WO2019026682A1 - 充填済み容器の製造方法、及び、充填済み容器 - Google Patents

充填済み容器の製造方法、及び、充填済み容器 Download PDF

Info

Publication number
WO2019026682A1
WO2019026682A1 PCT/JP2018/027662 JP2018027662W WO2019026682A1 WO 2019026682 A1 WO2019026682 A1 WO 2019026682A1 JP 2018027662 W JP2018027662 W JP 2018027662W WO 2019026682 A1 WO2019026682 A1 WO 2019026682A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fluorine
less
containing gas
filled container
Prior art date
Application number
PCT/JP2018/027662
Other languages
English (en)
French (fr)
Inventor
章史 八尾
真聖 長友
晋也 池田
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to SG11202000802RA priority Critical patent/SG11202000802RA/en
Priority to CN201880044231.9A priority patent/CN110832106B/zh
Priority to JP2019534055A priority patent/JP7116328B2/ja
Priority to US16/625,963 priority patent/US11519557B2/en
Priority to KR1020207006008A priority patent/KR102527163B1/ko
Publication of WO2019026682A1 publication Critical patent/WO2019026682A1/ja
Priority to JP2022120646A priority patent/JP7303467B2/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J12/00Pressure vessels in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/10Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge with provision for protection against corrosion, e.g. due to gaseous acid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/002Details of vessels or of the filling or discharging of vessels for vessels under pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0607Coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0675Synthetics with details of composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/037Containing pollutant, e.g. H2S, Cl
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/05Ultrapure fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0518Semiconductors

