WO2019027012A1 - 像加熱装置及び画像形成装置 - Google Patents

像加熱装置及び画像形成装置 Download PDF

Info

Publication number
WO2019027012A1
WO2019027012A1 PCT/JP2018/029100 JP2018029100W WO2019027012A1 WO 2019027012 A1 WO2019027012 A1 WO 2019027012A1 JP 2018029100 W JP2018029100 W JP 2018029100W WO 2019027012 A1 WO2019027012 A1 WO 2019027012A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
heating
recording material
fixing
heat generation
Prior art date
Application number
PCT/JP2018/029100
Other languages
English (en)
French (fr)
Inventor
片岡 洋
岩崎 敦志
弘和 奥川
宗人 倉田
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018141516A external-priority patent/JP7073220B2/ja
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2019027012A1 publication Critical patent/WO2019027012A1/ja
Priority to US16/779,991 priority Critical patent/US11029627B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/14Electronic sequencing control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating

Definitions

  • the present invention relates to a fixing device mounted on an image forming apparatus such as a copier or a printer using an electrophotographic method or an electrostatic recording method, or a glossiness of a toner image by reheating a fixed toner image on a recording material.
  • an image heating apparatus such as a glossing apparatus for improving image quality.
  • the present invention also relates to an image forming apparatus provided with this image heating apparatus.
  • an image heating apparatus there is an apparatus having an endless belt (also referred to as an endless fixing film), a heater that contacts the inner surface of the endless belt and generates heat when energized, and a roller that forms a nip with the heater via the endless belt.
  • This image heating apparatus has a feature of being excellent in quick start performance and power saving performance since the heat capacity is small.
  • Patent Document 1 a configuration (Patent Document 1) has been proposed in which a toner image portion formed on a recording material is selectively heated.
  • This configuration is a divided heater in which the heat generation range of the heater is divided into a plurality of heat generation blocks (heating areas) with respect to the longitudinal direction of the heater (direction orthogonal to the conveyance direction of the recording material P).
  • the split heater selectively controls the heat generation of each heat generation block according to the presence or absence of the image on the recording material.
  • power saving is achieved by stopping energization of the heat generation block in a portion (non-image portion) where there is no image on the recording material.
  • various improvements and configurations can be made, such as reducing the heat capacity by reducing the diameter and thickness of the members, increasing the heat conductivity and insulating the members, and selectively heating only the necessary image area. Energy saving.
  • the object of the present invention is to provide a technology capable of always obtaining uniform fixing performance and stable recording material transportability throughout the life of the image heating apparatus even when the user's use conditions such as various images and recording materials are different. It is to be.
  • the image heating apparatus of the present invention is A heater having a plurality of heating elements aligned in the longitudinal direction of the substrate and the substrate provided on the substrate, a cylindrical film rotating while the inner surface is in contact with the heater, and a rotation in contact with the outer surface of the film An image for heating an image formed on the recording material using the heat of the heater while nipping and conveying the recording material at the nip portion between the film and the pressing member.
  • a heating unit An energization control unit that selectively controls energization of the plurality of heating elements so as to selectively heat the plurality of heating regions according to the information of the image;
  • An image heating apparatus comprising An acquisition unit configured to acquire an accumulated heat generation amount of the heating element in each of the plurality of heating areas, an accumulated rotation time of the pressure member, and information of a recording material passing through the nip portion;
  • the energization control unit controls energization of the plurality of heating elements based on the information acquired by the acquisition unit.
  • the image forming apparatus of the present invention is An image forming unit that forms an image on a recording material; A fixing unit that fixes an image formed on a recording material to the recording material; In an image forming apparatus having The fixing unit is the image heating device.
  • an image heating apparatus capable of obtaining stable fixing performance regardless of the use condition of the user.
  • Sectional view of an image forming apparatus according to an embodiment of the present invention Sectional view of an image heating apparatus according to an embodiment of the present invention Heater configuration diagram in the embodiment of the present invention Heater control circuit diagram in the embodiment of the present invention Figure showing the heating zone in an embodiment of the invention Explanatory drawing regarding classification of the heating area
  • Flow chart in the embodiment of the present invention Measurement of the amount of abrasion of the surface of the fixing film in the embodiment of the present invention Measurement chart of hardness change of pressure roller in the embodiment of the present invention Measurement chart of pressure roller hardness and fixing nip width in the embodiment of the present invention Measurement chart of fixing nip width and fixing control temperature in the embodiment of the present invention Explanatory drawing of verification of the effect in the Example of this invention.
  • FIG. 1 is a schematic cross-sectional view of an image forming apparatus according to an embodiment of the present invention.
  • the image forming apparatus 100 of this embodiment is a laser beam printer that forms an image on a recording material using an electrophotographic method.
  • the scanner unit 21 emits a laser beam modulated according to the image information, and the charging roller 16 scans the surface of the photosensitive drum (electrophotographic photosensitive member) 19 charged to a predetermined polarity.
  • an electrostatic latent image is formed on the photosensitive drum 19 as an image carrier.
  • the electrostatic latent image on the photosensitive drum 19 is developed as a toner image (developer image).
  • the recording material P stacked on the sheet feeding cassette 11 is fed sheet by sheet by the pickup roller 12 and is conveyed by the conveyance roller pair 13 toward the registration roller pair 14.
  • the recording material P is conveyed from the registration roller pair 14 to the transfer position in synchronization with the timing when the toner image on the photosensitive drum 19 reaches the transfer position formed by the photosensitive drum 19 and the transfer roller 20.
  • the toner image on the photosensitive drum 19 is transferred to the recording material P while the recording material P passes through the transfer position.
  • the recording material P is heated and pressed by a fixing device (image heating device) 200 as a fixing portion (image heating portion), and the toner image is heat-fixed on the recording material P.
  • the recording material P carrying the fixed toner image is discharged to a tray at the upper portion of the image forming apparatus 100 by the conveyance roller pairs 26 and 27.
  • the paper feed tray (manual feed tray) 28 has a pair of recording paper regulating plates whose width can be adjusted according to the size of the recording paper P, and is provided to cope with recording paper P of sizes other than the standard size. It is done.
  • the pickup roller 29 is a roller for feeding the recording sheet P from the sheet feeding tray 28.
  • the motor 30 drives the fixing device 200 and the like. Electric power is supplied to the fixing device 200 from a control circuit 400 as an energization control unit and an acquisition unit connected to a commercial AC power supply 401.
  • the photosensitive drum 19, the charging roller 16, the scanner unit 21, the developing roller 17, and the transfer roller 20 described above constitute an image forming unit for forming an unfixed image on the recording material P. Further, in the present embodiment, a developing unit including the photosensitive drum 19, the charging roller 16, and the developing roller 17, and a cleaning unit including the drum cleaner 18 are detachably configured as the process cartridge 15 with respect to the apparatus main body of the image forming apparatus 100. It is done.
  • the maximum sheet passing width in the direction orthogonal to the conveyance direction of the recording material P is 216 mm and plain paper of A4 size [210 mm ⁇ 297 mm] is conveyed at a conveyance speed of 232.5 mm / sec. It is possible to print 41.9 minutes.
  • FIG. 2 is a cross-sectional view of a fixing device 200 as an image heating device of the present embodiment.
  • the fixing device 200 includes a fixing film 202, a heater 300 in contact with the inner surface of the fixing film 202, a pressure roller 208 forming the fixing nip N with the heater 300 via the fixing film 202, and a metal stay 204.
  • the fixing film 202 is a high heat resistant fixing film having a multilayer structure formed in a cylindrical shape, which is also referred to as an endless belt or an endless film, and uses a heat resistant resin such as polyimide or a metal such as stainless steel as a base layer.
  • the surface of the fixing film 202 is a release layer coated with a high-performance fluorocarbon resin excellent in heat release property and excellent in releasability such as PFA for preventing adhesion of toner.
  • a high-performance fluorocarbon resin excellent in heat release property and excellent in releasability such as PFA for preventing adhesion of toner.
  • high heat resistant rubber such as silicone rubber may be formed as an elastic layer between the base layer and the release layer in order to improve the image quality.
  • the pressure roller 208 is configured to have a core metal 209 made of iron, aluminum or the like and an elastic layer 210 made of high heat resistant rubber such as silicone rubber.
  • the fixing nip N corresponding to the fixing device 200 is obtained by using the pressure roller 208 having such a configuration and having an appropriate hardness.
  • the heater 300 is held by a heater holding member 201 made of a heat-resistant resin, and heats the fixing film 202 by heating the heating areas A 1 to A 7 (details will be described later) in the fixing nip portion N.
  • the heater holding member 201 also has a guide function of guiding the rotation of the fixing film 202.
  • an electrode E is provided on the opposite side of the fixing nip N, and power is supplied to the electrode E from an electrical contact C.
  • the metal stay 204 receives a pressure (not shown) to press the heater holding member 201 toward the pressure roller 208.
  • a safety element 212 such as a thermo switch or a thermal fuse that operates by abnormal heat generation of the heater 300 to shut off the power supplied to the heater 300 abuts the heater 300 directly or indirectly via the heater holding member 201. ing.
  • the pressure roller 208 receives the rotational driving force from the motor 30 and rotates in the direction of the arrow R1. As the pressure roller 208 rotates, the fixing film 202 whose outer surface is in contact with the pressure roller 208 is driven to rotate in the direction of arrow R2.
  • the unfixed toner image on the recording material P is subjected to a fixing process by applying heat from the heat generating member disposed on the substrate of the heater 300 through the fixing film 202 while holding and conveying the recording material P at the fixing nip N. Ru.
  • a sliding grease (not shown) having high heat resistance is interposed between the heater 300 and the fixing film 202. .
  • FIG. 3A is a cross-sectional view of the heater 300
  • FIG. 3B is a plan view of each layer of the heater 300
  • FIG. 3C is a view for explaining a method of connecting the electrical contact C to the heater 300.
  • FIG. 3B shows the conveyance reference position X of the recording material P in the image forming apparatus 100 of the present embodiment.
  • the conveyance reference is the center reference
  • the recording material P is conveyed such that the center line in the direction orthogonal to the conveyance direction is along the conveyance reference position X.
  • 3A is a cross-sectional view of the heater 300 at the conveyance reference position X.
  • the heater 300 is provided on the ceramic substrate 305, the back surface layer 1 provided on the substrate 305, the back surface layer 2 covering the back surface layer 1, and the surface on the substrate 305 opposite to the back surface layer 1.
  • a sliding surface layer 1 and a sliding surface layer 2 covering the sliding surface layer 1 are provided.
  • the back surface layer 1 has a conductor 301 (301a, 301b) provided along the longitudinal direction of the heater 300.
  • the conductor 301 is separated into a conductor 301a and a conductor 301b, and the conductor 301b is disposed downstream of the conductor 301a in the conveyance direction of the recording material P.
  • the back surface layer 1 also has conductors 303 (303-1 to 303-7) provided in parallel to the conductors 301a and 301b.
  • the conductor 303 is provided along the longitudinal direction of the heater 300 between the conductor 301 a and the conductor 301 b.
  • the back surface layer 1 further includes a heating element (heating resistor) 302a (302a-1 to 302a-7) and a heating element 302b (302b-1 to 302b-7).
  • the heating element 302 a is provided between the conductor 301 a and the conductor 303, and generates heat by supplying power through the conductor 301 a and the conductor 303.
  • the heating element 302 b is provided between the conductor 301 b and the conductor 303, and generates heat by supplying power through the conductor 301 b and the conductor 303.
  • a heat generating portion composed of the conductor 301, the conductor 303, the heating element 302a and the heating element 302b is divided into seven heating blocks (HB 1 to HB 7 ) in the longitudinal direction of the heater 300. That is, the heating element 302 a is divided into seven regions of the heating elements 302 a-1 to 302 a-7 in the longitudinal direction of the heater 300. The heating element 302 b is divided into seven regions of the heating elements 302 b-1 to 302 b-7 in the longitudinal direction of the heater 300. Further, the conductor 303 is divided into seven regions of conductors 303-1 to 303-7 in accordance with the division positions of the heating elements 302a and 302b.
  • Heating range of this embodiment is in the range from left end in the drawing of the heating blocks HB 1 to right end in the drawing of the heating block HB 7, its length is 220 mm. Moreover, although the longitudinal direction length of each heat generating block is all the same about 31 mm, you may make length different.
  • the back layer 1 has electrodes E (E 1 to E 7 and E 8-1 , E 8-2 ).
  • the electrodes E 1 to E 7 are provided in the regions of the conductors 303-1 to 303-7, respectively, and power is supplied to the heating blocks HB 1 to HB 7 through the conductors 303-1 to 303-7, respectively. It is an electrode for The electrodes E 8-1 and E 8-2 are provided at the longitudinal end of the heater 300 so as to be connected to the conductor 301, and supply power to the heat generating blocks HB 1 to HB 7 through the conductor 301.
  • the electrodes E 8-1 and E 8-2 are provided at both ends in the longitudinal direction of the heater 300, but for example, only the electrode E 8-1 may be provided on one side.
  • power is supplied to the conductors 301a and 301b using a common electrode, separate electrodes may be provided on the conductors 301a and 301b to supply power.
  • the back surface layer 2 is composed of an insulating surface protection layer 307 (glass in this embodiment), and covers the conductor 301, the conductor 303, and the heating elements 302a and 302b. Further, the surface protective layer 307 is formed except for the portion of the electrode E (so that the electrode E is exposed), and the electric contact C can be connected to the electrode E from the back surface layer 2 side of the heater 300.
  • the configuration is as follows.
  • the sliding surface layer 1 has thermistors TH (TH1-1 to TH1-4 and TH2-5 to TH2-7) for detecting the temperatures of the heat generating blocks HB1 to HB7.
  • the thermistor TH is made of a material having a PTC characteristic or an NTC characteristic (NTC characteristic in this embodiment), and by detecting the resistance value, the temperature of all the heat generation blocks can be detected.
  • the sliding surface layer 1 also conducts current to the thermistor to detect its resistance value, so that the conductors ET (ET1-1 to ET1-4 and ET2-5 to ET2-7) and the conductors EG (EG1, EG2) And.
  • Conductors ET1-1 to ET1-4 are connected to thermistors TH1-1 to TH1-4, respectively.
  • the conductors ET2-5 to ET2-7 are connected to thermistors TH2-5 to TH2-7, respectively.
  • the conductor EG1 is connected to the four thermistors TH1-1 to TH1-4 to form a common conduction path.
  • the conductor EG2 is connected to the three thermistors TH2-5 to TH2-7 to form a common conduction path.
  • Conductor ET and conductor EG are formed along the longitudinal direction of heater 300 to the longitudinal end, and are connected to control circuit 400 at the longitudinal end of heater 300 via electrical contacts (not shown).
  • the sliding surface layer 2 is composed of a surface protection layer 308 having sliding properties and insulating properties (glass in this embodiment), and covers the thermistor TH, the conductor ET and the conductor EG, and the inner surface of the fixing film 202 It secures the slidability with the Further, the surface protective layer 308 is formed except for both longitudinal ends of the heater 300 in order to provide electrical contacts to the conductor ET and the conductor EG.
  • FIG. 3C is a plan view of the state in which the electrical contacts C are connected to the electrodes E as viewed from the heater holding member 201 side.
  • the heater holding member 201 is provided with a through hole at a position corresponding to the electrodes E (E 1 to E 7 and E 8-1 and E 8-2 ).
  • electrical contacts C (C 1 -C 7 and C 8-1 , C 8-2 ) are connected to electrodes E (E 1 -E 7 and E 8-1 , E 8-2 )
  • they are electrically connected by a method such as biasing by springs or welding.
  • the electrical contact C is connected to a control circuit 400 of the heater 300 described later via a conductive material (not shown) provided between the metal stay 204 and the heater holding member 201.
  • FIG. 4 is a circuit diagram of a control circuit 400 of the heater 300 according to the first embodiment.
  • a commercial AC power supply 401 is connected to the image forming apparatus 100. Power control of the heater 300 is performed by turning on / off the TRIAC 411 to the TRIAC 417.
  • the triacs 411 to 417 operate in accordance with the FUSER1 to FUSER7 signals from the CPU 420, respectively.
  • the drive circuits of the triacs 411 to 417 are omitted.
  • the control circuit 400 of the heater 300 has a circuit configuration capable of individually controlling the seven heat generating blocks HB 1 to HB 7 divided in the longitudinal direction independently by selectively controlling the seven triacs 411 to 417. ing.
  • the zero cross detection unit 421 is a circuit that detects the zero cross of the AC power supply 401, and outputs a zero cross signal to the CPU 420.
  • the zero cross signal is used for phase control of the TRIACs 411 to 417, detection of the timing of wave number control, and the like.
  • a method of detecting the temperature of the heater 300 will be described.
  • the temperature detection of the heater 300 is performed by thermistors TH (TH1-1 to TH1-4, TH2-5 to TH2-7) as temperature detection elements constituting the temperature detection unit.
  • the partial pressure between the thermistors TH1-1 to TH1-4 and the resistors 451 to 454 is detected by the CPU 420 as TH1-1 to TH1-4 signals, and the CPU 420 sets the TH1-1 to TH1-4 signals as temperatures. It is converting.
  • the partial pressure of the thermistors TH2-5 to TH2-7 and the resistors 465 to 467 is detected by the CPU 420 as TH2-5 to TH2-7 signals, and the CPU 420 detects TH2-5 to TH2-7.
  • the signal is converted to temperature.
  • the power to be supplied is calculated based on, for example, PI control (proportional integration control) based on the control temperature (control target temperature) TGTi of each heat generation block described later and the detected temperature of the thermistor. Furthermore, the power supplied is converted to a control level of phase angle (phase control) corresponding to the power or a wave number (wave number control), and the TRIACs 411 to 417 are controlled according to the control condition.
  • PI control proportional integration control
  • TGTi control target temperature
  • wave number control wave number control
  • the circuit operation of the relay 430 will be described.
  • the CPU 420 sets the RLON signal to the high state, the transistor 433 as a drive element is turned on, and the power supply voltage Vcc energizes the secondary coil of the relay 430, and the primary contact of the relay 430 is turned on.
  • the RLON signal is in the low state, the transistor 433 is turned off, the current flowing from the power supply voltage Vcc to the secondary coil of the relay 430 is cut off, and the primary contact of the relay 430 is turned off.
  • the operation of the relay 440 is similar. Note that resistors 434 and 444 limit the base current of the transistors 433 and 443.
  • the relay 430 and the relay 440 are used as a means for interrupting power to the heater 300 to ensure safety.
  • the operation of the safety circuit (power cut-off unit) using the relay 430 and the relay 440 (cut-off operation to cut off the power supply to the heating element) will be described.
  • the relay 430 is turned off to ensure safety.
  • the comparison unit 431 operates the latch unit (latch circuit) 432, and the latch unit 432 latches the RLOFF1 signal in the low state.
  • the transistor 433 When the RLOFF1 signal is in the low state, the transistor 433 is maintained in the OFF state even when the CPU 420 sets the RLON signal in the high state, so that the relay 430 can be maintained in the OFF state (safe state).
  • the comparison unit 441 operates the latch unit 442 to latch the RLOFF2 signal in the low state and latch it. , And the relay 440 is in a non-conductive state to ensure safety.
  • Heating Area FIG. 5 is a view showing the heating areas A 1 to A 7 in the present embodiment, and is shown in contrast to the recording material width of A4 size.
  • the recording material P passing through the fixing nip N is divided into sections at a predetermined time, and the heating area Ai is classified for each section.
  • division into sections is provided every 0.3 seconds on the basis of the leading edge of the recording material P as shown in FIG. 6A, the first section is section T 1 , and the second section is section T Let the second and third intervals be intervals T 3 and so on.
  • the size of the recording material P, a size of its ends passes through the heating area A 2 and the heating area A 6, and if the image is present in the position shown in FIG. 6 (A), the heating area A i
  • the classification is as shown in the table of FIG. 6 (B).
  • the heating region A 1, A 7 is classified to the recording material P does not pass the non-paper passing heated area AN (Non Paper Area).
  • the heating areas A 2 , A 3 and A 4 are classified into the image heating area AI (Image Area) because the image area passes, and the heating areas A 5 and A 6 are the non-image heating area because the image area does not pass. It is classified into AP (Paper Area).
  • the heating areas A 1 and A 7 are for the non-sheet heating area AN
  • the heating areas A 2 , A 3 and A 6 are for the non-image heating area AP
  • the heating areas A 4 and A 5 are respectively classified into the image heating area AI.
  • the heating region A 1, A 7 is in the non-paper passing the heating region AN
  • heating area A 2 ⁇ 6 are classified respectively in the non-image heating area AP.
  • the fixing member When the fixing member responsible for heat transfer frictionally slides in a high temperature state, wear occurs on the sliding surface, and the heat conductivity changes depending on the degree of wear. Due to this change, the fixing performance may not be stable throughout the life.
  • a fixing film surface layer as a fixing member, one coated with a fluorine resin is widely and generally used to prevent adhesion of toner.
  • fluorine resin such as PFA (tetrafluoroethylene-perfluoroalkylvinylether copolymer) or PTFE (polytetrafluoroethylene), which is a high heat resistant resin having excellent releasability.
  • the high temperature offset is a phenomenon that occurs because the toner on the recording material is excessively melted due to excessive supply of heat.
