WO2019024225A1 - 一种玻纤增强聚苯醚复合材料及其制备方法 - Google Patents

一种玻纤增强聚苯醚复合材料及其制备方法 Download PDF

Info

Publication number
WO2019024225A1
WO2019024225A1 PCT/CN2017/104378 CN2017104378W WO2019024225A1 WO 2019024225 A1 WO2019024225 A1 WO 2019024225A1 CN 2017104378 W CN2017104378 W CN 2017104378W WO 2019024225 A1 WO2019024225 A1 WO 2019024225A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass fiber
polyphenylene ether
composite material
solution
fiber reinforced
Prior art date
Application number
PCT/CN2017/104378
Other languages
English (en)
French (fr)
Inventor
吕素慧
Original Assignee
吕素慧
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吕素慧 filed Critical 吕素慧
Publication of WO2019024225A1 publication Critical patent/WO2019024225A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/329Phosphorus containing acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length

Definitions

  • the present invention relates to the technical field of polymer materials, and in particular to a glass fiber reinforced polyphenylene ether composite material and a preparation method thereof.
  • Polyphenylene ether is widely used in household appliances, office equipment, instrumentation, transportation, building materials, household appliances and packaging materials.
  • the use of glass fiber reinforced polyphenylene ether can further improve the mechanical properties of the composite and increase its heat resistance temperature.
  • the existing glass fiber materials have low intermolecular force, and the fibers are prone to large creep under the action of long intertwisting force, resulting in dimensional and morphological instability, which severely limits the glass fiber reinforced polyphenylene ether materials in many In particular, it is applied in the fields of instrumentation, transportation, building materials, etc. with high precision requirements.
  • the glass-filled polyphenylene ether composite material easily forms floating fibers during the injection molding process, resulting in a decrease in strength and surface finish of the composite material itself.
  • a glass-filled polyphenylene ether composite material is easy to form a floating fiber during an injection molding process, resulting in a decrease in strength and surface finish of the composite material itself.
  • a glass fiber reinforced polyphenylene ether composite material the raw materials of which include:
  • the polyphenylene ether and the glass fiber can be selected by any of the prior art.
  • Potassium citrate Gold
  • Potassium Citrate is a chemical substance with the molecular formula KAu 2 N 4 C1 2 H Trust0 8 .
  • Melting point 698 ° C anhydrous product Used in mordants, analytical reagents, catalysts, water treatment agents, manufacturing fireproof, waterproof materials, and phosphotungstates, boron tungstates, etc.
  • Hypophosphorous acid is a colorless oily liquid or deliquescent crystal. Density 1.493g /cm3. Melting point 26.5 ° C. Soluble in hot water, ethanol, ether. Soluble in cold water. When heated to 130 ° C, it will be decomposed into orthophosphoric acid and phosphine. It is a strong reducing agent. From sodium hypophosphite through ion exchange resin Treatment, adsorption, desorption, filtration, evaporation and concentration.
  • the glass fiber is an anti-floating fiberglass fiber
  • the preparation method comprises the following steps: immersing the glass fiber in deionized water, and adding 3-pyridine sulfonic acid having a mass of 5 times the glass fiber to obtain a solution A.
  • [3-13] 3-Pyridinesulfonic acid can be achieved by any of the prior art techniques. It can effectively inhibit the accumulation and floating of glass fiber in polyphenylene ether, avoiding the formation of protruding points on the surface of the product, and is beneficial to the surface finish of the injection molded product.
  • the uniform filling of the glass fiber in the polyphenylene ether material also contributes to the improvement of the notched impact strength of the polyphenylene ether material.
  • the present invention also provides a method for preparing the glass fiber reinforced polyphenylene ether composite material, which comprises the following steps: [0015] According to the set weight parts, polyphenylene ether, glass fiber, potassium citrate, sodium tungstate, hypophosphorous acid is added to a high-speed mixer and uniformly mixed, and then heated to 190 to 200 ° C by a twin-screw extruder to obtain plasticization. The polyphenylene ether mixture, and then the plasticized polyphenylene ether mixture is extruded by a twin-screw extruder, and subjected to drawing, cooling forming, and cutting to prepare a glass fiber reinforced polyphenylene ether composite material having a length of 10-15 mm.