Definitions

  • the present invention relates to a method of manufacturing a filled container by filling a metal storage container with a fluorine-containing gas such as ClF 3 or IF 7 and the above-described filled container.
  • Containers made of stainless steel are used as storage containers filled with fluorine-containing gas such as ClF 3 and IF 7 .
  • a film of fluoride is formed on the surface of the metal material.
  • a metal material such as stainless steel is heated to a temperature of 80 ° C. or less for the purpose of preventing a decrease in the amount of ClF 3 by suppressing adsorption of ClF 3 gas to metal and suppressing reaction on the metal surface. It is disclosed that the film is exposed to ClF 3 to form a fluoride film on the surface of the metal material.
  • a metal container such as stainless steel is filled with 100% ClF 3 gas and held at 80 ° C. for 18 hours to expose the inner surface of the metal container to ClF 3 for fluoride Form a film.
  • the thickness of the fluoride film is set to 190 ⁇ or less. It is disclosed that.
  • stainless steel is heated to 150 ° C. and exposed to 1% diluted F 2 gas to form a fluoride film.
  • Patent Document 3 discloses that in order to suppress the fluorination reaction and adsorption of ClF filled in a storage container, contact with a gas containing ClF does not cause fluoride It is disclosed to form a kinetic coating.
  • a passivation film of 4 nm in thickness is formed by treatment at 10 to 100 ° C. using ClF gas, and 8 nm in thickness is formed at 10 to 100 ° C. using F 2 gas. It forms a passive film.
  • the fluorine-containing gas used in semiconductor device manufacturing processes and the like is also required to be highly purified, and in particular, for metal impurities that greatly affect the electrical characteristics of the semiconductor device, the concentration in the gas is 10 mass ppb It is required to reduce to less than.
  • Patent Documents 1 to 3 if a fluoride film is formed on the surface of the metal material, the reaction between the fluorine-containing gas and the surface of the metal material can be suppressed, so corrosion of the metal material and purity of the fluorine-containing gas The effect of suppressing the decrease of the metal oxide and the effect of suppressing the generation of metal impurities generated by the reaction of the fluorine-containing gas and the metal material can be obtained. However, since a trace amount of metal impurities are mixed in the fluorine-containing gas, the concentration of the metal impurities can not be less than 10 mass ppb.
  • the present invention has been made to solve the above problems, and not only to suppress the decrease in the purity of the fluorine-containing gas, but also to prevent the mixing of metal impurities derived from the metal material into the fluorine-containing gas. It is an object of the present invention to provide a method of producing a filled container capable of
  • the inventors of the present invention have found that mixing of a trace amount of metal impurities into the fluorine-containing gas is caused by the termination of the metal surface (usually when hydrogen or oxygen is not applied). Not only caused by the reaction of the fluorine-containing gas with water or the like attached to the metal surface, or with the moisture attached to the metal surface, and at that time it is formed on the surface of the metal material. It was thought that the fluoride film was exfoliated from the surface under the influence of impact, moisture and the like, and was caused by being mixed into the fluorine-containing gas as metal particles.
  • the filled container of the present invention is a filled container filled with at least one fluorine-containing gas selected from the group consisting of ClF 3 , IF 7 , BrF 5 , F 2 and WF 6 in a metal storage container.
  • At least the inner surface of the storage container is made of manganese steel, the surface roughness R max of the inner surface is 10 .mu.m or less, and the surface of the storage container in contact with the fluorine-containing gas
  • the molar ratio F / Fe of fluorine atom F to iron atom Fe is 0.01 or more and less than 3 and the molar ratio of oxygen atom O to iron atom Fe at an average value in the range of 10 nm from the outermost surface O / Fe Is 1 or less.
  • the present invention it is possible to suppress the decrease in the purity of the fluorine-containing gas, and to prevent the contamination of the fluorine-containing gas with metal impurities derived from the metal material.
  • the method for producing a filled container comprises the steps of: preparing a metal storage container; and fluorinating the inner surface of the storage container with a gas containing a first fluorine-containing gas at 50 ° C. or less. And the steps of: replacing the inside of the storage container with an inert gas; and filling the inside of the storage container with a second fluorine-containing gas.
  • the storage container is at least composed of manganese steel on the inner surface.
  • the metal elements chromium is easily mixed in with fluorine-containing gas, so by using manganese steel containing less chromium than stainless steel, the metal of the inner surface of the storage container to fluorine-containing gas filling the storage container It is possible to prevent the mixing of metal impurities derived from the material.
  • the manganese steel preferably contains 97% by mass or more of iron and 1% by mass or more and 2% by mass or less of manganese. Even when nickel and chromium are unavoidably mixed in manganese steel, the content of nickel is preferably 0.25% by mass or less, and the content of chromium is preferably 0.35% by mass or less.
  • the manganese steel for example, SMn420, SMn433, SMn438, and SMn443 defined in JIS G 4053: 2016, STH 11 and STH 12 defined in JIS G 3429: 2013, and the like can be used.
  • the storage container has a surface roughness R max of 10 ⁇ m or less on the inner surface.
  • the surface roughness R max of the inner surface is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the surface roughness R max of the inner surface is often 0.1 ⁇ m or more.
  • the surface roughness R max is the maximum height defined in JIS B 0601: 1982, and within one of the reference lengths of the cross-sectional curve, one of the roughness curves from which the surface undulation is removed. It means the height difference between the highest mountain and the lowest valley.
  • the gas adsorption performance of the surface of the metal material is increased. Therefore, when the surface roughness of the metal material is large, atmospheric components such as O 2 are adsorbed and remain on the surface of the metal material, and they are desorbed and mixed in the fluorine-containing gas that contacts the metal material, and the storage container It causes the decrease in the purity of the fluorine-containing gas stored therein. In addition, when the surface roughness of the metal material is large, the moisture remaining on the surface of the metal material reacts with the fluorine-containing gas, which causes the generation of impurities such as HF. Therefore, by reducing the surface roughness of the metal material, atmospheric components adsorbed on the surface and moisture remaining on the surface can be reduced, and the decrease in purity of the fluorine-containing gas can be suppressed.
  • the surface roughness R max of the inner surface can be 10 ⁇ m or less by polishing the inner surface of the storage container.
  • the method for polishing the inner surface of the storage container is not particularly limited as long as it can polish to a predetermined roughness, but, for example, buffing treatment, electrolytic polishing treatment, barrel polishing treatment and the like can be used.
  • the buffing process is a method of polishing a metal material using a cloth or paper-made polishing cloth, using an abrasive as required.
  • Electropolishing is a method of polishing the surface of a metal material by supplying electricity in an electrolytic solution.
  • the barrel polishing process is adding a polishing suspension containing an abrasive, a solvent, an additive, and the like to the inside of a container and sealing the container, and then rotating the container in combination with a rotation motion and a revolution motion to rotate the container.
  • This is a method of bringing an abrasive into contact with the inner surface and polishing the inner surface.
  • the material of the abrasive include diamond, zirconia, alumina, silica, silicon nitride, silicon carbide, silica-alumina, iron, carbon steel, chromium steel, stainless steel and the like.
  • the solvent used for the polishing treatment is not particularly limited, but water is usually used.
  • additives used for the polishing treatment include pH adjusters, surfactants, and rust inhibitors.
  • the inner surface of the storage container is brought into contact with the gas containing the first fluorine-containing gas at 50 ° C. or less.
  • the fluorination treatment is performed at 50 ° C. or less to terminate the surface of the metal material with either a fluorine atom or an oxygen atom.
  • a fluorine atom or an oxygen atom As a result, it is possible to suppress the generation of impurities such as HF due to the reaction of a portion terminated with a hydrogen atom or a hydroxyl group with a fluorine-containing gas.
  • the temperature of the fluorination treatment exceeds 50 ° C.
  • the reaction between the fluorine-containing gas and the surface of the metal material becomes intense, and a film of metal fluoride is often formed.
  • oxygen atoms on the surface of the metal material are detached as OF 2 or the like during the fluorination treatment, and are substituted by fluorine atoms.
  • the fluorination treatment is preferably performed at 40 ° C. or less, more preferably 30 ° C. or less.
  • the lower limit of the temperature of the fluorination treatment is not particularly limited, but the fluorination treatment is preferably performed at 0 ° C. or more, and more preferably at 10 ° C. or more.
  • the first fluorine-containing gas is at least one gas selected from the group consisting of ClF 3 , IF 7 , BrF 5 , F 2 and WF 6 .
  • the first fluorine-containing gas used for the fluorination treatment may be different from or the same as the second fluorine-containing gas stored in the storage container.
  • the first fluorine-containing gas is preferably F 2 gas.
  • the F 2 gas is composed of only F, and no by-products such as ClF and IF 5 are generated, so that it is possible to suppress a decrease in the purity of the fluorine-containing gas stored in the storage container.
  • the pressure of the fluorination treatment is not particularly limited, but can be appropriately set, for example, in the range of 10 kPa or more and 1 MPa or less.
  • the fluorination treatment may be performed, for example, under atmospheric pressure.
  • the time of a fluorination process is not specifically limited, For example, it can set suitably in the range of 1 minute or more and 24 hours or less.
  • the time taken for the fluorination treatment depends on the temperature or pressure of the fluorination treatment, the content of the fluorine-containing gas used for the fluorination treatment, etc., but when the pressure of the fluorine-containing gas used for the fluorination treatment no longer decreases Can be the end point of the fluorination treatment.
  • sufficient time for the fluorination process is taken, and it is thought that the fluorination process is completed.
  • the inside of the storage container is replaced with an inert gas.
  • an inert gas in addition to a rare gas such as argon gas or helium gas, nitrogen gas or the like can be used.
  • the second fluorine-containing gas is filled in the inside of the storage container after being replaced with the inert gas.
  • the second fluorine-containing gas is at least one gas selected from the group consisting of ClF 3 , IF 7 , BrF 5 , F 2 and WF 6 .
  • the second fluorine-containing gas is preferably at least one gas selected from the group consisting of interhalogen compounds ClF 3 , IF 7 and BrF 5 , and among them, highly practical ClF 3 gas or IF 7 gas It is more preferable that
  • the filled container described in [filled container] can be preferably produced.
  • the molar ratio of fluorine atom F to iron atom Fe is an average value in the range of 10 nm from the outermost surface on the surface in contact with fluorine gas in the storage container. It is possible to manufacture a filled container in which F / Fe is 0.01 or more and less than 3 and the molar ratio O / Fe of oxygen atom O to iron atom Fe is 1 or less.
  • the molar ratio F / Fe is preferably 0.05 or more and less than 3, more preferably 0.1 or more and 2.5 or less, and still more preferably 0.5 or more and 2 or less. Moreover, it is preferable that molar ratio O / Fe is 0.8 or less.
  • the filled container of the present invention is a filled container in which a metal storage container is filled with a fluorine-containing gas.
  • the molar ratio F / Fe of fluorine atom F to iron atom Fe is an average value in the range of 10 nm from the outermost surface on the surface in contact with the fluorine-containing gas inside the storage container.
  • the molar ratio O / Fe of the oxygen atom O to the iron atom Fe is 1 or less.
  • the molar ratio F / Fe and O / Fe can be calculated by the integrated intensity ratio of X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • information on the very surface of a material can be obtained, but by performing argon etching, information in the depth direction can be obtained.
  • the etching rate by argon etching changes with apparatuses or processing conditions, it is necessary to investigate the correlation of the etching amount with respect to etching processing time previously using a standard sample etc. previously. Then, each element is measured while performing etching at a constant time interval, data on the component ratio of the element to the depth is acquired, and from the result, it is possible to calculate an average value in the range of 10 nm from the surface.