  • the excessively melted toner has a reduced viscosity, and when the recording material is separated from the fixing film, it is separated (separately separated) in the toner layer, and the toner remains on the fixing film.
  • the toner remaining on the fixing film is fixed on the recording material after one rotation of the fixing film, which may cause stains on the recording material. Curl is also generated due to excessive supply of heat to the recording material at the fixing nip.
  • the pressure roller which is a pressure member, repeats expansion and cooling by heating and contraction by cooling.
  • the tension applied to the PFA resin layer that forms the surface layer of the pressure roller is reduced due to the stress applied by repeated deformation when passing through the fixing nip.
  • the silicone rubber forming the elastic layer is deteriorated and the elasticity is lowered, the hardness of the pressure roller is lowered.
  • the hardness of the pressure roller decreases, the width of the fixing nip formed by applying a predetermined pressure between the fixing film and the pressure roller increases, and the time for the recording material to pass through the fixing nip increases, and the recording material Heating time to will be longer. As a result, the amount of heat supplied to the recording material and the toner increases, and a problem such as high temperature offset and curling occurs.
  • the corresponding technology for changing the condition of fixing execution according to the use condition of the image heating apparatus has been considered conventionally .
  • the conditions such as the fixing control temperature are changed with a predetermined number of sheets.
  • the amount of heat generation differs for each heat generation block because it responds to various image information. Therefore, the surface layer wear of the fixing film described above will be different for each heating block.
  • the uniformity of the fixing performance (fixability and glossiness) in the longitudinal direction orthogonal to the conveyance direction of the recording material is impaired, or the conveyance of the recording material becomes unstable.
  • PI control proportional integration control
  • the control temperature TGT i of each heat generation block is set according to the classification of the heating area A i determined by the flowchart of FIG. 7.
  • Classification of the heating area A i includes an image data sent from an external device such as a host computer (not shown) (image information) is performed based on the size information of the recording material P. That determines the passage of the recording material P of the heating area A i (S1002), if not pass classifies the heating area A i in the non-paper passing heated area AN (S1006).
  • the heating area A i is the recording material P passes determines whether the image range heating region A i passes (S1003), when passing through the classification the heating area A i and the image heating area AI (S1004) if not pass classifies the heating area a i and the non-image heating area AP (S1005).
  • TGT i T AI -TAF i -TAR (S1007).
  • T AI is a reference temperature of the image heating area, and is set as an appropriate temperature for fixing the unfixed toner image on the recording material P.
  • TAR is a correction term (Accumulation Rotation Time Information Revision) of accumulated rotation time information of the fixing device 200.
  • the reference temperature T AI is set to 220 ° C. It is desirable that the reference temperature T AI be suitable for the use conditions of the user. As the use conditions, information of the recording material P such as the thickness (thick, thin, etc.) and surface property (smooth, rough, etc.) as the size and type of the recording material P, and the use mode of the user such as the paper passing mode and environment It is desirable to adjust according to the information. In order to obtain information on the recording material P, the user is requested to input information from the operation unit (not shown) of the image forming apparatus 100, or a recording material type determination member (provided in the recording material P conveyance path of the image forming apparatus 100) Not shown) etc. Further, the reference temperature T AI may be adjusted in accordance with image information such as the image density, the pixel density, and the image arrangement.
  • image information such as the image density, the pixel density, and the image arrangement.
  • the correction term TAF i is a correction value of the fixing control temperature according to the accumulated heat generation amount of each heating block H i i located in each heating area A i , and the wear amount of the surface layer of the fixing film 202 is corrected as a temperature Is adopted as
  • the cumulative heat generation amount of each heat generation block HB i is defined as the product of the fixing control temperature and the time when fixing is performed, and the cumulative heat generation amount is added up as the cumulative heat generation count value CAFi (S1010) .
  • the correction term TAF i is calculated based on the count value CAFi (S1011). Detailed calculation of the count value CAFi and the correction term TAF i will be described later.
  • the correction term TAR is a correction value of the fixing control temperature according to the cumulative rotation time of the fixing device 200, and is adopted as a correction of the change of the hardness of the pressure roller 208.
  • the cumulative rotation time is added up as the cumulative rotation time Tsum (S1012).
  • the correction term TAR is calculated based on this time Tsum (S1013). Detailed calculation of the time Tsum and the correction term TAR will be described later.
  • T AP is a reference temperature of the non-image heating area, and by setting it as a temperature lower than the reference temperature T AI , the calorific value of the heat generation block HB i in the non-image heating area AP is lowered than that of the image heating area AI Power saving of the image forming apparatus 100 is achieved.
  • the reference temperature TAP 162 ° C.
  • Count CAFi computation time Tsum, correction term TAF i, the calculation of the correction term TAR, a previous heating area A i is the image heating area AI (S1004) if the same steps (S1014 ⁇ S1017).
  • T AN is the reference temperature in the non-paper feed heating zone, by setting a temperature lower than the reference temperature T AP, the heating value of the heating block HB i in the non-paper passing the heating region AN lower than the non-image heating area AP, Power saving of the fixing device 200 is achieved.
  • the conveyance of the recording material P can be stabilized by setting the reference temperature T AN to 128 ° C. or more in the fixing device 200 of the present embodiment.
  • T AP 128 ° C.
  • the reference temperature T AN should be determined in consideration of the configuration of the fixing device 200 including the viscosity characteristics of the grease, and is not limited to 128 ° C.
  • the surface layer of the fixing film 202 is abraded by the passage of the recording material P. The reason is that the difference in speed between the recording material P and the fixing film 202 is extremely small.
  • the pressure roller 208 transports the recording material P by the rotation of the pressure roller 208, and the friction between the recording material P and the fixing film 202 causes the fixing film 202 to It is configured to be driven to rotate.
  • the surface of the fixing film 202 is formed of a fluorine resin such as PFA or PTFE in order to obtain releasability, so the coefficient of friction is low.
  • the peripheral speed of the fixing film 202 is slightly smaller than the conveyance speed of the recording material P, but is slower.
  • the recording material P contains an inorganic material such as calcium carbonate or kaolin as a filler for making the recording material P itself white and opaque. These fillers act as an abrasive on the surface layer of the fixing film 202 and scrape the surface layer of the fixing film 202.
  • the speed at which the surface of the fixing film 202 wears is related to the surface temperature of the fixing film 202 and the time during which the temperature is applied.
  • fluorine resins such as PFA and PTFE are also softened and deformed by elastic deformation due to external stress and heating. If the temperature of the fixing film 202 rises and the temperature of the fixing film 202 is increased and the fluororesin is softened, it is considered that the filler of the recording material P bites deeper into the fixing film 202 when the fixing film N is pressed. In this state, the fixing film 202 and the recording material P are considered to be abraded due to a slight difference in speed, although they are very slight.
  • FIG. 8 shows the result of confirmation of wear by changing the temperature of the fluorine resin layer on the surface of the fixing film 202 by changing the fixing control temperature of the fixing device 200 in order to know the influence of the wear of the fluorine resin due to the temperature.
  • the horizontal axis represents the surface temperature [° C.] of the fixing film 202
  • the vertical axis represents the A4 size recording material P having a basis weight of 80 [g / m 2 ] when 1000 sheets (1K [sheets]) are passed.
  • the amount of wear [ ⁇ m] is shown. It can be seen that the amount of wear increases as the surface temperature of the fixing film 202 increases.
  • the surface layer wear of the fixing film 202 is greatly influenced by the surface temperature of the fixing film and the timing at which the fixing film 202 rubs against the recording material P, that is, the time when the recording material P passes through the fixing nip N. . Therefore, in the present embodiment, as a parameter for estimating the surface layer wear of the fixing film 202, the product of the fixing control temperature determining the surface temperature of the fixing film 202 and the passing time is defined.
  • the optimum fixing performance can be obtained by maintaining the surface temperature of the fixing film 202 at about 180.degree.
  • the surface film thickness of the fixing film 202 in the unused state of the present embodiment is set to 25 [ ⁇ m], and the fixing control temperature at which the surface temperature is 180 [° C.] is 220 [° C.]. It is obtained. Therefore, as described above, the reference temperature T AI is 220 ° C.
  • the fixing control temperature is set such that reliable fixing performance can be obtained even when the fixing property becomes severe due to the variation of parts generated during production of the fixing device 200, the use condition, and the like. . That is, the reference temperature T AI 220 [° C.] is determined in consideration of the condition that the fixability becomes severe.
  • the surface temperature of the fixing film 202 becomes high. Curling will occur.
  • the surface temperature of the fixing film 202 is 180 [° C. even if the surface layer of the fixing film 202 is worn and becomes thin. It is necessary to maintain Therefore, in the first embodiment of the present invention, it is assumed in accordance with the surface layer thickness of the fixing film 202 facing the fixing control temperature of the heating block each HB i to the heating block HB i. Accordingly, it is an object of the present invention to always obtain optimum fixing performance.
  • the fixing control temperature TGT i at the time of executing fixing and the passing time of the recording material P are stored in the non-volatile memory 410 (see FIG. 1) as a storage unit (storage unit), and sequentially calculated and updated By doing this, the film thickness of the fixing film 202 is estimated by calculation.
  • the non-volatile memory 410 may be provided in at least one of the image forming apparatus 100 and the fixing device 200.
  • the relationship between the count value CAFi and the correction term TAF i will be described later.
  • the fixing device 200 of this embodiment uses a heater 300 having a plurality of heating elements divided in the longitudinal direction of the heater. Therefore, the count value CAFi, by and request for each of the heating blocks HB i, it is assumed that independently controlled as a fixing control temperature TGT i of each of the heating blocks HB i.
  • count value CAFi in the case where a pattern having an image on the entire surface is formed on A4 size recording material P is calculated.
  • Heating area A i is the image heating area AI next because there is an image on the entire surface
  • the reference temperature is a reference temperature T AI.
  • the control unit (not shown) of the image forming apparatus 100 is controlled by 16 bits, in order to store the count value CAFi in 16 bits, the value obtained by the above calculation is divided by 1000 and the value rounded up is used as the count value CAFi. There is. Therefore, it is calculated as 1 by rounding up 0.2816 obtained by dividing 281.6 by 1000.
  • Such calculation of the cumulative heat generation count value CAFi is calculated and updated every time fixing is performed through the use of the fixing device 200.
  • the control temperature is TGT i .
  • the pressure roller 208 which is the basis of the calculation of the correction term TAR will be described. Since the pressure roller 208 is pressed with a constant pressure against the heater 300 via the fixing film 202, the width of the fixing nip N becomes larger as the hardness is smaller (softer). When the width of the fixing nip N is increased, the time for which the recording material P passes through the fixing nip N becomes long, the amount of heat transferred from the fixing film 202 to the recording material P and the toner increases, and the toner can be melted more. On the other hand, when the hardness is high (hard), the width of the fixing nip N becomes thin.
  • the hardness of the pressure roller 208 becomes small (soft) by variation in hardness (tolerance) that occurs when producing the pressure roller 208, and by repeatedly performing fixing. In consideration of the range of change in hardness, it is necessary to set such that reliable fixing performance can be obtained at the upper and lower limits of the hardness tolerance standard.
  • the hardness change of the pressure roller 208 will be described.
  • the hardness of the pressure roller 208 is obtained by the elasticity of the silicone rubber forming the elastic layer 210 and the tension of the fluorine resin layer forming the surface layer.
  • the change in hardness occurs when the pressure roller 208, which has been heated to perform fixing, receives a load for conveying the recording material P while repeatedly forming the fixing nip N.
  • FIG. 9 shows the change in hardness of the pressure roller 208 as a result of sheet passing.
  • the horizontal axis of the graph is the rotational driving time of the pressure roller 208 by sheet passing, and it takes about 40 [hours] to pass about 50000 [sheets].
  • the vertical axis shows the hardness change [°].
  • the change in hardness of the pressure roller 208 is large immediately after the start of use from the new state (section a), but becomes smaller after sheet passing (section b). This tendency is due to the following.
  • the pressure roller 208 transports the recording material P, so the outer diameter of the pressure roller 208 affects the transport speed of the recording material P.
  • the conveyance speed of the recording material P is increased.
  • the conveyance speed of the recording material P is increased. Will be late.
  • the recording material P present in the fixing nip N is a transfer nip consisting of the photosensitive drum 19 and the transfer roller 20 as a roller pair on the upstream side of the fixing nip N, and a roller pair on the downstream side.
  • the sheet is also nipped and conveyed by the discharge roller pair 26.
  • the roller pair that has the largest influence on the conveyance of the recording material P is the fixing nip N with the largest pressure. Therefore, it is desirable that the variation (swing) of the transport speed at the fixing nip N be as small as possible, and the outer diameter tolerance of the pressure roller 208 is required to be as small as possible in the mass production. Therefore, in order to make the outer diameter tolerance small and stable, at the stage of manufacturing the pressure roller 208, a PFA tube having an inner diameter smaller than the outer diameter of the elastic layer 210 is coated on the elastic layer 210, and the elastic layer 210 is formed by the PFA tube. It has a configuration to tighten.
  • the elastic layer 210 is a layer of silicone rubber having a linear expansion coefficient of 250 to 450 [10 ⁇ 6 / K] and having a thickness of 2.5 [mm], and therefore, expands as the temperature rises.
  • the PFA resin layer which is a fluorine resin layer as a release layer, has a linear expansion coefficient of 100 to 120 [10 ⁇ 6 / K], which is smaller than that of silicone, and a film thickness of 50 ⁇ m. For this reason, when the silicone rubber elastic layer 210 expands, the PFA resin layer is stretched. After the fixing is performed, when the fixing device 200 cools, the silicone rubber elastic layer 210 which has expanded due to the temperature rise is contracted due to the compression set which is the characteristic of the rubber.
  • the stretched PFA resin layer has a plastic deformation which is a characteristic of the resin, so that the shrinkage change becomes small, and the stretched PFA resin layer remains in the stretched state.
  • the tension of the PFA resin layer becomes small. Therefore, the pressure roller hardness obtained by the tension of the PFA resin layer when the pressure roller is new is lowered. This decrease in hardness occurs largely at the beginning as shown by section a in FIG.
  • the subsequent hardness change is due to the thermal stress caused by the temperature increase of the pressure roller 208 and the deterioration of the silicone rubber due to the deformation and load caused by repeatedly forming the fixing nip N and conveying the recording material P. .
  • the change in hardness is smaller than the decrease in hardness due to the initial tension reduction, and changes like a slow section b.
  • FIG. 10 shows the result of confirming the relationship between the hardness of the pressure roller 208 and the width of the fixing nip N in this embodiment.
  • the horizontal axis of the graph is the pressure roller hardness [°]
  • the vertical axis is the width [mm] of the fixing nip N. It can be seen that the width of the fixing nip N is increased by 0.4 [mm] when the pressure roller hardness decreases by 2 [°].
  • FIG. 11 shows the results of confirmation of the width of the fixing nip N and the fixing control temperature.
  • the horizontal axis of the graph is the width [mm] of the fixing nip N
  • the vertical axis is the fixing control temperature [° C.] at which the optimum fixing performance is obtained.
  • time Tsum accumulation of the rotation time of the pressure roller 208 according to the execution of fixing is calculated as time Tsum, stored in the non-volatile memory 410, and calculated and updated sequentially.
  • the correction term TAR is corrected as the fixing control temperature TGT i according to the change in width of the fixing nip N.
  • Time Tsum is the same time in the longitudinal of the pressure roller 208, not able in this embodiment to divide the correction term TAR each heating block HB i. However, the correction term TAR i may be calculated for each heating block HB i .
  • the time Tsum is defined as the time when the pressure roller 208 is rotationally driven.
  • the image forming apparatus 100 and the fixing device 200 used in the present embodiment have the following steps.
  • Pre-rotation A preparation step of an image forming process for stabilizing the potential of the photosensitive drum 19 and stabilizing the rotation of the laser scanner 21, an image formed on the photosensitive drum 19, and an image on the photosensitive drum 19 transferred
  • a step of conveying the recording material P to the image heating apparatus 100 is included. During this process, the process of raising the temperature of the fixing film 202 and the pressure roller 208 is also included.
  • Passage In this process, the recording material P carrying the unfixed toner is passed through the fixing nip N for fixing.
  • Paper interval This is a process during conveyance of the recording material P and the next recording material P when continuous sheet passing is performed.
  • Post-rotation A step of discharging the recording material P out of the apparatus and shifting the image forming apparatus 100 to the standby state.
  • the required time in each process is as follows. Previous rotation: 4.3 [seconds] Paper passing: 1.28 [seconds] (A4 size 297 [mm]) Paper interval: 0.145 [seconds] Post-rotation: 0.97 [seconds]
  • the time Tsum obtained as the time when the fixing device 200 rotationally drives including the above-described processes is used as the correction term TAR of the cumulative rotation time information shown in Table 2. Since the hardness drop of the pressure roller 208 is large at the initial stage of a new product, the correction of the fixing control temperature TGT i in the correction term TAR by the time Tsum is made large at the beginning of the start of use of the fixing device 200. (Table 2)
  • the fixing control temperature TGT i which is optimum for the state of the fixing device 200 according to the use condition of the user. As this, each heat generation block HB i is controlled.
  • the fixing control temperature TGT i is corrected as follows when the fixing device 200 is used, the count value of accumulated heat generation CAFi is 22000, and the accumulated rotation time Tsum is 32 hours.
  • the correction of the fixing control temperature TGT i will be described in the case where the image pattern shown in FIG.
  • the sections T 1 to T 3 of the heating area A 2 to A 5 parts are classified into the image heating area AI where the toner image is located, and are controlled at a temperature of 220 ° C. as the reference temperature T AI .
  • the heating areas A 1 , A 6 , and the sections T 1 to T 5 of 7 parts of A 7 and the sections T 4 to T 5 of A 2 to A 5 are classified into non-image heating areas AP without toner image. It is controlled at 162 [° C.] as AP .
  • CAF i reference temperature T AI * required time of section T i + reference temperature T AP * from the required time interval T i
  • the correction term TAF i is a correction of ⁇ 2 ° C.
  • the correction term TAF i is a correction of ⁇ 2 ° C.
  • the image heating region AI fixing control temperature TGT i have the image in the heating area A i is increased, a larger correction to lower the fixing control temperature TGT i, the optimum in consideration of the surface wear of the fixing film 202 Correction.
  • the correction term TAR associated with the change in hardness of the pressure roller 208 is corrected to -1 [° C.] after 575 sheets.
  • the correction term TAR after 1149 sheets is a correction of -2 ° C.
  • the correction term TAR after 9192 sheets is a correction of -3 ° C.
  • the final correction correction term TAR is obtained after the 455958 sheets, and the correction is -4 [° C.].
  • Table 3 shows the above. (Table 3)
  • correction term TAF i the correction term TAR both correction is no fixing control temperature
  • TGT i a reference temperature corresponding to the presence or absence of each of the heating blocks HB i of the image.
  • the correction term TAR is a correction of ⁇ 1 [° C.]
  • the fixing control temperature TGT i reference temperature ⁇ 1 [° C.].
  • the correction term TAR is a correction of ⁇ 2 ° C.
  • the fixing control temperature TGT i reference temperature ⁇ 2 ° C.
  • the correction term TAR is a correction of -3 [° C.]
  • correction terms TAF i and correction terms TAR are obtained by continuously passing three sheets of the image pattern shown in FIG. 12A onto the A4 size recording material P and repeating the standby state.
  • Correction Term TAF The i correction term TAR changes depending on the image pattern, the size of the recording material P, the condition of sheet passing, and the like.
  • the correction term TAF i and the correction term TAR are corrected according to the change of the fixing film 202 and the pressure roller 208.
  • the correction may be performed by only one of them.
  • the surface layer abrasion amount of the fixing film 202 corresponding to the heating areas A 2 , A 3 , A 4 and A 5 increases, and corresponds to the heating areas A 1 , A 6 and A 7 .
  • the surface wear decreases.
  • FIG. 13 shows the result of measuring the surface layer wear amount of the fixing film 202.
  • the horizontal axis of the graph indicates the heating area A i (heating block HB i).
  • the vertical axis represents the surface film thickness of the fixing film 202 at the 50000 sheet passing time, and indicates that the larger the numerical value, the smaller the surface layer wear.
  • heating the heating area A 2 ⁇ 5 the fixing control temperature TGT i have images were highly controlled area A i it is found that the surface layer wear often.
  • the PFA resin layer of the surface layer of the fixing film 202 located in the heat generation block HB i (multiple) whose accumulated heat generation amount is large becomes thin.
