WO2019022050A1 - Adhesive tape for semiconductor protection and method for processing semiconductor - Google Patents

Adhesive tape for semiconductor protection and method for processing semiconductor Download PDF

Info

Publication number
WO2019022050A1
WO2019022050A1 PCT/JP2018/027627 JP2018027627W WO2019022050A1 WO 2019022050 A1 WO2019022050 A1 WO 2019022050A1 JP 2018027627 W JP2018027627 W JP 2018027627W WO 2019022050 A1 WO2019022050 A1 WO 2019022050A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensitive adhesive
semiconductor
adhesive tape
conductive layer
Prior art date
Application number
PCT/JP2018/027627
Other languages
French (fr)
Japanese (ja)
Inventor
亨 利根川
健二 増澤
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201880018486.8A priority Critical patent/CN110446765A/en
Priority to KR1020197017861A priority patent/KR102561868B1/en
Priority to JP2018545526A priority patent/JP7181086B2/en
Publication of WO2019022050A1 publication Critical patent/WO2019022050A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention can recognize a circuit pattern on a semiconductor device through a tape when attached to a circuit surface of a semiconductor device in a semiconductor manufacturing process, and can be highly charged even when subjected to a high temperature treatment of 180 ° C. or higher.
  • the present invention relates to a pressure-sensitive adhesive tape for semiconductor protection which can exhibit suppression performance, and a method of treating a semiconductor using the pressure-sensitive adhesive tape for semiconductor protection.
  • adhesive tape is applied to the circuit surface of the semiconductor device for protection.
  • Such an adhesive tape is required to have excellent charge control performance so that the circuit is not damaged by static electricity.
  • a pressure-sensitive adhesive tape excellent in antistatic performance for example, an antistatic pressure-sensitive adhesive tape in which a conductive filler is dispersed in a pressure-sensitive adhesive layer is known (for example, Patent Documents 1 to 3).
  • the adhesive tape is also required to have excellent transparency.
  • the conventional antistatic pressure-sensitive adhesive tape has low transparency when it is blended with a conductive filler so as to provide sufficient antistatic performance.
  • the circuit pattern on the semiconductor device can not be recognized through the adhesive tape, making process control difficult.
  • the conventional antistatic pressure-sensitive adhesive tape has a problem that when subjected to high temperature treatment at 180 ° C. or higher, the antistatic performance may be significantly reduced.
  • the present invention can recognize a circuit pattern on a semiconductor device through a tape when applied to a circuit surface of the semiconductor device in a semiconductor manufacturing process, and is subjected to high temperature treatment of 180 ° C. or more It is an object of the present invention to provide a pressure-sensitive adhesive tape for semiconductor protection which can sometimes exhibit high charge suppression performance, and a method of treating a semiconductor using the pressure-sensitive adhesive tape for semiconductor protection.
  • One embodiment of the present invention has a pressure-sensitive adhesive layer and a conductive layer laminated on one side of the pressure-sensitive adhesive layer, and the surface resistivity on the side of the pressure-sensitive adhesive layer is heated at 180 ° C. for 6 hours.
  • Semiconductor which is 1.0 ⁇ 10 4 ⁇ / ⁇ or more and 9.9 ⁇ 10 13 ⁇ / ⁇ or less both before and after, and has a visible light transmittance of 30% or more measured from the conductive layer side It is a protective adhesive tape. The present invention will be described in detail below.
  • the present inventors directly laminated a conductive layer of nanometer order thickness on one side of the pressure-sensitive adhesive layer, so that the pressure-sensitive adhesive layer side may be before or after high temperature treatment at 180 ° C. or higher. It has been found that the surface resistivity of the above can be adjusted within a certain range to exhibit high charge suppression performance. Moreover, it discovered that the outstanding transparency which can recognize a circuit pattern through a tape can be exhibited when it sticks on the circuit surface of a semiconductor device, and completed this invention.
  • the adhesive tape for semiconductor protection which is one embodiment of the present invention (hereinafter, also simply referred to as “adhesive tape”) has an adhesive layer.
  • the pressure-sensitive adhesive component constituting the pressure-sensitive adhesive layer is not particularly limited, and may contain any of a non-curable pressure-sensitive adhesive and a curable pressure-sensitive adhesive. Among them, it is preferable to contain a curable pressure-sensitive adhesive because the adhesive residue can be suppressed when the semiconductor device on which the circuit is formed is attached and peeled off on the surface on which the circuit is formed.
  • the curable pressure-sensitive adhesive examples include a photo-curable pressure-sensitive adhesive which is crosslinked and cured by light irradiation, and a thermosetting pressure-sensitive adhesive which is crosslinked and cured by heating.
  • the photocurable pressure-sensitive adhesive examples include a photocurable pressure-sensitive adhesive containing a polymerizable polymer as a main component and using a photopolymerization initiator as a polymerization initiator.
  • the thermosetting adhesive include a thermosetting adhesive having a polymerizable polymer as a main component and a thermal polymerization initiator as a polymerization initiator.
  • the polymerizable polymer can be obtained, for example, by the following method. That is, first, a (meth) acrylic polymer having a functional group in its molecule (hereinafter, also referred to as “functional group-containing (meth) acrylic polymer”) is synthesized in advance. Then, a compound having a functional group which reacts with the above-mentioned functional group in the molecule and a radical polymerizable unsaturated bond (hereinafter referred to as “functional group-containing unsaturated compound”) in the functional group-containing (meth) acrylic polymer The polymerizable polymer can be obtained by reacting.
  • a (meth) acrylic polymer having a functional group in its molecule hereinafter, also referred to as “functional group-containing (meth) acrylic polymer”
  • a compound having a functional group which reacts with the above-mentioned functional group in the molecule and a radical polymerizable unsaturated bond hereinafter referred to as “functional group-containing unsaturated compound
  • the said functional group containing (meth) acrylic-type polymer can be obtained by the method similar to the case of a common (meth) acrylic-type polymer as a polymer which has adhesiveness at normal temperature. That is, an acrylic acid alkyl ester and / or a methacrylic acid alkyl ester having an alkyl group carbon number usually in the range of 2 to 18 is used as a main monomer, which can be copolymerized with this and a functional group containing monomer, if necessary. It is obtained by copolymerizing with other modifying monomers in the usual way.
  • the weight average molecular weight of the functional group-containing (meth) acrylic polymer is usually about 200,000 to 2,000,000.
  • Examples of the functional group-containing monomer include carboxyl group-containing monomers such as acrylic acid and methacrylic acid, hydroxyl group-containing monomers such as hydroxyethyl acrylate and hydroxyethyl methacrylate, and epoxy such as glycidyl acrylate and glycidyl methacrylate Examples thereof include group-containing monomers, isocyanate group-containing monomers such as isocyanate ethyl acrylate and ethyl methacrylate methacrylate, and amino group-containing monomers such as amino ethyl acrylate and amino ethyl methacrylate.
  • Examples of the other copolymerizable modifying monomer include various monomers used for general (meth) acrylic polymers such as vinyl acetate, acrylonitrile and styrene.
  • the same functional group-containing monomer as described above according to the functional group of the functional group-containing (meth) acrylic polymer is used it can.
  • the functional group of the functional group-containing (meth) acrylic polymer is a carboxyl group
  • an epoxy group-containing monomer or an isocyanate group-containing monomer is used.
  • the functional group is a hydroxyl group
  • an isocyanate group-containing monomer is used.
  • the functional group is an epoxy group
  • a carboxyl group-containing monomer or an amide group-containing monomer such as acrylamide is used.
  • an amino group an epoxy group-containing monomer is used.
  • Examples of the photopolymerization initiator include those activated by irradiation with light having a wavelength of 250 to 800 nm.
  • Examples of such photopolymerization initiators include acetophenone derivative compounds, benzoin ether compounds, ketal derivative compounds, phosphine oxide derivative compounds, bis ( ⁇ 5-cyclopentadienyl) titanocene derivative compounds and the like.
  • Examples of the acetophenone derivative compounds include methoxyacetophenone and the like.
  • Examples of the benzoin ether compounds include benzoin propyl ether and benzoin isobutyl ether.
  • Examples of the ketal derivative compound include benzyl dimethyl ketal, acetophenone diethyl ketal and the like.
  • photopolymerization initiator examples include bis ( ⁇ 5-cyclopentadienyl) titanocene derivative compounds, benzophenone, Michler's ketone, chlorothioxanthone, todecyl thioxanthone, dimethylthioxanthone, diethylthioxanthone, ⁇ -hydroxycyclohexyl phenyl ketone, 2-hydroxy Photo radical polymerization initiators such as methyl phenyl propane may be mentioned. These photopolymerization initiators may be used alone or in combination of two or more.
  • thermal polymerization initiator what generate
  • polymerization hardening is mentioned.
  • dicumyl peroxide, di-t-butyl peroxide, t-butyl peroxy benZole, t-butyl hydroperoxide, benzoyl peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, para Menthane hydroperoxide, di-t-butyl peroxide and the like can be mentioned.
  • thermal polymerization initiator having a thermal decomposition temperature of 200 ° C. or higher as the thermal polymerization initiator.
  • a thermal polymerization initiator having a high thermal decomposition temperature cumene hydroperoxide, paramenthan hydroperoxide, di-t-butyl peroxide and the like can be mentioned.
  • thermal polymerization initiators commercially available ones are not particularly limited, and, for example, perbutyl D, perbutyl H, perbutyl P, perpenta H (all manufactured by NOF Corporation) and the like are preferable.
  • thermal polymerization initiators may be used alone or in combination of two or more.
  • the said curable adhesive contains a radically polymerizable polyfunctional oligomer or monomer.
  • a radically polymerizable polyfunctional oligomer or monomer By containing a radically polymerizable polyfunctional oligomer or monomer, photocurability and thermosetting are improved.
  • the polyfunctional oligomer or monomer is preferably one having a molecular weight of 10,000 or less, more preferably 5,000 or less so that three-dimensional reticulation of the curable adhesive can be efficiently performed by heating or light irradiation. And the number of radically polymerizable unsaturated bonds in the molecule is 2 to 20.
  • polyfunctional oligomer or monomer examples include trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol monohydroxy pentaacrylate, and dipentaerythritol hexaacrylate.
  • methacrylates as described above may, for example, be mentioned.
  • 1,4-butylene glycol diacrylate, 1,6-hexanediol diacrylate, polyethylene glycol diacrylate, commercially available oligoester acrylate, methacrylates similar to the above, and the like can be mentioned.
  • These polyfunctional oligomers or monomers may be used alone or in combination of two or more.
  • the pressure-sensitive adhesive layer may further contain a gas generating agent that generates a gas upon stimulation.
  • a gas generating agent that generates a gas upon stimulation.
  • the above gas generating agent is not particularly limited, but it is excellent in resistance to a process involving heating, and therefore, carboxylic acid compounds such as phenylacetic acid, diphenylacetic acid, triphenylacetic acid or salts thereof, 1H-tetrazole, 5-phenyl-1H- Tetrazole compounds such as tetrazole and 5,5-azobis-1H-tetrazole or salts thereof are preferred.
  • carboxylic acid compounds such as phenylacetic acid, diphenylacetic acid, triphenylacetic acid or salts thereof, 1H-tetrazole, 5-phenyl-1H- Tetrazole compounds such as tetrazole and 5,5-azobis-1H-tetrazole or salts thereof are preferred.
  • Such a gas generating agent generates a gas by irradiation with light such as ultraviolet light, and has high heat resistance that does not decompose even at a high temperature of about 200 ° C.
  • the pressure-sensitive adhesive layer may further contain a photosensitizer.
  • the photosensitizer has an effect of amplifying the stimulation of the gas generating agent with light, so that the gas can be released by irradiation with less light.
  • gas can be released by light in a wider wavelength range.
  • the pressure-sensitive adhesive layer contains the curable pressure-sensitive adhesive as a pressure-sensitive adhesive component, it may contain a silicone compound having a functional group crosslinkable with the curable pressure-sensitive adhesive. Since the silicone compound is excellent in heat resistance, the sticking of the pressure-sensitive adhesive can be suppressed even if it is subjected to a treatment accompanied by heating at 200 ° C. or more, and when exfoliated, it bleeds out to the interface of the adherend to facilitate exfoliation.
  • the silicone compound Since the silicone compound has a functional group capable of crosslinking with the curable pressure-sensitive adhesive, it is chemically reacted with the curable pressure-sensitive adhesive by light irradiation or heating and is incorporated into the curable pressure-sensitive adhesive; The silicone compound does not stick to the body and cause contamination. Moreover, the effect which suppresses the adhesive residue on a to-be-adhered body is also exhibited by mix
  • the pressure-sensitive adhesive layer preferably does not contain a conductive substance such as a conductive filler or a conductive compound.
  • a conductive substance such as a conductive filler or a conductive compound.
  • the pressure-sensitive adhesive layer does not contain a conductive filler, it is possible to suppress the decrease in the adhesive strength due to the presence of the conductive filler and the decrease in the adhesive strength with time due to the bleeding of the conductive compound.
  • a side reaction of the conductive compound due to high-temperature treatment can be suppressed, and a decrease in adhesion and contamination of a semiconductor can be suppressed.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, but a preferable lower limit is 5 ⁇ m and a preferable upper limit is 100 ⁇ m. When the thickness of the pressure-sensitive adhesive layer is in the above-mentioned range, the adherend can be protected with sufficient adhesive force, and the adhesive residue at the time of peeling can also be suppressed.
  • the lower limit of the thickness of the pressure-sensitive adhesive layer is preferably 10 ⁇ m, and more preferably 60 ⁇ m, in order to further improve the adhesive strength and to further suppress the adhesive residue at the time of peeling.
  • the conductive layer is laminated on one surface of the pressure-sensitive adhesive layer.
  • a conductive layer By providing such a conductive layer, it is possible to adjust the surface resistivity on the pressure-sensitive adhesive layer side to a certain range while securing the transparency. In addition, even when subjected to high-temperature treatment at 180 ° C. or higher, high charge suppression performance can be exhibited.
  • the transparency and surface resistivity of the pressure-sensitive adhesive tape can be freely adjusted by adjusting the type of metal or the like constituting the conductive layer, the thickness of the conductive layer, the area of the conductive layer, and the like.
  • the conductive layer is not particularly limited, but is preferably made of a metal, an alloy or a metal compound from the viewpoint of easily adjusting the thickness of the conductive layer and easily achieving improvement in transparency and surface resistance of the adhesive tape. .
  • Gold, an alloy and a metal compound may be used alone or in combination of two or more.
  • a metal which can comprise the said conductive layer metals, such as gold, silver, copper, platinum, titanium, aluminum, tin, are mentioned, for example.
  • a conductive layer may consist of a single layer or multiple layers which consist of said metals.
  • an alloy containing iron and an alloy containing molybdenum are mentioned, for example.
  • alloys containing iron include alloys containing chromium and iron, and alloys containing chromium, nickel and iron, and specific examples include stainless steel (SUS).
  • stainless steel specifically, for example, stainless steel (SUS 201), stainless steel (SUS 202), stainless steel (SUS 301), stainless steel (SUS 302), stainless steel (SU 303), stainless steel (SUS 304) , Stainless steel (SUS306), stainless steel (SUS310s), stainless steel (SUS316), stainless steel (SUS317), stainless steel (SUS329J11), stainless steel (SUS403), stainless steel (SUS405), stainless steel (SUS420), stainless steel Examples include steel (SUS430), stainless steel (SUS430LX), stainless steel (SUS6330) and the like.
  • the alloy containing molybdenum is not particularly limited as long as it contains molybdenum, but it is preferable to further contain nickel and chromium.
  • the lower limit of the content of molybdenum in the alloy containing molybdenum is not particularly limited, it is preferably 5% by weight, more preferably 7% by weight, still more preferably 9% by weight, from the viewpoint of achieving both surface resistance and transparency. % By weight is even more preferred, 13% by weight is particularly preferred, 15% by weight is very particularly preferred and 16% by weight is most preferred.
  • the upper limit of the content of molybdenum in the alloy containing molybdenum is preferably 30% by weight, more preferably 25% by weight, and still more preferably 20% by weight from the viewpoint of facilitating the adjustment of the surface resistivity.
  • the alloy containing molybdenum contains nickel and chromium, it is preferable that the molybdenum content is 5% by weight or more, the nickel content is 40% by weight or more, and the chromium content is 1% by weight or more.
  • Specific examples of the alloy containing molybdenum include alloys such as Hastelloy (registered trademark), Inconel (registered trademark), Carpenter (registered trademark), Incoloy (registered trademark) and the like.
  • Hastelloy registered trademark
  • Hastelloy include Hastelloy (HASTELLOY B-2), Hastelloy (HASTELLOY B-3), Hastelloy (HASTELLOY C-4), Hastelloy (HASTELLOY C-2000), and Hastelloy (HASTELLOY).
  • Inconel registered trademark
  • Inconel Inconel (registered trademark)
  • Inconel Inconel (Inconel 600)
  • Inconel Inconel (Inconel 625)
  • Inconel Inconel
  • Inconel Inconel (Inconel 690)
  • Inconel Inconel (Inconel 718)
  • Inconel Inconel (Inconel X750) and the like.
  • Specific examples of the Carpenter include Carpenter (Carpenter 20Cb3).
  • an alloy which can constitute the above-mentioned electric conduction layer an alloy containing nickel and copper, such as monel, can also be used, for example.
  • the monel include Monel (Monel 400), Monel (Monel K500), Monel (Monel R), Monel (Monel S) and the like.
  • the conductive layer may be made of a single layer or a plurality of layers made of the alloy.
  • Examples of the metal compound that can constitute the conductive layer include tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide And metal oxides such as GZO) and titanium oxide (TiO).
  • ITO tin-doped indium oxide
  • FTO fluorine-doped tin oxide
  • ATO antimony-doped tin oxide
  • AZO aluminum-doped zinc oxide
  • GaZO gallium-doped zinc oxide
