WO2019026932A1 - 電動機の磁気発生装置、軟磁性体コア、及び磁石の製造方法 - Google Patents

電動機の磁気発生装置、軟磁性体コア、及び磁石の製造方法 Download PDF

Info

Publication number
WO2019026932A1
WO2019026932A1 PCT/JP2018/028762 JP2018028762W WO2019026932A1 WO 2019026932 A1 WO2019026932 A1 WO 2019026932A1 JP 2018028762 W JP2018028762 W JP 2018028762W WO 2019026932 A1 WO2019026932 A1 WO 2019026932A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
axis
winding
magnetic
magnets
Prior art date
Application number
PCT/JP2018/028762
Other languages
English (en)
French (fr)
Inventor
高橋 裕樹
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018026514A external-priority patent/JP7000906B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112018003942.0T priority Critical patent/DE112018003942T5/de
Priority to CN201880049979.8A priority patent/CN110959244B/zh
Priority to CN202210734822.7A priority patent/CN115276284A/zh
Priority to CN202210734789.8A priority patent/CN114899964A/zh
Priority to CN202210734556.8A priority patent/CN115276283A/zh
Priority to CN202210734759.7A priority patent/CN115378160A/zh
Priority claimed from JP2018143375A external-priority patent/JP6919631B2/ja
Publication of WO2019026932A1 publication Critical patent/WO2019026932A1/ja
Priority to US16/779,829 priority patent/US11936312B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present disclosure relates to a method of manufacturing a magnetic generator of a motor, for example, a soft magnetic core used as a rotor core of a rotating electrical machine, and a magnet.
  • Patent Document 1 discloses a technique of devising the shape of a magnet housing hole, suppressing a magnetic field in the opposite direction to the magnetic flux from the rotor to the stator, and increasing the magnetic flux linked to the stator.
  • Such a rotating electrical machine is designed to optimize the shapes of permanent magnets, rotors, stators, etc., and it is shown that the improvement of the capability of the rotating electrical machine and the improvement of the resistance to the demagnetizing field of the permanent magnet are both compatible. It is done.
  • a rotor used for an IPM motor as disclosed in Patent Document 1 has a d-axis which is the center of magnet poles and a q-axis where the magnetic flux of the magnet is neutral.
  • spatial vector control by actively controlling the d-axis and q-axis defined in this way separately and controlling the current directed to the d-axis and the current directed to the q-axis separately is actively performed. There is.
  • a reluctance torque Tr generated due to an inductance difference and a magnet disposed on the d-axis because the q-axis inductance becomes larger than the d-axis inductance due to the convex iron core disposed on the q-axis A torque is generated by the resultant force with the magnet torque Tm generated using the magnetic flux.
  • field weakening control is mentioned as a technique which raises the rotational speed of a motor under predetermined battery voltage conditions.
  • the field weakening magnetic field with respect to a magnet ie, the demagnetizing field generate
  • the reluctance torque component of the q-axis can be used when reducing the torque (magnet torque) by the magnet flux that weakens the magnetic flux of the magnet, so the combined torque of reluctance torque and magnet torque
  • This indication is made in view of the above-mentioned subject, and the purpose provides the manufacturing method of the magnetism generating device of an electric motor which can control the demagnetization of a magnet appropriately, a soft magnet core, and a magnet. It is.
  • a magnet is provided at a position opposite to a winding, and is capable of relative movement with respect to the winding by energization of the winding, and a plurality of the magnets are arranged alternately in polarity in the direction of movement of the relative movement Applied to the motor
  • the magnet is A first magnet unit that generates a magnetic flux according to the polarity;
  • a second magnet portion provided on the q axis side end portion which is an end portion on the magnetic pole boundary side of the magnet, and in which the magnetization direction inside the magnet intersects the magnetization direction in the first magnet portion When, Have.
  • the energizing magnetic field from the winding side acts on each magnet as a demagnetizing field. Do. Therefore, due to the demagnetizing field, there is a concern of demagnetization at the q-axis side end of each magnet.
  • the magnetization inside the magnet on the q axis side end (that is, the end on the magnetic pole boundary side) side of the magnet A configuration is provided in which a second magnet unit whose direction intersects the magnetization direction of the first magnet unit is provided. In this case, it is possible to reinforce the magnetic flux at the q-axis side end of the first magnet unit by the second magnet unit. Therefore, the demagnetization resistance to the demagnetizing field from the winding side can be enhanced, and the demagnetization of the first magnet portion, which is a pole magnet, can be appropriately suppressed.
  • the magnetization direction of the second magnet unit is perpendicular to the q-axis relative to the magnetization direction of the first magnet unit, and the magnetic flux of the second magnet unit reinforces the magnetic flux at the q-axis end of the first magnet unit. It is good to do.
  • the electric motor is provided with a winding side member on which the winding is wound, and a magnet side member disposed radially opposite to the winding side member and having the magnet. It is an electric machine and is a magnetism generating device of a motor used as the magnet side member, and the first magnet portion is provided at a predetermined interval in a circumferential direction in the magnet side member, and the second magnet portion is the second magnet portion. It is provided on the q-axis side end of the 1-magnet unit.
  • a rotating electrical machine comprising a winding side member (eg, a stator) on which a winding is wound, and a magnet side member (eg, a rotor) radially disposed opposite to the winding side member and having a magnet
  • the energized magnetic field from the winding side member acts on the magnet as a demagnetizing field, and there is a concern of demagnetization at the q-axis end of the magnet due to the demagnetizing field.
  • the second magnet portion is provided on the q-axis side end portion side of the first magnet portion, whereby resistance to the demagnetizing field is reduced at the q-axis side end portion of the first magnet portion. Magnetic capacity can be increased.
  • the magnet-side member includes a soft magnetic core having a plurality of magnet housing holes provided on both sides of the d-axis for each magnetic pole, and the magnet-side member is provided in the magnet housing hole The first magnet unit and the second magnet unit are accommodated.
  • the first magnet portion and the second magnet portion are accommodated in the magnet accommodation hole of each magnetic pole, and the second magnet portion
  • the magnetic flux at the q-axis side end of the first magnet portion is reinforced.
  • a portion closest to the winding-side member at the q-axis side end of the first magnet portion is used as a magnetic flux reinforcement point, and the magnetic flux reinforcement is performed to the magnetic flux reinforcement point by the second magnet portion
  • the influence of the demagnetizing field is the largest at the portion closest to the winding-side member, and demagnetization is considered to be most likely to occur.
  • a portion where the influence of the demagnetizing field becomes maximum can be used as a magnetic flux reinforcement point, and magnetic flux reinforcement can be suitably performed to the magnetic flux reinforcement point.
  • the first magnet portion and the second magnet portion have a rectangular cross section, and the magnetization direction is orthogonal to a pair of opposing magnetic flux acting surfaces,
  • the first magnet portion and the second magnet portion are disposed on the soft magnetic core so that the angles of the magnetization direction with respect to the d axis or the q axis are different from each other.
  • a magnet whose cross section has a rectangular shape and in which the magnetization direction is orthogonal to the pair of opposing magnetic flux acting surfaces is considered to be most versatile and excellent in terms of manufacturing and cost. Then, the magnets are used as the first magnet unit and the second magnet unit, and the soft magnetic body core is disposed so that the angles of the magnetization direction with respect to the d axis or the q axis are different from each other. Thereby, magnetic flux reinforcement of the q-axis side end part in the 1st magnet part can be realized suitably, achieving simplification of composition.
  • the desired demagnetization resistance can be realized even if magnets having the same dimensions and performance as the first and second magnet parts, that is, magnets having the same part number, are used.
  • an angle between the magnetization direction of the first magnet unit and the magnetization direction of the second magnet unit is an acute angle.
  • the magnetic flux reinforcement can be performed more appropriately for the magnetic flux reinforcement point.
  • the first magnet unit is provided as a pair of magnets in a state of being separated from each other on both sides of the d axis, and the magnetization direction of the first magnet unit is with respect to the d axis
  • the d-axis side end portions of the pair of magnets in the first magnet portion are inclined and intersect on the winding side among the winding side and the opposite winding side with respect to the magnet accommodation hole.
  • the third magnet unit is provided on the side of the third magnet unit in which the magnetization direction intersects the magnetization direction of the first magnet unit.
  • the first magnet portions are provided as a pair of magnets in a state of being separated from each other on both sides of the d axis, and the magnetization direction of the first magnet portion is inclined with respect to the d axis, And it is determined by the direction which intersects the winding side among the winding side and the counter-winding side rather than a magnet accommodation hole.
  • the magnetic fluxes of the pair of magnets interfere with each other at the d-axis side end (i.e., the center of the magnetic pole) of the first magnet unit, and the mutual interference causes the demagnetization (self demagnetization) of the magnet to occur. I am concerned.
  • the third magnet portion in which the magnetization direction intersects the magnetization direction of the first magnet portion is provided on the d-axis side end portion of the pair of magnets in the first magnet portion.
  • the magnetization direction of the third magnet unit is parallel to the d-axis relative to the magnetization direction of the first magnet unit, and the magnetic flux of the third magnet unit causes the magnetic flux at the d-axis end of the first magnet unit to be It is good to reinforce.
  • a portion closest to the pair of magnets is used as a magnetic flux reinforcement point, and the third magnet portion with respect to the magnetic flux reinforcement point To strengthen the magnetic flux.
  • the influence of the magnetic flux interference is maximized at the closest portions of the pair of magnets, and demagnetization is considered to be most likely to occur.
  • a portion where the influence of the magnetic flux interference becomes maximum can be used as a magnetic flux reinforcement point, and magnetic flux reinforcement can be suitably performed by the third magnet portion with respect to the magnetic flux reinforcement point.
  • an angle between the magnetization direction of the first magnet unit and the magnetization direction of the third magnet unit is an acute angle.
  • the magnet accommodation hole has a d-axis side expanded portion expanded to the d-axis side between the pair of magnets in the first magnet portion, and the d-axis side expanded portion
  • the third magnet unit is provided, and a flux barrier is provided on the d-axis side of the third magnet unit.
  • the third magnet portion and the flux barrier are provided in the d-axis side expanded portion of the magnet accommodation hole, the third magnet portion and the flux barrier are provided on the d-axis side end portion of the pair of magnets in the first magnet portion. A desired effect can be obtained while reducing the amount of magnets of the three-magnet unit to the necessary minimum. Thereby, the cost can be reduced.
  • the magnet accommodation holes are symmetrically provided on both sides of the d-axis, and the magnets are symmetrically arranged on both sides of the d-axis.
  • the second magnet unit has an intrinsic coercivity smaller than the intrinsic coercivity of the first magnet unit.
  • the magnetic flux reinforcement of the desired first magnet unit is desired while using an inexpensive magnet as the second magnet unit Can be realized.
  • the first magnet unit has an intrinsic coercivity smaller than the intrinsic coercivity of the second magnet unit.
  • the first magnet unit has an intrinsic coercive force iHc smaller than the intrinsic coercive force iHc of the second magnet unit
  • an inexpensive magnet can be used as the first magnet unit to reduce the magnet cost. Since most of the magnet flux is determined by the surface area of the first magnet portion, this configuration is suitable in terms of cost.
  • the intrinsic coercivity of the second magnet portion is larger than that of the first magnet portion, resistance to demagnetization is enhanced. Therefore, a suitable configuration can be realized when the magnetism generator (for example, the rotor) is exposed to a strong demagnetizing field from the winding side.
  • the magnetism generator for example, the rotor
  • the second magnet unit and the third magnet unit have different intrinsic coercivities.
  • the second magnet unit and the third magnet unit can be appropriately set according to the degree of influence of the demagnetization.
  • the first magnet portion has a plurality of divided magnets which are divided in a direction from the q-axis side toward the d-axis side and in which the magnetization directions are different from each other.
  • the magnetization direction is closer to a direction parallel to the q-axis than the divided magnets on the d-axis side.
  • the plurality of split magnets constituting the first magnet unit are different in magnetization direction from each other, and the split magnets on the q-axis side are oriented such that the magnetization direction is close to the direction parallel to the q-axis It has become. This makes it possible to enhance the demagnetization resistance against the demagnetizing field from the winding side near the d-axis side end even in the first magnet itself.
  • the plurality of divided magnets are arranged so as to be convex on the winding side at the portions where the end portions of the divided magnets face each other.
  • the first magnet portion can be made closer to the side of the winding side member compared to a configuration in which the convex shape is not arranged, and the winding and the first The distance to the magnet unit can be reduced to increase the torque.
  • the demagnetizing field increases as a trade-off by reducing the distance between the winding and the first magnet portion
  • the second magnet portion can solve the influence of the demagnetizing field increase.
  • the ratio of the portion which is closer to the winding than the magnet i.e., the magnet accommodation hole
  • receives the total sum of the magnetic flux of the winding and the magnet It can be made smaller. Therefore, it is possible to reduce the saturation region where magnetic flux saturation may occur due to both the magnetic fluxes of the winding and the magnet, and to more effectively extract the capability of the magnet.
  • an axially extending groove is formed on the surface facing the winding side member.
  • the soft magnetic core is a rotor core rotatably supported by inserting a rotation shaft into a through hole formed in a central portion, and the d-axis is formed on the inner circumferential surface of the through hole.
  • a protruding portion that protrudes radially inward and contacts the outer peripheral surface of the rotating shaft is formed.
  • a magnet is provided at a position opposite to a winding, and is capable of relative movement with respect to the winding by energization of the winding, and a plurality of the magnets are arranged alternately in polarity in the direction of movement of the relative movement Applied to the motor
  • the magnet is It is provided as a pair of magnets in a state of being separated from each other on both sides across the d axis which is the magnetic pole center, and the magnetization direction inside the magnet is inclined with respect to the d axis and at the winding side and the opposite winding side Among them, a first magnet portion which is directed to cross at the winding side, A second magnet portion provided on the side of the d-axis side end portion of the pair of magnets in the first magnet portion, and in which the magnetization direction intersects the magnetization direction of the first magnet portion; Have.
  • a first magnet portion is provided as a pair of magnets in a state of being separated from each other on both sides across the d axis which is the magnetic pole center, and in the first magnet portion, the magnetization direction inside the magnet is the d axis
  • the magnetic fluxes of the pair of magnets interfere with each other at the d-axis side end (i.e., the center of the magnetic pole) of the first magnet unit.
  • demagnetization self demagnetization
  • the magnetization direction inside the magnet is on the side of the d-axis side end portion of the pair of magnets in the first magnet portion.
  • a configuration is provided in which a second magnet unit that is oriented in a direction intersecting the magnetization direction is provided. In this case, it is possible to reinforce the magnetic flux at the end of the first magnet portion by the second magnet portion. Therefore, the demagnetization resistance against mutual interference of magnetic fluxes in the vicinity of the d axis is enhanced, and demagnetization of the first magnet portion (that is, the pole magnet) can be appropriately suppressed.
  • the magnetization direction of the third magnet unit is parallel to the d-axis relative to the magnetization direction of the first magnet unit, and the magnetic flux of the third magnet unit causes the magnetic flux at the d-axis end of the first magnet unit to be It is good to reinforce.
  • the electric motor is provided with a winding side member on which the winding is wound, and a magnet side member disposed radially opposite to the winding side member and having the magnet. It is an electric machine and is a magnetism generating device of a motor used as the magnet side member, and the magnet side member has a plurality of magnet accommodation holes provided so as to be positioned on both sides across the d axis for each magnetic pole. A soft magnetic core is included, and the first magnet portion and the second magnet portion are housed in the magnet housing hole.
  • a rotating electrical machine as a motor includes a winding side member (for example, a stator) on which a winding is wound, and a magnet side member (for example, a rotor) which is disposed to face the winding side member in a radial direction and has a magnet
  • the magnet-side member has a soft magnetic core in which a magnet is embedded.
  • the first magnet portion and the second magnet portion are housed in the magnet housing hole.
  • the magnet accommodation holes are symmetrically provided on both sides of the d-axis, and the magnets are symmetrically arranged on both sides of the d-axis.
  • the magnet accommodation hole has a d-axis side expanded portion expanded to the d-axis side between the pair of magnets in the first magnet portion, and the d-axis side expanded portion
  • the second magnet unit is provided, and a flux barrier is provided on the d-axis side of the second magnet unit.
  • the second magnet portion and the flux barrier are provided in the d-axis side expanded portion of the magnet accommodation hole, the second magnet portion and the flux barrier are provided. A desired effect can be obtained while reducing the amount of magnets of the two-magnet unit to the necessary minimum. Thereby, the cost can be reduced.
  • a portion closest to the pair of magnets is a magnetic flux reinforcement point, and the second magnet portion with respect to the magnetic flux reinforcement point To strengthen the magnetic flux.
  • the influence of the magnetic flux interference is maximized at the closest portions of the pair of magnets, and demagnetization is considered to be most likely to occur.
  • a portion where the influence of the magnetic flux interference becomes maximum can be used as a magnetic flux reinforcement point, and magnetic flux reinforcement can be suitably performed by the second magnet portion with respect to the magnetic flux reinforcement point.
  • an angle between the magnetization direction of the first magnet unit and the magnetization direction of the second magnet unit is an acute angle.
  • a soft magnetic core that is provided at a position facing a winding in an embedded magnet type rotary electric machine and holds a magnet
  • Each magnetic pole has a magnet receiving hole for receiving the magnet
  • the magnet accommodation holes are disposed on both sides of the d-axis for each magnetic pole, and are provided as a pair of substantially V-shaped holes so that the distance between facings becomes larger toward the winding side.
  • the pair of holes are provided so as to be convex on the winding side between both ends on the d-axis side and the q-axis side.
  • the magnet accommodation holes in the soft magnetic core of the rotating electrical machine are a pair of holes forming a substantially V-shape sandwiching the d-axis for each magnetic pole, and the pair of holes are both ends on the d-axis side and the q-axis side Between the above and the other so as to be convex on the winding side.
  • the ratio of the portion closer to the winding than the magnet housing hole and receiving the total sum of the magnetic fluxes of the winding and the magnet can be reduced. Therefore, it is possible to reduce the saturation region in which magnetic flux saturation can occur due to both the magnetic fluxes of the winding and the magnet, and to more effectively extract the capability of the magnet.
  • the rotating electrical machine includes: an annular stator on which the winding is wound; and a rotor having the magnet and disposed so as to face the stator radially inward.
  • the magnet in the internal rotation type rotating electrical machine, the magnet is convex outward in the radial direction, so the portion of the rotor core that is radially outward of the magnet accommodation hole becomes smaller.
  • the stress concentration factor to centrifugal force can be reduced and its mechanical strength can be increased.
  • the magnet accommodation holes are provided symmetrically on both sides of the d-axis.
  • the magnet By providing the magnet housing holes symmetrically on both sides of the d-axis, the magnet can be properly housed and held similarly regardless of the rotational direction of the rotary electric machine.
  • a magnet is provided at a position opposite to a winding, and is capable of relative movement with respect to the winding by energization of the winding, and a plurality of the magnets are arranged alternately in polarity in the direction of movement of the relative movement Applied to the motor
  • the magnet intersects at a non-perpendicular angle with at least one of the magnetic flux acting surfaces on both sides of the winding side and the opposite winding side of the magnet that generate the magnetic flux. It is oriented.
  • the energizing magnetic field from the winding side acts on each magnet as a demagnetizing field.
  • the demagnetizing field there is a concern of demagnetization at the q-axis side end of each magnet.
  • the internal magnetization direction in the magnet is at a non-perpendicular angle to at least one of the magnetic flux acting surfaces which are both on the winding side and the opposite winding side of the magnet and generate magnetic flux.
  • the intersecting directions allow the magnet magnetic path length (that is, the length of the internal magnetic field lines) to be increased, and the magnet magnetic flux is strengthened. That is, for example, in the case where a pair of magnetic flux acting surfaces face each other in the magnet, the magnet magnetic path length can be made longer than in the case where the magnetization direction is determined in the direction perpendicular to the magnetic flux acting surface It is possible to strengthen the magnetic flux. As a result, the demagnetization resistance to the demagnetizing field from the winding side can be enhanced, and the demagnetization of the magnet can be appropriately suppressed.
  • the magnetization directions of the magnets may not all be the same in the interior of the magnet.
  • the magnetization direction of the magnet may include a magnetization direction that intersects at a non-perpendicular angle to the flux acting surface and a magnetization direction that intersects perpendicularly to the flux acting surface.
  • the electric motor is provided with a winding side member on which the winding is wound, and a magnet side member disposed radially opposite to the winding side member and having the magnet. It is an electric machine and is a magnetism generating device of a motor used as the magnet side member, and the magnet side member has a plurality of magnet accommodation holes provided so as to be positioned on both sides across the d axis for each magnetic pole. A soft magnetic core is included, and the magnet is accommodated in the magnet accommodation hole.
  • the magnetization direction of the magnet accommodated in the magnet accommodation hole is at least one of the magnetic flux acting surfaces on the winding side and the opposite winding side. It intersects at a non-perpendicular angle to.
  • the demagnetization resistance ability with respect to the demagnetizing field in an embedded magnet type rotary electric machine can be raised suitably.
  • the magnet accommodation holes are symmetrically provided on both sides of the d-axis, and the magnets are symmetrically arranged on both sides of the d-axis.
  • the magnetization direction is changed such that the magnet has a magnetic flux acting surface on the winding side of the magnet and a magnetic flux acting surface on the opposite side.
  • the magnetization direction of the magnet is different between the magnetic flux acting surface on the winding side of the magnet and the magnetic flux acting surface on the opposite side, so that the magnet magnetic path length (that is, the length of the internal magnetic field line) ) Can be made longer.
  • the magnetic flux of the magnet is strengthened to suitably generate a magnetic flux that opposes the demagnetizing field from the winding side, and the demagnetization of the magnet can be appropriately suppressed.
  • the magnetization direction is from a direction close to the direction perpendicular to the q-axis to a direction close to the direction parallel to the d-axis , And is provided so as to switch to a non-linear convex shape on the opposite winding side.
  • the magnetization direction of the magnet is close to the direction perpendicular to the q axis on the q axis side, and close to the direction parallel to the d axis on the d axis side, It is designed to be switched to a non-linear convex shape on the opposite winding side.
  • the magnet magnetic path length that is, the length of the internal magnetic field lines
  • a magnetic flux against the demagnetizing field from the winding side is suitably generated to properly demagnetize the magnet. Can be suppressed.
  • the magnetization direction is close to the direction parallel to the d-axis. Therefore, demagnetization due to mutual interference of magnetic flux in the vicinity of the d-axis can be suppressed.
  • the magnetization direction is from a direction close to the direction perpendicular to the d-axis to a direction close to the direction parallel to the q-axis , And is provided so as to switch to a non-linear convex shape on the opposite winding side.
  • the magnetization direction of the magnet is close to a direction perpendicular to the d axis on the d axis side, and close to a direction parallel to the q axis on the q axis side, It is designed to be switched to a non-linear convex shape on the opposite winding side.
  • the magnet magnetic path length that is, the length of the internal magnetic field lines
  • a magnetic flux against the demagnetizing field from the winding side is suitably generated to properly demagnetize the magnet. Can be suppressed.
  • the q-axis end of the magnet is positioned closer to the winding than the d-axis end in the radial direction, and the q-axis is It is provided so as to be convex on the winding side between the end and the d-axis side end.
  • the magnet can be brought close to the winding opposing surface of the soft magnetic core, and the torque can be increased by reducing the distance between the winding and the magnet.
  • the demagnetizing field increases as a contradiction, but the influence of the demagnetizing field increase can be solved by the magnetization direction which is made non-linear in the magnet as described above. it can.
  • the ratio of the portion closer to the winding than the magnet (i.e., the magnet accommodation hole) and receiving the total sum of the magnetic fluxes of the winding and the magnet can be reduced. Therefore, it is possible to reduce the saturation region in which magnetic flux saturation can occur due to both the magnetic fluxes of the winding and the magnet, and to more effectively extract the capability of the magnet.
  • a soft-magnetic material core turns into a rotor core, and in that rotor core, a magnet becomes convex toward the radial outside. Provided. Therefore, the portion of the rotor core that is radially outward of the magnet accommodation hole becomes smaller. Thus, the stress concentration factor to centrifugal force can be reduced and its mechanical strength can be increased.
  • the magnetization direction intersects the magnetic flux acting surface at a non-perpendicular angle, and the magnet end face intersecting the magnetic flux acting surface is formed in a direction parallel to the magnetization direction.
  • a flux barrier is provided outside the magnet end face of at least one of the d-axis side and the q-axis side in the magnet accommodation hole.
  • the magnet magnetic path length is partially shortened.
  • the magnet by forming the end face of the magnet intersecting the magnetic flux acting surface in a direction parallel to the magnetization direction, it is possible to suppress the local presence of a short portion of the magnet magnetic path length in the magnet.
  • the end of the magnet is achieved while the demagnetization suppression by the extension of the magnet magnetic path is achieved. It is possible to suppress the self-shorting of the magnetic flux in the part.
  • the magnetization direction is inclined with respect to the d-axis and intersected with the magnetic flux acting surface at a non-perpendicular angle.
  • the magnetization direction of the magnet is inclined to the d-axis and intersects the magnetic flux acting surface at a non-perpendicular angle, so that the magnetization direction is orthogonal to the magnetic flux acting surface
  • the magnet magnetic path length that is, the length of the internal magnetic field lines
  • the magnet flux is strengthened.
  • the magnets are disposed on both sides of the soft magnetic core across the d-axis, and the magnetization directions of the magnets on both sides of the d-axis are inclined with respect to the d-axis. And it is a direction which cross
  • the magnets provided on both sides across the d-axis preferably strengthen the magnetic flux along the d-axis while enhancing the resistance to demagnetization against the demagnetizing field from the winding side. it can.
  • the magnetization direction intersects at a non-perpendicular angle to the magnetic flux acting surface, and the magnet end face intersecting the magnetic flux acting surface is parallel to the magnetization direction. It is formed of
  • the magnetization direction of the magnet is oriented perpendicularly to the magnetic flux acting surface.
  • the magnet magnetic path length is partially shortened at the end of the magnet.
  • the end face of the magnet intersecting the magnetic flux acting surface is formed in a direction parallel to the magnetization direction of the magnet, so that it is possible to suppress the local presence of a short portion of the magnet magnetic path length in the magnet.
  • the magnet end surface may be formed in a direction parallel to the magnetization direction of the magnet on at least one of the q-axis side magnet end surface and the d-axis side magnet end surface intersecting the magnetic flux acting surface.
  • a magnet length in the magnetization direction on the magnet end face side is longer than a magnet length in the magnetization direction at a center side than the magnet end face.
  • the magnet magnetic path length is increased by intersecting the magnetization direction of the magnet at a non-perpendicular angle with respect to the magnetic flux acting surface, the magnet magnetic path length is locally It is extended further. Thereby, the demagnetization resistance can be further improved.
  • the magnetization direction is different between the part near the d axis and the part near the q axis.
  • the magnet magnetic flux can be collected at a specific position on the d-axis, and the magnet magnetic flux can be strengthened.
  • the magnetization direction is more parallel to the d axis than the portion near the q axis in the portion near the d axis.
  • the magnet magnetic path length is longer at the q axis side than at the d axis side, the magnet flux in the q axis is strengthened to prevent the demagnetization against the demagnetizing field at the q axis end of the magnet.
  • the magnetization direction is in a state parallel or nearly parallel to the d-axis.
  • the magnetization directions at the d-axis side end parts are inclined to the mutually facing side When the magnetic fluxes are mixed, mutual interference of the magnetic flux can be suppressed.
  • the inclination of the direction of magnetization in the portion near the q-axis with respect to the direction perpendicular to the magnetic flux acting surface is in the portion near the d-axis with respect to the direction perpendicular to the magnetic flux acting surface. Larger than the inclination of the magnetization direction.
  • the length of the magnet magnetic path at the q-axis side end of the magnet can be made longest, and the demagnetization resistance to the demagnetizing field at the q-axis side end of the magnet can be strengthened. As a result, it is possible to realize both the suppression of demagnetization at the q-axis side end of the magnet and the increase of the magnet torque.
  • the magnet accommodation hole 12 approaches the d-axis side end of the magnet 101 with respect to a configuration in which the magnet accommodation hole 12 is linearly formed so as to extend in a direction perpendicular to the d-axis. It is conceivable to adopt a configuration in which the magnetization direction is made more parallel to the d-axis than the magnetization direction on the q-axis side. In this case, a configuration is realized in which the inclination of the magnetization direction in the part near q-axis with respect to the direction perpendicular to the magnetic flux acting surface is larger than the part near d-axis.
  • the magnetization direction is more parallel to the q axis than the part near the d axis in the part near the q axis.
  • the magnetization direction is parallel to the q axis in the part near the q axis, thereby opposing the magnet flux in the direction orthogonal to the winding facing surface of the soft magnetic core, ie, the demagnetizing field in the q axis.
  • the magnet flux in the direction can be intensified. As a result, it is possible to properly take measures against demagnetization against the demagnetizing field at the q-axis side end of the magnet.
  • the magnet accommodation holes are disposed on both sides of the d-axis for each magnetic pole, and a pair of substantially V-shaped holes so that the distance between facings becomes larger toward the winding side.
  • the magnet has a first magnet portion which is a portion including the d-axis side end and a second magnet portion which is a portion including the q-axis side end on both sides of the d-axis.
  • the magnetization direction is closer to a direction perpendicular to the q-axis than the first magnet unit.
  • the demagnetization resistance to the demagnetizing field from the winding side can be enhanced, and the demagnetization of the magnet can be appropriately suppressed.
  • the magnetization direction of the first magnet unit is parallel to the d-axis.
  • the magnetization direction is parallel to the d axis
  • the magnetization direction of the second magnet unit is close to the direction perpendicular to the q axis with respect to the magnetization direction of the first magnet unit. ing.
  • the q axis side end of the magnet is positioned closer to the winding than the d axis side end in the radial direction, and the q axis side It is provided so as to be convex on the winding side between the end and the d-axis side end.
  • the magnet since the magnet can be made to approach the winding facing surface of the soft magnetic core, the magnetic resistance of the d axis can be reduced and the torque can be increased.
  • the demagnetizing field increases as a contradiction, but the influence of the demagnetizing field increase can be eliminated by lengthening the magnetic path length in the magnet as described above.
  • the ratio of the portion closer to the winding than the magnet (i.e., the magnet accommodation hole) and receiving the total sum of the magnetic fluxes of the winding and the magnet can be reduced. Therefore, it is possible to reduce the saturation region in which magnetic flux saturation can occur due to both the magnetic fluxes of the winding and the magnet, and to more effectively extract the capability of the magnet.
  • the q axis side end of the magnet is positioned closer to the winding than the d axis side end in the radial direction, and the q axis side It is provided so that it may become convex in the opposite winding side between an end and a d-axis side end.
  • the magnet magnetic force can be increased by the magnet arrangement in that region.
  • the magnetization direction is different between the part near the d axis and the part near the q axis.
  • the magnet magnetic flux can be collected at a specific position on the d-axis, and the magnet magnetic flux can be strengthened.
  • the magnet is arc-shaped in the magnetization direction.
  • the magnet magnetic path length can be further lengthened. Therefore, the magnetic flux of the magnet can be further strengthened.
  • the magnet is disposed as a pair of magnets on one side and the other side across the d-axis core portion on the d-axis in the soft magnetic body core, and the magnet is placed on the soft magnetic body core
  • a nonmagnetic material portion is provided, which sandwiches the d-axis core portion and extends from the end portion on the opposite winding side of the pair of magnets to the opposite winding side.
  • the magnetic resistance of the d-axis core portion positioned between the pair of magnets can be increased by the nonmagnetic portion. Therefore, the short circuit between the pair of magnets can be suppressed, and the magnetic force can be used more effectively.
  • the nonmagnetic portion is configured such that a nonmagnetic material is accommodated in a part of the magnet accommodation hole.
  • each magnetic flux can be designed suitably, reducing the mutual action of the magnetic flux which arises in a pair of magnets, respectively.
  • the soft magnetic core is a rotor core rotatably fixed to a rotating shaft, and the nonmagnetic portion is the radially innermost point in the magnet, and the rotor It projects to the q-axis side from a virtual line connecting to the rotation center of the core.
  • the inertia of the rotor can be reduced as much as possible.
  • the size of the nonmagnetic portion in the circumferential direction may be determined according to the width of the q-axis core portion positioned in the circumferential direction of the magnet in consideration of the amount of magnetic flux of the q-axis. It is also possible to project the nonmagnetic portion to the same position as an imaginary line connecting the end portion and the rotation center of the rotor core, or to a position on the q axis side by a predetermined amount with respect to the imaginary line.
  • a fifty-third means is a method for manufacturing a magnet used in a rotating electrical machine, comprising the steps of: filling a mold placed in a magnetic field generated by a magnetic field coil with magnetic powder; and the magnetic field generated by the magnetic field coil And a step of performing magnetic field orientation in a predetermined direction with respect to the magnet powder in the mold in a state of being bent by an oriented core, and a step of sintering the magnet powder in the mold.
  • the magnetizing direction in the rotating electrical machine is from the q-axis side to the d-axis side
  • the direction from the direction perpendicular to the q-axis to the direction parallel to the d-axis It is possible to preferably realize a configuration in which the non-straight line of convexity is switched to the winding side.
  • the magnetization direction is convex from the direction close to the direction perpendicular to the d-axis to the direction close to the direction parallel to the q-axis from the d-axis toward the q-axis.
  • a configuration that switches to a non-linear state can be suitably realized.
  • FIG. 1 is a longitudinal sectional view of a rotating electrical machine
  • 2 is a cross-sectional view of a rotor and a stator of a rotating electrical machine
  • FIG. 3 is a partial plan view showing a rotor and a stator of a rotating electrical machine
  • FIG. 4 is a partial plan view showing a rotor core
  • FIG. 5 is a diagram for explaining the influence of the demagnetizing field in the magnet
  • FIG. 6 is a diagram for explaining the influence of mutual interference of magnetic fluxes on magnets
  • FIG. 5 is a diagram for explaining the influence of the demagnetizing field in the magnet
  • FIG. 6 is a diagram for explaining the influence of mutual interference of magnetic fluxes on magnets
  • FIG. 7 is a partial plan view showing a rotor in a modification 1 of the first embodiment
  • FIG. 8 is a partial plan view showing a rotor in a modification 2 of the first embodiment
  • FIG. 9 is a partial plan view showing a rotor in a third modification of the first embodiment
  • FIG. 10 is a partial plan view showing a rotor in a modification 4 of the first embodiment
  • FIG. 11 is a partial plan view showing a rotor in a fifth variation of the first embodiment
  • FIG. 12 is a partial plan view showing a rotor in a modification 6 of the first embodiment
  • FIG. 13 is a partial plan view showing a rotor in a seventh variation of the first embodiment
  • FIG. 14 is a partial plan view showing a rotor of a second embodiment
  • FIG. 15 is an explanatory view for explaining a method of magnetizing a magnet by magnetic field orientation