  • the PFA resin layer of the fixing film 202 surface layer located in the heat generation block HB i (small) having a small accumulated heat generation amount is thicker than the PFA resin layer of the fixing film 202 surface layer located in the heat generation block HB i (multiple) .
  • Table 4 shows the measurement results of the hardness of the pressure roller 208 and the width of the fixing nip N accompanying sheet passing.
  • the hardness is a value measured by an Asker-C hardness tester (weight of 9.8 N, taken as an average value of 12 measurement values obtained by measuring 3 points in the longitudinal direction and 4 points in the circumferential direction of the pressure roller 208). (Table 4)
  • the heating areas A 1 to A 7 of the section T 1 are controlled by the fixing control temperature TGT i with respect to the image heating area reference temperature, and the subsequent sections T 2 to T 5 are The fixing control temperature TGT i is controlled based on the reference temperature of the non-image heating area. (Table 5)
  • the comparative example is controlled by the same fixing control temperature TGT i regardless of the heat generation block HB i , the heating areas A 1 , A 6 , A 7 and the heating areas A 2 , A 3 , which have different surface layer thicknesses.
  • the fixing control temperatures TGT i of A 4 and A 5 are controlled at the same temperature. Therefore, the fixing performance of the heating areas A 1 , A 6 and A 7 with little surface wear is not a problem, but is supplied in the heating areas A 2 , A 3 , A 4 and A 5 where the surface wear is large and the surface is thin. Excess heat.
  • the fixing nip width may be large, which may cause high temperature offset.
  • the fixing control temperature TGT i is corrected corresponding to the increase of the width of the fixing nip N. Furthermore, in addition to this, a correction that reduces the calorific value of the heat generation blocks HB 2 , HB 3 , HB 4 , and HB 5 corresponding to the heating areas A 2 , A 3 , A 4 , and A 5 where the surface film of the fixing film 202 is highly worn. Add Thus, the occurrence of high temperature offset can be suppressed.
  • correction is performed to reduce the amount of heat generation of the heat generation block HB i of the heating area A i corresponding to the end of the recording material P.
  • the amount of heat supplied is appropriate, and the curling phenomenon can be suppressed.
  • the correction of the fixing control temperature suitable for the change of the physical properties of the fixing film 208 and the pressure roller 208 generated according to the use condition of the user is executed.
  • an image heating apparatus can be obtained that can always obtain stable fixing performance regardless of the use conditions of the user. That is, in an image heating apparatus using a heating source that controls heat generation of a plurality of heating elements according to image information, depending on the use conditions of the user, a difference in physical properties occurs in the longitudinal direction of each member forming the image heating apparatus There is.
  • the amount of heat supplied to the recording material and the toner can be controlled in the longitudinal direction by controlling the calorific value of the plurality of heating elements independently in accordance with the difference in the physical properties generated in the longitudinal direction. It becomes possible to be constant regardless of the difference. Therefore, according to this embodiment, it is possible to provide an image heating apparatus capable of obtaining stable fixing performance regardless of the use condition of the user.
  • the cumulative heat generation amount of each heat generation block HB i is defined as the product of the control target temperature at the time of execution of the fixing heating operation and the passing time of the recording material.
  • the product of the amount of power supplied to each heating element and the passing time of the recording material may be accumulated and acquired.
  • Example 2 A second embodiment of the present invention will be described.
  • Example 2 relates to control of suppressing abrasion of the surface layer of the fixing film 202 corresponding to the heating area A i where the accumulated heat generation amount is increased, as an application example of Example 1.
  • the same reference numerals as in the first embodiment denote the same parts in the second embodiment, and a description thereof will not be repeated. Matters not particularly described in the second embodiment are the same as in the first embodiment.
  • the PFA resin layer on the surface of the fixing film 202 corresponding to the heat generation block HBi (multiple) whose accumulated heat generation amount has increased is thinner.
  • the PFA resin layer corresponding to the heat generation block HBi (small) having a small accumulated heat generation value is less worn and is thicker than the PFA resin layer of the heat generation block HBi (multiple) .
  • the heat capacity of the PFA resin layer is also different. If the heat capacity of the PFA resin layer of the fixing film 202 is different, the following problems may occur.
  • the time required to raise the surface temperature of the fixing film 202 to 180 ° C. which is a fixable temperature, differs.
  • the time required for the temperature rise is shorter for the heat generating block HB i ( more ) in which the PFA resin layer is thinner than for the heat generating block HB i ( less ) in which the PFA resin layer remains thick.
  • current supply to the heating block HB i heater 300 is intended to be started at the same time at a predetermined timing.
  • the heat generation block HB i (more) and the heat generation block HB i ( less ) are simultaneously energized, the heat generation block HB i ( more ) has the surface temperature of the fixing film 202 than the heat generation block HB i ( less ). It will reach 180 [° C] quickly.
  • the result of observing the surface temperature of the fixing film 202 is shown in FIG.
  • the power control of the heat generation block HB i (multiple) that has reached the target temperature earlier is the fixing control temperature targeted by the detection temperature of the thermistor TH (low) located in the heat generation block HB (small). It will be continued until TGT i is reached. Therefore, the heat storage amount of the portion including the portion of the pressure roller 208 corresponding to the heat generating block HB i (multiple) increases. As a result, in the portion corresponding to the heat generating block HBi (multiple) , it becomes disadvantageous for the occurrence of high temperature offset due to the excess of the heat supply and the wear of the PFA resin layer.
  • the difference between the heating block HB (multi) which PFA resin layer of the fixing film 202 is presumed to thin, thick and heat block HB inferred (small) is arbitrarily set in the fixing device 200 If the value exceeds the predetermined value, the following control is performed. That is, the amount of supplied heat is delayed by delaying the start timing of energization to the heat generation block HB i (multiple) than the heat generation block HB i (small) and reducing the timing at which each heat generation block reaches a predetermined target temperature. Control to make it appropriate.
  • the count value CAFi of the cumulative heat generation of the first embodiment is used to determine the energization start timing, the determination may be made using a value indicating a cumulative heat generation amount defined separately. By this control, the excess amount of heat supply is suppressed, and the avoidance of high temperature offset and the reduction of wear of the PFA resin layer are realized.
  • the energization start timing of the heat generation block HB i (multiple) is delayed with respect to the energization start timing of the heat generation block HB (small) .
  • the heat generation block HB i (more ) Is delayed in accordance with Table 6. (Table 6)
  • the energization start timing of the heat generation block HB (multiple) is delayed by 0.4 [seconds] from the heat generation block HB (small) which is energized at the energization start timing which is the reference of the fixing device 200.
  • the delay time of the energization start timing should be determined in consideration of the configuration of the fixing device 200, and is not limited to the numerical values in Table 6.
  • Example 2 The result of having verified the effect of Example 2 which enforces the above control is shown.
  • the same image pattern (FIG. 12A) as that described in Example 1 is repeated on A4 size recording material P for three sheets continuously, on standby, and three sheets are continuously repeated.
  • the fixing device 200 used As the fixing film 202 in which surface layer wear has progressed, the fixing film 200 used is one obtained by passing up to 100,000 sheets in the description of the first embodiment.
  • the count value CAF 2 to 5 of the heat generation block HB 2 to 5 which is the heat generation block HB (multiple) is 25956, and the heat generation block HB (small) HB 1 having a small cumulative heat value, the count value CAF 1 of HB 6 to 7 , CAF 6 ⁇ 7 are each 20736.
  • the difference is 5220.
  • the delay time of the energization start timing at the difference 5220 of the count value CAFi is 0.4 seconds in accordance with Table 6, and delays the energization start timing to the heat generation blocks HB 2 to 5 by 0.4 seconds.
  • the timing when the surface temperature of the fixing film 202 reaches 180 [° C.] at which the fixing film 202 can be fixed is delayed by the heat generation block HB by delaying the timing for starting the energization of the heat generation block HB (multiple) . It becomes the same in (f) and heat generation block HB (f) . That is, it is possible to make the heat storage amount at the position corresponding to the heat generation block HB (multiple) proper.
  • the result of having confirmed abrasion of PFA resin layer in FIG. 16 is shown.
  • the horizontal axis of the graph represents the number of sheets of the recording material P (sheets), and the vertical axis represents the surface layer thickness of the fixing film 202.
  • the amount of abrasion of the PFA resin layer of 100000 sheets or less is reduced compared to the one controlled by the energization start timing of the comparative example after 100000 sheets according to the control in the second embodiment. I was able to confirm that it was done.
  • control is performed to delay the current application start timing to the heat generation block HB (multiple) , but the surface temperature of the fixing film 202 is increased to 180 ° C. at which fixing ability can be obtained as shown in FIG. It was confirmed that there was no problem with fixability because it was done.
  • the second embodiment has been described as suppressing high temperature offset even when a difference occurs in the surface film thickness of the fixing film 202, but various kinds of recording materials P used in the image forming apparatus 100 are used.
  • a recording material P referred to as glossy paper which can provide an image quality equivalent to that of a photo.
  • the image quality of glossy paper is influenced by the state of the fixing device 200, and temperature unevenness on the surface of the fixing film 202 may affect the uniformity of gloss of a fixed toner image.
  • the following can be considered as an application example of the second embodiment.
  • the surface temperature of the fixing film 202 becomes a fixable temperature
  • the surface temperature is surely equalized to a uniform temperature by not conveying the immediate recording material P to the fixing nip but by delaying the conveyance timing.
  • Example 2 in accordance with the surface wear of the fixing film 202, for adjusting the energization start timing of each heating block HB i.
  • Example 3 A third embodiment of the present invention will be described. As described in the first embodiment, the change in hardness of the pressure roller 208 associated with sheet passing becomes large at the beginning. When a large number of similar patterns are passed under the conditions, the hardness of the elastic layer locally decreases in the longitudinal direction of the pressure roller 208, and the fixing nip N becomes uneven in the longitudinal direction of the pressure roller I will.
  • the third embodiment in order to take measures against this, the difference in hardness between the heat generating block having a large heat generation history and the pressure roller 208 located in a small heat generating block is suppressed. Thereby, stable conveyance of the recording material P is realized.
  • Example 1 For Example 1, first, a correction term TAR cumulative heating history information from the accumulated rotation time Tsum, calculates the correction term TAF i of cumulative heat generation history information from the cumulative amount of heat generated. Then, by performing the correction of the heating value of each heating block HB i from the calculation result, thereby suppressing partial reduction in the hardness of the pressure roller 208.
  • the correction of the amount of heat generation suppresses the partial hardness reduction of the pressure roller 208
  • the difference in hardness between the pressure roller 208 of the heat generation block having many heat generation history and the heat generation block having less heat generation history is reduced. It is not possible.
  • the partial hardness difference in the longitudinal direction of the pressure roller 208 is greater than or equal to the predetermined hardness difference, the following occurs.
  • the center of the fixing nip N is slightly thinner than the end in the longitudinal direction, and the recording material nipped and conveyed by the fixing nip N is used.
  • the heater in which the heating element is divided controls each heating element independently, a partial hardness reduction of the pressure roller occurs, and as a result, the fixing nip as shown in FIG. 17A. There is also a possibility that the shape of N can not be maintained.
  • the fixing nip N has a center portion thicker than the end portion.
  • the speed of the recording material P nipped and conveyed in such a shape of the fixing nip N is faster at the central portion than at the longitudinal end, and the force for moving the recording material P to the longitudinal central portion acts to perform recording. Wrinkles occur on the material P.
  • the amount of heat generated by the heat generation blocks HB 1 and HB 2 at the longitudinal end (hereinafter referred to as the image side end) of the toner image exists. Become more.
  • the hardness reduction amount of the image side end of the pressure roller is the opposite longitudinal end where the image does not exist with the heat generation blocks HB 3 , HB 4 and HB 5 at the central part (hereinafter, the image side end).
  • the heat generation block HB 6 becomes larger than HB 7 .
  • the width of the fixing nip N is such that the image side end> the image side end> the center, and the fixing nip N becomes uneven in length.
  • the speed of the recording material P nipped and conveyed by the fixing nip N is higher at the image side end than at the opposite image side end, and the recording material P is twisted in the fixing nip. .
  • the trailing edge of the image side end portion of the recording material P moves to the end when the recording material P passes the transfer nip.
  • the film jumps to the fixing film 202 side.
  • the recording material P on which the toner image is formed is conveyed to the fixing nip N in a one-loop state twisted with respect to the fixing nip N, and thus rubs against the fixing film 202 and the unfixed toner image is disturbed.
  • the "image rubbing" phenomenon occurs by fixing as it is.
  • the image patterns (A) and (B) of FIG. 18 are formed on the A4 size recording material P, and 350,000 sheets are continuously passed while the stop state is repeated 150000 sheets.
  • the endurance test was done.
  • the width of the fixing nip N and the hardness of the pressure roller 208 were measured.
  • 50 sheets of the recording material P left to stand in a high temperature and humidity environment of 30 ° C./80% for 2 days are continuously fed as a condition where wrinkles of the recording material P are easily generated. P wrinkles, image rubbing was confirmed.
  • the hardness of the pressure roller 208 is an Asker-C hardness meter (weight of 9.8 N, taken as an average value of measurement values obtained by measuring four circumferential positions of the pressure roller 208 located in each heating block HB i ) It is a measured value in In the method of measuring the width of the fixing nip N, first, the recording material P having a toner image on the entire surface is passed with the pressure roller 208 facing, and the sheet is nipped and conveyed by the fixing nip N. Pass the paper to the left and leave a gloss mark of the fixing nip N on the recording material.
  • the hardness reduction of the central portion in the longitudinal direction of the pressure roller 208 located in the heat generating blocks HB 3 , HB 4 and HB 5 is smaller than that of the end portion. large. Therefore, the width of the fixing nip N also increases in the central part in the longitudinal direction, and the shape of the fixing nip N becomes thicker in the central part than at the end, and becomes an uneven fixing nip N in the longitudinal direction. I understand that it is going. As described above, in the fixing nip N in which the center portion is thicker and uneven than the end portion, the transportability of the recording material P becomes unstable, and therefore the recording material P wrinkles.
  • each of the heat generation blocks HB 1 and HB 2 at the longitudinal end and the heat generation blocks HB 6 and HB 7 at the longitudinal end opposite to the HB 2 and the heat generation blocks HB 3 , HB 4 and HB 5 at the longitudinal center The average value of the hardness of the pressure roller 208 is calculated corresponding to the position of. Furthermore, the average value of the width of the fixing nip N is also calculated. The average fixing nip N width when the width of the fixing nip N at the center is subtracted from the width of the fixing nip N at the end, and the hardness of the fixing nip N at the center from the calculated hardness of the fixing nip N at the end. The average pressure roller 208 hardness is calculated when.
  • Table 9 The results and the occurrence of recording material P wrinkles and image rubbing are summarized in Table 9. In the table, "o" indicates that there is no problem in the transportability of the recording material P, and that the recording material P wrinkles and the image rubbing are not generated.
  • the third embodiment controls the amount of heat generation of the divided heat generation block so as to maintain the shape of the fixing nip N as a thin shape at the central portion compared with the longitudinal end, and thereby the recording material P wrinkles and the image rubbing. This realizes a stable transportability of the recording material P which does not occur.
  • Control method for realizing the transport of the stable recording material P first, obtains the correction value from the sum of the correction term TAF i correction term TAR and cumulative heat generation history information of the cumulative heat generation history information of each of the heating blocks HB i.
  • the method of heat generation of the heat generation block HBi (small amount) with a small heat generation history is controlled by the value calculated from the difference between the maximum value and the minimum value between the heat generation blocks of the correction value, and the difference of the heat generation history is reduced.
  • Table 9 The result of having summarized the result of Table 9 and the maximum difference of the correction value between each exothermic block is shown in Table 10.
  • Regard correction term TAR correction term TAF i uses a calculation method described in Example 1.
  • the difference between the correction value of the heat generation block HB i (large) with many heat generation histories and the heat generation block HB i (small) with small heat generation histories which is the maximum difference between correction values
  • the difference between the correction values can be suppressed to 2 or less by performing control to increase the accumulated heat generation amount of the heat generation block HBi (small) of the present embodiment.
  • the control of the third embodiment will be described with reference to the flowchart of FIG.
  • the sum of the correction term TAR of each heat generation block HB i and the correction value of the correction term TAF i is calculated, and when the difference between the heat generation block HB i is 2 or less, the process moves to S2001 and the control similar to that of the first embodiment Do. If the difference between the heat generating blocks HB i is larger than 2, the process shifts to S2002 (S2000). Less heat generation history heating block HB i determines whether or not the recording material P passes through the (small) (S2002), if not pass classifies the heating area A i in the non-paper passing heated area AN (S2006).
  • the recording material P passes the heat generation block HBi (small) with a small heat generation history, it is determined whether the image range passes the heat generation block HBi (small) (S2003).
  • Heating block HB i (small) a case where the image range passes the heating block HB i (small) and classify image heating area AI (S2004), if not pass the heating block HB i (small) non-image heating area AP And (S2005).
  • control is performed to increase the heat generation history of the heat generation block HB i (small) having a small heat generation history.
  • the temperature of the heat generation block HBi small amount
  • heat may be transmitted to the fixing film 202 of the image heating area AI having a toner image, whereby high temperature offset may occur.
  • the fixing control temperature TGT i of the non-image heating area AP is set to 230 ° C. (S2008).
  • Example 3 which implements the above control is shown.
  • the image pattern shown in FIG. 12A is formed on the recording material P of A4 size using the image forming apparatus 200 described in the first embodiment, and three sheets are continuously fed and stopped while repeating up to 150,000 sheets. The endurance test was done. Then, the width of the fixing nip N and the hardness of the pressure roller 208 were measured. By doing so, heating block HB 3 , HB 4 , HB 5 at the center of the center, heating block HB 1 , HB 2 near the longitudinal end, heating block HB 6 near the longitudinal end on the opposite side, HB 7 respectively. The average hardness of the corresponding pressure roller and the average fixing nip width were measured.
  • Example 1 is used as a comparative example, and the respective results are shown in Table 11.
  • "o" indicates that there is no problem in the transportability of the recording material P, and that the recording material P wrinkles and the image rubbing are not generated.
  • Example 1 when the width of the fixing nip N when passing 150,000 sheets is compared, the fixing nip N becomes thicker at the center compared to the longitudinal end of the fixing nip N, and the recording material P wrinkles It has occurred.
  • Example 3 the calorific value of the heat generation blocks HB 1 , HB 2 , HB 6 and HB 7 having a small heat generation history is increased to reduce the difference between the heat generation blocks HB 3 , HB 4 and HB 5 having a large heat generation history. By setting the value to a predetermined value or less, the occurrence of the recording material P wrinkles could be suppressed.
  • the generation of the wrinkles of the recording material P is a problem, but depending on the state of the hardness of the pressure roller 208, the following cases may be made.
  • the image pattern of FIG. 18B is passed such that the hardness of the longitudinal end of the pressure roller 208 decreases, the hardness of the pressure roller of the image side end of the pressure roller 208 decreases, and the pressure roller The conveying force near the longitudinal end of 208 is significantly higher than that at the center. Then, it is conceivable that a single loop may occur in the recording material P discharged to the outside of the image forming apparatus 100.
  • Example 1 when passing 150000 sheets, the nip width is such that the image side end portion is thicker than the central portion of the fixing nip N.
  • Example 3 the calorific value of the heat generation blocks HB 3 , HB 4 , HB 5 , HB 6 , and HB 7 having a small heat generation history is increased to reduce the difference between the heat generation blocks HB 1 and HB 2 having a large heat generation history.
  • the occurrence of image rubbing of the recording material P can be suppressed.
  • the third embodiment by performing the correction of the fixing control temperature suitable for the change in the hardness of the pressure roller 208 caused by the use condition of the user, the conveyance performance is always stable regardless of the use condition of the user.
  • the image heating device can be
  • 200 fixing device
  • 202 fixing film
  • 208 pressure roller
  • 300 heater
  • 305 substrate
  • 302a, 302b heating element
  • thermistor 400 ...
  • Control circuit HB1 to HB7 ... Heat generation block