  • TiO titanium oxide
  • the conductive layer may be a multilayer of a layer of metal, a layer of alloy, and / or a layer of metal compound.
  • the conductive layer is unlikely to be cracked in the conductive layer, and from the viewpoint of stably maintaining conductivity, gold, silver, copper, platinum, titanium, tin, stainless steel (SUS), molybdenum-containing alloy (such as hastelloy) , Tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), or titanium oxide (TiO) preferable.
  • the conductive layer is more preferably made of gold, silver, copper, platinum, titanium, tin, stainless steel (SUS) from the viewpoint of further improving heat resistance, and further suppresses surface reflection to improve visibility. From the viewpoint of enhancing, it is more preferable to be made of stainless steel (SUS).
  • the thickness of the conductive layer is not particularly limited, but a preferable lower limit is 2 nm and a preferable upper limit is 300 nm.
  • a preferable lower limit is 2 nm and a preferable upper limit is 300 nm.
  • the thickness of the conductive layer is in the above range, the transparency and the surface resistivity of the pressure-sensitive adhesive tape can be easily adjusted to the intended range.
  • the thickness of the conductive layer is 2 nm or more, the oxidation of the conductive layer when heat is applied is suppressed, and the charge suppression performance can be maintained.
  • the lower limit of the thickness of the conductive layer is preferably 3 nm, more preferably 100 nm, still more preferably 50 nm, particularly preferably 30 nm, and most preferably 20 nm. is there.
  • the thickness of the said conductive layer is not specifically limited, When the said conductive layer consists of metals, a preferable minimum is 2 nm, and a preferable upper limit is 50 nm. It becomes easy to adjust the transparency and the surface resistivity of the said adhesive tape in the expected range as the thickness of the conductive layer which consists of said metal being in this range. When the thickness of the conductive layer is 2 nm or more, the oxidation of the conductive layer is suppressed when heat is applied, and the charge suppression performance can be maintained. In particular, oxygen intrudes from the pressure-sensitive adhesive layer side.
  • the lower limit of the thickness of the conductive layer is preferably 3 nm, more preferably 30 nm, still more preferably 20 nm, particularly preferably 15 nm.
  • the preferable lower limit of the thickness of the conductive layer is 2 nm
  • the preferable upper limit is 10 nm. It becomes easy to adjust the transparency and the surface resistivity of the said adhesive tape in the expected range as the thickness of the conductive layer which consists of said alloy is in this range.
  • the thickness of the conductive layer is 2 nm or more, the oxidation of the conductive layer is suppressed when heat is applied, and the charge suppression performance can be maintained.
  • the upper limit of the thickness of the conductive layer is preferably 7.5 nm, more preferably 5 nm.
  • the preferable minimum of the thickness of the said conductive layer is 2 nm, and a preferable upper limit is 300 nm. It becomes easy to adjust the transparency and the surface resistivity of the said adhesive tape in the expected range as the thickness of the conductive layer which consists of said metal oxide is in this range.
  • the thickness of the conductive layer is 2 nm or more, the oxidation of the conductive layer is suppressed when heat is applied, and the charge suppression performance can be maintained.
  • oxygen intrudes from the pressure-sensitive adhesive layer side is preferably 100 nm, and more preferably 30 nm.
  • the transparency and the surface resistivity of the pressure-sensitive adhesive tape are adjusted according to the type of metal or the like constituting the conductive layer and the thickness of the conductive layer. Therefore, it is preferable to select the optimum thickness of the conductive layer for each type of metal or the like constituting the conductive layer.
  • ⁇ Single metal> For example, in the case where the conductive layer has a single-layer structure of any of gold, silver, copper, platinum, titanium, aluminum, and tin, it is easy to adjust the resistance value and to easily control the charge suppression function.
  • the preferred lower limit of the thickness of the conductive layer is 2 nm, and the preferred upper limit is 50 nm.
  • the more preferable lower limit of the thickness of the conductive layer is 3 nm, the more preferable upper limit is 30 nm, and the still more preferable upper limit is 15 nm.
  • ⁇ Alloy> For example, in the case where the conductive layer has a single-layer structure made of an alloy of stainless steel (SUS) or a molybdenum-containing alloy (such as hastelloy), it is easy to adjust the resistance value and to easily control the charge suppression function.
  • the preferred lower limit of the thickness of the conductive layer is 2 nm, and the preferred upper limit is 10 nm.
  • the more preferable lower limit of the thickness of the conductive layer is 3 nm, the more preferable upper limit is 7.5 nm, and the still more preferable upper limit is 5 nm.
  • ⁇ Metal oxide> For example, in the case where the conductive layer has a single-layer structure made of a metal oxide of ITO, FTO, ATO, AZO, GZO, or TiO, it is easy to adjust the resistance value and to easily control the charge suppression function.
  • the preferred lower limit of the thickness of the conductive layer is 2 nm, and the preferred upper limit is 300 nm.
  • a more preferable upper limit of the thickness of the conductive layer is 100 nm, and a still more preferable upper limit is 30 nm.
  • the said conductive layer may be laminated
  • the pressure-sensitive adhesive tape can exhibit uniform charge suppression performance.
  • the conductive layer is partially laminated on a part of one surface of the pressure-sensitive adhesive layer, the conductive layer forms a uniform pattern shape in order to provide uniform charge suppression performance. preferable.
  • the said conductive layer forms uniform pattern shape, high transparency can also be exhibited, exhibiting uniform charge suppression performance.
  • the conductive layer is made of a metal having a thickness of 2 to 50 nm and made of gold, silver, copper, platinum, titanium or tin.
  • the conductive layer is made of stainless steel having a thickness of 2 to 10 nm, a molybdenum-containing alloy (Hasteloy (registered trademark) alloy, Inconel (registered trademark) alloy, Carpenter (registered trademark) alloy, Incoloy (registered trademark) alloy, etc.) It consists of an alloy.
  • the conductive layer is made of a metal oxide composed of tin-doped indium oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide and titanium oxide having a thickness of 2 to 300 nm.
  • a metal oxide composed of tin-doped indium oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide and titanium oxide having a thickness of 2 to 300 nm.
  • the method for forming the conductive layer on the pressure-sensitive adhesive layer is not particularly limited.
  • conventionally known methods such as sputtering process, ion plating, plasma CVD process, vapor deposition process, coating process, dip process and the like may be used. it can. Among them, a sputtering process is preferable because a uniform conductive layer can be formed.
  • the said adhesive tape has a base material, after forming the said conductive layer on the said base material, you may form the said adhesive layer on this conductive layer.
  • a base may be laminated on the surface of the conductive layer opposite to the pressure-sensitive adhesive layer.
  • the base material is preferably in the form of a film having no holes, from the viewpoint of being able to stably carry when manufacturing a semiconductor device.
  • the substrate is not particularly limited as long as it does not reduce the transparency of the pressure-sensitive adhesive tape.
  • a sheet made of a transparent resin such as acrylic, olefin, polycarbonate, vinyl chloride, ABS, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), nylon, urethane, polyimide, etc., a sheet having a mesh structure, holes The sheet etc. which were opened are mentioned.
  • the thickness of the substrate is not particularly limited, but is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and still more preferably 15 ⁇ m or more, from the viewpoint of stable transport when manufacturing a semiconductor device. Is 100 ⁇ m or less, more preferably 70 ⁇ m or less, and still more preferably 50 ⁇ m or less.
  • the pressure-sensitive adhesive tape has a lower limit of 1.0 ⁇ 10 4 ⁇ / ⁇ and an upper limit of 9.9 ⁇ 10 13 on the side of the pressure-sensitive adhesive layer both before and after heating at 180 ° C. for 6 hours. It is ⁇ / ⁇ .
  • the surface resistivity is 1.0 ⁇ 10 4 ⁇ / ⁇ or more, a short circuit of the circuit can be suppressed when used for protection of a semiconductor device, and 9.9 ⁇ 10 13 ⁇ / ⁇ High charging suppression performance can be exhibited as it is the following.
  • the preferable lower limit of the surface resistivity on the side of the pressure-sensitive adhesive layer is 1.0 ⁇ 10 6 ⁇ / ⁇
  • the preferable upper limit is 9.9 ⁇ 10 12 ⁇ / ⁇
  • a more preferable upper limit is 9.9 ⁇ 10 11 ⁇ / ⁇ .
  • the pressure-sensitive adhesive tape can be subjected to a semiconductor manufacturing process including high temperature treatment at 180 ° C. or more.
  • the said surface resistivity can be measured by the method according to JISK7194.
  • the surface resistivity of the pressure-sensitive adhesive layer on the side of the pressure-sensitive adhesive layer both before and after heating at 180 ° C. for 6 hours can be controlled by adjusting the amount of oxidation of the conductive layer.
  • the pressure-sensitive adhesive tape preferably has a rate of change in surface resistivity on the side of the pressure-sensitive adhesive layer (surface resistivity after heating / surface resistivity before heating) before and after heating at 180 ° C. for 6 hours. ⁇ 10 or more, more preferably 5 ⁇ 10 or more, further preferably 1 ⁇ 10 2 or more.
  • the rate of change of surface resistivity on the side of the pressure-sensitive adhesive layer (surface resistivity after heating / surface resistivity before heating) is preferably 1 ⁇ 10 7 or less, more preferably 1 ⁇ 10 6 or less, and further preferably Is 1 ⁇ 10 5 or less, particularly preferably 1 ⁇ 10 4 or less.
  • the charge suppression function can be stably exhibited even when the method for producing a semiconductor includes a heat treatment step (for example, 180 ° C., 6 hours).
  • the rate of change of the surface resistivity on the side of the pressure-sensitive adhesive layer can be controlled, for example, by adjusting the amount of oxidation of the conductive layer.
  • the pressure-sensitive adhesive tape has a visible light transmittance of 30% or more as measured from the conductive layer side.
  • permeability 30% or more
  • the circuit pattern of a semiconductor device can be recognized from the adhesive tape side, and the positioning at the time of processing etc. can be performed.
  • the visible light transmittance is preferably 40% or more, more preferably 50% or more, and usually 100% or less.
  • the visible light transmittance can be measured based on JIS K7105 using a haze meter (for example, “NDH-2000” manufactured by Nippon Denshoku Co., Ltd. or an equivalent thereof).
  • the thickness can be adjusted according to the type of metal or the like constituting the conductive layer and the thickness of the conductive layer.
  • the metal species and thickness in the preferred embodiment facilitate adjustment of the visible light transmittance.
  • the pressure-sensitive adhesive tape preferably has a thermal decomposition amount of 10% by weight or less at 220 ° C.
  • the thermal decomposition amount at 220 ° C. is 10% by weight or less
  • the above-mentioned pressure-sensitive adhesive tape can be suitably provided by a semiconductor manufacturing process including high temperature treatment at 180 ° C. or higher.
  • the thermal decomposition amount is more preferably 8% by weight or less, still more preferably 5% by weight or less.
  • the amount of thermal decomposition was measured by weighing a 5-10 mg tape in an aluminum pan of a thermobalance (for example, “TG / DTA 6200” manufactured by SII), in an air atmosphere (flow rate 200 mL / min), temperature increase rate 5 It can be determined from the decomposition amount at 220 ° C. when the temperature is raised from normal temperature (30 ° C.) to 400 ° C. under the condition of ° C./min.
  • the thermal decomposition amount can be controlled by increasing the molecular weight of the pressure-sensitive adhesive and narrowing the molecular weight distribution (reducing the low molecular weight component).
  • the above-mentioned adhesive tape is used in a semiconductor manufacturing process to be applied to the circuit surface of a semiconductor device to protect the circuit and to prevent the circuit from being damaged by static electricity. Since the above-mentioned pressure-sensitive adhesive tape has both excellent charge control performance and transparency, when pasted on a circuit surface of a semiconductor device in a semiconductor manufacturing process, it is necessary to recognize a circuit pattern on the semiconductor device through the tape. Thus, even when subjected to high-temperature treatment at 180 ° C. or higher, high charge suppression performance can be exhibited.
  • a cross-sectional view schematically showing a state in which the surface of the semiconductor device on which the circuit is formed is protected by the adhesive tape is shown in FIG.
  • bumps 12 are formed on one side, and an adhesive tape 2 is attached to the side of the bumps 12.
  • the conductive layer 22 and the base material 23 are laminated on the surface of the pressure-sensitive adhesive layer 21 opposite to the side thereof attached to the semiconductor device 1.
  • a method of treating a semiconductor comprising the steps of applying a pressure-sensitive adhesive tape for semiconductor protection to a circuit surface of the semiconductor, and performing a high temperature treatment of 180 ° C. or more on the semiconductor.
  • the pressure-sensitive adhesive tape for semiconductor protection has a pressure-sensitive adhesive layer and a conductive layer laminated on one side of the pressure-sensitive adhesive layer, and the surface resistivity of the pressure-sensitive adhesive layer of the pressure-sensitive adhesive tape for semiconductor protection is 180.
  • 1.0 ⁇ 10 4 ⁇ / sq or more and 9.9 ⁇ 10 13 ⁇ / sq or less both before and after 6 hours of heating, and the visible light transmittance measured from the conductive layer side is Methods are also provided for processing semiconductors that are 30% or more.
  • the above-mentioned pressure-sensitive adhesive tape has both excellent charge control performance and transparency, when pasted on a circuit surface of a semiconductor device in a semiconductor manufacturing process, it is necessary to recognize a circuit pattern on the semiconductor device through the tape. Thus, even when subjected to high-temperature treatment at 180 ° C. or higher, high charge suppression performance can be exhibited.
  • the circuit pattern on the semiconductor device when attached to a circuit surface of a semiconductor device in a semiconductor manufacturing process, the circuit pattern on the semiconductor device can be recognized through the tape, and even when subjected to a high temperature treatment of 180 ° C. or more
  • the adhesive tape for semiconductor protection which can exhibit high electrification control performance, and the method of processing the semiconductor using the adhesive tape for semiconductor protection can be provided.
  • Example 1 Formation of Conductive Layer A conductive layer was formed on a polyethylene naphthalate (PEN) substrate by DC magnetron sputtering as a target material of Ag. Specifically, after evacuating the chamber to 5 ⁇ 10 -4 Pa or less, Ar gas is introduced so that the Ar occupancy rate in the chamber is 98% or more, and a conductive layer having a thickness of 15 nm is formed. It formed.
  • PEN polyethylene naphthalate
  • the thickness (optical film thickness) of the obtained conductive layer was measured by measuring the transmittance and performing optical simulation from the measured value. Specifically, the transmittance was measured by measuring the transmission spectrum at a wavelength of 200 to 800 nm (measurement range) using a spectrophotometer (“U4100” manufactured by Hitachi, Ltd.). Next, using the optical simulation software ("WVASE 32" manufactured by JA Woollam), the shape of the obtained transmission spectrum and the position of the peak valley were fitted to calculate the thickness of the conductive layer.
  • WVASE 32 manufactured by JA Woollam
  • Reaction is performed by adding 3.5 parts by weight of 2-isocyanatoethyl methacrylate as a functional group-containing unsaturated compound to 100 parts by weight of resin solid content of an ethyl acetate solution containing the obtained functional group-containing (meth) acrylic polymer The resulting mixture was allowed to obtain a polymerizable polymer.
  • the surface resistivity of the pressure-sensitive adhesive layer side of the pressure-sensitive adhesive tape was measured by a method according to JIS K7194. That is, the surface resistivity of nine points was measured by the probe of 5 mm of probe intervals which arranged the pressure-sensitive adhesive layer of the obtained pressure-sensitive adhesive tape at regular intervals in a straight line, and determined the average value as the surface resistivity.
  • the surface resistivity was measured before and after heating at 180 ° C. for 6 hours using an oven.
  • the visible light transmittance of the pressure-sensitive adhesive tape was measured using a haze meter (“NDH-2000” manufactured by Nippon Denshoku Co., Ltd.) based on JIS K7105.
  • Examples 2 to 8, Comparative Examples 1 to 3 A pressure-sensitive adhesive tape was produced in the same manner as in Example 1 except that the type and thickness of the conductive layer were as shown in Table 1, and the surface resistivity, the visible light transmittance and the thermal decomposition amount were measured.
  • SUS means stainless steel (SUS310s)
  • Hastelloy means Hastelloy (HASTELLOY C-276).
  • the adhesive tape obtained was attached to the circuit surface of the semiconductor device having the alignment mark on the circuit surface, and the state as shown in FIG. 1 was obtained.
  • As alignment marks a “+” mark of 100 ⁇ m in length and 100 ⁇ m in width was used.
  • the circuit surface of the semiconductor device was observed with a camera from the adhesive tape side (the base 23 side in FIG. 1). This operation was performed 100 times. If the alignment mark can be recognized by the camera 98 times or more out of 100 times, " ⁇ ”, if the alignment mark can be recognized by the camera 95 times or more and 97 times or less " ⁇ ", only 94 times or less The case was evaluated as "x".
  • the observation was performed using the alignment mark recognition function of a dicing apparatus (DFD6361 manufactured by Disco Corporation). At this time, the recognizability of the alignment mark was confirmed under the conditions of epi-illumination output 20 to 80% and oblique illumination output 20 to 80%.
  • the case where the yield (rate of non-defective product) is 98% or more is “ ⁇ ”, and the yield (ratio of non-defective product) is less than 98% 95% or more
  • the yield (percentage of good product) was less than 95% and 90% or more the case where the yield (percentage of good product) was less than 90% was evaluated as "x”. The evaluation of yield was not performed for Comparative Example 3 in which the alignment mark could not be recognized.
  • the circuit pattern on the semiconductor device when attached to a circuit surface of a semiconductor device in a semiconductor manufacturing process, the circuit pattern on the semiconductor device can be recognized through the tape, and even when subjected to a high temperature treatment of 180 ° C. or more
  • the adhesive tape for semiconductor protection which can exhibit high electrification control performance, and the method of processing the semiconductor using the adhesive tape for semiconductor protection can be provided.