  • FIG. 16 is a partial plan view showing a rotor in a modification 1 of the second embodiment
  • FIG. 17 is a partial plan view showing a rotor in a modification 2 of the second embodiment
  • FIG. 18 is a partial plan view showing a rotor in a modification 3 of the second embodiment
  • FIG. 19 is a partial plan view showing a rotor in a modification 4 of the second embodiment
  • FIG. 20 is a partial plan view showing the rotor of the third embodiment
  • FIG. 21 is an explanatory view for explaining a method of magnetizing a magnet by magnetic field orientation
  • FIG. 22 is an explanatory view for explaining a method of magnetizing a magnet by magnetic field orientation
  • FIG. 23 is a partial plan view showing a rotor of a fourth embodiment
  • FIG. 24 is a partial plan view showing a rotor in a modification 1 of the fourth embodiment
  • FIG. 25 is a partial plan view showing a rotor in a modification 2 of the fourth embodiment
  • FIG. 26 is a partial plan view showing a rotor in a modification 3 of the fourth embodiment
  • FIG. 27 is a partial plan view showing a rotor in a modification 4 of the fourth embodiment
  • FIG. 28 is a diagram showing in detail the magnetization direction of the magnet
  • FIG. 29 is a partial plan view showing a rotor in a modification 5 of the fourth embodiment
  • FIG. 30 is a partial plan view showing a rotor in a modification 6 of the fourth embodiment
  • FIG. 31 is a partial plan view showing a rotor in a modification 7 of the fourth embodiment
  • 32 is a partial plan view showing a rotor in a modification 8 of the fourth embodiment
  • FIG. 33 is a partial plan view showing a rotor in a modification 9 of the fourth embodiment
  • FIG. 34 is a diagram showing the configuration of a magnet
  • FIG. 35 is a partial plan view showing a rotor in a modification 10 of the fourth embodiment
  • FIG. 36 is a partial plan view showing a rotor in a modification 10 of the fourth embodiment
  • FIG. 37 is a partial plan view showing a rotor in a modification 10 of the fourth embodiment
  • FIG. 35 is a partial plan view showing a rotor in a modification 10 of the fourth embodiment
  • FIG. 36 is a partial plan view showing a rotor in a modification 10 of the fourth embodiment
  • FIG. 37 is a
  • FIG. 38 is a partial plan view showing a rotor according to a fifth embodiment
  • FIG. 39 is an explanatory view for explaining a method of magnetizing a magnet by magnetic field orientation
  • FIG. 40 is a partial plan view showing a rotor in a modification of the fifth embodiment
  • Fig. 41 is a partial plan view showing a rotor in another form
  • FIG. 42 is a partial plan view showing a rotor in another form
  • FIG. 43 is a partial plan view showing a rotor in another form
  • FIG. 44 is a partial plan view showing a rotor in another form.
  • a rotary electric machine as a motor is embodied, and the rotary electric machine is used, for example, as a vehicle power source.
  • the rotary electric machine can be widely used for industrial use, for vehicles, for home appliances, for OA equipment, for game machines, and the like.
  • symbol is attached
  • the rotary electric machine 1 is an inner rotor type (internal rotation type) embedded magnet type rotary electric machine (IPM motor) used as a motor for a vehicle, and the outline thereof will be described using FIGS. 1 and 2.
  • FIG. 1 is a longitudinal cross-sectional view of the rotating electrical machine 1 in a direction along the rotation axis 2
  • FIG. 2 is a cross-sectional view of the rotor 10 and the stator 30 in the direction orthogonal to the rotation axis 2.
  • the direction in which the rotation shaft 2 extends is taken as the axial direction
  • the direction extending radially around the rotation shaft 2 is taken as the radial direction
  • the direction extending circumferentially around the rotation shaft 2 is taken as the circumferential direction.
  • the rotary electric machine 1 includes a rotor 10 fixed to a rotary shaft 2, an annular stator 30 provided at a position surrounding the rotor 10, and a housing 4 for housing the rotor 10 and the stator 30. Is equipped.
  • the rotor 10 and the stator 30 are coaxially arranged.
  • the rotor 10 is disposed to face the radially inner side of the stator 30, and a predetermined air gap is formed between the inner peripheral surface of the stator 30 and the outer peripheral surface of the rotor 10.
  • the housing 4 has a pair of bottomed cylindrical housing members 4a and 4b, and the housing members 4a and 4b are integrated by fastening the bolt 5 in a state where the opening members are joined with each other.
  • the housing 4 is provided with bearings 6, 7, and the rotary shaft 2 and the rotor 10 are rotatably supported by the bearings 6, 7.
  • the rotor 10 has a rotor core 11 fixed to the rotation shaft 2.
  • the rotor core 11 is formed with a plurality of magnet housing holes 12 arranged in the circumferential direction, and a plurality of magnets 13 (permanent magnets) are embedded in the magnet housing holes 12 respectively.
  • magnets 13 permanent magnets
  • the stator 30 has a substantially cylindrical stator core 31 formed by stacking a large number of electromagnetic steel plates.
  • the stator core 31 is provided with a plurality of slots 32 penetrating in the axial direction and arranged at equal intervals in the circumferential direction.
  • a three-phase stator winding 33 is wound around the slot 32.
  • forty-eight slots 32 are arranged at equal intervals in the circumferential direction so that the three-phase stator windings 33 are accommodated corresponding to the number of magnetic poles of the rotor 10.
  • 3 and 4 show one pole of the plurality of magnetic poles (for example, all eight poles) of the rotary electric machine 1.
  • the rotor core 11 is formed in a substantially cylindrical shape by laminating a large number of electromagnetic steel plates, and a through hole 14 is formed in the central portion thereof.
  • the rotor core 11 is fixed to the rotation shaft 2 by fitting the rotation shaft 2 into the through hole 14.
  • many electromagnetic steel plates of the rotor core 11 are fixed in the axial direction using fixing means such as caulking and welding.
  • the fixing means may be provided at a portion corresponding to the q-axis magnetic path of the rotor core 11.
  • a projecting portion 14 a that protrudes inward in the radial direction and is in contact with the outer circumferential surface of the rotary shaft 2 is formed.
  • the shape of the projecting portion 14a may be any of a rectangular shape, a trapezoidal shape, a triangular mountain shape, etc. In any case, unevenness is formed in the circumferential direction on the inner circumferential surface of the through hole 14, The configuration is only required to be in contact with the outer peripheral surface of Instead of providing the protruding portion 14 a on the inner circumferential surface of the through hole 14, the protruding portion may be provided on the outer circumferential surface of the rotating shaft 2.
  • each magnet accommodation hole 12 In the vicinity of the outer peripheral surface of the rotor core 11 facing the inner peripheral surface of the stator 30, a plurality of (16 in the present embodiment) magnet accommodation holes 12 penetrating in the axial direction are separated by a predetermined distance in the circumferential direction. It is provided.
  • Each of the magnet housing holes 12 is a pair of two, and the pair of magnet housing holes 12 is formed in a substantially V shape in which the distance between the magnet housing holes 12 facing each other increases toward the radially outer side. .
  • each magnet accommodation hole 12 is provided such that the separation distance from the stator 30 becomes larger as it goes to the d-axis.
  • the pair of magnet housing holes 12 are symmetrical with the d-axis (magnetic pole central axis) as the axis of symmetry.
  • a total of eight pairs of magnet accommodation holes 12 are provided in the rotor core 11 at equal intervals in the circumferential direction.
  • one magnetic pole is formed by the pair of magnets 13 housed in the pair of magnet housing holes 12.
  • the eight pairs of magnets 13 form a plurality of magnetic poles (eight poles in this embodiment) whose polarities are alternately different in the circumferential direction.
  • the pair of magnets 13 forming one magnetic pole is arranged in line symmetry with respect to the d-axis.
  • the shape of the magnet accommodation hole 12 will be described in more detail.
  • the rotor core 11 in the state which has not accommodated the magnet 13 in the magnet accommodation hole 12 is shown by FIG. In FIG. 4, the d-axis is between the pair of magnet housing holes 12 and the q-axis is on both outer sides of the pair of magnet housing holes 12.
  • the magnet housing hole 12 is a portion near the d-axis while the q-axis side portion 12a near the q-axis in the longitudinal direction is provided near the outer peripheral surface of the rotor core 11.
  • the d-axis side portion 12b is provided radially inward of the rotor core 11 relative to the q-axis side portion 12a, and an intermediate portion 12c is formed between the q-axis side portion 12a and the d-axis side portion 12b.
  • the q-axis side portion 12a is provided to extend along the outer peripheral surface of the rotor core 11, and the d-axis side portion 12b is provided to extend along the d-axis.
  • the intermediate portion 12 c is provided to connect the q-axis side portion 12 a and the d-axis side portion 12 b linearly.
  • the d-axis side portions 12b are close to each other with the d-axis interposed therebetween, and a central bridge 15 extending in the radial direction is formed in the middle portion thereof.
  • the radial outer wall surface of the magnet housing hole 12 approaches the outer peripheral surface of the rotor core 11, and the q-axis side portion 12a and the outer peripheral surface of the rotor core 11 And an outer bridge 16 is formed therebetween.
  • the main magnet 21 is disposed in the middle portion 12c as the magnet 13 in each magnet housing hole 12, and the auxiliary magnets 22 and 23 are disposed in the q-axis side portion 12a and the d-axis side portion 12b, respectively. Is arranged. That is, in each of the magnet housing holes 12, the auxiliary magnets 22 and 23 are disposed at both ends in the longitudinal direction of the main magnet 21.
  • the main magnet 21 has a rectangular cross-sectional shape orthogonal to the axial direction, and the magnetization direction inside the magnet (that is, the direction of the internal magnetic field lines) is inclined with respect to the d axis, and from the magnet housing hole 12 Also in the stator 30 side and the anti-stator side, it is determined in the direction in which the stator 30 crosses.
  • the main magnet 21 corresponds to a first magnet unit.
  • the auxiliary magnets 22 and 23 are provided in contact with or close to both end portions of the main magnet 21 in the direction intersecting with the magnetization direction of the main magnet 21, that is, the d-axis side end and the q-axis side end.
  • the magnetization direction is determined in the direction intersecting the magnetization direction of the main magnet 21.
  • the auxiliary magnets 22 and 23 correspond to a second magnet unit.
  • the main magnet 21 and the auxiliary magnets 22 and 23 are, for example, rare earth magnets such as sintered neodymium magnets.
  • Each of the magnets 21 to 23 is preferably arranged in contact with the wall surface of the magnet accommodation hole 12, but in consideration of the difference in linear expansion coefficient with the rotor core 11, a minute gap is given to the surface. It may be done.
  • the magnets 21 to 23 may be fixed by filling a resin material, an adhesive or the like between the magnets 21 to 23 and the wall surface of the magnet housing hole 12. By fixing the magnets 21 to 23 with a resin material, an adhesive or the like, noise and the like due to slight vibration can be suppressed. Moreover, the dispersion
  • the main magnet 21 is the largest among the magnets 21 to 23 and is provided according to the polarity of each magnetic pole, and the shape of the cross section is rectangular.
  • the magnetic poles of the rotor core 11 are formed by the pair of main magnets 21.
  • the main magnet 21 is oriented such that the axis of easy magnetization is orthogonal to the long side of the main magnet 21 (in other words, the direction parallel to the short side), and the magnetization direction is d when accommodated in the magnet housing hole 12 It is inclined to the axis.
  • the magnetic poles of the N pole are shown in FIG. 1, and the magnetization directions of the pair of main magnets 21 are close to the d-axis and toward the outer peripheral side of the rotor core 11.
  • the orientation ratio of the main magnet 21 is high with respect to the side surface forming the long side portion in the cross section, and the orientation direction is set in the direction perpendicular to the side surface.
  • the main magnet 21 performs the function of causing the magnetic flux to flow out in the vertical direction if there is even a small amount of orientation component in the direction perpendicular to the long side.
  • the auxiliary magnets 22 and 23 are provided in a space where the main magnet 21 is not provided in the magnet housing hole 12 and in contact with or in proximity to both end surfaces in the longitudinal direction of the main magnet 21.
  • the magnetization directions of the auxiliary magnets 22 and 23 are different from that of the main magnet 21, and the magnetization direction (orientation direction) is determined in a direction intersecting the end face in the longitudinal direction of the main magnet 21.
  • the magnetization easy axis of the auxiliary magnets 22 and 23 is directed to the end face of the main magnet 21, and the magnetization direction is determined by the direction.
  • the angle formed by is an acute angle (less than 90 degrees).
  • an angle formed by the magnetization direction of the main magnet 21 and the magnetization direction of the auxiliary magnet 23 that is, the traveling direction of the internal magnetic force lines of the main magnet 21 and the traveling of the internal magnetic force lines of the auxiliary magnet 23.
  • the angle formed by the directions is an acute angle (less than 90 degrees).
  • the auxiliary magnets 22 and 23 are respectively provided on both end sides of the main magnet 21 in the longitudinal direction, whereby the position of the main magnet 21 is determined in a state of being supported by the auxiliary magnets 22 and 23. Therefore, it becomes unnecessary to provide a positioning protrusion for fixing the main magnet 21 on the peripheral wall surrounding the magnet accommodation hole 12, and in consideration of the difference in linear expansion coefficient between the positioning protrusion on the rotor core 11 side and the main magnet 21. It is possible to omit the structural design.
  • the radially outer wall surface of the magnet housing hole 12 approaches the outer peripheral surface of the rotor core 11, and the q-axis side portion An outer bridge 16 is formed between 12 a and the outer peripheral surface of the rotor core 11.
  • the outer bridge 16 by forming the outer bridge 16 to be narrow, self-shorting of the magnetic flux by the auxiliary magnet 22 is suppressed in the vicinity of the outer peripheral surface of the rotor core 11.
  • the auxiliary magnets 22 and 23 are used in addition to the main magnet 21, whereby both ends in the longitudinal direction of the main magnet 21, that is, the d-axis end and q
  • the demagnetization resistance can be improved at the shaft side end. That is, according to the auxiliary magnets 22 and 23, the magnet magnetic path is artificially extended in the magnet accommodation hole 12, thereby increasing the magnet permeance and enhancing the resistance to the opposing magnetic field such as the demagnetizing field.
  • the point will be described in detail below.
  • the characteristic point of the rotor 10 of this embodiment is demonstrated, showing the rotor of a general magnet V-shaped arrangement
  • the rotor core 201 is formed with a V-shaped rectangular magnet accommodation hole 202 having a symmetrical shape on both sides across the d-axis, and the magnet accommodation hole 202 In the inside, a pair of permanent magnets 203 are disposed in such a direction that the magnetization direction is inclined with respect to the d axis.
  • FIGS. 5A and 5B show a state in which a rotating magnetic field is generated by the stator as a demagnetizing field on the outer peripheral surface of the rotor core 201 as the conductor 204 of the stator winding is energized. More specifically, FIG. 5 (a) shows a state in which the conductor 204 on the q axis is energized, and FIG. 5 (b) shows a state in which the conductor 204 on the d axis is energized. In each of these states, as shown, the rotating magnetic field of the stator acts as a demagnetizing field. In this case, the demagnetizing field may cause demagnetization at the corner P1 of the q-axis side end of the permanent magnet 203.
  • the auxiliary magnet 22 provided on the q-axis side end of the main magnet 21 plays the following role. As shown in FIG. 3, the magnetization direction of the auxiliary magnet 22 is perpendicular to the q-axis relative to the main magnet 21, and the magnetic flux of the auxiliary magnet 22 causes the magnetic flux of the q-axis end of the main magnet 21 to Be reinforced. In this case, a magnetic flux opposed to the demagnetizing flux from the stator 30 is fed from the auxiliary magnet 22 to improve the demagnetization resistance near the q-axis.
  • the auxiliary magnet 22 is provided to face the q-axis side end face of the main magnet 21, and the magnet magnetic path length passing through the corner portion P1 closer to the stator 30 in the q-axis side end face of the main magnet 21 However, it is longer than the magnet magnetic path length of other parts. Thereby, the demagnetization at the corner portion P1 having the highest possibility of demagnetization at the q-axis side end of the main magnet 21 is suitably suppressed.
  • the configuration may be such that the magnetic path lengths of the auxiliary magnets 22 are the same in any part.
  • each permanent magnet 203 in each permanent magnet 203, the magnetization direction is inclined with respect to the d axis, and is in a direction intersecting with the magnet accommodation hole 202 on the stator side. Therefore, in the N magnetic pole, the magnetic fluxes of the permanent magnets 203 on the left and right of the figure are directed to the d axis side, and there is a concern that mutual demagnetization occurs due to interference of the respective magnetic fluxes.
  • the magnetic fluxes of the left and right permanent magnets 203 include a magnetic flux vector orthogonal to the d axis and a magnetic flux vector parallel to the d axis, among which the mutual interference due to the magnetic flux vector orthogonal to the d axis It is feared that demagnetization may occur at the corner P2 of the d-axis side end of the permanent magnet 203.
  • the auxiliary magnet 23 provided on the d-axis side end of the main magnet 21 plays the following role. As shown in FIG. 3, the auxiliary magnet 23 is oriented such that the magnetization direction is more parallel to the d-axis than the main magnet 21, and the magnetic flux of the auxiliary magnet 23 causes the magnetic flux at the d-axis end of the main magnet 21. Is reinforced. In this case, a magnetic flux that compensates for the opposing magnetic flux of the pair of left and right main magnets 21 is sent from the auxiliary magnet 23, and the demagnetization resistance near the d-axis is improved.
  • the magnet magnetic force is calculated by multiplying the effective magnetic flux density of the magnet by the surface area of the magnetic flux outflow surface of the magnet. Further, since the magnetic force in the direction orthogonal to the d axis is determined according to the magnetic force of the magnet and the inclination angle with respect to the d axis, the smaller the V-shaped angle of the magnet housing hole 12, that is, the inclination in the longitudinal direction of the main magnet 21 with respect to the d axis As the angle is smaller, the effectiveness of the auxiliary magnet 23 is maximized.
  • the auxiliary magnet 23 is provided to face the d-axis side end face of the main magnet 21, and the magnet magnetic path length passing through the corner portion P2 closer to the stator 30 at the d-axis side end face of the main magnet 21 However, it is longer than the magnet magnetic path length of other parts. Thereby, demagnetization in corner part P2 with high possibility of demagnetization in the d-axis side end of main magnet 21 is suppressed suitably.
  • the configuration may be such that the magnetic path lengths of the auxiliary magnets 23 become the same at any part.
  • a space where the main magnet 21 is not provided in the magnet housing hole 12 is a void, or a fixed adhesive or the like having a magnetic property lower than that of the rotor core 11 is used in the space. It is inserted and arranged, so to speak, it is a dead space.
  • the magnetic flux can be reinforced as described above without causing an increase in the physical size.
  • the magnetization directions of the main magnet 21 and the auxiliary magnets 22 and 23 are opposite to the magnetization directions of the main magnet 21 and the auxiliary magnets 22 and 23 of the N pole magnet 13. It is oriented.
  • the portion of the magnet housing hole 12 where the magnet 13 is not disposed functions as a flux barrier that suppresses self-shorting of the magnet flux in the rotor 10.
  • an outer flux barrier 24 is provided on the outer peripheral side of the auxiliary magnet 22 in the q-axis side portion 12 a of the magnet housing hole 12.
  • the outer flux barrier 24 can suppress self-shorting of the magnetic flux generated near the end of the auxiliary magnet 22 on the outer peripheral surface side of the rotor core 11 (that is, the surface facing the stator 30).
  • demagnetization due to demagnetizing field from the stator 30 in the auxiliary magnet 22 can be suppressed.
  • the outer flux barrier 24 may be an air gap or may contain a nonmagnetic material.
  • An inner flux barrier 25 is provided on the d-axis side of the auxiliary magnet 23 in the d-axis side portion 12 b of the magnet housing hole 12. That is, the d-axis side portion 12b of the magnet housing hole 12 corresponds to the d-axis side expanded portion, and the auxiliary magnet 23 is provided on the d-axis side portion 12b, and the d-axis side portion 12b is A flux barrier 25 is provided. According to the inner flux barrier 25, it is possible to suppress the magnetic flux in the direction orthogonal to the d axis in the auxiliary magnets 22 and 23 disposed on both sides of the d axis. In addition, the inductance at the d-axis is reduced, and reluctance torque can be suitably generated.
  • the inner flux barrier 25 may be an air gap or may contain a nonmagnetic material.
  • demagnetization of the respective auxiliary magnets 22 and 23 is basically acceptable. This is because, in the magnet 13, the contact surface of the main magnet 21 with the rotor core 11 is responsible for the main flux outflow, and the auxiliary magnets 22 and 23 have the role of improving the permeance. is there. For this reason, in the present embodiment, a neodymium magnet having a composition with a residual magnetic flux density Br higher than that of the main magnet 21 and a smaller intrinsic coercive force iHc is selected as the auxiliary magnets 22 and 23. Of course, combinations of different materials such as neodymium magnets and ferrite magnets may be selected.
  • a magnet whose coercive force is smaller than a neodymium magnet a samarium magnet, a ferrite magnet, a FCC magnet, an alnico magnet, etc. are mentioned in an order with a large coercive force. That is, when the samarium magnet is selected as the main magnet 21, the desired effects in the present embodiment can be sufficiently obtained by using the ferrite magnets or the like as the auxiliary magnets 22 and 23.
  • a magnet is used in which the thickness of the magnet is increased, or the content of heavy rare earth is increased or refined in order to increase the coercive force, at a part to which a large demagnetizing field is applied.
  • the demagnetizing field can be reduced by approximately half, the heavy rare earth can be configured completely free.
  • the component ratio of neodymium having a high magnetic flux density can be increased, and torque increase of 30% or more is achieved with the same amount of magnet as before.
  • cost maintenance or cost reduction can be achieved.
  • the magnetization direction inside the magnet is on the q-axis side end of the magnet 13 (that is, the end on the magnetic pole boundary side).
  • the auxiliary magnet 22 is provided so as to intersect the magnetization direction of the main magnet 21.
  • the auxiliary magnet 22 can reinforce the magnetic flux at the q-axis side end of the main magnet 21. Therefore, the demagnetization resistance to the demagnetizing field from the stator 30 side is enhanced, and demagnetization of the main magnet 21 which is a pole magnet can be appropriately suppressed.
  • the main magnet 21 since the auxiliary magnet 23 whose magnetization direction is a direction intersecting the magnetization direction of the main magnet 21 is provided on the d-axis side end of the main magnet 21 (a pair of magnets), the main magnet 21 is It becomes possible to reinforce the magnetic flux at the d-axis end of the That is, the demagnetization of the main magnet 21 can be appropriately suppressed by enhancing the demagnetization resistance against mutual interference of magnetic fluxes in the vicinity of the d-axis.
  • the possibility of demagnetization is considered to be high at the corner P ⁇ b> 1 that is closer to the stator 30 at the q-axis side end face.
  • the auxiliary magnet 22 is provided opposite to the q-axis side end face of the main magnet 21, and the magnet magnetic path length passing through the corner portion P1 at the q-axis side end face of the main magnet 21 It is longer than the magnetic path length. That is, the corner portion P1 is used as a magnetic flux reinforcement point, and the magnetic flux reinforcement by the auxiliary magnet 22 is performed to the magnetic flux reinforcement point. Thereby, demagnetization at the q-axis side end of the main magnet 21 can be suitably suppressed.
  • the possibility of demagnetization is considered to be high at the corner P ⁇ b> 2 that is closer to the stator 30 at the d-axis side end face.
  • the auxiliary magnet 23 is provided to face the d-axis side end face of the main magnet 21, and the magnet magnetic path length passing through the corner portion P2 at the d-axis side end face of the main magnet 21 is a magnet of another part It is longer than the magnetic path length. That is, the corner portion P2 is used as a magnetic flux reinforcement point, and the magnetic flux reinforcement by the auxiliary magnet 23 is performed to the magnetic flux reinforcement point. Thereby, demagnetization at the d-axis side end of the main magnet 21 can be suitably suppressed.
  • the auxiliary magnet 23 and the inner flux barrier 25 are provided on the d-axis side portion 12b (d-axis side expanded portion) of the magnet housing hole 12, the amount of magnet of the auxiliary magnet 23 at the d-axis side end of the main magnet 21 The desired effect can be obtained while reducing to the minimum necessary. Thereby, the cost can be reduced.
  • the auxiliary magnets 22 and 23 are configured to have an intrinsic coercivity iHc smaller than the intrinsic coercivity iHc of the main magnet 21. As a result, it is possible to realize desired magnetic flux reinforcement of the main magnet 21 while using inexpensive magnets as the auxiliary magnets 22 and 23.
  • the main magnet 21 may be configured to have an intrinsic coercivity iHc smaller than the intrinsic coercivity iHc of the auxiliary magnets 22 and 23. In this case, an inexpensive magnet can be used as the main magnet 21 to reduce the magnet cost. Since most of the magnet flux is determined by the surface area of the main magnet 21, this configuration is suitable in terms of cost.
  • the intrinsic coercivities of the auxiliary magnets 22 and 23 at both ends of the main magnet 21 may be different from each other.
  • the auxiliary magnets 22 and 23 are appropriately selected according to the degree of influence of the demagnetizing field. It can be set.
  • a projecting portion 14 a projecting radially inward and in contact with the outer peripheral surface of the rotating shaft 40 is formed at a position on the d axis on the inner peripheral surface of the through hole 14 of the rotor core 11.
  • the auxiliary magnet 22 is provided only at the q-axis side end of the q-axis side end and the d-axis side end of the main magnet 21.
  • the auxiliary magnet 23 on the d-axis side can be eliminated.
  • the magnet accommodation hole 12 is provided so as to straddle the d axis which is the center of the magnetic pole and orthogonal to the d axis.
  • the configuration is such that the magnet 21 is accommodated.
  • both ends on the q-axis side of the magnet accommodation hole 12 are angle-changed and extended toward the core central portion, and the auxiliary magnet 22 is accommodated in the both end portions.
  • the auxiliary magnet 22 is provided only at the q-axis side end of the main magnet 21.
  • the auxiliary magnet 23 is provided only at the d-axis side end of the q-axis side end and the d-axis side end of the main magnet 21.
  • the demagnetizing flux from the stator 30 is relatively small, the q-axis auxiliary magnet 22 can be eliminated.
  • the magnet accommodation hole 12 is provided so as to be continuous in the circumferential direction across the d axis which is the center of the magnetic pole.
  • An auxiliary magnet 41 is provided between the pair of left and right main magnets 21.
  • the auxiliary magnet 41 is provided in contact with or close to the d-axis side end of the main magnet 21, and is oriented such that the magnetization direction is parallel to the d-axis.
  • the magnetic flux of the auxiliary magnet 41 reinforces the magnetic flux of the d-axis end of the main magnet 21. That is, similarly to the auxiliary magnet 23 described with reference to FIG. 1 and the like, the auxiliary magnet 41 sends in a magnetic flux that compensates for the opposing magnetic flux of the pair of main magnets 21 and improves the demagnetization resistance near the d axis. There is.
  • the main magnet 21 is divided in the longitudinal direction, that is, in the direction from the q-axis side toward the d-axis side, and a plurality of divided magnets 27a and 27b having different magnetization directions. have.
  • Each of the divided magnets 27a and 27b is a permanent magnet having a rectangular cross section.
  • the split magnet 27a on the q axis side has a magnetization direction closer to a direction parallel to the q axis than the split magnet 27b on the d axis side. There is.
  • the plurality of split magnets 27a and 27b constituting the main magnet 21 have different magnetization directions, and the split magnet 27a on the q axis side has a magnetization direction parallel to the q axis. It is close to. Thereby, even in the main magnet 21 itself, it is possible to enhance the demagnetization resistance against the demagnetizing field from the stator 30 side near the d-axis side end.
  • the plurality of divided magnets 27a and 27b are arranged so as to project toward the stator 30 at the portions where the ends of the divided magnets 27a and 27b face each other. That is, the divided magnets 27a and 27b are not arranged in a single linear shape, but are arranged in two linear shapes that are bent and in a convex shape on the stator 30 side.
  • the main magnet 21 that is, the divided magnets 27a and 27b
  • the torque can be increased by reducing the distance between the stator 30 and the main magnet 21.
  • the demagnetizing field increases as a tradeoff, but the influence of the demagnetizing field increase can be solved by the auxiliary magnets 22 and 23.
  • the ratio of the portion closer to the stator 30 than the magnet 13 (that is, the magnet accommodation hole 12) and receiving the total sum of both magnetic fluxes of the stator 30 and the magnet 13 can be reduced. it can. Therefore, it is possible to reduce the saturation region in which magnetic flux saturation may occur due to both the magnetic fluxes of the stator 30 and the magnet 13, and to more effectively extract the capability of the magnet 13.
  • the main magnet 21 and the auxiliary magnet 22 on the q-axis side end are provided as the magnets 13.
  • the main magnet 21 and the auxiliary magnet 22 have rectangular cross sections, and the magnetization directions are orthogonal to the pair of opposing magnetic flux acting surfaces 21a, 21b, 22a, 22b.
  • the main magnet 21 and the auxiliary magnet 22 are disposed in the magnet accommodation hole 12 of the rotor core 11 in a state in which the angles of the magnetization directions with respect to the d axis or the q axis are made different from each other.
  • the main magnet 21 and the auxiliary magnet 22 are disposed at positions separated from each other, and in detail, the auxiliary magnet 22 is disposed at a position facing the end face of the magnet of the main magnet 21 on the q axis side across an iron core There is.
  • the magnetization direction of the main magnet 21 is parallel or inclined to the d-axis, and the magnetization direction of the auxiliary magnet 22 is perpendicular to the d-axis relative to the main magnet 21.
  • the corner P1 of the main magnet 21 that is, the magnetic flux reinforcement point closest to the stator 30 at the q-axis side end of the main magnet 21
  • the magnetic flux from the auxiliary magnet 22 reinforces the magnetic flux at the corner P1 of the main magnet 21.
  • a magnet whose cross section has a rectangular shape and in which the magnetization direction is orthogonal to the pair of opposing magnetic flux acting surfaces is considered to be most versatile and excellent in terms of manufacturing and cost. Then, this magnet is used as the main magnet 21 and the auxiliary magnet 22, and arranged in the rotor core 11 so that the angles of the magnetization direction with respect to the d axis or the q axis are different from each other. Thereby, magnetic flux reinforcement of the q-axis side end in the main magnet 21 can be suitably realized while achieving simplification of the configuration.
  • the main magnet 21 and the auxiliary magnet 22 may have different lateral width dimensions (width dimensions in the direction orthogonal to the magnetization direction).
  • the main magnet 21 and the auxiliary magnet 22 may have different vertical width dimensions (width dimensions in the same direction as the magnetization direction).
  • grooves 43 extending in the axial direction are formed on the outer peripheral surface of the rotor core 11.
  • the groove 43 is provided at a position on the d-axis on the outer peripheral surface of the rotor core 11.
  • the area of the rotor core 11 facing the stator 30 has a high possibility of magnetic saturation due to the rotating magnetic flux received from the stator 30 and the magnetic flux of the magnet.
  • the grooves 42 and 43 extending in the axial direction in the surface of the rotor core 11 facing the stator 30, the direction and amount of magnetic flux in the region near the stator in the rotor core 11 are adjusted. The ability of the magnet 13 can be extracted more effectively.
  • the magnetization direction of the magnet is oriented to intersect at a non-perpendicular angle with at least one of the magnetic flux acting surfaces of the magnet, and in particular, in the magnet, the stator 30 in the magnet is The magnetization direction is changed so that the magnetic flux acting surface on the side and the magnetic flux acting surface on the opposite side have different directions.
  • the structure of the rotor 10 in this embodiment is shown in FIG.
  • the rotor core 11 is formed with a pair of magnet accommodation holes 12 in an arc shape (a shape of a bow). Also in the rotor core 11 of FIG. 14, the pair of magnet housing holes 12 are formed in a substantially V shape so that the distance between the facings becomes larger toward the outer peripheral side, similarly to the configuration of FIG.
  • the pair of magnet housing holes 12 are axisymmetrical with the d-axis (magnetic pole central axis) as the axis of symmetry. Moreover, speaking of the separation distance between each magnet accommodation hole 12 and the stator 30, each magnet accommodation hole 12 is provided such that the separation distance from the stator 30 becomes larger as it goes to the d-axis.
  • the magnet housing hole 12 is formed by being surrounded by arc-shaped curved surfaces 52a and 52b equidistantly spaced from each other and flat connecting surfaces 52c and 52d connecting the both end positions of the curved surfaces 52a and 52b to each other.
  • the connection surface 52c on the q axis side among the connection surfaces 52c and 52d is provided so as to be parallel to the q axis.
  • the connecting surface 52d on the d-axis side is provided to be perpendicular to the d-axis.
  • the magnet 51 of the same shape as the hole shape is inserted and arranged.
  • one magnetic pole is formed by the pair of magnets 51 housed in the pair of magnet housing holes 12.
  • the magnetization direction of the magnet 51 (that is, the direction of the internal magnetic field lines) is indicated by an arrow.
  • the magnet 51 is convex on the opposite side of the stator from the direction close to the direction perpendicular to the q-axis to the direction close to the direction parallel to the d-axis from the q-axis toward the d-axis It is provided to switch in a non-linear fashion. That is, the internal magnetic force lines in the magnet 51 are determined in a direction transverse to the magnet 51 in the lateral direction, and the direction is an arc shape convex on the central axis side of the rotor core 11.
  • the demagnetization resistance against the demagnetizing field by the rotating magnetic flux on the stator 30 side is enhanced, and the demagnetization of the magnet 51 is properly performed. It can be suppressed.
  • it is convex on the side opposite to the stator so that the magnetization direction is closer to the direction perpendicular to the q axis on the q axis side and closer to the direction parallel to the d axis on the d axis side.
  • the magnetization direction is close to a direction parallel to the d-axis, so that demagnetization due to mutual interference of magnetic flux in the vicinity of the d-axis can be suppressed. it can.
  • the magnet 51 is located at a position where the q-axis end is closer to the stator 30 than the d-axis end in the radial direction, and the q-axis end and the d-axis end Between the first and second poles so as to project toward the stator 30 side. That is, the pair of magnets 51 sandwiching the d-axis is substantially V-shaped by both of the magnets 51, and each has an arc shape convex on the side of the stator 30 (the upper side in the figure). .
  • the shape of the magnet accommodation hole 12 is also the same.
  • a line i.e., the curved surface 52a representing the stator 30 side closest to the d axis side of the magnetic flux outflow surface is a line segment (i.e., the curved surface 52a) including both ends of the magnet housing hole 12. From the straight line connecting the both ends, it has a shape protruding toward the stator 30 side so as to be convex.
  • the magnet 51 can be brought close to the outer peripheral surface of the rotor core 11, and the torque can be increased by reducing the distance between the stator 30 and the magnet 51.
  • the demagnetizing field increases as a contradiction, but the influence of the demagnetizing field increase is resolved by the magnetization direction which is made non-linear in the magnet 51 as described above. can do.
  • the ratio of the portion closer to the stator 30 than the magnet 51 (i.e., the magnet accommodation hole 12) and receiving the total sum of both magnetic fluxes of the stator 30 and the magnet 51 can be reduced. it can. Therefore, it is possible to reduce the saturation region in which magnetic flux saturation can occur due to both magnetic fluxes of the stator 30 and the magnet 51, and to more effectively extract the capability of the magnet 51.
  • the portion of the rotor core 11 that is radially outward of the magnet accommodation hole 12 becomes smaller.
  • the stress concentration factor to centrifugal force can be reduced and its mechanical strength can be increased.
  • the magnet 51 of this embodiment is It can be said that the role of the auxiliary magnets 22 and 23 is configured by one magnet 51.
  • FIG. 14 shows the magnet 51 forming the N pole, but when forming the S pole, the magnetization direction of the magnet 51 is opposite to the magnetization direction shown in FIG.
  • the magnet 51 shown in FIG. 14 may be divided into a plurality of magnets. That is, the magnet 51 may be divided into a plurality of pieces in the longitudinal direction, and the end faces of the respective magnets may be disposed in contact with each other. In this case, a plurality of divided magnets may be arranged in line in the magnet housing hole 12. Thereby, at the time of operation of rotation electrical machinery 1, it is possible to prevent eddy current loss and the like due to a change in magnetic flux linked to magnet 51.
  • grooves 42 and 43 extending in the axial direction may be formed on the outer peripheral surface (the surface facing the stator 30) of the rotor core 11 as shown in FIGS. 13 (a) and 13 (b). .
  • the direction and amount of magnetic flux in the region near the stator in the rotor core 11 can be adjusted, and the capability of the magnet can be extracted more effectively.
  • FIG. 15 is an explanatory view for explaining a method of magnetizing the magnet 51 by magnetic field orientation.
  • the orienting device 60 includes a magnetic field coil 61, and an oriented iron core 62 and a mold 63 disposed in the magnetic field coil 61.
  • the magnetic field coil 61 generates a magnetic field that passes through the inside of the coil when it is energized.
  • the oriented core 62 has a role of bending the magnetic field generated by the magnetic field coil 61 in a predetermined direction, and the magnetic field curved by the oriented core 62 passes through the mold 63.
  • the magnetic field coil 61 forms a linear magnetic field, and the oriented iron core 62 generates a bending magnetic field.
  • the mold 63 is formed of a nonmagnetic material, and has a mold chamber 63 a formed in accordance with the shape of the magnet 51.
  • the magnet powder obtained by grinding the magnet raw material is filled in the mold chamber 63a of the mold 63, and the magnet powder is compression molded into a predetermined shape in the mold chamber 63a. Then, in the magnetic field coil 61, a magnetic field curved as shown by the oriented iron core 62 is formed, and magnetic field orientation is performed on the magnet powder in the mold chamber 63a. At this time, the magnet powders are aligned in such a way that their magnetization easy directions are aligned, and fixed by compression. Thereafter, the compact of the magnet powder is sintered.
  • the magnet 51 is manufactured by this series of processes.
  • the magnetization direction of the magnet 51 is switched to a non-linear shape (that is, an arc shape). Then, by housing the magnet 51 in the magnet housing hole 12, as shown in FIG. 14, the magnetization direction of the magnet 51 is closer to the direction perpendicular to the q axis as it goes from the q axis to the d axis. , And can be switched in a non-linear manner convex toward the side opposite to the stator in a direction close to a direction parallel to the d-axis.