  • the above preparation method can further increase the strength of the obtained composite material.
  • a glass fiber reinforced polyphenylene ether composite material is provided, which can further improve the strength and surface finish of the composite material itself.
  • This embodiment provides a glass fiber reinforced polyphenylene ether composite material, the raw materials of which include:
  • the glass fiber is an anti-floating fiberglass fiber
  • the preparation method comprises the following steps: immersing the glass fiber in deionized water, and adding 3-pyridine sulfonic acid having a mass of 5 times the glass fiber to obtain a solution A.
  • Embodiment 1 provides a glass fiber reinforced polyphenylene ether composite material, the raw materials of which include:
  • the glass fiber is an anti-floating fiberglass fiber
  • the preparation method comprises the following steps: immersing the glass fiber in deionized water, and adding 3-pyridine sulfonic acid having a mass of 5 times the glass fiber to obtain a solution A.
  • This embodiment provides a glass fiber reinforced polyphenylene ether composite material, the raw materials of which include:
  • the glass fiber is a commercially available product. This embodiment is prepared using the prior art.
  • This embodiment provides a glass fiber reinforced polyphenylene ether composite material, the raw materials of which include:
  • the glass fiber is an anti-floating fiberglass fiber
  • the preparation method comprises the following steps: immersing the glass fiber in deionized water, and adding 3-pyridine sulfonic acid having a mass of 5 times the glass fiber to obtain a solution A.
  • This embodiment provides a glass fiber reinforced polyphenylene ether composite material, which is consistent with the first embodiment.
  • the method for preparing a glass fiber reinforced polyphenylene ether composite material includes the following steps: [0053] polyphenylene ether, glass fiber, potassium citrate, sodium tungstate according to a set weight
  • the hypophosphorous acid is added to the high-speed mixer and uniformly mixed, and then heated to 190 to 200 ° C by a twin-screw extruder to obtain a plasticized polyphenylene ether mixture, and then the plasticized polyphenylene ether mixture is extruded by a twin-screw extruder.
  • the glass fiber reinforced polyphenylene ether composite material with a length of 10-15 mm is prepared by drawing, cooling forming and cutting.
  • the present comparative example provides a glass fiber reinforced polyphenylene ether composite material, the raw materials of which include:
  • the present comparative example provides a glass fiber reinforced polyphenylene ether composite material, the raw materials of which include:
  • the present comparative example provides a glass fiber reinforced polyphenylene ether composite material, the raw materials of which include:
  • the mechanical properties of the composite material are judged by the bending strength obtained by the test.
  • the impact resistance of the material is characterized by two methods, one is characterized by the notched impact strength and the unnotched impact strength of the test material, and the other is by
  • the material was made into a square plate of 150 mm * 150 mm * 3 mm, and the square plate was placed by a support, and a ball of 0.5 KG was freely dropped from a different height to the square plate to observe how many cracks appeared at the height of the square plate.
  • the floating material of the composite material the material is made into a square plate on a mold which is polished on the surface, and the surface is observed by a secondary phase detector.
  • the polyphenylene ether composite materials of the examples and the comparative examples were made into strips having a radius of 1 cm and a length of 20 cm. Long strip A tensile force of 5000 N was applied to the ends for 100 days. Test its length growth rate. The results are shown in Table 2.
  • a glass fiber reinforced polyphenylene ether composite material is provided, which can further improve the strength and surface finish of the composite material, and can be industrially produced on a large scale.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

一种玻纤增强聚苯醚复合材料及其制备方法,微量的柠檬酸金钾和钨酸钠有效提高玻纤的耐蠕变性能,进而有效提高玻纤的结构稳定性,避免因其蠕变导致产品尺寸不稳定、变形。由于玻纤耐蠕变性能提高,使之得以被应用在高精密要求的仪器仪表、交通运输、建筑材料的制造生产中。