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fixing For Electrophotography (AREA)

Abstract

基板305の長手方向に分割された複数の発熱ブロックを選択的に発熱可能なヒータ300を有する定着装置200において、通電制御部400は、定着動作を行った際における、複数の加熱領域のそれぞれにおける累積発熱量と、加圧ローラ208の累積回転時間と、定着ニップ部を通過する記録材の情報と、を取得し、取得した情報に基づいて、発熱体302a、302bの通電を制御することを特徴とする。

Description

像加熱装置及び画像形成装置
 本発明は、電子写真方式や静電記録方式を利用した複写機、プリンタ等の画像形成装置に搭載する定着器、あるいは記録材上の定着済みトナー画像を再度加熱することによりトナー画像の光沢度を向上させる光沢付与装置、等の像加熱装置に関する。また、この像加熱装置を備える画像形成装置に関する。
 像加熱装置として、エンドレスベルト(エンドレス定着フィルムとも言う)と、エンドレスベルトの内面に接触し通電により発熱するヒータと、エンドレスベルトを介してヒータとともにニップ部を形成するローラと、を有する装置がある。この像加熱装置は熱容量が小さいためクイックスタート性や省電力性に優れるという特徴を持つ。近年、複写機やレーザープリンター等の画像形成装置に具備される像加熱装置において、消費電力の低減やウェイト時間短縮のニーズがある。像加熱装置を定着実行可能な状態とする立ち上げ時間の短縮は、大きなエネルギーを投入することでも可能となるが、省エネルギー化の観点では好ましくない。そこで、像加熱装置を形成する各部材の熱容量を小さくする、熱伝導性を高める手段として熱伝達を担う部材の厚みを薄くする、または、より高熱伝導性の材料を用いるなどの改良を実施することで、従来の像加熱装置と比較して省エネルギー化を進めてきている。更なる省エネとしては、記録材上に形成されたトナー画像部を選択的に加熱する構成(特許文献1)が提案されている。この構成は、ヒータの発熱範囲をヒータの長手方向(記録材Pの搬送方向に直交する方向)に対し、複数個の発熱ブロック(加熱領域)に分割した分割ヒータである。分割ヒータは、記録材上の画像の有無に応じて、各発熱ブロックを選択的に発熱制御するものである。すなわち、記録材上に画像が無い部分(非画像部)においては、発熱ブロックへの通電を停止することで省電力化を図っている。このように、部材の小径化や薄肉化による低熱容量化、部材の高熱伝導化や断熱化、および必要な画像部のみを選択的に加熱する、など様々な観点の改良や構成変更を行うことにより、省エネルギー化を進めようとしている。
特開平6-95540号公報
 しかしながら、像加熱装置全体の低熱容量化や部材の高熱伝導化を進めるに従って、定着部材の表層摩耗や加圧部材の硬度変化といった像加熱装置の変化に起因する印字品質低下や耐久性が課題となってきた。
 本発明の目的は、様々な画像や記録材など、ユーザの使用条件が違った場合でも、像加熱装置の寿命を通して常に均一な定着性能や安定した記録材搬送性を得ることができる技術を提供することである。
 上記目的を達成するため、本発明の像加熱装置は、
 基板及び前記基板上に設けられた前記基板の長手方向に並ぶ複数の発熱体を有するヒータと、内面が前記ヒータと接触しつつ回転する筒状のフィルムと、前記フィルムの外面と接触して回転する加圧部材と、を有し、前記フィルムと前記加圧部材との間のニップ部で記録材を挟持搬送しつつ記録材に形成された画像を前記ヒータの熱を利用して加熱する像加熱部と、
 前記画像の情報に応じて、複数の加熱領域を選択的に加熱すべく、前記複数の発熱体の通電を選択的に制御する通電制御部と、
を備える像加熱装置において、
 前記複数の加熱領域のそれぞれにおける前記発熱体の累積発熱量と、前記加圧部材の累積回転時間と、前記ニップ部を通過する記録材の情報と、を取得する取得部を備え、
 前記通電制御部は、前記取得部が取得した情報に基づいて、前記複数の発熱体の通電を制御することを特徴とする。
 上記目的を達成するため、本発明の画像形成装置は、
 記録材に画像を形成する画像形成部と、
 記録材に形成された画像を記録材に定着する定着部と、
を有する画像形成装置において、
 前記定着部が上記像加熱装置であることを特徴とする。
 本発明によれば、ユーザの使用条件によらず、安定した定着性能を得られる像加熱装置の提供が可能となる。
本発明の実施例に係る画像形成装置の断面図 本発明の実施例に係る像加熱装置の断面図 本発明の実施例におけるヒータ構成図 本発明の実施例におけるヒータ制御回路図 本発明の実施例における加熱領域を示す図 本発明の実施例における加熱領域の分類に関する説明図 本発明の実施例におけるフローチャート図 本発明の実施例における定着フィルム表層の摩耗量の測定図 本発明の実施例における加圧ローラの硬度変化の測定図 本発明の実施例における加圧ローラ硬度と定着ニップ幅の測定図 本発明の実施例における定着ニップ幅と定着制御温度の測定図 本発明の実施例における効果の検証の説明図 本発明の実施例の説明図 本発明の実施例2の課題の説明図 本発明の実施例2の制御の説明図 本発明の実施例2の効果の説明図 定着ニップの形状を示した図 画像パターンを示した図 本発明の実施例3のフローチャート
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状それらの相対配置などは、発明が適用される装置の構成や各種条件により適宜変更されるべきものである。すなわち、この発明の範囲を以下の実施の形態に限定する趣旨のものではない。
 [実施例1]
1.画像形成装置の構成
 図1は、本発明の実施例に係る画像形成装置の概略断面図である。本実施例の画像形成装置100は、電子写真方式を利用して記録材上に画像を形成するレーザビームプリンタである。
 プリント信号が発生すると、画像情報に応じて変調されたレーザ光をスキャナユニット21が出射し、帯電ローラ16によって所定の極性に帯電された感光ドラム(電子写真感光体)19表面を走査する。これにより像担持体としての感光ドラム19に静電潜像を形成する。この静電潜像に対して現像ローラ17からトナーが供給されることで、感光ドラム19上の静電潜像は、トナー画像(現像剤像)として現像される。一方、給紙カセット11に積載された記録材Pはピックアップローラ12によって一枚ずつ給紙され、搬送ローラ対13によってレジストローラ対14に向けて搬送される。さらに、記録材Pは、感光ドラム19上のトナー像が感光ドラム19と転写ローラ20で形成される転写位置に到達するタイミングに合わせて、レジストローラ対14から転写位置へ搬送される。記録材Pが転写位置を通過する過程で感光ドラム19上のトナー像は記録材Pに転写される。その後、記録材Pは定着部(像加熱部)としての定着装置(像加熱装置)200で加熱・加圧され、トナー像は記録材Pに加熱定着される。定着済みのトナー像を担持する記録材Pは、搬送ローラ対26、27によって画像形成装置100上部のトレイに排出される。
 なお、感光ドラム19は、クリーナ18によって表面の残トナー等が除去、清掃される。給紙トレイ(手差しトレイ)28は、記録紙Pのサイズに応じて幅調整可能な一対の記録紙規制板を有しており、定型サイズ以外のサイズの記録紙Pにも対応するために設けられている。ピックアップローラ29は、給紙トレイ28から記録紙Pを給紙するためのローラである。モータ30は、定着装置200等を駆動する。商用の交流電源401に接続された通電制御部及び取得部としての制御回路400から、定着装置200へ電力供給している。
 上述した、感光ドラム19、帯電ローラ16、スキャナユニット21、現像ローラ17、転写ローラ20が、記録材Pに未定着画像を形成する画像形成部を構成している。また、本実施例では、感光ドラム19、帯電ローラ16、現像ローラ17を含む現像ユニット、ドラムクリーナ18を含むクリーニングユニットが、プロセスカートリッジ15として画像形成装置100の装置本体に対して着脱可能に構成されている。
 本実施例の画像形成装置100は、記録材Pの搬送方向に直交する方向における最大通紙幅が216mmであり、A4サイズ[210mm×297mm]の普通紙を232.5mm/secの搬送速度で毎分41.9枚をプリントすることが可能である。
2.像加熱装置の構成
 図2は、本実施例の像加熱装置としての定着装置200の断面図である。定着装置200は、定着フィルム202と、定着フィルム202の内面に接触するヒータ300と、定着フィルム202を介してヒータ300と共に定着ニップNを形成する加圧ローラ208と、金属ステー204と、を有する。定着フィルム202は、エンドレスベルトやエンドレスフィルムとも称される筒状に形成された複層構成の高耐熱性定着フィルムであり、ポリイミド等の耐熱樹脂、またはステンレス等の金属を基層としている。また、定着フィルム202の表面は、耐熱性に優れ、トナーの付着防止のため、PFA等の離型性に優れた高機能フッ素樹脂を被覆した離型層としている。更に、特にカラー画像を形成する装置では、画質向上のため、上記基層と離型層の間にシリコーンゴム等の高耐熱性ゴムを弾性層として形成することがある。加圧ローラ208は、鉄やアルミニウム等の材質の芯金209と、シリコーンゴム等の高耐熱性のゴム材質からなる弾性層210を有する構成となっている。かかる構成の加圧ローラ208として適切な硬度のものを用いることで定着装置200に応じた定着ニップNを得るものとする。
 ヒータ300は、耐熱樹脂製のヒータ保持部材201に保持されており、定着ニップ部N内の加熱領域A~A(詳細は後述する)を加熱することで、定着フィルム202を加熱する。ヒータ保持部材201は、定着フィルム202の回転を案内するガイド機能も有している。ヒータ300には、定着ニップNの反対側に電極Eが設けられており、電気接点Cより電極Eに給電を行っている。金属ステー204は、不図示の加圧力を受けて、ヒータ保持部材201を加圧ローラ208に向けて押圧する。また、ヒータ300の異常発熱により作動してヒータ300に供給する電力を遮断するサーモスイッチや温度ヒューズ等の安全素子212が、ヒータ300に直接、もしくはヒータ保持部材201を介して間接的に当接している。
 加圧ローラ208は、モータ30からの回転駆動力を受けて矢印R1方向に回転する。加圧ローラ208が回転することによって、外面が加圧ローラ208と接触する定着フィルム202は矢印R2方向に従動回転する。定着ニップNにおいて記録材Pを挟持搬送しつつ、ヒータ300の基板上に配置された発熱体からの熱を、定着フィルム202を通して与えることで、記録材P上の未定着トナー像は定着処理される。また、定着フィルム202の摺動性を確保し安定した従動回転状態を得るために、ヒータ300と定着フィルム202の間には、耐熱性の高い摺動性グリース(不図示)を介在させている。
3.ヒータ300の構成
 図3を用いて、本実施例に係るヒータ300の構成を説明する。図3(A)はヒータ300の断面図、図3(B)はヒータ300の各層の平面図、図3(C)はヒータ300への電気接点Cの接続方法を説明する図である。図3(B)には、本実施例の画像形成装置100における記録材Pの搬送基準位置Xを示してある。本実施例における搬送基準は中央基準となっており、記録材Pはその搬送方向に直交する方向における中心線が搬送基準位置Xを沿うように搬送される。また、図3(A)は、搬送基準位置Xにおけるヒータ300の断面図となっている。
 ヒータ300は、セラミックス製の基板305と、基板305上に設けられた裏面層1と、裏面層1を覆う裏面層2と、基板305上の裏面層1とは反対側の面に設けられた摺動面層1と、摺動面層1を覆う摺動面層2と、により構成されている。
 裏面層1は、ヒータ300の長手方向に沿って設けられている導電体301(301a、301b)を有する。導電体301は、導電体301aと導電体301bに分離されており、導電体301bは、導電体301aに対して記録材Pの搬送方向の下流側に配置されている。また、裏面層1は、導電体301a、301bに平行して設けられた導電体303(303-1~303-7)を有する。導電体303は、導電体301aと導電体301bの間にヒータ300の長手方向に沿って設けられている。
 裏面層1は、さらに、発熱体(発熱抵抗体)302a(302a-1~302a-7)と発熱体302b(302b-1~302b-7)を有する。発熱体302aは、導電体301aと導電体303の間に設けられており、導電体301aと導電体303を介して電力を供給することにより発熱する。発熱体302bは、導電体301bと導電体303の間に設けられており、導電体301bと導電体303を介して電力を供給することにより発熱する。
 導電体301と導電体303と発熱体302aと発熱体302bとから構成される発熱部位は、ヒータ300の長手方向に対し7つの発熱ブロック(HB~HB)に分割されている。すなわち、発熱体302aは、ヒータ300の長手方向に対し、発熱体302a-1~302a-7の7つの領域に分割されている。また、発熱体302bは、ヒータ300の長手方向に対し、発熱体302b-1~302b-7の7つの領域に分割されている。更に、導電体303は、発熱体302a、302bの分割位置に合わせて、導電体303-1~303-7の7つの領域に分割されている。本実施例の発熱範囲は、発熱ブロックHBの図中左端から発熱ブロックHBの図中右端までの範囲であり、その全長は220mmである。また、各発熱ブロックの長手方向長さは、すべて同じ約31mmとしているが、長さを異ならせても構わない。
 裏面層1は、電極E(E~E、およびE8-1、E8-2)を有する。電極E~Eは、それぞれ導電体303-1~303-7の領域内に設けられており、導電体303-1~303-7を介して発熱ブロックHB~HBそれぞれに電力供給するための電極である。電極E8-1、E8-2は、ヒータ300の長手方向端部に導電体301に接続するよう設けられており、導電体301を介して発熱ブロックHB~HBに電力を供給するための電極である。本実施例ではヒータ300の長手方向両端に電極E8-1、E8-2を設けているが、例えば、電極E8-1のみを片側に設ける構成でも構わない。また、導電体301a、301bに対し共通の電極で電力供給を行っているが、導電体301aと導電体301bそれぞれに個別の電極を設け、それぞれ電力供給を行っても構わない。
 裏面層2は、絶縁性を有する表面保護層307より構成(本実施例ではガラス)されており、導電体301、導電体303、発熱体302a、302bを覆っている。また、表面保護層307は、電極Eの箇所を除いて(電極Eが露出されるように)形成されており、電極Eに対して、ヒータ300の裏面層2側から電気接点Cを接続可能な構成となっている。
 摺動面層1は、各発熱ブロックHB1~HB7の温度を検知するためのサーミスタTH(TH1-1~TH1-4、およびTH2-5~TH2-7)を有している。サーミスタTHは、PTC特性、若しくはNTC特性(本実施例ではNTC特性)を有した材料から成り、その抵抗値を検出することにより、全ての発熱ブロックの温度を検知できる構成としている。
 摺動面層1は、また、サーミスタに通電しその抵抗値を検出するため、導電体ET(ET1-1~ET1-4、およびET2-5~ET2-7)と導電体EG(EG1、EG2)とを有している。導電体ET1-1~ET1-4は、それぞれサーミスタTH1-1~TH1-4に接続されている。導電体ET2-5~ET2-7は、それぞれサーミスタTH2-5~TH2-7に接続されている。導電体EG1は、4つのサーミスタTH1-1~TH1-4に接続され、共通の導電経路を形成している。導電体EG2は、3つのサーミスタTH2-5~TH2-7に接続され、共通の導電経路を形成している。導電体ETおよび導電体EGは、それぞれヒータ300の長手に沿って長手端部まで形成され、ヒータ300長手端部において不図示の電気接点を介して制御回路400と接続されている。
 摺動面層2は、摺動性と絶縁性を有する表面保護層308より構成(本実施例ではガラス)されており、サーミスタTH、導電体ET、導電体EGを覆うとともに、定着フィルム202内面との摺動性を確保している。また、表面保護層308は、導電体ETおよび導電体EGに対して電気接点を設けるために、ヒータ300の長手両端部を除いて形成されている。
 各電極Eへの電気接点Cの接続方法を説明する。図3(C)は、各電極Eへ電気接点Cを接続した様子をヒータ保持部材201側から見た平面図である。ヒータ保持部材201には、電極E(E~E、およびE8-1、E8-2)に対応する位置に貫通穴が設けられている。各貫通穴位置において、電気接点C(C~C、およびC8-1、C8-2)が、電極E(E~E、およびE8-1、E8-2)に対して、バネによる付勢や溶接などの手法によって電気的に接続されている。電気接点Cは、金属ステー204とヒータ保持部材201の間に設けられた不図示の導電材料を介して、後述するヒータ300の制御回路400と接続されている。
4.ヒータ制御回路の構成
 図4は、実施例1のヒータ300の制御回路400の回路図を示す。画像形成装置100には商用の交流電源401が接続されている。ヒータ300の電力制御は、トライアック411~トライアック417の通電/遮断により行われる。トライアック411~417は、それぞれ、CPU420からのFUSER1~FUSER7信号に従って動作する。トライアック411~417の駆動回路は省略して示してある。ヒータ300の制御回路400は、7つのトライアック411~417を選択的に制御することによって、長手方向に分割された7つの発熱ブロックHB~HBを個々に独立に制御可能な回路構成となっている。ゼロクロス検知部421は、交流電源401のゼロクロスを検知する回路であり、CPU420にゼロクロス信号を出力している。ゼロクロス信号は、トライアック411~417の位相制御や波数制御のタイミングの検出等に用いている。
 ヒータ300の温度検知方法について説明する。ヒータ300の温度検知は、温度検知部を構成する温度検知素子としてのサーミスタTH(TH1-1~TH1-4、TH2-5~TH2-7)によって行われる。サ-ミスタTH1-1~TH1-4と抵抗451~454との分圧がTH1-1~TH1-4信号としてCPU420で検知されており、CPU420にてTH1-1~TH1-4信号を温度に変換している。同様に、サ-ミスタTH2-5~TH2-7と抵抗465~467との分圧が、TH2-5~TH2-7信号としてCPU420で検知されており、CPU420にてTH2-5~TH2-7信号を温度に変換している。
 CPU420の内部処理では、後述する各発熱ブロックの制御温度(制御目標温度)TGTiと、サーミスタの検知温度に基づき、例えばPI制御(比例積分制御)により、供給するべき電力を算出している。更に、供給する電力を、電力に対応した位相角(位相制御)や、波数(波数制御)の制御レベルに換算し、その制御条件によりトライアック411~417を制御している。
 リレー430の回路動作を説明する。CPU420がRLON信号をHigh状態にすると、駆動素子としてのトランジスタ433がON状態になり、電源電圧Vccからリレー430の2次側コイルに通電され、リレー430の1次側接点はON状態になる。RLON信号をLow状態にすると、トランジスタ433がOFF状態になり、電源電圧Vccからリレー430の2次側コイルに流れる電流は遮断され、リレー430の1次側接点はOFF状態になる。リレー440についても動作は同様である。なお、抵抗434、444は、トランジスタ433、443のベース電流を制限する抵抗である。
 リレー430、リレー440は、故障などによりヒータ300が過昇温した場合、ヒータ300への電力遮断手段として用いることで安全性を確保している。リレー430、リレー440を用いた安全回路(電力遮断部)の動作(発熱体への電力供給を遮断する遮断動作)について説明する。サーミスタTh1-1~TH1-4による検知温度の何れか1つが設定された所定温度を超えた場合、リレー430を非導通状態とし安全を確保している。具体的には、比較部431はラッチ部(ラッチ回路)432を動作させ、ラッチ部432はRLOFF1信号をLow状態にしてラッチする。RLOFF1信号がLow状態になると、CPU420がRLON信号をHigh状態にしても、トランジスタ433がOFF状態で保たれるため、リレー430はOFF状態(安全な状態)で保つことができる。同様に、サーミスタTh2-5~TH2-7による検知温度についても、設定された所定温度を超えた場合には、比較部441はラッチ部442を動作させ、RLOFF2信号をLow状態にしてラッチして、リレー440を非導通状態とし安全を確保している。
5.加熱領域
 図5は、本実施例における加熱領域A~Aを示す図であり、A4サイズの記録材幅と対比して表示している。加熱領域A~Aは、定着ニップN内の、発熱ブロックHB~HBに対応した領域であり、発熱ブロックHB(i=1~7)の発熱により、加熱領域A(i=1~7)がそれぞれ加熱される。加熱領域A~Aの全長は220mmであり、各領域はこれを均等に7分割したものである(L=31.4mm)。