  • Flux barriers 53, 54 are provided.
  • the flux barrier 53 is formed by partially missing the stator side corner portion at the q-axis side end of the magnet 51 shown in FIG. 14. Further, the flux barrier 54 is formed by partially missing the d-axis side corner portion at the d-axis side end of the magnet 51 shown in FIG. 14.
  • the end face of the magnet may be either curved or planar.
  • the magnetization direction of the magnet 51 switches non-linearly between the q-axis side and the d-axis side
  • the magnetization direction is linear and perpendicular to the longitudinal direction of the magnet.
  • the magnet magnetic path length that is, the length of the internal magnetic field lines
  • the magnet magnetic path length is proportional to the permeance, shortening at the magnet end is not desirable.
  • the magnet 51 is formed in such a direction that the end surfaces of the d-axis side end portion and the q-axis side end portion of the magnet 51 (that is, the magnet end surfaces intersecting the magnetic flux acting surface) are aligned with the magnetization direction of the magnet 51 At 51, it is possible to suppress the local existence of a portion where the magnetic path length is short. Further, by providing the flux barriers 53 and 54 at the d-axis side end and the q-axis side end of the magnet 51, demagnetization at both ends of the magnet 51 can be suppressed.
  • one of the end surfaces of the d-axis side end and the q-axis side end may be formed in a direction in accordance with the magnetization direction.
  • the flux barrier 54 on the d axis side is formed to extend along the d axis toward the axial center side of the radial inner end of the magnet 51. .
  • a d-axis core portion 55 is formed between the two flux barriers 54 with the d-axis interposed therebetween. That is, the magnets 51 are arranged as a pair of magnets 51 on one side and the other side of the rotor core 11 across the d-axis core portion 55, and the rotor core 11 holds the d-axis core portion 55.
  • a flux barrier 54 is provided so as to extend from the end of the pair of magnets 51 on the side opposite to the stator to the side opposite to the stator.
  • the flux barrier 54 is configured such that a nonmagnetic material such as a synthetic resin or a ceramic is accommodated in a part of the magnet accommodation hole 12.
  • the flux barrier 54 corresponds to the nonmagnetic portion.
  • the flux barrier 54 protrudes on the q axis side with respect to a virtual line L1 connecting the point P11 on the magnet 51 which is the innermost in the radial direction and the rotation center P10 of the rotor core 11.
  • the size of the flux barrier 54 in the circumferential direction may be determined according to the width of the q-axis core portion 56 positioned in the circumferential direction of the magnet 51 in consideration of the amount of magnetic flux of the q-axis.
  • the flux barrier 54 is extended to the same position as an imaginary line L2 connecting the shaft end P12 and the rotation center P10 of the rotor core 11, or to a position on the q axis side by a predetermined amount from the imaginary line L2. It is also possible.
  • the magnetic resistance of the d-axis core portion 55 can be increased by the flux barrier 54. Thereby, a short circuit between the pair of magnets 51 can be suppressed, and the magnetic force can be used more effectively.
  • the d-axis core portion 55 is an iron core portion elongated along the d-axis on the d-axis, and is reinforced by the d-axis core portion 55 so that the magnet 51 does not fall off by centrifugal force. There is.
  • the d-axis core portion 55 is a disturbing magnetic circuit, and the magnetic resistance of the d-axis core portion 55 can be increased by increasing the axial length of the d-axis core portion 55. It becomes.
  • the magnetic flux vector directed to the d-axis side can be reduced in the pair of magnets 51, and not only the shape is suitable for demagnetization, but also the torque can be improved.
  • the flux barrier 54 (nonmagnetic portion) extending to the opposite stator side is provided.
  • the respective magnetic fluxes can be suitably designed while reducing the mutual action of the magnetic fluxes generated in the magnets 51 of the above.
  • the flux barrier 54 is configured to protrude on the q axis side of the virtual line L1, the inertia of the rotor 10 can be reduced as much as possible.
  • the cross sections (sections orthogonal to the axial direction) of the magnet accommodation hole 12 and the magnet 51 accommodated therein are respectively circular as differences from the above configuration. It is not arc-shaped but rectangular. Further, the left and right magnet housing holes 12 and the magnets 51 are arranged in a line on the same straight line in the direction orthogonal to the d axis with the d axis interposed therebetween. However, in the magnet 51, as described above, the magnetization direction is switched in a non-linear manner between the q-axis side and the d-axis side.
  • each magnet housing hole 12 is d It is provided so that the separation distance with the stator 30 may become large as it goes to an axis
  • the third embodiment will be described focusing on differences from the first embodiment and the like.
  • the magnetization direction changes so that the magnetic flux acting surface on the stator 30 side of the magnet and the magnetic flux acting surface on the opposite side have different directions. It has become a thing.
  • the structure of the rotor 10 in this embodiment is shown in FIG.
  • the rotor core 11 is formed with a pair of magnet accommodation holes 12 in an arc shape (a shape of a bow).
  • the shape of the magnet housing hole 12 is the same as that of FIG. 14 described above, and the description thereof is omitted here.
  • the magnet 71 of the same shape as the hole shape is inserted and arranged. In this case, one magnetic pole is formed by the pair of magnets 71 housed in the pair of magnet housing holes 12.
  • the magnetization direction of the magnet 71 that is, the direction of the magnet magnetic force line
  • the magnet 71 is convex on the opposite side of the stator from the direction close to the direction perpendicular to the d-axis to the direction close to the direction parallel to the q-axis as it goes from the d-axis to the q-axis It is provided to switch in a non-linear fashion. That is, the internal magnetic force lines in the magnet 71 have an arc shape whose direction is convex toward the central axis of the rotor core 11.
  • the demagnetization ability against the demagnetizing field by the rotating magnetic flux on the stator 30 side is enhanced in the magnet 71, and the demagnetization of the magnet 71 can be properly performed. It can be suppressed.
  • it is convex on the side opposite to the stator so that the magnetization direction is close to the direction perpendicular to the d axis on the d axis side and close to the direction parallel to the q axis on the q axis side.
  • the magnetization directions do not face each other, so demagnetization due to mutual interference of magnetic flux in the vicinity of the d-axis does not occur.
  • the magnet 71 is located at a position where the q-axis end is closer to the stator 30 than the d-axis end in the radial direction, and the q-axis end and the d-axis end Between the first and second poles so as to project toward the stator 30 side. That is, the pair of magnets 71 sandwiching the d-axis is substantially V-shaped by both of the magnets 71, and each has an arc shape convex on the side of the stator 30 (the upper side in the figure). .
  • the shape of the magnet accommodation hole 12 is also the same.
  • a line i.e., the curved surface 52a representing the stator 30 side closest to the d axis side of the magnetic flux outflow surface is a line segment (i.e., the curved surface 52a) including both ends of the magnet housing hole 12. From the straight line connecting the both ends, it has a shape protruding toward the stator 30 side so as to be convex.
  • the magnet 71 can be brought close to the outer peripheral surface of the rotor core 11, and the torque can be increased by reducing the distance between the stator 30 and the magnet 71.
  • the demagnetizing field increases as a contradiction, but the influence of the demagnetizing field increase is resolved by the magnetization direction which is made non-linear in the magnet 71 as described above. can do.
  • the ratio of the portion closer to the stator 30 than the magnet 71 (that is, the magnet accommodation hole 12) and receiving the total sum of both magnetic fluxes of the stator 30 and the magnet 71 can be reduced. it can. Therefore, it is possible to reduce the saturation region in which magnetic flux saturation can occur due to both magnetic fluxes of the stator 30 and the magnet 71, and to more effectively extract the capability of the magnet 71.
  • the magnet 71 is convex outward in the radial direction, the portion of the rotor core 11 that is radially outward of the magnet accommodation hole 12 becomes smaller. Thus, the stress concentration factor to centrifugal force can be reduced and its mechanical strength can be increased.
  • FIG. 20 shows the magnet 71 forming the N pole, when forming the S pole, the magnetization direction of the magnet 71 is opposite to the magnetization direction shown in FIG.
  • the magnet 71 shown in FIG. 20 may be divided into a plurality of magnets. That is, the magnet 71 may be divided into a plurality of pieces in the longitudinal direction, and the end faces of the respective magnets may be disposed in contact with each other. In this case, a plurality of divided magnets may be arranged in line in the magnet housing hole 12. Thereby, at the time of operation
  • FIG. 21 is an explanatory view for explaining a method of magnetizing the magnet 71 by magnetic field orientation.
  • the orienting device 60 includes a magnetic field coil 61, and an oriented iron core 62 and a mold 63 disposed in the magnetic field coil 61.
  • the configuration of each of these is as described in FIG.
  • magnet powder obtained by pulverizing the magnet material is filled in a mold chamber 63a of the mold 63, and the magnet powder is compression molded into a predetermined shape in the mold chamber 63a. Then, in the magnetic field coil 61, a magnetic field curved as shown by the oriented iron core 62 is formed, and magnetic field orientation is performed on the magnet powder in the mold chamber 63a. At this time, the magnet powders are aligned in such a way that their magnetization easy directions are aligned, and fixed by compression. Thereafter, the compact of the magnet powder is sintered.
  • the magnet 71 is manufactured by this series of processes.
  • the magnetization direction of the magnet 71 is switched to a non-linear shape (that is, an arc shape). Then, by housing the magnet 71 in the magnet housing hole 12, as shown in FIG. 20, the magnetization direction of the magnet 71 is closer to the direction perpendicular to the d-axis from the d-axis side toward the q-axis side. , And can be switched in a non-linear manner convex toward the side opposite to the stator in a direction close to a direction parallel to the q-axis.
  • the orienting device 80 includes a magnetic field coil 81, and an orienting iron core 82 and a mold 83 disposed in the magnetic field coil 81.
  • the configuration of the orienting device 80 is basically the same as the orienting device 60 described above except that the shape of the orienting iron core 82 is different.
  • the oriented core 82 is provided at a radial center position in the magnetic field coil 81. In this example, since the oriented core 82 has a circular cross-section, the oriented magnetic field is concentrated toward the center of the oriented core 82. In the figure, the magnetic lines of force S1 linearly extend toward the oriented core 82, and this is the center of orientation.
  • the magnet orientation is performed in a region on one side with respect to the orientation center in the curved magnetic field. Further, in FIG. 22 (b), the magnet orientation is performed in a region crossing the center of orientation in the curved magnetic field.
  • the magnet in the mold 83 is filled with magnet powder in the mold 83 disposed in the magnetic field coil 81, and the magnetic field generated by the magnetic field coil 81 is curved by the oriented iron core 82. Magnetic field orientation is performed on the powder. Then, the magnet powder in the mold 83 is sintered.
  • the magnetization direction of the magnet is a direction intersecting at a non-perpendicular angle to at least one of the magnetic flux acting surfaces of the magnet, and in particular, in the magnet, the magnetization direction is the d axis And inclined at a non-perpendicular angle to the flux acting surface.
  • the structure of the rotor 10 in this embodiment is shown in FIG.
  • each magnet housing hole 12 is a pair of two and is formed in a straight line so as to extend in a direction perpendicular to the d axis.
  • each magnet accommodation hole 12 is provided such that the separation distance from the stator 30 becomes larger as it goes to the d axis.
  • the pair of magnet housing holes 12 are symmetrical with the d-axis (magnetic pole central axis) as the axis of symmetry. In the present embodiment, a total of eight pairs of magnet accommodation holes 12 are provided in the rotor core 11 at equal intervals in the circumferential direction.
  • one magnetic pole is formed by the pair of magnets 101 housed in the pair of magnet housing holes 12.
  • the eight pairs of magnets 101 form a plurality of magnetic poles (eight poles in this embodiment) whose polarities are alternately different in the circumferential direction.
  • the pair of magnets 101 forming one magnetic pole is arranged in line symmetry with respect to the d-axis.
  • the magnet 101 has a rectangular cross-sectional shape orthogonal to the axial direction, and the magnetization direction (that is, the direction of the magnet magnetic force lines) is inclined with respect to the d axis and with respect to the magnetic flux acting surface that generates magnetic flux. It is defined by the crossing direction at a non-vertical angle.
  • the magnetization directions of the magnets 101 are non-perpendicular to the two magnet side surfaces facing each other and each serving as a magnetic flux acting surface (side surface on the stator 30 side and side surface on the opposite stator side) It is oriented to cross.
  • the magnetization directions of the pair of magnets 101 are inclined with respect to the respective magnetic flux acting surfaces and intersect each other at positions closer to the stator 30 than the magnet accommodation holes 12 It is defined in
  • the magnet 101 is, for example, a rare earth magnet such as a sintered neodymium magnet.
  • Magnetization directions opposite to each other are determined in the magnets 101 on one side and the other side of the d-axis. Moreover, the magnetization direction of each magnet 101 is determined in parallel and in a straight line. In this case, in each magnet 101, the magnetization direction is a direction that intersects the magnetic flux acting surface at a non-perpendicular angle, so the magnet magnetic path length is longer than the configuration in which the magnetization direction is orthogonal to the magnetic flux acting surface (Ie, the length of the internal magnetic field lines) becomes longer. Therefore, the magnetic flux of the magnet 101 is strengthened, and the demagnetization resistance to the demagnetizing field due to the rotating magnetic flux on the stator 30 side is enhanced.
  • FIG. 23 shows the magnet 101 forming the N pole, when forming the S pole, the magnetization direction of the magnet 101 is opposite to the magnetization direction shown in FIG.
  • flux barriers 102 and 103 are provided on the q-axis side and the d-axis side of the magnet 101 to suppress self-shorting of the magnet magnetic flux in the rotor 10, respectively.
  • the outer flux barrier 102 provided on the q-axis side of the magnet 101 self-shorting of the magnetic flux generated near the q-axis side end of the magnet 101 can be suppressed.
  • the inner flux barrier 103 provided on the d-axis side of the magnet 101 the magnetic flux in the direction orthogonal to the d-axis can be suppressed in the pair of magnets 101 disposed on both sides of the d-axis.
  • each of the flux barriers 102 and 103 may be a void or may contain a nonmagnetic material such as a resin material or a ceramic material. Between the flux barriers 102 and 103 is a central bridge 104 extending along the d axis.
  • the reduction of the magnet 101 is caused on the side facing the stator 30 of the rotor core 11 due to the rotating magnetic field from the stator 30 side acting as a demagnetizing field.
  • the magnetization direction of the magnet 101 of the rotor 10 is inclined with respect to the d axis, and intersects at a non-perpendicular angle with the magnetic flux acting surface that generates the magnetic flux. Therefore, compared to the configuration in which the magnetization direction is orthogonal to the magnetic flux acting surface, the magnet magnetic path length (that is, the length of the internal magnetic force lines) becomes longer, and the magnet magnetic flux is strengthened. Thereby, the demagnetization resistance ability with respect to the demagnetizing field by the rotating magnetic flux by the side of the stator 30 is improved, and the demagnetization of the magnet 101 can be appropriately suppressed.
  • the magnets 101 are disposed on both sides of the rotor core 11 on one side and the other side of the d-axis, and the magnetization directions of the magnets 101 on both sides of the d-axis are inclined with respect to the magnetic flux acting surface of the magnet 101. And, they are made to intersect with each other at a position closer to the stator 30 than the magnet accommodation holes 12. Thereby, in the rotor core 11, it is possible to preferably carry out magnetic flux strengthening in the d axis while enhancing the demagnetization resistance against the demagnetizing field.
  • the magnetization directions of the magnet 101 are opposed to each other and intersect at non-perpendicular angles with the side surfaces of the two sides of the magnet acting as magnetic flux acting surfaces.
  • the length of the magnet 101 can be as follows, the length of the magnet magnetic path (that is, the length of the internal magnetic field line) can be made longer than the distance between the two sides of the magnet 101. Thereby, the magnetic flux of the magnet can be strengthened, and the demagnetization resistance against the demagnetizing field can be enhanced.
  • a magnet is produced by making its orientation parallel to the cutting surface. This is because the number of magnets created is maximum for one time of orientation magnetic field excitation because the orientation magnetic field at the time of creation of the magnet and the cutting surface are parallel.
  • the orientation direction of the magnet 101 having a quadrangular cross section is oblique. That is, the end that is most susceptible to demagnetization has an orientation that has a magnetic path longer than one side of the quadrilateral and that is angled more than the perpendicular direction of the magnetic flux acting surface. As a result, the demagnetization resistance of the portion of the magnet 101 which is likely to be demagnetized is improved.
  • the weight of the magnet when making a magnet that produces the same magnetic force, the weight of the magnet can be reduced by about 30%, and the amount of rare earth used, and the weight and inertia of the rotary electric machine mounted can be reduced. . Therefore, machine followability and mechanical reliability can be improved in the rotating electric machine, and energy consumption can be reduced and safety can be improved.
  • Modification 1 In the modified example 1 shown in FIG. 24, in the magnet 101, the end face of the q-axis side end and the end face of the d-axis side end are formed in a direction matched to the angle of the magnetization direction with respect to the magnetic flux acting surface. That is, in the magnet 101, the direction of each end face of the q-axis side end and the d-axis side end is the same as the magnetization direction (that is, the direction parallel to the magnetization direction in plan view). Further, flux barriers 102 and 103 are provided outside the respective end faces of the q-axis side end and the d-axis side end of the magnet 101.
  • the end faces of the q-axis side end and the d-axis side end of the magnet 101 are respectively formed in the direction in accordance with the angle of the magnetization direction with respect to the magnetic flux acting surface. Only the end face of the q-axis side end of the q-axis side end of the magnet 101 and the d-axis side end may be formed in a direction in accordance with the angle of the magnetization direction with respect to the magnetic flux acting surface.
  • the d-axis side end portion is kept parallel to the d-axis as shown in FIG.
  • the cross sectional shape of the magnet 101 may be a parallelogram as shown in FIG. 24 or any other trapezoidal shape.
  • the magnetization direction of the magnet 101 intersects perpendicularly to the flux acting surface.
  • the magnet magnetic path length is partially shortened at the end of the magnet 101.
  • the magnet length of the magnet 101 in the magnetization direction at the q-axis side end and the d-axis side end is longer than the magnet length in the magnetization direction at other portions. That is, extensions q are provided at the q-axis end and the d-axis end of the magnet 101, respectively, and the magnetic flux is locally extended by the extensions 101a.
  • the extension part 101a functions as a magnetic flux extension part.
  • the extension portion 101 a is provided on the magnetic flux acting surface on the side opposite to the stator side among the stator 30 side and the side opposite to the stator side of the magnet 101.
  • the extensions 101 a are provided at the q-axis end and the d-axis end of the magnet 101 respectively, but instead, the q-axis end and the d-axis end of the magnet 101 are provided.
  • the extension part 101a may be provided only at the q-axis side end part among them.
  • the demagnetization resistance can be further improved.
  • the magnets 101 may be arranged in the rotor core 11 as shown in FIGS. 26 (a) and 26 (b).
  • one magnet accommodation hole 12 is provided in one pole so as to straddle the d axis, and in the magnet 101 accommodated in the magnet accommodation hole 12, the d axis More specifically, on the left side of the drawing, the magnetization direction is directed obliquely upward to the right, and on the right side of the d-axis, the magnetization direction is directed obliquely upward to the left. Thereby, the magnetization direction of the magnet 101 is on the d-axis and on the stator 30 side of the magnet 101 (the magnet accommodation hole 12) on either side of the d-axis.
  • a line extending the magnetization direction in a straight line is on the d-axis and closer to the stator 30 side than the magnet 101 (that is, other than the end of the magnet 101). Gather.
  • the magnet 101 may have a configuration in which the portion on the d axis is omitted.
  • the missing portion 101b of the magnet 101 may be formed in a direction that matches the magnetization direction. In this configuration, the cost can be reduced by the amount of magnet reduction.
  • the magnetization direction of the magnet 101 is different between the part near the d axis and the part near the q axis.
  • the magnetization direction is more parallel to the d-axis than the portion near the q-axis.
  • the magnetization direction X1 on the d axis side is the magnetization on the q axis side It is more parallel to the d axis than the direction X2.
  • the inclination ( ⁇ 2) of the magnetization direction X2 with respect to the direction perpendicular to the magnetic flux acting surface is larger than the inclination ( ⁇ 1) of the magnetization direction X1 with respect to the direction perpendicular to the magnetic flux acting surface.
  • the magnet length in the magnetization direction that is, the magnet magnetic path length from the start point to the end point in the magnetization direction is gradually shortened.
  • the magnetization direction in addition to the magnetization direction that intersects at a non-perpendicular angle with the magnetic flux acting surface that generates magnetic flux, it perpendicularly intersects the magnetic flux acting surface that generates magnetic flux
  • the magnetization direction to be oriented may be included.
  • the direction perpendicular to the magnetic flux acting surface coincides with the d-axis direction.
  • the direction perpendicular to the magnetic flux acting surface does not coincide with the d-axis direction.
  • the inclination ( ⁇ 2) with respect to the direction perpendicular to the magnetic flux acting surface in the magnetization direction X2 on the q axis side is the inclination with respect to the direction perpendicular to the magnetic flux acting surface It may be larger than ( ⁇ 1).
  • the magnetization direction is different between the part near the d-axis and the part near the q-axis in the magnet 101, that is, the angle of the magnetization direction between the d-axis side and the q-axis side of the magnet 101 is It is different.
  • the magnetic flux can be collected at a specific location between the d-axis and the q-axis on the stator 30 side with respect to the magnet 101, and the magnetic flux of the magnet can be strengthened.
  • the magnetization direction is more parallel to the d axis than in the portion near the q axis in the portion near the d axis.
  • the magnet magnetic path length is longer than that at the d axis. Therefore, it is possible to strengthen the magnet magnetic flux in the q-axis and appropriately take measures against demagnetization against the demagnetizing field at the q-axis side end of the magnet.
  • the magnet magnetic path length in the d-axis can be made shortest, in the magnets 101 on both sides across the d-axis, when the magnetization directions at the d-axis side end portions are inclined to the mutually facing side, Mutual interference can be suppressed. This also makes it possible to suppress demagnetization in the d axis.
  • the inclination of the magnetization direction on the q axis side with respect to the direction perpendicular to the magnetic flux acting surface is larger than the inclination of the magnetization direction on the d axis side with respect to the direction perpendicular to the magnetic flux acting surface (ie, in FIG.
  • ⁇ 2> ⁇ 1 it is possible to make the length of the magnet magnetic path longest on the q-axis side, and to strengthen the demagnetization resistance to the demagnetizing field at the q-axis side end of the magnet 101.
  • the magnet accommodation hole 12 is formed in a linear shape so as to extend in a direction perpendicular to the d-axis. Therefore, according to such a configuration, by making the magnetization direction parallel to the d-axis at the portion near the d-axis among the portion near the d-axis and the portion near the q-axis of the magnet 101, A configuration in which the inclination of the magnetization direction on the q-axis side with respect to the direction perpendicular to the magnetic flux acting surface is larger than that on the d-axis side (that is, a configuration in which ⁇ 2> ⁇ 1) is realized.
  • the magnetization direction is different between the portion near the d axis and the portion near the q axis.
  • the magnetization direction of the magnet 101 is different from that in the fourth modification, and in the magnet 101, in the part near the d axis and the part near the q axis, the part near the q axis is the d axis
  • the magnetization direction is more parallel to the q-axis than the closer part.
  • the magnet length in the magnetization direction that is, the magnet magnetic path length from the start point to the end point in the magnetization direction is gradually shortened.
  • the magnetization direction is parallel to the q-axis in the part near the q-axis, so that it opposes the magnet flux in the direction orthogonal to the stator facing surface of the rotor core 11 in the q-axis, that is, the demagnetizing field.
  • the direction of the magnetic flux of the magnet can be strengthened, and measures against demagnetization against the demagnetizing field at the q-axis side end of the magnet 101 can be appropriately taken.
  • the magnetization direction of the magnet 101 is arc-shaped, that is, non-linear. Thereby, the magnet magnetic path length can be further lengthened. Therefore, the magnetic flux of the magnet can be further strengthened.
  • the magnet housing holes 12 in the rotor core 11 are paired on both sides across the d-axis, and the distance between the magnet housing holes 12 facing each other as it goes radially outward. You may form in the substantially V shape which becomes large.
  • the magnetization direction of the magnet 101 is inclined with respect to the d-axis, and intersects at a non-perpendicular angle with the magnetic flux acting surface generating the magnetic flux. It is fixed.
  • the magnetization direction is made different between the part near the d axis and the part near the q axis.
  • the magnetization direction is more parallel to the d-axis than the portion near the q-axis.
  • the magnetization direction is parallel to the q axis more than the part near the d axis. It may be done.
  • Modification 8 In Modified Example 8 shown in FIG. 32, the magnets 101 are accommodated on both sides of the d-axis in the magnet accommodation holes 12 of the rotor core 11 in a state where the magnetization directions are asymmetric.
  • the magnetization direction of the magnet 101 is inclined with respect to the d axis and intersects at a non-perpendicular angle with the magnetic flux acting surface generating the magnetic flux, and further, one side with respect to the d axis And both sides on the other side have the same orientation.
  • the magnetic flux can be strengthened against the demagnetizing field by increasing the length of the magnet path.
  • the magnets 101 on both sides sandwiching the d-axis are configured using two magnets 111 and 112 having a trapezoidal cross section.
  • Each of the magnets 111 and 112 has an equal leg trapezoidal shape in which two base angles are equal to each other, and the magnets are disposed in a direction in which the legs protrude toward the stator 30 in a state where the legs abut.
  • the magnetization direction is determined in a direction parallel to one of the pair of legs, so that the magnetization direction is not relative to the magnetic flux acting surface which is each bottom (upper and lower bases). It intersects at a vertical angle. Further, since the magnets 111 and 112 are in contact with each other in the direction parallel to the magnetization direction, the magnetization directions of the magnets 111 and 112 are the same on both sides of the d axis.
  • Each magnet 111,112 is a magnet of the same part number which makes shape, a dimension, and magnetization direction the same.
  • magnets 111 and 112 of the same part number are prepared (FIG. 34 (a)), and the direction of one magnet 112 is reversed to join both (FIG. 34). (B), (c)).
  • magnets with mutually different base lengths as the magnets 111 and 112.
  • Modification 10 In Modification 10 shown in FIG. 35, trapezoidal magnets 111 and 112 having two base angles different from each other are used as the magnets 111 and 112 used for the magnets 101 on both sides of the d axis. In this case, one base angle is a right angle, and the other base angle is an acute angle. And each magnet 111,112 is arrange
  • the magnetization direction is determined in a direction parallel to the leg on the side where the base angle is acute among the pair of legs, whereby the magnetic flux action which is each base (upper base and lower base)
  • the magnetization direction intersects the surface at a non-perpendicular angle.
  • the magnet 111 on the q axis side has an angle perpendicular to or perpendicular to the q axis
  • the magnet 112 on the d axis side has an angle parallel to or parallel to the d axis.
  • FIG. 35 part of the configuration of FIG. 35 is changed. That is, in each of these configurations, as the magnet 111 on the q axis side of the magnets 111 and 112, a magnet whose magnetization direction is perpendicular to the magnetic flux acting surface is used. Among them, in FIG. 37, the magnet 112 on the d-axis side is a parallelogram, and the magnetization direction is parallel to the left and right sides. A flux barrier is provided between the magnets 111 and 112. However, between the magnets 111 and 112 may be an iron core instead of the flux barrier.
  • the magnet 121 is located at a position where the q-axis side end portion is closer to the stator 30 than the d-axis side end portion in the radial direction, and It is provided so as to be convex on the side of the stator 30 between the d-axis side end. More specifically, the cross-sectional shape of the magnet 121 is a circular arc shape convex to the stator 30 side, and in particular, it has a crescent shape.
  • the magnet 121 is curved in a circular arc and is convex on the stator 30 side, even if a plurality of linear portions are bent at one or a plurality of places, the magnet 121 is convex on the stator 30 side Good.
  • the magnetization direction is inclined with respect to the d-axis and intersects at a non-perpendicular angle with the magnetic flux acting surface that generates the magnetic flux.
  • the magnetization direction in the direction perpendicular to the magnetic flux acting surface may be included.
  • the magnetization direction may be linear or non-linear (i.e., arc).
  • the magnetization direction is different between the part near the d axis and the part near the q axis, and in particular, of the part near the d axis and the part near the q axis
  • the magnetization direction is made parallel to the d axis than in the part near the q axis.
  • the inclination of the magnetization direction on the q axis side with respect to the direction perpendicular to the magnetic flux acting surface may be larger than the inclination of the magnetization direction on the d axis side with respect to the direction perpendicular to the magnetic flux acting surface.
  • the magnet 121 can be made to approach the outer peripheral surface (that is, the stator facing surface) of the rotor core 11, the magnetic resistance of the d axis decreases, and the torque can be increased.
  • the demagnetizing field increases as a contradiction, but the influence of the demagnetizing field increase is eliminated by increasing the magnetic path length in the magnet 121 as described above. it can.
  • the rotor core 11 is closer to the stator 30 than the magnet 121 (i.e., the magnet accommodation hole 12), and the sum of both magnetic fluxes of the stator 30 and the magnet 121 It is possible to reduce the proportion of the part received. Therefore, it is possible to reduce the saturation region in which magnetic flux saturation can occur due to both magnetic fluxes of the stator 30 and the magnet 121, and to more effectively extract the capability of the magnet 121.
  • FIG. 39 is an explanatory view for explaining a method of magnetizing the magnet 121 by magnetic field orientation. According to FIG. 39, magnetization of the magnet 121 on the left side in FIG. 38 is performed.
  • the orienting device 130 includes a magnetic field coil 131, and an oriented iron core 132 and a mold 133 disposed in the magnetic field coil 131.
  • the magnetic field coil 131 generates a magnetic field that passes through the inside of the coil when it is energized.
  • the oriented core 132 has a role of bending the magnetic field generated by the magnetic field coil 131 in a predetermined direction, and the magnetic field curved by the oriented core 132 passes through the mold 133.
  • the magnetic field coil 131 generates a linear magnetic field, and the oriented iron core 132 generates a bending magnetic field.
  • the mold 133 is formed of a nonmagnetic material, and has a mold chamber 133 a formed in accordance with the shape of the magnet 121.
  • magnet powder obtained by crushing a magnet raw material is filled in a mold chamber 133a of a mold 133, and the magnet powder is compression-formed into a predetermined shape in the mold chamber 133a.
  • the magnetic field coil 131 a magnetic field curved as shown by the oriented iron core 132 is formed, and magnetic field orientation is performed on the magnet powder in the mold chamber 133a.
  • the magnet powders are aligned in such a way that their magnetization easy directions are aligned, and fixed by compression.
  • the oriented core 132 may be disposed at a position offset to one side in the longitudinal direction of the magnet 121.
  • the compact of the magnet powder is sintered.
  • the magnet 121 is manufactured by this series of processes. In the case of manufacturing the magnet 121 on the right side in FIG. 38, the position of the oriented core 132 may be changed. By the above, the magnet 121 used in FIG. 38 is manufactured.
  • the q-axis end of the magnet 121 is located closer to the stator 30 than the d-axis end in the radial direction, and q It is provided so as to be convex on the side opposite to the stator between the shaft end and the d axis end.
  • the cross-sectional shape of the magnet 121 is a convex arc shape on the side opposite to the stator, and in particular, it has a crescent shape.
  • the magnet 121 is curved in an arc shape and is convex on the side opposite to the stator, even if a plurality of linear portions are bent at one or a plurality of places, the magnet 121 is convex on the side opposite to the stator Good.
  • the magnetization direction is inclined with respect to the d-axis and intersects at a non-perpendicular angle with the magnetic flux acting surface that generates the magnetic flux.
  • the magnetization direction in the direction perpendicular to the magnetic flux acting surface may be included.
  • the magnetization direction may be linear or non-linear (i.e., arc).
  • the region on the rotor core 11 closer to the stator 30 than the magnet 121 becomes wider, so the magnet magnetic force can be increased by the magnet arrangement in that region.
  • the magnets 141 are accommodated in the pair of magnet accommodation holes 12 provided on both sides of the d-axis and having a substantially V shape. That is, the magnets 141 are arranged in a V-shape.
  • the magnet 141 is provided in a direction inclined with respect to the d-axis, and the magnetization direction is a direction parallel to or nearly parallel to the d-axis. In this case, the magnetization direction of the magnet 141 intersects the magnetic flux acting surface of the magnet 141 at a non-perpendicular angle.
  • a central opening 142 is provided between the pair of magnet housing holes 12 and on the d-axis.
  • the central opening 142 may be a space or a nonmagnetic portion filled with a nonmagnetic material.
  • the magnets 143 are accommodated in a pair of magnet accommodation holes 12 provided on both sides of the d-axis and having a substantially V shape. That is, the magnets 143 are V-shaped.
  • the magnet 143 is provided to be inclined with respect to the d axis, and the magnetization direction is perpendicular or nearly perpendicular to the q axis. In this case, the magnetization direction of the magnet 143 intersects the magnetic flux acting surface of the magnet 143 at a non-perpendicular angle.
  • flux barriers 144 are provided on the d-axis side of each magnet housing hole 12 respectively.
  • the q-axis magnet magnetic flux is intensified.
  • the q-axis core portion as illustrated, it is possible to expect the promotion of the field-weakening effect by the saturation of the q-axis core portion.
  • d axis demagnetization self demagnetization
  • two magnets 145 are provided on each side of the d-axis.
  • the magnets 145 are V-arranged on both sides of the d-axis.
  • the magnet length in the magnetization direction at the q-axis side end and the d-axis side end (that is, the magnet end face side) is longer than the magnet length in the magnetization direction at the center side.
  • the magnetic flux acting surface on the stator side is a flat surface perpendicular to the magnetization direction
  • the magnetic flux acting surface on the opposite stator side is a step surface, and is abutted in mutually opposite directions.
  • two magnets 146 are provided on both sides of the d-axis.
  • the magnets 146 are V-arranged on both sides of the d-axis.
  • the magnet length in the magnetization direction at the q-axis end and the d-axis end (that is, the magnet end face side) is longer than the magnet length in the magnetization direction at the central portion.
  • the magnetic flux acting surface on the stator side is a flat surface perpendicular to the magnetization direction
  • the magnetic flux acting surface on the opposite stator side is an inclined surface, and is abutted in mutually opposite directions.
  • etc.,) Of each said structure may be implement
  • the split magnets may be arranged side by side along the longitudinal direction of the magnet on both sides of the d-axis.
  • the eddy loss of the magnet 13 which is a conductor can be reduced.
  • a plurality of magnets (segmented magnets) having a square cross section and different magnetization directions may be arranged in a row to form the magnet 13 having a long cross section.
  • the orientation ratio of the magnet can be increased rather than determining the magnetization direction by variable orientation in the magnet having a long cross section.
  • the rotor core 11 may be divided into a plurality of parts in the axial direction, and the divided cores may be circumferentially shifted by a predetermined angle to make the rotor 10 have a skew structure. This can reduce torque ripple.
  • magnets are provided on the stator 30 side instead of those provided with magnets (magnet 13 etc.) on the rotor 10 side and the stator winding 33 provided on the stator 30 side And the stator winding 33 may be provided on the rotor 10 side.
  • the magnet accommodation hole of the various forms mentioned above is formed in the stator core as a soft-magnetic body core, the magnet of the various forms mentioned above is accommodated in the magnet accommodation hole.
  • the present disclosure can be applied to a linear motor that enables linear movement of a moving body.
  • the motor is provided with a magnet provided at a position facing the winding and capable of relative operation with respect to the winding by energizing the winding, and the plurality of magnets alternate in polarity in the direction of relative operation What is necessary is just to have a configuration that is arranged.
  • the disclosure in this specification is not limited to the illustrated embodiments.
  • the disclosure includes the illustrated embodiments and variations based on them by those skilled in the art.
  • the disclosure is not limited to the combination of parts and / or elements shown in the embodiments.
  • the disclosure can be implemented in various combinations.
  • the disclosure can have additional parts that can be added to the embodiments.
  • the disclosure includes those in which parts and / or elements of the embodiments have been omitted.
  • the disclosure includes replacements or combinations of parts and / or elements between one embodiment and another embodiment.
  • the disclosed technical scope is not limited to the description of the embodiments. It is to be understood that the technical scopes disclosed herein are indicated by the description of the scope of the claims, and further include all modifications within the meaning and scope equivalent to the descriptions of the scope of the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

