WO2019022133A1 - セラミックス回路基板及びその製造方法 - Google Patents
セラミックス回路基板及びその製造方法 Download PDFInfo
- Publication number
- WO2019022133A1 WO2019022133A1 PCT/JP2018/027882 JP2018027882W WO2019022133A1 WO 2019022133 A1 WO2019022133 A1 WO 2019022133A1 JP 2018027882 W JP2018027882 W JP 2018027882W WO 2019022133 A1 WO2019022133 A1 WO 2019022133A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- brazing material
- circuit board
- ceramic
- mass
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0306—Inorganic insulating substrates, e.g. ceramic, glass
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/388—Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/19—Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0244—Powders, particles or spheres; Preforms made therefrom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3006—Ag as the principal constituent
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/003—Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
- C04B37/006—Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
- C04B37/023—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
- C04B37/026—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/06—Alloys based on silver
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/06—Alloys based on silver
- C22C5/08—Alloys based on silver with copper as the next major constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/13—Mountings, e.g. non-detachable insulating substrates characterised by the shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/15—Ceramic or glass substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/102—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by bonding of conductive powder, i.e. metallic powder
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/381—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/125—Metallic interlayers based on noble metals, e.g. silver
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/126—Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
- C04B2237/127—The active component for bonding being a refractory metal
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/343—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/345—Refractory metal oxides
- C04B2237/348—Zirconia, hafnia, zirconates or hafnates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/365—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/366—Aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/368—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/407—Copper
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/59—Aspects relating to the structure of the interlayer
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/88—Joining of two substrates, where a substantial part of the joining material is present outside of the joint, leading to an outside joining of the joint
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0271—Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/06—Thermal details
- H05K2201/068—Thermal details wherein the coefficient of thermal expansion is important
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09009—Substrate related
- H05K2201/09136—Means for correcting warpage
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/02—Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
- H05K2203/0278—Flat pressure, e.g. for connecting terminals with anisotropic conductive adhesive
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/04—Soldering or other types of metallurgic bonding
- H05K2203/0425—Solder powder or solder coated metal powder
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/04—Soldering or other types of metallurgic bonding
- H05K2203/0465—Shape of solder, e.g. differing from spherical shape, different shapes due to different solder pads
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/07—Treatments involving liquids, e.g. plating, rinsing
- H05K2203/0756—Uses of liquids, e.g. rinsing, coating, dissolving
- H05K2203/0769—Dissolving insulating materials, e.g. coatings, not used for developing resist after exposure
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/07—Treatments involving liquids, e.g. plating, rinsing
- H05K2203/0779—Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
- H05K2203/0786—Using an aqueous solution, e.g. for cleaning or during drilling of holes
- H05K2203/0793—Aqueous alkaline solution, e.g. for cleaning or etching
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/08—Treatments involving gases
- H05K2203/085—Using vacuum or low pressure
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/022—Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/06—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
- H05K3/061—Etching masks
- H05K3/064—Photoresists
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/06—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
- H05K3/067—Etchants
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/24—Reinforcing the conductive pattern
- H05K3/244—Finish plating of conductors, especially of copper conductors, e.g. for pads or lands
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/26—Cleaning or polishing of the conductive pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/28—Applying non-metallic protective coatings
- H05K3/282—Applying non-metallic protective coatings for inhibiting the corrosion of the circuit, e.g. for preserving the solderability
Definitions
- the present invention relates to a ceramic circuit board and a method of manufacturing the same.
- metal circuit boards are joined with a brazing material to the surface of ceramic substrates such as alumina, beryllia, silicon nitride, aluminum nitride etc.
- a ceramic circuit board on which a semiconductor element is mounted is used.
- thermal stress due to the difference in thermal expansion coefficient is generated at the bonding interface between the ceramic substrate and the metal plate due to repeated thermal cycle load.
- residual stress in compression and tension acts on the ceramic substrate side in the vicinity of the bonding portion, thereby generating a crack in the ceramic substrate and causing a bonding failure or a thermal resistance failure, which lowers the operation reliability of the electronic device.
- other problems since the thermal expansion coefficient of the ceramic substrate and that of the metal plate are largely different, thermal stress due to the difference in thermal expansion coefficient is generated at the bonding interface between the ceramic substrate and the metal plate due to repeated thermal cycle load.
- residual stress in compression and tension acts on the ceramic substrate side in the vicinity of the bonding portion, thereby generating a crack in the ceramic substrate and causing a bonding failure or a thermal resistance failure, which lowers the operation reliability of the electronic device.
- Patent Document 1 proposes a structure in which the thermal cycle characteristics of the ceramic circuit board are improved by controlling the length of the brazing material protruding from the bottom of the metal plate to be longer than 30 ⁇ m and 250 ⁇ m or less, preferably 50 ⁇ m to 200 ⁇ m. It is done.
- Patent Document 2 by controlling the protrusion structure of the brazing material layer of the ceramic circuit substrate so that the Ag rich phase occupies more than the Cu rich phase, the dissolution of the protrusion portion of the brazing material due to etching is suppressed, and the brazing material layer A method has been proposed to prevent the stress relaxation effect of the protruding portion from being reduced.
- Patent Document 3 proposes a method of improving the thermal cycle characteristics of a ceramic circuit board by controlling the thickness and length of a brazing material layer at a certain ratio and protruding it.
- JP 2003-112980 A Japanese Patent Application Publication No. 2005-268821 International Publication No. 2107/056360
- the temperature rise / drop temperature is 15 minutes before cooling at -40 ° C, 15 minutes at room temperature and 15 minutes at 125 ° C, and 15 minutes at room temperature. From the thermal cycle test which makes the cycle 1 cycle, the temperature rise / fall which makes 15 minutes of cooling at -55 ° C, 15 minutes of holding at room temperature and 15 minutes of heating at 175 ° C, holding at room temperature for 15 minutes. Durability under severe thermal cycle conditions in which the cycle is one cycle is required.
- the thermal stress relaxation effect can be expected by controlling the length, distance, ratio, and structure of the braze material layer protruding described in Patent Document 1, Patent Document 2, and Patent Document 3.
- the brazing material layer under the outer edge of the copper circuit pattern portion has a large thermal stress concentrated by the protruding portion, and the Ag rich phase and Cu rich phase near the root of the protruding portion. Interface may break. In such a case, the brazed portion is short and the stress relaxation effect can not be obtained, and there is a problem that a crack is generated in the ceramic circuit board.
- An object of the present invention is to provide a ceramic circuit board having high bondability and excellent heat cycle resistance and a method of manufacturing the same.
- the brazing material of the ceramic circuit substrate continues the Ag rich phase from the outer edge of the protruding portion to the circuit pattern side to reduce the interface between the Ag rich phase and the Cu rich phase. And heat resistance cycle characteristics of the ceramic circuit board were improved.
- the present invention has been completed based on these findings.
- the present invention relates to the following.