Abstract

The purpose of the present invention is to provide: an adhesive tape for semiconductor protection, which enables a circuit pattern on a semiconductor device to be perceived through the tape in cases where this adhesive tape is bonded to a circuit surface of the semiconductor device during a semiconductor production process, and which is capable of exhibiting high electrification suppressing performance even if subjected to a high temperature processing at 180°C or higher; and a method for processing a semiconductor, which uses this adhesive tape for semiconductor protection. The present invention is an adhesive tape for semiconductor protection, which comprises an adhesive layer and a conductive layer that is laminated on one surface of the adhesive layer, and wherein: the surface resistivity on the adhesive layer side is from 1.0 × 104 Ω/□ to 9.9 × 1013 Ω/□ (inclusive) both before and after 6-hour heating at 180°C; and the visible light transmittance as measured from the conductive layer side is 30% or more.

Description

半導体保護用粘着テープ及び半導体を処理する方法Adhesive tape for semiconductor protection and method of processing semiconductor
本発明は、半導体製造プロセスにおいて半導体デバイスの回路面に貼付したときに、テープを通して半導体デバイス上の回路パターンを認識することができ、かつ、180℃以上の高温処理に供したときにでも高い帯電抑制性能を発揮することができる半導体保護用粘着テープ、及び該半導体保護用粘着テープを用いた半導体を処理する方法に関する。 The present invention can recognize a circuit pattern on a semiconductor device through a tape when attached to a circuit surface of a semiconductor device in a semiconductor manufacturing process, and can be highly charged even when subjected to a high temperature treatment of 180 ° C. or higher. The present invention relates to a pressure-sensitive adhesive tape for semiconductor protection which can exhibit suppression performance, and a method of treating a semiconductor using the pressure-sensitive adhesive tape for semiconductor protection.
半導体デバイスの製造工程においては、加工時に取扱いを容易にし、破損したりしないようにするために、半導体デバイスの回路面に粘着テープを貼付して保護することが行われる。このような粘着テープには、静電気によって回路が破損したりすることがないように、優れた帯電抑制性能が求められる。
帯電防止性能に優れた粘着テープとしては、例えば、粘着剤層中に導電性フィラーを分散させた帯電防止粘着テープが知られている(例えば、特許文献1~3等)。
In the manufacturing process of a semiconductor device, in order to facilitate handling at the time of processing and to prevent breakage, adhesive tape is applied to the circuit surface of the semiconductor device for protection. Such an adhesive tape is required to have excellent charge control performance so that the circuit is not damaged by static electricity.
As a pressure-sensitive adhesive tape excellent in antistatic performance, for example, an antistatic pressure-sensitive adhesive tape in which a conductive filler is dispersed in a pressure-sensitive adhesive layer is known (for example, Patent Documents 1 to 3).
特開2012-007093号公報JP 2012-007093 A 特開平9-207259号公報Unexamined-Japanese-Patent No. 9-207259 特開2016-089021号公報JP, 2016-089021, A
半導体デバイスの製造工程においては、粘着テープ側から半導体デバイスの回路パターンを認識して加工時の位置決め等を行うことがあることから、粘着テープには優れた透明性も要求される。しかしながら、従来の帯電防止粘着テープは、充分な帯電防止性能を付与するほどに導電性フィラーを配合すると、透明性が低くなってしまう。このような透明性の低い粘着テープを半導体デバイスに貼付した場合、粘着テープを通して半導体デバイス上の回路パターンを認識できず、工程管理が困難となってしまうという問題がある。 In the manufacturing process of a semiconductor device, since the circuit pattern of a semiconductor device is recognized from the adhesive tape side and positioning at the time of processing may be performed, the adhesive tape is also required to have excellent transparency. However, the conventional antistatic pressure-sensitive adhesive tape has low transparency when it is blended with a conductive filler so as to provide sufficient antistatic performance. When such a low transparent adhesive tape is attached to a semiconductor device, there is a problem that the circuit pattern on the semiconductor device can not be recognized through the adhesive tape, making process control difficult.
また、近年の半導体デバイスの高性能化に伴い、半導体デバイスの表面に180℃以上の高温処理が行われるようになってきた。例えば、次世代の技術として、複数の半導体チップを積層させてデバイスを飛躍的に高性能化、小型化したTSV(Si貫通ビヤ/Through Si via)を使った3次元積層技術が注目されている。TSVは、半導体実装の高密度化ができるほか、接続距離が短くできることにより低ノイズ化、低抵抗化が可能であり、アクセススピードが飛躍的に速く、使用中に発生する熱の放出にも優れる。このようなTSVの製造では、研削して得た薄膜ウエハをバンピングしたり、裏面にバンプ形成したり、3次元積層時にリフローを行ったりする等の180℃以上の高温処理プロセスを行うことが必要となる。
しかしながら、従来の帯電防止粘着テープでは、180℃以上の高温処理に供すると、帯電防止性能が著しく低下してしまうことがあるという問題がある。
In addition, with the advancement of the performance of semiconductor devices in recent years, high temperature treatment of 180 ° C. or more has come to be performed on the surface of semiconductor devices. For example, as a next-generation technology, a three-dimensional lamination technology using TSV (through-silicon via / through Si via) that achieves high performance and miniaturization of devices by laminating a plurality of semiconductor chips is attracting attention . In addition to the high density of semiconductor mounting, TSV can reduce noise and resistance by shortening the connection distance, access speed is extremely fast, and it is excellent in heat release during use. . In the production of such TSVs, it is necessary to carry out a high-temperature treatment process of 180 ° C. or more, such as bumping a thin film wafer obtained by grinding, forming a bump on the back surface, or performing reflow at the time of three-dimensional lamination. It becomes.
However, the conventional antistatic pressure-sensitive adhesive tape has a problem that when subjected to high temperature treatment at 180 ° C. or higher, the antistatic performance may be significantly reduced.
本発明は、上記現状に鑑み、半導体製造プロセスにおいて半導体デバイスの回路面に貼付したときに、テープを通して半導体デバイス上の回路パターンを認識することができ、かつ、180℃以上の高温処理に供したときにでも高い帯電抑制性能を発揮することができる半導体保護用粘着テープ、及び該半導体保護用粘着テープを用いた半導体を処理する方法を提供することを目的とする。 SUMMARY OF THE INVENTION In view of the above situation, the present invention can recognize a circuit pattern on a semiconductor device through a tape when applied to a circuit surface of the semiconductor device in a semiconductor manufacturing process, and is subjected to high temperature treatment of 180 ° C. or more It is an object of the present invention to provide a pressure-sensitive adhesive tape for semiconductor protection which can sometimes exhibit high charge suppression performance, and a method of treating a semiconductor using the pressure-sensitive adhesive tape for semiconductor protection.
本発明の一実施態様は、粘着剤層と、該粘着剤層の一方の面に積層された導電層とを有し、前記粘着剤層側の表面抵抗率が、180℃、6時間の加熱の前と後の両方において1.0×10Ω/□以上9.9×1013Ω/□以下であり、かつ、前記導電層側から測定した可視光線透過率が30%以上である半導体保護用粘着テープである。
以下に本発明を詳述する。
One embodiment of the present invention has a pressure-sensitive adhesive layer and a conductive layer laminated on one side of the pressure-sensitive adhesive layer, and the surface resistivity on the side of the pressure-sensitive adhesive layer is heated at 180 ° C. for 6 hours. Semiconductor which is 1.0 × 10 4 Ω / □ or more and 9.9 × 10 13 Ω / □ or less both before and after, and has a visible light transmittance of 30% or more measured from the conductive layer side It is a protective adhesive tape.
The present invention will be described in detail below.
本発明者らは、鋭意検討の結果、粘着剤層の一方の面にナノメートルオーダーの厚みの導電層を直接積層することにより、180℃以上の高温処理の前後であっても粘着剤層側の表面抵抗率を一定の範囲内に調整して高い帯電抑制性能を発揮できることを見出した。また、半導体デバイスの回路面に貼着したときにテープを通して回路パターンを認識できる程度の優れた透明性を発揮できることを見出し、本発明を完成した。 As a result of intensive investigations, the present inventors directly laminated a conductive layer of nanometer order thickness on one side of the pressure-sensitive adhesive layer, so that the pressure-sensitive adhesive layer side may be before or after high temperature treatment at 180 ° C. or higher. It has been found that the surface resistivity of the above can be adjusted within a certain range to exhibit high charge suppression performance. Moreover, it discovered that the outstanding transparency which can recognize a circuit pattern through a tape can be exhibited when it sticks on the circuit surface of a semiconductor device, and completed this invention.
本発明の一実施態様である半導体保護用粘着テープ(以下、単に「粘着テープ」ともいう。)は、粘着剤層を有する。
上記粘着剤層を構成する粘着剤成分は特に限定されず、非硬化型の粘着剤、硬化型の粘着剤のいずれを含有するものであってもよい。なかでも、回路が形成された半導体デバイスの回路が形成された面に貼付して剥離したときに糊残りを抑制できることから、硬化型粘着剤を含有することが好ましい。
The adhesive tape for semiconductor protection which is one embodiment of the present invention (hereinafter, also simply referred to as “adhesive tape”) has an adhesive layer.
The pressure-sensitive adhesive component constituting the pressure-sensitive adhesive layer is not particularly limited, and may contain any of a non-curable pressure-sensitive adhesive and a curable pressure-sensitive adhesive. Among them, it is preferable to contain a curable pressure-sensitive adhesive because the adhesive residue can be suppressed when the semiconductor device on which the circuit is formed is attached and peeled off on the surface on which the circuit is formed.
上記硬化型粘着剤としては、光照射により架橋、硬化する光硬化型粘着剤や、加熱により架橋、硬化する熱硬化型粘着剤が挙げられる。
上記光硬化型粘着剤としては、例えば、重合性ポリマーを主成分とし、重合開始剤として光重合開始剤を用いた光硬化型粘着剤が挙げられる。
上記熱硬化型粘着剤としては、例えば、重合性ポリマーを主成分とし、重合開始剤として熱重合開始剤を用いた熱硬化型粘着剤が挙げられる。
Examples of the curable pressure-sensitive adhesive include a photo-curable pressure-sensitive adhesive which is crosslinked and cured by light irradiation, and a thermosetting pressure-sensitive adhesive which is crosslinked and cured by heating.
Examples of the photocurable pressure-sensitive adhesive include a photocurable pressure-sensitive adhesive containing a polymerizable polymer as a main component and using a photopolymerization initiator as a polymerization initiator.
Examples of the thermosetting adhesive include a thermosetting adhesive having a polymerizable polymer as a main component and a thermal polymerization initiator as a polymerization initiator.
上記重合性ポリマーは、例えば、以下の方法により得ることができる。即ち、まず、分子内に官能基を持った(メタ)アクリル系ポリマー(以下、「官能基含有(メタ)アクリル系ポリマー」ともいう。)をあらかじめ合成する。次いで、該官能基含有(メタ)アクリル系ポリマーに、分子内に上記の官能基と反応する官能基とラジカル重合性の不飽和結合とを有する化合物(以下、「官能基含有不飽和化合物」ともいう。)を反応させることにより、重合性ポリマーを得ることができる。 The polymerizable polymer can be obtained, for example, by the following method. That is, first, a (meth) acrylic polymer having a functional group in its molecule (hereinafter, also referred to as "functional group-containing (meth) acrylic polymer") is synthesized in advance. Then, a compound having a functional group which reacts with the above-mentioned functional group in the molecule and a radical polymerizable unsaturated bond (hereinafter referred to as “functional group-containing unsaturated compound”) in the functional group-containing (meth) acrylic polymer The polymerizable polymer can be obtained by reacting.
上記官能基含有(メタ)アクリル系ポリマーは、常温で粘着性を有するポリマーとして、一般の(メタ)アクリル系ポリマーの場合と同様の方法により得ることができる。即ち、アルキル基の炭素数が通常2~18の範囲にあるアクリル酸アルキルエステル及び/又はメタクリル酸アルキルエステルを主モノマーとし、これと官能基含有モノマーと、更に必要に応じてこれらと共重合可能な他の改質用モノマーとを常法により共重合させることにより得られる。
上記官能基含有(メタ)アクリル系ポリマーの重量平均分子量は通常20万~200万程度である。
The said functional group containing (meth) acrylic-type polymer can be obtained by the method similar to the case of a common (meth) acrylic-type polymer as a polymer which has adhesiveness at normal temperature. That is, an acrylic acid alkyl ester and / or a methacrylic acid alkyl ester having an alkyl group carbon number usually in the range of 2 to 18 is used as a main monomer, which can be copolymerized with this and a functional group containing monomer, if necessary. It is obtained by copolymerizing with other modifying monomers in the usual way.
The weight average molecular weight of the functional group-containing (meth) acrylic polymer is usually about 200,000 to 2,000,000.
上記官能基含有モノマーとしては、例えば、アクリル酸、メタクリル酸等のカルボキシル基含有モノマーや、アクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシエチル等のヒドロキシル基含有モノマーや、アクリル酸グリシジル、メタクリル酸グリシジル等のエポキシ基含有モノマーや、アクリル酸イソシアネートエチル、メタクリル酸イソシアネートエチル等のイソシアネート基含有モノマーや、アクリル酸アミノエチル、メタクリル酸アミノエチル等のアミノ基含有モノマー等が挙げられる。 Examples of the functional group-containing monomer include carboxyl group-containing monomers such as acrylic acid and methacrylic acid, hydroxyl group-containing monomers such as hydroxyethyl acrylate and hydroxyethyl methacrylate, and epoxy such as glycidyl acrylate and glycidyl methacrylate Examples thereof include group-containing monomers, isocyanate group-containing monomers such as isocyanate ethyl acrylate and ethyl methacrylate methacrylate, and amino group-containing monomers such as amino ethyl acrylate and amino ethyl methacrylate.
上記共重合可能な他の改質用モノマーとしては、例えば、酢酸ビニル、アクリロニトリル、スチレン等の一般の(メタ)アクリル系ポリマーに用いられている各種のモノマーが挙げられる。 Examples of the other copolymerizable modifying monomer include various monomers used for general (meth) acrylic polymers such as vinyl acetate, acrylonitrile and styrene.
上記官能基含有(メタ)アクリル系ポリマーに反応させる官能基含有不飽和化合物としては、上記官能基含有(メタ)アクリル系ポリマーの官能基に応じて上述した官能基含有モノマーと同様のものを使用できる。例えば、上記官能基含有(メタ)アクリル系ポリマーの官能基がカルボキシル基の場合はエポキシ基含有モノマーやイソシアネート基含有モノマーが用いられる。また、同官能基がヒドロキシル基の場合はイソシアネート基含有モノマーが用いられる。また、同官能基がエポキシ基の場合はカルボキシル基含有モノマーやアクリルアミド等のアミド基含有モノマーが用いられる。更に、同官能基がアミノ基の場合はエポキシ基含有モノマーが用いられる。 As the functional group-containing unsaturated compound to be reacted with the functional group-containing (meth) acrylic polymer, the same functional group-containing monomer as described above according to the functional group of the functional group-containing (meth) acrylic polymer is used it can. For example, when the functional group of the functional group-containing (meth) acrylic polymer is a carboxyl group, an epoxy group-containing monomer or an isocyanate group-containing monomer is used. When the functional group is a hydroxyl group, an isocyanate group-containing monomer is used. When the functional group is an epoxy group, a carboxyl group-containing monomer or an amide group-containing monomer such as acrylamide is used. Furthermore, when the functional group is an amino group, an epoxy group-containing monomer is used.
上記光重合開始剤は、例えば、250~800nmの波長の光を照射することにより活性化されるものが挙げられる。このような光重合開始剤としては、例えば、アセトフェノン誘導体化合物、ベンゾインエーテル系化合物、ケタール誘導体化合物、フォスフィンオキシド誘導体化合物、ビス(η5-シクロペンタジエニル)チタノセン誘導体化合物等が挙げられる。上記アセトフェノン誘導体化合物としては、メトキシアセトフェノン等が挙げられる。上記ベンゾインエーテル系化合物としては、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等が挙げられる。上記ケタール誘導体化合物としては、ベンジルジメチルケタール、アセトフェノンジエチルケタール等が挙げられる。上記光重合開始剤としては、例えば、ビス(η5-シクロペンタジエニル)チタノセン誘導体化合物、ベンゾフェノン、ミヒラーケトン、クロロチオキサントン、トデシルチオキサントン、ジメチルチオキサントン、ジエチルチオキサントン、α-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシメチルフェニルプロパン等の光ラジカル重合開始剤が挙げられる。これらの光重合開始剤は、単独で用いられてもよく、2種以上が併用されてもよい。 Examples of the photopolymerization initiator include those activated by irradiation with light having a wavelength of 250 to 800 nm. Examples of such photopolymerization initiators include acetophenone derivative compounds, benzoin ether compounds, ketal derivative compounds, phosphine oxide derivative compounds, bis (η5-cyclopentadienyl) titanocene derivative compounds and the like. Examples of the acetophenone derivative compounds include methoxyacetophenone and the like. Examples of the benzoin ether compounds include benzoin propyl ether and benzoin isobutyl ether. Examples of the ketal derivative compound include benzyl dimethyl ketal, acetophenone diethyl ketal and the like. Examples of the photopolymerization initiator include bis (η5-cyclopentadienyl) titanocene derivative compounds, benzophenone, Michler's ketone, chlorothioxanthone, todecyl thioxanthone, dimethylthioxanthone, diethylthioxanthone, α-hydroxycyclohexyl phenyl ketone, 2-hydroxy Photo radical polymerization initiators such as methyl phenyl propane may be mentioned. These photopolymerization initiators may be used alone or in combination of two or more.
上記熱重合開始剤としては、熱により分解し、重合硬化を開始する活性ラジカルを発生するものが挙げられる。具体的には例えば、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエール、t-ブチルハイドロパーオキサイド、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド等が挙げられる。
ただし、上記硬化型粘着剤が高い耐熱性を発揮するためには、上記熱重合開始剤は、熱分解温度が200℃以上である熱重合開始剤を用いることが好ましい。このような熱分解温度が高い熱重合開始剤は、クメンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド等が挙げられる。
これらの熱重合開始剤のうち市販されているものとしては特に限定されないが、例えば、パーブチルD、パーブチルH、パーブチルP、パーペンタH(以上いずれも日油社製)等が好適である。これら熱重合開始剤は、単独で用いられてもよく、2種以上が併用されてもよい。
As said thermal polymerization initiator, what generate | occur | produces the active radical which decomposes | disassembles by heat and starts superposition | polymerization hardening is mentioned. Specifically, for example, dicumyl peroxide, di-t-butyl peroxide, t-butyl peroxy benZole, t-butyl hydroperoxide, benzoyl peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, para Menthane hydroperoxide, di-t-butyl peroxide and the like can be mentioned.
However, in order for the curable pressure-sensitive adhesive to exhibit high heat resistance, it is preferable to use a thermal polymerization initiator having a thermal decomposition temperature of 200 ° C. or higher as the thermal polymerization initiator. As such a thermal polymerization initiator having a high thermal decomposition temperature, cumene hydroperoxide, paramenthan hydroperoxide, di-t-butyl peroxide and the like can be mentioned.