Description

一种玻纤增强聚苯醚复合材料及其制备方法 技术领域
[0001] 本发明涉及高分子材料技术领域, 具体涉及一种玻纤增强聚苯醚复合材料及其 制备方法。
背景技术
[0002] 聚苯醚广泛应用于家用电器、 办公设备、 仪器仪表、 交通运输、 建筑材料、 日 用器具及包装材料等领域。 使用玻璃纤维增强聚苯醚能进一步提高复合材料的 力学性能, 以及提高其耐热温度。 但现有的玻纤材料分子间作用力低, 纤维在 长吋间力的作用下容易发生较大的蠕变, 导致尺寸、 形态的不稳定, 严重限制 了玻纤增强聚苯醚材料在许多方面特别是高精密要求的仪器仪表、 交通运输、 建筑材料等领域的应用。
[0003] 此外, 填充玻纤的聚苯醚复合材料在注塑过程中容易形成浮纤, 导致复合材料 本身的强度、 表面光洁度下降。
技术问题
[0004] 现有技术中填充玻纤的聚苯醚复合材料在注塑过程中容易形成浮纤, 导致复合 材料本身的强度、 表面光洁度下降。
问题的解决方案
技术解决方案
[0005] 本发明的目的通过以下技术方案实现: 一种玻纤增强聚苯醚复合材料, 其原料 按重量计包括:
[0006] 80- 100份;
[0007] 玻纤 15-20份;
[0008] 柠檬酸金钾 0.005-0.007份;
[0009] 钨酸钠 0.006-0.012份;
[0010] 0.1-0.5份。
[0011] 本发明中, 聚苯醚、 玻纤均可选用任一种现有技术实现。 柠檬酸金钾 (Gold Potassium Citrate) 是一种化学物质, 分子式是 KAu 2N 4C1 2H„0 8。 白色结晶粉 末, 易溶于水, 微溶于醇, 难溶于醚。 可选用任一种现有技术实现。 钨酸钠, 无色结晶或白色结晶性粉末。 在干燥空气中风化, 100°C吋失去结晶水。 溶于水 , 不溶于乙醇。 相对密度 3.23〜 3.25。 熔点 698°C (无水品) 。 用于媒染剂、 分 析试剂、 催化剂、 水处理药剂, 制造防火、 防水材料, 以及磷钨酸盐、 硼钨酸 盐等。 次磷酸为无色油状液体或易潮解的结晶。 密度 1.493g/cm3。 熔点 26.5°C。 易溶于热水、 乙醇、 乙醚。 溶于冷水。 加热到 130°C吋则分解成正磷酸和磷化氢 。 是强还原剂。 由次磷酸钠通过离子交换树脂处理, 进行吸附, 解吸, 过滤, 蒸发浓缩制得。 可用作杀菌剂, 神经系统的强壮剂, 金属表面的处理剂, 以及 制造催化剂和次磷酸盐等。 发明人在研究中发现, 微量的柠檬酸金钾和钨酸钠 有效提高玻纤的耐蠕变性能, 进而有效提高玻纤的结构稳定性, 避免因其蠕变 导致产品尺寸不稳定、 变形。 由于玻纤耐蠕变性能提高, 使之得以被应用在高 精密要求的仪器仪表、 交通运输、 建筑材料的制造生产中。 此外发明人发现有 微量的柠檬酸金钾和次磷酸存在吋, 便可大幅提高玻纤与聚苯醚材料的相容性 , 使玻纤均匀地混合在聚苯醚材料中, 有效提高所制得的聚苯醚复合材料的力 学性能。
[0012] 进一步的, 所述玻纤为防浮纤玻纤, 其制备方法为将玻纤浸没在去离子水中, 同吋加入质量为玻纤 5倍的 3-吡啶磺酸搅拌均匀得到溶液 A; 将质量为玻纤 2倍 的乙二醇地加入溶液 A中, 搅拌均匀得到溶液 B ; 将溶液 B倒入水热反应釜中, 填充度控制在 70〜 80% ; 然后密封水热反应釜, 将其放入电热恒温鼓风干燥箱 中, 在温度为 140°C, 反应 30h, 反应结束后自然冷却到室温; 打幵水热反应釜, 将产物用蒸馏水、 无水乙醇依次洗涤 1〜3次, 于电热恒温鼓风干燥箱中 96°C下 干燥 2h, 即得所述防浮纤玻纤。
[0013] 3-吡啶磺酸 (3-Pyridinesulfonic acid) 可选用任一种现有技术实现。 其可有效抑 制玻纤在聚苯醚中聚集、 浮纤, 避免产品表面形成突出点, 有利于提注塑产品 表面的光洁度。 玻纤均匀的填充在聚苯醚材料中, 还有利于提高聚苯醚材料的 缺口抗冲击强度。