- a circuit pattern is provided on a ceramic substrate through a brazing material layer, and a braze material layer is formed by the brazing material layer protruding from the outer edge of the circuit pattern, and the brazing material layer is made of Ag, Cu and Ti,
- An Ag rich phase is continuously formed 300 ⁇ m or more continuously from the outer edge of the protruding portion toward the bonding interface between the ceramic substrate and the circuit pattern from the outer edge of the protruding portion, and the bonding void ratio is 1.0% or less Is a ceramic circuit board.
- the brazing material comprising 85.0 to 95.0 parts by mass of Ag, 5.0 to 13.0 parts by mass of Cu, 0.4 to 2.0 parts by mass of Sn or In, Ti, Ag, Cu and Sn or 1.5 to 5.0 parts by mass with respect to a total of 100 parts by mass of In
- the bonding temperature is 770 ° C. to 900 ° C.
- brazing material according to [5], wherein the brazing material comprises Ag powder, Cu powder, and Sn powder or In powder, and the specific surface area of the Ag powder is 0.1 to 0.6 m 2 / g.
- Method [7] The production method according to [5] or [6], wherein the surface area of the Cu powder is 0.1 to 1.0 m 2 / g and the average particle diameter D 50 is 0.8 to 8.0 ⁇ m.
- the specific surface area of the Sn powder or In powder is 0.1 to 1.0 m 2 / g and the average particle diameter D 50 is 0.8 to 10.0 ⁇ m. Manufacturing method described.
- the ceramic circuit board which has high bondability and the outstanding heat-resistant cycle characteristic, and its manufacturing method can be provided. Specifically, it is possible to provide a ceramic circuit board having a bonding void ratio of 1.0% or less and a crack ratio of less than 2.0% in a thermal cycle test of 2500 cycles from -55 ° C to 175 ° C and a method of manufacturing the same. .
- the brazing material is formed at the bonding interface of the cross section of the ceramic circuit board in which the protruding portion is formed by the brazing material layer containing Ag, Cu and Ti and Sn or In protruding from the outer edge of the circuit pattern.
- An Ag rich phase continues 300 ⁇ m or more continuously from the outer edge of the protruding portion of the material layer to the inside of the circuit pattern, and the bonding void ratio is 1.0% or less. The details will be described below.
- the ceramic substrate In the ceramic circuit substrate, a circuit pattern is provided on the ceramic substrate via the brazing material layer.
- the ceramic substrate according to the embodiment is not particularly limited, and nitride ceramics such as silicon nitride and aluminum nitride, oxide ceramics such as aluminum oxide and zirconium oxide, carbide ceramics such as silicon carbide, or the like It is possible to use boride-based ceramics such as lanthanum fluoride.
- non-oxide ceramics such as aluminum nitride and silicon nitride are preferable because the metal plate is joined to the ceramic substrate by the active metal method, and silicon nitride substrate is further preferred from the viewpoint of excellent mechanical strength and fracture toughness. Is preferred.
- the thickness of the ceramic substrate is not particularly limited, but is generally about 0.1 to 3.0 mm, and in particular, 0.2 to 1.2 mm in consideration of the heat dissipation characteristics of the entire circuit board and the reduction of the thermal resistivity. The following is preferable, more preferably 0.25 to 1.0 mm or less.
- the brazing material layer is composed of a brazing material containing Ag, Cu and Ti, and Sn or In in order to achieve excellent heat cycle characteristics in the ceramic circuit substrate.
- the brazing material can be formed using Ag powder, Cu powder, and Sn powder or In powder.
- the Ag / Cu ratio which is the brazing material composition prevents the coarsening of the Cu rich phase by raising the compounding ratio of the Ag powder more than 72 mass%: 28 mass% which is the eutectic composition of Ag and Cu, and it is Ag rich A phase can form a continuous brazing material layer structure.
- the Ag powder is not completely dissolved at the time of bonding and remains as a bonding void.
- Sn or In contained in the brazing material powder is a component for reducing the contact angle of the brazing material to the ceramic substrate and improving the wettability of the brazing material, and when it is too small, the wettability with the ceramic substrate is If it is too much, the Ag-rich phase in the brazing material layer becomes discontinuous due to the Cu-rich phase and becomes the origin of cracking of the brazing material, which can lower the thermal cycle characteristics of the ceramic circuit board There is sex.
- the compounding ratio of the Ag powder to the Cu powder and the Sn powder or the In powder is 85.0 to 95.0 parts by mass of Ag powder, preferably 88.0 to 92.0 parts by mass, more preferably 88.5 to 91.0 parts by mass, Cu powder: 5.0 to 13.0 parts by mass, preferably 6.0 to 12.0 parts by mass, more preferably 7.0 to 11.0 parts by mass, Sn powder or In powder: 0.4 to 2.0 parts by mass, preferably 0.5 to 1.5 parts by mass.
- an Ag powder having a specific surface area of 0.1 to 0.6 m 2 / g, preferably 0.3 to 0.5 m 2 / g may be used.
- the specific surface area By setting the specific surface area to 0.6 m 2 / g or less, it is possible to prevent the occurrence of aggregation which may be caused by using an Ag powder having a large specific surface area and an increase in the oxygen concentration, thereby causing bonding defects. It can prevent.
- the specific surface area to 0.1 m 2 / g or more, a bonding void is formed in the ceramic circuit board without completely dissolving Ag powder which may be generated by using Ag powder having a small specific surface area. Can be suppressed.
- the specific surface area can be measured by using a gas adsorption method.
- the Ag powder is produced by an atomizing method, a wet reduction method or the like.
- the average particle diameter D50 in a number-based particle size distribution of Ag powder measured by a laser diffraction method is preferably 1.0 to 10.0 ⁇ m, and more preferably 2.0 to 4.0 ⁇ m.
- the above Cu powder contained in the brazing material powder has a specific surface area of 0.1 to 1.0 m 2 / g, preferably 0.2 to 0.5 m 2 / g, in order to make the Ag rich phase continuous. It is preferable to use a Cu powder having an average particle diameter D50 of 0.8 to 8.0 ⁇ m, preferably 2.0 to 4.0 ⁇ m in a volume-based particle size distribution measured by a laser diffraction method.
- the specific surface area to 1.0 m 2 / g or less, or by setting the average particle diameter D 50 to 0.8 ⁇ m or more, the amount of oxygen of the Cu powder which may be generated by using a fine Cu powder is prevented from increasing. Can prevent the occurrence of poor bonding.
- the Ag rich phase in the brazing material layer which may be generated by using a large Cu powder is Cu Discontinuity can be prevented by the rich phase.
- the place where the Ag rich layer becomes discontinuous becomes the origin of cracking of the brazing material, and it is possible to suppress deterioration of the thermal cycle characteristics of the ceramic circuit board, and a ceramic circuit having more excellent heat cycle characteristics. It can be a substrate.
- a powder having a specific surface area of 0.1 to 1.0 m 2 / g and / or an average particle diameter D 50 of 0.8 to 10.0 ⁇ m may be used.
- the specific surface area By setting the specific surface area to 1.0 m 2 / g or less, or by setting the average particle diameter D 50 to 0.8 ⁇ m or more, the amount of oxygen in the Sn powder that may be generated by using a fine powder is prevented from increasing. It is possible to prevent the occurrence of poor bonding.