Among these thermal polymerization initiators, commercially available ones are not particularly limited, and, for example, perbutyl D, perbutyl H, perbutyl P, perpenta H (all manufactured by NOF Corporation) and the like are preferable. These thermal polymerization initiators may be used alone or in combination of two or more.
上記硬化型粘着剤は、ラジカル重合性の多官能オリゴマー又はモノマーを含有することが好ましい。ラジカル重合性の多官能オリゴマー又はモノマーを含有することにより、光硬化性、熱硬化性が向上する。
上記多官能オリゴマー又はモノマーは、分子量が1万以下であるものが好ましく、より好ましくは加熱又は光の照射による硬化型粘着剤の三次元網状化が効率よくなされるように、その分子量が5000以下でかつ分子内のラジカル重合性の不飽和結合の数が2~20個のものである。
It is preferable that the said curable adhesive contains a radically polymerizable polyfunctional oligomer or monomer. By containing a radically polymerizable polyfunctional oligomer or monomer, photocurability and thermosetting are improved.
The polyfunctional oligomer or monomer is preferably one having a molecular weight of 10,000 or less, more preferably 5,000 or less so that three-dimensional reticulation of the curable adhesive can be efficiently performed by heating or light irradiation. And the number of radically polymerizable unsaturated bonds in the molecule is 2 to 20.
上記多官能オリゴマー又はモノマーは、例えば、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレート等が挙げられる。また、上記同様のメタクリレート類等が挙げられる。その他、1,4-ブチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ポリエチレングリコールジアクリレート、市販のオリゴエステルアクリレート、上記同様のメタクリレート類等が挙げられる。これらの多官能オリゴマー又はモノマーは、単独で用いられてもよく、2種以上が併用されてもよい。 Examples of the polyfunctional oligomer or monomer include trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol monohydroxy pentaacrylate, and dipentaerythritol hexaacrylate. In addition, the same methacrylates as described above may, for example, be mentioned. In addition, 1,4-butylene glycol diacrylate, 1,6-hexanediol diacrylate, polyethylene glycol diacrylate, commercially available oligoester acrylate, methacrylates similar to the above, and the like can be mentioned. These polyfunctional oligomers or monomers may be used alone or in combination of two or more.
上記粘着剤層は、更に、刺激により気体を発生する気体発生剤を含有してもよい。上記気体発生剤を含有する場合には、被着体から粘着テープを剥離する際に、刺激を与えて上記気体発生剤から気体を発生させることにより、より容易に、かつ、糊残りすることなく粘着テープを剥離することができる。 The pressure-sensitive adhesive layer may further contain a gas generating agent that generates a gas upon stimulation. In the case of containing the above-mentioned gas generating agent, when peeling off the adhesive tape from the adherend, by giving a stimulus to generate a gas from the above-mentioned gas generating agent, more easily and without adhesive residue The adhesive tape can be peeled off.
上記気体発生剤は特に限定されないが、加熱を伴う処理に対する耐性に優れることから、フェニル酢酸、ジフェニル酢酸、トリフェニル酢酸等のカルボン酸化合物又はその塩や、1H-テトラゾール、5-フェニル-1H-テトラゾール、5,5-アゾビス-1H-テトラゾール等のテトラゾール化合物又はその塩等が好適である。このような気体発生剤は、紫外線等の光を照射することにより気体を発生する一方、200℃程度の高温下でも分解しない高い耐熱性を有する。 The above gas generating agent is not particularly limited, but it is excellent in resistance to a process involving heating, and therefore, carboxylic acid compounds such as phenylacetic acid, diphenylacetic acid, triphenylacetic acid or salts thereof, 1H-tetrazole, 5-phenyl-1H- Tetrazole compounds such as tetrazole and 5,5-azobis-1H-tetrazole or salts thereof are preferred. Such a gas generating agent generates a gas by irradiation with light such as ultraviolet light, and has high heat resistance that does not decompose even at a high temperature of about 200 ° C.
上記粘着剤層が上記気体発生剤を含有する場合には、更に、光増感剤を含有してもよい。上記光増感剤は、上記気体発生剤への光による刺激を増幅する効果を有することから、より少ない光の照射により気体を放出させることができる。また、より広い波長領域の光により気体を放出させることができる。 When the pressure-sensitive adhesive layer contains the gas generating agent, it may further contain a photosensitizer. The photosensitizer has an effect of amplifying the stimulation of the gas generating agent with light, so that the gas can be released by irradiation with less light. In addition, gas can be released by light in a wider wavelength range.
上記粘着剤層が粘着剤成分として上記硬化型粘着剤を含有する場合、上記硬化型粘着剤と架橋可能な官能基を有するシリコーン化合物を含有してもよい。シリコーン化合物は、耐熱性に優れることから、200℃以上の加熱を伴う処理を経ても粘着剤の焦げ付き等を抑制し、剥離時には被着体界面にブリードアウトして、剥離を容易にする。シリコーン化合物が上記硬化型粘着剤と架橋可能な官能基を有することにより、光照射又は加熱することにより上記硬化型粘着剤と化学反応して上記硬化型粘着剤中に取り込まれることから、被着体にシリコーン化合物が付着して汚染することがない。また、シリコーン化合物を配合することにより、被着体上への糊残りを抑制する効果も発揮される。なお、シリコーン化合物が有する、上記硬化型粘着剤と架橋可能な官能基としては、例えば二重結合等の重合性官能基が挙げられる。 When the pressure-sensitive adhesive layer contains the curable pressure-sensitive adhesive as a pressure-sensitive adhesive component, it may contain a silicone compound having a functional group crosslinkable with the curable pressure-sensitive adhesive. Since the silicone compound is excellent in heat resistance, the sticking of the pressure-sensitive adhesive can be suppressed even if it is subjected to a treatment accompanied by heating at 200 ° C. or more, and when exfoliated, it bleeds out to the interface of the adherend to facilitate exfoliation. Since the silicone compound has a functional group capable of crosslinking with the curable pressure-sensitive adhesive, it is chemically reacted with the curable pressure-sensitive adhesive by light irradiation or heating and is incorporated into the curable pressure-sensitive adhesive; The silicone compound does not stick to the body and cause contamination. Moreover, the effect which suppresses the adhesive residue on a to-be-adhered body is also exhibited by mix | blending a silicone compound. In addition, as a functional group which a silicone compound has and which can be bridge | crosslinked with the said curable adhesive, polymeric functional groups, such as a double bond, are mentioned, for example.
本発明の一実施態様において、上記粘着剤層は導電性フィラーや導電性化合物等の導電性物質を含まないことが好ましい。粘着剤層が導電性フィラーを含有しない場合、導電性フィラーの存在による粘着力の低下や、導電性化合物のブリードによる経時的な粘着力の低下を抑制することができる。また、粘着剤層が導電性化合物を含有しない場合、高温処理による導電性化合物の副反応を抑制することができ、粘着力の低下及び半導体への汚染を抑制することができる。 In one embodiment of the present invention, the pressure-sensitive adhesive layer preferably does not contain a conductive substance such as a conductive filler or a conductive compound. When the pressure-sensitive adhesive layer does not contain a conductive filler, it is possible to suppress the decrease in the adhesive strength due to the presence of the conductive filler and the decrease in the adhesive strength with time due to the bleeding of the conductive compound. In addition, when the pressure-sensitive adhesive layer does not contain a conductive compound, a side reaction of the conductive compound due to high-temperature treatment can be suppressed, and a decrease in adhesion and contamination of a semiconductor can be suppressed.
上記粘着剤層の厚みは特に限定されないが、好ましい下限は5μm、好ましい上限は100μmである。上記粘着剤層の厚みが上記範囲であると充分な粘着力で被着体を保護することができ、更に剥離時の糊残りを抑制することもできる。粘着力を更に向上させると共に、剥離時の糊残りを更に抑制する観点から、上記粘着剤層の厚さのより好ましい下限は10μm、より好ましい上限は60μmである。 The thickness of the pressure-sensitive adhesive layer is not particularly limited, but a preferable lower limit is 5 μm and a preferable upper limit is 100 μm. When the thickness of the pressure-sensitive adhesive layer is in the above-mentioned range, the adherend can be protected with sufficient adhesive force, and the adhesive residue at the time of peeling can also be suppressed. The lower limit of the thickness of the pressure-sensitive adhesive layer is preferably 10 μm, and more preferably 60 μm, in order to further improve the adhesive strength and to further suppress the adhesive residue at the time of peeling.
上記粘着テープでは、上記粘着剤層の一方の面に導電層が積層されている。このような導電層を設けることにより、透明性を確保しながら粘着剤層側の表面抵抗率を一定の範囲に調整することができる。また、180℃以上の高温処理に供したときにでも、高い帯電抑制性能を発揮することができる。
上記粘着テープの透明性や表面抵抗率は、上記導電層を構成する金属等の種類、上記導電層の厚み、上記導電層の面積等を調整することにより、自在に調整可能である。
In the pressure-sensitive adhesive tape, the conductive layer is laminated on one surface of the pressure-sensitive adhesive layer. By providing such a conductive layer, it is possible to adjust the surface resistivity on the pressure-sensitive adhesive layer side to a certain range while securing the transparency. In addition, even when subjected to high-temperature treatment at 180 ° C. or higher, high charge suppression performance can be exhibited.
The transparency and surface resistivity of the pressure-sensitive adhesive tape can be freely adjusted by adjusting the type of metal or the like constituting the conductive layer, the thickness of the conductive layer, the area of the conductive layer, and the like.
上記導電層は、特に限定されないが、導電層の厚みの調整が行い易く、粘着テープの透明性及び表面抵抗の向上の両立を達成し易い観点から、金属、合金又は金属化合物からなることが好ましい。金、合金、金属化合物は単独で用いてもよく、2種以上を併用してもよい。 The conductive layer is not particularly limited, but is preferably made of a metal, an alloy or a metal compound from the viewpoint of easily adjusting the thickness of the conductive layer and easily achieving improvement in transparency and surface resistance of the adhesive tape. . Gold, an alloy and a metal compound may be used alone or in combination of two or more.
上記導電層を構成し得る金属としては、例えば、例えば、金、銀、銅、白金、チタン、アルミニウム、スズ等の金属が挙げられる。
上記導電層が金属からなる場合、導電層は上記金属からなる単層又は複層からなってもよい。
As a metal which can comprise the said conductive layer, metals, such as gold, silver, copper, platinum, titanium, aluminum, tin, are mentioned, for example.
When the said conductive layer consists of metals, a conductive layer may consist of a single layer or multiple layers which consist of said metals.
上記導電層を構成し得る合金としては、例えば、鉄を含む合金、及びモリブデンを含む合金が挙げられる。
上記鉄を含む合金としては、クロム及び鉄を含む合金、並びにクロム、ニッケル及び鉄を含む合金が挙げられ、具体的にはステンレス鋼(SUS)が挙げられる。
上記ステンレス鋼(SUS)としては、具体的には例えば、ステンレス鋼(SUS201)、ステンレス鋼(SUS202)、ステンレス鋼(SUS301)、ステンレス鋼(SUS302)、ステンレス鋼(SU303)、ステンレス鋼(SUS304)、ステンレス鋼(SUS306)、ステンレス鋼(SUS310s)、ステンレス鋼(SUS316)、ステンレス鋼(SUS317)、ステンレス鋼(SUS329J11)、ステンレス鋼(SUS403)、ステンレス鋼(SUS405)、ステンレス鋼(SUS420)、ステンレス鋼(SUS430)、ステンレス鋼(SUS430LX)、ステンレス鋼(SUS6330)等が挙げられる。
As an alloy which can constitute the above-mentioned electric conduction layer, an alloy containing iron and an alloy containing molybdenum are mentioned, for example.
Examples of alloys containing iron include alloys containing chromium and iron, and alloys containing chromium, nickel and iron, and specific examples include stainless steel (SUS).
As the stainless steel (SUS), specifically, for example, stainless steel (SUS 201), stainless steel (SUS 202), stainless steel (SUS 301), stainless steel (SUS 302), stainless steel (SU 303), stainless steel (SUS 304) , Stainless steel (SUS306), stainless steel (SUS310s), stainless steel (SUS316), stainless steel (SUS317), stainless steel (SUS329J11), stainless steel (SUS403), stainless steel (SUS405), stainless steel (SUS420), stainless steel Examples include steel (SUS430), stainless steel (SUS430LX), stainless steel (SUS6330) and the like.
上記モリブデンを含む合金は、モリブデンを含有していれば特に限定されないが、ニッケル及びクロムを更に含有することが好ましい。
上記モリブデンを含む合金におけるモリブデンの含有量の下限は特に限定されないが、表面抵抗及び透明性を両立させる観点から、5重量%が好ましく、7重量%がより好ましく、9重量%が更に好ましく、11重量%がより更に好ましく、13重量%が特に好ましく、15重量%が非常に好ましく、16重量%が最も好ましい。また、上記モリブデンを含む合金におけるモリブデンの含有量の上限は、表面抵抗率の調整の容易化の観点から、30重量%が好ましく、25重量%がより好ましく、20重量%が更に好ましい。
上記モリブデンを含む合金がニッケル及びクロムを含有する場合、モリブデン含有量が5重量%以上、ニッケル含有量が40重量%以上、クロム含有量が1重量%以上であることが好ましい。上記モリブデンを含む合金としては、具体的にはハステロイ(登録商標)、インコネル(登録商標)、カーペンター(登録商標)、インコロイ(登録商標)等の合金が挙げられる。
The alloy containing molybdenum is not particularly limited as long as it contains molybdenum, but it is preferable to further contain nickel and chromium.
Although the lower limit of the content of molybdenum in the alloy containing molybdenum is not particularly limited, it is preferably 5% by weight, more preferably 7% by weight, still more preferably 9% by weight, from the viewpoint of achieving both surface resistance and transparency. % By weight is even more preferred, 13% by weight is particularly preferred, 15% by weight is very particularly preferred and 16% by weight is most preferred. The upper limit of the content of molybdenum in the alloy containing molybdenum is preferably 30% by weight, more preferably 25% by weight, and still more preferably 20% by weight from the viewpoint of facilitating the adjustment of the surface resistivity.
When the alloy containing molybdenum contains nickel and chromium, it is preferable that the molybdenum content is 5% by weight or more, the nickel content is 40% by weight or more, and the chromium content is 1% by weight or more. Specific examples of the alloy containing molybdenum include alloys such as Hastelloy (registered trademark), Inconel (registered trademark), Carpenter (registered trademark), Incoloy (registered trademark) and the like.
上記ハステロイ(登録商標)としては、具体的には例えば、ハステロイ(HASTELLOY B-2)、ハステロイ(HASTELLOY B-3)、ハステロイ(HASTELLOY C-4)、ハステロイ(HASTELLOY C-2000)、ハステロイ(HASTELLOY C-22)、ハステロイ(HASTELLOY C-276)、ハステロイ(HASTELLOY G-30)、ハステロイ(HASTELLOY N)、ハステロイ(HASTELLOY W)、ハステロイ(HASTELLOY X)等が挙げられる。 Specific examples of Hastelloy (registered trademark) include Hastelloy (HASTELLOY B-2), Hastelloy (HASTELLOY B-3), Hastelloy (HASTELLOY C-4), Hastelloy (HASTELLOY C-2000), and Hastelloy (HASTELLOY). C-22) Hastelloy (HASTELLOY C-276), Hastelloy (HASTELLOY G-30), Hastelloy (HASTELLOY N), Hastelloy (HASTELLOY W), Hastelloy (HASTELLOY X) and the like.
上記インコネル(登録商標)としては、具体的には例えば、インコネル(Inconel 600)、インコネル(Inconel 625)、インコネル(Inconel 690)、インコネル(Inconel 718)、インコネル(Inconel X750)等が挙げられる。
上記カーペンター(登録商標)としては、具体的には例えば、カーペンター(Carpenter 20Cb3)等が挙げられる。
Specific examples of Inconel (registered trademark) include Inconel (Inconel 600), Inconel (Inconel 625), Inconel (Inconel 690), Inconel (Inconel 718), Inconel (Inconel X750) and the like.
Specific examples of the Carpenter (registered trademark) include Carpenter (Carpenter 20Cb3).
上記導電層を構成し得る合金としては、例えば、モネル等のニッケルと銅を含有する合金も用いることができる。
上記モネルとしては、具体的には例えば、モネル(Monel 400)、モネル(Monel K500)、モネル(Monel R)、モネル(Monel S)等が挙げられる。
上記導電層が合金からなる場合、導電層は上記合金からなる単層又は複層からなってもよい。
As an alloy which can constitute the above-mentioned electric conduction layer, an alloy containing nickel and copper, such as monel, can also be used, for example.
Specific examples of the monel include Monel (Monel 400), Monel (Monel K500), Monel (Monel R), Monel (Monel S) and the like.
When the conductive layer is made of an alloy, the conductive layer may be made of a single layer or a plurality of layers made of the alloy.
上記導電層を構成し得る金属化合物としては、例えば、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、アンチモンドープ酸化錫(ATO)、アルミドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)、酸化チタン(TiO)等の金属酸化物が挙げられる。
上記導電層が金属化合物からなる場合、導電層は単層又は複層からなってもよい。
Examples of the metal compound that can constitute the conductive layer include tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide And metal oxides such as GZO) and titanium oxide (TiO).
When the said conductive layer consists of a metal compound, a conductive layer may consist of single layer or multiple layers.
また、上記導電層は、金属からなる層、合金からなる層、及び/又は金属化合物からなる層の、複層であってもよい。 The conductive layer may be a multilayer of a layer of metal, a layer of alloy, and / or a layer of metal compound.
上記導電層は、導電層にクラックが入り難く、導電性を安定して維持し易い観点から、金、銀、銅、白金、チタン、スズ、ステンレス鋼(SUS)、モリブデン含有合金(ハステロイ等)、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、アンチモンドープ酸化錫(ATO)、アルミドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)、又は酸化チタン(TiO)からなることが好ましい。また、上記導電層は、耐熱性を更に高める観点から、金、銀、銅、白金、チタン、スズ、ステンレス鋼(SUS)からなることがより好ましく、さらに、表面の反射を抑え、視認性を高める観点から、ステンレス鋼(SUS)からなることが更に好ましい。 The conductive layer is unlikely to be cracked in the conductive layer, and from the viewpoint of stably maintaining conductivity, gold, silver, copper, platinum, titanium, tin, stainless steel (SUS), molybdenum-containing alloy (such as hastelloy) , Tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), or titanium oxide (TiO) preferable. The conductive layer is more preferably made of gold, silver, copper, platinum, titanium, tin, stainless steel (SUS) from the viewpoint of further improving heat resistance, and further suppresses surface reflection to improve visibility. From the viewpoint of enhancing, it is more preferable to be made of stainless steel (SUS).
上記導電層の厚みは特に限定されないが、好ましい下限は2nm、好ましい上限は300nmである。上記導電層の厚みが上記範囲であると、上記粘着テープの透明性や表面抵抗率を所期の範囲に調整することが容易にすることができる。上記導電層の厚みが2nm以上であると、熱を加えた際における導電層の酸化が抑制され、帯電抑制性能を維持できる。帯電抑制性能及び透明性を更に高める観点から、上記導電層の厚みのより好ましい下限は3nm、より好ましい上限は100nmであり、更に好ましい上限は50nm、特に好ましい上限は30nm、最も好ましい上限は20nmである。 The thickness of the conductive layer is not particularly limited, but a preferable lower limit is 2 nm and a preferable upper limit is 300 nm. When the thickness of the conductive layer is in the above range, the transparency and the surface resistivity of the pressure-sensitive adhesive tape can be easily adjusted to the intended range. When the thickness of the conductive layer is 2 nm or more, the oxidation of the conductive layer when heat is applied is suppressed, and the charge suppression performance can be maintained. From the viewpoint of further enhancing charge suppression performance and transparency, the lower limit of the thickness of the conductive layer is preferably 3 nm, more preferably 100 nm, still more preferably 50 nm, particularly preferably 30 nm, and most preferably 20 nm. is there.