[0014] 本发明还提供所述的玻纤增强聚苯醚复合材料的制备方法, 其包括如下工序: [0015] 按设定重量份将聚苯醚、 玻纤、 柠檬酸金钾、 钨酸钠、 次磷酸加入高速混合器 混合均匀后经双螺杆挤出机加热至 190〜 200°C获得塑化的聚苯醚混合物, 然后 塑化的聚苯醚混合物被双螺杆挤出机挤出, 经牵引、 冷却成型、 切割处理制备 成长度为 10-15mm的玻纤增强聚苯醚复合材料。
[0016] 上述制备方法可进一步提高所制得的复合材料的强度。
发明的有益效果
有益效果
[0017] 提供一种玻纤增强聚苯醚复合材料, 可进一步的提高复合材料本身的强度、 表 面光洁度。
实施该发明的最佳实施例
本发明的最佳实施方式
[0018] 本实施例提供一种玻纤增强聚苯醚复合材料, 其原料按重量计包括:
[0019] 95份;
[0020] 玻纤 16份;
[0021] 柠檬酸金钾 0.006份;
[0022] 钨酸钠 0.010份;
[0023] 次磷酸
Figure imgf000004_0001
[0024] 进一步的, 所述玻纤为防浮纤玻纤, 其制备方法为将玻纤浸没在去离子水中, 同吋加入质量为玻纤 5倍的 3-吡啶磺酸搅拌均匀得到溶液 A; 将质量为玻纤 2倍 的乙二醇地加入溶液 A中, 搅拌均匀得到溶液 B ; 将溶液 B倒入水热反应釜中, 填充度控制在 70〜 80% ; 然后密封水热反应釜, 将其放入电热恒温鼓风干燥箱 中, 在温度为 140°C, 反应 30h, 反应结束后自然冷却到室温; 打幵水热反应釜, 将产物用蒸馏水、 无水乙醇依次洗涤 1〜3次, 于电热恒温鼓风干燥箱中 96°C下 干燥 2h, 即得所述防浮纤玻纤。
本发明的实施方式
[0025] 实施例 1 [0026] 本实施例提供一种玻纤增强聚苯醚复合材料, 其原料按重量计包括:
[0027] 95份;
[0028] 玻纤 16份;
[0029] 柠檬酸金钾 0.006份;
[0030] 钨酸钠 0.010份;
Figure imgf000005_0001
[0032] 进一步的, 所述玻纤为防浮纤玻纤, 其制备方法为将玻纤浸没在去离子水中, 同吋加入质量为玻纤 5倍的 3-吡啶磺酸搅拌均匀得到溶液 A; 将质量为玻纤 2倍 的乙二醇地加入溶液 A中, 搅拌均匀得到溶液 B ; 将溶液 B倒入水热反应釜中, 填充度控制在 70〜 80% ; 然后密封水热反应釜, 将其放入电热恒温鼓风干燥箱 中, 在温度为 140°C, 反应 30h, 反应结束后自然冷却到室温; 打幵水热反应釜, 将产物用蒸馏水、 无水乙醇依次洗涤 1〜3次, 于电热恒温鼓风干燥箱中 96°C下 干燥 2h, 即得所述防浮纤玻纤。 本实施例采用现有技术制备。
[0033] 实施例 2
[0034] 本实施例提供一种玻纤增强聚苯醚复合材料, 其原料按重量计包括:
[0035] 85份;
[0036] 玻纤 16份;
[0037] 柠檬酸金钾 0.006份;
[0038] 钨酸钠 0.009份;
[0039] 次磷酸
Figure imgf000005_0002
[0040] 进一步的, 所述玻纤市售产品。 本实施例采用现有技术制备。
[0041] 实施例 3
[0042] 本实施例提供一种玻纤增强聚苯醚复合材料, 其原料按重量计包括:
[0043] 99份;
[0044] 玻纤 18份;
[0045] 柠檬酸金钾 0.007份;
[0046] 钨酸钠 0.007份;
Figure imgf000005_0003
