WO2019027347A1 - Alliage résistant à la corrosion - Google Patents

Alliage résistant à la corrosion Download PDF

Info

Publication number
WO2019027347A1
WO2019027347A1 PCT/RU2017/001014 RU2017001014W WO2019027347A1 WO 2019027347 A1 WO2019027347 A1 WO 2019027347A1 RU 2017001014 W RU2017001014 W RU 2017001014W WO 2019027347 A1 WO2019027347 A1 WO 2019027347A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
alloy
nickel
niobium
carbon
Prior art date
Application number
PCT/RU2017/001014
Other languages
English (en)
Russian (ru)
Other versions
WO2019027347A8 (fr
Inventor
Михаил Анатольевич АСЕЕВ
Сергей Владимирович БЕЛИКОВ
Кирилл Владимирович ДЕДОВ
Александр Александрович КРИЦКИЙ
Рашид Амирович МИТЮКОВ
Александр Павлович ПАНТЮХИН
Илья Борисович ПОЛОВОВ
Константин Владимирович СКИБА
Пётр Алексеевич ХАРИН
Сергей Владимирович ЧИНЕЙКИН
Александр Фёдорович ШЕВАКИН
Original Assignee
Акционерное общество "Чепецкий механический завод"
Акционерное Общество "Наука И Инновации"
ШИПУЛИН, Сергей Александрович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Чепецкий механический завод", Акционерное Общество "Наука И Инновации", ШИПУЛИН, Сергей Александрович filed Critical Акционерное общество "Чепецкий механический завод"
Priority to US16/627,736 priority Critical patent/US20210164075A1/en
Priority to JP2019572506A priority patent/JP6974507B2/ja
Priority to KR1020197038839A priority patent/KR20200060694A/ko
Priority to EP17919968.2A priority patent/EP3663422A4/fr
Priority to CN201780092598.3A priority patent/CN111094603B/zh
Priority to EA201992733A priority patent/EA201992733A1/ru
Priority to CA3093022A priority patent/CA3093022C/fr
Priority to BR112019028257-2A priority patent/BR112019028257B1/pt
Priority to MYPI2019007591A priority patent/MY192470A/en
Publication of WO2019027347A1 publication Critical patent/WO2019027347A1/fr
Publication of WO2019027347A8 publication Critical patent/WO2019027347A8/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the invention relates to metallurgy, to nickel-based alloys, intended for operation in aggressive oxidizing environments.
  • Nicrofer 6616 hMo alloy C-4 (N ° 2.4610), containing wt.%: 14.5-17.5 Cg, 14.0-17.0 Mo, ⁇ 3.0 Fe, ⁇ 0.009 ⁇ , ⁇ 1.0 Mn, ⁇ 0.05 Si, ⁇ 2.0 Co, ⁇ 0.7 Ti, ⁇ 0.020 P, ⁇ 0.010 S, nickel and inevitable impurities are the rest (Reference book “Corrosion-resistant, heat-resistant and high-strength steels and Alloys, M., Prometheus-Splav, 2008, p. 304 - 306).
  • the alloy is used to manufacture equipment operated in a wide range of chemical environments, at room and elevated temperatures. In particular - for adsorbers during flue gas desulfurization; pickling baths and acid regeneration plants; Acetic acid and agrochemical plants.
  • the closest analogue of the present invention is an alloy HN65MVU (EP760) containing, wt.%: ⁇ 0.02 C, ⁇ 0.1 Si, ⁇ 1.0 Mp, 14.5-16.5 Cg, 15.0-17, 0 Mo, 3.0-4.5 W, ⁇ 0.5 Fe, ⁇ 0.012 S, ⁇ 0.015 P, nickel and inevitable impurities else (GOST 5632-2014 is a prototype).
  • the alloy is used for the manufacture of welded structures (columns, heat exchangers, reactors) operating at elevated temperatures in corrosive redox environments, in the chemical, petrochemical industry (production of acetic acid, epoxy resins, vinyl acetate, melamine) complex organic compounds) and other industries in the temperature range from -70 to 500 ° C.
  • the KhN65MVU brand alloy and its welded joints can be used in KCl-AlCb-ZrCU environments only up to 500 ° C, since at temperatures above the specified value, in addition to intergranular corrosion and corrosion cracking, the alloy sharply decreases the relative elongation from 48% to 7.3-13% at 550 ° C and to 2.5% at 625 ° C and metal embrittlement when deformation is applied.
  • the technical result of the invention consists in obtaining an alloy with an increased level of plastic properties during operation in the temperature range from 550 ° C to steadiness and, accordingly, the deterioration of the processability of the alloy during metallurgical processing.
  • Niobium in an amount of 0.01–0.03% binds residual carbon and nitrogen into carbides, nitrides, and carbonitrides, prevents the formation of chromium carbides and carbonitrides at grain boundaries.
  • the addition of niobium in an amount 6–10 times higher than the carbon content in the alloy eliminates intergranular corrosion of the alloys and protects the welds from damage.
  • the niobium content is less than 0.01%, its interaction with residual carbon is ineffective, and the niobium content above 0.03% is not rational for carbide formation.
  • An increase in the manganese content of more than 1.0% leads to the appearance of a low-melting eutectic, which leads to the destruction of the ingot during pressure treatment and reduces the heat resistance of the alloy, and also leads to a decrease in resistance to local corrosion.
  • Nickel is stable in HC1 even at boiling point. However, in the presence of chlorides, Fe (III) ions and other oxidizing agents, corrosion of nickel and nickel chromium of molybdenum alloys is enhanced, and the associated iron content is not more than 0.75%.
  • titanium in an amount of 0.01–0.06% increases the corrosion resistance in molten zirconium and hafnium salts, binds residual carbon to carbides and leads to the formation of a sufficient amount of intermetallic Ni 3 Ti, which, at an operating temperature of 500–700 ° C positive effect on the heat resistance of the alloy.
  • the content of titanium is less than 0.01%, the requirements for corrosion resistance are not met, and an excess of titanium content above 0.06% leads to a decrease in the processability of the alloy and the formation of undesirable phases due to the reactivity of titanium.
  • Aluminum and magnesium in the amount of 0.1-0.2% and 0.005-0.01% are introduced into the alloy for the removal of residual oxygen, and also, as for aluminum, for the formation of intermetallic metal Ni 3 Al, which positively affects on the heat resistance of the alloy. With the introduction of these elements in quantities less than those indicated, the necessary removal of residual oxygen is not achieved. If the content of these elements is exceeded, coarse non-metallic inclusions are formed.
  • the corrosion rate of alloys (alloys 1, 2), satisfying the claimed composition, is lower than the corrosion rate of the prototype alloy, visual inspection did not reveal cracks, unlike the prototype alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