- the temperature rise in the bonding process may occur by using a large Sn powder or In powder when the specific surface area is 0.1 m 2 / g or more, or the average particle diameter D 50 is 8.0 ⁇ m or more.
- the above specific surface area is a value measured by a gas adsorption method.
- the active metal added to the above-mentioned brazing material composition has high reactivity with the aluminum nitride substrate and the silicon nitride substrate and can extremely increase the bonding strength, so titanium is used in this embodiment.
- the addition amount of Ti is preferably 1.5 to 5.0 parts by mass with respect to a total of 100 parts by mass of Ag powder, Cu powder, Sn powder or In powder, and 2.0 to 4.0 More preferably, it is part by mass.
- the Ag rich phase may be discontinuized to cause cracking of the brazing material layer, which may occur due to the large amount of unreacted Ti remaining, and the ceramic circuit board It is possible to prevent the thermal cycling characteristics from being degraded. As a result, thermal cycling characteristics can be further enhanced.
- a method of mixing the brazing material it is preferable to mix metal powder, an organic solvent, and a binder, and mix them using a grinder, a rotation and revolution mixer, a planetary mixer, a 3-roll mill, etc. to make a paste .
- a grinder a rotation and revolution mixer, a planetary mixer, a 3-roll mill, etc.
- methyl cellosolve, ethyl cellosolve, isophorone, toluene, ethyl acetate, terpineol, diethylene glycol monobutyl ether, texanol, etc. are used as the organic solvent, and polyisobutyl methacrylate, ethyl cellulose, methyl cellulose as the binder And high molecular compounds such as acrylic resin are used.
- the brazing material paste As a method of applying the brazing material paste on both sides of the ceramic substrate, there are a roll coater method, a screen printing method, a transfer method and the like, but in order to apply the brazing material uniformly, the screen printing method is preferable. In order to apply the brazing paste uniformly by screen printing, it is preferable to control the viscosity of the brazing paste to 5 to 20 Pa ⁇ s. By blending the amount of the organic solvent in the brazing material paste in the range of 5 to 17% by mass and the amount of the binder in the range of 2 to 8% by mass, it is possible to obtain a brazing material paste having excellent printability.
- the circuit pattern is not particularly limited, and can be formed of, for example, a copper plate.
- the material used for the copper plate is preferably pure copper.
- the thickness of the copper plate is not particularly limited, but is generally 0.1 to 1.5 mm, preferably 0.3 mm or more, more preferably 0.5 mm or more, from the viewpoint of heat dissipation.
- the circuit pattern can be formed by bonding a metal plate (for example, a copper plate) on a ceramic substrate using a brazing material, and then forming an etching mask and performing an etching process.
- the ceramic substrate and the metal plate are preferably bonded in a vacuum or in an inert atmosphere such as nitrogen or argon at a temperature of 770 to 900 ° C. and for a time of 10 to 60 minutes, and a temperature of 790 to 900 ° C. It is more preferable to bond in a time of 10 to 60 minutes. It is also preferable to bond at a temperature of 770 to 900 ° C. and for a time of 10 to 40 minutes. Bonding can also be performed at a temperature of 775 to 820 ° C.
- the bonding temperature By setting the bonding temperature to 770 ° C. or more and the holding time to 10 minutes or more, insufficient dissolution of Cu from the metal plate can be prevented, and the bonding property between the ceramic substrate and the metal plate can be enhanced. Further, by setting the bonding temperature to 900 ° C. or less and the holding time to 60 minutes or less, the continuity of the Ag rich phase can be enhanced, and the thermal stress derived from the difference in thermal expansion coefficient at the time of bonding is increased. Can be prevented, and the reliability of the ceramic circuit board can be further improved.
- a general process such as a photo development method (photoresist method), a screen printing method, an inkjet printing method, or the like can be adopted.
- the copper plate is etched to form a circuit pattern.
- etching solution There is also no particular limitation on the etching solution, and a commonly used ferric chloride solution, cupric chloride solution, sulfuric acid, hydrogen peroxide solution, etc. can be used as the etching solution for etching the copper circuit, but preferred is And ferric chloride solution and cupric chloride solution.
- the side of the copper circuit may be inclined by adjusting the etching time.
- the applied brazing material, its alloy layer, nitride layer, etc. remain on the ceramic circuit board from which unnecessary copper circuit parts have been removed by etching, and the aqueous solution of ammonium halide, inorganic acid such as sulfuric acid and nitric acid, hydrogen peroxide It is common to remove them using solutions containing water.
- the conditions such as the etching time, the temperature, and the spray pressure, the length and thickness of the protruding portion of the brazing material can be adjusted.
- the peeling method of the etching mask after circuit formation is not particularly limited, and a method of immersing in an alkaline aqueous solution is generally used.
- Ni plating, Ni alloy plating, Au plating, or rustproofing treatment may be performed to improve the weather resistance of the copper plate to be the circuit pattern on the surface of the ceramic bonded circuit board and to prevent time-dependent changes such as solder wettability.
- the plating process is, for example, a conventional electroless plating method using a chemical solution containing hypophosphite as a Ni-P electroless plating solution through a pretreatment process with a chemical solution of degreasing, chemical polishing, and Pd activation.
- the electrode may be brought into contact with the pattern and electroplating may be performed.
- FIG. 1 is an enlarged photograph of a bonding cross section in an example of the ceramic circuit board according to the present embodiment.
- a circuit pattern (copper circuit portion) 1 is formed on a ceramic substrate (silicon nitride substrate) 2 via a brazing material layer 7. A part of the brazing material layer 7 protrudes from the outer edge of the circuit pattern 1 to form an protruding portion 4.
- the brazing material has a thickness of 8 ⁇ m to 30 ⁇ m and a length of 40 ⁇ m to 150 ⁇ m, and preferably the thickness of the brazing material has a thickness of 13 ⁇ m to 23 ⁇ m and a length of 50 ⁇ m to 100 ⁇ m.
- the brazing material By setting the brazing material to have a protruding thickness of 8 ⁇ m or more and a length of 40 ⁇ m or more, the stress relaxation effect of the brazing material layer can be sufficiently exhibited, and the thermal cycle characteristics can be further enhanced.
- the brazing material thickness to 30 ⁇ m or less, it is possible to prevent the thermal stress from being largely generated and to suppress the deterioration of the thermal cycle characteristics.
- the protrusion length By setting the protrusion length to 150 ⁇ m or less, the external dimensions of the substrate can also be made acceptable in design, even in the market trend that requires remarkable light and thin in recent years.
- the brazing material layer is formed continuously with an Ag rich phase of 300 ⁇ m or more, preferably 400 ⁇ m or more, from the outer edge of the protruding portion toward the inner side along the bonding interface between the ceramic substrate and the circuit pattern 1.
- the “Ag rich phase” means a phase formed of an Ag solid solution and mainly contains Ag.
- the term "mainly” means 80% or more as a quantitative analysis in an electron beam excitation X-ray analyzer (EPMA).
- EPMA electron beam excitation X-ray analyzer
- Sn or In and Ti are contained, and Cu may be in solid solution.