  • the sample surface is configured by irradiating the sample with soft X-rays of MgK ⁇ line (1253.6 eV) or AlK ⁇ line (1486.6 eV) and measuring the kinetic energy of photoelectrons emitted from the sample surface.
  • MgK ⁇ line 1253.6 eV
  • AlK ⁇ line 1486.6 eV
  • the molar ratio F / Fe is 0.01 or more and less than 3, preferably 0.05 or more and less than 3, and more preferably 0.1 or more and 2.5 or less. More preferably, it is 0.5 or more and 2 or less.
  • the iron or manganese constituting the metal material becomes iron (III) fluoride or manganese (III) fluoride when it is fluorinated. Therefore, when the molar ratio F / Fe is less than 3, the surface of the metal material does not become iron (III) fluoride or manganese (III) fluoride in the stoichiometric ratio, and a fluoride film is formed. Not. Therefore, it is possible to suppress that the fluoride exfoliates from the film of fluoride and mixes in the fluorine-containing gas as a metal impurity.
  • the amount of fluorine atoms terminated on the surface of the metal material is small, so the unterminated (terminated with OH or H) portion of the metal reacts with the fluorine-containing gas, such as HF Cause the generation of impurities.
  • the molar ratio O / Fe is 1 or less, preferably 0.8 or less.
  • the oxygen bond portion reacts with the fluorine-containing gas to cause the formation of metal oxyfluoride (MO x F y ) which is easily mixed as a metal impurity in the fluorine-containing gas.
  • the molar ratio O / Fe is often 0.01 or more.
  • the storage container is at least composed of manganese steel on the inner surface.
  • the manganese steel preferably contains 97% by mass or more of iron and 1% by mass or more and 2% by mass or less of manganese.
  • the manganese steel is as described in [Method of producing a filled container].
  • the storage container has a surface roughness R max of 10 ⁇ m or less on the inner surface.
  • the surface roughness R max of the inner surface is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the surface roughness R max of the inner surface is often 0.1 ⁇ m or more.
  • the molar ratio O / Fe of the surface of the metal material after the fluorination treatment Is not preferable because the
  • the fluorine-containing gas filled in the storage container is at least one gas selected from the group consisting of ClF 3 , IF 7 , BrF 5 , F 2 and WF 6 .
  • the fluorine-containing gas is preferably at least one gas selected from the group consisting of interhalogen compounds ClF 3 , IF 7 and BrF 5 , among which a highly practical ClF 3 gas or IF 7 gas Is more preferred.
  • the filled container of the present invention it is possible to prevent the contamination of the fluorine-containing gas stored in the storage container with metal impurities derived from the metal material on the inner surface of the storage container.
  • the filling amount and pressure of the fluorine-containing gas stored in the storage container differ depending on the type of gas. For example, the boiling point (1 atm) and vapor pressure (35 ° C, gauge pressure), ClF 3 is about 12 ° C and 0.14MPa, IF 7 is about 5 ° C and 0.17MPa, BrF 5 is about 40 ° C and -0.
  • the filling amount in the storage container is preferably controlled by weight, since the pressure in the storage container liquefies when filled at a pressure higher than the vapor pressure.
  • ClF 3 , IF 7 and BrF 5 F 2 does not liquefy in the range of pressure and temperature normally used, so the filling amount depends on the pressure.
  • the content of the metal element contained in the metal impurities in the fluorine-containing gas removed from the filled container is preferably less than 10 mass ppb and less than 5 mass ppb. Is more preferred.
  • the content of each of Fe, Mn, Cr, and Ni in the fluorine-containing gas is preferably less than 10 mass ppb, and more preferably less than 5 mass ppb.
  • the content of the metal element contained in the metal impurities can be determined using inductively coupled plasma mass spectrometry (ICP-MS).
  • the purity of the fluorine-containing gas removed from the filled container is preferably 99.9% by volume or more, and more preferably more than 99.9% by volume.
  • the purity of the fluorine-containing gas is determined by analyzing impurities such as HF and O 2 in the fluorine-containing gas using Fourier transform infrared spectroscopy (FT-IR) and gas chromatography mass spectrometry (GC-MS). Is possible.
  • Example 1 3.4-L cylinder, made of manganese steel (symbol STH12, Mn: 1.35 to 1.70% by mass, C: 0.30 to 0.41% by mass, including other Si, P, and S)
  • the inner surface was polished by electrolytic polishing.
  • the surface roughness of the inner surface after polishing is measured by using a contact surface roughness meter and an atomic force microscope (AFM) on a test piece (metal piece obtained by cutting a container into 20 mm ⁇ 20 mm) treated under the same polishing conditions. It evaluated. As a result, the surface roughness R max was 1 ⁇ m or less.
  • the inner surface was fluorinated at 40 ° C. for 24 hours under atmospheric pressure without dilution as an F 2 gas as a first fluorine-containing gas, and then it was replaced with helium gas.
  • composition of the inner surface of the cylinder was evaluated using an X-ray photoelectron spectrophotometer for the above-mentioned test piece treated under the same conditions. As a result, F / Fe was 1.94 and O / Fe was 0.65.
  • Example 2 The same procedure was performed as in Example 1 except that the second fluorine-containing gas was changed to WF 6 gas.
  • the contents of Fe, Mn, Cr, and Ni in the WF 6 gas after storage were all less than 5 mass ppb, and the purity of the gas was over 99.9% by volume, which was the same as before storage.
  • the concentration of HF was less than 100 ppm by volume.
  • Example 3 The same procedure as in Example 1 was carried out except that the second fluorine-containing gas was changed to a ClF 3 gas.
  • the contents of Fe, Mn, Cr, and Ni in the ClF 3 gas after storage were all less than 5 mass ppb, and the purity of the gas was over 99.9% by volume, which was the same as before storage.
  • the concentration of HF was less than 100 ppm by volume.
  • Example 4 The same procedure as in Example 1 was performed except that the second fluorine-containing gas was changed to F 2 gas. However, in the cylinder, F 2 gas was sealed at a pressure of 0.5 MPa (gauge pressure, 35 ° C.). The contents of Fe, Mn, Cr, and Ni in the F 2 gas after storage were all less than 5 mass ppb, and the purity of the gas was over 99.9% by volume, which was the same as before storage. The concentration of HF was less than 100 ppm by volume.
  • Example 5 The same procedures as in Example 1 were carried out except that the conditions for enclosing the F 2 gas and performing the fluorination treatment were changed to normal temperature (20 to 25 ° C.).
  • the composition of the inner surface of the bomb was 0.82 in F / Fe and 0.33 in O / Fe according to XPS measurement of a test piece treated under the same conditions.
  • the contents of Fe, Mn, Cr, and Ni in the IF 7 gas after storage were all less than 5 mass ppb, and the purity of the gas was over 99.9% by volume, which was the same as before storage.
  • the concentration of HF was less than 100 ppm by volume.
  • Example 6 Change the first fluorine-containing gas and the second fluorine-containing gas to a ClF 3 gas with a metal impurity (Fe, Mn, Cr, Ni) concentration of less than 5 mass ppb and a purity of more than 99.9% by volume; The same procedure as in Example 1 was carried out except for sealing at 14 MPa (gauge pressure, 35 ° C.). The composition of the inner surface of the bomb was 1.56 in F / Fe and 0.48 in O / Fe according to XPS measurement of a test piece treated under the same conditions.
  • a metal impurity Fe, Mn, Cr, Ni
  • the contents of Fe, Mn, Cr, and Ni in the ClF 3 gas after storage were all less than 5 mass ppb, and the purity of the gas was over 99.9% by volume, which was the same as before storage.
  • the concentration of HF was less than 100 ppm by volume.
  • Example 7 The same procedure was performed as in Example 1 except that the first fluorine-containing gas was changed to IF 7 gas. Fe of IF 7 gas after storage, Mn, Cr, Ni content is less than 5 ppb by mass Both the purity of the gas did not change before and stored at greater than 99.9% by volume. The concentration of HF was less than 100 ppm by volume.
  • Example 8 The same procedure as in Example 1 was carried out except that the conditions of the electropolishing were changed to change the surface roughness R max of the inner surface of the cylinder to 4 ⁇ m.
  • the composition of the inner surface of the bomb was 1.15 for F / Fe and 0.62 for O / Fe according to XPS measurement of a test piece treated under the same conditions.
  • Fe of IF 7 gas after storage, Mn, Cr, Ni content is less than 5 ppb by mass Both the purity of the gas did not change before and stored at greater than 99.9% by volume.
  • the concentration of HF was less than 100 ppm by volume.
  • Comparative Example 1 The conditions of the electropolishing were changed to change the surface roughness R max of the inner surface of the cylinder to 12 ⁇ m, and the same procedure as in Example 1 was carried out except that the fluorination treatment using F 2 gas was not performed.
  • the composition of the inner surface of the bomb was 0 for F / Fe and 2.25 for O / Fe.
  • the content of Fe in the IF 7 gas after storage was 20 mass ppb, and exceeded 10 mass ppb. Furthermore, the purity of the gas was less than 99.9% by volume, and the concentration of HF was more than 100 ppm by volume.
  • Comparative Example 2 The same procedure as in Example 1 was carried out except that the fluorination treatment using F 2 gas was not performed.
  • the content of Fe in the IF 7 gas after storage was 18 mass ppb, and exceeded 10 mass ppb. Furthermore, the purity of the gas was less than 99.9% by volume, and the concentration of HF was more than 100 ppm by volume.
  • Comparative Example 3 The same procedure as in Example 1 was carried out except that the conditions of the electropolishing were changed to change the surface roughness R max of the inner surface of the cylinder to 12 ⁇ m.
  • the composition of the inner surface of the bomb was 1.2 for F / Fe and 1.46 for O / Fe.
  • the content of Fe in the IF 7 gas after storage was 11 mass ppb, and exceeded 10 mass ppb.
  • the purity of gas was over 99.9 volume%, the density
  • Comparative Example 4 The same procedure as in Example 1 was carried out except that the fluorination treatment was carried out by sealing the IF 7 gas at 80 ° C. for 24 hours.
  • the composition of the inner surface of the bomb was 4.52 in F / Fe and 0.57 in O / Fe.
  • the content of Fe in the IF 7 gas after storage was 11 mass ppb, and exceeded 10 mass ppb.
  • the purity of the gas was greater than 99.9% by volume, and the concentration of HF was less than 100 ppm by volume.
  • Comparative Example 5 The procedure of Example 1 was repeated except that the F 2 gas was sealed at 80 ° C. for 24 hours for fluorination treatment.
  • the content of Fe in IF 7 gas after storage was 10 mass ppb.
  • the purity of the gas was greater than 99.9% by volume, and the concentration of HF was less than 100 ppm by volume.
  • Comparative Example 6 Using a cylinder made of stainless steel (SUS 304) in place of manganese steel, enclosing ClF 3 gas at 80 ° C. for 24 hours for fluorination treatment, and changing the second fluorine-containing gas to ClF 3 gas Were carried out in the same manner as in Example 1.
  • the content of Cr in the ClF 3 gas after storage exceeded 150 mass ppb.
  • the purity of the gas was greater than 99.9% by volume, and the concentration of HF was less than 100 ppm by volume.
  • Comparative Example 7 The same procedure as in Example 1 was carried out except that a cylinder made of stainless steel (SUS304) was used instead of manganese steel.
  • the content of Cr in the IF 7 gas after storage exceeded 100 mass ppb.
  • the purity of the gas was greater than 99.9% by volume, and the concentration of HF was less than 100 ppm by volume.
  • Comparative Example 8 The same procedure as in Example 1 was carried out except using a cylinder made of stainless steel (SUS 304) in place of manganese steel and enclosing F 2 gas at 80 ° C. for 24 hours for fluorination treatment.
  • the content of Cr in the IF 7 gas after storage exceeded 100 mass ppb.
  • the purity of the gas was greater than 99.9% by volume, and the concentration of HF was less than 100 ppm by volume.
  • Example 8 in which the surface roughness R max of the inner surface of the cylinder is 4 ⁇ m, impurities due to peeling at the time of impact, and in comparison with Example 1 in which the surface roughness R max of the inner surface of the cylinder is 1 ⁇ m or less It is thought that impurities are likely to occur when stored for a long time.
  • Comparative Example 1 where the surface roughness of the inner surface of the cylinder was high and the fluorination treatment was not performed, the atmospheric component adsorbed on the inner surface of the cylinder was released, and further, this atmospheric component reacted with the IF 7 gas. It is considered that the purity of the IF 7 gas is lowered by this. Further, in Comparative Example 1, since the fluorination treatment was not performed, the surface of the manganese steel was not terminated with F, and the manganese steel and the IF 7 gas reacted, and iron fluoride or iron oxyfluoride derived from manganese steel It is considered that the content of Fe exceeded 10 mass ppb because it was mixed in the IF 7 gas. Furthermore, in Comparative Example 1, HF was generated by reaction of a portion of the manganese steel surface terminated with H or OH with the IF 7 gas, so it is considered that the concentration of HF exceeded 100 ppm by volume.
  • Comparative Example 2 Although the surface roughness of the inner surface of the cylinder was low, the fluorination treatment was not performed, so the purity of IF 7 gas was low, the concentration of HF exceeded 100 volume ppm, and Fe as in Comparative Example 1. It is considered that the content exceeded 10 mass ppb.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