L'invention concerne la métallurgie et notamment les alliages à base de nickel destinés à l'exploitation dans des milieux oxydants agressifs. L'alliage résistant à la corrosion à base de nickel comprend, en % en masse: carbone ≤0,006, silicium ≤0,1, manganèse ≤1,0, chrome 22,8-24,0, fer ≤0,75, molybdène 12,0-14,0, niobium 0,01-0,03, titane 0,01-0,06, aluminium 0,1-0,2, magnésium 0,005-0,01, phosphore ≤0,015, soufre <0,012, nickel et impuretés inévitables constituant le reste.
PCT/RU2017/001014 2017-08-01 2017-12-29 Alliage résistant à la corrosion WO2019027347A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US16/627,736 US20210164075A1 (en) 2017-08-01 2017-12-29 Corrosion-resistant alloy
JP2019572506A JP6974507B2 (ja) 2017-08-01 2017-12-29 耐食性合金
KR1020197038839A KR20200060694A (ko) 2017-08-01 2017-12-29 내식합금
EP17919968.2A EP3663422A4 (fr) 2017-08-01 2017-12-29 Alliage résistant à la corrosion
CN201780092598.3A CN111094603B (zh) 2017-08-01 2017-12-29 耐腐蚀合金
EA201992733A EA201992733A1 (ru) 2017-08-01 2017-12-29 Коррозионно-стойкий сплав
CA3093022A CA3093022C (fr) 2017-08-01 2017-12-29 Alliage resistant a la corrosion
BR112019028257-2A BR112019028257B1 (pt) 2017-08-01 2017-12-29 Liga resistente à corrosão
MYPI2019007591A MY192470A (en) 2017-08-01 2017-12-29 Corrosion resistant alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2017127607A RU2672647C1 (ru) 2017-08-01 2017-08-01 Коррозионностойкий сплав
RU2017127607 2017-08-01