 図6を用いて、記録材Pに形成されたトナー像の位置を加味した加熱領域Aiの分類について説明する。本実施例では、定着ニップNを通過する記録材Pを所定の時間で区間分けし、それぞれの区間毎に加熱領域Aの分類を行う。本実施例での区間分けは、図6(A)のように記録材Pの先端を基準に0.3秒毎に設けており、最初の区間を区間T、2番目の区間を区間T、3番目の区間を区間T、・・、とする。記録材Pのサイズが、その端部が加熱領域Aと加熱領域Aを通過するサイズであり、且つ画像が図6(A)に示す位置に存在していた場合、加熱領域Aの分類は図6(B)の表のようになる。
 区間Tにおいて、加熱領域A、Aは記録材Pが通過しないため非通紙加熱領域AN(Non Paper Area)に分類される。一方、加熱領域A、A、A、は画像範囲が通過するので画像加熱領域AI(Image Area)に分類され、加熱領域A、Aは画像範囲が通過しないので非画像加熱領域AP(Paper Area)に分類される。同様に、区間T2~4において、加熱領域A、Aは非通紙加熱領域ANに、加熱領域A、A、Aは非画像加熱領域APに、加熱領域A、Aは画像加熱領域AIにそれぞれ分類される。また、区間Tにおいて、加熱領域A、Aは非通紙加熱領域ANに、加熱領域A2~6は非画像加熱領域APにそれぞれ分類される。
6.像加熱装置の低熱容量化や部材の高熱伝導化により生じる課題
 上述したように、像加熱装置全体の低熱容量化や部材の高熱伝導化を進めるに伴い、定着部材の表層摩耗や加圧部材の硬度変化といった像加熱装置の変化に起因する印字品質低下や耐久性が課題となる。以下、具体的に説明する。
 最初に定着部材に関して説明する。熱伝達を担う定着部材が高温状態で摩擦摺動する場合、摺動する面には摩耗が生じることになり、その摩耗度合いで熱伝導性が変化することになる。この変化によって、定着性能が寿命を通して安定しない場合がある。例えば、定着部材である定着フィルム表層は、トナーの付着を防止するため、フッ素樹脂を被覆したものが広く一般的に使われている。具体的には、離型性に優れる高耐熱性樹脂であるPFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)やPTFE(ポリテトラフルオロエチレン)などのフッ素樹脂である。これらのフッ素樹脂は、熱伝導性が低いため、その厚みが像加熱装置の定着性能に与える影響は大きい。定着フィルム表層が摩耗し薄くなると、加熱源としてのヒータからの熱が定着フィルムを通してトナーや記録材に伝わりやすくなり、電子写真の技術分野では一般的な高温オフセットの発生、排紙された記録材が湾曲するカール現象が発生するという課題がある。
 高温オフセットは、記録材上のトナーが熱量の供給過多により溶けすぎて発生する現象である。溶けすぎたトナーは粘度が低下し、記録材が定着フィルムから離れる際にトナー層内で分離して(なき分かれて)しまい、定着フィルム上にトナーが残ってしまうものである。定着フィルム上に残存したトナーは、定着フィルムの回転一周後に記録材上に定着されることになり、記録材に汚れを発生させてしまう。カールも、定着ニップで記録材に対する熱量の供給過多により発生するものである。定着フィルム表層が摩耗し薄くなると、記録材が定着ニップを通過する際に定着フィルム側からの供給熱量が大きくなってしまい、記録材の表裏での熱収縮のバランスが崩れ、その応力により記録材Pが湾曲しカールしてしまうことになる。
 続いて加圧部材に関して説明する。加圧部材である加圧ローラは、加熱されることで膨張、冷えることでの収縮を繰り返す。また、定着ニップを通過する際の変形が繰り返されることでうける応力により、加圧ローラの表層を形成するPFA樹脂層のテンションが低下する。また、弾性層を形成するシリコーンゴムが劣化し弾性が低下すると加圧ローラの硬度が下がる。加圧ローラの硬度が下がると、定着フィルムと加圧ローラの間に所定の加圧力を加えることで形成する定着ニップの幅が太くなり、記録材が定着ニップを通過する時間が増え、記録材への加熱時間が長くなってしまう。その結果、記録材やトナーへの供給熱量が増え、高温オフセットやカールといった課題が発生することになる。
 定着フィルムや加圧ローラの累積使用量によって定着性能が不安定になる課題の対応として、像加熱装置の使用状況に応じて、定着実行の条件を変更する対応技術は、従来から考えられている。例えば、あらかじめ決められた枚数で定着制御温度などの条件を変更するものである。然しながら、複数の発熱ブロックを有する分割ヒータを用いた像加熱装置においては、様々な画像情報に応じることになるため、発熱ブロック毎に発熱量が異なる。そのため、上記した定着フィルムの表層摩耗は、発熱ブロック毎に異なるものになってしまう。その結果、記録材の搬送方向と直行する長手方向における定着性能(定着性や光沢度)の均一性が損なわれたり、記録材の搬送性が不安定になる。
7.ヒータ300制御方法の概要
 加熱領域Aの分類に沿った本実施例のヒータ300の制御方法、すなわち各発熱ブロックHB(i=1~7)の発熱量制御方法を説明する。発熱ブロックHBの発熱量は、発熱ブロックHBへの供給電力によって決まる。発熱ブロックHBへの供給電力を大きくすることで、発熱ブロックHBの発熱量は大きくなり、発熱ブロックHBへの供給電力を小さくすることで、発熱ブロックHBの発熱量が小さくなる。発熱ブロックHBへの供給電力は、発熱ブロック毎に設定される定着制御温度TGT(i=1~7)と、サーミスタTH1-1~TH1-4、TH2-5~TH2-7の検知温度に基づき算出される。本実施例では、各サーミスタTH1-1~TH1-4、TH2-5~TH2-7の検知温度が各発熱ブロックHBの制御温度TGTと等しくなるよう、PI制御(比例積分制御)によって供給電力が算出される。
 各発熱ブロックの制御温度TGTは、図7のフローチャートによって決定した加熱領域Aの分類に応じて設定される。加熱領域Aの分類は、ホストコンピュータ等の外部装置(不図示)から送られる画像データ(画像情報)と、記録材Pのサイズ情報に基づいて行われる。すなわち、加熱領域Aの記録材Pの通過を判断し(S1002)、通過しない場合は加熱領域Aを非通紙加熱領域ANに分類する(S1006)。加熱領域Aを記録材Pが通過する場合は、加熱領域Aを画像範囲が通過するかを判断し(S1003)、通過する場合は加熱領域Aを画像加熱領域AIと分類(S1004)、通過しない場合は加熱領域Aを非画像加熱領域APと分類する(S1005)。
 まず、加熱領域Aが画像加熱領域AIと分類された場合(S1004)について説明する。加熱領域Aが画像加熱領域AIと分類された場合の定着制御温度TGTは、TGT=TAI-TAF-TARと設定される(S1007)。
 ここで、TAIは画像加熱領域の基準温度であり、未定着トナー像を記録材Pに定着させるために適切な温度として設定されている。TAF(i=1~7)は、発熱ブロックHB毎の累積発熱履歴情報の補正項(Accumulation Fever History Information Revision)である。TARは、定着装置200の累積回転時間情報の補正項(Accumulation Rotation Time Information Revision)である。
 本実施例の定着装置200において普通紙を定着する際は、基準温度TAI=220℃としている。基準温度TAIは、ユーザの使用条件に適したものとするのが望ましい。使用条件としては、記録材Pのサイズや種類としての厚み(厚い、薄いなど)や表面性(平滑、粗いなど)など記録材Pの情報や、通紙モードや環境などのユーザの使用形態の情報に応じて調整することが望ましい。記録材Pの情報の取得は、ユーザに画像形成装置100の操作部(不図示)から入力してもらう、または、画像形成装置100の記録材Pの搬送路に設けた記録材種類判別部材(不図示)などでの取得がある。また、画像の濃度や画素の密度、画像の配置などの画像の情報に応じて基準温度TAIを調整しても良い。
 補正項TAFは、各加熱領域Aに位置する各発熱ブロックHBの累積の発熱量に準じた定着制御温度の補正値であり、定着フィルム202の表層の摩耗量を温度として補正するものとして採用している。各発熱ブロックHBの累積の発熱量は、定着を実行する時の定着制御温度と時間の積として定義しており、この累積の発熱量は累積発熱カウント値CAFiとして合算している(S1010)。このカウント値CAFiをもとに補正項TAFを算出している(S1011)。カウント値CAFi、補正項TAFの詳細な算出は後述する。
 補正項TARは、定着装置200の累積の回転時間に準じた定着制御温度の補正値であり、加圧ローラ208の硬度の変化を補正するものとして採用している。累積の回転時間は、累積回転時間Tsumとして合算している(S1012)。この時間Tsumをもとに補正項TARを算出している(S1013)。時間Tsum、補正項TARの詳細な算出は後述する。
 次に、加熱領域Aが非画像加熱領域APと分類された場合(S1005)について説明する。加熱領域Aが非画像加熱領域APと分類された場合は、制御温度TGTをTGT=TAP-TAF-TARと設定する(S1008)。
 ここで、TAPは非画像加熱領域の基準温度であり、基準温度TAIより低い温度として設定することで、非画像加熱領域APにおける発熱ブロックHBの発熱量を画像加熱領域AIより下げ、画像形成装置100の省電力化を図っている。
 ただし、基準温度TAPを下げ過ぎると、加熱領域Aが非画像加熱領域APから画像加熱領域AIに切り替わった際、発熱ブロックHBに投入可能な最大電力を投入しても、画像部の制御温度TAPまでの昇温が難しくなる場合がある。この場合、トナー像が記録材Pに確実に定着できない現象である定着不良となる可能性があるため、基準温度TAPは適切な値に設定する必要がある。発明者等の実験によると、本実施例の定着装置200においては、基準温度TAPを162℃以上とすれば定着不良が発生しないことがわかった。省電力化の観点では、可能な限り制御温度TGTを低くし、発熱ブロックHBの発熱量を下げることが望ましいため、本実施例ではTAP=162℃としている。
 カウント値CAFi、時間Tsumの計算、補正項TAF、補正項TARの算出は、先の加熱領域Aが画像加熱領域AIである(S1004)場合と同様のステップ(S1014~S1017)である。
 続いて、加熱領域Aが非通紙加熱領域ANと分類された場合(S1006)について説明する。加熱領域Aが非通紙加熱領域ANと分類された場合は、制御温度TGTをTGT=TANと設定する(S1009)。TANは非通紙加熱領域の基準温度であり、基準温度TAPより低い温度として設定することで、非通紙加熱領域ANにおける発熱ブロックHBの発熱量を非画像加熱領域APより下げ、定着装置200の省電力化を図っている。
 ただし、基準温度TANを下げ過ぎると、定着フィルム202の内面とヒータ300との摺動性が悪化し、記録材Pの搬送が不安定になるという不具合がある。これは、定着フィルム202とヒータ300の間に介在している摺動性グリースの粘度特性に起因するものであり、温度が下がるほど摺動性グリースの粘性が上昇し、定着フィルム202の回転を妨げることが原因である。発明者等の実験によると、本実施例の定着装置200においては、基準温度TANを128℃以上とすることで記録材Pの搬送を安定させられることが分った。省電力化の観点では、制御温度TGTを可能な限り低くし発熱ブロックHBの発熱量を下げることが望ましいため、本実施例ではTAP=128℃としている。なお、基準温度TANはグリースの粘度特性を含めた定着装置200の構成を考慮して決定されるべきものであり、128℃に限定されるものではない。
8.累積発熱履歴情報の補正項TAFについて
 補正項TAFの演算の基となる定着フィルム202について説明する。定着フィルム202の表層は、記録材Pの通紙により摩耗するものである。その理由は、記録材Pと定着フィルム202の間に極めて微小ながら速度差が生じるからである。定着フィルム方式の定着装置200では、加圧ローラ208が回転駆動することで、加圧ローラ208が記録材Pを搬送し、その記録材Pと定着フィルム202の間の摩擦力により定着フィルム202が従動回転する構成となっている。定着フィルム202の表面は、離型性を得るためにPFA、PTFEなどのフッ素樹脂で形成されているため、摩擦係数は低い。また、定着フィルム202の内面はヒータ300やヒータ保持部材201と摺擦しながら従動回転しているため、定着フィルム202の周速は、記録材Pの搬送速度よりも極僅かであるが遅くなっている。記録材Pは、記録材P自身を白く不透明とするための填料として炭酸カルシウムやカオリンなどの無機物を含んでいる。これらの填料が定着フィルム202の表層に対して研磨剤として作用してしまい、定着フィルム202の表層を削ってしまうことになる。
 定着フィルム202の表層が摩耗する速度は、定着フィルム202の表面温度と、その温度が加わっている時間に関係がある。PFA、PTFEなどのフッ素樹脂も一般的な樹脂同様に、外部からの応力による弾性変形と、加熱されることで軟化し変形するものである。定着フィルム202が昇温し温度が高くなりフッ素樹脂が軟化すると、定着ニップNで加圧された際に記録材Pの填料がより深く定着フィルム202に食い込むことになると考えられる。この状態で、定着フィルム202と記録材Pに極僅かであるが速度差が生じることで、摩耗すると考えられている。
 図8は、温度によるフッ素樹脂の摩耗の影響を知るため、定着装置200の定着制御温度を変えることで、定着フィルム202表層のフッ素樹脂層の温度を変え、摩耗を確認した結果を示している。グラフの横軸は定着フィルム202の表面温度[℃]、縦軸は坪量80[g/m]のA4サイズの記録材Pを1000[枚](1K[枚])通紙した場合の摩耗量[μm]を示している。定着フィルム202の表面温度が高くなると摩耗量が増えることが分る。このように、定着フィルム202の表層摩耗は、定着フィルムの表面温度と、定着フィルム202が記録材Pと摺擦するタイミング、すなわち定着ニップNを記録材Pが通過する時間と、による影響が大きい。そこで、本実施例では、定着フィルム202の表層摩耗を推測するパラメータとして、定着フィルム202の表面温度を決めている定着制御温度と通過時間の積を定義した。
 本実施例で確認した定着装置200では、定着フィルム202の表面温度を約180[℃]に維持することで最適な定着性能が得られることが分っている。本実施例の未使用状態での定着フィルム202の表層膜厚は25[μm]の設定であり、その表面温度を180[℃]とする定着制御温度は220[℃]であることが実験から得られている。よって、先述したように基準温度TAIは220[℃]としている。なお、定着制御温度は、定着装置200を生産するうえで生じる部品のばらつきや使用条件、等々によって定着性が厳しくなる場合であっても確実な定着性能が得られるように設定されるものである。すなわち、基準温度TAI220[℃]は、定着性が厳しくなる条件も考慮して決定している。
 定着フィルム202の表層が摩耗し薄くなった場合、加熱源であるヒータ300を同じ温度(発熱量が同じ)で制御してしまうと、定着フィルム202の表面温度は高くなってしまい、高温オフセットやカールが発生することになる。ユーザの使用条件によらず、定着装置200の状態に応じた最適な定着性能を得るには、定着フィルム202の表層が摩耗して薄くなった場合でも、定着フィルム202の表層温度を180[℃]に維持することが必要である。そこで、本発明の実施例1では、発熱ブロックHB毎の定着制御温度を発熱ブロックHBに対向する定着フィルム202の表層膜厚に応じたものとしている。これにより、常に最適な定着性能を得ることが本発明の目的とするところである。
 実施例1では、定着を実行した際の定着制御温度TGTと記録材Pの通過時間を、記憶手段(記憶部)としての不揮発メモリ410(図1参照)に格納し、逐次、計算し更新することで、定着フィルム202の膜厚を演算により推測する。不揮発メモリ410は、画像形成装置100、または定着装置200の少なくとも何れかに設ければよい。
 定着制御温度TGTと記録材Pの通過時間の積の合算値として演算した値を、累積発熱のカウント値CAFiとして、先述した補正項TAFに反映させることで定着制御温度TGTを補正する。カウント値CAFiと補正項TAFの関係については後述する。本実施例の定着装置200は、ヒータの長手で複数に分割された発熱体を有するヒータ300を用いている。そのため、カウント値CAFiは、それぞれの発熱ブロックHB毎に求めるものとすることで、各発熱ブロックHBの定着制御温度TGTとして独立に制御するものとしている。
 カウント値CAFiの算出について説明する。例として、全面に画像のあるパターンをA4サイズの記録材Pに形成した場合のカウント値CAFiを計算する。加熱領域Aは全面に画像があることから画像加熱領域AIとなり、基準温度は基準温度TAIとなる。区間分けは、A4サイズの記録材長297[mm]の通過時間297/232.5(搬送速度)=1.28[秒]から、区間T1~4の通過時間t1~4は0.3[秒]、残った時間0.08[秒]は区間Tの通過時間tとなる。これら区間全てに画像があることからカウント値CAFiは、
 基準温度TAI*t+基準温度TAI*t+基準温度TAI*t+基準温度TAI*t+基準温度TAI*tから、
 220[℃]*0.3[秒]+220[℃]*0.3[秒]+220[℃]*0.3[秒]+220[℃]*0.3[秒]+220[℃]*0.08[秒]=281.6となる。
 画像形成装置100の制御部(不図示)は16bitで制御されるため、カウント値CAFiを16bitに収めるために、先の計算で求めた値を1000で除し、切り上げたものをカウント値CAFiとしている。よって、281.6を1000で除した0.2816を切り上げることで1として算出している。
 同じ画像パターンを連続で3枚通紙した場合は、
 CAFi=(220[℃]*0.3[秒]*4+0.08[秒]*1)*3[枚]=844.8、を1000で除し0.8448、切り上げることで1として算出している。
 このような累積発熱のカウント値CAFiの算出を、定着装置200の使用を通して、定着実行毎に演算し、更新するものとしている。このような演算から求めたカウント値CAFiを、表1に示した補正項TAFとして発熱ブロックHB毎に定着制御温度TGTを補正することで、定着フィルム202の表層膜厚に応じた定着制御温度TGTとしている。
(表1)
Figure JPOXMLDOC01-appb-I000001
9.累積回転時間情報の補正項TARについて
 補正項TARの演算の基となる加圧ローラ208について説明する。加圧ローラ208は、定着フィルム202を介してヒータ300に対して一定の押圧で加圧されるため、硬度が小さい(柔らかい)方が定着ニップNの幅が太くなる。定着ニップNの幅が太くなると、定着ニップNを記録材Pが通過する時間が長くなり、定着フィルム202から記録材Pとトナーに伝えられる熱量が多くなり、よりトナーを溶融できることになる。一方、硬度が大きい(硬い)と定着ニップNの幅が細くなる。定着ニップNの幅が細くなると、定着ニップNを記録材Pが通過する時間が短くなり、定着フィルム202から記録材Pとトナーに伝えられる熱量が少なくなり、トナーの溶融が不足することになる。加圧ローラ208の硬度は、加圧ローラ208を生産するうえで生じる硬度のばらつき(公差)や、定着を繰り返し実行することで小さく(柔かく)もなる。これら硬度の変化幅を考慮し、硬度の公差の規格上下限において確実な定着性能が得られるものとして設定する必要がある。
 加圧ローラ208の硬度変化について説明する。加圧ローラ208の硬度は、弾性層210を形成するシリコーンゴムの弾性と、表層を形成するフッ素樹脂層のテンション(張り)により得られている。硬度変化は、定着実行のために昇温した加圧ローラ208が、定着ニップNを繰り返し形成しながら記録材Pを搬送する負荷を受けることで生じる。
 図9に通紙にともなう加圧ローラ208の硬度変化を示す。グラフの横軸は通紙による加圧ローラ208の回転駆動時間であり、約50000[枚]を通紙するのに約40[時間]を要している。縦軸は硬度変化[°]を示している。図9に示したように加圧ローラ208の硬度変化は、新品状態からの使用開始直後は大きいが(区間a)、その後の通紙では小さくなる(区間b)。この傾向は、以下によるものである。
 本発明の定着装置200は、加圧ローラ208が記録材Pの搬送を担う構成であるため、加圧ローラ208の外径は記録材Pの搬送速度に影響を与える。外径公差の上限で加圧ローラ208の外径が太くなると、記録材Pの搬送速度は速くなり、外径公差の下限で加圧ローラ208の外径が細くなると、記録材Pの搬送速度は遅くなる。本発明の画像形成装置100では、定着ニップNに存在する記録材Pは、定着ニップNの上流側のローラ対として感光ドラム19と転写ローラ20からなる転写ニップ、および下流側のローラ対である排出ローラ対26によっても、狭持搬送されている。このなかで記録材Pの搬送に与える影響が大きいローラ対は、加圧力がもっとも大きい定着ニップNである。そのため、定着ニップNでの搬送速度のばらつき(振れ)は小さい方が望ましく、加圧ローラ208の外径公差は、量産が可能な範囲で小さいことが求められる。そこで、外径公差を小さく安定させるために、加圧ローラ208を製造する段階で、弾性層210の外径よりも小さな内径のPFAチューブを弾性層210に被覆し、PFAチューブで弾性層210を締めつける構成をとっている。