本発明の充填済み容器の製造方法は、少なくとも内面がマンガン鋼で構成されており、該内面の表面粗さRmaxが10μm以下である、金属製の保存容器を準備する工程と、上記保存容器の内面を、50℃以下で、ClF3、IF7、BrF5、F2及びWF6からなる群から選ばれる少なくとも一種の第1の含フッ素ガスを含むガスと接触させるフッ素化工程と、上記保存容器の内部を不活性ガスで置換する工程と、上記保存容器の内部に、ClF3、IF7、BrF5、F2及びWF6からなる群から選ばれる少なくとも一種の第2の含フッ素ガスを充填する工程と、を含むことを特徴とする。

Description

充填済み容器の製造方法、及び、充填済み容器
本発明は、ClFやIFなどの含フッ素ガスを金属製の保存容器に充填して充填済み容器を製造する方法、及び、上記充填済み容器に関する。
ClFやIFなどの含フッ素ガスを充填する保存容器には、ステンレス鋼を用いた容器が使用されている。
しかし、含フッ素ガスは腐食性が高いため、ステンレス鋼に接触させると、含フッ素ガスとステンレス鋼の表面が反応して、保存容器が腐食するのと同時に、例えばClFからClFが副生したり、IFからIFが副生したりするため、含フッ素ガスの純度が低下する問題があった。さらに、含フッ素ガスとステンレス鋼が反応すると、金属のフッ化物とオキシフッ化物などが含フッ素ガス中に混入して、金属不純物が大量に発生する問題があった。
金属製の保存容器と含フッ素ガスとの反応を抑制するため、金属材料の表面にフッ化物の皮膜を形成することが行われている。例えば、特許文献1には、ClFガスの金属への吸着抑制と、金属表面での反応抑制により、ClF量の減少を防止する目的で、ステンレス鋼等の金属材料を80℃以下の温度でClFに暴露し、金属材料の表面にフッ化物の皮膜を形成することが開示されている。特許文献1の実施例では、ステンレス鋼等の金属容器に濃度100%のClFガスを充填し、80℃で18時間保持することにより、金属容器の内面をClFに暴露して、フッ化物の皮膜を形成している。
また、特許文献2には、溶接する際に発生する金属析出物を抑制する目的で、良好な耐食性を有するフッ化物の皮膜を形成する際に、フッ化物の皮膜の厚さを190オングストローム以下にすることが開示されている。特許文献2の実施例では、ステンレス鋼を150℃に加熱して1%希釈Fガスに暴露して、フッ化物の皮膜を形成している。
本件の優先日より後に公開された文献であるが、特許文献3には、保存容器に充填したClFのフッ化反応及び吸着を抑制する目的で、ClFを含むガスとの接触によりフッ化物の不動態被膜を形成することが開示されている。特許文献3の実施例では、ClFガスを用いた10~100℃での処理により厚さ4nmの不動態被膜を形成し、Fガスを用いた10~100℃での処理により厚さ8nmの不動態被膜を形成している。
一方、半導体デバイスの製造においては、微細化および高集積化技術の発展により、加工の技術的難易度は年々高くなっている。このような状況の中で半導体デバイスの材料に含まれる不純物は、半導体デバイスの製造工程において、製品の歩留まりを低下させるなどの問題を引き起こす懸念がある。そこで、半導体デバイス製造プロセスなどで使用される含フッ素ガスについても、その高純度化が要求され、特に、半導体デバイスの電気特性へ与える影響が大きい金属不純物については、ガス中の濃度を10質量ppb未満に低減することが要求されている。
特開2009-197274号公報(特許5317321号公報) 国際公開第2000/034546号(特許4319356号公報) 国際公開第2017/175562号
特許文献1~3のように、金属材料の表面にフッ化物の皮膜を形成すれば、含フッ素ガスと金属材料の表面との反応を抑制できるため、金属材料の腐食と、含フッ素ガスの純度の低下を抑制する効果、さらには、含フッ素ガスと金属材料との反応により生じる金属不純物の発生を抑制する効果は得られる。しかしながら、微量の金属不純物が含フッ素ガス中に混入してしまうため、金属不純物の濃度を10質量ppb未満にすることができなかった。
例えば、フッ化物の皮膜を形成したステンレス鋼製の容器にClFガスを充填した場合、ステンレス鋼に含まれるCrやFe等の金属が金属不純物としてClFガス中に混入し、ClFガス中の金属不純物の濃度が経時的に増加する。
本発明は、上記の問題を解決するためになされたものであり、含フッ素ガスの純度の低下を抑制するだけでなく、含フッ素ガスへの金属材料に由来する金属不純物の混入を防止することが可能な充填済み容器の製造方法、及び、上記充填済み容器を提供することを目的とする。
本発明者らは、上記目的を達成すべく種々検討した結果、含フッ素ガスへの微量の金属不純物の混入は、金属表面の終端部(フッ素化処理がなされていない場合、通常、水素や酸素、水酸基等で終端)や、金属表面に付着した水分等と、含フッ素ガスが反応し、その際に金属元素を含むオキシフッ化物が生成することによって生じるだけでなく、金属材料の表面に形成されたフッ化物皮膜が、衝撃や水分等の影響で表面から剥離し、金属パーティクルとして含フッ素ガスに混入することにより生じることが原因ではないかと考えた。そこで、金属材料の表面にフッ化物皮膜を形成せずに、フッ素原子で終端する程度のフッ素化処理を行うことで、含フッ素ガスの分解抑制と、金属不純物の含フッ素ガスへの混入防止の両立ができることを見出した。
すなわち、本発明の充填済み容器の製造方法は、少なくとも内面がマンガン鋼で構成されており、該内面の表面粗さRmaxが10μm以下である、金属製の保存容器を準備する工程と、上記保存容器の内面を、50℃以下で、ClF、IF、BrF、F及びWFからなる群から選ばれる少なくとも一種の第1の含フッ素ガスを含むガスと接触させるフッ素化工程と、上記保存容器の内部を不活性ガスで置換する工程と、上記保存容器の内部に、ClF、IF、BrF、F及びWFからなる群から選ばれる少なくとも一種の第2の含フッ素ガスを充填する工程と、を含むことを特徴とする。
また、本発明の充填済み容器は、金属製の保存容器に、ClF、IF、BrF、F及びWFからなる群から選ばれる少なくとも一種の含フッ素ガスが充填された充填済み容器であって、上記保存容器は、少なくとも内面がマンガン鋼で構成されており、該内面の表面粗さRmaxが10μm以下であり、上記保存容器の内部の上記含フッ素ガスと接触する面にて、最表面から10nmの範囲の平均値で、フッ素原子Fと鉄原子Feとのモル比F/Feが0.01以上3未満であり、酸素原子Oと鉄原子Feとのモル比O/Feが1以下であることを特徴とする。
本発明によれば、含フッ素ガスの純度の低下を抑制することができるとともに、含フッ素ガスへの金属材料に由来する金属不純物の混入を防止することができる。
以下、本発明について詳細に説明するが、以下に記載する構成要件の説明は本発明の実施形態の一例であり、これらの具体的内容に限定はされない。その要旨の範囲内で種々変形して実施することができる。
[充填済み容器の製造方法]
本発明の充填済み容器の製造方法は、金属製の保存容器を準備する工程と、上記保存容器の内面を、50℃以下で、第1の含フッ素ガスを含むガスと接触させるフッ素化工程と、上記保存容器の内部を不活性ガスで置換する工程と、上記保存容器の内部に第2の含フッ素ガスを充填する工程と、を含む。
本発明の充填済み容器の製造方法において、保存容器は、少なくとも内面がマンガン鋼で構成されている。
金属元素のうち、クロムは含フッ素ガスに混入しやすいため、ステンレス鋼に比べてクロムの含有量が少ないマンガン鋼を用いることにより、保存容器に充填する含フッ素ガスへの、保存容器内面の金属材料に由来する金属不純物の混入を防ぐことができる。
マンガン鋼は、鉄を97質量%以上含み、マンガンを1質量%以上2質量%以下含むことが好ましい。マンガン鋼にニッケルやクロムが不可避的に混入する場合であっても、ニッケルの含有量は0.25質量%以下、クロムの含有量は0.35質量%以下であることが好ましい。マンガン鋼として、例えば、JIS G 4053:2016にて規定されるSMn420、SMn433、SMn438、SMn443や、JIS G 3429:2013にて規定されるSTH11、STH12などを使用することができる。
本発明の充填済み容器の製造方法において、保存容器は、内面の表面粗さRmaxが10μm以下である。上記内面の表面粗さRmaxは、5μm以下であることが好ましく、1μm以下であることがより好ましい。一方、上記内面の表面粗さRmaxは、0.1μm以上である場合が多い。
ここで、表面粗さRmaxは、JIS B 0601:1982にて規定される最大高さのことであり、断面曲線の基準長さの範囲内において、表面のうねりを除いた粗さ曲線の一番高い山と一番低い谷との高低差を意味する。
表面粗さ(最大高さ)が大きい場合、金属材料の表面のガス吸着性能が増加する。そのため、金属材料の表面粗さが大きい場合、金属材料の表面にO等の大気成分が吸着して残存するため、それが脱離して金属材料に接触する含フッ素ガスに混入し、保存容器内で保存される含フッ素ガスの純度が低下する原因となる。また、金属材料の表面粗さが大きい場合、金属材料の表面に残存する水分が含フッ素ガスと反応し、HF等の不純物が発生する原因にもなる。したがって、金属材料の表面粗さを小さくすることで、表面に吸着する大気成分や表面に残存する水分を減らし、含フッ素ガスの純度低下を抑制することができる。
本発明の充填済み容器の製造方法においては、例えば、保存容器の内面を研磨することにより、内面の表面粗さRmaxを10μm以下にすることができる。
保存容器の内面を研磨する方法は、所定の粗度まで研磨できれば特に限定されないが、例えば、バフ研磨処理、電解研磨処理、バレル研磨処理などを用いることができる。
バフ研磨処理とは、布や紙製の研磨布で、必要に応じて研磨材を用いて、金属材料を研磨する方法である。電解研磨処理とは、電解液中で電気を流すことによって、金属材料の表面を研磨する方法である。