回転電機の回転子(10)は、固定子(30)に対向する位置に設けられ、巻線の通電により当該巻線に対する相対動作が可能である磁石(13)を備え、複数の磁石が、相対動作の動作方向に極性を交互にして配置されている。磁石は、極性に応じた磁束を生じさせる第1磁石部(21)と、磁石における磁極境界側の端部であるq軸側端部の側に設けられ、磁石内部の磁化方向が、第1磁石部における磁化方向に交差する向きとなっている第2磁石部(22)と、を有する。

Description

電動機の磁気発生装置、軟磁性体コア、及び磁石の製造方法 関連出願の相互参照
 本出願は、
 2017年8月1日に出願された日本出願番号2017-149184号と、
 2018年2月16日に出願された日本出願番号2018-026511号と、
 2018年2月16日に出願された日本出願番号2018-026512号と、
 2018年2月16日に出願された日本出願番号2018-026513号と、
 2018年2月16日に出願された日本出願番号2018-026514号と、
 2018年7月31日に出願された日本出願番号2018-143375号に基づくもので、ここにその記載内容を援用する。
 本開示は、電動機の磁気発生装置、例えば回転電機の回転子コアとして用いられる軟磁性体コア、及び磁石の製造方法に関するものである。
 従来、例えば回転電機の回転子として、電磁鋼板を積層させてなる回転子コアに磁石収容孔を形成し、その磁石収容孔に磁石を挿入したIPM(Interior Permanent Magnet)型の回転子が普及してきている。例えば特許文献1には、磁石収容孔の形状を工夫し、回転子から固定子へ向かう磁束とは反対方向の磁界を抑え、固定子と鎖交する磁束を増やす技術が開示されている。このような回転電機では、永久磁石や、回転子、固定子等の形状を最適化する設計がなされており、回転電機の能力向上と、永久磁石の反磁界への耐力向上との両立が図られている。
特開2014-93859号公報
 近年では、例えば車両において走行抵抗を減らすためのスラントノーズ化や、エンジンルームの小型化などが積極的に図られる傾向にあるが、これに伴い車両用発電機やスタータの搭載スペースも極小化されてきている。この場合、重要視される能力として、小型の回転電機でも車両の発進や登坂走行を可能とすることが要求され、その要求を実現すべくトルク密度を増大化することが検討されている。このような設計をするとき、例えば固定子から発する励磁電流が短期間で大電流となる場合に、固定子側からの回転磁界が永久磁石にとって大きな反磁界となり、その反磁界に起因して磁石の減磁が生じることが懸念される。
 一般的に、上記特許文献1に示されるようなIPMモータに用いられる回転子は、磁石磁極の中心となるd軸と、磁石の磁束がニュートラルとなるq軸とを有する。近年では、このように定義されたd軸、q軸を別々に扱い、d軸に向けた電流、q軸に向けた電流を別々に制御することによる空間的なベクトル制御が活発に行われている。この場合、IPMモータでは、q軸に配置される凸な鉄心によりq軸のインダクタンスがd軸のインダクタンスよりも大きくなることによる、インダクタンス差により発生するリラクタンストルクTrと、d軸に配置された磁石磁束を利用して発生する磁石トルクTmとの合力によりトルクが発生する。
 なお、所定のバッテリ電圧条件下においてモータの回転速度を高める技術として、弱め界磁制御が挙げられるが、この弱め界磁制御により、強力に磁石に対する弱め磁界、すなわち反磁界が発生する。特にIPMモータでは、磁石の磁束を弱めた磁石磁束によるトルク(マグネットトルク)を低下させた際に、q軸のリラクタンストルク成分を利用できるため、リラクタンストルクとマグネットトルクの合力のトルクは、弱め界磁を行わない場合の、マグネットトルクのみでIPMモータを動作させた場合に対して増加する傾向にあり、積極的に弱め界磁制御を行う傾向がある。これは、永久磁石にとっては、反磁界を常に掛けられ、不可逆減磁を促される環境にあるということにある。
 上記IPMモータの回転子では、永久磁石の不可逆減磁対策のため、磁石に高価な重希土類であるテルビウム(Tb)やジスプロシウム(Dy)を使用したり、または永久磁石の磁石厚みや、磁石のボリュームそのものを増加させたりすることが考えられる。ゆえに、これらがコストアップの要因になっている。
 なお、IPMモータの回転子として、d軸を挟んで両側に永久磁石をV字状に配置する構成が知られている。かかる場合、その回転子では、d軸を挟んで両側の永久磁石において、d軸に対して斜めとなる方向に向けて磁束を生じさせる構成となるため、その一対の永久磁石において磁束の相互干渉に起因する減磁が生じることが懸念される。
 本開示は、上記課題に鑑みてなされたものであり、その目的は、磁石の減磁を適正に抑制することができる電動機の磁気発生装置、軟磁性体コア、及び磁石の製造方法を提供することにある。
 以下、上記課題を解決するための手段、及びその作用効果について説明する。
 第1の手段では、
 巻線に対向する位置に設けられ、前記巻線の通電により当該巻線に対する相対動作が可能である磁石を備え、複数の前記磁石が、前記相対動作の動作方向に極性を交互にして配置されている電動機に適用され、
 前記磁石は、
 前記極性に応じた磁束を生じさせる第1磁石部と、
 前記磁石における磁極境界側の端部であるq軸側端部の側に設けられ、磁石内部の磁化方向が、前記第1磁石部における前記磁化方向に交差する向きとなっている第2磁石部と、
を有する。
 巻線に対向する位置に複数の磁石が設けられ、巻線の通電により巻線側と磁石側との相対動作が行われる電動機では、巻線側からの通電磁界が反磁界として各磁石に作用する。そのため、その反磁界に起因して、各磁石のq軸側端部において減磁の懸念が生じる。この点、本手段では、磁石として、極性に応じた磁束を生じさせる第1磁石部に加えて、磁石におけるq軸側端部(すなわち磁極境界側の端部)の側に、磁石内部の磁化方向が、第1磁石部における磁化方向に交差する向きとなっている第2磁石部を設ける構成とした。この場合、第2磁石部により第1磁石部のq軸側端部の磁束を補強することが可能になる。そのため、巻線側からの反磁界に対する耐減磁能力が高められ、磁極磁石である第1磁石部の減磁を適正に抑制できる。
 なお、第2磁石部の磁化方向を第1磁石部の磁化方向よりもq軸に直交する向きとし、その第2磁石部の磁束により、第1磁石部のq軸側端部の磁束を補強するとよい。
 第2の手段では、前記電動機は、前記巻線が巻装された巻線側部材と、前記巻線側部材に対して径方向に対向配置され、前記磁石を有する磁石側部材とを備える回転電機であり、前記磁石側部材として用いられる電動機の磁気発生装置であって、前記第1磁石部は、前記磁石側部材において周方向に所定間隔で設けられ、前記第2磁石部は、前記第1磁石部のq軸側端部の側に設けられている。
 巻線が巻装された巻線側部材(例えば固定子)と、巻線側部材に対して径方向に対向配置され、磁石を有する磁石側部材(例えば回転子)とを備える回転電機では、巻線側部材からの通電磁界が反磁界として磁石に作用し、その反磁界に起因して、磁石のq軸側端部において減磁の懸念が生じる。この点、上記構成によれば、第1磁石部のq軸側端部の側に第2磁石部が設けられていることにより、第1磁石部のq軸側端部において反磁界に対する耐減磁能力を高めることができる。
 第3の手段では、前記磁石側部材は、磁極ごとにd軸を挟んで両側に位置するように設けられた複数の磁石収容孔を有する軟磁性体コアを含み、前記磁石収容孔内に、前記第1磁石部及び前記第2磁石部が収容されている。
 本手段では、軟磁性体コアに磁石が埋め込まれた磁石側部材(例えば回転子)において、各磁極の磁石収容孔内に第1磁石部及び第2磁石部が収容され、第2磁石部により第1磁石部のq軸側端部の磁束が補強される。これにより、上記同様、第1磁石部のq軸側端部において反磁界に対する耐減磁能力を高めることができる。
 第4の手段では、前記第1磁石部のq軸側端部において前記巻線側部材に最も近い部位を磁束補強点とし、その磁束補強点に対して前記第2磁石部による磁束強化を行わせる。
 第1磁石部のq軸側端部では、巻線側部材に最も近い部位で反磁界の影響が最大となり、減磁が最も生じ易くなると考えられる。この点、上記手段によれば、反磁界の影響が最大となる部位を磁束補強点とし、その磁束補強点に対して好適に磁束強化を行わせることができる。
 第5の手段では、前記第1磁石部及び前記第2磁石部は、横断面が矩形状をなし、かつ対向する一対の磁束作用面に対して前記磁化方向が直交する向きとなっており、前記軟磁性体コアに、d軸又はq軸に対する前記磁化方向の角度を互いに異ならせて前記第1磁石部及び前記第2磁石部が配置されている。
 横断面が矩形状をなし、かつ対向する一対の磁束作用面に対して磁化方向が直交する向きとなっている磁石は、最も汎用性があり、製造面やコスト面に優れると考えられる。そして、この磁石を第1磁石部及び第2磁石部として用い、軟磁性体コアに、d軸又はq軸に対する磁化方向の角度を互いに異ならせて配置する構成とした。これにより、構成の簡易化を図りつつ、第1磁石部におけるq軸側端部の磁束補強を好適に実現できる。
 なお、上記構成によれば、第1磁石部及び第2磁石部として寸法及び性能が全く同じ磁石、すなわち同じ品番の磁石を用いても、所望とする耐減磁性能を実現できる。
 第6の手段では、前記第1磁石部の前記磁化方向と、前記第2磁石部の前記磁化方向とのなす角度が鋭角である。
 これにより、第1磁石部の磁束強化を図る上で好適な構成を実現できる。また特に、第1磁石部のq軸側端部において巻線側部材に最も近い部位を磁束補強点とする場合に、その磁束補強点に対する磁束強化を一層適正に行わせることができる。
 第7の手段では、前記第1磁石部は、d軸を挟んで両側に互いに離間した状態で一対の磁石として設けられており、当該第1磁石部の前記磁化方向が、d軸に対して傾斜し、かつ前記磁石収容孔よりも前記巻線側及び反巻線側のうち前記巻線側で交差する向きとなっており、前記第1磁石部における前記一対の磁石のd軸側端部の側に、前記磁化方向が、前記第1磁石部の前記磁化方向に交差する向きとなっている第3磁石部が設けられている。
 上記構成の磁石側部材では、第1磁石部が、d軸を挟んで両側に互いに離間した状態で一対の磁石として設けられ、第1磁石部の磁化方向が、d軸に対して傾斜し、かつ磁石収容孔よりも巻線側及び反巻線側のうち巻線側で交差する向きで定められている。この場合、第1磁石部のd軸側端部(すなわち磁極中心側)において一対の磁石の磁束が互いに干渉し、その相互干渉に起因して磁石の減磁(自己減磁)が生じることが懸念される。
 この点、本手段では、第1磁石部における一対の磁石のd軸側端部の側に、磁化方向が、第1磁石部の磁化方向に交差する向きとなっている第3磁石部が設けられていることにより、第1磁石部のd軸側端部の磁束を補強することが可能になる。つまり、d軸付近において磁束の相互干渉に対する耐減磁能力を高めることにより、第1磁石部の減磁を適正に抑制できる。
 なお、第3磁石部の磁化方向を第1磁石部の磁化方向よりもd軸に平行となる向きとし、その第3磁石部の磁束により、第1磁石部のd軸側端部の磁束を補強するとよい。
 第8の手段では、前記第1磁石部における前記一対の磁石のd軸側端部において当該一対の磁石同士で最も近い部位を磁束補強点とし、その磁束補強点に対して前記第3磁石部による磁束強化を行わせる。
 第1磁石部のd軸側端部では、一対の磁石同士における最も近い部位で磁束干渉の影響が最大となり、減磁が最も生じ易くなると考えられる。この点、上記手段によれば、磁束干渉の影響が最大となる部位を磁束補強点とし、その磁束補強点に対して、第3磁石部により好適に磁束強化を行わせることができる。
 第9の手段では、前記第1磁石部の前記磁化方向と、前記第3磁石部の前記磁化方向とのなす角度が鋭角である。
 これにより、第1磁石部の磁束強化を図る上で好適な構成を実現できる。また特に、第1磁石部のd軸側端部において一対の磁石同士で最も近い部位を磁束補強点とする場合に、その磁束補強点に対する磁束強化を一層適正に行わせることができる。
 第10の手段では、前記磁石収容孔は、前記第1磁石部における前記一対の磁石の間に、d軸側に拡張されたd軸側拡張部分を有しており、前記d軸側拡張部分に、前記第3磁石部が設けられるとともに、その第3磁石部よりもd軸側にフラックスバリアが設けられている。
 上記手段によれば、磁石収容孔のd軸側拡張部分に、第3磁石部とフラックスバリアとが設けられているため、第1磁石部における一対の磁石のd軸側端部の側における第3磁石部の磁石量を必要最小限に削減しつつ、所望の効果を得ることができる。これにより、コスト低減を図ることができる。
 第11の手段では、前記磁石収容孔が、d軸を挟んで両側に対称形で設けられており、かつ、前記磁石が、d軸を挟んで両側に対称に配置されている。
 磁石収容孔及び磁石がd軸を挟んで両側に対称に設けられていることにより、回転電機の回転方向がいずれであっても同様に、磁石において減磁を好適に抑制することができる。
 第12の手段では、前記第2磁石部は、前記第1磁石部の固有保磁力よりも小さい固有保磁力を有している。
 第2磁石部が、第1磁石部の固有保磁力iHcよりも小さい固有保磁力iHcを有する構成では、第2磁石部として安価な磁石を用いつつも、所望とする第1磁石部の磁束補強を実現できる。
 第13の手段では、前記第1磁石部は、前記第2磁石部の固有保磁力よりも小さい固有保磁力を有している。
 第1磁石部が、第2磁石部の固有保磁力iHcよりも小さい固有保磁力iHcを有する構成では、第1磁石部として安価な磁石を用い、磁石コストを低減することができる。磁石磁束の大半は、第1磁石部の表面積により決まるため、本構成がコスト面で好適となる。
 なお、第2磁石部の固有保磁力が第1磁石部よりも大きいことになるため、減磁に対する耐力が高められる。したがって、磁気発生装置(例えば回転子)が巻線側からの強い反磁界に曝される場合において好適な構成を実現できる。
 第14の手段では、前記第2磁石部と前記第3磁石部とは、固有保磁力が互いに異なっている。
 第1磁石部のq軸側端部において巻線側部材からの反磁界による減磁の懸念と、第1磁石部のd軸側端部において一対の磁石の磁束干渉による減磁の懸念とが共に生じる場合には、減磁の影響度合いがq軸側及びd軸側で互いに相違していることがある。この点、第2磁石部と第3磁石部とで固有保磁力が互いに異なっている構成では、減磁の影響度合いに応じて第2磁石部及び第3磁石部を適宜設定することができる。
 第15の手段では、前記第1磁石部は、q軸側からd軸側に向かう方向において分割され、かつ互いに前記磁化方向が異なる複数の分割磁石を有しており、前記複数の分割磁石のうちq軸側となる分割磁石は、d軸側となる分割磁石よりも、前記磁化方向が、q軸に対して平行な方向に近い向きになっている。
 上記手段によれば、第1磁石部を構成する複数の分割磁石は、互いに磁化方向が異なっており、q軸側となる分割磁石は、磁化方向がq軸に対して平行な方向に近い向きになっている。これにより、第1磁石部の自身にあっても、d軸側端部付近において巻線側からの反磁界に対する耐減磁能力を高めることが可能となる。
 第16の手段では、前記複数の分割磁石は、その分割磁石の端部同士が対向する部位で前記巻線側に凸となるように配置されている。
 上記手段によれば、複数の分割磁石を凸状配置することにより、その凸状配置をしない構成に比べて第1磁石部を巻線側部材の側に近づけることができ、巻線と第1磁石部との距離を縮めてトルクを増大させることができる。この場合、巻線と第1磁石部との距離を縮めることで、その背反として反磁界が増大するが、その反磁界増大の影響を第2磁石部により解決することができる。
 また、上記の凸状配置によれば、軟磁性体コアにおいて、磁石(すなわち磁石収容孔)よりも巻線側であって、かつ巻線と磁石との両磁束の総和を受ける部分の割合を小さくすることができる。そのため、巻線と磁石との両磁束による磁束飽和が生じ得る飽和領域を減少させ、磁石の能力をより効果的に引き出すことが可能となる。
 第17の手段では、前記軟磁性体コアにおいて、前記巻線側部材との対向面には軸方向に延びる溝が形成されている。
 軟磁性体コアにおいて巻線側部材との対向面側の領域は、巻線から受ける通電磁束と磁石の磁束とにより磁気飽和が生じる可能性が高くなると考えられる。この点、軟磁性体コアにおける巻線側部材との対向面に軸方向に延びる溝を形成することで、軟磁性体コアにおける巻線近傍領域での磁束の向き及び磁束量を調整することができ、磁石の能力をより効果的に引き出すことができる。
 第18の手段では、前記軟磁性体コアは、中央部に形成された貫通孔に回転軸を挿通させ、回転自在に支持された回転子コアであり、前記貫通孔の内周面においてd軸上となる位置には、径方向内側に突出して前記回転軸の外周面に当接する突出部が形成されている。
 上記手段によれば、回転子コア(軟磁性体コア)を回転軸に組み付けた状態において、回転子コアにおける貫通孔の内周面から径方向外側に伝わる応力を磁石にて受けることができる。これにより、磁石の位置ずれを抑制でき、磁石の磁気特性が意図せず変化する等の不都合を抑制できる。
 第19の手段では、
 巻線に対向する位置に設けられ、前記巻線の通電により当該巻線に対する相対動作が可能である磁石を備え、複数の前記磁石が、前記相対動作の動作方向に極性を交互にして配置されている電動機に適用され、
 前記磁石は、
 磁極中心であるd軸を挟んで両側に互いに離間した状態で一対の磁石として設けられ、磁石内部の磁化方向が、前記d軸に対して傾斜し、かつ前記巻線側及び反巻線側のうち前記巻線側で交差する向きになっている第1磁石部と、
 前記第1磁石部における前記一対の磁石のd軸側端部の側に設けられ、前記磁化方向が、前記第1磁石部の前記磁化方向に交差する向きとなっている第2磁石部と、
を有する。
 電動機において、磁極中心であるd軸を挟んで両側に互いに離間した状態で一対の磁石として第1磁石部が設けられており、さらに第1磁石部において、磁石内部の磁化方向が、d軸に対して傾斜し、かつ巻線側で交差する向きになっている場合には、第1磁石部のd軸側端部(すなわち磁極中心側)において一対の磁石の磁束が互いに干渉し、その相互干渉に起因して磁石の減磁(自己減磁)が生じることが懸念される。この点、本手段では、磁石として、上記の第1磁石部に加えて、第1磁石部における一対の磁石のd軸側端部の側に、磁石内部の磁化方向が、第1磁石部の磁化方向に交差する向きとなっている第2磁石部を設ける構成とした。この場合、第2磁石部により第1磁石部の端部の磁束を補強することが可能になる。そのため、d軸付近における磁束の相互干渉に対する耐減磁能力が高められ、第1磁石部(すなわち磁極磁石)の減磁を適正に抑制できる。
 なお、第3磁石部の磁化方向を第1磁石部の磁化方向よりもd軸に平行となる向きとし、その第3磁石部の磁束により、第1磁石部のd軸側端部の磁束を補強するとよい。
 第20の手段では、前記電動機は、前記巻線が巻装された巻線側部材と、前記巻線側部材に対して径方向に対向配置され、前記磁石を有する磁石側部材とを備える回転電機であり、前記磁石側部材として用いられる電動機の磁気発生装置であって、前記磁石側部材は、磁極ごとにd軸を挟んで両側に位置するように設けられた複数の磁石収容孔を有する軟磁性体コアを含み、前記磁石収容孔内に、前記第1磁石部及び前記第2磁石部が収容されている。
 電動機としての回転電機は、巻線が巻装された巻線側部材(例えば固定子)と、巻線側部材に対して径方向に対向配置され、磁石を有する磁石側部材(例えば回転子)とを備えており、特に埋込磁石式の回転電機では、磁石側部材が、磁石が埋め込まれた軟磁性体コアを有する。こうした回転電機において、磁石収容孔内に、第1磁石部及び第2磁石部を収容する構成とした。これにより、埋込磁石式の回転電機において、上記同様、第1磁石部のd軸側端部(詳しくは、一対の磁石のd軸側端部)において相互の磁束干渉に対する耐減磁能力を高めることができる。
 第21の手段では、前記磁石収容孔が、d軸を挟んで両側に対称形で設けられており、かつ、前記磁石が、d軸を挟んで両側に対称に配置されている。
 磁石収容孔及び磁石がd軸を挟んで両側に対称に設けられていることにより、回転電機の回転方向がいずれであっても同様に、磁石において減磁を好適に抑制することができる。
 第22の手段では、前記磁石収容孔は、前記第1磁石部における前記一対の磁石の間に、d軸側に拡張されたd軸側拡張部分を有しており、前記d軸側拡張部分に、前記第2磁石部が設けられるとともに、その第2磁石部よりもd軸側にフラックスバリアが設けられている。
 上記手段によれば、磁石収容孔のd軸側拡張部分に、第2磁石部とフラックスバリアとが設けられているため、第1磁石部における一対の磁石のd軸側端部の側における第2磁石部の磁石量を必要最小限に削減しつつ、所望の効果を得ることができる。これにより、コスト低減を図ることができる。
 第23の手段では、前記第1磁石部における前記一対の磁石のd軸側端部において当該一対の磁石同士で最も近い部位を磁束補強点とし、その磁束補強点に対して前記第2磁石部による磁束強化を行わせる。
 第1磁石部のd軸側端部では、一対の磁石同士における最も近い部位で磁束干渉の影響が最大となり、減磁が最も生じ易くなると考えられる。この点、上記手段によれば、磁束干渉の影響が最大となる部位を磁束補強点とし、その磁束補強点に対して、第2磁石部により好適に磁束強化を行わせることができる。
 第24の手段では、前記第1磁石部の前記磁化方向と、前記第2磁石部の前記磁化方向とのなす角度が鋭角である。
 これにより、第1磁石部の磁束強化を図る上で好適な構成を実現できる。また特に、第1磁石部のd軸側端部において一対の磁石同士で最も近い部位を磁束補強点とする場合に、その磁束補強点に対する磁束強化を一層適正に行わせることができる。
 第25の手段では、
 埋込磁石式の回転電機において巻線に対向する位置に設けられ、磁石を保持する軟磁性体コアであって、
 磁極ごとに前記磁石を収容する磁石収容孔を有しており、
 前記磁石収容孔は、磁極ごとにd軸を挟んで両側に配置され、かつ前記巻線側に向かうにつれて対向間距離が大きくなるように略V字状をなす一対の孔として設けられ、
 前記一対の孔は、それぞれd軸側及びq軸側の両端の間において前記巻線側に凸となるように設けられている。
 回転電機の軟磁性体コアにおける磁石収容孔を、磁極ごとにd軸を挟んで略V字状をなす一対の孔とし、さらに、その一対の孔を、それぞれd軸側及びq軸側の両端の間において巻線側に凸となるように設ける構成とした。これにより、磁石収容孔内に磁石を収容した場合において、磁石を軟磁性体コアの巻線対向面に近づけることができ、巻線と磁石との距離を縮めてトルクを増大させることが可能となる。
 また、軟磁性体コアにおいて、磁石収容孔よりも巻線側であって、かつ巻線と磁石との両磁束の総和を受ける部分の割合を小さくすることができる。そのため、巻線と磁石との両磁束による磁束飽和が生じ得る飽和領域を小さくし、磁石の能力をより効果的に引き出すことが可能となる。
 第26の手段では、前記回転電機は、前記巻線が巻装された環状の固定子と、前記固定子に対して径方向内側に対向配置され、前記磁石を有する回転子とを備え、前記回転子を構成する回転子コアとして用いられる軟磁性体コアであって、前記一対の孔は、それぞれd軸側及びq軸側の両端の間において前記固定子側に凸となるように設けられている。
 上記構成によれば、内転式回転電機において、磁石が径方向外側に向けて凸となっているため、回転子コアにおいて磁石収容孔よりも径方向外側となる部分が小さくなる。したがって、遠心力に対する応力集中係数が減少し、その機械的強度を増加させることができる。
 第27の手段では、前記磁石収容孔が、d軸を挟んで両側に対称形で設けられている。
 磁石収容孔がd軸を挟んで両側に対称形で設けられていることにより、回転電機の回転方向がいずれであっても同様に、磁石を適正に収容保持することができる。
 第28の手段では、
 巻線に対向する位置に設けられ、前記巻線の通電により当該巻線に対する相対動作が可能である磁石を備え、複数の前記磁石が、前記相対動作の動作方向に極性を交互にして配置されている電動機に適用され、
 前記磁石は、磁石内部の磁化方向が、前記磁石の前記巻線側及び反巻線側の両側であり磁束を生じさせる磁束作用面のうち、少なくともいずれかに対して非垂直の角度で交差する向きとなっている。
 巻線に対向する位置に複数の磁石が設けられ、巻線の通電により巻線側と磁石側との相対動作が行われる電動機では、巻線側からの通電磁界が反磁界として各磁石に作用する。そのため、その反磁界に起因して、各磁石のq軸側端部において減磁の懸念が生じる。この点、本手段では、磁石における内部の磁化方向が、磁石の巻線側及び反巻線側の両側であり磁束を生じさせる磁束作用面のうち、少なくともいずれかに対して非垂直の角度で交差する向きとなっているため、磁石磁路長(すなわち、内部磁力線の長さ)を長くすることが可能となり、磁石磁束が強化される。つまり、例えば磁石において一対の磁束作用面が互いに対向している場合において、その磁束作用面に垂直となる向きで磁化方向が定められる場合に比べて磁石磁路長を長くすることができ、磁石磁束の強化が可能となる。これにより、巻線側からの反磁界に対する耐減磁能力が高められ、磁石の減磁を適正に抑制できる。
 なお、磁石の磁化方向は、磁石内部において全て同一方向でなくてもよい。また、磁石の磁化方向として、磁束作用面に対して非垂直の角度で交差する向きとなる磁化方向と磁束作用面に対して垂直に交差する向きとなる磁化方向とが含まれていてもよい。
 第29の手段では、前記電動機は、前記巻線が巻装された巻線側部材と、前記巻線側部材に対して径方向に対向配置され、前記磁石を有する磁石側部材とを備える回転電機であり、前記磁石側部材として用いられる電動機の磁気発生装置であって、前記磁石側部材は、磁極ごとにd軸を挟んで両側に位置するように設けられた複数の磁石収容孔を有する軟磁性体コアを含み、前記磁石収容孔内に前記磁石が収容されている。
 上記構成によれば、埋込磁石型回転電機(すなわちIPMモータ)において、磁石収容孔内に収容された磁石の磁化方向が、巻線側及び反巻線側の磁束作用面のうち少なくともいずれかに対して非垂直の角度で交差するものとなっている。これにより、埋込磁石型回転電機での反磁界に対する耐減磁能力を好適に高めることができる。
 第30の手段では、前記磁石収容孔が、d軸を挟んで両側に対称形で設けられており、かつ、前記磁石が、d軸を挟んで両側に対称に配置されている。
 磁石収容孔及び磁石がd軸を挟んで両側に対称に設けられていることにより、回転電機の回転方向がいずれであっても同様に、磁石において減磁を好適に抑制することができる。
 第31の手段では、前記磁石は、当該磁石における前記巻線側の磁束作用面とその反対側の磁束作用面とで異なる向きとなるように、前記磁化方向が変化するものとなっている。
 上記手段によれば、磁石における巻線側の磁束作用面とその反対側の磁束作用面とで、磁石の磁化方向が相違していることにより、磁石磁路長(すなわち、内部磁力線の長さ)を長くすることができる。これにより、磁石磁束を強化して巻線側からの反磁界に対抗する磁束を好適に生じさせ、磁石の減磁を適正に抑制できる。
 第32の手段では、前記磁石は、q軸側からd軸側に向かうに従って、前記磁化方向が、q軸に対して垂直な方向に近い向きからd軸に対して平行な方向に近い向きに、反巻線側に凸の非直線状に切り替わるように設けられている。
 上記手段によれば、磁石の磁化方向が、q軸側ではq軸に対して垂直な方向に近い向きとなり、かつd軸側ではd軸に対して平行な方向に近い向きとなるように、反巻線側に凸の非直線状に切り替わるようになっている。これにより、磁石磁路長(すなわち、内部磁力線の長さ)を長くして磁石磁束を強化し、ひいては巻線側からの反磁界に対抗する磁束を好適に生じさせ、磁石の減磁を適正に抑制できる。
 また、磁石のd軸側においては、磁化方向が、d軸に対して平行な方向に近い向きになる。そのため、d軸付近における磁束の相互干渉に起因する減磁を抑制することができる。
 第33の手段では、前記磁石は、d軸側からq軸側に向かうに従って、前記磁化方向が、d軸に対して垂直な方向に近い向きからq軸に対して平行な方向に近い向きに、反巻線側に凸の非直線状に切り替わるように設けられている。
 上記手段によれば、磁石の磁化方向が、d軸側ではd軸に対して垂直な方向に近い向きとなり、かつq軸側ではq軸に対して平行な方向に近い向きとなるように、反巻線側に凸の非直線状に切り替わるようになっている。これにより、磁石磁路長(すなわち、内部磁力線の長さ)を長くして磁石磁束を強化し、ひいては巻線側からの反磁界に対抗する磁束を好適に生じさせ、磁石の減磁を適正に抑制できる。
 第34の手段では、前記磁石は、前記軟磁性体コアにおいて、q軸側端部が、径方向においてd軸側端部よりも前記巻線に近い側に位置しており、かつq軸側端部とd軸側端部との間において前記巻線側に凸となるように設けられている。
 上記手段によれば、磁石を軟磁性体コアの巻線対向面に近づけることができ、巻線と磁石との距離を縮めてトルクを増大させることができる。この場合、巻線と磁石との距離を縮めることで、その背反として反磁界が増大するが、その反磁界増大の影響を、磁石において上記のとおり非直線状とした磁化方向により解決することができる。
 また、軟磁性体コアにおいて、磁石(すなわち磁石収容孔)よりも巻線側であって、かつ巻線と磁石との両磁束の総和を受ける部分の割合を小さくすることができる。そのため、巻線と磁石との両磁束による磁束飽和が生じ得る飽和領域を小さくし、磁石の能力をより効果的に引き出すことが可能となる。
 なお、磁気発生装置を、内転式回転電機の回転子として用いる場合には、軟磁性体コアが回転子コアとなり、その回転子コアにおいて、磁石が径方向外側に向けて凸となるように設けられる。そのため、回転子コアにおいて磁石収容孔よりも径方向外側となる部分が小さくなる。したがって、遠心力に対する応力集中係数が減少し、その機械的強度を増加させることができる。
 第35の手段では、前記磁石において、前記磁化方向が前記磁束作用面に対して非垂直の角度で交差し、前記磁束作用面に交差する磁石端面が、前記磁化方向に平行となる向きで形成されており、前記磁石収容孔内には、d軸側及びq軸側の少なくともいずれかの前記磁石端面の外側に、フラックスバリアが設けられている。
 上記のとおり磁石の磁化方向がq軸側とd軸側とで非直線状に切り替わるようになっている構成では、磁石磁路長を長くすることが可能になっているが、磁石の端部においては、部分的に磁石磁路長が短くなることが考えられる。この点、磁石において、磁束作用面に交差する磁石端面を、磁化方向に平行となる向きで形成することにより、磁石において磁石磁路長が短い部分が局部的に存在することを抑制できる。また、磁石収容孔内において、d軸側及びq軸側の少なくともいずれかの磁石端面の外側にフラックスバリアを設けることで、磁石磁路長の延長による減磁抑制を図りつつも、磁石の端部における磁束の自己短絡を抑制できる。
