离和预设距离的关系,来确定所需获取的禁飞区域的信息。
与前述的无人机控制方法的实施例相对应,本公开还提供了无人机控制装置的实施例。
图10是根据一示例性实施例示出的一种无人机控制装置的示意框图。本实施例所述的无人机控制装置可以适用于无人机,该无人机可以通过基站接入蜂窝网络对应的核心网。如图10所示,该无人机控制装置包括:
请求发送模块101,被配置为向核心网发送附着请求信息;
信息接收模块102,被配置为接收所述核心网从预设服务器获取的无人机禁飞区域的信息;
飞行确定模块103,被配置为根据所述无人机当前位置和所述禁飞区域的关系,确定所述无人机是否可以飞行。
图11是根据一示例性实施例示出的另一种无人机控制装置的示意框图。如图11所示,在图10所示实施例的基础上,无人机控制装置还包括:
信息发送模块104,被配置为在所述请求发送模101块向核心网发送附着请求信息时,向所述核心网发送所述无人机当前位置的信息;
其中,所述信息接收模块102还被配置为在接收所述核心网从预设服务器获取的禁飞区域的信息时,接收所述核心网生成的所述无人机当前位置和所述禁飞区域的关系的信息。
图12是根据一示例性实施例示出的又一种无人机控制装置的示意框图。如图12所示,在图10所示实施例的基础上,无人机控制装置还包括:
位置获取模块105,被配置为在所述飞行确定模块103确定所述无人机是否可以飞行之前,获取所述无人机当前位置的信息;
关系生成模块106,被配置为生成所述无人机当前位置和所述禁飞区域的关系的信息。
可选地,所述飞行确定模块被配置为在所述无人机当前位置位于所述禁飞区域内的情况下,确定所述无人机不可飞行;在所述无人机当前位置位于所述禁飞区域外的情况下,确定所述无人机可以飞行。
图13是根据一示例性实施例示出的又一种无人机控制装置的示意框图。如图13所示,无人机控制装置还包括:
控制模块107,被配置为在确定所述无人机不可飞行的情况下,若所述无人机正在飞行,控制所述无人机降落。
图14是根据一示例性实施例示出的又一种无人机控制装置的示意框图。如图14所示,无人机控制装置还包括:
提示模块108,被配置为在确定所述无人机不可飞行的情况下,若接收到控制所述无人机起飞的指令,向发送所述指令的设备返回提示信息。
图15是根据一示例性实施例示出的一种无人机控制装置的示意框图。本实施例所述的无人机控制装置可以适用于蜂窝网络的核心网,无人机可以通过基站接入该核心网。包括:
请求接收模块151,被配置为接收无人机发送的附着请求信息;
禁飞获取模块152,被配置为从预设服务器获取无人机禁飞区域的信息;
信息发送模块153,被配置为将所述禁飞区域的信息发送至所述无人机。
图16是根据一示例性实施例示出的另一种无人机控制装置的示意框图。如图16所示,在图15所示实施例的基础上,无人机控制装置还包括:
信息接收模块154,被配置为在所述请求接收模块接收所述附着请求信息时,接收所述无人机当前位置的信息;
关系生成模块155,被配置为生成所述无人机当前位置和所述禁飞区域的关系的信息;
其中,所述信息发送模块153还被配置为在将所述禁飞区域的信息发送至所述无人机时,将所述关系的信息发送至所述无人机。
图17是根据一示例性实施例示出的又一种无人机控制装置的示意框图。如图17所示,在图15所示实施例的基础上,无人机控制装置还包括:
信息接收模块156,被配置为在所述请求接收模块151接收所述附着请求信息时,接收所述无人机当前位置的信息;
其中,所述禁飞获取模块152被配置为从所述预设服务器获取边界到所述无人机当前位置的最小距离小于预设距离的禁飞区域的信息。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开还提出一种无人机,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
向核心网发送附着请求信息;
接收所述核心网从预设服务器获取的无人机禁飞区域的信息;
根据所述无人机当前位置和所述禁飞区域的关系,确定所述无人机是否可以飞行。
本公开还提出一种核心网设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收无人机发送的附着请求信息;
从预设服务器获取无人机禁飞区域的信息;
将所述禁飞区域的信息发送至所述无人机。
本公开还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
向核心网发送附着请求信息;