バレル研磨処理とは、容器の内部に、研磨材、溶媒、添加剤などを含む研磨懸濁液を加えて密栓した後、容器を自転運動と公転運動とを組み合わせて回転させることで、容器の内面に研磨材を接触させ、内面を研磨する方法である。研磨材の材質としては、ダイヤモンド、ジルコニア、アルミナ、シリカ、窒化ケイ素、炭化ケイ素、シリカ-アルミナ、鉄、炭素鋼、クロム鋼、ステンレス鋼等が挙げられる。研磨処理に用いる溶媒は、特に限定されないが、通常は水が用いられる。研磨処理に用いる添加剤としては、pH調整剤、界面活性剤、防錆剤などが挙げられる。
研磨処理の終了後、水やアルコールを用いて、表面に付着した研磨材などを除去し、金属材料の表面を洗浄する。その後、表面を乾燥する。
本発明の充填済み容器の製造方法においては、上記保存容器の内面を、50℃以下で、第1の含フッ素ガスを含むガスと接触させるフッ素化処理を行う。
フッ素化処理は、50℃以下で行い、金属材料の表面を、フッ素原子と酸素原子のいずれかで終端させる。これにより、水素原子や水酸基で終端された部分と含フッ素ガスとの反応による、HF等の不純物の発生を抑制することができる。
フッ素化処理の温度が50℃を超えると、含フッ素ガスと金属材料の表面との反応が激しくなり、金属フッ化物の皮膜が形成されてしまうことが多い。また、フッ素化処理の温度が50℃を超えると、フッ素化処理の際に、金属材料の表面の酸素原子が、OFなどとして脱離し、フッ素原子に置換されてしまう。
本発明の充填済み容器の製造方法において、フッ素化処理は、40℃以下で行うことが好ましく、30℃以下で行うことがより好ましい。フッ素化処理の温度の下限値は特に限定されないが、フッ素化処理は、0℃以上で行うことが好ましく、10℃以上で行うことがより好ましい。
第1の含フッ素ガスは、ClF、IF、BrF、F及びWFからなる群から選ばれる少なくとも一種のガスである。フッ素化処理に用いられる第1の含フッ素ガスは、保存容器内で保存される第2の含フッ素ガスと異なっていてもよいし、同じであってもよい。第1の含フッ素ガスは、Fガスであることが好ましい。FガスはFのみで構成されており、ClFやIFなどの副生成物が発生しないため、保存容器内で保存される含フッ素ガスの純度の低下を抑制することができる。
フッ素化処理の圧力は特に限定されないが、例えば、10kPa以上1MPa以下の範囲で適宜設定することができる。フッ素化処理は、例えば、大気圧下で行ってもよい。
フッ素化処理の時間は特に限定されないが、例えば、1分以上24時間以下の範囲で、適宜設定することができる。フッ素化処理にかかる時間は、フッ素化処理の温度又は圧力、フッ素化処理に用いる含フッ素ガスの含有量などに左右されるが、フッ素化処理に用いる含フッ素ガスの圧力が減少しなくなった時点をフッ素化処理の終点とすることができる。なお、後述する各実施例では、フッ素化処理に充分な時間をとっており、フッ素化処理が完了していると考えられる。
本発明の充填済み容器の製造方法においては、フッ素化処理の後、保存容器の内部を不活性ガスで置換する。
不活性ガスとしては、アルゴンガスやヘリウムガスなどの希ガスのほか、窒素ガスなどを使用することができる。
本発明の充填済み容器の製造方法においては、不活性ガスで置換した後の保存容器の内部に、第2の含フッ素ガスを充填する。
第2の含フッ素ガスは、ClF、IF、BrF、F及びWFからなる群から選ばれる少なくとも一種のガスである。第2の含フッ素ガスは、ハロゲン間化合物であるClF、IF及びBrFからなる群から選ばれる少なくとも一種のガスであることが好ましく、中でも、実用性の高いClFガス又はIFガスであることがより好ましい。
以上により、充填済み容器が得られる。本発明の充填済み容器の製造方法では、[充填済み容器]において説明する充填済み容器を好ましく製造することができる。
例えば、本発明の充填済み容器の製造方法では、保存容器の内部の含フッ素ガスと接触する面にて、最表面から10nmの範囲の平均値で、フッ素原子Fと鉄原子Feとのモル比F/Feが0.01以上3未満であり、酸素原子Oと鉄原子Feとのモル比O/Feが1以下である充填済み容器を製造することができる。モル比F/Feは、0.05以上3未満であることが好ましく、0.1以上2.5以下であることがより好ましく、0.5以上2以下であることがさらに好ましい。また、モル比O/Feは、0.8以下であることが好ましい。
[充填済み容器]
本発明の充填済み容器は、金属製の保存容器に含フッ素ガスが充填された充填済み容器である。
本発明の充填済み容器においては、保存容器の内部の含フッ素ガスと接触する面にて、最表面から10nmの範囲の平均値で、フッ素原子Fと鉄原子Feとのモル比F/Feが0.01以上3未満であり、酸素原子Oと鉄原子Feとのモル比O/Feが1以下である。
モル比F/FeとO/Feは、X線光電子分光分析(XPS)の積分強度比で算出することができる。XPSでは、材料のごく表面の情報が得られるが、アルゴンエッチングを行うことで、深さ方向の情報を得ることができる。なお、アルゴンエッチングによるエッチング速度は装置や処理条件によって異なるため、あらかじめ標準試料などを用いて、エッチング処理時間に対するエッチング量の相関を調べておく必要がある。そして、一定の時間間隔でエッチングを行いながら各元素の測定を行い、深さに対する元素の構成比に関するデータを取得し、その結果から、表面から10nmの範囲の平均値を計算することができる。例えば、XPSでは、MgKα線(1253.6eV)やAlKα線(1486.6eV)の軟X線を試料に照射し、試料表面から放出される光電子の運動エネルギーを計測することで、試料表面を構成する元素の種類、存在量、化学結合状態に関する知見を得る。
本発明の充填済み容器において、モル比F/Feは、0.01以上3未満であり、0.05以上3未満であることが好ましく、0.1以上2.5以下であることがより好ましく、0.5以上2以下であることがさらに好ましい。
金属材料を構成する鉄又はマンガンは、フッ素化すると、フッ化鉄(III)又はフッ化マンガン(III)となる。そのため、モル比F/Feが3未満である場合、金属材料の表面は化学量論比でフッ化鉄(III)又はフッ化マンガン(III)となっておらず、フッ化物の皮膜は形成されていない。したがって、フッ化物の皮膜からフッ化物が剥離して含フッ素ガス中に金属不純物として混入することを抑制することができる。
モル比F/Feが0.01未満である場合、金属材料の表面のフッ素原子の終端量が少ないため、金属の未終端(OHやHで終端)部分と含フッ素ガスが反応し、HF等の不純物が発生する原因となる。
一方、モル比F/Feが3を超える場合、金属材料の表面にフッ素化合物の皮膜が形成されるため、この被膜が剥離する等によって、金属不純物として発生するとともに、皮膜が剥離した後の金属表面が含フッ素ガスと反応し、金属不純物が発生する原因となる。
本発明の充填済み容器において、モル比O/Feは、1以下であり、0.8以下であることが好ましい。金属材料の表面に酸素が多いと、酸素結合部分と含フッ素ガスが反応し、含フッ素ガス中に金属不純物として混入しやすい、金属のオキシフッ化物(MO)を生成する原因となる。一方、酸素の混入を完全に防ぐことは難しいため、モル比O/Feは、0.01以上である場合が多い。
本発明の充填済み容器において、保存容器は、少なくとも内面がマンガン鋼で構成されている。マンガン鋼は、鉄を97質量%以上含み、マンガンを1質量%以上2質量%以下含むことが好ましい。
その他、マンガン鋼については、[充填済み容器の製造方法]において説明したとおりである。
本発明の充填済み容器において、保存容器は、内面の表面粗さRmaxが10μm以下である。上記内面の表面粗さRmaxは、5μm以下であることが好ましく、1μm以下であることがより好ましい。一方、上記内面の表面粗さRmaxは、0.1μm以上である場合が多い。
[充填済み容器の製造方法]において説明したとおり、金属材料の表面粗さが大きい場合、金属材料の表面に大気成分や水分が残存するため、保存容器内で保存される含フッ素ガスの純度が低下する原因となる。また、[充填済み容器の製造方法]により充填済み容器を製造する場合、金属材料の表面に多量の大気成分が吸着していると、フッ素化処理後の金属材料の表面のモル比O/Feが大きくなってしまうため好ましくない。
本発明の充填済み容器において、保存容器に充填される含フッ素ガスは、ClF、IF、BrF、F及びWFからなる群から選ばれる少なくとも一種のガスである。含フッ素ガスは、ハロゲン間化合物であるClF、IF及びBrFからなる群から選ばれる少なくとも一種のガスであることが好ましく、中でも、実用性の高いClFガス又はIFガスであることがより好ましい。
以上のように、本発明の充填済み容器では、保存容器内で保存される含フッ素ガスへの、保存容器の内面の金属材料に由来する金属不純物の混入を防ぐことができる。
保存容器中に保存する含フッ素ガスの充填量や圧力は、ガスの種類によって異なる。例えば、沸点(1気圧)と蒸気圧(35℃、ゲージ圧)が、ClFが約12℃と0.14MPa、IFが約5℃と0.17MPa、BrFが約40℃と-0.02MPaであり、蒸気圧以上の圧力で充填すると保存容器内では液化するため、保存容器中の充填量は重量で制御することが好ましい。一方、Fは、ClFやIF、BrFと異なり、通常使用する圧力や温度の範囲では液化することが無いため、充填量は圧力に依存する。
本発明の充填済み容器においては、充填済み容器から取り出された含フッ素ガス中の金属不純物に含まれる金属元素の含有量が、10質量ppb未満であることが好ましく、5質量ppb未満であることがより好ましい。特に、含フッ素ガス中のFe、Mn、Cr、Niの含有量が、いずれも10質量ppb未満であることが好ましく、いずれも5質量ppb未満であることがより好ましい。
金属不純物に含まれる金属元素の含有量は、誘導結合プラズマ質量分析(ICP-MS)を用いて求めることが可能である。
また、本発明の充填済み容器において、充填済み容器から取り出された含フッ素ガスの純度は、99.9体積%以上であることが好ましく、99.9体積%を超えることがより好ましい。