 弾性層210は、線膨張係数が250~450[10-6/K]のシリコーンゴムを厚さ2.5[mm]の層としているため、昇温にともない膨張する。一方、離型層としてのフッ素樹脂層であるPFA樹脂層は、線膨張係数が100~120[10-6/K]とシリコーンよりも小さく、膜厚が50[μm]と薄い。このため、シリコーンゴム弾性層210が膨張するとPFA樹脂層は延伸されることになる。定着実行後、定着装置200が冷えると、昇温により膨張していたシリコーンゴム弾性層210は、ゴムの特性である圧縮永久歪により収縮することになる。一方、延伸させられたPFA樹脂層は、樹脂の特性である塑性変形が残ってしまうことで、収縮変化が小さくなり、延伸したままの状態になってしまう。このようなサイクルでPFA樹脂層が延伸したままになると、PFA樹脂層のテンションは小さくなってしまう。そのため、加圧ローラの新品時にPFA樹脂層のテンションによって得られていた加圧ローラ硬度は、低下することになる。この硬度低下は、図9の区間aで示したように初期に大きく生じる。
 その後の硬度変化は、加圧ローラ208が昇温することでの熱的ストレスと、定着ニップNを繰り返し形成し記録材Pを搬送することでの変形や負荷によるシリコーンゴムの劣化によるものである。その硬度変化は、初期のテンションダウンによる硬度低下に比べると、小さく、ゆっくりとした区間bのような変化となる。
 図10に、本実施例における加圧ローラ208の硬度と定着ニップNの幅の関係を確認した結果を示す。グラフの横軸は加圧ローラ硬度[°]、縦軸は定着ニップNの幅[mm]である。定着ニップNの幅は、加圧ローラ硬度が2[°]下がると、0.4[mm]太くなっていることが分る。
 図11に、定着ニップNの幅と定着制御温度について確認した結果を示す。グラフの横軸は定着ニップNの幅[mm]、縦軸は最適な定着性能が得られる定着制御温度[℃]である。定着ニップNの幅が0.2[mm]太くなった場合、定着制御温度を約1[℃]下げることで最適な定着性能が得られることが分った。
 本発明では、これらの結果から定着の実行にともなう加圧ローラ208の回転時間の累積を時間Tsumとして演算、不揮発メモリ410に格納し、逐次、演算し更新する。これにより、加圧ローラ208の硬度変化を推測し、定着ニップNの幅の変化に応じた定着制御温度TGTとして補正する補正項TARとしている。
 時間Tsumは、加圧ローラ208の長手で同じ時間であるので、本実施例では発熱ブロックHB毎に補正項TARを分割することはしていない。ただし、発熱ブロックHB毎に補正項TARを算出してもよい。
 時間Tsumは、加圧ローラ208が回転駆動した時間と定義している。
 本実施例で用いた画像形成装置100、定着装置200には以下の各工程がある。
・前回転:感光ドラム19の電位を安定させるとともに、レーザースキャナ21の回転を安定させる作像工程の準備工程と、感光ドラム19上への作像、及び、感光ドラム19上の画像を転写した記録材Pを、像加熱装置100まで搬送する工程を含む。この工程中に、定着フィルム202と加圧ローラ208を昇温させる工程も含む。
・通紙 :定着ニップNに、未定着トナーを載せた記録材Pを通過させて定着を行う工程である。
・紙間 :連続通紙を行う場合に記録材Pと次の記録材Pが搬送される間の工程である。
・後回転:記録材Pを装置外に排出、画像形成装置100を待機状態に移行させる工程である。
 各工程における、所要時間は以下である。
  前回転:4.3[秒]
  通紙 :1.28[秒](A4サイズ 297[mm])
  紙間 :0.145[秒]
  後回転:0.97[秒]
 このような各工程を含めて定着装置200が回転駆動した時間として求めた時間Tsumを、表2に示した累積回転時間情報の補正項TARとしている。加圧ローラ208の硬度低下は新品の初期時に大きいことから、時間Tsumによる補正項TARでの定着制御温度TGTの補正は、定着装置200の使用開始初期において大きくしている。
(表2)
Figure JPOXMLDOC01-appb-I000002
 以上の累積回転時間情報の補正項TARと、先に説明した累積発熱履歴情報の補正項TAFを組み合わせることで、ユーザの使用条件に応じた定着装置200の状態に最適な定着制御温度TGTとして、各発熱ブロックHBを制御するものである。
10.定着制御温度の補正
 続いて、定着制御温度TGTの補正について説明する。各発熱ブロックHBに画像がある場合はTGT=TAI-TAF-TARとして制御(S1007)し、各発熱ブロックHBに画像がない場合はTGT=TAP-TAF-TAR(S1008)として制御する。一方、各発熱ブロックHBに記録材Pがない場合は、定着制御温度TGTを補正項TAFと補正項TARで補正すると、定着制御温度TGTが下がり過ぎてしまう。その結果、先述したように、定着フィルム202内面とヒータ300の間の摺動性が低下し、記録材Pの搬送が不安定になるため、TGT=TAN(S1009)として制御するものとする。
 例として、定着装置200が使用され、累積発熱のカウント値CAFiが22000、累積回転時間Tsumが32時間となった場合の定着制御温度TGTの補正は以下となる。発熱ブロックHBに画像がある場合は、画像加熱領域の基準温度が補正され、TGT=220[℃]-4[℃]-3[℃]=213[℃]として制御される。発熱ブロックHBに画像がない場合は、非画像加熱領域の基準温度が補正され、TGT=162[℃]-4[℃]-3[℃]=155[℃]として制御される。発熱ブロックHBを記録材Pが通過しない場合は、TGT=128[℃]として制御される。
 図12(A)に示した画像パターンをA4サイズの記録材Pで連続3枚通紙、待機状態となる、を繰り返した場合の定着制御温度TGTの補正について説明する。加熱領域A~A部の区間T~Tはトナー像がある画像加熱領域AIに分類され、基準温度TAIとして220[℃]で制御される。加熱領域A、A、A部の区間T~T、及び、A~Aの区間T~Tはトナー像のない非画像加熱領域APに分類され、基準温度TAPとして162[℃]で制御される。
 画像加熱領域AI部と非画像加熱領域APが混在する加熱領域A~Aの1枚当たりのカウント値CAFiは、CAF=基準温度TAI*区間Tの所要時間+基準温度TAP*区間Tの所要時間から、
 CAF=((220[℃]*(区間T~Tの通過時間))+(162[℃]*(区間T~Tの通過時間))
    =(220[℃]*0.3*[秒]*3[区間]))+(162[℃]*(0.3[秒]+0.08[秒])
    =198+61.56
    =259.56
となる。連続3枚の通紙では259.56*3=778.68となり、CPUの演算の都合上1000で除し778.68/1000=0.77868、切り上げて1となる。
 通紙を繰り返すことでの加熱領域A~Aの累積発熱のカウント値CAFiは、
 32743枚では、CAFi(32743)=0.77868*(32743/3)=8498.77、切り上げて8499、
 32744枚では、CAFi(32744)=0.77868*(32744/3)=8499.033、切り上げて8500、
 32744枚が通紙されたタイミングでカウント値CAFiが8500
となり、補正項TAFは-2[℃]の補正となる。
 非画像加熱領域APとなる加熱領域A、A、Aの1枚当たりのカウント値CAFiは、
 CAF=非基準温度TAP*区間Tの所要時間から、
 CAF=162℃*(0.3*4+0.08*1)=207.36
となる。連続3枚通紙では207.36*3=622.08となり、CPUの演算の都合上1000で除し622.08/1000=0.62208、切り上げて1となる。1枚の通紙では先の画像加熱領域AI部がある加熱領域A~Aと違わないが、通紙を繰り返すことで加熱領域A、A、Aのカウント値CAFiは、
 40986枚では、CAF(40986)=0.62208*(40986/3)=8498.857、切り上げて8499、
 40987枚では、CAF(40987)=0.62208*(40987/3)=8499.064、切り上げて8500、
となり、
 画像加熱領域AI部に比べて8243枚遅れた40987枚のタイミングでカウント値CAFiが8500
となり、補正項TAFは-2[℃]の補正となる。
 このように、加熱領域Aに画像があり定着制御温度TGTが高くなる画像加熱領域AIは、定着制御温度TGTを下げる補正を大きくすることで、定着フィルム202の表層摩耗を考慮した最適な補正としている。
 同様に、補正項TARを決定する累積回転の時間Tsumについて説明する。先に説明した、通紙に伴う「前回転:4.3秒」「通紙:1.28秒(A4サイズ 297mm)」「紙間:0.145秒」「後回転:0.97秒」の所要時間を含めて、3枚の通紙に要する時間Tsumを求める。時間Tsumは、前回転時間+1枚目の通紙時間+紙間時間+2枚目の通紙時間+紙間時間+3枚目の通紙時間+後回転時間となる。すなわち、
 4.3+1.28+0.145+1.28+0.145+1.28+0.97=4.3+1.28*3+0.145*2+0.97=9.4[秒]となる。
 これが繰り返されることで、
 574枚では、Tsum(564)=9.4*[574/3]=1798.53[秒]=1798.53/3600[秒]=0.49959[時間]
 575枚では、Tsum(575)=9.4*[575/3]=1801.67[秒]=1801.67/3600[秒]=0.500463[時間]
となり、
 加圧ローラ208の硬度変化にともなう補正項TARは、575枚以降で-1[℃]の補正となる。
 同様に、
 1148枚では、Tsum(1148)=9.4*[1148/3]=3597.07[秒]=3597.07/3600[秒]=0.999[時間]
 1149枚では、Tsum(1149)=9.4*[1149/3]=3600.2[秒]=3600.2/3600[秒]=1.000056[時間]
となり、
 1149枚以降の補正項TARは-2[℃]の補正となる。
 9191枚では、Tsum(9191)=9.4*[9191/3]=28798.47[秒]=28798.47/3600=7.9996[時間]
 9192枚では、Tsum(9192)=9.4*[9192/3]=28801.6[秒]=28801.6/3600=8.00044[時間]
となり、
 9192枚以降の補正項TARは-3[℃]の補正となる。
 45957枚では、Tsum(45957)=9.4*[45957/3]=143998.6[秒]=143998.6/3600=39.9996[時間]
 45958枚では、Tsum(45958)=9.4*[45958/3]=144001.73[秒]=144001.73/3600=40.00048[時間]
となり、
 45958枚以降は最終補正の補正項TARとなり、-4[℃]の補正となる。
 以上をまとめると、表3のようになる。
(表3)
Figure JPOXMLDOC01-appb-I000003
 通紙枚数574枚までは、補正項TAF、補正項TARともに補正はなく、定着制御温度TGTは、各発熱ブロックHBの画像の有無に応じた基準温度となる。
 575枚から1148枚までは、補正項TARが-1[℃]の補正となり、定着制御温度TGTは、TGT=基準温度-1[℃]となる。
 1149枚から9191枚までは、補正項TARが-2[℃]の補正となり、定着制御温度TGTは、TGT=基準温度-2[℃]となる。
 9192枚から32743枚までは、補正項TARが-3[℃]の補正となり、定着制御温度TGTは、TGT=基準温度-3[℃]となる。
 32744枚からは加熱領域Aに画像がある場合は、補正項TAFの補正-2[℃]と、補正項TARの補正-3[℃]により定着制御温度TGTは、TGT=基準温度-2-3[℃]=基準温度-5[℃]となる。加熱領域Aiに画像がない場合は、補正項TARのみの補正となり、定着制御温度TGTiは、TGT=基準温度-3[℃]となる。
 45958枚からは、補正項TARが-4[℃]の補正となることで、加熱領域Aに画像がある場合は補正項TAF-2[℃]により定着制御温度TGTは、TGT=基準温度-2-4[℃]=-6[℃]となる。加熱領域Aiに画像がない場合は、補正項TARのみの補正となり、定着制御温度TGTは、TGT=基準温度-4[℃]となる。
 このタイミングで補正項TARの補正は最大となり、これ以降の通紙においては補正項TAFが、先述した計算式に則り演算され、定着制御温度TGTが補正されることになる。
 以上の補正項TAF、補正項TARは、図12(A)に示した画像パターンをA4サイズの記録材Pに3枚連続して通紙し、待機状態となる、を繰り返した場合の各補正項TAF、TARである。補正項TAF補正項TARは、画像パターン、記録材Pサイズ、通紙の条件などにより変わるものである。
 本実施例では、定着フィルム202と加圧ローラ208の変化に応じた補正項TAFと補正項TARでの補正としているが、定着装置200によっては何れか一方のみでの補正であってもよい。また、発熱ブロックHBに記録材Pがない場合は、補正項TAFとTARでの補正は行わないものとしたが、定着装置200によっては補正をしてもよい。
11.本実施例の効果
 本実施例の効果を説明する。比較例対象は、各発熱ブロックHBの定着制御温度TGTを、使用量によらず一定値として制御する定着装置である。効果は、図12(A)に示した画像パターンを、先の説明と同様に、A4サイズの記録材Pで連続3枚通紙-待機状態というセット、を50000枚まで繰り返すことで確認した。図12(A)の画像パターンでは、画像のある加熱領域A、A、A、Aの定着制御温度TGTは高く、画像のない加熱領域A、A、Aの定着制御温度TGTは低いものとして制御される。この状態で通紙を続けることで、加熱領域A、A、A、Aに相当する定着フィルム202の表層摩耗量は多くなり、加熱領域A、A、Aに相当する表層摩耗量は少なくなる。
 図13に、定着フィルム202の表層摩耗量を測定した結果を示す。グラフの横軸は加熱領域A(発熱ブロックHB)を示している。縦軸は50000枚通紙時点での定着フィルム202の表層膜厚であり、数値が大きいほど表層摩耗が少ないことを示している。この結果から、加熱領域Aに画像があり定着制御温度TGTが高く制御された加熱領域A2~5は表層摩耗が多いことが分る。図13のように、累積発熱量が多くなった発熱ブロックHBi(多)に位置する定着フィルム202表層のPFA樹脂層は薄くなる。累積発熱量が少ない発熱ブロックHBi(少)に位置する定着フィルム202表層のPFA樹脂層は、発熱ブロックHBi(多)に位置する定着フィルム202表層のPFA樹脂層に比べると厚い。同時に、通紙に伴う加圧ローラ208の硬度および定着ニップNの幅を測定した結果を表4に示す。硬度は、Asker-C硬度計(9.8N加重、加圧ローラ208の長手3箇所、周方向4箇所を測定した12測定値の平均値とした)での測定値である。
(表4)
Figure JPOXMLDOC01-appb-I000004
 このように定着フィルム208の長手における表層摩耗量に差が生じ、定着ニップNの幅が太くなる変化が生じた状態で、図12(B)に示すような長手全域に画像があるパターンを通紙した場合の定着性能を確認した結果を、表5にて説明する。表中の「○」は、定着性は問題なく、高温オフセットの発生もない、定着性能として問題のないことを示している。図12(B)の画像パターンでは、区間Tの加熱領域A~Aは画像加熱領域基準温度を基準とする定着制御温度TGTで制御され、それ以降の区間T~Tは非画像加熱領域の基準温度を基準とする定着制御温度TGTで制御される。
(表5)
Figure JPOXMLDOC01-appb-I000005
 比較例は、発熱ブロックHBによらず同じ定着制御温度TGTで制御するものであるため、表層厚みが異なっている加熱領域A、A、Aと加熱領域A、A、A、Aの定着制御温度TGTは、同じ温度で制御される。そのため、表層摩耗が少ない加熱領域A、A、Aの定着性能は問題ないが、表層摩耗が多く表層が薄くなっている加熱領域A、A、A、Aでは供給される熱量が過多となってしまう。定着ニップ幅が太くなっていることもあり、高温オフセットが発生してしまう。
 一方、本実施例では、定着制御温度TGTを定着ニップNの幅の増加に相当する補正を行う。さらに、これに加えて、定着フィルム202の表層摩耗が多い加熱領域A、A、A、Aに相当する発熱ブロックHB、HB、HB、HBの発熱量を減らす補正を加える。これにより、高温オフセットの発生が抑制できている。
 以上の実験例をもって示したケースでの比較例では高温オフセットの発生が課題となったが、定着フィルム202の摩耗状態によっては以下のようなケースもある。
 記録材Pの端部に相当する加熱領域Aの摩耗が多くなるような画像パターンが通紙された場合は、記録材Pの端部に相当する加熱領域Aにおいて供給される熱量が過多となる。その結果、画像形成装置100の機外に排出される記録材Pの搬送方向に直行する両端部が丸まり変形するカール現象が課題となる場合もある。
 このようなケースにおいても本実施例によれば、記録材Pの端部に相当する加熱領域Aの発熱ブロックHBの発熱量を下げる補正が行われることで、記録材Pの端部に供給される熱量が適切なものとなり、カール現象を抑えることが可能となる。
 以上、本発明の実施例1の制御では、ユーザの使用条件によって生じた定着フィルム208や加圧ローラ208の物性の変化に適した定着制御温度の補正を実行する。これにより、ユーザの使用条件によらず常に安定した定着性能が得られる像加熱装置とすることできる。すなわち、複数の発熱体を画像情報に応じて発熱制御する加熱源を用いた像加熱装置において、ユーザの使用条件によっては、像加熱装置を形成する各部材の長手方向に物性の差が生じる場合がある。そのような場合でも、長手方向で生じた物性の差に応じて、複数の発熱体の発熱量を独立に制御することで、記録材やトナーへの供給熱量は、長手方向で生じた物性の差に関わらず、一定とすることが可能となる。したがって、本実施例によれば、ユーザの使用条件によらず、安定した定着性能を得られる像加熱装置を提供することが可能となる。
 なお、本実施例では、各発熱ブロックHBの累積の発熱量を、定着加熱動作の実行時の制御目標温度と記録材の通過時間の積として定義したが、温度検知素子のヒータ検出温度や各発熱体への供給電力量と記録材の通過時間の積を累積して取得してもよい。
 [実施例2]
 本発明の実施例2について説明する。実施例2は、実施例1の応用例として、累積発熱量が多くなった加熱領域Aに相当する定着フィルム202の表層の摩耗を抑制する制御に関するものである。実施例2において実施例1と共通する構成については同じ符号を付し、再度の説明は省略する。実施例2において特に説明しない事項は実施例1と同様である。図13で説明したように、累積発熱量が多くなった発熱ブロックHBi(多)に対応する定着フィルム202表層のPFA樹脂層は薄くなる。累積発熱量が少ない発熱ブロックHBi(少)に対応するPFA樹脂層は摩耗が少なく、発熱ブロックHBi(多)のPFA樹脂層に比べると厚い。このようにPFA樹脂層の厚みが異なると、PFA樹脂層の熱容量も異なるものとなる。定着フィルム202のPFA樹脂層の熱容量が異なっていると下記の課題が生じる場合がある。
 ユーザからの画像形成信号をうけて、定着フィルム202の表面温度を定着可能な温度である180℃にまで昇温させるのに要する時間が異なってくる。昇温に要する時間は、PFA樹脂層が厚く残っている発熱ブロックHBi(少)よりも、PFA樹脂層が薄くなった発熱ブロックHBi(多)は短い。比較例の定着装置200を立ち上げる制御では、ヒータ300の各発熱ブロックHBへの通電は、所定のタイミングで同時に開始されるものである。そのため、発熱ブロックHBi(多)と発熱ブロックHBi(少)へ同時に通電を開始した場合、発熱ブロックHBi(多)は、発熱ブロックHBi(少)よりも定着フィルム202の表面温度が早く180[℃]に到達することになる。定着フィルム202の表面温度を観察した結果を図14に示す。
 図14に示すように、先に目標温度に到達した発熱ブロックHBi(多)の電力制御は、発熱ブロックHB(少)に位置するサーミスタTH(少)の検知温度が目標とする定着制御温度TGTに到達するまで継続されることになる。そのため、発熱ブロックHBi(多)に相当する部分の加圧ローラ208を含めて、その部分は蓄熱量が多くなる。その結果、発熱ブロックHBi(多)に相当する部分では、供給熱量の過多による高温オフセットの発生やPFA樹脂層の摩耗にとって不利となってしまう。