上記導電層の厚みは特に限定されないが、上記導電層が金属からなる場合においては好ましい下限は2nm、好ましい上限は50nmである。上記金属からなる導電層の厚みがこの範囲内であると、上記粘着テープの透明性や表面抵抗率を所期の範囲に調整することが容易になる。上記導電層の厚みが2nm以上であると、熱を加えた際に導電層の酸化が抑制されて、帯電抑制性能を保つことができる。なお、酸素は特に粘着剤層側から侵入する。帯電抑制性能及び透明性を更に高める観点から、上記導電層の厚みのより好ましい下限は3nm、より好ましい上限は30nmであり、更に好ましい上限は20nm、特に好ましい上限は15nmである。
上記導電性が合金からなる場合において、上記導電層の厚みの好ましい下限は2nm、好ましい上限は10nmである。上記合金からなる導電層の厚みがこの範囲内であると、上記粘着テープの透明性や表面抵抗率を所期の範囲に調整することが容易になる。上記導電層の厚みが2nm以上であると、熱を加えた際に導電層の酸化が抑制されて、帯電抑制性能を保つことができる。なお、酸素は特に粘着剤層側から侵入する。帯電抑制性能及び透明性を更に高める観点から、上記導電層の厚みのより好ましい上限は7.5nm、更に好ましい上限は5nmである。
上記導電層が金属酸化物からなる場合において、上記導電層の厚みの好ましい下限は2nm、好ましい上限は300nmである。上記金属酸化物からなる導電層の厚みがこの範囲内であると、上記粘着テープの透明性や表面抵抗率を所期の範囲に調整することが容易になる。上記導電層の厚みが2nm以上であると、熱を加えた際に導電層の酸化が抑制されて、帯電抑制性能を保つことができる。なお、酸素は特に粘着剤層側から侵入する。帯電抑制性能及び透明性を更に高める観点から、上記導電層の厚みのより好ましい上限は100nm、更に好ましい上限は30nmである。
Although the thickness of the said conductive layer is not specifically limited, When the said conductive layer consists of metals, a preferable minimum is 2 nm, and a preferable upper limit is 50 nm. It becomes easy to adjust the transparency and the surface resistivity of the said adhesive tape in the expected range as the thickness of the conductive layer which consists of said metal being in this range. When the thickness of the conductive layer is 2 nm or more, the oxidation of the conductive layer is suppressed when heat is applied, and the charge suppression performance can be maintained. In particular, oxygen intrudes from the pressure-sensitive adhesive layer side. From the viewpoint of further enhancing the charge suppression performance and the transparency, the lower limit of the thickness of the conductive layer is preferably 3 nm, more preferably 30 nm, still more preferably 20 nm, particularly preferably 15 nm.
When the conductivity is made of an alloy, the preferable lower limit of the thickness of the conductive layer is 2 nm, and the preferable upper limit is 10 nm. It becomes easy to adjust the transparency and the surface resistivity of the said adhesive tape in the expected range as the thickness of the conductive layer which consists of said alloy is in this range. When the thickness of the conductive layer is 2 nm or more, the oxidation of the conductive layer is suppressed when heat is applied, and the charge suppression performance can be maintained. In particular, oxygen intrudes from the pressure-sensitive adhesive layer side. From the viewpoint of further enhancing the charge suppression performance and the transparency, the upper limit of the thickness of the conductive layer is preferably 7.5 nm, more preferably 5 nm.
When the said conductive layer consists of metal oxides, the preferable minimum of the thickness of the said conductive layer is 2 nm, and a preferable upper limit is 300 nm. It becomes easy to adjust the transparency and the surface resistivity of the said adhesive tape in the expected range as the thickness of the conductive layer which consists of said metal oxide is in this range. When the thickness of the conductive layer is 2 nm or more, the oxidation of the conductive layer is suppressed when heat is applied, and the charge suppression performance can be maintained. In particular, oxygen intrudes from the pressure-sensitive adhesive layer side. From the viewpoint of further enhancing the charge suppression performance and the transparency, the upper limit of the thickness of the conductive layer is preferably 100 nm, and more preferably 30 nm.
上述のように、上記粘着テープの透明性や表面抵抗率は、上記導電層を構成する金属等の種類や導電層の厚みにより調整される。従って、上記導電層を構成する金属等の種類ごとに最適な導電層の厚みを選択することが好ましい。
<単金属>
例えば、上記導電層が金、銀、銅、白金、チタン、アルミニウム、スズのいずれかの金属からなる単層構造である場合、抵抗値を調整し易く、帯電抑制機能を制御し易い観点から、上記導電層の厚みの好ましい下限は2nm、好ましい上限は50nmである。上記導電層の厚みのより好ましい下限は3nm、より好ましい上限は30nmであり、更に好ましい上限は15nmである。
<合金>
例えば、上記導電層がステンレス鋼(SUS)、モリブデン含有合金(ハステロイ等)のいずれかの合金からなる単層構造である場合、抵抗値を調整し易く、帯電抑制機能を制御し易い観点から、上記導電層の厚みの好ましい下限は2nm、好ましい上限は10nmである。上記導電層の厚みのより好ましい下限は3nm、より好ましい上限は7.5nmであり、更に好ましい上限は5nmである。
<金属酸化物>
例えば、上記導電層がITO、FTO、ATO、AZO、GZO、TiOのいずれかの金属酸化物からなる単層構造である場合、抵抗値を調整し易く、帯電抑制機能を制御し易い観点から、上記導電層の厚みの好ましい下限は2nm、好ましい上限は300nmである。上記導電層の厚みのより好ましい上限は100nmであり、更に好ましい上限は30nmである。
As described above, the transparency and the surface resistivity of the pressure-sensitive adhesive tape are adjusted according to the type of metal or the like constituting the conductive layer and the thickness of the conductive layer. Therefore, it is preferable to select the optimum thickness of the conductive layer for each type of metal or the like constituting the conductive layer.
<Single metal>
For example, in the case where the conductive layer has a single-layer structure of any of gold, silver, copper, platinum, titanium, aluminum, and tin, it is easy to adjust the resistance value and to easily control the charge suppression function. The preferred lower limit of the thickness of the conductive layer is 2 nm, and the preferred upper limit is 50 nm. The more preferable lower limit of the thickness of the conductive layer is 3 nm, the more preferable upper limit is 30 nm, and the still more preferable upper limit is 15 nm.
<Alloy>
For example, in the case where the conductive layer has a single-layer structure made of an alloy of stainless steel (SUS) or a molybdenum-containing alloy (such as hastelloy), it is easy to adjust the resistance value and to easily control the charge suppression function. The preferred lower limit of the thickness of the conductive layer is 2 nm, and the preferred upper limit is 10 nm. The more preferable lower limit of the thickness of the conductive layer is 3 nm, the more preferable upper limit is 7.5 nm, and the still more preferable upper limit is 5 nm.
<Metal oxide>
For example, in the case where the conductive layer has a single-layer structure made of a metal oxide of ITO, FTO, ATO, AZO, GZO, or TiO, it is easy to adjust the resistance value and to easily control the charge suppression function. The preferred lower limit of the thickness of the conductive layer is 2 nm, and the preferred upper limit is 300 nm. A more preferable upper limit of the thickness of the conductive layer is 100 nm, and a still more preferable upper limit is 30 nm.
上記導電層は、上記粘着剤層の一方の面の全面に積層されていてもよく、一部に部分的に積層されていてもよい。上記導電層が上記粘着剤層の一方の面の全面に積層される場合には、上記粘着テープは均一な帯電抑制性能を発揮することができる。上記導電層が上記粘着剤層の一方の面の一部に部分的に積層される場合、均一な帯電抑制性能を付与するために、上記導電層は均一のパターン形状を形成していることが好ましい。上記導電層は均一のパターン形状を形成している場合、均一な帯電抑制性能を発現しつつ、高い透明性を発揮することもできる。 The said conductive layer may be laminated | stacked on the whole surface of one side of the said adhesive layer, and may be laminated | stacked partially. When the conductive layer is laminated on the entire surface of one surface of the pressure-sensitive adhesive layer, the pressure-sensitive adhesive tape can exhibit uniform charge suppression performance. When the conductive layer is partially laminated on a part of one surface of the pressure-sensitive adhesive layer, the conductive layer forms a uniform pattern shape in order to provide uniform charge suppression performance. preferable. When the said conductive layer forms uniform pattern shape, high transparency can also be exhibited, exhibiting uniform charge suppression performance.
本発明の好適な実施態様において、上記導電層は、厚さが2~50nmの金、銀、銅、白金、チタン、又はスズからなる金属からなる。また、上記導電層は、厚さが2~10nmのステンレス鋼、モリブデン含有合金(ハステロイ(登録商標)合金、インコネル(登録商標)合金、カーペンター(登録商標)合金、インコロイ(登録商標)合金等)からなる合金からなる。また、上記導電層は、厚さが2~300nmのスズドープ酸化インジウム、フッ素ドープ酸化スズ、アンチモンドープ酸化錫、アルミドープ酸化亜鉛、ガリウムドープ酸化亜鉛及び酸化チタンからなる金属酸化物からなる。この場合、粘着テープの透明性や表面抵抗率を所期の範囲に調整することが容易になると同時に、熱を加えた際に導電層の酸化が抑制されて帯電抑制性能を高く維持し易くすることができる。これらの単金属、合金、金属酸化物は、それぞれ単独で用いてもよく、2種以上を併用してもよい。 In a preferred embodiment of the present invention, the conductive layer is made of a metal having a thickness of 2 to 50 nm and made of gold, silver, copper, platinum, titanium or tin. In addition, the conductive layer is made of stainless steel having a thickness of 2 to 10 nm, a molybdenum-containing alloy (Hasteloy (registered trademark) alloy, Inconel (registered trademark) alloy, Carpenter (registered trademark) alloy, Incoloy (registered trademark) alloy, etc.) It consists of an alloy. The conductive layer is made of a metal oxide composed of tin-doped indium oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide and titanium oxide having a thickness of 2 to 300 nm. In this case, it becomes easy to adjust the transparency and surface resistivity of the pressure-sensitive adhesive tape to a desired range, and at the same time, when the heat is applied, the oxidation of the conductive layer is suppressed to make it easy to maintain the charge suppression performance high. be able to. These single metals, alloys, and metal oxides may be used alone or in combination of two or more.
上記粘着剤層上に上記導電層を形成する方法は特に限定されず、例えば、スパッタプロセス、イオンプレーティング、プラズマCVDプロセス、蒸着プロセス、塗布プロセス、ディッププロセス等の従来公知の方法を用いることができる。なかでも、均一な導電層を形成できることから、スパッタプロセスが好適である。
なお、上記粘着テープが基材を有する場合には、上記基材上に上記導電層を形成した後、該導電層上に上記粘着剤層を形成してもよい。
The method for forming the conductive layer on the pressure-sensitive adhesive layer is not particularly limited. For example, conventionally known methods such as sputtering process, ion plating, plasma CVD process, vapor deposition process, coating process, dip process and the like may be used. it can. Among them, a sputtering process is preferable because a uniform conductive layer can be formed.
In addition, when the said adhesive tape has a base material, after forming the said conductive layer on the said base material, you may form the said adhesive layer on this conductive layer.
上記粘着テープは、上記導電層の上記粘着剤層とは反対側の面に基材が積層されていてもよい。本発明の好適な実施態様において、半導体デバイスを製造する際に安定して搬送を行うことができる観点から、上記基材は、孔を有さないフィルム形状であることが好ましい。上記基材としては、上記粘着テープの透明性を低下させるものでなければ特に限定されない。例えば、アクリル、オレフィン、ポリカーボネート、塩化ビニル、ABS、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ナイロン、ウレタン、ポリイミド等の透明な樹脂からなるシート、網目状の構造を有するシート、孔が開けられたシート等が挙げられる。
基材の厚みは、特に限定されないが、半導体デバイスを製造する際に安定して搬送を行うことができる観点から、好ましくは5μm以上、より好ましくは10μm以上、更に好ましくは15μm以上であり、好ましくは100μm以下、より好ましくは70μm以下、更に好ましくは50μm以下である。
In the pressure-sensitive adhesive tape, a base may be laminated on the surface of the conductive layer opposite to the pressure-sensitive adhesive layer. In a preferred embodiment of the present invention, the base material is preferably in the form of a film having no holes, from the viewpoint of being able to stably carry when manufacturing a semiconductor device. The substrate is not particularly limited as long as it does not reduce the transparency of the pressure-sensitive adhesive tape. For example, a sheet made of a transparent resin such as acrylic, olefin, polycarbonate, vinyl chloride, ABS, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), nylon, urethane, polyimide, etc., a sheet having a mesh structure, holes The sheet etc. which were opened are mentioned.
The thickness of the substrate is not particularly limited, but is preferably 5 μm or more, more preferably 10 μm or more, and still more preferably 15 μm or more, from the viewpoint of stable transport when manufacturing a semiconductor device. Is 100 μm or less, more preferably 70 μm or less, and still more preferably 50 μm or less.
上記粘着テープは、180℃、6時間の加熱の前と後の両方において、上記粘着剤層側の表面抵抗率の下限が1.0×10Ω/□、上限が9.9×1013Ω/□である。上記表面抵抗率が1.0×10Ω/□以上であると、半導体デバイスの保護に用いたときに回路の短絡(ショート)が抑制することができ、9.9×1013Ω/□以下であると、高い帯電抑制性能を発揮することができる。同様の観点から、上記粘着剤層側の表面抵抗率の好ましい下限は1.0×10Ω/□、好ましい上限は9.9×1012Ω/□である。より好ましい上限は9.9×1011Ω/□である。
また、180℃、6時間の加熱の前と後の両方において表面抵抗率が上記範囲内であることにより、上記粘着テープを180℃以上の高温処理を含む半導体製造プロセスに供することができる。
なお、上記表面抵抗率は、JIS K7194に準ずる方法により測定することができる。
上記粘着テープの、180℃、6時間の加熱の前と後の両方における、上記粘着剤層側の表面抵抗率は、導電層の酸化量を調整することにより制御することができる。
The pressure-sensitive adhesive tape has a lower limit of 1.0 × 10 4 Ω / □ and an upper limit of 9.9 × 10 13 on the side of the pressure-sensitive adhesive layer both before and after heating at 180 ° C. for 6 hours. It is Ω / □. When the surface resistivity is 1.0 × 10 4 Ω / □ or more, a short circuit of the circuit can be suppressed when used for protection of a semiconductor device, and 9.9 × 10 13 Ω / □ High charging suppression performance can be exhibited as it is the following. From the same viewpoint, the preferable lower limit of the surface resistivity on the side of the pressure-sensitive adhesive layer is 1.0 × 10 6 Ω / □, and the preferable upper limit is 9.9 × 10 12 Ω / □. A more preferable upper limit is 9.9 × 10 11 Ω / □.
In addition, when the surface resistivity is in the above range both before and after heating at 180 ° C. for 6 hours, the pressure-sensitive adhesive tape can be subjected to a semiconductor manufacturing process including high temperature treatment at 180 ° C. or more.
In addition, the said surface resistivity can be measured by the method according to JISK7194.
The surface resistivity of the pressure-sensitive adhesive layer on the side of the pressure-sensitive adhesive layer both before and after heating at 180 ° C. for 6 hours can be controlled by adjusting the amount of oxidation of the conductive layer.
上記粘着テープは、180℃、6時間の加熱の前と後において、上記粘着剤層側の表面抵抗率の変化率(加熱後の表面抵抗率/加熱前の表面抵抗率)が、好ましくは1×10以上、より好ましくは5×10以上、更に好ましくは1×10以上である。また、上記粘着剤層側の表面抵抗率の変化率(加熱後の表面抵抗率/加熱前の表面抵抗率)は、好ましくは1×10以下、より好ましくは1×10以下、更に好ましくは1×10以下、特に好ましくは1×10以下である。上記変化率が上記範囲内であると、半導体を製造する方法が熱処理工程(例えば、180℃、6時間)を含む場合であっても、安定して帯電抑制機能を発現することができる。上記粘着剤層側の表面抵抗率の変化率(加熱後の表面抵抗率/加熱前の表面抵抗率)は、例えば、導電層の酸化量を調整することによって制御することができる。 The pressure-sensitive adhesive tape preferably has a rate of change in surface resistivity on the side of the pressure-sensitive adhesive layer (surface resistivity after heating / surface resistivity before heating) before and after heating at 180 ° C. for 6 hours. × 10 or more, more preferably 5 × 10 or more, further preferably 1 × 10 2 or more. The rate of change of surface resistivity on the side of the pressure-sensitive adhesive layer (surface resistivity after heating / surface resistivity before heating) is preferably 1 × 10 7 or less, more preferably 1 × 10 6 or less, and further preferably Is 1 × 10 5 or less, particularly preferably 1 × 10 4 or less. When the rate of change is in the above range, the charge suppression function can be stably exhibited even when the method for producing a semiconductor includes a heat treatment step (for example, 180 ° C., 6 hours). The rate of change of the surface resistivity on the side of the pressure-sensitive adhesive layer (surface resistivity after heating / surface resistivity before heating) can be controlled, for example, by adjusting the amount of oxidation of the conductive layer.
上記粘着テープは、上記導電層側から測定した可視光線透過率が30%以上である。上記可視光線透過率が30%以上であると、半導体デバイスの保護に用いたときに、粘着テープ側から半導体デバイスの回路パターンを認識して、加工時の位置決め等を行うことができる。上記可視光線透過率は、40%以上であることが好ましく、50%以上であることが更に好ましく、通常100%以下である。
なお、上記可視光線透過率は、ヘーズメーター(例えば、日本電飾社製「NDH-2000」、又は、その同等品)を用いて、JIS K7105に基づいて測定することができる。
上記粘着テープの、導電層側から測定した可視光線透過率を調整するためには、上記導電層を構成する金属等の種類や導電層の厚みにより調整することができる。例えば、上記好適な実施態様における金属種及び厚さであると、可視光透過率の調整が容易となる。
The pressure-sensitive adhesive tape has a visible light transmittance of 30% or more as measured from the conductive layer side. When it is used for protection of a semiconductor device as the said visible light transmittance | permeability is 30% or more, the circuit pattern of a semiconductor device can be recognized from the adhesive tape side, and the positioning at the time of processing etc. can be performed. The visible light transmittance is preferably 40% or more, more preferably 50% or more, and usually 100% or less.
The visible light transmittance can be measured based on JIS K7105 using a haze meter (for example, “NDH-2000” manufactured by Nippon Denshoku Co., Ltd. or an equivalent thereof).
In order to adjust the visible light transmittance measured from the conductive layer side of the pressure-sensitive adhesive tape, the thickness can be adjusted according to the type of metal or the like constituting the conductive layer and the thickness of the conductive layer. For example, the metal species and thickness in the preferred embodiment facilitate adjustment of the visible light transmittance.
上記粘着テープは、220℃における熱分解量が10重量%以下であることが好ましい。220℃における熱分解量が10重量%以下であると、上記粘着テープを180℃以上の高温処理を含む半導体製造プロセスにより好適に供することができる。上記熱分解量は8重量%以下であることがより好ましく、5重量%以下であることが更に好ましい。
なお、上記熱分解量は、熱天秤(例えば、SII社製「TG/DTA6200」等)のアルミパンに5~10mgのテープを秤量し、空気雰囲気中(流量200mL/分)、昇温速度5℃/分の条件で常温(30℃)から400℃まで昇温した時の、220℃における分解量から求めることができる。上記熱分解量は、粘着剤の高分子量化、狭分子量分布化(低分子量成分を減らす)することにより制御することができる。
The pressure-sensitive adhesive tape preferably has a thermal decomposition amount of 10% by weight or less at 220 ° C. When the thermal decomposition amount at 220 ° C. is 10% by weight or less, the above-mentioned pressure-sensitive adhesive tape can be suitably provided by a semiconductor manufacturing process including high temperature treatment at 180 ° C. or higher. The thermal decomposition amount is more preferably 8% by weight or less, still more preferably 5% by weight or less.