- a phase observed in white when observed with a scanning electron microscope is referred to as “Ag rich phase”, and a phase observed in black is referred to as “Cu rich phase”.
- the Ag-rich phase is continuously formed for 300 ⁇ m or more means that the phase observed in white when observed with a scanning electron microscope continuously extends for 300 ⁇ m from the outer edge of the braze material (cut point Means not being formed.
- the brazing material layer 7 is composed of a white Ag rich phase 3 and a black Cu rich phase 6.
- the Ag-rich phase 3 may contain a black Cu-rich phase 6, which means that it is “continuously formed” unless the white part is separated and separated.
- the white Ag rich phase 3 is formed continuously over at least 300 ⁇ m.
- a slight black color is observed in the white Ag-rich phase, but the white Ag-rich phase is continuously formed without being separated and separated.
- the white Ag rich phase is disconnected and separated at a location less than 100 ⁇ m from the brazing material outer edge 5 and a location consisting only of the Cu rich phase 6 appears Yes (Ag rich phase break part).
- the Ag rich phase 3 is continuously formed 300 ⁇ m or more from the brazing material outer edge 5 or more, even under the more severe conditions of the thermal cycle test, the brazing material is in the vicinity (protruding region outer edge 5 The interface between the Ag rich phase and the Cu rich phase is not broken in the range of 300 ⁇ m or less). As a result, a ceramic circuit board having excellent heat resistance cycle characteristics can be obtained.
- Example 1 Ag powder (Fukuda Metal Foil & Powder Co., Ltd. product: Ag-HWQ, average particle diameter D50: 2.5 ⁇ m, specific surface area 0.4 m 2 / g) 89 on both main surfaces of a 0.32 mm thick silicon nitride substrate .5 parts by mass, Cu powder (manufactured by Fukuda Metal Foil & Powder Co., Ltd .: Cu-HWQ average particle diameter D50: 3.0 ⁇ m specific surface area 0.4 m 2 / g) 9.5 parts by mass, Sn powder (Fukuda metal Foil Powder Industrial Co., Ltd.
- etching resist was printed on the bonded copper plate and etched with a ferric chloride solution to form a circuit pattern. Further, the brazing material layer and the nitride layer were removed with an ammonium fluoride / hydrogen peroxide solution, and the brazing material was extruded to form a protruding portion having a length of 29 ⁇ m and a thickness of 5 ⁇ m. The plating process was subjected to a pretreatment process of degreasing and chemical polishing, and an anticorrosion treatment was performed with a benzotriazole-based compound.
- the bonding void ratio of the ceramic circuit board was calculated by measuring the area of the bonding void observed with an ultrasonic flaw detector (manufactured by Hitachi Power Solution Co., Ltd .: ES5000) and dividing it by the area of the copper circuit pattern.
- the brazing material protruding portion outer edge was defined as the bonding outermost edge portion of the Ag rich phase and the ceramic.
- the braze material of the cross section of the circuit pattern corner of the ceramic circuit board is 5 times with a magnification of 200 times and a field of 400 ⁇ m ⁇ 600 ⁇ m by a reflection electron image with a scanning electron microscope (SU6600 manufactured by Hitachi High-Tech) It observed for a visual field.
- the thickness of the brazing material layer the average of the maximum thickness and the minimum thickness for each field of view is determined, and the average value for five fields of view is taken as the thickness of the brazing material layer.
- the length of the braze-out portion the distance between the braze-out portion from the outer edge of the copper circuit pattern for each field of view was determined, and the average value of five fields of view was taken as the length of the braze layer.
- the ceramic circuit board was subjected to 2500 cycles in a heat-resistant cycle test in which 15 cycles at -55 ° C, 15 minutes at 25 ° C, 15 minutes at 175 ° C, and 15 minutes at 25 ° C are regarded as one cycle.
- the metal plate and brazing material layer are peeled off by etching with iron chloride and ammonium fluoride / hydrogen peroxide, and the crack area generated on the surface of the ceramic substrate is captured by a scanner at a resolution of 600 dpi x 600 dpi. After binarizing and calculating with (threshold 140), the crack area was calculated and divided by the copper circuit pattern area to obtain the crack rate.
- Example 2 to 4 A ceramic circuit board was produced in the same manner as in Example 1 except that the composition and joining conditions of the brazing material were as described in Table 1, and the length and thickness of the protruding part were as shown in Table 3. Moreover, various measurements and evaluations were performed in the same manner as in Example 1. The results are presented in Table 3.
- Example 5 Use In powder (recommended atomizing method special grade reagent) instead of Sn powder for brazing material used for joining to make the brazing material composition and joining condition described in Table 1, and the length and thickness of the protruding part as per Table 3.
- a ceramic circuit board was obtained in the same manner as in Example 1 except for the above, and various measurements and evaluations were performed. The results are shown in Table 3.
- Example 6 A ceramic circuit board was obtained in the same manner as in Example 1 except that the composition and joining conditions of the brazing material were as described in Table 1, and the length and thickness of the protruding part were as Table 3, various measurements and I made an evaluation. The results are presented in Table 3.
- Example 11 A ceramic circuit board was obtained in the same manner as in Example 5 except that the composition and joining conditions of the brazing material were as described in Table 1, and the length and thickness of the protruding part were as Table 3, various measurements and I made an evaluation. The results are presented in Table 3.
- Example 12 to 14 A ceramic circuit board was obtained in the same manner as in Example 1 except that the composition and joining conditions of the brazing material were as described in Table 1, and the length and thickness of the protruding part were as Table 3, various measurements and I made an evaluation. The results are presented in Table 3.
- Example 15 A ceramic circuit board was obtained in the same manner as in Example 5 except that the composition and joining conditions of the brazing material were as described in Table 1, and the length and thickness of the protruding part were as Table 3, various measurements and I made an evaluation. The results are presented in Table 3.
- Comparative Example 1 Similar to Example 1 except that Sn powder was not added to the brazing material used for joining, and the brazing material composition and joining conditions described in Table 2 were used, and the length and thickness of the protruding part were as shown in Table 4. The ceramic circuit board was obtained, and various measurements and evaluations were performed. The results are shown in Table 4.
- Comparative Example 2 A ceramic circuit board was obtained in the same manner as in Example 5 except that the brazing material composition and joining conditions described in Table 2 were used, and the length and thickness of the protruding part were as shown in Table 4, and various measurements and evaluations were performed. The The results are presented in Table 4.
- Comparative Example 3 A ceramic circuit board was obtained in the same manner as in Example 5 except that the brazing material composition and joining conditions described in Table 2 were used, and the length and thickness of the protruding part were as shown in Table 4, and various measurements and evaluations were performed. The The results are presented in Table 4.
- Comparative Example 9 A ceramic circuit board was obtained in the same manner as in Example 5 except that the brazing material composition and joining conditions described in Table 2 were used, and the length and thickness of the protruding part were as shown in Table 4, and various measurements and evaluations were performed. The The results are presented in Table 4.