 そこで、実施例2では、定着フィルム202のPFA樹脂層が薄いと推測される発熱ブロックHB(多)と、厚いと推測される発熱ブロックHB(少)の差が、定着装置200において任意に定められ所定値以上となった場合、以下の制御を実施する。すなわち、発熱ブロックHBi(多)への通電開始タイミングを、発熱ブロックHBi(少)よりも遅らせ、各発熱ブロックそれぞれが所定の目標温度に到達するタイミングの差を小さくすることで、供給熱量を適正なものとする制御である。通電開始タイミングの判断には、実施例1の累積発熱のカウント値CAFiを用いるが、別途定義される累積発熱量を示す値を用いて判断するものでも良い。この制御により、供給熱量の過多を抑制し、高温オフセットの回避、PFA樹脂層の摩耗低減を実現するものである。
 図15(A)に示したように、実施例2では、発熱ブロックHBi(多)への通電開始タイミングを、発熱ブロックHB(少)への通電開始タイミングに対して遅らせるものである。発熱ブロックHB(多)への通電開始タイミングを遅らせることで、発熱ブロックHB(多)に相当する部分の過剰な蓄熱を抑制し、高温オフセットの回避、PFA樹脂層の摩耗低減を実現する。検討の結果、本実施例の定着装置200では、各発熱ブロックHB間のカウント値CAFiの差が表6に示す値以上となった場合、カウント値CAFiが多くなった発熱ブロックHBi(多)への通電開始タイミングを表6に沿って遅延させる。
(表6)
Figure JPOXMLDOC01-appb-I000006
 例えば、発熱ブロックHB(多)と発熱ブロックHB(厚)のカウント値CAFiが、それぞれ42300と36900の場合、その差は5600である。したがって、発熱ブロックHB(多)の通電開始タイミングを、定着装置200の基準である通電開始タイミングで通電がなされている発熱ブロックHB(少)から0.4[秒]遅らせるものとする。なお、この通電開始タイミングの遅延時間は、定着装置200の構成を考慮して決定されるべきものであり、表6の数値に限定されるものではない。
 以上の制御を実施する実施例2の効果を検証した結果を示す。効果の検証は、実施例1で説明したものと同じ画像パターン(図12(A))をA4サイズの記録材Pに3枚連続通紙、待機、3枚連続通紙、を繰り返すものとした。また、用いた定着装置200は、定着フィルム202の表層摩耗が進行したものとして、実施例1を説明した際のものを100000枚まで通紙したものを用いた。
 発熱ブロックHB(多)である発熱ブロックHB2~5のカウント値CAF2~5は25956であり、累積発熱量の少ない発熱ブロックHB(少)HB、HB6~7のカウント値CAF、CAF6~7はそれぞれ20736である。その差は5220である。カウント値CAFiの差5220での、通電開始タイミングの遅延時間は表6に沿って0.4[秒]となり、発熱ブロックHB2~5への通電開始タイミングを0.4[秒]遅らせる。
 図15(B)に示したように、発熱ブロックHB(多)への通電開始タイミングを遅らせることで、定着フィルム202の表面温度が定着可能な180[℃]に到達するタイミングは、発熱ブロックHB(多)と発熱ブロックHB(少)で同じとなる。すなわち、発熱ブロックHB(多)に相当する位置の蓄熱量を適正なものとすることが可能となる。
 実施例2の効果について説明する。効果としては、先の実施例1と同様に図12(B)の画像パターンを流した際の高温オフセットの発生と、定着フィルム202のPFA樹脂層の摩耗量を確認した。比較例の制御である発熱ブロックHB(多)と発熱ブロックHB(少)の通電開始タイミングを同時とするものでは高温オフセットが発生するが、実施例2では高温オフセットが発生しないことが確認できた。
 図16に、PFA樹脂層の摩耗を確認した結果を示す。グラフの横軸は記録材Pの通紙枚数(枚)、縦軸は定着フィルム202の表層膜厚であり、通紙後の表層膜厚が厚い方が、表層摩耗が抑制されていることを示している。図16に示すように、100000枚以降も比較例の通電開始タイミングで制御したものに比べて、実施例2での制御で通紙したものは、100000枚以降のPFA樹脂層の摩耗量を低減できていることを確認できた。実施例2では、発熱ブロックHB(多)への通電開始タイミングを遅らせる制御とするが、定着フィルム202の表面温度は図15(B)のように定着性が得られる180[℃]まで昇温できているため、定着性が問題ないことも確認できた。
 実施例2では、定着フィルム202の表層膜厚に差が生じた場合でも高温オフセットを抑制するものとして説明してきたが、画像形成装置100で使用される記録材Pは、様々な種類のものがあり、写真同等の画質が得られる光沢紙と称される記録材Pもある。光沢紙の画質は、定着装置200の状態に影響されるものであり、定着フィルム202表面の温度ムラが、定着されたトナー像の光沢の均一性に影響を与えてしまうことがある。このような光沢紙での通紙が選択された場合は、実施例2の応用例として以下などが考えられる。
 定着フィルム202の表面温度が定着可能な温度となった後、即記録材Pを定着ニップに搬送するのではなく、搬送タイミングを遅らせることで、表面温度を確実に均一な温度に均す。均一な温度に均した後に、光沢紙を定着ニップに搬送、定着する制御とすることで、定着フィルム202の表層膜厚に差があった場合であっても、光沢紙の画質均一性を確実に得ることが可能となるものである。
 以上、説明してきたように、実施例2では、定着フィルム202の表層摩耗に応じて、各発熱ブロックHB毎の通電開始タイミングを調整する。こうすることで、ユーザの使用条件に応じて各発熱ブロックHBが発熱し、定着フィルム202の表層摩耗に差が生じた場合であっても、高温オフセットや定着フィルム202の表層摩耗を抑制できる。
 上記各実施例は、それぞれの構成を可能な限り互いに組み合わせることができる。
[実施例3]
 本発明の実施例3について説明する。実施例1で説明した様に、通紙に伴う加圧ローラ208の硬度変化は初期が大きくなる。その条件で同様なパターンを大量に通紙を行った場合、加圧ローラ208の長手方向において局所的に弾性層の硬度が下がり、定着ニップNが加圧ローラの長手方向において不均等になってしまう。実施例3は、これを対策するために、発熱履歴が多くなった発熱ブロックと少ない発熱ブロックに位置する加圧ローラ208の硬度の差を抑制するものである。これにより安定した記録材Pの搬送を実現する。
 実施例1の場合、まず、累積回転時間Tsumから累積発熱履歴情報の補正項TAR、累積発熱量から累積発熱履歴情報の補正項TAFを計算する。次に、その計算結果から各発熱ブロックHBの発熱量の補正を行うことで、加圧ローラ208の部分的な硬度低下を抑制している。
 しかしながら、発熱量の補正を行うことで加圧ローラ208の部分的な硬度低下を抑制するものの、発熱履歴の多い発熱ブロックと発熱履歴の少ない発熱ブロックの加圧ローラ208の硬度の差を少なくすることはできない。このような、加圧ローラ208の長手方向で部分的な硬度差が所定硬度差以上生じた場合は以下のことが発生する。
 種々の定着装置200の中には、定着ニップNの形状を図17(A)のように、長手方向の端部に比べ中央部を若干細い形状にし、定着ニップNで挟持搬送される記録材Pの速度を中央部より端部で速くさせている装置がある。このような形状にすることで記録材Pのシワの発生を抑えている。
 発熱体を分割していないヒータは、ヒータ長手方向において均等な発熱をするので、加圧ローラ208の硬度変化は長手方向において均等なものになり、寿命を通して図17(A)のような定着ニップNの形状を維持できる。しかしながら、発熱体が分割されたヒータは、各発熱体を独立に制御するため、加圧ローラの部分的な硬度低下が発生することになり、その結果、図17(A)のような定着ニップNの形状を維持できない可能性もある。
 例として、図18(A)のようなトナー像の場合は、中央部の発熱ブロックHB、HB、HBの発熱量が多くなり、加圧ローラ208の中央部の硬度低下量が、長手端部よりも大きくなる。そのため、図17(B)のように中央部が端部より太い定着ニップNの形状になってしまう。このような定着ニップNの形状で挟持搬送される記録材Pの速度は、長手端部よりも中央部の方が速くなり、記録材Pを長手中央部に寄せる力が作用することで、記録材Pにシワが発生する。
 また、図18(B)のような片側にのみトナー像がある場合は、トナー像が存在する側の長手端部(以後、画像側端部)の発熱ブロックHB、HBの発熱量が多くなる。その結果、加圧ローラの画像側端部の硬度低下量が、中央部の発熱ブロックHB、HB、HBと画像が存在しない反対側の長手端部(以後、反画像側端部)の発熱ブロックHB、HBよりも大きくなる。その結果、図17(C)のように、定着ニップNの幅は、画像側端部>反画像側端部>中央部となり、長手で不均等な定着ニップNになってしまう。このような定着ニップNで挟持搬送される記録材Pの速度は、反画像側端部よりも画像側端部の方が速くなってしまい、定着ニップ内で記録材Pが捩れることになる。
 このように、記録材Pが定着ニップNと定着ニップN前の転写ニップで捩れて挟持搬送されている場合、記録材Pが転写ニップを抜けると記録材Pの画像側端部の後端は、定着ニップNに侵入する直前に定着フィルム202側に跳ね上がってしまう。そのため、トナー像の形成された記録材Pは定着ニップNに対して捩れた片ループ状態で定着ニップNに搬送されるため、定着フィルム202と摺擦し、未定着トナー像が乱されてしまい、そのまま定着されることで“画像擦れ”現象が発生する。
 実施例1で説明した画像形成装置200を用いて、図18の画像パターン(A)と(B)をA4サイズの記録材Pに形成し、連続3枚通紙、停止状態を繰り返しながら150000枚までの耐久試験を行った。そして、定着ニップNの幅と加圧ローラ208の硬度を測定した。同時に、記録材Pのシワが発生しやすい条件として、高温高湿環境30℃/80%に2日間放置した記録材Pを連続で50枚通紙し、記録材Pの搬送性として、記録材Pのシワ、画像擦れを確認した。
 この時、加圧ローラ208の硬度は、Asker-C硬度計(9.8N加重、各発熱ブロックHBに位置する加圧ローラ208の周方向4箇所を測定した測定値の平均値とした)での測定値である。
 定着ニップNの幅の測定方法は、まず、全面にトナー像のある記録材Pの印字面側を加圧ローラ208側になるようにして通紙し、定着ニップNで挟持搬送しているときに通紙を止め、記録材に定着ニップNの光沢跡を残す。その定着ニップNの光沢跡の幅(記録材搬送方向の幅)を各発熱ブロックHBに対応する位置毎に測定する。
 これらの結果を画像パターン(A)の場合を表7、画像パターン(B)の場合を表8に示す。表中の「○」は記録材Pの搬送性に問題がなく、記録材Pシワ、画像擦れが発生していないことを示している。
 実施例1で説明した様に、表中の発熱ブロックHB~HBは、図5の加熱領域A~Aに対応した位置に設けられた発熱ブロックHBである。
(表7)
Figure JPOXMLDOC01-appb-I000007
 図18(A)の画像パターンを定着処理した場合(表7)、発熱ブロックHB、HB、HBに位置する加圧ローラ208の長手方向の中央部の硬度低下は端部に比べて大きい。そのため、定着ニップNの幅も長手方向の中央部の増加量が多くなり、定着ニップNの形状は端部に比べ中央部の方が太くなり、長手方向において不均等な定着ニップNとなっていくことが分かる。先述したように、端部に比べ中央部が太く不均等となった定着ニップNは、記録材Pの搬送性が不安定となるため、記録材Pのシワが発生してしまった。
(表8)
Figure JPOXMLDOC01-appb-I000008
 図18(B)に示した画像パターンを定着処理した場合(表8)、発熱ブロックHB、HBに位置する加圧ローラ208の画像側端部の硬度低下が中央部に比べて大きい。そのため、定着ニップNの幅も画像側端部の増加量が多くなり、長手端部の片側の定着ニップNの幅が太くなった不均等な定着ニップNとなっていくことが分かる。先述したように、片側の定着ニップ幅が太い不均等な定着ニップNで通紙する場合、記録材Pが片ループ状態になり画像擦れが発生してしまう。
 以上の結果に基づいて、長手端部の発熱ブロックHB、HBと反対側の長手端部の発熱ブロックHB、HB、長手中央部の発熱ブロックHB、HB、HBのそれぞれの位置に対応する、加圧ローラ208の硬度の平均値を算出する。さらに、定着ニップNの幅の平均値も算出する。算出した端部の定着ニップNの幅から中央部の定着ニップNの幅を引いた時の平均定着ニップN幅と、算出した端部の定着ニップNの硬度から中央部の定着ニップNの硬度を引いた時の平均加圧ローラ208硬度を算出する。その結果と記録材Pシワと画像擦れの発生状況をまとめて表9に示す。
 表中の「○」は記録材Pの搬送性に問題がなく、記録材Pシワ、画像擦れが発生していないことを示している。
(表9)
Figure JPOXMLDOC01-appb-I000009
 表9に示すように、端部の定着ニップN幅よりも中央部が0.2[mm]より太くなると記録材Pにシワが発生し、中央部より片側の長手端部が1.2[mm]よりも太くなると長手で不均等な定着ニップNになるため画像擦れが発生することが分かった。
 実施例3は、定着ニップNの形状を長手端部に比べ中央部を細い形状に寿命を通して維持するように、分割された発熱ブロックの発熱量を制御することで、記録材Pシワや画像擦れの発生しない安定した記録材Pの搬送性を実現するものである。
 安定した記録材Pの搬送性を実現する制御方法は、まず、各発熱ブロックHBの累積発熱履歴情報の補正項TARと累積発熱履歴情報の補正項TAFの和から補正値を求める。その補正値の各発熱ブロック間の最大値と最小値の差から算出した値によって、発熱履歴の少ない発熱ブロックHBi(少)の発熱の仕方を制御し、発熱履歴の差を小さくする。
 表9の結果と各発熱ブロック間の補正値の最大差をまとめた結果を表10に示す。補正項TARと補正項TAFに関しては実施例1で説明した計算方法を用いる。
(表10)
Figure JPOXMLDOC01-appb-I000010
 この結果から、補正値の最大差となる発熱履歴の多い発熱ブロックHBi(大)と発熱履歴の少ない発熱ブロックHBi(少)の補正値の差が2より大きくなった場合、記録材Pのシワや画像擦れが発生していることがある。これに対して、本実施例の発熱ブロックHBi(少)の累積発熱量を増やす制御を行えば、補正値の差を2以下に抑えることができる。その結果、発熱ブロックHBi(少)と発熱ブロックHBi(大)との間の発熱量の差を、所定値以下にすることができる。
 実施例3の制御について図19のフローチャートを用いて説明する。各発熱ブロックHBの補正項TARと補正項TAFの補正値の和を計算し、発熱ブロックHB間の差が2以下だった場合、S2001に移動し、実施例1と同様の制御を行う。発熱ブロックHB間の差が2より大きい場合はS2002に移行する(S2000)。発熱履歴の少ない発熱ブロックHBi(少)を記録材Pが通過するか否かを判断し(S2002)、通過しない場合は加熱領域Aを非通紙加熱領域ANに分類する(S2006)。発熱履歴の少ない発熱ブロックHBi(少)を記録材Pが通過する場合は、発熱ブロックHBi(少)を画像範囲が通過するかを判断する(S2003)。発熱ブロックHBi(少)を画像範囲が通過する場合は発熱ブロックHBi(少)を画像加熱領域AIと分類(S2004)、通過しない場合は発熱ブロックHBi(少)を非画像加熱領域APと分類する(S2005)。
 発熱履歴の少ない発熱ブロックHBi(少)が画像加熱領域AIと分類された場合、発熱ブロックHBi(少)の定着制御温度TGTは、実施例1で説明した定着制御温度TGT=TAI-TAF-TARに設定される(S2007)。
 発熱履歴の少ない発熱ブロックHBi(少)が非画像加熱領域APと分類された場合、発熱ブロックHBi(少)の定着制御温度TGTは画像加熱領域の基準温度TAI=220℃よりも高い温度に設定される。これにより、発熱履歴の少ない発熱ブロックHBi(少)の発熱履歴を増やす制御を実行する。その際、発熱ブロックHBi(少)の温度を上げすぎると、トナー像のある画像加熱領域AIの定着フィルム202に熱が伝わることで高温オフセットが発生する可能性がある。発明者等の実験によると、本実施例の像加熱装置200においては、非画像加熱領域APの制御温度TGTが230℃以下であれば、画像に高温オフセットを発生させないことが分かった。本実施例では非画像加熱領域APの定着制御温度TGTを230℃に設定した(S2008)。
 最後に、発熱履歴の少ない発熱ブロックHBi(少)が非通紙加熱領域ANと分類された場合(S2006)について説明する。発熱ブロックHBi(少)の温度を実施例1の設定値よりも上げることで、発熱履歴の少ない発熱ブロックHBi(少)の発熱履歴を増やす制御を実行する。その際、発熱履歴の少ない発熱ブロックHBi(少)の設定温度を上げすぎると、この領域は記録材Pに熱が奪われないので定着フィルム202や加圧ローラ208の温度が上ってしまう。この温度上昇は画像加熱領域AIにも影響を与えてしまう。定着フィルム202や加圧ローラ208の温度が上った状態で未定着トナー像が乗った記録材Pが通紙された場合、トナーに熱を与えすぎて高温オフセットが発生する。発明者等の実験によると、本実施例の像加熱装置200においては、発熱ブロックHBi(少) の非通紙加熱領域ANの制御温度TGTが160℃以下であれば、記録材Pの画像に高温オフセットを発生させないことが分かった。このため、発熱ブロックHBi(少) の非通紙加熱領域ANの制御温度をTGT=160[℃]と設定した(S2009)。
 以上の制御を実施する実施例3の効果の検証結果を示す。実施例1で説明した画像形成装置200を用いて、図12(A)に示した画像パターンをA4サイズの記録材Pに形成し、連続3枚通紙、停止、を繰り返しながら150000枚までの耐久試験を行った。そして、定着ニップNの幅と加圧ローラ208の硬度を測定した。そうすることで、長手中央の発熱ブロックHB、HB、HB、長手端部付近の発熱ブロックHB、HB、その逆側の長手端部付近の発熱ブロックHB、HBに夫々対応する加圧ローラの平均硬度と、平均定着ニップ幅を測定した。
 同時に、記録材Pのシワが発生しやすい条件である高温高湿環境(30℃/80%)に2日間放置した記録材Pを連続で50枚通紙して記録材Pのシワと画像擦れを確認した。
 本実施例の結果を比較するために実施例1を比較例として用い、それぞれの結果を表11に示す。表中の「○」は記録材Pの搬送性に問題がなく、記録材Pシワ、画像擦れが発生していないことを示している。
(表11)
Figure JPOXMLDOC01-appb-I000011
 比較例とした実施例1は、150000枚通紙を行った時の定着ニップNの幅を比較した場合、定着ニップNの長手端部に比べ中央部が太い定着ニップNとなり記録材Pシワが発生している。
 一方、実施例3では、発熱履歴の少ない発熱ブロックHB、HB、HB、HBの発熱量を増やし発熱履歴の多い発熱ブロックHB、HB、HBとの差を小さくし、所定値以下とすることで記録材Pシワの発生を抑えることができた。
 以上の比較例では記録材Pのシワの発生が課題であったが、加圧ローラ208の硬度の状態によっては以下のようなケースもある。加圧ローラ208の長手の端部の硬度が下がるような図18(B)の画像パターンが通紙された場合、加圧ローラ208の画像側端部の加圧ローラ硬度が下がり、加圧ローラ208の長手端部付近の搬送力が中央部に比べ大幅に高くなる。そうすると、画像形成装置100の機外に排出される記録材Pに片ループが発生することも考えられる。このようなケースにおいても本実施例では、発熱履歴の少ない発熱ブロックHB、HB、HB、HB、HBの発熱量を上げる補正が行われるので、加圧ローラ208の長手での硬度の差が適切な量となる。
 効果の検証として、先に説明したのと同様の条件で耐久試験を行った。本実施例の結果を比較するために実施例1を比較例として用い、それぞれの結果を表12に示す。
 表中の「○」は記録材Pの搬送性に問題がなく、記録材Pシワ、画像擦れが発生していないことを示している。
(表12)
Figure JPOXMLDOC01-appb-I000012
 比較例とした実施例1は、150000枚通紙を行った時、定着ニップNの中央部に比べ画像側端部が太いニップ幅となっている。一方、実施例3では、発熱履歴の少ない発熱ブロックHB、HB、HB、HB、HBの発熱量を増やし発熱履歴の多い発熱ブロックHB、HBとの差を小さくすることで記録材Pの画像擦れの発生を抑えることができる。
 このように、実施例3では、ユーザの使用条件によって生じた加圧ローラ208の硬度の変化に適した定着制御温度の補正を実行することで、ユーザの使用条件によらず常に安定した搬送性能が得られる像加熱装置とすることができる。
 200…定着装置、202…定着フィルム、208…加圧ローラ、300…ヒータ、305…基板、302a、302b…発熱体、TH1-1~TH1-4、TH2-5~TH2-7…サーミスタ、400…制御回路、HB1~HB7…発熱ブロック