The amount of thermal decomposition was measured by weighing a 5-10 mg tape in an aluminum pan of a thermobalance (for example, “TG / DTA 6200” manufactured by SII), in an air atmosphere (flow rate 200 mL / min), temperature increase rate 5 It can be determined from the decomposition amount at 220 ° C. when the temperature is raised from normal temperature (30 ° C.) to 400 ° C. under the condition of ° C./min. The thermal decomposition amount can be controlled by increasing the molecular weight of the pressure-sensitive adhesive and narrowing the molecular weight distribution (reducing the low molecular weight component).
上記粘着テープは、半導体製造プロセスにおいて、半導体デバイスの回路面に貼付して回路を保護するとともに、静電気によって回路が破損するのを抑制するために用いられる。上記粘着テープは、優れた帯電抑制性能と透明性とを両立していることから、半導体製造プロセスにおいて半導体デバイスの回路面に貼付したときに、テープを通して半導体デバイス上の回路パターンを認識することができ、かつ、180℃以上の高温処理に供したときにでも高い帯電抑制性能を発揮することができる。
上記粘着テープにより、半導体デバイスの回路が形成された面が保護された状態を模式的に示した断面図を図1に示した。半導体デバイス1は、一方の面にバンプ12が形成されており、該バンプ12側の面に、粘着テープ2が貼付されている。粘着テープ2は、粘着剤層21の半導体デバイス1に貼付した側とは反対側の面に導電層22と基材23が積層されている。
The above-mentioned adhesive tape is used in a semiconductor manufacturing process to be applied to the circuit surface of a semiconductor device to protect the circuit and to prevent the circuit from being damaged by static electricity. Since the above-mentioned pressure-sensitive adhesive tape has both excellent charge control performance and transparency, when pasted on a circuit surface of a semiconductor device in a semiconductor manufacturing process, it is necessary to recognize a circuit pattern on the semiconductor device through the tape. Thus, even when subjected to high-temperature treatment at 180 ° C. or higher, high charge suppression performance can be exhibited.
A cross-sectional view schematically showing a state in which the surface of the semiconductor device on which the circuit is formed is protected by the adhesive tape is shown in FIG. In the semiconductor device 1, bumps 12 are formed on one side, and an adhesive tape 2 is attached to the side of the bumps 12. In the pressure-sensitive adhesive tape 2, the conductive layer 22 and the base material 23 are laminated on the surface of the pressure-sensitive adhesive layer 21 opposite to the side thereof attached to the semiconductor device 1.
本発明の別の実施態様においては、半導体の回路面に半導体保護用粘着テープを貼付する工程、及び180℃以上の高温処理を半導体に行う工程を含む、半導体を処理する方法であって、前記半導体保護用粘着テープは、粘着剤層と、該粘着剤層の一方の面に積層された導電層とを有し、前記半導体保護用粘着テープの前記粘着剤層側の表面抵抗率が、180℃、6時間の加熱の前と後の両方において1.0×10Ω/□以上9.9×1013Ω/□以下であり、かつ、前記導電層側から測定した可視光線透過率が30%以上である、半導体を処理する方法も提供される。
この半導体を処理する方法によれば、半導体デバイスの回路面に貼付して回路を保護するとともに、静電気によって回路が破損するのを抑制することができる。上記粘着テープは、優れた帯電抑制性能と透明性とを両立していることから、半導体製造プロセスにおいて半導体デバイスの回路面に貼付したときに、テープを通して半導体デバイス上の回路パターンを認識することができ、かつ、180℃以上の高温処理に供したときにでも高い帯電抑制性能を発揮することができる。
In another embodiment of the present invention, there is provided a method of treating a semiconductor, comprising the steps of applying a pressure-sensitive adhesive tape for semiconductor protection to a circuit surface of the semiconductor, and performing a high temperature treatment of 180 ° C. or more on the semiconductor. The pressure-sensitive adhesive tape for semiconductor protection has a pressure-sensitive adhesive layer and a conductive layer laminated on one side of the pressure-sensitive adhesive layer, and the surface resistivity of the pressure-sensitive adhesive layer of the pressure-sensitive adhesive tape for semiconductor protection is 180. 1.0 × 10 4 Ω / sq or more and 9.9 × 10 13 Ω / sq or less both before and after 6 hours of heating, and the visible light transmittance measured from the conductive layer side is Methods are also provided for processing semiconductors that are 30% or more.
According to this method of processing a semiconductor, it is possible to protect the circuit by adhering it to the circuit surface of the semiconductor device, and to prevent the circuit from being damaged by static electricity. Since the above-mentioned pressure-sensitive adhesive tape has both excellent charge control performance and transparency, when pasted on a circuit surface of a semiconductor device in a semiconductor manufacturing process, it is necessary to recognize a circuit pattern on the semiconductor device through the tape. Thus, even when subjected to high-temperature treatment at 180 ° C. or higher, high charge suppression performance can be exhibited.
本発明によれば、半導体製造プロセスにおいて半導体デバイスの回路面に貼付したときに、テープを通して半導体デバイス上の回路パターンを認識することができ、かつ、180℃以上の高温処理に供したときにでも高い帯電抑制性能を発揮することができる半導体保護用粘着テープ、及び該半導体保護用粘着テープを用いた半導体を処理する方法を提供することができる。 According to the present invention, when attached to a circuit surface of a semiconductor device in a semiconductor manufacturing process, the circuit pattern on the semiconductor device can be recognized through the tape, and even when subjected to a high temperature treatment of 180 ° C. or more The adhesive tape for semiconductor protection which can exhibit high electrification control performance, and the method of processing the semiconductor using the adhesive tape for semiconductor protection can be provided.
本発明の一実施態様である粘着テープにより、半導体デバイスの回路が形成された面が保護された状態を模式的に示した断面図である。It is sectional drawing which showed typically the state by which the surface in which the circuit of the semiconductor device was formed was protected with the adhesive tape which is one embodiment of this invention.
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。 EXAMPLES The embodiments of the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
(実施例1)
(1)導電層の形成
ポリエチレンナフタレート(PEN)基材上に、Agのターゲット材として、DCマグネトロンスパッタリング法により、導電層を形成した。具体的には、チャンバー内を5×10-4Pa以下となるまで真空排気した後に、チャンバー内のAr占有率が98%以上となるようにArガスを導入し、厚さ15nmの導電層を形成した。
Example 1
(1) Formation of Conductive Layer A conductive layer was formed on a polyethylene naphthalate (PEN) substrate by DC magnetron sputtering as a target material of Ag. Specifically, after evacuating the chamber to 5 × 10 -4 Pa or less, Ar gas is introduced so that the Ar occupancy rate in the chamber is 98% or more, and a conductive layer having a thickness of 15 nm is formed. It formed.
得られた導電層の厚さ(光学膜厚)を、透過率を測定し、測定値から光学シュミレーションすることで算出した。具体的には、分光光度計(日立製作所社製「U4100」)を用いて、波長200~800nm(測定範囲)における透過スペクトルを測定することにより、透過率を測定した。次いで、光学シミュレーションソフト(J.A.Woollam社製「WVASE32」)を用いて、得られた透過スペクトルの形状、及び、ピーク・バレーの位置のフィッティングを行い、導電層の厚さを算出した。 The thickness (optical film thickness) of the obtained conductive layer was measured by measuring the transmittance and performing optical simulation from the measured value. Specifically, the transmittance was measured by measuring the transmission spectrum at a wavelength of 200 to 800 nm (measurement range) using a spectrophotometer (“U4100” manufactured by Hitachi, Ltd.). Next, using the optical simulation software ("WVASE 32" manufactured by JA Woollam), the shape of the obtained transmission spectrum and the position of the peak valley were fitted to calculate the thickness of the conductive layer.
(2)粘着テープの製造
温度計、攪拌機、冷却管を備えた反応器を用意し、この反応器内に、(メタ)アクリル酸アルキルエステルとして2-エチルヘキシルアクリレート90重量部、官能基含有モノマーとしてメタクリル酸ヒドロキシエチル10重量部、ラウリルメルカプタン0.01重量部と、酢酸エチル80重量部を加えた後、反応器を加熱して還流を開始した。続いて、上記反応器内に、重合開始剤として1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン0.01重量部を添加し、還流下で重合を開始させた。次に、重合開始から1時間後及び2時間後にも、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサンを0.01重量部ずつ添加し、更に、重合開始から4時間後にt-ヘキシルパーオキシピバレートを0.05重量部添加して重合反応を継続させた。そして、重合開始から8時間後に、固形分55重量%、重量平均分子量60万の官能基含有(メタ)アクリル系ポリマーの酢酸エチル溶液を得た。
得られた官能基含有(メタ)アクリル系ポリマーを含む酢酸エチル溶液の樹脂固形分100重量部に対して、官能基含有不飽和化合物として2-イソシアナトエチルメタクリレート3.5重量部を加えて反応させて重合性ポリマーを得た。
その後、得られた重合性ポリマーの酢酸エチル溶液の樹脂固形分100重量部に対して、光重合開始剤(エサキュアワン、日本シイベルヘグナー社製)1重量部およびイソシアネート硬化剤(コロネートL)0.15重量部を混合し、硬化型粘着剤の酢酸エチル溶液を得た。
(2) Production of adhesive tape A reactor equipped with a thermometer, a stirrer, and a cooling pipe is prepared, and 90 parts by weight of 2-ethylhexyl acrylate as a (meth) acrylic acid alkyl ester in this reactor as a functional group-containing monomer After adding 10 parts by weight of hydroxyethyl methacrylate, 0.01 parts by weight of lauryl mercaptan and 80 parts by weight of ethyl acetate, the reactor was heated to start refluxing. Subsequently, 0.01 parts by weight of 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane is added as a polymerization initiator into the above reactor, and polymerization is initiated under reflux. The Next, 0.01 parts by weight of 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane is added one hour and two hours after the initiation of polymerization, and the polymerization is further initiated. Four hours after the addition, 0.05 parts by weight of t-hexylperoxypivalate was added to continue the polymerization reaction. Then, 8 hours after initiation of polymerization, an ethyl acetate solution of a functional group-containing (meth) acrylic polymer having a solid content of 55% by weight and a weight average molecular weight of 600,000 was obtained.
Reaction is performed by adding 3.5 parts by weight of 2-isocyanatoethyl methacrylate as a functional group-containing unsaturated compound to 100 parts by weight of resin solid content of an ethyl acetate solution containing the obtained functional group-containing (meth) acrylic polymer The resulting mixture was allowed to obtain a polymerizable polymer.
Thereafter, 1 part by weight of a photopolymerization initiator (Esacure One, manufactured by Nippon Shiber-Hegner Co., Ltd.) and 0.15 parts by weight of an isocyanate curing agent (Corronate L) with respect to 100 parts by weight of resin solid content of the ethyl acetate solution of the obtained polymerizable polymer The parts were mixed to obtain an ethyl acetate solution of a curable adhesive.
得られた硬化型粘着剤の酢酸エチル溶液を、片面に離型処理を施した50μmのポリエチレンテレフタレート(PET)フィルム上に乾燥皮膜の厚さが40μmとなるようにドクターナイフで塗工し、110℃、5分間加熱して塗工溶液を乾燥させて、粘着剤層を得た。
得られた粘着剤層を、導電層が形成されたポリエチレンナフタレート(PEN)基材の導電層側に貼り合わせ、粘着テープを得た。
Apply an ethyl acetate solution of the obtained curable adhesive on a 50 μm polyethylene terephthalate (PET) film which has been subjected to a release treatment on one side with a doctor knife so that the thickness of the dry film is 40 μm, 110 The coating solution was dried by heating at 5 ° C. for 5 minutes to obtain a pressure-sensitive adhesive layer.
The obtained pressure-sensitive adhesive layer was bonded to the conductive layer side of the polyethylene naphthalate (PEN) substrate on which the conductive layer was formed, to obtain a pressure-sensitive adhesive tape.
(3)表面抵抗率の測定
JIS K7194に準ずる方法により粘着テープの粘着剤層側の表面抵抗率を測定した。即ち、得られた粘着テープの粘着剤層を、一直線状に等間隔に配列した探針間隔5mmのプローブにて9点の表面抵抗率を測定し、その平均値を表面抵抗率として求めた。
表面抵抗率は、オーブンを用いて180℃、6時間の加熱を行った前後において測定した。
(3) Measurement of surface resistivity The surface resistivity of the pressure-sensitive adhesive layer side of the pressure-sensitive adhesive tape was measured by a method according to JIS K7194. That is, the surface resistivity of nine points was measured by the probe of 5 mm of probe intervals which arranged the pressure-sensitive adhesive layer of the obtained pressure-sensitive adhesive tape at regular intervals in a straight line, and determined the average value as the surface resistivity.
The surface resistivity was measured before and after heating at 180 ° C. for 6 hours using an oven.
(4)可視光線透過率の測定
粘着テープの可視光線透過率を、ヘーズメーター(日本電飾社製「NDH-2000」)を用いて、JIS K7105に基づいて測定した。
(4) Measurement of Visible Light Transmittance The visible light transmittance of the pressure-sensitive adhesive tape was measured using a haze meter (“NDH-2000” manufactured by Nippon Denshoku Co., Ltd.) based on JIS K7105.
(5)熱分解量の測定
熱天秤(SII社製、TG/DTA6200)のアルミパンに、5~10mgの粘着テープを秤量し、空気雰囲気中(流量200mL/分)、昇温速度5℃/分の条件で常温(30℃)から400℃まで昇温した。このときの、220℃における熱分解量を求めた。
(5) Measurement of thermal decomposition amount 5-10 mg of adhesive tape is weighed in an aluminum pan of a thermobalance (manufactured by SII, TG / DTA 6200), and the temperature rise rate is 5 ° C./in an air atmosphere (flow rate 200 mL / min). The temperature was raised from normal temperature (30.degree. C.) to 400.degree. The thermal decomposition amount at 220 ° C. at this time was determined.
(実施例2~8、比較例1~3)
導電層の種類や厚みを表1のようにした以外は実施例1と同様にして粘着テープを製造し、表面抵抗率、可視光線透過率及び熱分解量を測定した。
なお、表1中、SUSは、ステンレス鋼(SUS310s)を意味し、ハステロイは、ハステロイ(HASTELLOY C-276)を意味する。
(Examples 2 to 8, Comparative Examples 1 to 3)
A pressure-sensitive adhesive tape was produced in the same manner as in Example 1 except that the type and thickness of the conductive layer were as shown in Table 1, and the surface resistivity, the visible light transmittance and the thermal decomposition amount were measured.
In Table 1, SUS means stainless steel (SUS310s), and Hastelloy means Hastelloy (HASTELLOY C-276).
(評価)
実施例及び比較例で得られた粘着テープについて、以下の方法により評価を行った。
結果を表1に示した。
(Evaluation)
The pressure-sensitive adhesive tapes obtained in Examples and Comparative Examples were evaluated by the following methods.
The results are shown in Table 1.
(1)アライメントマークの認識性の評価
得られた粘着テープを、回路面にアライメントマークを付した半導体デバイスの回路面に貼付して、図1に示したような状態とした。アライメントマークとしては、縦100μm、横100μmの「+」マークを用いた。この状態で、粘着テープ側(図1において基材23側)からカメラにより半導体デバイスの回路面を観察した。この操作を100回行った。100回中、98回以上でカメラによりアライメントマークを認識できた場合を「◎」、95回以上97回以下でカメラによりアライメントマークを認識できた場合を「○」、94回以下しか認識できなかった場合を「×」と評価した。
なお、観察は、ダイシング装置(ディスコ社製、DFD6361)のアライメントマーク認識機能を用いて行った。この際、落射照明出力20~80%、斜光照明出力20~80%の条件でアライメントマークの認識性を確認した。
(1) Evaluation of Recognizability of Alignment Mark The adhesive tape obtained was attached to the circuit surface of the semiconductor device having the alignment mark on the circuit surface, and the state as shown in FIG. 1 was obtained. As alignment marks, a “+” mark of 100 μm in length and 100 μm in width was used. In this state, the circuit surface of the semiconductor device was observed with a camera from the adhesive tape side (the base 23 side in FIG. 1). This operation was performed 100 times. If the alignment mark can be recognized by the camera 98 times or more out of 100 times, "◎", if the alignment mark can be recognized by the camera 95 times or more and 97 times or less "○", only 94 times or less The case was evaluated as "x".
The observation was performed using the alignment mark recognition function of a dicing apparatus (DFD6361 manufactured by Disco Corporation). At this time, the recognizability of the alignment mark was confirmed under the conditions of epi-illumination output 20 to 80% and oblique illumination output 20 to 80%.
(2)半導体デバイスの歩留りの評価
得られた粘着テープを、半導体デバイスの回路面に貼付して、図1に示したような状態とした。この状態で、プラズマアッシング処理(SUMCO社製、PC-300、RF出力250W、真空度10~50Pa、ガス流量(O)10~20sccm)を施し半導体デバイスの歩留まりを評価した。得られた半導体デバイスについて、電気的特性及び回路動作の測定により良品、不良品の判定を行った。
この方法により100個の半導体デバイスを処理したときに、歩留り(良品の比率)が98%以上であった場合を「◎」、歩留り(良品の比率)が98%未満95%以上であった場合を「○」、歩留り(良品の比率)が95%未満90%以上であった場合を「△」、歩留り(良品の比率)が90%未満の場合を「×」と評価した。
なお、アライメントマークの認識ができなかった比較例3については歩留りの評価を行わなかった。
(2) Evaluation of Yield of Semiconductor Device The pressure-sensitive adhesive tape obtained was attached to the circuit surface of the semiconductor device to obtain a state as shown in FIG. In this state, a plasma ashing process (PC-300, manufactured by SUMCO, RF output 250 W, degree of vacuum 10 to 50 Pa, gas flow rate (O 2 ) 10 to 20 sccm) was applied to evaluate the yield of the semiconductor device. With respect to the obtained semiconductor devices, determination of non-defective product and defective product was performed by measurement of electrical characteristics and circuit operation.
When 100 semiconductor devices are processed by this method, the case where the yield (rate of non-defective product) is 98% or more is “◎”, and the yield (ratio of non-defective product) is less than 98% 95% or more When the yield (percentage of good product) was less than 95% and 90% or more, the case where the yield (percentage of good product) was less than 90% was evaluated as "x".
The evaluation of yield was not performed for Comparative Example 3 in which the alignment mark could not be recognized.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
本発明によれば、半導体製造プロセスにおいて半導体デバイスの回路面に貼付したときに、テープを通して半導体デバイス上の回路パターンを認識することができ、かつ、180℃以上の高温処理に供したときにでも高い帯電抑制性能を発揮することができる半導体保護用粘着テープ、及び該半導体保護用粘着テープを用いた半導体を処理する方法を提供することができる。 According to the present invention, when attached to a circuit surface of a semiconductor device in a semiconductor manufacturing process, the circuit pattern on the semiconductor device can be recognized through the tape, and even when subjected to a high temperature treatment of 180 ° C. or more The adhesive tape for semiconductor protection which can exhibit high electrification control performance, and the method of processing the semiconductor using the adhesive tape for semiconductor protection can be provided.
1 半導体デバイス
12 バンプ
2 粘着テープ
21 粘着剤層
22 導電層
23 基材
REFERENCE SIGNS LIST 1 semiconductor device 12 bump 2 adhesive tape 21 adhesive layer 22 conductive layer 23 base material