 第36の手段では、前記磁石において、前記磁化方向が、d軸に対して傾斜し、かつ前記磁束作用面に対して非垂直の角度で交差する向きとなっている。
 上記手段では、磁石の磁化方向が、d軸に対して傾斜し、かつ磁束作用面に対して非垂直の角度で交差する向きとなっているため、磁化方向が磁束作用面に直交する構成に比べて、磁石磁路長(すなわち、内部磁力線の長さ)が長くなり、磁石磁束が強化される。これにより、巻線側からの反磁界に対する耐減磁能力が高められ、磁石の減磁を適正に抑制できる。
 第37の手段では、前記磁石は、前記軟磁性体コアにおいてd軸を挟んで両側に配置されており、d軸の両側における前記各磁石の前記磁化方向が、d軸に対して傾斜し、かつ前記磁石収容孔よりも前記巻線側となる位置で互いに交差する向きとなっている。
 上記手段によれば、軟磁性体コアにおいて、d軸を挟んで両側に設けられた磁石により、巻線側からの反磁界に対する耐減磁能力を高めつつ、d軸における磁束強化を好適に実施できる。
 第38の手段では、前記磁石において、前記磁化方向が前記磁束作用面に対して非垂直の角度で交差しており、前記磁束作用面に交差する磁石端面が、前記磁化方向に平行となる向きで形成されている。
 磁石の磁化方向が、磁束作用面に対して非垂直の角度で交差する向きとなっている構成では、磁石の磁化方向が、磁束作用面に対して垂直に交差する向きとなっている場合に比べて、磁石磁路長を長くすることが可能になっているが、磁石の端部においては、部分的に磁石磁路長が短くなることが考えられる。この点、磁束作用面に交差する磁石端面が、磁石の磁化方向に平行となる向きで形成されていることで、磁石において磁石磁路長が短い部分が局部的に存在することを抑制できる。
 なお、磁束作用面に交差するq軸側の磁石端面及びd軸側の磁石端面のうち少なくともいずれか一方において、磁石端面が、磁石の磁化方向に平行となる向きで形成されていればよい。
 第39の手段では、前記磁石は、前記磁石端面側における前記磁化方向の磁石長さが、その磁石端面よりも中央側の部位における前記磁化方向の磁石長さよりも長い。
 上記手段によれば、磁石の磁化方向を磁束作用面に対して非垂直の角度で交差させることで磁石磁路長を長くした構成において、磁石端面側の部位で磁石磁路長が局部的にさらに延長されている。これにより、耐減磁能力のより一層の向上を図ることができる。
 第40の手段では、前記磁石において、d軸寄りの部分とq軸寄りの部分とで磁化方向が相違している。
 これにより、磁石よりも巻線側において、例えばd軸上の特定位置に磁石磁束を集めることができ、磁石磁束の強化を図ることができる。
 第41の手段では、前記磁石において、d軸寄りの部分とq軸寄りの部分とのうちd軸寄りの部分では、q軸寄りの部分よりも磁化方向がd軸に平行になっている。
 この場合、q軸寄りの部分では、d軸寄りの部分に比べて磁石磁路長が長くなるため、q軸における磁石磁束を強化し、磁石のq軸側端部における反磁界に対する減磁対策を適正に図ることができる。また、d軸寄りの部分では、磁化方向がd軸に平行又は平行に近い状態になっているため、例えばd軸の両側の磁石においてd軸側端部の磁化方向が互いに向き合う側に傾斜している場合に、その磁束の相互干渉を抑制できる。
 第42の手段では、前記磁石において、前記磁束作用面に垂直な方向に対する、前記q軸寄りの部分における磁化方向の傾きが、前記磁束作用面に垂直な方向に対する、前記d軸寄りの部分における磁化方向の傾きよりも大きい。
 これにより、磁石のq軸側端部における磁石磁路長を最も長くして、磁石のq軸側端部における反磁界に対する減磁耐性を強くすることができる。その結果、磁石のq軸側端部における減磁抑制と磁石トルクの増加とを共に実現できることとなる。
 例えば、図27等に示されるように、磁石収容孔12がd軸に対して垂直な向きに延びるように直線状に形成されている構成に対して、磁石101のd軸側端部に近づくほど、磁化方向をq軸側の磁化方向よりもd軸に平行にするようにした構成を採用することが考えられる。この場合、磁束作用面に垂直な方向に対する、q軸寄りの部分における磁化方向の傾きが、d軸寄りの部分よりも大きくなる構成が実現される。
 第43の手段では、前記磁石において、d軸寄りの部分とq軸寄りの部分とのうちq軸寄りの部分では、d軸寄りの部分よりも磁化方向がq軸に平行になっている。
 この場合、q軸寄りの部分では磁化方向がq軸に平行になっていることで、q軸において、軟磁性体コアの巻線対向面に直交する向きの磁石磁束、すなわち反磁界に対抗する向きの磁石磁束を強化することができる。これにより、磁石のq軸側端部における反磁界に対する減磁対策を適正に図ることができる。
 第44の手段では、前記磁石収容孔は、磁極ごとにd軸を挟んで両側に配置され、かつ前記巻線側に向かうにつれて対向間距離が大きくなるように略V字状をなす一対の孔として設けられ、前記磁石は、d軸の両側に、d軸側端部を含む部分である第1磁石部と、q軸側端部を含む部分である第2磁石部とをそれぞれ有しており、前記第2磁石部では、前記磁化方向が、前記第1磁石部よりもq軸に対して垂直な方向に近い向きとなっている。
 これにより、巻線側からの反磁界に対する耐減磁能力が高められ、磁石の減磁を適正に抑制できる。
 第45の手段では、前記第1磁石部の前記磁化方向がd軸に平行である。
 この場合、第1磁石部では、磁化方向がd軸に平行であり、その第1磁石部の磁化方向に対して、第2磁石部の磁化方向がq軸に垂直な方向に近い向きとなっている。これにより、d軸側での磁束相互干渉に起因する減磁(自己減磁)を抑制しつつ、巻線側からの反磁界に対する耐減磁能力を高めることができる。
 第46の手段では、前記軟磁性体コアにおいて、前記磁石は、q軸側端部が、径方向においてd軸側端部よりも前記巻線に近い部位に位置しており、かつq軸側端部とd軸側端部との間において前記巻線側に凸となるように設けられている。
 上記手段によれば、磁石を軟磁性体コアの巻線対向面に近づかせることができるため、d軸の磁気抵抗が下がり、トルクを増大させることができる。この場合、巻線と磁石との距離を縮めることで、その背反として反磁界が増大するが、その反磁界増大の影響を、磁石において上記のとおり磁路長を長くすることにより解消できる。
 また、軟磁性体コアにおいて、磁石(すなわち磁石収容孔)よりも巻線側であって、かつ巻線と磁石との両磁束の総和を受ける部分の割合を小さくすることができる。そのため、巻線と磁石との両磁束による磁束飽和が生じ得る飽和領域を小さくし、磁石の能力をより効果的に引き出すことが可能となる。
 第47の手段では、前記軟磁性体コアにおいて、前記磁石は、q軸側端部が、径方向においてd軸側端部よりも前記巻線に近い部位に位置しており、かつq軸側端部とd軸側端部との間において反巻線側に凸となるように設けられている。
 上記手段によれば、軟磁性体コアにおいて磁石よりも巻線側となる領域が広くなるため、その領域における磁石配置により磁石磁力の増加を図ることができる。
 第48の手段では、前記磁石において、d軸寄りの部分とq軸寄りの部分とで磁化方向が相違している。
 これにより、磁石よりも巻線側において、例えばd軸上の特定位置に磁石磁束を集めることができ、磁石磁束の強化を図ることができる。
 第49の手段では、前記磁石は、前記磁化方向が円弧状をなしている。
 これにより、磁石磁路長を一層長くすることができる。そのため、磁石磁束の一層の強化を図ることができる。
 第50の手段では、前記磁石は、前記軟磁性体コアにおいてd軸上のd軸コア部を挟んで一方側及び他方側となる一対の磁石として配置されており、前記軟磁性体コアには、前記d軸コア部を挟み、かつ前記一対の磁石の反巻線側の端部から反巻線側に延びる非磁性体部が設けられている。
 上記手段によれば、非磁性体部により、一対の磁石の間に位置するd軸コア部の磁気抵抗を上げることができる。これにより、一対の磁石間での短絡を抑制し、磁力をより一層有効に活用できる。
 第51の手段では、前記非磁性体部は、前記磁石収容孔の一部に非磁性材料が収容されることで構成されている。
 上記手段によれば、磁石収容孔により軟磁性体コアがq軸側とd軸側とに分断された状態で、反巻線側に延びる非磁性体部が設けられている。この場合、一対の磁石にそれぞれ生じる磁束の相互的な作用を減らしつつ、それぞれの磁束を好適に設計することができる。
 第52の手段では、前記軟磁性体コアは、回転軸に回転自在に固定される回転子コアであり、前記非磁性体部は、前記磁石において最も径方向内側となる点と、前記回転子コアの回転中心とを結ぶ仮想線よりもq軸側に張り出している。
 上記手段によれば、回転子のイナーシャを極力下げることができる。なお、q軸の磁束量を考慮して、磁石の周方向に位置するq軸コア部の幅に応じて非磁性体部の周方向の大きさを定めるとよく、磁石収容孔のq軸側端部と回転子コアの回転中心とを結ぶ仮想線と同じ位置まで、又はその仮想線よりも所定量だけq軸側となる位置まで、非磁性体部を張り出させることも可能である。
 第53の手段は、回転電機に用いられる磁石の製造方法であって、磁場コイルにより生成される磁場内に配置される金型に磁石粉末を充填する工程と、前記磁場コイルにより生成される磁場を配向鉄心により湾曲させた状態で、前記金型内の磁石粉末に対して所定方向の磁場配向を行う工程と、前記金型内の磁石粉末を焼結する工程と、を有する。
 これにより、回転電機における磁石の磁化方向を、例えばq軸側からd軸側に向かうに従って、q軸に対して垂直な方向に近い向きからd軸に対して平行な方向に近い向きに、反巻線側に凸の非直線状に切り替わるようにするといった構成を好適に実現することができる。また、同じく磁化方向を、d軸側からq軸側に向かうに従って、d軸に対して垂直な方向に近い向きからq軸に対して平行な方向に近い向きに、反巻線側に凸の非直線状に切り替わるようにするといった構成を好適に実現することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、回転電機の縦断面図であり、 図2は、回転電機の回転子及び固定子の横断面図であり、 図3は、回転電機の回転子及び固定子を示す部分平面図であり、 図4は、回転子コアを示す部分平面図であり、 図5は、磁石における反磁界の影響を説明するための図であり、 図6は、磁石における磁束の相互干渉の影響を説明するための図であり、 図7は、第1実施形態の変形例1における回転子を示す部分平面図であり、 図8は、第1実施形態の変形例2における回転子を示す部分平面図であり、 図9は、第1実施形態の変形例3における回転子を示す部分平面図であり、 図10は、第1実施形態の変形例4における回転子を示す部分平面図であり、 図11は、第1実施形態の変形例5における回転子を示す部分平面図であり、 図12は、第1実施形態の変形例6における回転子を示す部分平面図であり、 図13は、第1実施形態の変形例7における回転子を示す部分平面図であり、 図14は、第2実施形態の回転子を示す部分平面図であり、 図15は、磁場配向により磁石の磁化を行う手法を説明するための説明図であり、 図16は、第2実施形態の変形例1における回転子を示す部分平面図であり、 図17は、第2実施形態の変形例2における回転子を示す部分平面図であり、 図18は、第2実施形態の変形例3における回転子を示す部分平面図であり、 図19は、第2実施形態の変形例4における回転子を示す部分平面図であり、 図20は、第3実施形態の回転子を示す部分平面図であり、 図21は、磁場配向により磁石の磁化を行う手法を説明するための説明図であり、 図22は、磁場配向により磁石の磁化を行う手法を説明するための説明図であり、 図23は、第4実施形態の回転子を示す部分平面図であり、 図24は、第4実施形態の変形例1における回転子を示す部分平面図であり、 図25は、第4実施形態の変形例2における回転子を示す部分平面図であり、 図26は、第4実施形態の変形例3における回転子を示す部分平面図であり、 図27は、第4実施形態の変形例4における回転子を示す部分平面図であり、 図28は、磁石の磁化方向を詳細に示す図であり、 図29は、第4実施形態の変形例5における回転子を示す部分平面図であり、 図30は、第4実施形態の変形例6における回転子を示す部分平面図であり、 図31は、第4実施形態の変形例7における回転子を示す部分平面図であり、 図32は、第4実施形態の変形例8における回転子を示す部分平面図であり、 図33は、第4実施形態の変形例9における回転子を示す部分平面図であり、 図34は、磁石の構成を示す図であり、 図35は、第4実施形態の変形例10における回転子を示す部分平面図であり、 図36は、第4実施形態の変形例10における回転子を示す部分平面図であり、 図37は、第4実施形態の変形例10における回転子を示す部分平面図であり、 図38は、第5実施形態の回転子を示す部分平面図であり、 図39は、磁場配向により磁石の磁化を行う手法を説明するための説明図であり、 図40は、第5実施形態の変形例における回転子を示す部分平面図であり、 図41は、他の形態における回転子を示す部分平面図であり、 図42は、他の形態における回転子を示す部分平面図であり、 図43は、他の形態における回転子を示す部分平面図であり、 図44は、他の形態における回転子を示す部分平面図である。
 以下、実施形態を図面に基づいて説明する。本実施形態では電動機としての回転電機を具体化しており、その回転電機は、例えば車両動力源として用いられる。ただし、回転電機は、産業用、車両用、家電用、OA機器用、遊技機用などとして広く用いられることが可能となっている。なお、以下の各実施形態相互において、互いに同一又は均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。
 (第1実施形態)
 本実施形態に係る回転電機1は、車両用モータとして使用されるインナロータ式(内転式)の埋込磁石型回転電機(IPMモータ)であり、その概要を図1及び図2を用いて説明する。図1は、回転電機1の回転軸2に沿う方向での縦断面図であり、図2は、回転軸2に直交する方向での回転子10及び固定子30の横断面図である。以下の記載では、回転軸2の延びる方向を軸方向とし、回転軸2を中心として放射状に延びる方向を径方向とし、回転軸2を中心として円周状に延びる方向を周方向としている。
 回転電機1は、回転軸2に固定された回転子10と、回転子10を包囲する位置に設けられた円環状の固定子30と、これら回転子10及び固定子30を収容するハウジング4とを備えている。回転子10及び固定子30は同軸に配置されている。回転子10は、固定子30の径方向内側に対向配置されており、固定子30の内周面と回転子10の外周面との間には所定のエアギャップが形成されている。ハウジング4は、有底筒状の一対のハウジング部材4a,4bを有し、ハウジング部材4a,4bが開口部同士で接合された状態でボルト5の締結により一体化されている。ハウジング4には軸受け6,7が設けられ、この軸受け6,7により回転軸2及び回転子10が回転自在に支持されている。
 図2に示すように、回転子10は、回転軸2に固定される回転子コア11を有している。回転子コア11には、周方向に配列された複数の磁石収容孔12が形成されており、各磁石収容孔12には、それぞれ複数の磁石13(永久磁石)が埋設されている。ただしその詳細は後述する。
 固定子30は、多数の電磁鋼板が積層されてなる略円筒状の固定子コア31を有している。固定子コア31には、軸方向に貫通し、かつ周方向に等間隔に配列された複数のスロット32が設けられている。スロット32には、例えば3相の固定子巻線33が巻装されている。本実施形態では、回転子10の磁極数に対応して3相の固定子巻線33が収容されるように、48個のスロット32が周方向に等間隔に配置されている。
 次に、回転子コア11の磁石収容孔12と磁石13とを図3及び図4を参照して詳しく説明する。なお、図3及び図4には、回転電機1の複数の磁極(例えば全8極)のうち1極分が示されている。
 回転子コア11は、多数の電磁鋼板が積層されることで略円筒状に形成されており、その中央部には貫通孔14が形成されている。貫通孔14内に回転軸2が嵌合されることにより、回転子コア11が回転軸2に固定されている。なお、回転子コア11の多数の電磁鋼板は、カシメ、溶接等の固定手段を用いて軸方向に固定される。その固定手段は、回転子コア11のq軸磁路に当たる部分に設けられるとよい。また、回転子10と回転軸2との固定手法として、例えば接着剤による固定や、キー及びキー溝、又はスプライン等の凹凸構造による固定、圧入による固定などを用いることが可能である。
 また、貫通孔14の内周面においてd軸上となる位置には、径方向内側に突出して回転軸2の外周面に当接する突出部14aが形成されている。突出部14aの形状は、矩形状や台形状、三角山形状等のいずれであってもよく、いずれにしろ貫通孔14の内周面において周方向に凹凸が形成され、局部的に回転軸2の外周面に当接する構成であればよい。なお、貫通孔14の内周面に突出部14aを設けることに代えて、回転軸2の外周面に突出部を設ける構成であってもよい。
 回転子コア11において固定子30の内周面と対向する外周面の付近には、軸方向に貫通する複数(本実施形態では16個)の磁石収容孔12が周方向に所定距離を隔てて設けられている。各磁石収容孔12は、2個で一対をなし、その一対の磁石収容孔12により、径方向外側に向かうにつれて磁石収容孔12同士の対向間距離が大きくなる略V字状に形成されている。また、各磁石収容孔12と固定子30との離間距離で言えば、各磁石収容孔12は、d軸に向かうにつれて固定子30との離間距離が大きくなるように設けられている。一対の磁石収容孔12は、d軸(磁極中心軸)を対称の軸とする対称形となっている。本実施形態では、回転子コア11に、合計8対の磁石収容孔12が周方向に等間隔に設けられている。
 本実施形態では、一対の磁石収容孔12に収容された一対の磁石13により1つの磁極が形成されている。この場合、8対の磁石13によって、周方向に極性が交互に異なる複数の磁極(本実施形態では8極)が形成されている。1つの磁極を形成する一対の磁石13は、d軸に対して線対称となる状態で配置されている。
 磁石収容孔12の形状をより詳しく説明する。図4には、磁石収容孔12に磁石13を収容していない状態での回転子コア11が示されている。図4では、一対の磁石収容孔12の間がd軸、一対の磁石収容孔12の両外側がq軸となっている。
 図4に示すように、磁石収容孔12は、その長手方向におけるq軸寄りの部分であるq軸側部分12aが回転子コア11の外周面付近に設けられる一方、d軸寄りの部分であるd軸側部分12bが、q軸側部分12aよりも回転子コア11の径方向内側に設けられており、q軸側部分12aとd軸側部分12bとの間が中間部12cとなっている。q軸側部分12aは、回転子コア11の外周面に沿って延びるように設けられ、d軸側部分12bは、d軸に沿って延びるように設けられている。また、中間部12cは、q軸側部分12aとd軸側部分12bとを直線的に繋ぐように設けられている。
 一対の磁石収容孔12では、d軸側部分12b同士がd軸を挟んで近接しており、その中間部分に、径方向に延びる中央ブリッジ15が形成されている。中央ブリッジ15が幅狭に形成されることにより、d軸上において磁束飽和が生じ、磁気回路の形成が阻害されるようになっている。
 また、磁石収容孔12のq軸側部分12aでは、磁石収容孔12の径方向外側壁面が回転子コア11の外周面に接近しており、q軸側部分12aと回転子コア11の外周面との間に外側ブリッジ16が形成されている。
 図3に示すように、各磁石収容孔12には、磁石13として、中間部12cに主磁石21が配置されるとともに、q軸側部分12a及びd軸側部分12bにそれぞれ補助磁石22,23が配置されている。つまり、各磁石収容孔12には、主磁石21の長手方向の両端側に補助磁石22,23がそれぞれ配置されている。主磁石21は、軸方向に直交する横断面形状が四角形状をなしており、磁石内部の磁化方向(すなわち、内部磁力線の向き)が、d軸に対して傾斜し、かつ磁石収容孔12よりも固定子30側及び反固定子側のうち固定子30側で交差する向きで定められている。主磁石21が第1磁石部に相当する。また、補助磁石22,23は、主磁石21においてその主磁石21の磁化方向に交差する方向の両端部、すなわちd軸側端部及びq軸側端部に当接又は近接した状態でそれぞれ設けられ、主磁石21の磁化方向に交差する向きで磁化方向が定められている。補助磁石22,23が第2磁石部に相当する。主磁石21及び補助磁石22,23は、例えば焼結ネオジム磁石等の希土類磁石である。
 これら各磁石21~23は、それぞれ磁石収容孔12の壁面に接触した状態で配置されることが好ましいが、回転子コア11との線膨張率の差を考慮して、微小な隙間が敢えて付与されていてもよい。なお、各磁石21~23と磁石収容孔12の壁面との間に樹脂材や接着剤等を充填させて、各磁石21~23を固定する構成であってもよい。樹脂材や接着剤等により各磁石21~23を固定することにより、微振動による騒音などを抑制できる。また、回転子10に対する固定子30の通電位相のばらつきを抑制できる。
 主磁石21は、各磁石21~23のうちで最も大きく、磁極ごとの極性に応じて設けられる主たる磁石であり、横断面の形状が長方形状をなしている。一対の主磁石21により、回転子コア11の各磁極が形成されている。主磁石21は、磁化容易軸が主磁石21の長辺に直交する向き(換言すれば、短辺に平行な向き)となっており、磁石収容孔12に収容された状態では磁化方向がd軸に対して傾いている。図1には、N極の磁極が示されており、一対の主磁石21の磁化方向は、d軸に近づき、かつ回転子コア11の外周側に向かう方向となっている。
 主磁石21は、横断面で長辺部を形成する側面に対する配向率が高く、その側面に垂直となる向きで配向方向が設定されている。ただし、主磁石21は、長辺部に垂直する方向の配向成分が少しでもあれば、垂直方向に磁束を流出させ、その機能を果たすものとなっている。
 補助磁石22,23は、磁石収容孔12において主磁石21が設けられていないスペースに、主磁石21の長手方向の両端面にそれぞれ当接又は近接した状態で設けられている。補助磁石22,23では、その磁化方向が主磁石21と異なっており、主磁石21の長手方向端面に対して交差する向きで、磁化方向(配向方向)が定められている。図1の構成では、補助磁石22,23の磁化容易軸が主磁石21の端面に向かう向きとなっており、その向きで磁化方向が定められている。
 主磁石21のq軸側端部において、主磁石21の磁化方向と補助磁石22の磁化方向とのなす角度、すなわち主磁石21の内部磁力線の進行方向と補助磁石22の内部磁力線の進行方向とにより形成される角度は鋭角(90度未満)である。また、主磁石21のd軸側端部において、主磁石21の磁化方向と補助磁石23の磁化方向とのなす角度、すなわち主磁石21の内部磁力線の進行方向と補助磁石23の内部磁力線の進行方向とにより形成される角度は鋭角(90度未満)である。
 本実施形態では、主磁石21の長手方向の両端側に補助磁石22,23がそれぞれ設けられることにより、補助磁石22,23により支えられた状態で主磁石21の位置が定められる。そのため、磁石収容孔12を囲む周囲壁に、主磁石21を固定する位置決め突起を設けることが不要となり、回転子コア11側の位置決め突起と主磁石21との線膨張率の差異を考慮して構造設計することの省略が可能となっている。
 ここで、上述したとおり回転子コア11において磁石収容孔12のq軸側部分12aでは、磁石収容孔12の径方向外側壁面が回転子コア11の外周面に接近しており、q軸側部分12aと回転子コア11の外周面との間に外側ブリッジ16が形成されている。この場合、外側ブリッジ16が幅狭に形成されることにより、回転子コア11の外周面付近において、補助磁石22による磁束の自己短絡が抑制されるものとなっている。
 本実施形態では、磁石収容孔12に配置される磁石13として、主磁石21に加えて補助磁石22,23を用いたことにより、主磁石21の長手方向両端、すなわちd軸側端部及びq軸側端部において耐減磁能力の向上を図ることができる。つまり、補助磁石22,23によれば、磁石収容孔12内において疑似的に磁石磁路が延ばされることで、磁石パーミアンスが増え、反磁界等の対向磁界に対する耐力が増強される。以下には、その点について詳しく説明する。ここでは、比較例として一般的な磁石V字配置の回転子を図5及び図6に示しつつ、本実施形態の回転子10の特徴点を説明する。図5及び図6に示す回転子では、回転子コア201に、d軸を挟んで両側で対称形をなす長方形状の磁石収容孔202がV字状に形成されており、その磁石収容孔202内に、磁化方向が、d軸に対して傾斜する向きで一対の永久磁石203が配置されている。
 図5(a)、(b)には、固定子巻線の導体204の通電に伴い、回転子コア201の外周面に、反磁界として固定子による回転磁界が生じる状態が示されている。より具体的には、図5(a)には、q軸上の導体204が通電される状態が示され、図5(b)には、d軸上の導体204が通電される状態が示されており、これら各状態では、図示のとおり固定子の回転磁界が反磁界として作用する。この場合、その反磁界により、永久磁石203のq軸側端部の角部P1において減磁が生じることが懸念される。
 こうした不都合に対して、主磁石21のq軸側端部の側に設けられた補助磁石22は以下の役割を果たす。図3に示すように、補助磁石22は、磁化方向が、主磁石21よりもq軸に直交する向きになっており、補助磁石22の磁束により主磁石21のq軸側端部の磁束が補強される。この場合、補助磁石22から、固定子30側からの反磁束に対抗する磁束が送り込まれ、q軸付近の減磁耐力の向上が図られている。
 また、補助磁石22は、主磁石21のq軸側端面に対向して設けられており、主磁石21のq軸側端面において固定子30に近い側となる角部P1を通る磁石磁路長が、他の部位の磁石磁路長よりも長くなっている。これにより、主磁石21のq軸側端部において減磁の可能性が最も高い角部P1での減磁が好適に抑制される。ただし、補助磁石22の磁路長がいずれの部位でも同一長さとなる構成であってもよい。
 また、図6に示すように、各永久磁石203では、磁化方向が、d軸に対して傾斜し、かつ磁石収容孔202よりも固定子側で交差する向きとなっている。そのため、N磁極においては、図の左右の永久磁石203の磁束が互いにd軸側を向き、その各磁束が相互に干渉することに起因して相互に減磁が生じることが懸念される。より詳しくは、左右の永久磁石203の磁束には、d軸に直交する磁束ベクトルとd軸に平行な磁束ベクトルとが含まれており、そのうちd軸に直交する磁束ベクトルによる相互干渉に起因して、永久磁石203のd軸側端部の角部P2において減磁が生じることが懸念される。
 こうした不都合に対して、主磁石21のd軸側端部の側に設けられた補助磁石23は以下の役割を果たす。図3に示すように、補助磁石23は、磁化方向が、主磁石21よりもd軸に平行となる向きになっており、補助磁石23の磁束により主磁石21のd軸側端部の磁束が補強される。この場合、補助磁石23から、左右一対の主磁石21の対向磁束分を補う磁束が送り込まれ、d軸付近の減磁耐力の向上が図られている。
 なお、回転電機1のトルク設計に際しては、磁石の実効磁束密度に磁石の磁束流出面の表面積を掛けることで、磁石磁力が計算される。また、d軸に直交する向きの磁力は、磁石磁力とd軸に対する傾斜角度に応じて決まるため、磁石収容孔12のV字角度が小さいほど、すなわちd軸に対する主磁石21の長手方向の傾斜角度が小さいほど、補助磁石23の効力が最大限に発揮される。
 また、補助磁石23は、主磁石21のd軸側端面に対向して設けられており、主磁石21のd軸側端面において固定子30に近い側となる角部P2を通る磁石磁路長が、他の部位の磁石磁路長よりも長くなっている。これにより、主磁石21のd軸側端部において減磁の可能性が高い角部P2での減磁が好適に抑制される。ただし、補助磁石23の磁路長がいずれの部位でも同一長さとなる構成であってもよい。
 ちなみに、従来技術では、磁石収容孔12において主磁石21が設けられていないスペースが空隙とされるか、又は当該スペースに回転子コア11よりも磁性の低い固定接着剤等、又は非磁性体が挿入配置されており、いわばデッドスペースとなっている。この点、本実施形態では、これまでデッドスペースとなっていた部分に補助磁石22,23を配置することで、体格の増加を招くことなく、上記のとおりの磁束補強が可能となっている。
 図示は省略するが、S極を形成する磁石13においては、主磁石21及び補助磁石22,23の磁化方向が、N極の磁石13における主磁石21及び補助磁石22,23の磁化方向と逆向きになっている。
 磁石収容孔12において磁石13が配置されていない部分は、回転子10内での磁石磁束の自己短絡を抑制するフラックスバリアとして機能する。図3の構成では、磁石収容孔12のq軸側部分12aにおいて、補助磁石22の外周側に外側フラックスバリア24が設けられている。外側フラックスバリア24によれば、回転子コア11の外周面側(すなわち固定子30との対向面側)において補助磁石22の端部付近で生じる磁束の自己短絡を抑制することができる。また、補助磁石22における固定子30からの反磁界による減磁を抑えることができる。外側フラックスバリア24は、空隙とされるか、又は非磁性体が収容されているとよい。
 また、磁石収容孔12のd軸側部分12bにおいて、補助磁石23のd軸側に内側フラックスバリア25が設けられている。つまり、磁石収容孔12のd軸側部分12bがd軸側拡張部分に相当し、そのd軸側部分12bには、補助磁石23が設けられるとともに、その補助磁石23よりもd軸側に内側フラックスバリア25が設けられている。内側フラックスバリア25によれば、d軸を挟んで両側に配置された補助磁石22,23においてd軸に直交する向きの磁束を抑えることができる。また、d軸でのインダクタンスが低くなり、リラクタンストルクを好適に生じさせることができる。内側フラックスバリア25は、空隙とされるか、又は非磁性体が収容されているとよい。
 各補助磁石22,23が減磁することは、基本的に構わないと考えられる。これは、磁石13では、主磁石21における回転子コア11との接触面が主な磁束流出を担っているからであり、補助磁石22,23はそのパーミアンスを向上させる役割を担っているからである。このため、本実施形態では、補助磁石22,23として、主磁石21より残留磁束密度Brが高く、より固有保磁力iHcの小さい組成のネオジム磁石を選定している。当然、ネオジム磁石と、フェライト磁石など、異なる材料の組み合わせを選定しても構わない。