含フッ素ガスの純度は、フーリエ変換赤外分光分析(FT-IR)及びガスクロマトグラフ質量分析(GC-MS)を用いて含フッ素ガス中のHF、Oなどの不純物を分析することにより求めることが可能である。
以下、本発明をより具体的に開示した実施例を示す。なお、本発明は、これらの実施例のみに限定されるものではない。
[実施例1]
マンガン鋼(記号STH12、Mn:1.35~1.70質量%、C:0.30~0.41質量%、その他Si、P、Sを含む)で構成された、3.4L型ボンベの内面を、電解研磨によって研磨した。研磨後の内面の表面粗さは、同じ研磨条件で処理したテストピース(容器を20mm×20mmに切断した金属片)を接触式表面粗さ計、及び、原子間力顕微鏡(AFM)で測定して評価した。その結果、表面粗さRmaxは、1μm以下であった。
その後、40℃で、第1の含フッ素ガスとしてFガスを希釈せずに大気圧で24時間封入して内面をフッ素化処理した後、ヘリウムガスで置換した。
ボンベの内面の組成は、同様の条件で処理した前述のテストピースをX線光電子分光光度計にて評価した。その結果、F/Feが1.94であり、O/Feが0.65であった。
ボンベ内に、第2の含フッ素ガスとして、金属不純物(Fe、Mn、Cr、Ni)濃度5質量ppb未満、純度99.9体積%超のIFガスを2kg、0.17MPa(ゲージ圧、35℃)で封入し、常温(20~25℃)で1ヶ月保管した。保管後のIFガスの一部を抜き出し、金属不純物の濃度、HFの濃度、及び、ガスの純度を測定した。その結果、金属不純物に含まれるFe、Mn、Cr、Niの含有量はいずれも5質量ppb未満であり、ガスの純度は99.9体積%超で保管前と変わらなかった。HFの濃度は100体積ppm未満であった。
[実施例2]
第2の含フッ素ガスをWFガスに変更する以外は、実施例1と同様に行った。保管後のWFガス中のFe、Mn、Cr、Niの含有量はいずれも5質量ppb未満であり、ガスの純度は99.9体積%超で保管前と変わらなかった。HFの濃度は100体積ppm未満であった。
[実施例3]
第2の含フッ素ガスをClFガスに変更する以外は、実施例1と同様に行った。保管後のClFガス中のFe、Mn、Cr、Niの含有量はいずれも5質量ppb未満であり、ガスの純度は99.9体積%超で保管前と変わらなかった。HFの濃度は100体積ppm未満であった。
[実施例4]
第2の含フッ素ガスをFガスに変更する以外は、実施例1と同様に行った。但し、ボンベ内にはFガスを0.5MPa(ゲージ圧、35℃)の圧力で封入した。保管後のFガス中のFe、Mn、Cr、Niの含有量はいずれも5質量ppb未満であり、ガスの純度は99.9体積%超で保管前と変わらなかった。HFの濃度は100体積ppm未満であった。
[実施例5]
ガスを封入してフッ素化処理する条件を、常温(20~25℃)に変更する以外は、実施例1と同様に行った。ボンベの内面の組成は、同様の条件で処理したテストピースのXPS測定より、F/Feが0.82であり、O/Feが0.33であった。また、保管後のIFガス中のFe、Mn、Cr、Niの含有量はいずれも5質量ppb未満であり、ガスの純度は99.9体積%超で保管前と変わらなかった。HFの濃度は100体積ppm未満であった。
[実施例6]
第1の含フッ素ガス及び第2の含フッ素ガスを金属不純物(Fe、Mn、Cr、Ni)濃度5質量ppb未満、純度99.9体積%超のClFガスに変更し、2kg、0.14MPa(ゲージ圧、35℃)で封入する以外は、実施例1と同様に行った。ボンベの内面の組成は、同様の条件で処理したテストピースのXPS測定より、F/Feが1.56であり、O/Feが0.48であった。また、保管後のClFガス中のFe、Mn、Cr、Niの含有量はいずれも5質量ppb未満であり、ガスの純度は99.9体積%超で保管前と変わらなかった。HFの濃度は100体積ppm未満であった。
[実施例7]
第1の含フッ素ガスをIFガスに変更する以外は、実施例1と同様に行った。保管後のIFガス中のFe、Mn、Cr、Niの含有量はいずれも5質量ppb未満であり、ガスの純度は99.9体積%超で保管前と変わらなかった。HFの濃度は100体積ppm未満であった。
[実施例8]
電解研磨の条件を変化させてボンベの内面の表面粗さRmaxを4μmに変更する以外は、実施例1と同様に行った。ボンベの内面の組成は、同様の条件で処理したテストピースのXPS測定より、F/Feが1.15であり、O/Feが0.62であった。保管後のIFガス中のFe、Mn、Cr、Niの含有量はいずれも5質量ppb未満であり、ガスの純度は99.9体積%超で保管前と変わらなかった。HFの濃度は100体積ppm未満であった。
[比較例1]
電解研磨の条件を変化させてボンベの内面の表面粗さRmaxを12μmに変更し、さらに、Fガスを用いたフッ素化処理を行わない以外は、実施例1と同様に行った。ボンベの内面の組成は、F/Feが0であり、O/Feが2.25であった。保管後のIFガス中のFeの含有量は20質量ppbであり、10質量ppbを超えていた。さらに、ガスの純度は99.9体積%未満であり、HFの濃度は100体積ppmを超えていた。
[比較例2]
ガスを用いたフッ素化処理を行わない以外は、実施例1と同様に行った。保管後のIFガス中のFeの含有量は18質量ppbであり、10質量ppbを超えていた。さらに、ガスの純度は99.9体積%未満であり、HFの濃度は100体積ppmを超えていた。
[比較例3]
電解研磨の条件を変化させてボンベの内面の表面粗さRmaxを12μmに変更する以外は、実施例1と同様に行った。ボンベの内面の組成は、F/Feが1.2であり、O/Feが1.46であった。保管後のIFガス中のFeの含有量は11質量ppbであり、10質量ppbを超えていた。なお、ガスの純度は99.9体積%超であったが、HFの濃度は100体積ppmを超えていた。
[比較例4]
IFガスを80℃で24時間封入してフッ素化処理を行う以外は、実施例1と同様に行った。ボンベの内面の組成は、F/Feが4.52であり、O/Feが0.57であった。保管後のIFガス中のFeの含有量は11質量ppbであり、10質量ppbを超えていた。ガスの純度は99.9体積%超であり、HFの濃度は100体積ppm未満であった。
[比較例5]
ガスを80℃で24時間封入してフッ素化処理を行う以外は、実施例1と同様に行った。保管後のIFガス中のFeの含有量は10質量ppbであった。ガスの純度は99.9体積%超であり、HFの濃度は100体積ppm未満であった。
[比較例6]
マンガン鋼に代えてステンレス鋼(SUS304)で構成されたボンベを用い、ClFガスを80℃で24時間封入してフッ素化処理を行い、第2の含フッ素ガスをClFガスに変更する以外は、実施例1と同様に行った。保管後のClFガス中のCrの含有量は150質量ppbを超えていた。ガスの純度は99.9体積%超であり、HFの濃度は100体積ppm未満であった。
[比較例7]
マンガン鋼に代えてステンレス鋼(SUS304)で構成されたボンベを用いる以外は、実施例1と同様に行った。保管後のIFガス中のCrの含有量は100質量ppbを超えていた。ガスの純度は99.9体積%超であり、HFの濃度は100体積ppm未満であった。
[比較例8]
マンガン鋼に代えてステンレス鋼(SUS304)で構成されたボンベを用い、Fガスを80℃で24時間封入してフッ素化処理を行う以外は、実施例1と同様に行った。保管後のIFガス中のCrの含有量は100質量ppbを超えていた。ガスの純度は99.9体積%超であり、HFの濃度は100体積ppm未満であった。
実施例1~8及び比較例1~8を以下の表1及び表2にまとめた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
表1に示すように、50℃以下でフッ素化処理を行った実施例1~8においては、保管後の含フッ素ガス中のFe、Mn、Cr、Niの含有量がいずれも5質量ppb未満であり、HFの濃度が100体積ppm未満であり、含フッ素ガスの純度が99.9体積%超であった。表2に示すように、実施例1、5、6及び8では、いずれもモル比F/Feが0.01以上3未満であり、モル比O/Feが1以下であった。
なお、ボンベの内面の表面粗さRmaxが4μmである実施例8においては、ボンベの内面の表面粗さRmaxが1μm以下である実施例1に比べて、衝撃時の剥離による不純物や、長期間保存した際の不純物が生じやすいと考えられる。
一方で、ボンベの内面の表面粗さが高く、フッ素化処理を行わなかった比較例1では、ボンベの内面に吸着した大気成分が放出され、さらには、この大気成分とIFガスが反応したことにより、IFガスの純度が低下したと考えられる。
また、比較例1では、フッ素化処理を行わなかったため、マンガン鋼の表面がFで終端されておらず、マンガン鋼とIFガスが反応し、マンガン鋼に由来するフッ化鉄やオキシフッ化鉄がIFガス中に混入したため、Feの含有量が10質量ppbを超えたと考えられる。
さらに、比較例1では、マンガン鋼の表面がHやOHで終端された部分とIFガスが反応することによりHFが発生したため、HFの濃度が100体積ppmを超えたと考えられる。
比較例2では、ボンベの内面の表面粗さが低いものの、フッ素化処理を行わなかったため、比較例1と同様、IFガスの純度が低く、HFの濃度が100体積ppmを超え、Feの含有量が10質量ppbを超えたと考えられる。
比較例3では、フッ素化処理を行っているが、ボンベの内面の表面粗さが高いため、IFガスの純度は低下しないものの、金属不純物の含有量が多く、HFの濃度も高くなったと考えられる。
比較例4及び5では、80℃で過度のフッ素化処理を行ったため、ボンベの内面にフッ化物の皮膜が形成されてしまい、フッ化物の皮膜のフッ化鉄に由来してFeの含有量が10質量ppbを超えたと考えられる。
比較例6~8では、ボンベの内面がステンレス鋼で構成されているため、金属不純物に含まれるCrの含有量が非常に多くなったと考えられる。