Claims (8)

  1. 粘着剤層と、該粘着剤層の一方の面に積層された導電層とを有し、
    前記粘着剤層側の表面抵抗率が、180℃、6時間の加熱の前と後の両方において1.0×10Ω/□以上9.9×1013Ω/□以下であり、かつ、前記導電層側から測定した可視光線透過率が30%以上である
    ことを特徴とする半導体保護用粘着テープ。
    A pressure-sensitive adhesive layer, and a conductive layer laminated on one side of the pressure-sensitive adhesive layer,
    The surface resistivity on the pressure-sensitive adhesive layer side is 1.0 × 10 4 Ω / □ or more and 9.9 × 10 13 Ω / □ or less both before and after heating at 180 ° C. for 6 hours, and The adhesive tape for semiconductor protection characterized by the visible light transmittance | permeability measured from the said conductive layer side being 30% or more.
  2. 導電層は、金属、合金又は金属化合物からなる、請求項1に記載の半導体保護用粘着テープ。 The adhesive tape for semiconductor protection according to claim 1, wherein the conductive layer is made of a metal, an alloy or a metal compound.
  3. 導電層は、厚さが2nm以上300nm以下である、請求項1又は2に記載の半導体保護用粘着テープ。 The adhesive tape for semiconductor protection according to claim 1 or 2 whose thickness is 2 nm or more and 300 nm or less.
  4. 導電層は、粘着剤層の一方の面の全面に積層されているか、又は、粘着剤層の一方の面に均一のパターン形状を形成して部分的に積層されている、請求項1、2又は3に記載の半導体保護用粘着テープ。 The conductive layer is laminated on the entire surface of one side of the pressure-sensitive adhesive layer, or partially laminated by forming a uniform pattern shape on one side of the pressure-sensitive adhesive layer. Or the adhesive tape for semiconductor protection as described in 3.
  5. 導電層の粘着剤層とは反対側の面に基材が積層されている、請求項1、2、3又は4に記載の半導体保護用粘着テープ。 The adhesive tape for semiconductor protection according to claim 1, 2, 3 or 4, wherein a base material is laminated on the surface of the conductive layer opposite to the adhesive layer.
  6. 220℃における熱分解量が10重量%以下である、請求項1、2、3、4又は5に記載の半導体保護用粘着テープ。 The adhesive tape for semiconductor protection of Claim 1, 2, 3, 4 or 5 whose thermal decomposition amount in 220 degreeC is 10 weight% or less.
  7. 半導体の回路面に粘着テープを貼付する工程、及び180℃以上の高温処理を半導体に行う工程を含む半導体を製造するために用いられる、請求項1、2、3、4、5又は6に記載の半導体保護用粘着テープ。 The method according to claim 1, 2, 3, 4, 5, or 6, which is used to manufacture a semiconductor including a step of applying an adhesive tape to a circuit surface of a semiconductor, and a step of subjecting the semiconductor to a high temperature treatment of 180 ° C or more. Semiconductor adhesive tape.
  8. 半導体の回路面に半導体保護用粘着テープを貼付する工程、及び180℃以上の高温処理を半導体に行う工程を含む、半導体を処理する方法であって、
    前記半導体保護用粘着テープは、粘着剤層と、該粘着剤層の一方の面に積層された導電層とを有し、前記半導体保護用粘着テープの前記粘着剤層側の表面抵抗率が、180℃、6時間の加熱の前と後の両方において1.0×10Ω/□以上9.9×1013Ω/□以下であり、かつ、前記導電層側から測定した可視光線透過率が30%以上である
    ことを特徴とする半導体を処理する方法。
    A method of processing a semiconductor, comprising the steps of applying a pressure sensitive adhesive tape for semiconductor protection to a circuit surface of the semiconductor, and performing a high temperature treatment of 180 ° C. or more on the semiconductor,
    The pressure-sensitive adhesive tape for semiconductor protection has a pressure-sensitive adhesive layer and a conductive layer laminated on one side of the pressure-sensitive adhesive layer, and the surface resistivity of the pressure-sensitive adhesive layer of the pressure-sensitive adhesive tape for semiconductor protection is It is 1.0 × 10 4 Ω / □ or more and 9.9 × 10 13 Ω / □ or less both before and after heating at 180 ° C. for 6 hours, and the visible light transmittance measured from the conductive layer side Is 30% or more.
PCT/JP2018/027627 2017-07-25 2018-07-24 Adhesive tape for semiconductor protection and method for processing semiconductor WO2019022050A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880018486.8A CN110446765A (en) 2017-07-25 2018-07-24 Semiconductor protection adhesive tape and processing method for semiconductor
KR1020197017861A KR102561868B1 (en) 2017-07-25 2018-07-24 Adhesive tape for protecting semiconductors and methods for processing semiconductors
JP2018545526A JP7181086B2 (en) 2017-07-25 2018-07-24 Adhesive tape for protecting semiconductors and method for processing semiconductors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-143616 2017-07-25
JP2017143616 2017-07-25