- Example 10 A ceramic circuit board was obtained in the same manner as in Example 1 except that the brazing material composition and joining conditions described in Table 2 were used, and the length and thickness of the protruding part were as shown in Table 4, and various measurements and evaluations were performed. The The results are presented in Table 4.
- the content in the brazing material is 85.0-95.0 parts by mass of A, 5.0-13.0 parts by mass of Cu, and 1.5-5.0 parts by mass of Ti, In a joined body made of 0.4 to 2.0 parts by mass of Sn or In, at a joining temperature of 770 ° C. to 900 ° C., and a holding time of 10 to 60 minutes, Ag rich in the circuit pattern inside from the outer edge of the protruding portion by the brazing material layer
- the phase was continuously 300 ⁇ m or more, and the crack rate after the heat cycle test was 2.0% or less.
- the brazing material becomes 1.0% or less of the crack rate. It was confirmed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Structural Engineering (AREA)
- Ceramic Products (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
Abstract
Description
[1]セラミックス基板上に、ろう材層を介して回路パターンが設けられ、回路パターンの外縁からはみ出したろう材層によりはみ出し部が形成されており、ろう材層は、Ag、Cu及びTiと、SnまたはInとを含み、はみ出し部外縁から、セラミックス基板と回路パターンとの接合界面に沿い内側に向かってAgリッチ相が300μm以上連続して形成されており、接合ボイド率が1.0%以下である、セラミックス回路基板。
[2]はみ出し部の厚みが8~30μmであり、長さが40μm~150μmである、[1]に記載のセラミックス回路基板。
[3]セラミックス基板が、窒化珪素、窒化アルミニウム、酸化アルミニウム、酸化ジルコニウム、炭化珪素、及びほう化ランタンから選択される、[1]又は[2]に記載のセラミックス回路基板。
[4]回路パターンが銅を含む、[1]から[3]のいずれかに記載のセラミックス回路基板。
[5][1]から[4]のいずれかに記載のセラミックス回路基板の製造方法であって、セラミックス基板の両主面にろう材を用いて銅板を接合する工程を有し、ろう材が、Agを85.0~95.0質量部、Cuを5.0~13.0質量部、SnまたはInを0.4~2.0質量部、及び、TiをAg、Cu及び、SnまたはInの合計100質量部に対して1.5~5.0質量部、含有し、真空中または、不活性雰囲気中で、接合温度が770℃~900℃であり、保持時間が10~60分で接合する、製造方法。
[6]ろう材が、Ag粉末、Cu粉末、及び、Sn粉末又はIn粉末を用いてなり、Ag粉末の比表面積が0.1~0.6m2/gである、[5]に記載の方法。
[7]Cu粉末の表面積が0.1~1.0m2/gでありかつ平均粒子径D50が0.8~8.0μmである、[5]又は[6]に記載の製造方法。
[8]Sn粉末又はIn粉末の比表面積が0.1~1.0m2/gでありかつ平均粒子径D50が0.8~10.0μmある、[5]から[7]のいずれかに記載の製造方法。
本実施形態に係るセラミックス回路基板は、回路パターンの外縁からはみ出したAg、Cu及びTiとSnまたはInを含むろう材層によるはみ出し部が形成されたセラミックス回路基板の断面の接合界面において、前記ろう材層によるはみ出し部外縁から回路パターン内側にAgリッチ相が300μm以上連続しており、接合ボイド率が1.0%以下であることを特徴とするセラミックス回路基板である。以下、詳しく述べる。
セラミックス回路基板は、セラミックス基板上に、ろう材層を介して回路パターンが設けられている。実施形態に係るセラミックス基板としては、特に限定されるものではなく、窒化珪素、窒化アルミニウムなどの窒化物系セラミックス、酸化アルミニウム、酸化ジルコニウムなどの酸化物系セラミックス、炭化珪素等の炭化物系セラミックス、ほう化ランタン等のほう化物系セラミックス等を使用できる。但し、金属板を活性金属法でセラミックス基板に接合するため、窒化アルミニウム、窒化珪素素等の非酸化物系セラミックスが好適であり、更に、優れた機械強度、破壊靱性の観点より、窒化珪素基板が好ましい。
ろう材層は、セラミックス回路基板における優れた耐熱サイクル特性を達成するために、Ag、Cu及びTiと、SnまたはInとを含むろう材で構成される。ろう材は、Ag粉末、Cu粉末、及び、Sn粉末又はIn粉末を用いて形成することができる。ろう材配合であるAg/Cu比は、AgとCuの共晶組成である72質量%:28質量%よりAg粉末の配合比を高めることで、Cuリッチ相の粗大化を防止し、Agリッチ相が連続したろう材層組織を形成することができる。また、Ag粉末の配合量が多く、Cu粉末の配合量が少ないと接合時にAg粉末が溶解しきれずに接合ボイドとして残る。さらに、ろう材粉末中に含有するSnまたはInは、セラミックス基板に対するろう材の接触角を小さくし、ろう材の濡れ性を改善するための成分であり、少なくすぎるとセラミックス基板との濡れ性が低下し、接合不良につながる可能性があり、多すぎるとろう材層中のAgリッチ相がCuリッチ相により不連続化しろう材が割れる起点になり、セラミックス回路基板の熱サイクル特性を低下させる可能性がある。
よってAg粉末と、Cu粉末、及び、Sn粉末またはIn粉末の配合比は、Ag粉末:85.0~95.0質量部、好ましくは、88.0~92.0質量部、より好ましくは、88.5~91.0質量部、Cu粉末:5.0~13.0質量部、好ましくは、6.0~12.0質量部、より好ましくは、7.0~11.0質量部、Sn粉末またはIn粉末:0.4~2.0質量部、好ましくは、0.5~1.5質量部が挙げられる。
回路パターンは、特に限定されるものではなく、例えば、銅板で形成することができる。銅板に使用する材質は、純銅が好ましい。銅板の厚みは特に限定されないが、0.1~1.5mmのものが一般的であり、特に、放熱性の観点から、0.3mm以上が好ましく、より好ましくは0.5mm以上である。
セラミックス基板と金属板との接合は、真空中または窒素、アルゴンなどの不活性雰囲気中、770~900℃の温度且つ10~60分の時間で接合することが好ましく、790~900℃の温度且つ10~60分の時間で接合することがより好ましい。また、770~900℃の温度且つ10~40分の時間で接合することも好ましい。775~820℃の温度且つ10~30分の時間で接合することもできる。接合温度を770℃以上及び保持時間を10分以上にすることで、金属板からのCuの溶け込みが不足することを防ぐことができ、セラミックス基板と金属板の接合性を高めることができる。また、接合温度を900℃以下、及び保持時間を60分以下にすることで、Agリッチ相の連続性を高めることができるとともに、接合時の熱膨張率差に由来する熱ストレスが増加することを防ぐことができるため、セラミックス回路基板の信頼性をより向上させることができる。
セラミックス回路基板は、回路パターンの外縁からはみ出したろう材層によりはみ出し部が形成されている。はみ出し部について、図1,2を参照して説明する。図1は、本実施形態に係るセラミックス回路基板の一例における接合断面の拡大写真である。このセラミックス回路基板は、セラミックス基板(窒化珪素基板)2上に、ろう材層7を介して回路パターン(銅回路部)1が形成されている。ろう材層7の一部は、回路パターン1の外縁からはみ出してはみ出し部4を形成している。