 ネオジム磁石よりも保磁力が小さい磁石としては、保磁力が大きい順に、サマリウム磁石、フェライト磁石、FCC磁石、アルニコ磁石、などが挙げられる。すなわち、サマリウム磁石を主磁石21として選定した場合に、フェライト磁石等を補助磁石22,23とすることでも、本実施形態における所望の効果を十分に得られるものとなっている。
 ちなみに、従来技術では、大きな反磁界のかかる部位に対して、磁石厚みを厚くしたり、保磁力を高めるべく重希土類の含有量を多くしたり、微細化したりすることを施した磁石を採用することで、減磁を避けてきた。これに対して、本実施形態の回転電機1では、反磁界を略半減することができたため、重希土類を完全にフリーとして構成することができる。このため、例えば現状の車両用製品において貴重な重希土類をフリーとすることにより、磁束密度の高いネオジムの成分割合を増やすことができ、従来と同じ磁石量において、3割以上のトルク上昇を果たしつつ、コスト維持、またはコストダウンを果たすことができる。
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。
 回転子10の磁石13として、極性に応じた磁束を生じさせる主磁石21に加えて、磁石13におけるq軸側端部(すなわち磁極境界側の端部)の側に、磁石内部の磁化方向が、主磁石21における磁化方向に交差する向きとなっている補助磁石22を設ける構成とした。この場合、補助磁石22により主磁石21のq軸側端部の磁束を補強することが可能になる。そのため、固定子30側からの反磁界に対する耐減磁能力が高められ、磁極磁石である主磁石21の減磁を適正に抑制できる。
 また、主磁石21(一対の磁石)のd軸側端部の側に、磁化方向が、主磁石21の磁化方向に交差する向きとなっている補助磁石23を設ける構成としたため、主磁石21のd軸側端部の磁束を補強することが可能になる。つまり、d軸付近において磁束の相互干渉に対する耐減磁能力を高めることにより、主磁石21の減磁を適正に抑制できる。
 主磁石21のq軸側端部では、q軸側端面において固定子30に近い側となる角部P1にて減磁の可能性が高くなると考えられる。この点、補助磁石22は、主磁石21のq軸側端面に対向して設けられており、主磁石21のq軸側端面において角部P1を通る磁石磁路長が、他の部位の磁石磁路長よりも長くなっている。つまり、角部P1を磁束補強点とし、その磁束補強点に対して補助磁石22による磁束強化を行わせるようにした。これにより、主磁石21のq軸側端部における減磁を好適に抑制できる。
 また、主磁石21のd軸側端部では、d軸側端面において固定子30に近い側となる角部P2にて減磁の可能性が高くなると考えられる。この点、補助磁石23は、主磁石21のd軸側端面に対向して設けられており、主磁石21のd軸側端面において角部P2を通る磁石磁路長が、他の部位の磁石磁路長よりも長くなっている。つまり、角部P2を磁束補強点とし、その磁束補強点に対して補助磁石23による磁束強化を行わせるようにした。これにより、主磁石21のd軸側端部における減磁を好適に抑制できる。
 磁石収容孔12のd軸側部分12b(d軸側拡張部分)に、補助磁石23と内側フラックスバリア25とを設ける構成としたため、主磁石21のd軸側端部における補助磁石23の磁石量を必要最小限に削減しつつ、所望の効果を得ることができる。これにより、コスト低減を図ることができる。
 補助磁石22,23が、主磁石21の固有保磁力iHcよりも小さい固有保磁力iHcを有する構成とした。これにより、補助磁石22,23として安価な磁石を用いつつも、所望とする主磁石21の磁束補強を実現できる。
 なお、主磁石21が、補助磁石22,23の固有保磁力iHcよりも小さい固有保磁力iHcを有する構成としてもよい。この場合、主磁石21として安価な磁石を用い、磁石コストを低減することができる。磁石磁束の大半は、主磁石21の表面積により決まるため、本構成がコスト面で好適となる。
 補助磁石22,23の固有保磁力が主磁石21よりも大きい構成では、減磁に対する耐力が高められる。したがって、回転子10が固定子30側からの強い反磁界に曝される場合において好適な構成を実現できる。
 また、主磁石21の両端の補助磁石22,23について固有保磁力が互いに異なっている構成としてもよい。この場合、仮に主磁石21のd軸側端部及びq軸側端部で、反磁界の影響度合いが互いに相違していても、その反磁界の影響度合いに応じて補助磁石22,23を適宜設定することができる。
 回転子コア11の貫通孔14の内周面においてd軸上となる位置に、径方向内側に突出して回転軸40の外周面に当接する突出部14aを形成した。これにより、回転子コア11を回転軸40に組み付けた状態において、回転子コア11における貫通孔14の内周面から径方向外側に伝わる応力を磁石13にて受けることができる。これにより、磁石13の位置ずれを抑制でき、磁石13の磁気特性が意図せず変化する等の不都合を抑制できる。
 以下に、第1実施形態における回転子10の一部を変更した変形例を説明する。ここでは、図1に示す構成との相違点を中心に、各変形例を説明する。なお、以下において回転子10を説明するための各図面では、回転子10以外の構成の図示を省略するが、いずれも上記同様、回転子10が固定子30に対して径方向内側に対向配置されている。
 (変形例1)
 図7に示す変形例1の回転子10では、主磁石21のq軸側端部及びd軸側端部のうち、q軸側端部のみに補助磁石22を設ける構成としている。例えば、左右一対の主磁石21において互いに減磁し合う磁力が比較的小さい場合において、d軸側の補助磁石23を無くすことが可能である。
 (変形例2)
 図8に示す変形例2の回転子10では、磁極中心であるd軸を跨ぎ、かつd軸に直交する向きに磁石収容孔12を設け、その磁石収容孔12内に、断面矩形状の主磁石21を収容する構成としている。また、磁石収容孔12は、q軸側の両端が、コア中心部に向けて角度変更して延長されており、その両端部分に補助磁石22が収容されている。この場合、図7と同様に、主磁石21のq軸側端部にのみ補助磁石22が設けられている。
 (変形例3)
 図9に示す変形例3の回転子10では、主磁石21のq軸側端部及びd軸側端部のうち、d軸側端部のみに補助磁石23を設ける構成としている。例えば、固定子30側からの反磁束が比較的小さい場合において、q軸側の補助磁石22を無くすことが可能である。
 (変形例4)
 図10に示す変形例4の回転子10では、磁石収容孔12が、磁極中心であるd軸を跨いで周方向に連続するように設けられている。そして、左右一対の主磁石21の間に、補助磁石41が設けられている。補助磁石41は、主磁石21のd軸側端部に当接又は近接した状態で設けられ、磁化方向がd軸に平行となる向きになっている。この場合、補助磁石41の磁束により主磁石21のd軸側端部の磁束が補強される。つまり、図1等で説明した補助磁石23と同様に、補助磁石41から、左右一対の主磁石21の対向磁束分を補う磁束が送り込まれ、d軸付近の減磁耐力の向上が図られている。
 (変形例5)
 図11に示す変形例5の回転子10では、主磁石21は、その長手方向、すなわちq軸側からd軸側に向かう方向において分割され、かつ互いに磁化方向が異なる複数の分割磁石27a,27bを有している。これら各分割磁石27a,27bは、いずれも横断面が長方形状をなす永久磁石である。そして、複数の分割磁石27a,27bのうちq軸側となる分割磁石27aは、d軸側となる分割磁石27bよりも、磁化方向が、q軸に対して平行な方向に近い向きになっている。
 上記構成によれば、主磁石21を構成する複数の分割磁石27a,27bは、互いに磁化方向が異なっており、q軸側となる分割磁石27aは、磁化方向がq軸に対して平行な方向に近い向きになっている。これにより、主磁石21の自身にあっても、d軸側端部付近において固定子30側からの反磁界に対する耐減磁能力を高めることが可能となる。
 また、複数の分割磁石27a,27bは、その分割磁石27a,27bの端部同士が対向する部位で固定子30側に凸となるように配置されている。つまり、分割磁石27a,27bは、1本の直線状でなく、折れ曲がった2本の直線状で、かつ固定子30側に凸となるように並べて配置されている。これにより、主磁石21(すなわち分割磁石27a,27b)を回転子コア11の外周面に近づけることができ、固定子30と主磁石21との距離を縮めることでトルクを増大させることができる。この場合、固定子30と主磁石21との距離を縮めることで、その背反として反磁界が増大するが、その反磁界増大の影響を補助磁石22,23により解決することができる。
 また、回転子コア11において、磁石13(すなわち磁石収容孔12)よりも固定子30側であって、かつ固定子30と磁石13との両磁束の総和を受ける部分の割合を小さくすることができる。そのため、固定子30と磁石13との両磁束による磁束飽和が生じ得る飽和領域を減少させ、磁石13の能力をより効果的に引き出すことが可能となる。
 (変形例6)
 図12に示す変形例6の回転子10では、磁石13として主磁石21とq軸側端部の側の補助磁石22とが設けられている。これら主磁石21及び補助磁石22は、横断面が矩形状をなし、かつ対向する一対の磁束作用面21a,21b,22a,22bに対して磁化方向が直交する向きとなっている。そして、主磁石21及び補助磁石22は、d軸又はq軸に対する磁化方向の角度を互いに異ならせた状態で回転子コア11の磁石収容孔12に配置されている。
 主磁石21及び補助磁石22は互いに離間した位置に配置されており、詳しくは、補助磁石22が、主磁石21のq軸側の磁石端面に対して鉄心を挟んで対向する位置に配置されている。主磁石21の磁化方向は、d軸に対して平行か又は傾斜する向きとなっており、補助磁石22の磁化方向は、主磁石21よりもd軸に直交する向きとなっている。この場合、補助磁石22の磁化方向の延長線上に、主磁石21の角部P1(すなわち、主磁石21のq軸側端部において固定子30に最も近い磁束補強点)が位置しており、補助磁石22からの磁束により主磁石21の角部P1での磁束補強が行われる。
 横断面が矩形状をなし、かつ対向する一対の磁束作用面に対して磁化方向が直交する向きとなっている磁石は、最も汎用性があり、製造面やコスト面に優れると考えられる。そして、この磁石を主磁石21及び補助磁石22として用い、回転子コア11に、d軸又はq軸に対する磁化方向の角度を互いに異ならせて配置する構成とした。これにより、構成の簡易化を図りつつ、主磁石21におけるq軸側端部の磁束補強を好適に実現できる。
 なお、上記構成によれば、主磁石21及び補助磁石22として寸法及び性能が全く同じ磁石、すなわち同じ品番の磁石を用いても、所望とする耐減磁性能を実現できる。ただし、主磁石21及び補助磁石22は、横幅寸法(磁化方向に直交する方向の幅寸法)が相違していてもよい。また、主磁石21及び補助磁石22は、縦幅寸法(磁化方向と同じ方向の幅寸法)が相違していてもよい。
 (変形例7)
 図13(a)に示す変形例7の回転子10では、回転子コア11において、その外周面(すなわち固定子30との対向面)に軸方向に延びる溝42が形成されている。溝42は、回転子コア11の外周面において補助磁石22の径方向外側となる位置に設けられている。補助磁石22と溝42との間が外側ブリッジ16となっている。
 また、図13(b)に示す回転子10では、回転子コア11においてその外周面に軸方向に延びる溝43が形成されている。溝43は、回転子コア11の外周面においてd軸上となる位置に設けられている。これ以外に、溝43を、回転子コア11の外周面においてq軸上となる位置に設けることも可能である。
 回転子コア11において固定子30との対向面側の領域は、固定子30から受ける回転磁束と磁石の磁束とにより磁気飽和する可能性が高くなると考えられる。この点、回転子コア11における固定子30との対向面に軸方向に延びる溝42,43を形成することで、回転子コア11における固定子近傍領域での磁束の向き及び磁束量を調整することができ、磁石13の能力をより効果的に引き出すことができる。
 (第2実施形態)
 次に、第2実施形態を、第1実施形態との相違点を中心に説明する。第2実施形態では、磁石の磁化方向が、磁石の磁束作用面のうち少なくともいずれかに対して非垂直の角度で交差する向きとなるものとしており、特に、磁石において、当該磁石における固定子30側の磁束作用面とその反対側の磁束作用面とで異なる向きとなるように、磁化方向が変化するものとなっている。図14に、本実施形態における回転子10の構成を示す。
 図14に示すように、回転子コア11には、円弧状(弓なりの形状)をなす一対の磁石収容孔12が形成されている。図14の回転子コア11においても、図3等の構成と同様に、一対の磁石収容孔12が、外周側に向かうにつれて対向間距離が大きくなるように略V字状に形成されており、一対の磁石収容孔12は、d軸(磁極中心軸)を対称の軸とする線対称となっている。また、各磁石収容孔12と固定子30との離間距離で言えば、各磁石収容孔12は、d軸に向かうにつれて固定子30との離間距離が大きくなるように設けられている。
 磁石収容孔12は、互いに等距離で隔てられた円弧状の曲面52a,52bと、その曲面52a,52bの両端位置を互いに連結する平坦状の連結面52c,52dとにより囲まれて形成されている。連結面52c,52dのうちq軸側の連結面52cは、q軸に平行になるように設けられている。また、d軸側の連結面52dは、d軸に垂直になるように設けられている。
 そして、磁石収容孔12内に、その孔形状と同じ形状の磁石51が挿入配置されている。この場合、一対の磁石収容孔12に収容された一対の磁石51により1つの磁極が形成されている。図14には、磁石51の磁化方向(すなわち、内部磁力線の向き)が矢印で示されている。磁石51は、q軸側からd軸側に向かうに従って、磁化方向が、q軸に対して垂直な方向に近い向きからd軸に対して平行な方向に近い向きに、反固定子側に凸の非直線状に切り替わるように設けられている。つまり、磁石51における内部磁力線は、磁石51を短手方向に横切る方向に定められており、かつその向きが回転子コア11の中心軸側に凸となる円弧状をなしている。
 このように磁石51の磁化方向が定められていることにより、磁石51において、固定子30側の回転磁束による反磁界に対する耐減磁能力が高められることになり、磁石51の減磁を適正に抑制できる。つまり、磁化方向が、q軸側ではq軸に対して垂直な方向に近い向きとなり、かつd軸側ではd軸に対して平行な方向に近い向きとなるように、反固定子側に凸の非直線状に切り替わることにより、磁石磁路長を長くして磁石磁束を強化するとともに、固定子30側からの反磁界に対抗する磁束を好適に生じさせることができる。
 また、磁石51のd軸側においては、磁化方向が、d軸に対して平行な方向に近い向きになっているため、d軸付近における磁束の相互干渉に起因する減磁を抑制することができる。
 また、回転子コア11において、磁石51は、q軸側端部が径方向においてd軸側端部よりも固定子30に近い部位に位置し、かつq軸側端部とd軸側端部との間において固定子30側に凸となるように設けられている。つまり、d軸を挟んで一対となる磁石51は、これらの両方の磁石51により略V字状をなし、かつそれぞれが固定子30側(図の上側)を凸とする円弧状をなしている。磁石収容孔12の形状も同様である。
 さらに換言すれば、磁石収容孔12は、磁束流出面のd軸側の最も固定子30側を象る線(すなわち曲面52a)が、磁石収容孔12の両端よりなる線分(すなわち曲面52aの両端を結ぶ直線)より、固定子30側に凸状となるように迫り出す形状となっている。
 上記構成によれば、磁石51を回転子コア11の外周面に近づけることができ、固定子30と磁石51との距離を縮めることでトルクを増大させることができる。この場合、固定子30と磁石51との距離を縮めることで、その背反として反磁界が増大するが、その反磁界増大の影響を、磁石51において上記のとおり非直線状とした磁化方向により解決することができる。
 また、回転子コア11において、磁石51(すなわち磁石収容孔12)よりも固定子30側であって、かつ固定子30と磁石51との両磁束の総和を受ける部分の割合を小さくすることができる。そのため、固定子30と磁石51との両磁束による磁束飽和が生じ得る飽和領域を小さくし、磁石51の能力をより効果的に引き出すことが可能となる。
 また、磁石51が径方向外側に向けて凸となっているため、回転子コア11において磁石収容孔12よりも径方向外側となる部分が小さくなる。したがって、遠心力に対する応力集中係数が減少し、その機械的強度を増加させることができる。
 本実施形態の回転子10を、第1実施形態における図3の構成、すなわち主磁石21の両側端部に補助磁石22,23を設けた構成と対比すれば、本実施形態の磁石51は、補助磁石22,23の役割を1つの磁石51で構成したものであると言える。
 なお、図14には、N極を形成する磁石51を示すが、S極を形成する場合には、磁石51の磁化方向が、図14に示す磁化方向と逆向きになっている。
 なお、図14に示す磁石51を、複数の磁石に分割して構成してもよい。つまり、磁石51を、長手方向に複数に分割し、各磁石の端面同士を当接させて配置してもよい。この場合、磁石収容孔12内に、分割された複数の磁石を並べて配置するとよい。これにより、回転電機1の動作時において、磁石51に鎖交する磁束変化による渦電流損失等を防ぐことができる。
 図14の構成において、図13(a)、(b)のように、回転子コア11の外周面(固定子30との対向面)に軸方向に延びる溝42,43を形成してもよい。これにより、回転子コア11における固定子近傍領域での磁束の向き及び磁束量を調整することができ、磁石の能力をより効果的に引き出すことができる。
 ここで、本実施形態で用いる磁石51の製造方法について説明する。図15は、磁場配向により磁石51の磁化を行う手法を説明するための説明図である。
 図15に示すように、配向装置60は、磁場コイル61と、磁場コイル61内に配置される配向鉄心62及び金型63とを備えている。磁場コイル61は、通電に伴いコイル内部を通過する磁場を生成する。配向鉄心62は、磁場コイル61にて生成される磁場を所定方向に湾曲させる役割を有しており、配向鉄心62により湾曲された磁場が金型63を通過する。磁場コイル61によれば直線磁場が形成され、配向鉄心62によれば湾曲磁場が生成される。金型63は、非磁性体により形成されており、磁石51の形状に合わせて形成された金型室63aを有している。
 磁石51の製造に際しては、金型63の金型室63a内に、磁石原料を粉砕した磁石粉末が充填され、その金型室63a内において磁石粉末が所定形状に圧縮成形される。そして、磁場コイル61内において、配向鉄心62により図示のとおり湾曲した磁場が形成され、金型室63a内の磁石粉末に対して磁場配向が行われる。このとき、磁石粉末はそれぞれの磁化容易方向を揃えるようにして整列され、圧縮により固定される。その後、磁石粉末の成形体が焼結される。この一連の工程により、磁石51が製造される。
 上記により、磁石51の磁化方向が非直線状(すなわち円弧状)に切り替わるものとなる。そして、この磁石51を磁石収容孔12に収容することで、図14に示すとおり磁石51の磁化方向を、q軸側からd軸側に向かうに従って、q軸に対して垂直な方向に近い向きからd軸に対して平行な方向に近い向きに、反固定子側に凸の非直線状に切り替わるようにすることができる。
 以下に、第2実施形態における回転子10の一部を変更した変形例を説明する。ここでは、図15に示す構成との相違点を中心に、各変形例を説明する。
 (変形例1)
 図16に示す変形例1の回転子10では、磁石51におけるd軸側端部の端面及びq軸側端部の端面が、磁石51の磁化方向に合わせた向きに形成されている。また、磁石収容孔12内には、磁石51において磁化方向に合わせた向きに形成された各端面の外側に、フラックスバリア53,54が設けられている。フラックスバリア53,54は、磁石51の長手方向両端の一部を欠落させることで形成されている。つまり、磁石51において、磁束作用面に交差する磁石端面が、磁化方向に平行となる向きで形成されており、磁石収容孔12内には、d軸側及びq軸側の磁石端面の外側に、フラックスバリア53,54が設けられている。
 詳しくは、図16の回転子10では、図14に示す磁石51のq軸側端部における固定子側角部分を部分的に欠落させることで、フラックスバリア53が形成されている。また、図14に示す磁石51のd軸側端部におけるd軸側角部分を部分的に欠落させることで、フラックスバリア54が形成されている。なお、磁石端面は、曲面状、平面状のいずれであってもよい。
 上記のとおり磁石51の磁化方向がq軸側とd軸側とで非直線状に切り替わるようになっている構成では、磁化方向が直線状でありかつ磁石長手方向に直交する向きになっている構成に比べて磁石磁路長(すなわち、内部磁力線の長さ)を長くすることが可能になっているが、磁石51の端部においては、磁石磁路長が短い部分が局部的に存在することが考えられる。この場合、磁石磁路長はパーミアンスに比例するため、磁石端部において短縮されることは望ましくない。
 この点、磁石51のd軸側端部及びq軸側端部の各端面(すなわち、磁束作用面に交差する磁石端面)を、磁石51の磁化方向に合わせた向きに形成したことにより、磁石51において磁石磁路長が短い部分が局部的に存在することを抑制できる。また、磁石51のd軸側端部、q軸側端部にフラックスバリア53,54を設けることで、磁石51の両端部における減磁を抑制することができる。
 なお、磁石51において、d軸側端部及びq軸側端部のうち一方の端面が、磁化方向に合わせた向きに形成されている構成であってもよい。
 (変形例2)
 図17に示す変形例2の回転子10では、d軸側のフラックスバリア54が、d軸に沿って、磁石51の径方向内側の端部よりも軸中心側に延びるように形成されている。d軸を挟んで両方のフラックスバリア54の間はd軸コア部55となっている。つまり、磁石51は、回転子コア11においてd軸コア部55を挟んで一方側及び他方側となる一対の磁石51として配置されており、回転子コア11には、d軸コア部55を挟み、かつ一対の磁石51の反固定子側の端部から反固定子側に延びるようにフラックスバリア54が設けられている。フラックスバリア54は、磁石収容孔12の一部に、合成樹脂やセラミック等の非磁性材料が収容されることで構成されている。フラックスバリア54が非磁性体部に相当する。
 また、フラックスバリア54は、磁石51において最も径方向内側となる点P11と、回転子コア11の回転中心P10とを結ぶ仮想線L1よりもq軸側に張り出している。なお、q軸の磁束量を考慮して、磁石51の周方向に位置するq軸コア部56の幅に応じてフラックスバリア54の周方向の大きさを定めるとよく、磁石収容孔12のq軸側端部P12と回転子コア11の回転中心P10とを結ぶ仮想線L2と同じ位置まで、又はその仮想線L2よりも所定量だけq軸側となる位置まで、フラックスバリア54を張り出させることも可能である。
 上記構成によれば、フラックスバリア54によりd軸コア部55の磁気抵抗を上げることができる。これにより、一対の磁石51間での短絡を抑制し、磁力をより一層有効に活用できる。
 また、d軸コア部55は、d軸上においてd軸に沿って細長く延びる鉄心部分であり、このd軸コア部55により、遠心力により磁石51が脱落することのないように強度補強されている。ただし、d軸コア部55は、磁気回路的には邪魔なものであり、d軸コア部55の軸方向長さを大きくすることにより、d軸コア部55の磁気抵抗を増大させることが可能となる。これにより、一対の磁石51においてd軸側へ向かう磁束ベクトルを小さくすることが可能となり、減磁に対して好適な形状となるばかりか、トルク向上が可能となっている。
 また、磁石収容孔12により回転子コア11がq軸側とd軸側とに分断された状態で、反固定子側に延びるフラックスバリア54(非磁性体部)が設けられているため、一対の磁石51にそれぞれ生じる磁束の相互的な作用を減らしつつ、それぞれの磁束を好適に設計することができる。
 また、フラックスバリア54を、上記仮想線L1よりもq軸側に張り出させる構成としたため、回転子10のイナーシャを極力下げることができる。
 (変形例3)
 図18に示す変形例3の回転子10では、上記構成との相違点として、磁石収容孔12とその内部に収容される磁石51との横断面(軸方向に直交する断面)が、それぞれ円弧状でなく長方形状となっている。また、d軸を挟んで左右一対の磁石収容孔12及び磁石51がV字状に配置されている。ただし、磁石51では、上記同様、磁化方向がq軸側とd軸側とで非直線状に切り替わるようになっている。
 (変形例4)
 図19に示す変形例4の回転子10では、上記構成との相違点として、磁石収容孔12とその内部に収容される磁石51との横断面(軸方向に直交する断面)が、それぞれ円弧状でなく長方形状となっている。また、d軸を挟んで左右一対の磁石収容孔12及び磁石51が、d軸に直交する方向の同一直線上に一列に並ぶように配置されている。ただし、磁石51では、上記同様、磁化方向がq軸側とd軸側とで非直線状に切り替わるようになっている。
 なお、図19の構成において、左右一対の磁石収容孔12は同一直線上に並んでいるが、各磁石収容孔12と固定子30との離間距離で言えば、各磁石収容孔12は、d軸に向かうにつれて固定子30との離間距離が大きくなるように設けられている。
 (第3実施形態)
 次に、第3実施形態を、第1実施形態等との相違点を中心に説明する。第3実施形態では、第2実施形態と同様に、磁石において、当該磁石における固定子30側の磁束作用面とその反対側の磁束作用面とで異なる向きとなるように、磁化方向が変化するものとなっている。図20に、本実施形態における回転子10の構成を示す。
 図20に示すように、回転子コア11には、円弧状(弓なりの形状)をなす一対の磁石収容孔12が形成されている。磁石収容孔12の形状については既述の図14と同様であり、ここでは説明を省略する。そして、磁石収容孔12内に、その孔形状と同じ形状の磁石71が挿入配置されている。この場合、一対の磁石収容孔12に収容された一対の磁石71により1つの磁極が形成されている。図20には、磁石71の磁化方向(すなわち、磁石磁力線の向き)が矢印で示されている。磁石71は、d軸側からq軸側に向かうに従って、磁化方向が、d軸に対して垂直な方向に近い向きからq軸に対して平行な方向に近い向きに、反固定子側に凸の非直線状に切り替わるように設けられている。つまり、磁石71における内部磁力線は、その向きが回転子コア11の中心軸側に凸となる円弧状をなしている。
 このように磁石71の磁化方向が定められていることにより、磁石71において、固定子30側の回転磁束による反磁界に対する耐減磁能力が高められることになり、磁石71の減磁を適正に抑制できる。つまり、磁化方向が、d軸側ではd軸に対して垂直な方向に近い向きとなり、かつq軸側ではq軸に対して平行な方向に近い向きとなるように、反固定子側に凸の非直線状に切り替わることにより、磁石磁路長を長くして磁石磁束を強化するとともに、固定子30側からの反磁界に対抗する磁束を好適に生じさせることができる。
 また、磁石71のd軸側においては、磁化方向が互いに向き合う方向になっていないため、d軸付近における磁束の相互干渉に起因する減磁が生じないものとなっている。
 また、回転子コア11において、磁石71は、q軸側端部が径方向においてd軸側端部よりも固定子30に近い部位に位置し、かつq軸側端部とd軸側端部との間において固定子30側に凸となるように設けられている。つまり、d軸を挟んで一対となる磁石71は、これらの両方の磁石71により略V字状をなし、かつそれぞれが固定子30側(図の上側)を凸とする円弧状をなしている。磁石収容孔12の形状も同様である。
 さらに換言すれば、磁石収容孔12は、磁束流出面のd軸側の最も固定子30側を象る線(すなわち曲面52a)が、磁石収容孔12の両端よりなる線分(すなわち曲面52aの両端を結ぶ直線)より、固定子30側に凸状となるように迫り出す形状となっている。
 上記構成によれば、磁石71を回転子コア11の外周面に近づけることができ、固定子30と磁石71との距離を縮めることでトルクを増大させることができる。この場合、固定子30と磁石71との距離を縮めることで、その背反として反磁界が増大するが、その反磁界増大の影響を、磁石71において上記のとおり非直線状とした磁化方向により解決することができる。
 また、回転子コア11において、磁石71(すなわち磁石収容孔12)よりも固定子30側であって、かつ固定子30と磁石71との両磁束の総和を受ける部分の割合を小さくすることができる。そのため、固定子30と磁石71との両磁束による磁束飽和が生じ得る飽和領域を小さくし、磁石71の能力をより効果的に引き出すことが可能となる。
 また、磁石71が径方向外側に向けて凸となっているため、回転子コア11において磁石収容孔12よりも径方向外側となる部分が小さくなる。したがって、遠心力に対する応力集中係数が減少し、その機械的強度を増加させることができる。
 なお、図20には、N極を形成する磁石71を示すが、S極を形成する場合には、磁石71の磁化方向が、図20に示す磁化方向と逆向きになっている。
 図20に示す磁石71を用いる場合には、一対の磁石71の間に、フラックスバリアを設けた磁石収容孔12が設けられているとよい。これにより、d軸を跨ぐ方向での磁束の通過を抑制できる。
 なお、図20に示す磁石71を、複数の磁石に分割して構成してもよい。つまり、磁石71を、長手方向に複数に分割し、各磁石の端面同士を当接させて配置してもよい。この場合、磁石収容孔12内に、分割された複数の磁石を並べて配置するとよい。これにより、回転電機1の動作時において、磁石71に鎖交する磁束変化による渦電流損失等を防ぐことができる。
 ここで、本実施形態で用いる磁石71の製造方法について説明する。図21は、磁場配向により磁石71の磁化を行う手法を説明するための説明図である。
 図21に示すように、配向装置60は、磁場コイル61と、磁場コイル61内に配置される配向鉄心62及び金型63とを備えている。これら各々の構成は図15で説明したとおりである。
 磁石71の製造に際しては、金型63の金型室63a内に、磁石原料を粉砕した磁石粉末が充填され、その金型室63a内において磁石粉末が所定形状に圧縮成形される。そして、磁場コイル61内において、配向鉄心62により図示のとおり湾曲した磁場が形成され、金型室63a内の磁石粉末に対して磁場配向が行われる。このとき、磁石粉末はそれぞれの磁化容易方向を揃えるようにして整列され、圧縮により固定される。その後、磁石粉末の成形体が焼結される。この一連の工程により、磁石71が製造される。
 上記により、磁石71の磁化方向が非直線状(すなわち円弧状)に切り替わるものとなる。そして、この磁石71を磁石収容孔12に収容することで、図20に示すとおり磁石71の磁化方向を、d軸側からq軸側に向かうに従って、d軸に対して垂直な方向に近い向きからq軸に対して平行な方向に近い向きに、反固定子側に凸の非直線状に切り替わるようにすることができる。