[0048] 进一步的, 所述玻纤为防浮纤玻纤, 其制备方法为将玻纤浸没在去离子水中, 同吋加入质量为玻纤 5倍的 3-吡啶磺酸搅拌均匀得到溶液 A; 将质量为玻纤 2倍 的乙二醇地加入溶液 A中, 搅拌均匀得到溶液 B ; 将溶液 B倒入水热反应釜中, 填充度控制在 70〜 80% ; 然后密封水热反应釜, 将其放入电热恒温鼓风干燥箱 中, 在温度为 140°C, 反应 30h, 反应结束后自然冷却到室温; 打幵水热反应釜, 将产物用蒸馏水、 无水乙醇依次洗涤 1〜3次, 于电热恒温鼓风干燥箱中 96°C下 干燥 2h, 即得所述防浮纤玻纤。
[0049] 本实施例采用现有技术制备。
[0050] 实施例 4
[0051] 本实施例提供一种玻纤增强聚苯醚复合材料, 其原料与实施例 1一致。
[0052] 本实施例所述的玻纤增强聚苯醚复合材料的制备方法, 其包括如下工序: [0053] 按设定重量份将聚苯醚、 玻纤、 柠檬酸金钾、 钨酸钠、 次磷酸加入高速混合器 混合均匀后经双螺杆挤出机加热至 190〜 200°C获得塑化的聚苯醚混合物, 然后 塑化的聚苯醚混合物被双螺杆挤出机挤出, 经牵引、 冷却成型、 切割处理制备 成长度为 10-15mm的玻纤增强聚苯醚复合材料。
[0054] 对比例 1
[0055] 本对比例提供一种玻纤增强聚苯醚复合材料, 其原料按重量计包括:
[0056] 聚苯醚 95份;
[0057] 玻纤 18份;
[0058] 柠檬酸钾 0.006份;
[0059] 钨酸钠 0.009份;
[0060] 次磷酸 0.2份。
[0061] 对比例 2
[0062] 本对比例提供一种玻纤增强聚苯醚复合材料, 其原料按重量计包括:
[0063] 聚苯醚 95份;
[0064] 玻纤 18份;
[0065] 柠檬酸金钾 0.006份;
[0066] 磷酸钠 0.009份; [0067]
[0068] 对比例 3
[0069] 本对比例提供一种玻纤增强聚苯醚复合材料, 其原料按重量计包括:
[0070] 95份;
[0071] 玻纤 18份;
[0072] 柠檬酸金钾 0.006份;
[0073] 钨酸钠 0.009份;
[0074] 正磷 ¾ 0.2fo 71'
[0075] 复合材料的力学性能通过测试所得的弯曲强度判断, 材料的抗冲击性通过两种 方法表征, 一种是通过测试材料的缺口冲击强度和无缺口冲击强度表征, 另一 种是通过把材料制成 150mm*150mm*3mm的方板, 把方板通过支撑物架住, 用 0. 5KG的圆球从不同的高度自由落体撞击到方板上, 观察方板在多少高度出现裂纹 。 复合材料的浮纤情况是通过在表面进行抛光处理的模具上把材料制成方板, 通过二次原相仪对表面进行观察。
[0076] 对实施例和对比例进行弯曲强度、 冲击性能和表面浮纤情况进行测定, 其测试 结果见表 1。
[]
[表 1]
Figure imgf000008_0001
[0077] 注塑测试。
[0078] 将聚苯醚复合材料采用现有技术进行注塑, 成型为 30Cmx30Cmx30cm的方块, 观察其表面浮纤情况。 在方块的 6个表面切割出 30Cmx30cmx2Cm的表皮, 并获得 切去表皮的小方块; 测试表皮和小方块的密度差率。 密度差率 = (p表皮 -P小 方块) χ100<¾
[] [表 2]
Figure imgf000008_0002
[0079] 耐蠕变测试。
[0080] 将实施例和对比例的聚苯醚复合材料制成半径 lcm, 长 20cm的长条。 长条的两 端分别施加 5000N的拉力, 维持 100日。 测试其长度增长率。 其结果如表 2
[] [表 3]
Figure imgf000009_0001
[0081] 以上为本发明的其中具体实现方式, 其描述较为具体和详细, 但并不能因此而 理解为对本发明专利范围的限制。 应当指出的是, 对于本领域的普通技术人员 来说, 在不脱离本发明构思的前提下, 还可以做出若干变形和改进, 这些显而 易见的替换形式均属于本发明的保护范围。
工业实用性
[0082] 提供一种玻纤增强聚苯醚复合材料, 可进一步的提高复合材料本身的强度、 表 面光洁度, 可大规模产业化生产。
[0083]