ろう材層は、はみ出し部の外縁から、セラミックス基板と回路パターン1の接合界面に沿い内側に向かってAgリッチ相が300μm以上、好ましくは400μm以上連続して形成されている。「Agリッチ相」とは、Ag固溶体で形成されている相を意味しており、主としてAgを含んでいる。「主として」とは、電子線励起X線分析装置(EPMA)における定量分析として80%以上であることを意味している。Agリッチ相には、Sn又はInとTiとが含有されており、Cuが固溶していることがある。本実施形態では、走査型電子顕微鏡で観察した場合に白色で観察される相を「Agリッチ相」とし、黒色で観察される相を「Cuリッチ相」という。「Agリッチ相が300μm以上連続して形成されている」とは、走査型電子顕微鏡で観察した場合に白色で観察される相が、ろう材はみ出し部外縁から300μmに亘って連続的に(切れ目なく)形成されていることを意味している。図2を参照して説明すると、ろう材層7は、白色のAgリッチ相3と黒色のCuリッチ相6とで構成されている。Agリッチ相3中には黒色のCuリッチ相6が含まれることがあるが、白色部分が途切れて分離されていない限り、「連続して形成されている」ことを意味している。
厚み0.32mmの窒化珪素基板の両主面に、Ag粉末(福田金属箔粉工業(株)製:Ag-HWQ、平均粒子径D50:2.5μm、比表面積0.4m2/g)89.5質量部、Cu粉末(福田金属箔粉工業(株)製:Cu-HWQ 平均粒子径D50:3.0μm比表面積0.4m2/g、)9.5質量部、Sn粉末(福田金属箔粉工業(株)製:Sn-HPN、平均粒子径D50:3μm、比表面積0.1m2/g)1.0質量部の合計100質量部に対して、水素化チタン粉末(トーホーテック(株)製:TCH-100)を3.5質量部含む活性金属ろう材を塗布量8mg/cm2となるようにスクリーン印刷法で塗布した。
その後、窒化珪素基板の一方の面に回路形成用金属板を、他方の面に放熱板形成用金属板(いずれも厚さ0.8mm、純度99.60%のC1020無酸素銅板)を重ね、1.0×10-3Pa以下の真空中にて830℃且つ30分の条件で接合した。接合した銅板にエッチングレジストを印刷し、塩化第二鉄溶液でエッチングして回路パターンを形成した。さらにフッ化アンモニウム/過酸化水素溶液でろう材層、窒化物層を除去し、ろう材はみ出し長さ29μm、厚み5μmのはみ出し部を形成した。めっき工程は、脱脂、化学研磨による前処理工程を経て、ベンゾトリアゾール系化合物により防錆処理を行った。
セラミックス回路基板の接合ボイド率は、超音波探傷装置((株)日立パワーソリューション製:ES5000)で観察される接合ボイドの面積を計測し、銅回路パターンの面積で除して算出した。
セラミックス回路基板のろう材はみ出し部外縁から回路パターン内側の断面の接合組織を、走査型電子顕微鏡(日立ハイテク社製SU6600形)で反射電子像にて観察し、ろう材層中において、白色で観察される相をAgリッチ相、黒色で観察される相をCuリッチ相と定義した。観察においては、ろう材はみ出し部外縁から回路パターン内側を、200倍の倍率、縦400μm×横600μmの視野で4視野分観察し、Agリッチ相の連続性について確認を行った。Agリッチ相がすべて連続しているものを「良」、Agリッチ相が1視野でも連続していないものを「不良」とした。このときのろう材はみ出し部外縁とは、Agリッチ相とセラミックスとの接合最外縁部と定義した。
セラミックス回路基板の回路パターン角部の断面のろう材はみ出し部を、走査型電子顕微鏡(日立ハイテク社製SU6600形)で反射電子像にて200倍の倍率、縦400μm×横600μmの視野で、5視野分観察した。ろう材層の厚みについては、それぞれの視野毎の最大厚みと最小厚みの平均を求め、5視野分の平均値をろう材層の厚みとした。ろう材はみ出し部の長さについては、それぞれの視野毎の銅回路パターン外縁からろう材はみ出し部外縁間の距離を求め、5視野分の平均値をろう材層の長さとした。
作製したセラミックス回路基板を-55℃にて15分、25℃にて15分、175℃にて15分、25℃にて15分を1サイクルとする耐熱サイクル試験にて、2500サイクル繰り返し試験を行った後、塩化鉄及びフッ化アンモニウム/過酸化水素エッチングで金属板及びろう材層を剥離し、セラミックス基板の表面に発生したクラック面積をスキャナーにより600dpi×600dpiの解像度で取り込み、画像解析ソフトGIMP2(閾値140)にて二値化し算出した後、クラック面積を算出し、銅回路パターン面積で除してクラック率を求めた。
接合ボイド率が1.0%以下で且つクラック率が0.0~1.0%のものを4、接合ボイド率が1.0%以下で且つクラック率が1.1~1.5%のものを3、接合ボイド率が1.0%以下で且つクラック率が1.6~2.0%のものを2、接合ボイド率が1.0%より大きいものまたはクラック率が2.0%より大きいものを1とした。結果を表3に表す。
ろう材の配合及び接合条件を表1に記載のとおりとし、はみ出し部の長さ及び厚みを表3のとおりとした以外は、実施例1と同様にセラミックス回路基板を作製した。また、実施例1と同様に、各種の測定及び評価を行った。結果を表3に表す。
接合に使用するろう材に、Sn粉末の代わりにIn粉末(アトマイズ法特級試薬)を使用して表1に記載のろう材配合及び接合条件とし、はみ出し部の長さ及び厚みを表3のとおりとしたこと以外、実施例1と同様にしてセラミックス回路基板を得、各種の測定及び評価を行った。結果を表3に示す。
ろう材の配合及び接合条件を表1に記載のとおりとし、はみ出し部の長さ及び厚みを表3のとおりとした以外は、実施例1と同様にしてセラミックス回路基板を得、各種の測定及び評価を行った。結果を表3に表す。
ろう材の配合及び接合条件を表1に記載のとおりとし、はみ出し部の長さ及び厚みを表3のとおりとした以外は、実施例5と同様にしてセラミックス回路基板を得、各種の測定及び評価を行った。結果を表3に表す。
ろう材の配合及び接合条件を表1に記載のとおりとし、はみ出し部の長さ及び厚みを表3のとおりとした以外は、実施例1と同様にしてセラミックス回路基板を得、各種の測定及び評価を行った。結果を表3に表す。
ろう材の配合及び接合条件を表1に記載のとおりとし、はみ出し部の長さ及び厚みを表3のとおりとした以外は、実施例5と同様にしてセラミックス回路基板を得、各種の測定及び評価を行った。結果を表3に表す。
接合に使用するろう材に、Sn粉末をせず、表2に記載のろう材配合及び接合条件とし、はみ出し部の長さ及び厚みを表4のとおりとしたこと以外、実施例1と同様にしてセラミックス回路基板を得、各種の測定及び評価を行った。結果を表4に示す。
表2に記載のろう材配合及び接合条件とし、はみ出し部の長さ及び厚みを表4のとおりとした以外は、実施例5と同様にしてセラミックス回路基板を得、各種の測定及び評価を行った。結果を表4に表す。
表2に記載のろう材配合及び接合条件とし、はみ出し部の長さ及び厚みを表4のとおりとした以外は、実施例5と同様にしてセラミックス回路基板を得、各種の測定及び評価を行った。結果を表4に表す。
表2,4に変更を示した部分以外は、実施例1と同様に行った。結果を表4に表す。
表2に記載のろう材配合及び接合条件とし、はみ出し部の長さ及び厚みを表4のとおりとした以外は、実施例5と同様にしてセラミックス回路基板を得、各種の測定及び評価を行った。結果を表4に表す。
表2に記載のろう材配合及び接合条件とし、はみ出し部の長さ及び厚みを表4のとおりとした以外は、実施例1と同様にしてセラミックス回路基板を得、各種の測定及び評価を行った。結果を表4に表す。
2 セラミックス基板
3 Agリッチ相
4 ろう材はみ出し部
5 ろう材はみ出し部外縁
6 Cuリッチ相
7 ろう材層
Claims (8)
- セラミックス基板上に、ろう材層を介して回路パターンが設けられ、
回路パターンの外縁からはみ出したろう材層によりはみ出し部が形成されており、
ろう材層は、Ag、Cu及びTiと、SnまたはInとを含み、
はみ出し部外縁から、セラミックス基板と回路パターンとの接合界面に沿い内側に向かってAgリッチ相が300μm以上連続して形成されており、接合ボイド率が1.0%以下である、セラミックス回路基板。 - はみ出し部の厚みが8~30μmであり、長さが40μm~150μmである、請求項1に記載のセラミックス回路基板。
- セラミックス基板が、窒化珪素、窒化アルミニウム、酸化アルミニウム、酸化ジルコニウム、炭化珪素、及びほう化ランタンから選択される、請求項1又は2に記載のセラミックス回路基板。
- 回路パターンが銅を含む、請求項1から3のいずれか一項に記載のセラミックス回路基板。