 (磁石製造方法の変形例)
 円弧状の磁化方向が定められる磁石の製造方法として以下を用いることも可能である。図22(a)、(b)において、配向装置80は、磁場コイル81と、磁場コイル81内に配置される配向鉄心82及び金型83とを備えている。配向装置80の構成は、配向鉄心82の形状が異なる以外、基本的に既述の配向装置60と同じである。配向鉄心82は、磁場コイル81内において径方向の中心位置に設けられている。本例では、配向鉄心82が断面円形状をなすことから、配向磁場が配向鉄心82の中心に向けて集約されるようになっている。図中、磁力線S1は配向鉄心82に向けて直線状に延びており、これを配向中心としている。
 図22(a)では、湾曲磁場内において配向中心に対して片側となる領域で磁石配向が行われる。また、図22(b)では、湾曲磁場内において配向中心を跨ぐ領域で磁石配向が行われる。
 磁石Mgの製造に際しては、磁場コイル81内に配置される金型83に磁石粉末が充填され、磁場コイル81により生成される磁場を配向鉄心82により湾曲させた状態で、金型83内の磁石粉末に対して磁場配向が行われる。そして、金型83内の磁石粉末が焼結される。
 なお、回転子に多角形の永久磁石を装着する構成では、多角形の永久磁石群を、直線配向方向の中で異なる角度に配置し、配向を行うとよい。
 (第4実施形態)
 次に、第4実施形態を、第1実施形態等との相違点を説明する。第4実施形態では、磁石の磁化方向が、磁石の磁束作用面のうち少なくともいずれかに対して非垂直の角度で交差する向きとなるものとしており、特に、磁石において、磁化方向が、d軸に対して傾斜し、かつ磁束作用面に対して非垂直の角度で交差する向きとなっている。図23に、本実施形態における回転子10の構成を示す。
 図23に示すように、各磁石収容孔12は、2個で一対をなし、d軸に対して垂直な向きに延びるように直線状に形成されている。ただし、各磁石収容孔12と固定子30との離間距離で言えば、各磁石収容孔12は、d軸に向かうにつれて固定子30との離間距離が大きくなるように設けられていると言える。一対の磁石収容孔12は、d軸(磁極中心軸)を対称の軸とする対称形となっている。本実施形態では、回転子コア11に、合計8対の磁石収容孔12が周方向に等間隔に設けられている。
 本実施形態では、一対の磁石収容孔12に収容された一対の磁石101により1つの磁極が形成されている。この場合、8対の磁石101によって、周方向に極性が交互に異なる複数の磁極(本実施形態では8極)が形成されている。1つの磁極を形成する一対の磁石101は、d軸に対して線対称となる状態で配置されている。
 磁石101は、軸方向に直交する横断面形状が四角形状をなしており、磁化方向(すなわち、磁石磁力線の向き)が、d軸に対して傾斜し、かつ磁束を生じさせる磁束作用面に対して非垂直の角度で交差する向きで定められている。この場合特に、磁石101の磁化方向が、互いに対向しかつ各々が磁束作用面となる二辺の磁石側面(固定子30側の側面及び反固定子側の側面)に対して非垂直の角度で交差する向きとなっている。また、一対の磁石101からすると、その一対の磁石101におけるそれぞれの磁化方向が、各磁束作用面に対して傾斜し、かつ磁石収容孔12よりも固定子30側となる位置で互いに交差するように定められている。磁石101は、例えば焼結ネオジム磁石等の希土類磁石である。
 d軸を挟んで一方側及び他方側の各磁石101では、互いに逆向きの磁化方向が定められている。また、各磁石101の磁化方向は、平行かつ直線状に定められている。この場合、各磁石101では、磁化方向が、磁束作用面に対して非垂直の角度で交差する向きとなっているため、磁化方向が磁束作用面に直交する構成に比べて、磁石磁路長(すなわち、内部磁力線の長さ)が長くなる。そのため、磁石101の磁束が強化され、固定子30側の回転磁束による反磁界に対する耐減磁能力が高められるようになっている。
 なお、図23には、N極を形成する磁石101を示すが、S極を形成する場合には、磁石101の磁化方向が、図23に示す磁化方向と逆向きになっている。
 回転子コア11には、磁石101のq軸側及びd軸側に、それぞれ回転子10内での磁石磁束の自己短絡を抑制するフラックスバリア102,103が設けられている。この場合、磁石101のq軸側に設けられた外側フラックスバリア102によれば、磁石101のq軸側端部付近で生じる磁束の自己短絡を抑制できる。また、磁石101のd軸側に設けられた内側フラックスバリア103によれば、d軸を挟んで両側に配置された一対の磁石101においてd軸に直交する向きの磁束を抑えることができる。さらに、d軸でのインダクタンスが低くなり、リラクタンストルクを好適に生じさせることができる。各フラックスバリア102,103は、空隙とされるか、又は樹脂材料やセラミック材料等の非磁性材料が収容されているとよい。フラックスバリア102,103の間は、d軸に沿って延びる中央ブリッジ104となっている。
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。
 埋込磁石型回転電機の回転子10では、固定子30側からの回転磁界が反磁界として作用することに起因して、回転子コア11の固定子30との対向面側において磁石101の減磁が生じることが懸念される。この点、本実施形態では、回転子10の磁石101の磁化方向が、d軸に対して傾斜し、かつ磁束を生じさせる磁束作用面に対して非垂直の角度で交差する向きとなっているため、磁化方向が磁束作用面に直交する構成に比べて、磁石磁路長(すなわち、内部磁力線の長さ)が長くなり、磁石磁束が強化される。これにより、固定子30側の回転磁束による反磁界に対する耐減磁能力が高められ、磁石101の減磁を適正に抑制できる。
 磁石101を、回転子コア11においてd軸を挟んで一方側及び他方側の両側に配置し、d軸の両側における磁石101のそれぞれの磁化方向を、磁石101の磁束作用面に対して傾斜し、かつ磁石収容孔12よりも固定子30側となる位置で互いに交差するようにした。これにより、回転子コア11において、反磁界に対する耐減磁能力を高めつつ、d軸における磁束強化を好適に実施できる。
 磁石101の横断面形状が四角形状をなしている場合において、磁石101の磁化方向を、互いに対向しかつ各々が磁束作用面となる二辺の磁石側面に対して非垂直の角度で交差する向きとなるようにすることにより、磁石磁路長(すなわち、内部磁力線の長さ)を、磁石101の二辺の間の距離よりも長くすることができる。これにより、磁石磁束を強化し、反磁界に対する耐減磁能力を高めることができる。
 従来技術では、大きな反磁界のかかる部位に対して、磁石厚みを厚くしたり、保磁力を高めるべく重希土類の含有量を多くしたり、微細化したりすることにより対策を施し、その対策を施した磁石により減磁を抑制するようにしていた。これに対して、本実施形態の回転電機1では、磁石101の磁化方向の工夫により反磁界に起因する減磁を抑制することができるため、磁石101のサイズアップが不要であり、また重希土類を完全にフリーとして構成することが可能となる。このため、例えば現状の車両用製品において貴重な重希土類をフリーとすることにより、磁束密度の高いネオジムの成分割合を増やすことができ、磁石量を増やすことなくトルク上昇を実現でき、コスト維持、又はコストダウンを果たすことができる。
 一般に、磁石は、その配向方向を切削面と平行とすることで作られる。これは、磁石作成時の配向磁場と切削面とが平行となることで、磁石作成数が、一度の配向磁場励磁に対して、最大となるためである。これに対して、本実施形態では断面四角形の磁石101の配向方向を斜めにしている。つまり、最も減磁しやすい端部に、四角形の1辺よりも長い磁路を有する、磁束作用面の垂直方向よりも角度のついた配向を施している。これにより、磁石101の減磁しやすい部分の減磁耐力が向上する。したがって、磁石作成数は減るものの、磁石そのものの重量が小さくなり、結果的に多数の磁石を一度の配向から入手できるばかりか、ネオジム等磁石材料の投入量を減らすことにより、相乗的にコストダウンをすることができる。
 また、開示者の試算によれば、同じ磁力を出す磁石を作る場合において、磁石重量を3割程度減らすことができ、レアアースの使用量、また搭載する回転電機の重量、イナーシャを減らすことができる。そのため、回転電機において機械追従性、機械的信頼性が向上し、エネルギ消費の低減や安全性向上にも貢献することができる。
 以下に、第4実施形態における回転子10の一部を変更した変形例を説明する。ここでは、図23に示す構成との相違点を中心に、各変形例を説明する。なお、以下に示す各変形例においても、d軸を中心にして示す1極分の部分平面図を用いて、回転子10の構成を説明する。
 (変形例1)
 図24に示す変形例1では、磁石101において、q軸側端部の端面及びd軸側端部の端面が、それぞれ磁束作用面に対する磁化方向の角度に合わせた向きに形成されている。つまり、磁石101では、q軸側端部及びd軸側端部の各端面の向きが磁化方向と同じ(すなわち、平面視において磁化方向と平行な向き)になっている。そして、磁石101のq軸側端部及びd軸側端部の各端面の外側に、フラックスバリア102,103が設けられている。
 なお、図24では、磁石101におけるq軸側端部及びd軸側端部の各端面を、それぞれ磁束作用面に対する磁化方向の角度に合わせた向きに形成しているが、これに代えて、磁石101のq軸側端部及びd軸側端部のうちq軸側端部の端面のみを、磁束作用面に対する磁化方向の角度に合わせた向きに形成してもよい。d軸側端部については、図23のようにd軸に平行のままとする。要するに、磁石101の横断面形状は、矩形状(長方形状)である以外に、図24に示す平行四辺形状や、その他、台形状であってもよい。
 上記のとおり磁石101の磁化方向が、磁束作用面に対して非垂直の角度で交差する向きとなっている構成では、磁石101の磁化方向が、磁束作用面に対して垂直に交差する向きとなっている場合に比べて、磁石磁路長を長くすることが可能になっているが、磁石101の端部においては、部分的に磁石磁路長が短くなることが考えられる。この点、磁石101のq軸側端部の端面を、磁束作用面に対する磁化方向の角度に合わせた向きにすることで、磁石101において磁石磁路長が短い部分が局部的に存在することを抑制できる。
 なお、図24の構成では、磁束増加に寄与しない磁石端部が斜めに排除されており、図23の構成と比べて磁石量が削減されている。そのため、磁石作成型内の取り数増加や、材料投入量の削減が可能となる。
 (変形例2)
 図25に示す変形例2では、磁石101は、q軸側端部及びd軸側端部における磁化方向の磁石長さが、他の部位における磁化方向の磁石長さよりも長くなっている。つまり、磁石101のq軸側端部及びd軸側端部にはそれぞれ延長部101aが設けられており、その延長部101aにより局部的に磁石磁束が延長されている。延長部101aは、磁束延長部として機能する。延長部101aは、磁石101の固定子30側と反固定子側とのうち反固定子側の磁束作用面に設けられている。
 なお、図25では、磁石101のq軸側端部及びd軸側端部にそれぞれ延長部101aを設けているが、これに代えて、磁石101のq軸側端部及びd軸側端部のうちq軸側端部だけに延長部101aを設けてもよい。
 本変形例2によれば、磁石101の磁化方向を磁束作用面に対して非垂直の角度で交差させることで磁石磁路長を長くした構成において、d軸側端部における磁石磁路長を局部的にさらに延長することができる。これにより、耐減磁能力のより一層の向上を図ることができる。
 (変形例3)
 回転子コア11において磁石101を図26(a)、(b)のように配置してもよい。
 図26(a)に示す回転子10では、d軸を跨ぐようにして1極に1つの磁石収容孔12が設けられており、その磁石収容孔12内に収容される磁石101において、d軸よりも図の左側では、磁化方向が右斜め上方に向き、d軸よりも図の右側では、磁化方向が左斜め上方に向くようになっている。これにより、d軸を挟んで両側のいずれにおいても、磁石101の磁化方向が、d軸上であってかつ磁石101(磁石収容孔12)よりも固定子30側を通る向きになっている。この場合、d軸を挟んで両側の磁石101では、磁化方向を直線状に延ばした線が、d軸上であってかつ磁石101よりも固定子30側(すなわち磁石101の端部以外)に集合する。
 また、図26(a)に示す回転子10では、磁石101においてd軸上で磁石磁束の相互干渉による減磁が生じるおそれがある。そこで、図26(b)に示すように、磁石101においてd軸上となる部分を欠落させた構成としてもよい。この場合、磁石101の欠落部101bは、磁化方向に合わせた向きで形成されるとよい。本構成では、磁石量を減らせる分、コスト低減が可能になる。
 (変形例4)
 図27に示す変形例4では、磁石101は、d軸寄りの部分とq軸寄りの部分とで磁化方向が相違している。この場合特に、磁石101において、d軸寄りの部分とq軸寄りの部分とのうちd軸寄りの部分では、q軸寄りの部分よりも磁化方向がd軸に平行になっている。詳しくは、図28に示すように、d軸側の所定位置における磁化方向をX1、q軸側の所定位置における磁化方向をX2とすると、d軸側の磁化方向X1が、q軸側の磁化方向X2よりもd軸に平行になっている。また、磁石101において、磁束作用面に垂直な方向に対する磁化方向X2の傾き(θ2)が、磁束作用面に垂直な方向に対する磁化方向X1の傾き(θ1)よりも大きくなっている。
 磁石101では、q軸からd軸に向かうのに伴い、磁化方向の磁石長さ、すなわち磁化方向における始点から終点までの磁石磁路長が徐々に短くなっている。なお、各磁石101では、磁化方向として、磁束を生じさせる磁束作用面に対して非垂直の角度で交差する向きとなる磁化方向以外に、磁束を生じさせる磁束作用面に対して垂直に交差する向きとなる磁化方向が含まれていてもよい。
 ちなみに、図28では、磁石101の磁束作用面とd軸とが直交する関係となっているため、磁束作用面に垂直な方向とd軸方向とが一致する。これに対し、磁石101の磁束作用面がd軸に直交しない場合には、磁束作用面に垂直な方向とd軸方向とが一致しない。ただし、かかる場合においても、磁石101において、q軸側における磁化方向X2の磁束作用面に垂直な方向に対する傾き(θ2)が、d軸側における磁化方向X1の磁束作用面に垂直な方向に対する傾き(θ1)よりも大きくなっていればよい。
 本変形例4によれば、磁石101においてd軸寄りの部分とq軸寄りの部分とで磁化方向が相違している、すなわち磁石101のd軸側とq軸側とで磁化方向の角度が相違している。これにより、磁石101よりも固定子30側において、d軸からq軸までの間における特定箇所で磁束を集めることができ、磁石磁束の強化を図ることができる。
 また、磁石101において、d軸寄りの部分とq軸寄りの部分とのうちd軸寄りの部分では、q軸寄りの部分よりも磁化方向がd軸に平行になっていることにより、q軸寄りの部分において、d軸寄りの部分に比べて磁石磁路長が長くなる。そのため、q軸における磁石磁束を強化し、磁石のq軸側端部における反磁界に対する減磁対策を適正に図ることができる。また、d軸における磁石磁路長を最短にすることができるため、d軸を挟んで両側の磁石101においてd軸側端部の磁化方向が互いに向き合う側に傾いている場合に、その磁束の相互干渉を抑制できる。これにより、d軸での減磁抑制も可能となる。
 さらに、磁石101において、q軸側における磁化方向の磁束作用面に垂直な方向に対する傾きが、d軸側における磁化方向の磁束作用面に垂直な方向に対する傾きよりも大きいこと(すなわち、図28においてθ2>θ1であること)により、q軸側において磁石磁路長を最も長くして、磁石101のq軸側端部における反磁界に対する減磁耐性を強くすることができる。その結果、磁石101のq軸側端部における減磁抑制と磁石トルクの増加とを共に実現できることとなる。
 なお、図27に示す構成では、磁石収容孔12がd軸に対して垂直な向きに延びるように直線状に形成されている。そのため、かかる構成によれば、磁石101のd軸寄りの部分とq軸寄りの部分とのうちd軸寄りの部分で、q軸寄りの部分よりも磁化方向をd軸に平行にすることにより、q軸側における磁化方向の磁束作用面に垂直な方向に対する傾きが、d軸側よりも大きくなる構成(すなわち、θ2>θ1となる構成)が実現される。
 (変形例5)
 図29に示す変形例5では、変形例4と同様に、磁石101において、d軸寄りの部分とq軸寄りの部分とで磁化方向が相違している。ただし、本変形例5では、磁石101の磁化方向が変形例4とは異なっており、磁石101において、d軸寄りの部分とq軸寄りの部分とのうちq軸寄りの部分では、d軸寄りの部分よりも磁化方向がq軸に平行になっている。磁石101では、d軸からq軸に向かうのに伴い、磁化方向の磁石長さ、すなわち磁化方向における始点から終点までの磁石磁路長が徐々に短くなっている。
 この場合、q軸寄りの部分では磁化方向がq軸に平行になっていることで、q軸において、回転子コア11の固定子対向面に直交する向きの磁石磁束、すなわち反磁界に対抗する向きの磁石磁束を強化することができ、磁石101のq軸側端部における反磁界に対する減磁対策を適正に図ることができる。
 (変形例6)
 図30に示す変形例6では、磁石101の磁化方向が円弧状、すなわち非直線状をなしている。これにより、磁石磁路長を一層長くすることができる。そのため、磁石磁束の一層の強化を図ることができる。
 (変形例7)
 図31(a)、(b)に示すように、回転子コア11における磁石収容孔12を、d軸を挟んで両側で一対とし、径方向外側に向かうにつれて磁石収容孔12同士の対向間距離が大きくなる略V字状に形成してもよい。図31(a)では、上述の図23と同様に、磁石101の磁化方向が、d軸に対して傾斜し、かつ磁束を生じさせる磁束作用面に対して非垂直の角度で交差する向きで定められている。
 また、図31(b)では、上述の図27と同様に、磁石101において、d軸寄りの部分とq軸寄りの部分とで磁化方向を相違させている。この場合特に、磁石101において、d軸寄りの部分とq軸寄りの部分とのうちd軸寄りの部分では、q軸寄りの部分よりも磁化方向がd軸に平行になっている。なお、上述の図29と同様に、磁石101において、d軸寄りの部分とq軸寄りの部分とのうちq軸寄りの部分では、d軸寄りの部分よりも磁化方向がq軸に平行になっていてもよい。
 (変形例8)
 図32に示す変形例8では、回転子コア11の磁石収容孔12においてd軸の両側に、磁化方向が非対称となる状態で磁石101が収容されている。この場合、磁石101の磁化方向が、d軸に対して傾斜し、かつ磁束を生じさせる磁束作用面に対して非垂直の角度で交差する向きとなっており、さらにd軸に対して一方側及び他方側の両側でいずれも同じ向きとなっている。図32の構成においても、磁石磁路長を長くすることにより、反磁界に対する磁束強化が可能となる。
 (変形例9)
 図33に示す変形例9では、d軸を挟んで両側の各磁石101を、横断面が台形状をなす2つの磁石111,112を用いて構成している。各磁石111,112は、2つの底角が同じ角度となる等脚台形状をなしており、脚同士を当接させた状態で、固定子30側に凸となる向きで配置されている。各磁石111,112では、一対の脚のうち一方に平行となる向きで磁化方向が定められており、これにより各底辺(上底及び下底)である磁束作用面に対して磁化方向が非垂直の角度で交差するものとなっている。また、各磁石111,112は、磁化方向に平行となる脚同士を当接させているため、d軸の両側では、それぞれ各磁石111,112の磁化方向が同じ向きとなっている。
 各磁石111,112は、形状、寸法、磁化方向を同一とする同じ品番の磁石である。この場合、図34に示すように、同じ品番の磁石111,112を用意し(図34(a))、一方の磁石112の向きを逆にして、両者を接合するようにしている(図34(b),(c))。ただし、磁石111,112として、底辺長さが互いに異なる磁石を用いることも可能である。
 (変形例10)
 図35に示す変形例10では、d軸両側の各磁石101に用いる磁石111,112として、2つの底角が異なる角度となる台形状の磁石111,112を用いている。この場合、一方の底角は直角であり、他方の底角は鋭角である。そして、底角が直角となる側の脚同士を当接させた状態で、各磁石111,112が配置されている。
 各磁石111,112では、一対の脚のうち底角が鋭角となる側の脚に平行となる向きで磁化方向が定められており、これにより各底辺(上底及び下底)である磁束作用面に対して磁化方向が非垂直の角度で交差するものとなっている。また、q軸側の磁石111は、磁化方向がq軸に垂直又は垂直に近い角度となり、d軸側の磁石112は、磁化方向がd軸に平行又は平行に近い角度となっている。
 図36、図37では、図35の構成の一部を変更している。すなわち、これら各構成では、磁石111,112のうちq軸側の磁石111として、磁化方向が磁束作用面に垂直となる磁石を用いている。またこのうち、図37では、d軸側の磁石112を平行四辺形としており、磁化方向が左右両側の辺に平行となっている。磁石111,112の間には、フラックスバリアが設けられている。ただし、磁石111,112の間が、フラックスバリアでなく鉄心であってもよい。
 (第5実施形態)
 次に、第5実施形態を、第1実施形態等との相違点を説明する。図38に、本実施形態における回転子10の構成を示す。
 図38では、磁石121は、回転子コア11において、q軸側端部が、径方向においてd軸側端部よりも固定子30に近い部位に位置しており、かつq軸側端部とd軸側端部との間において固定子30側に凸となるように設けられている。より具体的には、磁石121の横断面形状が、固定子30側に凸の円弧状であり、特に三日月形状となっている。なお、磁石121は、円弧状に湾曲して固定子30側に凸になっている以外に、複数の直線部分が1カ所又は複数箇所で折れ曲がることにより固定子30側に凸になっていてもよい。
 磁石121においては、磁化方向が、d軸に対して傾斜し、かつ磁束を生じさせる磁束作用面に対して非垂直の角度で交差する向きとなっている。ただし、磁束作用面に垂直となる向きの磁化方向が含まれていてもよい。磁化方向は、直線状であってもよいし、非直線状(すなわち円弧状)であってもよい。
 また本実施形態では、磁石121において、d軸寄りの部分とq軸寄りの部分とで磁化方向を相違させており、特に、d軸寄りの部分とq軸寄りの部分とのうちd軸寄りの部分では、q軸寄りの部分よりも磁化方向をd軸に平行になるようにしている。なお、磁石121において、q軸側における磁化方向の磁束作用面に垂直な方向に対する傾きが、d軸側における磁化方向の磁束作用面に垂直な方向に対する傾きよりも大きくなっていてもよい。
 上記構成によれば、磁石121を回転子コア11の外周面(すなわち固定子対向面)に近づかせることができるため、d軸の磁気抵抗が下がり、トルクを増大させることができる。この場合、固定子30と磁石121との距離を縮めることで、その背反として反磁界が増大するが、その反磁界増大の影響を、磁石121において上記のとおり磁路長を長くすることにより解消できる。
 また、本実施形態の構成によれば、回転子コア11において、磁石121(すなわち磁石収容孔12)よりも固定子30側であって、かつ固定子30と磁石121との両磁束の総和を受ける部分の割合を小さくすることができる。そのため、固定子30と磁石121との両磁束による磁束飽和が生じ得る飽和領域を小さくし、磁石121の能力をより効果的に引き出すことが可能となる。
 ここで、本実施形態で用いる磁石121の製造方法について説明する。図39は、磁場配向により磁石121の磁化を行う手法を説明するための説明図である。図39によれば、図38における左側の磁石121の着磁が行われる。
 図39に示すように、配向装置130は、磁場コイル131と、磁場コイル131内に配置される配向鉄心132及び金型133とを備えている。磁場コイル131は、通電に伴いコイル内部を通過する磁場を生成する。配向鉄心132は、磁場コイル131にて生成される磁場を所定方向に湾曲させる役割を有しており、配向鉄心132により湾曲された磁場が金型133を通過する。磁場コイル131によれば直線磁場が生成され、配向鉄心132によれば湾曲磁場が生成される。金型133は、非磁性体により形成されており、磁石121の形状に合わせて形成された金型室133aを有している。
 磁石121の製造に際しては、金型133の金型室133a内に、磁石原料を粉砕した磁石粉末が充填され、その金型室133a内において磁石粉末が所定形状に圧縮成形される。そして、磁場コイル131内において、配向鉄心132により図示のとおり湾曲した磁場が形成され、金型室133a内の磁石粉末に対して磁場配向が行われる。このとき、磁石粉末はそれぞれの磁化容易方向を揃えるようにして整列され、圧縮により固定される。この場合特に、配向鉄心132は、磁石121の長手方向において片側にオフセットした位置に配置されているとよい。その後、磁石粉末の成形体が焼結される。この一連の工程により、磁石121が製造される。なお、図38における右側の磁石121を製造する場合には、配向鉄心132の位置が変更されればよい。上記により、図38で用いられる磁石121が製造される。
 また、図40に示す構成では、磁石121は、回転子コア11において、q軸側端部が、径方向においてd軸側端部よりも固定子30に近い部位に位置しており、かつq軸側端部とd軸側端部との間において反固定子側に凸となるように設けられている。より具体的には、磁石121の横断面形状が、反固定子側に凸の円弧状であり、特に三日月形状となっている。なお、磁石121は、円弧状に湾曲して反固定子側に凸になっている以外に、複数の直線部分が1カ所又は複数箇所で折れ曲がることにより反固定子側に凸になっていてもよい。
 磁石121においては、磁化方向が、d軸に対して傾斜し、かつ磁束を生じさせる磁束作用面に対して非垂直の角度で交差する向きとなっている。ただし、磁束作用面に垂直となる向きの磁化方向が含まれていてもよい。磁化方向は、直線状であってもよいし、非直線状(すなわち円弧状)であってもよい。
 上記手段によれば、回転子コア11において磁石121よりも固定子30側となる領域が広くなるため、その領域における磁石配置により磁石磁力の増加を図ることができる。
 (他の実施形態)
 ・回転子10として、図41~図44に示す構成のものを用いることも可能である。
 図41に示す回転子10では、d軸を挟んで両側に設けられ、かつ略V字状をなす一対の磁石収容孔12に、それぞれ磁石141が収容されている。すなわち、磁石141がV字配置されている。磁石141は、d軸に対して傾斜する向きで設けられており、その磁化方向はd軸に水平又は平行に近い向きとなっている。この場合、磁石141の磁化方向は、磁石141の磁束作用面に対して非垂直の角度で交差している。また、一対の磁石収容孔12の間であって、かつd軸上となる位置に中央開口部142が設けられている。なお、中央開口部142は、空間であるか、又は非磁性材料が充填された非磁性体部であるとよい。
 図42に示す回転子10では、d軸を挟んで両側に設けられ、かつ略V字状をなす一対の磁石収容孔12に、それぞれ磁石143が収容されている。すなわち、磁石143がV字配置されている。磁石143は、d軸に対して傾斜する向きで設けられており、その磁化方向はq軸に垂直又は垂直に近い向きとなっている。この場合、磁石143の磁化方向は、磁石143の磁束作用面に対して非垂直の角度で交差している。また、各磁石収容孔12のd軸側には、フラックスバリア144がそれぞれ設けられている。
 図42の構成では、q軸の磁石磁束が強められている。この場合、図示のようにq軸コア部に直接磁力を向けることで、q軸コア部の飽和による弱め界磁効果の促進が期待できる。また、d軸の同極間距離を大きくすることで、d軸減磁(自己減磁)が抑えられている。
 図43に示す回転子10では、d軸を挟んで両側に、それぞれ2個ずつの磁石145が設けられている。磁石145は、d軸を挟んで両側にV字配置されている。磁石145は、q軸側端部及びd軸側端部(すなわち磁石端面側)において磁化方向の磁石長さが、中央側の部位における磁化方向の磁石長さよりも長いものとなっている。各磁石145は、固定子側の磁束作用面が磁化方向に垂直な平坦面とされ、反固定子側の磁束作用面が段差面とされており、互いに逆向きにして当接されている。
 また、図44に示す回転子10では、d軸を挟んで両側に、それぞれ2個ずつの磁石146が設けられている。磁石146は、d軸を挟んで両側にV字配置されている。磁石146は、q軸側端部及びd軸側端部(すなわち磁石端面側)において磁化方向の磁石長さが、中央側の部位における磁化方向の磁石長さよりも長いものとなっている。各磁石146は、固定子側の磁束作用面が磁化方向に垂直な平坦面とされ、反固定子側の磁束作用面が傾斜面とされており、互いに逆向きにして当接されている。
 ・上記各構成の磁石(磁石13等)を、複数に分割された分割磁石により実現してもよい。この場合、d軸を挟んで両側それぞれにおいて、磁石長手方向に沿って複数に分割磁石を並べて配置するとよい。これにより、導電体である磁石13の渦損を下げることができる。例えば断面正方形状をなし、かつ磁化方向の異なる複数の磁石(分割磁石)を用い、それらを一列に並べて断面長尺状の磁石13を構成するとよい。これにより、断面長尺状の磁石において可変配向により磁化方向を定めるよりも、磁石の配向率を高めることができる。
 ・上述した各構成の回転子10では、磁石のq軸側端部及びd軸側端部に、フラックスバリアを任意に設定することが可能である。
 ・回転子10において、回転子コア11を軸方向に複数に分割するとともに、その各分割コアを所定角度ずつ周方向にずらすことで、回転子10をスキュー構造としてもよい。これにより、トルクリプルを低減することができる。
 ・回転電機として、回転子10側に磁石(磁石13等)を設けるとともに、固定子30側に固定子巻線33を設ける構成としたものに代えて、固定子30側に磁石(磁石13等)を設けるとともに、回転子10側に固定子巻線33を設ける構成としたものを用いてもよい。この場合、軟磁性体コアとしての固定子コアに、上述した各種形態の磁石収容孔が形成されるとともに、その磁石収容孔内に、上述した各種形態の磁石が収容される。
 ・回転電機に代えて、他の電動機に本開示を適用することも可能である。例えば、移動体の直線移動を可能とするリニアモータに本開示を適用することが可能である。いずれにしろ、電動機として、巻線に対向する位置に設けられ、巻線の通電により当該巻線に対する相対動作が可能である磁石を備え、複数の磁石が、相対動作の動作方向に極性を交互にして配置されている構成を有するものであればよい。
 この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。