接收所述核心网从预设服务器获取的无人机禁飞区域的信息;
根据所述无人机当前位置和所述禁飞区域的关系,确定所述无人机是否可以飞行。
本公开还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
接收无人机发送的附着请求信息;
从预设服务器获取无人机禁飞区域的信息;
将所述禁飞区域的信息发送至所述无人机。
图18是根据一示例性实施例示出的一种用于控制无人机的装置1800的示意框图。例如,装置1800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图18,装置1800可以包括以下一个或多个组件:处理组件1802,存储器1804,电源组件1806,多媒体组件1808,音频组件1810,输入/输出(I/O)的接口1812,传感器组件1814,以及通信组件1816。
处理组件1802通常控制装置1800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1802可以包括一个或多个处理器1820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1802可以包括一个或多个模块,便于处理组件1802和其他组件之间的交互。例如,处理组件1802可以包括多媒体模块,以方便多媒体组件1808和处理组件1802之间的交互。
存储器1804被配置为存储各种类型的数据以支持在装置1800的操作。这些数据的示例包括用于在装置1800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1806为装置1800的各种组件提供电力。电源组件1806可以包括电源管理系统,一个或多个电源,及其他与为装置1800生成、管理和分配电力相关联的组件。
多媒体组件1808包括在所述装置1800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1808包括一个前置摄像头和/或后置摄像头。当装置1800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1810被配置为输出和/或输入音频信号。例如,音频组件1810包括一个麦克风(MIC),当装置1800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1804或经由通信组件1816发送。在一些实施例中,音频组件1810还包括一个扬声器,用于输出音频信号。
I/O接口1812为处理组件1802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1814包括一个或多个传感器,用于为装置1800提供各个方面的状态评估。例如,传感器组件1814可以检测到装置1800的打开/关闭状态,组件的相对定位,例如所述组件为装置1800的显示器和小键盘,传感器组件1814还可以检测装置1800或装置1800一个组件的位置改变,用户与装置1800接触的存在或不存在,装置1800方位或加速/减速和装置1800的温度变化。传感器组件1814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1816被配置为便于装置1800和其他设备之间有线或无线方式的通信。装置1800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述图1至图6中任一实施例所示的方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1804,上述指令可由装置1800的处理器1820执行以完成上述 方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图19所示,图19是根据一示例性实施例示出的一种用于控制无人机的装置1900的示意框图。装置1900可以被提供为一基站。参照图19,装置1900包括处理组件1922、无线发射/接收组件1924、天线组件1926、以及无线接口特有的信号处理部分,处理组件1922可进一步包括一个或多个处理器。处理组件1922中的其中一个处理器可以被配置为执行上述图7至图9中任一实施例所示的方法。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (22)