- 請求項1から4のいずれか一項に記載のセラミックス回路基板の製造方法であって、
セラミックス基板の両主面にろう材を用いて銅板を接合する工程を有し、
ろう材が、Agを85.0~95.0質量部、Cuを5.0~13.0質量部、SnまたはInを0.4~2.0質量部、及び、TiをAg、Cu及び、SnまたはInの合計100質量部に対して1.5~5.0質量部、含有し、
真空中または、不活性雰囲気中で、接合温度が770℃~900℃であり、保持時間が10~60分で接合する、製造方法。 - ろう材が、Ag粉末、Cu粉末、及び、Sn粉末又はIn粉末を用いてなり、Ag粉末の比表面積が0.1~0.6m2/gである、請求項5に記載の方法。
- Cu粉末の表面積が0.1~1.0m2/gでありかつ平均粒子径D50が0.8~8.0μmである、請求項5又は6に記載の製造方法。
- Sn粉末又はIn粉末の比表面積が0.1~1.0m2/gでありかつ平均粒子径D50が0.8~10.0μmある、請求項5から7のいずれか一項に記載の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207001838A KR102521140B1 (ko) | 2017-07-25 | 2018-07-25 | 세라믹스 회로 기판 및 그 제조 방법 |
CN201880048695.7A CN110945974B (zh) | 2017-07-25 | 2018-07-25 | 陶瓷电路基板及其制造方法 |
EP18839092.6A EP3661337B1 (en) | 2017-07-25 | 2018-07-25 | Ceramic circuit board and production method therefor |
JP2019532831A JP7010950B2 (ja) | 2017-07-25 | 2018-07-25 | セラミックス回路基板及びその製造方法 |
US16/630,232 US11483926B2 (en) | 2017-07-25 | 2018-07-25 | Ceramic circuit board and production method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017143417 | 2017-07-25 | ||
JP2017-143417 | 2017-07-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019022133A1 true WO2019022133A1 (ja) | 2019-01-31 |
Family
ID=65041218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/027882 WO2019022133A1 (ja) | 2017-07-25 | 2018-07-25 | セラミックス回路基板及びその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11483926B2 (ja) |
EP (1) | EP3661337B1 (ja) |
JP (1) | JP7010950B2 (ja) |
KR (1) | KR102521140B1 (ja) |
CN (1) | CN110945974B (ja) |
WO (1) | WO2019022133A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021054316A1 (ja) * | 2019-09-20 | 2021-03-25 | ||
WO2021149789A1 (ja) * | 2020-01-23 | 2021-07-29 | デンカ株式会社 | セラミックス-銅複合体、及びセラミックス-銅複合体の製造方法 |
WO2021162369A1 (ko) * | 2020-02-13 | 2021-08-19 | 주식회사 아모그린텍 | 파워모듈 및 그 제조방법 |
WO2021200866A1 (ja) | 2020-03-30 | 2021-10-07 | デンカ株式会社 | 回路基板、接合体、及びこれらの製造方法 |
WO2022085654A1 (ja) * | 2020-10-20 | 2022-04-28 | 株式会社 東芝 | 接合体およびそれを用いたセラミックス回路基板並びに半導体装置 |
WO2024111483A1 (ja) * | 2022-11-25 | 2024-05-30 | デンカ株式会社 | セラミック焼結体及びその製造方法、接合体、並びにパワーモジュール |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4191661A4 (en) * | 2020-07-27 | 2024-08-21 | Toshiba Kk | CONNECTED BODY, CIRCUIT BOARD, SEMICONDUCTOR COMPONENT AND METHOD FOR PRODUCING A CONNECTED BODY |
CN111958145A (zh) * | 2020-08-24 | 2020-11-20 | 合肥工业大学 | 一种用于max相复合陶瓷的钎焊材料及钎焊工艺 |
CN112469201B (zh) * | 2020-11-24 | 2021-12-07 | 绍兴德汇半导体材料有限公司 | 一种覆铜衬板制作方法 |
EP4310065A4 (en) * | 2021-03-24 | 2024-10-02 | Denka Company Ltd | COMPOSITE SUBSTRATE |
EP4311818A1 (de) * | 2022-07-29 | 2024-01-31 | Heraeus Electronics GmbH & Co. KG | Metall-keramik-substrat mit kontaktbereich |
EP4311819A1 (de) * | 2022-07-29 | 2024-01-31 | Heraeus Electronics GmbH & Co. KG | Metall-keramik-substrat mit kontaktbereich |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003112980A (ja) | 2001-09-28 | 2003-04-18 | Dowa Mining Co Ltd | 金属−セラミックス接合体 |
JP2005268821A (ja) | 2005-05-24 | 2005-09-29 | Hitachi Metals Ltd | セラミックス回路基板及びこれを用いたパワー半導体モジュール |
JP2009256207A (ja) * | 2003-03-27 | 2009-11-05 | Dowa Holdings Co Ltd | 金属−セラミックス接合基板の製造方法 |
JP2016165001A (ja) * | 2009-09-15 | 2016-09-08 | 東芝マテリアル株式会社 | パワーモジュール用セラミックス回路基板 |
WO2017056360A1 (ja) | 2015-09-28 | 2017-04-06 | 株式会社 東芝 | 回路基板および半導体装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0480470B1 (en) * | 1990-10-12 | 1995-03-29 | Sumitomo Electric Industries, Ltd. | Insulating member and electric parts using the same |
JP3449458B2 (ja) | 1997-05-26 | 2003-09-22 | 電気化学工業株式会社 | 回路基板 |
CN100471668C (zh) * | 2002-11-20 | 2009-03-25 | 同和控股(集团)有限公司 | 金属/陶瓷粘合制品 |
JP4394477B2 (ja) | 2003-03-27 | 2010-01-06 | Dowaホールディングス株式会社 | 金属−セラミックス接合基板の製造方法 |
JP4345054B2 (ja) * | 2003-10-09 | 2009-10-14 | 日立金属株式会社 | セラミックス基板用ろう材及びこれを用いたセラミックス回路基板、パワー半導体モジュール |
EP1737029A4 (en) * | 2004-03-24 | 2011-03-30 | Tokuyama Corp | SUBSTRATE FOR COMPONENTS BONDING AND MANUFACTURING METHOD THEREFOR |