Claims (11)

  1. 少なくとも内面がマンガン鋼で構成されており、該内面の表面粗さRmaxが10μm以下である、金属製の保存容器を準備する工程と、
    前記保存容器の内面を、50℃以下で、ClF、IF、BrF、F及びWFからなる群から選ばれる少なくとも一種の第1の含フッ素ガスを含むガスと接触させるフッ素化工程と、
    前記保存容器の内部を不活性ガスで置換する工程と、
    前記保存容器の内部に、ClF、IF、BrF、F及びWFからなる群から選ばれる少なくとも一種の第2の含フッ素ガスを充填する工程と、
    を含むことを特徴とする充填済み容器の製造方法。
  2. 前記第1の含フッ素ガスが、Fガスである請求項1に記載の充填済み容器の製造方法。
  3. 前記第2の含フッ素ガスが、ClFガス又はIFガスである請求項1又は2に記載の充填済み容器の製造方法。
  4. 前記保存容器の内面の表面粗さRmaxが1μm以下である請求項1~3のいずれか1項に記載の充填済み容器の製造方法。
  5. 前記マンガン鋼が、鉄を97質量%以上含む請求項1~4のいずれか1項に記載の充填済み容器の製造方法。
  6. 金属製の保存容器に、ClF、IF、BrF、F及びWFからなる群から選ばれる少なくとも一種の含フッ素ガスが充填された充填済み容器であって、
    前記保存容器は、少なくとも内面がマンガン鋼で構成されており、該内面の表面粗さRmaxが10μm以下であり、
    前記保存容器の内部の前記含フッ素ガスと接触する面にて、最表面から10nmの範囲の平均値で、フッ素原子Fと鉄原子Feとのモル比F/Feが0.01以上3未満であり、酸素原子Oと鉄原子Feとのモル比O/Feが1以下であることを特徴とする充填済み容器。
  7. 充填済み容器から取り出された前記含フッ素ガス中の金属不純物に含まれる金属元素の含有量が、10質量ppb未満である請求項6に記載の充填済み容器。
  8. 前記モル比F/Feが0.1以上2.5以下である請求項6又は7に記載の充填済み容器。
  9. 前記含フッ素ガスが、ClFガス又はIFガスである請求項6~8のいずれか1項に記載の充填済み容器。
  10. 前記保存容器の内面の表面粗さRmaxが1μm以下である請求項6~9のいずれか1項に記載の充填済み容器。
  11. 前記マンガン鋼が、鉄を97質量%以上含む請求項6~10のいずれか1項に記載の充填済み容器。
PCT/JP2018/027662 2017-08-01 2018-07-24 充填済み容器の製造方法、及び、充填済み容器 WO2019026682A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11202000802RA SG11202000802RA (en) 2017-08-01 2018-07-24 Method for manufacturing filled container, and filled container
CN201880044231.9A CN110832106B (zh) 2017-08-01 2018-07-24 已完成填充的容器的制造方法以及已完成填充的容器
JP2019534055A JP7116328B2 (ja) 2017-08-01 2018-07-24 充填済み容器の製造方法、及び、充填済み容器
US16/625,963 US11519557B2 (en) 2017-08-01 2018-07-24 Method for manufacturing filled container, and filled container
KR1020207006008A KR102527163B1 (ko) 2017-08-01 2018-07-24 충전이 끝난 용기의 제조 방법 및 충전이 끝난 용기
JP2022120646A JP7303467B2 (ja) 2017-08-01 2022-07-28 充填済み容器の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-148961 2017-08-01
JP2017148961 2017-08-01