Claims (12)

  1.  基板及び前記基板上に設けられた前記基板の長手方向に並ぶ複数の発熱体を有するヒータと、内面が前記ヒータと接触しつつ回転する筒状のフィルムと、前記フィルムの外面と接触して回転する加圧部材と、を有し、前記フィルムと前記加圧部材との間のニップ部で記録材を挟持搬送しつつ記録材に形成された画像を前記ヒータの熱を利用して加熱する像加熱部と、
     前記画像の情報に応じて、複数の加熱領域を選択的に加熱すべく、前記複数の発熱体への通電を選択的に制御する通電制御部と、
    を備える像加熱装置において、
     前記複数の加熱領域のそれぞれにおける前記発熱体の累積発熱量と、前記加圧部材の累積回転時間と、前記ニップ部を通過する記録材の情報と、を取得する取得部を備え、
     前記通電制御部は、前記取得部が取得した情報に基づいて、前記複数の発熱体への通電を制御することを特徴とする像加熱装置。
  2.  前記通電制御部は、前記複数の発熱体への通電を制御する際の前記複数の加熱領域のそれぞれの制御目標温度を、前記累積発熱量と前記累積回転時間とに基づいて、それぞれ補正することを特徴とする請求項1に記載の像加熱装置。
  3.  前記取得部は、前記制御目標温度と、記録材が前記ニップ部を通過する時間と、の積を累積した値を前記累積発熱量として取得することを特徴とする請求項2に記載の像加熱装置。
  4.  前記ヒータの温度を検知する温度検知部をさらに備え、
     前記取得部は、前記温度検知部が検知した温度と、記録材が前記ニップ部を通過する時間と、の積を累積した値を前記累積発熱量として取得することを特徴とする請求項2に記載の像加熱装置。
  5.  前記取得部は、前記複数の発熱体に供給された電力と、記録材が前記ニップ部を通過する時間と、の積を累積した値を前記累積発熱量として取得することを特徴とする請求項2に記載の像加熱装置。
  6.  前記通電制御部は、前記複数の加熱領域のそれぞれを、前記画像の情報及び前記記録材の情報に基づいて、記録材及び画像を加熱する画像加熱領域、記録材は加熱するが画像は加熱しない非画像加熱領域、記録材も画像も加熱しない非通紙加熱領域、のいずれかに分類し、前記分類に応じて前記制御目標温度を設定することを特徴とする請求項2~5のいずれか1項に記載の像加熱装置。
  7.  前記記録材の情報は、少なくとも、記録材のサイズ、記録材の種類のいずれかを含むことを特徴とする請求項1~5のいずれか1項に記載の像加熱装置。
  8.  前記通電制御部は、前記複数の加熱領域の間の前記累積発熱量の差が所定値以上の場合に、前記複数の加熱領域がそれぞれ所定の温度に昇温するタイミングの差が小さくなるように、前記複数の加熱領域ごとに前記発熱体への通電のタイミングを異ならせることを特徴とする請求項1~5のいずれか1項に記載の像加熱装置。
  9.  前記通電制御部は、前記複数の加熱領域の間の前記累積発熱量の差が所定値以下になるように、前記複数の発熱体の発熱量を夫々制御することを特徴とする請求項1~5のいずれか1項に記載の像加熱装置。
  10.  前記通電制御部は、前記複数の加熱領域の間の前記累積発熱量の差が所定値以下になるように、前記累積発熱量が少ない加熱領域の発熱量を多くする制御を行うことを特徴とする請求項9に記載の像加熱装置。
  11.  前記累積発熱量及び前記累積回転時間を記憶する記憶部をさらに備えることを特徴とする請求項1~5のいずれか1項に記載の像加熱装置。
  12.  記録材に画像を形成する画像形成部と、
     記録材に形成された画像を記録材に定着する定着部と、
    を有する画像形成装置において、
     前記定着部が請求項1~5のいずれか1項に記載の像加熱装置であることを特徴とする画像形成装置。
PCT/JP2018/029100 2017-08-04 2018-08-02 像加熱装置及び画像形成装置 WO2019027012A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/779,991 US11029627B2 (en) 2017-08-04 2020-02-03 Image heating apparatus and image forming apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017151516 2017-08-04
JP2017-151516 2017-08-04
JP2018141516A JP7073220B2 (ja) 2017-08-04 2018-07-27 像加熱装置及び画像形成装置
JP2018-141516 2018-07-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/779,991 Continuation US11029627B2 (en) 2017-08-04 2020-02-03 Image heating apparatus and image forming apparatus

Publications (1)

Publication Number Publication Date
WO2019027012A1 true WO2019027012A1 (ja) 2019-02-07

Family

ID=65232886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029100 WO2019027012A1 (ja) 2017-08-04 2018-08-02 像加熱装置及び画像形成装置

Country Status (1)

Country Link
WO (1) WO2019027012A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110091251A1 (en) * 2009-10-20 2011-04-21 Samsung Electronics Co., Ltd Heating roller having resistive heating element and fusing device including heating roller
JP2014178668A (ja) * 2013-02-14 2014-09-25 Ricoh Co Ltd 定着装置及び画像形成装置
JP2014228677A (ja) * 2013-05-22 2014-12-08 株式会社リコー 画像形成装置
JP2015045672A (ja) * 2013-08-27 2015-03-12 株式会社リコー 定着装置、画像形成装置、定着制御方法及び定着制御プログラム
JP2015176010A (ja) * 2014-03-17 2015-10-05 株式会社リコー 定着制御装置、定着制御方法及び画像形成装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110091251A1 (en) * 2009-10-20 2011-04-21 Samsung Electronics Co., Ltd Heating roller having resistive heating element and fusing device including heating roller
JP2014178668A (ja) * 2013-02-14 2014-09-25 Ricoh Co Ltd 定着装置及び画像形成装置
JP2014228677A (ja) * 2013-05-22 2014-12-08 株式会社リコー 画像形成装置
JP2015045672A (ja) * 2013-08-27 2015-03-12 株式会社リコー 定着装置、画像形成装置、定着制御方法及び定着制御プログラム
JP2015176010A (ja) * 2014-03-17 2015-10-05 株式会社リコー 定着制御装置、定着制御方法及び画像形成装置

Similar Documents

Publication Publication Date Title
CN102289179B (zh) 图像加热装置和成像设备
US8391761B2 (en) Fixing device and image forming apparatus including fixing device
JP7073220B2 (ja) 像加熱装置及び画像形成装置
JP4804038B2 (ja) 像加熱装置及びこの装置に用いられるヒータ
US10915046B2 (en) Image heating apparatus and image forming apparatus
US8918001B2 (en) Fixing apparatus
US8666273B2 (en) Image heating device
US8498547B2 (en) Fixing device, image forming apparatus, and method of connecting wires in fixing device
US9989901B2 (en) Image fixing device having a controller that maintains a temperature of the heater
JP7086691B2 (ja) 像加熱装置及び画像形成装置
JP7073217B2 (ja) 像加熱装置及び画像形成装置
US8036560B2 (en) Image formation apparatus and image formation method
US20230023564A1 (en) Image forming apparatus that fixes toner image to recording medium using heater
KR102383348B1 (ko) 화상 가열 장치 및 화상 형성 장치
US20040028423A1 (en) Image heating apparatus and image forming apparatus
JP4844267B2 (ja) 定着装置、及びこれを用いた画像形成装置
JP2004078181A (ja) 定着装置および画像形成装置
JP2019056814A (ja) 画像形成装置および定着装置
JP2017122899A (ja) 定着装置及びそれを用いた画像形成装置
JP5849565B2 (ja) 定着装置、画像形成装置および定着制御方法
WO2019027012A1 (ja) 像加熱装置及び画像形成装置
JP7277230B2 (ja) 像加熱装置
JP2004191966A (ja) 定着装置および画像形成装置
US20240053696A1 (en) Image forming apparatus
US12038702B2 (en) Image heating apparatus and image forming apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18840374

Country of ref document: EP

Kind code of ref document: A1