Claims (53)

  1.  巻線(33)に対向する位置に設けられ、前記巻線の通電により当該巻線に対する相対動作が可能である磁石(13)を備え、複数の前記磁石が、前記相対動作の動作方向に極性を交互にして配置されている電動機(1)に適用され、
     前記磁石は、
     前記極性に応じた磁束を生じさせる第1磁石部(21)と、
     前記磁石における磁極境界側の端部であるq軸側端部の側に設けられ、磁石内部の磁化方向が、前記第1磁石部における前記磁化方向に交差する向きとなっている第2磁石部(22)と、
    を有する電動機の磁気発生装置。
  2.  前記電動機は、前記巻線が巻装された巻線側部材(30)と、前記巻線側部材に対して径方向に対向配置され、前記磁石を有する磁石側部材(10)とを備える回転電機(1)であり、前記磁石側部材として用いられる電動機の磁気発生装置であって、
     前記第1磁石部は、前記磁石側部材において周方向に所定間隔で設けられ、
     前記第2磁石部は、前記第1磁石部のq軸側端部の側に設けられている請求項1に記載の電動機の磁気発生装置。
  3.  前記磁石側部材は、磁極ごとにd軸を挟んで両側に位置するように設けられた複数の磁石収容孔(12)を有する軟磁性体コア(11)を含み、
     前記磁石収容孔内に、前記第1磁石部及び前記第2磁石部が収容されている請求項2に記載の電動機の磁気発生装置。
  4.  前記第1磁石部のq軸側端部において前記巻線側部材に最も近い部位を磁束補強点(P1)とし、その磁束補強点に対して前記第2磁石部による磁束強化を行わせる請求項3に記載の電動機の磁気発生装置。
  5.  前記第1磁石部及び前記第2磁石部は、横断面が矩形状をなし、かつ対向する一対の磁束作用面に対して前記磁化方向が直交する向きとなっており、
     前記軟磁性体コアに、d軸又はq軸に対する前記磁化方向の角度を互いに異ならせて前記第1磁石部及び前記第2磁石部が配置されている請求項3又は4に記載の電動機の磁気発生装置。
  6.  前記第1磁石部の前記磁化方向と、前記第2磁石部の前記磁化方向とのなす角度が鋭角である請求項3~5のいずれか1項に記載の電動機の磁気発生装置。
  7.  前記第1磁石部は、d軸を挟んで両側に互いに離間した状態で一対の磁石(21)として設けられており、当該第1磁石部の前記磁化方向が、d軸に対して傾斜し、かつ前記磁石収容孔よりも前記巻線側及び反巻線側のうち前記巻線側で交差する向きとなっており、
     前記第1磁石部における前記一対の磁石のd軸側端部の側に、前記磁化方向が、前記第1磁石部の前記磁化方向に交差する向きとなっている第3磁石部(23)が設けられている請求項3~6のいずれか1項に記載の電動機の磁気発生装置。
  8.  前記第1磁石部における前記一対の磁石のd軸側端部において当該一対の磁石同士で最も近い部位を磁束補強点(P2)とし、その磁束補強点に対して前記第3磁石部による磁束強化を行わせる請求項7に記載の電動機の磁気発生装置。
  9.  前記第1磁石部の前記磁化方向と、前記第3磁石部の前記磁化方向とのなす角度が鋭角である請求項7又は8に記載の電動機の磁気発生装置。
  10.  前記磁石収容孔は、前記第1磁石部における前記一対の磁石の間に、d軸側に拡張されたd軸側拡張部分を有しており、
     前記d軸側拡張部分に、前記第3磁石部が設けられるとともに、その第3磁石部よりもd軸側にフラックスバリア(25)が設けられている請求項7~9のいずれか1項に記載の電動機の磁気発生装置。
  11.  前記磁石収容孔が、d軸を挟んで両側に対称形で設けられており、かつ、前記磁石が、d軸を挟んで両側に対称に配置されている請求項3~10のいずれか1項に記載の電動機の磁気発生装置。
  12.  前記第2磁石部は、前記第1磁石部の固有保磁力よりも小さい固有保磁力を有している請求項1~11のいずれか1項に記載の電動機の磁気発生装置。
  13.  前記第1磁石部は、前記第2磁石部の固有保磁力よりも小さい固有保磁力を有している請求項1~11のいずれか1項に記載の電動機の磁気発生装置。
  14.  前記第2磁石部と前記第3磁石部とは、固有保磁力が互いに異なっている請求項7~11のいずれか1項に記載の電動機の磁気発生装置。
  15.  前記第1磁石部は、q軸側からd軸側に向かう方向において分割され、かつ互いに前記磁化方向が異なる複数の分割磁石(27a,27b)を有しており、
     前記複数の分割磁石のうちq軸側となる分割磁石は、d軸側となる分割磁石よりも、前記磁化方向が、q軸に対して平行な方向に近い向きになっている請求項3~14のいずれか1項に記載の電動機の磁気発生装置。
  16.  前記複数の分割磁石は、その分割磁石の端部同士が対向する部位で前記巻線側に凸となるように配置されている請求項15に記載の電動機の磁気発生装置。
  17.  前記軟磁性体コアにおいて、前記巻線側部材との対向面には軸方向に延びる溝(42,43)が形成されている請求項3~16のいずれか1項に記載の電動機の磁気発生装置。
  18.  前記軟磁性体コアは、中央部に形成された貫通孔(14)に回転軸(40)を挿通させ、回転自在に支持された回転子コア(11)であり、
     前記貫通孔の内周面においてd軸上となる位置には、径方向内側に突出して前記回転軸の外周面に当接する突出部(14a)が形成されている請求項3~17のいずれか1項に記載の電動機の磁気発生装置。
  19.  巻線(33)に対向する位置に設けられ、前記巻線の通電により当該巻線に対する相対動作が可能である磁石(13)を備え、複数の前記磁石が、前記相対動作の動作方向に極性を交互にして配置されている電動機(1)に適用され、
     前記磁石は、
     磁極中心であるd軸を挟んで両側に互いに離間した状態で一対の磁石として設けられ、磁石内部の磁化方向が、前記d軸に対して傾斜し、かつ前記巻線側及び反巻線側のうち前記巻線側で交差する向きになっている第1磁石部(21)と、
     前記第1磁石部における前記一対の磁石のd軸側端部の側に設けられ、前記磁化方向が、前記第1磁石部の前記磁化方向に交差する向きとなっている第2磁石部(23,41)と、
    を有する電動機の磁気発生装置。
  20.  前記電動機は、前記巻線が巻装された巻線側部材(30)と、前記巻線側部材に対して径方向に対向配置され、前記磁石を有する磁石側部材(10)とを備える回転電機(1)であり、前記磁石側部材として用いられる電動機の磁気発生装置であって、
     前記磁石側部材は、磁極ごとにd軸を挟んで両側に位置するように設けられた複数の磁石収容孔(12)を有する軟磁性体コア(11)を含み、
     前記磁石収容孔内に、前記第1磁石部及び前記第2磁石部が収容されている請求項19に記載の電動機の磁気発生装置。
  21.  前記磁石収容孔が、d軸を挟んで両側に対称形で設けられており、かつ、前記磁石が、d軸を挟んで両側に対称に配置されている請求項20に記載の電動機の磁気発生装置。
  22.  前記磁石収容孔は、前記第1磁石部における前記一対の磁石の間に、d軸側に拡張されたd軸側拡張部分を有しており、
     前記d軸側拡張部分に、前記第2磁石部が設けられるとともに、その第2磁石部よりもd軸側にフラックスバリア(25)が設けられている請求項20又は21に記載の電動機の磁気発生装置。
  23.  前記第1磁石部における前記一対の磁石のd軸側端部において当該一対の磁石同士で最も近い部位を磁束補強点(P2)とし、その磁束補強点に対して前記第2磁石部による磁束強化を行わせる請求項19~22のいずれか1項に記載の電動機の磁気発生装置。
  24.  前記第1磁石部の前記磁化方向と、前記第2磁石部の前記磁化方向とのなす角度が鋭角である請求項19~23のいずれか1項に記載の電動機の磁気発生装置。
  25.  埋込磁石式の回転電機(1)において巻線(33)に対向する位置に設けられ、磁石(13,51,71,121)を保持する軟磁性体コア(11)であって、
     磁極ごとに前記磁石を収容する磁石収容孔(12)を有しており、
     前記磁石収容孔は、磁極ごとにd軸を挟んで両側に配置され、かつ前記巻線側に向かうにつれて対向間距離が大きくなるように略V字状をなす一対の孔として設けられ、
     前記一対の孔は、それぞれd軸側及びq軸側の両端の間において前記巻線側に凸となるように設けられている軟磁性体コア。
  26.  前記回転電機は、前記巻線が巻装された環状の固定子(30)と、前記固定子に対して径方向内側に対向配置され、前記磁石を有する回転子(10)とを備え、
     前記回転子を構成する回転子コア(11)として用いられる軟磁性体コアであって、
     前記一対の孔は、それぞれd軸側及びq軸側の両端の間において前記固定子側に凸となるように設けられている請求項25に記載の軟磁性体コア。
  27.  前記磁石収容孔が、d軸を挟んで両側に対称形で設けられている請求項25又は26に記載の軟磁性体コア。
  28.  巻線(33)に対向する位置に設けられ、前記巻線の通電により当該巻線に対する相対動作が可能である磁石(51,71,101,121)を備え、複数の前記磁石が、前記相対動作の動作方向に極性を交互にして配置されている電動機(1)に適用され、
     前記磁石は、磁石内部の磁化方向が、前記磁石の前記巻線側及び反巻線側の両側であり磁束を生じさせる磁束作用面のうち、少なくともいずれかに対して非垂直の角度で交差する向きとなっている電動機の磁気発生装置。
  29.  前記電動機は、前記巻線が巻装された巻線側部材(30)と、前記巻線側部材に対して径方向に対向配置され、前記磁石を有する磁石側部材(10)とを備える回転電機(1)であり、前記磁石側部材として用いられる電動機の磁気発生装置であって、
     前記磁石側部材は、磁極ごとにd軸を挟んで両側に位置するように設けられた複数の磁石収容孔(12)を有する軟磁性体コア(11)を含み、
     前記磁石収容孔内に前記磁石が収容されている請求項28に記載の電動機の磁気発生装置。
  30.  前記磁石収容孔が、d軸を挟んで両側に対称形で設けられており、かつ、前記磁石が、d軸を挟んで両側に対称に配置されている請求項29に記載の電動機の磁気発生装置。
  31.  前記磁石は、当該磁石における前記巻線側の磁束作用面とその反対側の磁束作用面とで異なる向きとなるように、前記磁化方向が変化するものとなっている請求項29又は30に記載の電動機の磁気発生装置。
  32.  前記磁石は、q軸側からd軸側に向かうに従って、前記磁化方向が、q軸に対して垂直な方向に近い向きからd軸に対して平行な方向に近い向きに、反巻線側に凸の非直線状に切り替わるように設けられている請求項31に記載の電動機の磁気発生装置。
  33.  前記磁石は、d軸側からq軸側に向かうに従って、前記磁化方向が、d軸に対して垂直な方向に近い向きからq軸に対して平行な方向に近い向きに、反巻線側に凸の非直線状に切り替わるように設けられている請求項31に記載の電動機の磁気発生装置。
  34.  前記磁石は、前記軟磁性体コアにおいて、q軸側端部が、径方向においてd軸側端部よりも前記巻線に近い側に位置しており、かつq軸側端部とd軸側端部との間において前記巻線側に凸となるように設けられている請求項29~33のいずれか1項に記載の電動機の磁気発生装置。
  35.  前記磁石において、前記磁化方向が前記磁束作用面に対して非垂直の角度で交差し、前記磁束作用面に交差する磁石端面が、前記磁化方向に平行となる向きで形成されており、
     前記磁石収容孔内には、d軸側及びq軸側の少なくともいずれかの前記磁石端面の外側に、フラックスバリア(53,54)が設けられている請求項29~34のいずれか1項に記載の電動機の磁気発生装置。
  36.  前記磁石において、前記磁化方向が、d軸に対して傾斜し、かつ前記磁束作用面に対して非垂直の角度で交差する向きとなっている請求項29又は30に記載の電動機の磁気発生装置。
  37.  前記磁石は、前記軟磁性体コアにおいてd軸を挟んで両側に配置されており、
     d軸の両側における前記各磁石の前記磁化方向が、d軸に対して傾斜し、かつ前記磁石収容孔よりも前記巻線側となる位置で互いに交差する向きとなっている請求項36に記載の電動機の磁気発生装置。
  38.  前記磁石において、前記磁化方向が前記磁束作用面に対して非垂直の角度で交差しており、前記磁束作用面に交差する磁石端面が、前記磁化方向に平行となる向きで形成されている請求項36又は37に記載の電動機の磁気発生装置。
  39.  前記磁石は、前記磁束作用面に交差する磁石端面側における前記磁化方向の磁石長さが、その磁石端面よりも中央側の部位における前記磁化方向の磁石長さよりも長い請求項36~38のいずれか1項に記載の電動機の磁気発生装置。
  40.  前記磁石において、d軸寄りの部分とq軸寄りの部分とで磁化方向が相違している請求項36~39のいずれか1項に記載の電動機の磁気発生装置。
  41.  前記磁石において、d軸寄りの部分とq軸寄りの部分とのうちd軸寄りの部分では、q軸寄りの部分よりも磁化方向がd軸に平行になっている請求項40に記載の電動機の磁気発生装置。
  42.  前記磁石において、前記磁束作用面に垂直な方向に対する、前記q軸寄りの部分における磁化方向の傾き(θ2)が、前記磁束作用面に垂直な方向に対する、前記d軸寄りの部分における磁化方向の傾き(θ1)よりも大きい請求項41に記載の電動機の磁気発生装置。
  43.  前記磁石において、d軸寄りの部分とq軸寄りの部分とのうちq軸寄りの部分では、d軸寄りの部分よりも磁化方向がq軸に平行になっている請求項40に記載の電動機の磁気発生装置。
  44.  前記磁石収容孔は、磁極ごとにd軸を挟んで両側に配置され、かつ前記巻線側に向かうにつれて対向間距離が大きくなるように略V字状をなす一対の孔として設けられ、
     前記磁石は、d軸の両側に、d軸側端部を含む部分である第1磁石部と、q軸側端部を含む部分である第2磁石部とをそれぞれ有しており、
     前記第2磁石部では、前記磁化方向が、前記第1磁石部よりもq軸に対して垂直な方向に近い向きとなっている請求項36~39のいずれか1項に記載の電動機の磁気発生装置。
  45.  前記第1磁石部の前記磁化方向がd軸に平行である請求項44に記載の電動機の磁気発生装置。
  46.  前記軟磁性体コアにおいて、前記磁石は、q軸側端部が、径方向においてd軸側端部よりも前記巻線に近い部位に位置しており、かつq軸側端部とd軸側端部との間において前記巻線側に凸となるように設けられている請求項29又は30に記載の電動機の磁気発生装置。
  47.  前記軟磁性体コアにおいて、前記磁石は、q軸側端部が、径方向においてd軸側端部よりも前記巻線に近い部位に位置しており、かつq軸側端部とd軸側端部との間において反巻線側に凸となるように設けられている請求項29又は30に記載の電動機の磁気発生装置。
  48.  前記磁石において、d軸寄りの部分とq軸寄りの部分とで磁化方向が相違している請求項46又は47に記載の電動機の磁気発生装置。
  49.  前記磁石は、前記磁化方向が円弧状をなしている請求項29~48のいずれか1項に記載の電動機の磁気発生装置。
  50.  前記磁石は、前記軟磁性体コアにおいてd軸上のd軸コア部(55)を挟んで一方側及び他方側となる一対の磁石として配置されており、
     前記軟磁性体コアには、前記d軸コア部を挟み、かつ前記一対の磁石の反巻線側の端部から反巻線側に延びる非磁性体部(54)が設けられている請求項29~49のいずれか1項に記載の電動機の磁気発生装置。
  51.  前記非磁性体部は、前記磁石収容孔の一部に非磁性材料が収容されることで構成されている請求項50に記載の電動機の磁気発生装置。
  52.  前記軟磁性体コアは、回転軸(40)に回転自在に固定される回転子コア(11)であり、
     前記非磁性体部は、前記磁石において最も径方向内側となる点と、前記回転子コアの回転中心とを結ぶ仮想線よりもq軸側に張り出している請求項50又は51に記載の電動機の磁気発生装置。
  53.  回転電機(1)に用いられる磁石(51,71)の製造方法であって、
     磁場コイル(61,81)により生成される磁場内に配置される金型(63,83)に磁石粉末を充填する工程と、
     前記磁場コイルにより生成される磁場を配向鉄心(62,82)により湾曲させた状態で、前記金型内の磁石粉末に対して所定方向の磁場配向を行う工程と、
     前記金型内の磁石粉末を焼結する工程と、
    を有する磁石の製造方法。
PCT/JP2018/028762 2017-08-01 2018-07-31 電動機の磁気発生装置、軟磁性体コア、及び磁石の製造方法 WO2019026932A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE112018003942.0T DE112018003942T5 (de) 2017-08-01 2018-07-31 Magnetische Erzeugungseinrichtung für einen Motor, Weichmagnetischer Kern und Verfahren zur Herstellung eines Magneten
CN201880049979.8A CN110959244B (zh) 2017-08-01 2018-07-31 电动机的磁产生装置、软磁性体铁芯及磁体的制造方法
CN202210734822.7A CN115276284A (zh) 2017-08-01 2018-07-31 电动机的磁产生装置、软磁性体铁芯及磁体的制造方法
CN202210734789.8A CN114899964A (zh) 2017-08-01 2018-07-31 电动机的磁产生装置、软磁性体铁芯及磁体的制造方法
CN202210734556.8A CN115276283A (zh) 2017-08-01 2018-07-31 电动机的磁产生装置、软磁性体铁芯及磁体的制造方法
CN202210734759.7A CN115378160A (zh) 2017-08-01 2018-07-31 电动机的磁产生装置、软磁性体铁芯及磁体的制造方法
US16/779,829 US11936312B2 (en) 2017-08-01 2020-02-03 Magnetic generator for motor, soft magnetic core, and method of manufacturing magnet

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2017-149184 2017-08-01
JP2017149184 2017-08-01
JP2018026514A JP7000906B2 (ja) 2017-08-01 2018-02-16 軟磁性体コア及び磁気発生装置
JP2018026513 2018-02-16
JP2018-026512 2018-02-16
JP2018-026514 2018-02-16
JP2018-026513 2018-02-16
JP2018-026511 2018-02-16
JP2018026512A JP6852694B2 (ja) 2017-08-01 2018-02-16 電動機の磁気発生装置
JP2018026511A JP6852693B2 (ja) 2017-08-01 2018-02-16 電動機の磁気発生装置
JP2018143375A JP6919631B2 (ja) 2017-08-01 2018-07-31 電動機の磁気発生装置、及び磁石の製造方法
JP2018-143375 2018-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/779,829 Continuation US11936312B2 (en) 2017-08-01 2020-02-03 Magnetic generator for motor, soft magnetic core, and method of manufacturing magnet

Publications (1)

Publication Number Publication Date
WO2019026932A1 true WO2019026932A1 (ja) 2019-02-07

Family

ID=65232797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028762 WO2019026932A1 (ja) 2017-08-01 2018-07-31 電動機の磁気発生装置、軟磁性体コア、及び磁石の製造方法

Country Status (1)

Country Link
WO (1) WO2019026932A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113169608A (zh) * 2019-03-05 2021-07-23 宝马股份公司 具有支撑结构的用于用永久磁铁励磁的电机的转子
CN114123572A (zh) * 2021-11-12 2022-03-01 珠海格力电器股份有限公司 一种变磁通永磁电机转子和变磁通永磁电机
JP7166406B1 (ja) * 2021-09-02 2022-11-07 大銀微系統股▲分▼有限公司 高周波回転構造

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005304292A (ja) * 2004-04-07 2005-10-27 Minebea Co Ltd 電動機用ロータユニットの製造方法、電動機用ロータユニット、及び電動機
JP2008245384A (ja) * 2007-03-27 2008-10-09 Hitachi Ltd 永久磁石式回転電機及びそれを用いた圧縮機
JP2012239327A (ja) * 2011-05-12 2012-12-06 Toshiba Corp 永久磁石型モータ
JP2015097436A (ja) * 2013-11-15 2015-05-21 株式会社デンソー 回転電機のロータ及びそのロータを備えた回転電機
JP2016032027A (ja) * 2014-07-29 2016-03-07 日東電工株式会社 永久磁石、永久磁石の製造方法、回転電機及び回転電機の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005304292A (ja) * 2004-04-07 2005-10-27 Minebea Co Ltd 電動機用ロータユニットの製造方法、電動機用ロータユニット、及び電動機
JP2008245384A (ja) * 2007-03-27 2008-10-09 Hitachi Ltd 永久磁石式回転電機及びそれを用いた圧縮機
JP2012239327A (ja) * 2011-05-12 2012-12-06 Toshiba Corp 永久磁石型モータ
JP2015097436A (ja) * 2013-11-15 2015-05-21 株式会社デンソー 回転電機のロータ及びそのロータを備えた回転電機
JP2016032027A (ja) * 2014-07-29 2016-03-07 日東電工株式会社 永久磁石、永久磁石の製造方法、回転電機及び回転電機の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113169608A (zh) * 2019-03-05 2021-07-23 宝马股份公司 具有支撑结构的用于用永久磁铁励磁的电机的转子
JP7166406B1 (ja) * 2021-09-02 2022-11-07 大銀微系統股▲分▼有限公司 高周波回転構造
CN114123572A (zh) * 2021-11-12 2022-03-01 珠海格力电器股份有限公司 一种变磁通永磁电机转子和变磁通永磁电机

Similar Documents

Publication Publication Date Title
JP6919631B2 (ja) 電動機の磁気発生装置、及び磁石の製造方法
JP6852694B2 (ja) 電動機の磁気発生装置
US7535145B2 (en) Axial air gap-type electric motor
JP5889340B2 (ja) 永久磁石埋込型電動機の回転子、及びこの回転子を備えた電動機、及びこの電動機を備えた圧縮機、及びこの圧縮機を備えた空気調和機
WO2019026979A1 (ja) 回転電機、回転電機駆動システム、磁石、磁石の製造方法、着磁装置、及び磁石ユニット
CN102257702A (zh) 永磁式旋转电机
US20140103772A1 (en) Radially embedded permanent magnet rotor and methods thereof
WO2007072707A1 (ja) 電動機並びにその回転子及び回転子用磁心
US20110163618A1 (en) Rotating Electrical Machine
CN104702004B (zh) 电动机
US20200295610A1 (en) Rotor for an Axial Flux Motor, a Radial Flux Motor, and a Transversal Flux Motor
US20170229933A1 (en) Utilization of Magnetic Fields in Electric Machines
WO2019026932A1 (ja) 電動機の磁気発生装置、軟磁性体コア、及び磁石の製造方法
JP2013132124A (ja) 界磁子用コア
KR20150015607A (ko) 고정자 및 이를 구비한 스위치드 릴럭턴스 모터
US9735634B2 (en) Split pole spoke type PM machine with enclosed magnets
JP2019092313A (ja) 永久磁石式回転電機
CN101345442A (zh) 压缩机用电机的转子
CN115276283A (zh) 电动机的磁产生装置、软磁性体铁芯及磁体的制造方法
JP2014050253A (ja) 永久磁石回転電機用ロータ及び永久磁石回転電機
JP6607150B2 (ja) 回転電機のロータ
JP6631102B2 (ja) 回転電機
CN115349217A (zh) 转子的制造装置、转子的制造方法和转子
JP2016144369A (ja) 内包磁石型同期機およびその回転子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840320

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18840320

Country of ref document: EP

Kind code of ref document: A1