Publications (1)

Publication Number Publication Date
WO2019026682A1 true WO2019026682A1 (ja) 2019-02-07

Family

ID=65232628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027662 WO2019026682A1 (ja) 2017-08-01 2018-07-24 充填済み容器の製造方法、及び、充填済み容器

Country Status (7)

Country Link
US (1) US11519557B2 (ja)
JP (2) JP7116328B2 (ja)
KR (1) KR102527163B1 (ja)
CN (1) CN110832106B (ja)
SG (1) SG11202000802RA (ja)
TW (1) TWI771464B (ja)
WO (1) WO2019026682A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041403A (zh) * 2019-12-29 2020-04-21 中船重工(邯郸)派瑞特种气体有限公司 一种电子气体存储用钢瓶的处理方法
CN114981481A (zh) * 2020-01-06 2022-08-30 中央硝子株式会社 金属材料、金属材料的制造方法、半导体处理装置的钝化方法、半导体器件的制造方法及已填充的容器的制造方法
WO2024053341A1 (ja) * 2022-09-06 2024-03-14 住友精化株式会社 二酸化硫黄混合物充填容器及び二酸化硫黄組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113005389B (zh) * 2021-02-02 2023-05-23 福建德尔科技股份有限公司 电子级三氟化氯的包装钢瓶的处理方法
CN112944204B (zh) * 2021-02-02 2021-11-09 福建德尔科技有限公司 电子级三氟化氯的收集装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175855A (ja) * 1988-07-20 1990-07-09 Hashimoto Kasei Kogyo Kk フッ化不働態膜が形成された金属材料並びにその金属材料を用いた装置
JPH03215656A (ja) * 1990-01-19 1991-09-20 Hashimoto Kasei Kogyo Kk フッ化不働態膜が形成されたステンレス鋼、その製造方法並びにそのステンレスを用いた装置
JP2009197274A (ja) * 2008-02-21 2009-09-03 Iwatani Internatl Corp 金属材料及びこれを用いた保存容器、ガス配管、装置、並びに、その製造方法、ClF3の保存方法
WO2016117464A1 (ja) * 2015-01-22 2016-07-28 日本ゼオン株式会社 フッ素化炭化水素化合物充填済みガス充填容器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620857B1 (ko) 1998-12-04 2006-09-13 스텔라 케미파 코포레이션 불화부동태막이 형성된 스테인레스 강철 및 그것을 이용한장치
JP2001208217A (ja) 2000-01-21 2001-08-03 Showa Denko Kk 弁及びその製造方法
TW503123B (en) 2000-09-08 2002-09-21 Boc Group Inc Plasma drying and passivation of compressed gas cylinders
TWI231850B (en) 2002-08-05 2005-05-01 Mitsui Chemicals Inc Processing method for high purity gas container and high purity gas filled in said container
US20050279130A1 (en) 2004-06-18 2005-12-22 General Electric Company 18O[O2] oxygen refilling technique for the production of 18[F2] fluorine
JP5153898B2 (ja) 2010-04-28 2013-02-27 セントラル硝子株式会社 ハロゲンガス又はハロゲン化合物ガスの充填容器用バルブ
CN102517540B (zh) 2011-12-20 2013-11-20 广东华南特种气体研究所有限公司 一种准分子激光气配置装置的钝化方法
US9328287B2 (en) 2013-01-21 2016-05-03 Siemens Medical Solutions Usa, Inc. Passivation of metal halide scintillators
CN110041163A (zh) 2013-07-16 2019-07-23 Agc株式会社 三氟乙烯的保存方法
KR20180054613A (ko) * 2015-09-14 2018-05-24 니폰 제온 가부시키가이샤 불소화 탄화수소 화합물 충전 완료 가스 충전 용기, 가스 충전 용기의 제조 방법, 및 불소화 탄화수소 화합물의 보존 방법
WO2017175562A1 (ja) 2016-04-05 2017-10-12 関東電化工業株式会社 材料、この材料を用いた保存容器、この保存容器に取り付けられるバルブ、並びに、ClFの保存方法、ClFの保存容器の使用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175855A (ja) * 1988-07-20 1990-07-09 Hashimoto Kasei Kogyo Kk フッ化不働態膜が形成された金属材料並びにその金属材料を用いた装置
JPH03215656A (ja) * 1990-01-19 1991-09-20 Hashimoto Kasei Kogyo Kk フッ化不働態膜が形成されたステンレス鋼、その製造方法並びにそのステンレスを用いた装置
JP2009197274A (ja) * 2008-02-21 2009-09-03 Iwatani Internatl Corp 金属材料及びこれを用いた保存容器、ガス配管、装置、並びに、その製造方法、ClF3の保存方法
WO2016117464A1 (ja) * 2015-01-22 2016-07-28 日本ゼオン株式会社 フッ素化炭化水素化合物充填済みガス充填容器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041403A (zh) * 2019-12-29 2020-04-21 中船重工(邯郸)派瑞特种气体有限公司 一种电子气体存储用钢瓶的处理方法
CN114981481A (zh) * 2020-01-06 2022-08-30 中央硝子株式会社 金属材料、金属材料的制造方法、半导体处理装置的钝化方法、半导体器件的制造方法及已填充的容器的制造方法
WO2024053341A1 (ja) * 2022-09-06 2024-03-14 住友精化株式会社 二酸化硫黄混合物充填容器及び二酸化硫黄組成物

Also Published As

Publication number Publication date
JPWO2019026682A1 (ja) 2020-06-18
SG11202000802RA (en) 2020-02-27
KR102527163B1 (ko) 2023-05-02
KR20200037330A (ko) 2020-04-08
JP2022159338A (ja) 2022-10-17
US11519557B2 (en) 2022-12-06
JP7116328B2 (ja) 2022-08-10
CN110832106B (zh) 2022-04-15
CN110832106A (zh) 2020-02-21
TW201925496A (zh) 2019-07-01
TWI771464B (zh) 2022-07-21
JP7303467B2 (ja) 2023-07-05
US20200173009A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP7303467B2 (ja) 充填済み容器の製造方法
JP4673939B2 (ja) 表面が官能化されたダイヤモンド結晶およびその製造方法
US6350191B1 (en) Surface functionalized diamond crystals and methods for producing same
EP1950263B1 (en) Polishing composition and polishing method
CN111684107B (zh) 不锈钢部件及其制造方法
EP0352061B1 (en) Metal material with film passivated by fluorination and apparatus composed of the metal material
US10364373B2 (en) Elevated temperature CMP compositions and methods for use thereof
JPH11214338A (ja) シリコンウェハーの研磨方法
JP5759534B2 (ja) 被覆黒鉛物品、ならびに反応性イオンエッチングによる黒鉛物品の製造および再生
Deng et al. Characterization of 4H-SiC (0001) surface processed by plasma-assisted polishing
JP2019044264A (ja) タングステン酸化物の処理方法及び六フッ化タングステンの製造方法
TWI824098B (zh) 乾式蝕刻方法、乾式蝕刻劑、及其保存容器
WO2016117464A1 (ja) フッ素化炭化水素化合物充填済みガス充填容器
JP7185148B2 (ja) 基板処理用ガス、保管容器および基板処理方法
JP6307900B2 (ja) フッ素化炭化水素化合物充填ガス容器
JP3030351B2 (ja) フッ化不働態膜が形成されたステンレス鋼、その製造方法並びにそのステンレスを用いた装置
JP2004325794A (ja) フッ化物光学素子の製造方法およびフッ化物光学素子
WO2004088004A1 (en) Method for reducing degradation of reactive compounds during transport
KR950012809B1 (ko) 불화부동태막이 형성된 금속재료 및 그 금속재료를 사용한 장치
JP2020180010A (ja) シリカ粒子、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019534055

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207006008

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18840310

Country of ref document: EP

Kind code of ref document: A1