Claims

权利要求书
[权利要求 2] 根据权利要求 1所述的玻纤增强聚苯醚复合材料, 其特征在于: 所述 玻纤为防浮纤玻纤, 其制备方法为将玻纤浸没在去离子水中, 同吋加 入质量为玻纤 5倍的 3-吡啶磺酸搅拌均匀得到溶液 A; 将质量为玻纤 2 倍的乙二醇地加入溶液 A中, 搅拌均匀得到溶液 B; 将溶液 B倒入水 热反应釜中, 填充度控制在 70〜80%; 然后密封水热反应釜, 将其 放入电热恒温鼓风干燥箱中, 在温度为 140°C, 反应 30h, 反应结束后 自然冷却到室温; 打幵水热反应釜, 将产物用蒸馏水、 无水乙醇依次 洗涤 1〜3次, 于电热恒温鼓风干燥箱中 96°C下干燥 2h, 即得所述防 浮纤玻纤。
[权利要求 3] 如权利要求 1或 2所述的玻纤增强聚苯醚复合材料的制备方法, 其包括 如下工序:
按设定重量份将聚苯醚、 玻纤、 柠檬酸金钾、 钨酸钠、 次磷酸加入高 速混合器混合均匀后经双螺杆挤出机加热至 190〜 200°C获得塑化的 聚苯醚混合物, 然后塑化的聚苯醚混合物被双螺杆挤出机挤出, 经牵 弓 I、 冷却成型、 切割处理制备成长度为 10-15mm的玻纤增强聚苯醚复
PCT/CN2017/104378 2017-08-03 2017-09-29 一种玻纤增强聚苯醚复合材料及其制备方法 WO2019024225A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2017106544633 2017-08-03
CN201710654463.3A CN107474518A (zh) 2017-08-03 2017-08-03 一种玻纤增强聚苯醚复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2019024225A1 true WO2019024225A1 (zh) 2019-02-07