  1. 一种无人机控制方法,其特征在于,适用于无人机,所述方法包括:
    向核心网发送附着请求信息;
    接收所述核心网从预设服务器获取的无人机禁飞区域的信息;
    根据所述无人机当前位置和所述禁飞区域的关系,确定所述无人机是否可以飞行。
  2. 根据权利要求1所述的无人机控制方法,其特征在于,还包括:
    在向核心网发送附着请求信息时,向所述核心网发送所述无人机当前位置的信息;
    在接收所述核心网从预设服务器获取的禁飞区域的信息时,接收所述核心网生成的所述无人机当前位置和所述禁飞区域的关系的信息。
  3. 根据权利要求1所述的无人机控制方法,其特征在于,还包括:
    在确定所述无人机是否可以飞行之前,获取所述无人机当前位置的信息;
    生成所述无人机当前位置和所述禁飞区域的关系的信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述根据所述无人机当前位置和所述禁飞区域的关系,确定所述无人机是否飞行包括:
    若所述无人机当前位置位于所述禁飞区域内,确定所述无人机不可飞行;
    若所述无人机当前位置位于所述禁飞区域外,确定所述无人机可以飞行。
  5. 根据权利要求4所述的方法,其特征在于,还包括:
    在确定所述无人机不可飞行的情况下,若所述无人机正在飞行,控制所述无人机降落。
  6. 根据权利要求4所述的方法,其特征在于,还包括:
    在确定所述无人机不可飞行的情况下,若接收到控制所述无人机起飞的指令,向发送所述指令的设备返回提示信息。
  7. 一种无人机控制方法,其特征在于,包括:
    接收无人机发送的附着请求信息;
    从预设服务器获取无人机禁飞区域的信息;
    将所述禁飞区域的信息发送至所述无人机。
  8. 根据权利要求7所述的方法,其特征在于,还包括:
    在接收所述附着请求信息时,接收所述无人机当前位置的信息;
    生成所述无人机当前位置和所述禁飞区域的关系的信息;
    在将所述禁飞区域的信息发送至所述无人机时,将所述关系的信息发送至所述无人机。
  9. 根据权利要求7所述的方法,其特征在于,还包括:
    在接收所述附着请求信息时,接收所述无人机当前位置的信息;
    其中,所述从预设服务器获取无人机禁飞区域的信息包括:
    从所述预设服务器获取边界到所述无人机当前位置的最小距离小于预设距离的禁飞区域的信息。
  10. 一种无人机控制装置,其特征在于,适用于于无人机,所述方法包括:
    请求发送模块,被配置为向核心网发送附着请求信息;
    信息接收模块,被配置为接收所述核心网从预设服务器获取的无人机禁飞区域的信息;
    飞行确定模块,被配置为根据所述无人机当前位置和所述禁飞区域的关系,确定所述无人机是否可以飞行。
  11. 根据权利要求10所述的无人机控制装置,其特征在于,还包括:
    信息发送模块,被配置为在所述请求发送模块向核心网发送附着请求信息时,向所述核心网发送所述无人机当前位置的信息;
    其中,所述信息接收模块还被配置为在接收所述核心网从预设服务器获取的禁飞区域的信息时,接收所述核心网生成的所述无人机当前位置和所述禁飞区域的关系的信息。
  12. 根据权利要求10所述的无人机控制装置,其特征在于,还包括:
    位置获取模块,被配置为在所述飞行确定模块确定所述无人机是否可以飞行之前,获取所述无人机当前位置的信息;
    关系生成模块,被配置为生成所述无人机当前位置和所述禁飞区域的关系的信息。
  13. 根据权利要求10至12中任一项所述的装置,其特征在于,所述飞行确定模块被配置为在所述无人机当前位置位于所述禁飞区域内的情况下,确定所述无人机不可飞行;在所述无人机当前位置位于所述禁飞区域外的情况下,确定所述无人机可以飞行。
  14. 根据权利要求13所述的装置,其特征在于,还包括:
    控制模块,被配置为在确定所述无人机不可飞行的情况下,若所述无人机正在飞行,控制所述无人机降落。
  15. 根据权利要求13所述的装置,其特征在于,还包括:
    提示模块,被配置为在确定所述无人机不可飞行的情况下,若接收到控制所述无人机起飞的指令,向发送所述指令的设备返回提示信息。
  16. 一种无人机控制装置,其特征在于,包括:
    请求接收模块,被配置为接收无人机发送的附着请求信息;
    禁飞获取模块,被配置为从预设服务器获取无人机禁飞区域的信息;
    信息发送模块,被配置为将所述禁飞区域的信息发送至所述无人机。
  17. 根据权利要求16所述的装置,其特征在于,还包括:
    信息接收模块,被配置为在所述请求接收模块接收所述附着请求信息时,接收所述无人机当前位置的信息;
    关系生成模块,被配置为生成所述无人机当前位置和所述禁飞区域的关系的信息;
    其中,所述信息发送模块还被配置为在将所述禁飞区域的信息发送至所述无人机时,将所述关系的信息发送至所述无人机。
  18. 根据权利要求16所述的装置,其特征在于,还包括:
    位置接收模块,被配置为在所述请求接收模块接收所述附着请求信息时,接收所述无人机当前位置的信息;
    其中,所述禁飞获取模块被配置为从所述预设服务器获取边界到所述无人机当前位置的最小距离小于预设距离的禁飞区域的信息。
  19. 一种无人机,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    向核心网发送附着请求信息;
    接收所述核心网从预设服务器获取的无人机禁飞区域的信息;
    根据所述无人机当前位置和所述禁飞区域的关系,确定所述无人机是否可以飞行。
  20. 一种核心网设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收无人机发送的附着请求信息;
    从预设服务器获取无人机禁飞区域的信息;
    将所述禁飞区域的信息发送至所述无人机。
  21. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现以下步骤:
    向核心网发送附着请求信息;
    接收所述核心网从预设服务器获取的无人机禁飞区域的信息;
    根据所述无人机当前位置和所述禁飞区域的关系,确定所述无人机是否可以飞行。
  22. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现以下步骤:
    接收无人机发送的附着请求信息;
    从预设服务器获取无人机禁飞区域的信息;
    将所述禁飞区域的信息发送至所述无人机。
PCT/CN2017/097178 2017-08-11 2017-08-11 无人机控制方法及装置、无人机和核心网设备 WO2019028862A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17920925.9A EP3667453A4 (en) 2017-08-11 2017-08-11 DRONE CONTROL METHOD AND DEVICE, DRONE AND CORE NETWORK DEVICE
PCT/CN2017/097178 WO2019028862A1 (zh) 2017-08-11 2017-08-11 无人机控制方法及装置、无人机和核心网设备
US16/638,133 US20200241572A1 (en) 2017-08-11 2017-08-11 Drone control method and device, drone and core network device
CN201780000845.2A CN109451810B (zh) 2017-08-11 2017-08-11 无人机控制方法及装置、无人机和核心网设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/097178 WO2019028862A1 (zh) 2017-08-11 2017-08-11 无人机控制方法及装置、无人机和核心网设备