Publications (2)

Publication Number Publication Date
WO2019027347A1 true WO2019027347A1 (fr) 2019-02-07
WO2019027347A8 WO2019027347A8 (fr) 2020-09-10

Family

ID=64328060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2017/001014 WO2019027347A1 (fr) 2017-08-01 2017-12-29 Alliage résistant à la corrosion

Country Status (11)

Country Link
US (1) US20210164075A1 (fr)
EP (1) EP3663422A4 (fr)
JP (1) JP6974507B2 (fr)
KR (1) KR20200060694A (fr)
CN (1) CN111094603B (fr)
CA (1) CA3093022C (fr)
EA (1) EA201992733A1 (fr)
JO (1) JOP20190301A1 (fr)
MY (1) MY192470A (fr)
RU (1) RU2672647C1 (fr)
WO (1) WO2019027347A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906437A (en) * 1988-03-03 1990-03-06 Vdm Nickel-Technologie Aktiengesellschaft Corrosion resistant hot and cold forming parts of Ni-Cr-Mo alloy and method of making same
US5855699A (en) * 1994-10-03 1999-01-05 Daido Tokushuko Kabushiki Kaisha Method for manufacturing welded clad steel tube
US20030049155A1 (en) * 2001-06-28 2003-03-13 Pike Lee M. Two step aging treatment for Ni-Cr-Mo alloys
GB2405643A (en) * 2003-09-05 2005-03-09 Haynes Internat Inc A nickel-chromium-molybdenum alloy
RU2440876C1 (ru) * 2010-08-23 2012-01-27 Евгений Григорьевич Старченко Сварочная проволока для сварки корпусных деталей из разнородных сталей

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL82587A0 (en) * 1986-05-27 1987-11-30 Carpenter Technology Corp Nickel-base alloy and method for preparation thereof
JPH028337A (ja) * 1988-06-24 1990-01-11 Nippon Stainless Steel Co Ltd 電気めっき用通電ロールおよびその製造方法
JPH05255784A (ja) * 1992-03-11 1993-10-05 Sumitomo Metal Ind Ltd 耐食性に優れた油井用Ni基合金
JPH0617173A (ja) * 1992-07-03 1994-01-25 Mitsubishi Steel Mfg Co Ltd 電気メッキ用通電ロール
DE19723491C1 (de) * 1997-06-05 1998-12-03 Krupp Vdm Gmbh Verwendung einer Nickel-Chrom-Molybdän-Legierung
KR20030003017A (ko) * 2001-06-28 2003-01-09 하이네스인터내셔널인코포레이티드 Ni-Cr-Mo합금의 2-단계 에이징 처리방법 및 결과의합금
DE10302989B4 (de) * 2003-01-25 2005-03-03 Schmidt + Clemens Gmbh & Co. Kg Verwendung einer Hitze- und korrosionsbeständigen Nickel-Chrom-Stahllegierung
JP4519520B2 (ja) * 2003-09-24 2010-08-04 新日鐵住金ステンレス株式会社 高Ni基合金溶接ワイヤ
AU2005258507C1 (en) * 2004-06-30 2008-10-30 Nippon Steel Corporation Ni base alloy material tube and method for production thereof
JP6259336B2 (ja) * 2014-03-26 2018-01-10 日本冶金工業株式会社 Ni基合金およびその製造方法
JP6323188B2 (ja) * 2014-06-11 2018-05-16 新日鐵住金株式会社 Ni基耐熱合金溶接継手の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906437A (en) * 1988-03-03 1990-03-06 Vdm Nickel-Technologie Aktiengesellschaft Corrosion resistant hot and cold forming parts of Ni-Cr-Mo alloy and method of making same
US5855699A (en) * 1994-10-03 1999-01-05 Daido Tokushuko Kabushiki Kaisha Method for manufacturing welded clad steel tube
US20030049155A1 (en) * 2001-06-28 2003-03-13 Pike Lee M. Two step aging treatment for Ni-Cr-Mo alloys
GB2405643A (en) * 2003-09-05 2005-03-09 Haynes Internat Inc A nickel-chromium-molybdenum alloy
RU2440876C1 (ru) * 2010-08-23 2012-01-27 Евгений Григорьевич Старченко Сварочная проволока для сварки корпусных деталей из разнородных сталей