Family

ID=60598257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104378 WO2019024225A1 (zh) 2017-08-03 2017-09-29 一种玻纤增强聚苯醚复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN107474518A (zh)
WO (1) WO2019024225A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163746A (zh) * 2005-04-13 2008-04-16 旭化成化学株式会社 聚酰胺-聚苯醚树脂组合物
CN101654564A (zh) * 2008-08-23 2010-02-24 比亚迪股份有限公司 一种塑料组合物及其表面选择性金属化工艺
US20110233482A1 (en) * 2007-08-08 2011-09-29 Merck Patent Gesellschaft Mit Beschrankter Haftung Conductive powder
CN102558825A (zh) * 2010-12-30 2012-07-11 合肥杰事杰新材料股份有限公司 一种玻纤增强聚苯醚聚苯乙烯合金组合物及其制备方法
CN102964829A (zh) * 2012-12-04 2013-03-13 上海日之升新技术发展有限公司 一种高cti值、高gwit值环保阻燃玻纤增强pa66/ppo合金材料及其制备方法
WO2014209583A1 (en) * 2013-06-28 2014-12-31 Sabic Innovative Plastics Ip B.V. Intumescent coating composition comprising particulate poly(phenylene ether)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102417720A (zh) * 2011-11-24 2012-04-18 上海日之升新技术发展有限公司 高性能玻纤增强聚苯醚/尼龙合金及其制备方法
CN102417718A (zh) * 2011-11-24 2012-04-18 上海日之升新技术发展有限公司 玻纤增强聚苯醚聚丙烯合金及其制备方法
CN106867242A (zh) * 2015-12-11 2017-06-20 上海杰事杰新材料(集团)股份有限公司 半芳香族尼龙和聚苯醚合金材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163746A (zh) * 2005-04-13 2008-04-16 旭化成化学株式会社 聚酰胺-聚苯醚树脂组合物
US20110233482A1 (en) * 2007-08-08 2011-09-29 Merck Patent Gesellschaft Mit Beschrankter Haftung Conductive powder
CN101654564A (zh) * 2008-08-23 2010-02-24 比亚迪股份有限公司 一种塑料组合物及其表面选择性金属化工艺
CN102558825A (zh) * 2010-12-30 2012-07-11 合肥杰事杰新材料股份有限公司 一种玻纤增强聚苯醚聚苯乙烯合金组合物及其制备方法
CN102964829A (zh) * 2012-12-04 2013-03-13 上海日之升新技术发展有限公司 一种高cti值、高gwit值环保阻燃玻纤增强pa66/ppo合金材料及其制备方法
WO2014209583A1 (en) * 2013-06-28 2014-12-31 Sabic Innovative Plastics Ip B.V. Intumescent coating composition comprising particulate poly(phenylene ether)

Also Published As

Publication number Publication date
CN107474518A (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
EP1088012B1 (en) Fiber glass binder compositions and process therefor
JPS6051613A (ja) 球状溶融シリカ並びに充填剤及び樹脂組成物としてのその使用方法
CN102675647B (zh) 一种有机硅改性剂及其制备方法和应用
CN103992463B (zh) 碳硼烷环氧树脂的合成及固化方法
CN104774454B (zh) 一种耐高温尼龙pa66t材料及其制备方法
WO2019024224A1 (zh) 一种玻纤增强聚苯硫醚复合材料及其制备方法
JPS59142233A (ja) 雲母と樹脂との複合物質
CN104262558A (zh) 一种低熔融粘度电子级酚醛树脂的制造方法
WO2019024225A1 (zh) 一种玻纤增强聚苯醚复合材料及其制备方法
CN111777744B (zh) 无卤阻燃环氧树脂前驱体、模塑料制品、其制法和应用
CN106832248B (zh) 快速脱模硬泡聚醚多元醇的制备方法
WO2019024222A1 (zh) 一种玻纤增强聚苯醚复合材料及其制备方法
CN110643007A (zh) 一种酚醛树脂木材增韧胶黏剂的制备方法
CN109867931A (zh) 一种不饱和树脂-碳纤维-石墨烯复合材料及其制备方法
CN104944977A (zh) 耐火纤维板的制作方法
CN111944145B (zh) 热固性聚三唑酯树脂及其复合材料、制备方法
TW593524B (en) Process for the preparation of resols
CN104559046B (zh) 一种间乙炔基苯偶氮线性酚醛泡沫及其制备方法
CN104987654A (zh) 用于储罐的酚醛树脂复合材料的制备方法
CN102875959B (zh) 玻璃微珠填充的酚醛高分子复合材料的制备方法
CN103946293B (zh) 作为环氧树脂的固化剂的烷基缩氨基脲或二烷基缩氨基脲
CN107352835B (zh) 高性能防冻剂及其制备方法
CN106046282A (zh) 含硼酸间苯聚芳醚酮改性硅藻土及其增强聚醚醚酮复合材料
CN107345069A (zh) 一种玻纤增强pa66复合材料及其制备方法
CA1051149A (en) Formo-phenolic foams and their process of preparation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920098

Country of ref document: EP

Kind code of ref document: A1