Publications (1)

Publication Number Publication Date
WO2019028862A1 true WO2019028862A1 (zh) 2019-02-14

Family

ID=65272933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097178 WO2019028862A1 (zh) 2017-08-11 2017-08-11 无人机控制方法及装置、无人机和核心网设备

Country Status (4)

Country Link
US (1) US20200241572A1 (zh)
EP (1) EP3667453A4 (zh)
CN (1) CN109451810B (zh)
WO (1) WO2019028862A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11805562B2 (en) * 2018-12-17 2023-10-31 Beijing Xiaomi Mobile Software Co., Ltd. User device pairing method and apparatus
US20220279355A1 (en) * 2019-08-23 2022-09-01 Idac Holdings, Inc. Methods and apparatuses for unmanned aerial system (uas) identification, binding and pairing
WO2022056864A1 (zh) * 2020-09-18 2022-03-24 深圳市大疆创新科技有限公司 无人飞行器及其控制方法、服务器、控制芯片和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932525A (zh) * 2015-05-28 2015-09-23 深圳一电科技有限公司 无人机的控制方法、装置、地面控制系统及无人机
WO2015165303A1 (en) * 2014-04-17 2015-11-05 SZ DJI Technology Co., Ltd. Flight control for flight-restricted regions
CN105472558A (zh) * 2015-12-18 2016-04-06 苏州贝多环保技术有限公司 一种无人机及其控制方法
CN106249753A (zh) * 2016-09-05 2016-12-21 广州极飞科技有限公司 对无人机进行控制的方法、控制装置及无人机
CN106970640A (zh) * 2017-03-21 2017-07-21 北京小米移动软件有限公司 无人机的禁飞控制方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8970400B2 (en) * 2011-05-24 2015-03-03 Verna Ip Holdings, Llc Unmanned vehicle civil communications systems and methods
CN204316545U (zh) * 2015-01-13 2015-05-06 东莞极飞无人机科技有限公司 基于移动通信网络的无人机数据链路系统
US9905134B2 (en) * 2015-02-12 2018-02-27 Aerobotic Innovations, LLC System and method of preventing and remedying restricted area intrusions by unmanned aerial vehicles
CN105139693A (zh) * 2015-07-28 2015-12-09 顺丰科技有限公司 无人机监控方法及无人机管理平台
US9626874B1 (en) * 2016-01-06 2017-04-18 Qualcomm Incorporated Systems and methods for managing restricted areas for unmanned autonomous vehicles
US10082802B2 (en) * 2016-08-11 2018-09-25 International Business Machines Corporation Method and system for continued navigation of unmanned aerial vehicles beyond restricted airspace boundaries
US10020872B2 (en) * 2016-10-11 2018-07-10 T-Mobile Usa, Inc. UAV for cellular communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015165303A1 (en) * 2014-04-17 2015-11-05 SZ DJI Technology Co., Ltd. Flight control for flight-restricted regions
CN104932525A (zh) * 2015-05-28 2015-09-23 深圳一电科技有限公司 无人机的控制方法、装置、地面控制系统及无人机
CN105472558A (zh) * 2015-12-18 2016-04-06 苏州贝多环保技术有限公司 一种无人机及其控制方法
CN106249753A (zh) * 2016-09-05 2016-12-21 广州极飞科技有限公司 对无人机进行控制的方法、控制装置及无人机
CN106970640A (zh) * 2017-03-21 2017-07-21 北京小米移动软件有限公司 无人机的禁飞控制方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3667453A4 *

Also Published As

Publication number Publication date
CN109451810A (zh) 2019-03-08
US20200241572A1 (en) 2020-07-30
CN109451810B (zh) 2021-08-24
EP3667453A1 (en) 2020-06-17
EP3667453A4 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
US11601861B2 (en) Unmanned aerial vehicle control method and apparatus
US10292004B2 (en) Method, device and medium for acquiring location information
WO2017032126A1 (zh) 无人机的拍摄控制方法及装置、电子设备
CN109451811B (zh) 无人机管理方法及装置、电子设备和计算机可读存储介质
US11221634B2 (en) Unmanned aerial vehicle control method and device, unmanned aerial vehicle and remote control device
WO2017088374A1 (zh) 网络状态信息展示方法及装置
KR102182294B1 (ko) 알람을 제어하는 방법 및 장치
US10439660B2 (en) Method and device for adjusting frequencies of intercom apparatuses
WO2017008400A1 (zh) 控制智能设备的方法及装置
US11949979B2 (en) Image acquisition method with augmented reality anchor, device, apparatus and storage medium
WO2019006770A1 (zh) 无人机充电方法及装置
WO2019006772A1 (zh) 无人机返航方法及装置
WO2019019164A1 (zh) 无人机管理方法及装置、通信连接建立方法及装置
US11228860B2 (en) Terminal positioning method, apparatus, electronic device and storage medium
WO2020029025A1 (zh) 飞行路径配置方法和装置
WO2019006767A1 (zh) 一种无人机的景点导航方法及装置
WO2019028862A1 (zh) 无人机控制方法及装置、无人机和核心网设备
US11950162B2 (en) Unmanned aerial vehicle control method and apparatus
CN107688350A (zh) 无人机控制方法和装置
CN109155668B (zh) 飞行路径配置方法和装置
JP2018503988A (ja) ユーザ情報プッシュ方法及び装置
RU2760205C1 (ru) Способы получения и передачи информации о траектории беспилотного летательного аппарата
CN110989372B (zh) 基于位置信息的设备控制方法、装置及系统
CN110989372A (zh) 基于位置信息的设备控制方法、装置及系统
US20170105117A1 (en) Method and device for acquiring information of relay router

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017920925

Country of ref document: EP

Effective date: 20200311