Also Published As

Publication number Publication date
RU2672647C1 (ru) 2018-11-16
JOP20190301A1 (ar) 2019-12-30
BR112019028257A2 (pt) 2020-08-04
JP6974507B2 (ja) 2021-12-01
CN111094603A (zh) 2020-05-01
CA3093022C (fr) 2023-08-08
EP3663422A4 (fr) 2021-01-20
US20210164075A1 (en) 2021-06-03
KR20200060694A (ko) 2020-06-01
EP3663422A1 (fr) 2020-06-10
EA201992733A1 (ru) 2021-04-20
WO2019027347A8 (fr) 2020-09-10
CN111094603B (zh) 2021-12-07
CA3093022A1 (fr) 2019-02-07
JP2020530064A (ja) 2020-10-15
MY192470A (en) 2022-08-22

Similar Documents

Publication Publication Date Title
JP5146576B1 (ja) Ni基耐熱合金
TWI586817B (zh) 高強度抗腐蝕沃斯田合金
CN102498225B (zh) Ni基合金材料
JP7379367B2 (ja) 耐食性の二相ステンレス鋼
JP5661938B2 (ja) Ni−Fe−Cr−Mo−合金
JP2008519165A (ja) 2相ステンレス鋼
JPS6134498B2 (fr)
JP5846076B2 (ja) オーステナイト系耐熱合金
SE524951C2 (sv) Användning av en duplex rostfri stållegering
EP0690141B1 (fr) Elément structurel en acier austénitique réfractaire présentant, une excellente résistance mécanique aux temperatures élevées
WO2012065749A1 (fr) Alliage de nickel-chrome-fer-molybdène
JP6772735B2 (ja) Ni基耐熱合金部材およびその製造方法
WO2019027347A1 (fr) Alliage résistant à la corrosion
JP2015196894A (ja) 二相ステンレス鋼
US5296054A (en) Austenitic steel
US3459538A (en) Corrosion resistant low-alloy steel
RU2801911C1 (ru) Коррозионностойкий сплав, легированный скандием
JP6201731B2 (ja) オーステナイト系耐熱鋳造合金
Alves et al. A new developed Ni-Cr-Mo alloy with improved corrosion resistance in flue gas desulfurization and chemical process applications
Alves et al. Evolution of Nickel Base Alloys–Modification to Traditional Alloys for Specific Applications
EA043339B1 (ru) Коррозионностойкий сплав
JP6627662B2 (ja) オーステナイト系ステンレス鋼
Meck et al. A New Corrosion-Resistant Ni-Mo-Cr Alloy For The Most Versatile Environments
BR112019028257B1 (pt) Liga resistente à corrosão
JP5748216B2 (ja) 加工性に優れる耐食合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919968

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019572506

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3093022

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019028257

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017919968

Country of ref document: EP

Effective date: 20200302

ENP Entry into the national phase

Ref document number: 112019028257

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191230