WO2013002407A1 (ja) | 2011-06-30 | 2013-01-03 | 日立金属株式会社 | ろう材、ろう材ペースト、セラミックス回路基板、セラミックスマスター回路基板及びパワー半導体モジュール |
WO2015147193A1 (ja) | 2014-03-26 | 2015-10-01 | 京セラ株式会社 | 回路基板およびこれを備える電子装置 |
DE112015003487T5 (de) * | 2014-07-29 | 2017-05-11 | Denka Company Limited | Keramische Leiterplatte und Verfahren zur Herstellung der selben |
-
2018
- 2018-07-25 EP EP18839092.6A patent/EP3661337B1/en active Active
- 2018-07-25 WO PCT/JP2018/027882 patent/WO2019022133A1/ja unknown
- 2018-07-25 KR KR1020207001838A patent/KR102521140B1/ko active IP Right Grant
- 2018-07-25 JP JP2019532831A patent/JP7010950B2/ja active Active
- 2018-07-25 US US16/630,232 patent/US11483926B2/en active Active
- 2018-07-25 CN CN201880048695.7A patent/CN110945974B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003112980A (ja) | 2001-09-28 | 2003-04-18 | Dowa Mining Co Ltd | 金属−セラミックス接合体 |
JP2009256207A (ja) * | 2003-03-27 | 2009-11-05 | Dowa Holdings Co Ltd | 金属−セラミックス接合基板の製造方法 |
JP2005268821A (ja) | 2005-05-24 | 2005-09-29 | Hitachi Metals Ltd | セラミックス回路基板及びこれを用いたパワー半導体モジュール |
JP2016165001A (ja) * | 2009-09-15 | 2016-09-08 | 東芝マテリアル株式会社 | パワーモジュール用セラミックス回路基板 |
WO2017056360A1 (ja) | 2015-09-28 | 2017-04-06 | 株式会社 東芝 | 回路基板および半導体装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3661337A4 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021054316A1 (ja) * | 2019-09-20 | 2021-03-25 | ||
WO2021054316A1 (ja) * | 2019-09-20 | 2021-03-25 | デンカ株式会社 | 回路基板及びこれを備えるモジュール |
JP7441234B2 (ja) | 2019-09-20 | 2024-02-29 | デンカ株式会社 | 回路基板及びこれを備えるモジュール |
WO2021149789A1 (ja) * | 2020-01-23 | 2021-07-29 | デンカ株式会社 | セラミックス-銅複合体、及びセラミックス-銅複合体の製造方法 |
EP4096369A4 (en) * | 2020-01-23 | 2023-09-27 | Denka Company Limited | CERAMIC-COPPER COMPOSITE AND METHOD FOR PRODUCING A CERAMIC-COPPER COMPOSITE |
WO2021162369A1 (ko) * | 2020-02-13 | 2021-08-19 | 주식회사 아모그린텍 | 파워모듈 및 그 제조방법 |
WO2021200866A1 (ja) | 2020-03-30 | 2021-10-07 | デンカ株式会社 | 回路基板、接合体、及びこれらの製造方法 |
KR20220160540A (ko) | 2020-03-30 | 2022-12-06 | 덴카 주식회사 | 회로 기판, 접합체, 및 이들의 제조 방법 |
EP4079712A4 (en) * | 2020-03-30 | 2023-06-28 | Denka Company Limited | Circuit board, joined body, and methods for producing same |
WO2022085654A1 (ja) * | 2020-10-20 | 2022-04-28 | 株式会社 東芝 | 接合体およびそれを用いたセラミックス回路基板並びに半導体装置 |
WO2024111483A1 (ja) * | 2022-11-25 | 2024-05-30 | デンカ株式会社 | セラミック焼結体及びその製造方法、接合体、並びにパワーモジュール |
Also Published As
Publication number | Publication date |
---|---|
US20200163210A1 (en) | 2020-05-21 |
CN110945974A (zh) | 2020-03-31 |
KR20200029480A (ko) | 2020-03-18 |
US11483926B2 (en) | 2022-10-25 |
EP3661337A4 (en) | 2020-07-22 |
EP3661337B1 (en) | 2021-09-01 |
JPWO2019022133A1 (ja) | 2020-06-11 |
CN110945974B (zh) | 2023-05-16 |
KR102521140B1 (ko) | 2023-04-12 |
JP7010950B2 (ja) | 2022-01-26 |
EP3661337A1 (en) | 2020-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019022133A1 (ja) | セラミックス回路基板及びその製造方法 | |
EP3632879B1 (en) | Ceramic circuit board and method of production | |
KR20200004799A (ko) | 세라믹스 회로 기판 및 그 제조 방법과 그것을 사용한 모듈 | |
EP2282334B1 (en) | Method for producing substrate for power module | |
JP7212700B2 (ja) | セラミックス-銅複合体、セラミックス回路基板、パワーモジュール及びセラミックス-銅複合体の製造方法 | |
JP3629783B2 (ja) | 回路基板 | |
CN110691762B (zh) | 陶瓷电路基板和其制造方法 | |
EP3109222A1 (en) | Ceramic circuit board | |
JP2000323618A (ja) | 銅回路接合基板及びその製造方法 | |
JP7410872B2 (ja) | セラミックス-銅複合体、セラミックス-銅複合体の製造方法、セラミックス回路基板およびパワーモジュール | |
JP3454331B2 (ja) | 回路基板及びその製造方法 | |
JP2023091914A (ja) | 金属-セラミックス接合基板の製造方法、および、金属-セラミックス接合基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18839092 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019532831 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207001838 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018839092 Country of ref document: EP Effective date: 20200225 |