Publications (1)

Publication Number Publication Date
WO2019022050A1 true WO2019022050A1 (en) 2019-01-31

Family

ID=65041098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027627 WO2019022050A1 (en) 2017-07-25 2018-07-24 Adhesive tape for semiconductor protection and method for processing semiconductor

Country Status (5)

Country Link
JP (1) JP7181086B2 (en)
KR (1) KR102561868B1 (en)
CN (1) CN110446765A (en)
TW (1) TWI810197B (en)
WO (1) WO2019022050A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158756A (en) * 2019-03-20 2020-10-01 積水化学工業株式会社 Adhesive tape and adhesive tape roll

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112574686A (en) * 2020-12-24 2021-03-30 苏州城邦达益材料科技有限公司 Conductive adhesive film and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204446A (en) * 1990-11-29 1992-07-24 Daicel Chem Ind Ltd Transparent protective sheet for pellicle
JPH08245932A (en) * 1995-03-10 1996-09-24 Lintec Corp Antistatic adhesive sheet
JP2002069395A (en) * 2000-08-28 2002-03-08 Fujimori Kogyo Co Ltd Adhesive tape for producing semiconductor
JP2011210944A (en) * 2010-03-30 2011-10-20 Furukawa Electric Co Ltd:The Antistatic adhesive tape for semiconductor processing
WO2017110202A1 (en) * 2015-12-25 2017-06-29 古河電気工業株式会社 Tape for semiconductor processing

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424900A (en) * 1982-11-08 1984-01-10 Petcavich Robert J Anti-static packages and packaging material
US5091229A (en) * 1989-10-13 1992-02-25 E. I. Du Pont De Nemours And Company Electronics protective packaging film
JPH09207259A (en) 1996-12-16 1997-08-12 Achilles Corp Conductive transparent protective film
JP4376345B2 (en) * 1999-03-30 2009-12-02 三菱伸銅株式会社 Cover tape for carrier tape and tape carrier
JP3894549B2 (en) * 2001-09-26 2007-03-22 日東電工株式会社 Transflective polarizing plate, reflective polarizing plate, and liquid crystal display device using them
KR100624525B1 (en) * 2003-10-15 2006-09-18 서광석 Antistatic pressure sensitive or adhesive tapes and producing method thereof
DE102007013181B4 (en) * 2007-03-20 2017-11-09 Evonik Degussa Gmbh Transparent, electrically conductive layer
CN101321426B (en) * 2007-06-06 2013-02-27 3M创新有限公司 Electrostatic resistant film and product including the same
JP5692094B2 (en) * 2010-01-22 2015-04-01 凸版印刷株式会社 Antireflection film and method for producing the same
JP2012007093A (en) * 2010-06-25 2012-01-12 Nitto Denko Corp Conductive adhesive tape
EP2931522A4 (en) * 2012-12-12 2016-07-13 Saint Gobain Performance Plast Multilayer film having pressure sensitive adhesive layer
JP6181958B2 (en) * 2013-03-28 2017-08-16 日東電工株式会社 Antistatic adhesive sheet and optical film
JP2014189786A (en) * 2013-03-28 2014-10-06 Nitto Denko Corp Adhesive composition, adhesive sheet and optical film
CN105462511A (en) * 2014-09-25 2016-04-06 日东电工株式会社 Thermal peeling adhesive sheet
JP6470944B2 (en) 2014-11-04 2019-02-13 リンテック株式会社 Conductive adhesive composition and conductive adhesive sheet
JP6890920B2 (en) * 2014-12-08 2021-06-18 日東電工株式会社 Transparent conductive film with adhesive layer
CN104645716B (en) * 2015-02-05 2016-03-23 福建鑫华股份有限公司 Novel antistatic filtering material of a kind of base cloth plating and preparation method thereof
CN104893601B (en) * 2015-05-19 2017-05-17 中国航空工业集团公司北京航空材料研究院 Conductive adhesive film with two conductive structures and preparation method of conductive adhesive film
CN106448824B (en) * 2016-10-17 2017-09-08 北京石油化工学院 A kind of transparent conductive film and preparation method and application
JP6831725B2 (en) * 2017-03-17 2021-02-17 リンテック株式会社 Adhesive sheet for workpiece processing and its manufacturing method
JP7331307B2 (en) * 2017-04-03 2023-08-23 大日本印刷株式会社 Adhesive laminate for electronic equipment parts manufacturing process and method for manufacturing electronic equipment parts using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204446A (en) * 1990-11-29 1992-07-24 Daicel Chem Ind Ltd Transparent protective sheet for pellicle
JPH08245932A (en) * 1995-03-10 1996-09-24 Lintec Corp Antistatic adhesive sheet
JP2002069395A (en) * 2000-08-28 2002-03-08 Fujimori Kogyo Co Ltd Adhesive tape for producing semiconductor
JP2011210944A (en) * 2010-03-30 2011-10-20 Furukawa Electric Co Ltd:The Antistatic adhesive tape for semiconductor processing
WO2017110202A1 (en) * 2015-12-25 2017-06-29 古河電気工業株式会社 Tape for semiconductor processing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158756A (en) * 2019-03-20 2020-10-01 積水化学工業株式会社 Adhesive tape and adhesive tape roll

Also Published As

Publication number Publication date
TWI810197B (en) 2023-08-01
JP7181086B2 (en) 2022-11-30
CN110446765A (en) 2019-11-12
KR20200034942A (en) 2020-04-01
TW201918539A (en) 2019-05-16
JPWO2019022050A1 (en) 2020-05-28
KR102561868B1 (en) 2023-07-31

Similar Documents

Publication Publication Date Title
JP5235271B2 (en) Water-dispersible acrylic pressure-sensitive adhesive composition for re-peeling and pressure-sensitive adhesive sheet
JP5235273B2 (en) Water-dispersible acrylic pressure-sensitive adhesive composition for re-peeling and pressure-sensitive adhesive sheet
JP2019070104A (en) Surface protective film
TW201207070A (en) Active energy ray-curable pressure-sensitive adhesive for re-release and dicing die-bonding film
WO2019022050A1 (en) Adhesive tape for semiconductor protection and method for processing semiconductor
WO2020170977A1 (en) Method for manufacturing laminate of two-dimensional material, and laminate
US20220028722A1 (en) Semiconductor device production method and laminate film for temporary fixation material
JP7196857B2 (en) Method for manufacturing semiconductor device, curable resin composition for temporary fixing material, film for temporary fixing material, and laminated film for temporary fixing material
US20200392379A1 (en) Transfer film, method for manufacturing laminate, laminate, capacitive input device, and image display device
TWI754720B (en) Conductive film and touch panel
JP2017125093A (en) Processing method of semiconductor protective tape and wafer
JP2011026615A (en) Surface treatment method for masking tape and wafer
WO2011001713A1 (en) Protection tape for plating
TW201805158A (en) Laminated body and protective film
JP6984352B2 (en) Laminate manufacturing method and laminate
WO2015141323A1 (en) Method for producing adhesive sheet, adhesive sheet, laminate for touch panel, and capacitive touch panel
JP2018162452A (en) Surface protective film
JP6789057B2 (en) Double-sided adhesive tape and wafer processing method
JP2018147990A (en) Processing method for taiko wafer
JP6802029B2 (en) Semiconductor protective tape
JP7214303B2 (en) thin support adhesive film
WO2022181636A1 (en) Method for producing semiconductor device, method for producing film material for provisional fixation, and film material for provisional fixation
JP2018150521A (en) Surface protective tape
JP2019033214A (en) Manufacturing method of semiconductor device
JP2018060964A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545526

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837717

Country of ref document: EP

Kind code of ref document: A1