WO2019022040A1 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
WO2019022040A1
WO2019022040A1 PCT/JP2018/027605 JP2018027605W WO2019022040A1 WO 2019022040 A1 WO2019022040 A1 WO 2019022040A1 JP 2018027605 W JP2018027605 W JP 2018027605W WO 2019022040 A1 WO2019022040 A1 WO 2019022040A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
vibration
control device
motor
amount
Prior art date
Application number
PCT/JP2018/027605
Other languages
English (en)
French (fr)
Inventor
健児 山本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019022040A1 publication Critical patent/WO2019022040A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to a vehicle control device.
  • the behavior of the vehicle is controlled by controlling the driving force or the braking force generated by the wheel of the vehicle according to the behavior generated in the vehicle body of the vehicle.
  • behavior delay may occur particularly with respect to vertical vibration suppression, and it may be considered that effective vibration suppression can not be performed.
  • An object of the present disclosure is to provide a vehicle control device capable of eliminating behavior delay as much as possible in suppressing vertical vibration of the vehicle.
  • the present disclosure is a vehicle control device, and is assumed to be added to a vehicle based on a detection result of a road condition detection unit (101) that detects an uneven state of a road on which the vehicle travels and a road condition detection unit.
  • a vibration calculation unit (102) that calculates an assumed vibration amount in the vertical direction
  • a motor control unit (103) that controls a motor that drives a vehicle, and the motor control unit attenuates the vibration amount that reduces the assumed vibration amount Executes vibration suppression control to control the motor so that the vehicle is added to the vehicle.
  • the motor Since the assumed vibration amount in the vertical direction assumed to be applied to the vehicle is calculated based on the detection result of detecting the uneven state of the road, the motor is controlled to execute the vibration suppression control before the vehicle actually vibrates. be able to. Since it is not necessary to wait for the vehicle to actually vibrate, it is possible to realize the vibration suppression control which eliminates the behavior delay as much as possible.
  • FIG. 1 is a diagram showing the configuration of a vehicle equipped with an ECU according to an embodiment.
  • FIG. 2 is a diagram for explaining unevenness detection by a sensor.
  • FIG. 3 is a diagram for explaining the behavior of the vehicle when the vibration suppression control is performed.
  • FIG. 4 is a diagram for explaining the behavior of the vehicle when the vibration suppression control is performed.
  • FIG. 5 is a diagram for explaining the arrangement of sensors and motors.
  • FIG. 6 is a diagram for explaining the arrangement of sensors and motors.
  • FIG. 7 is a view for explaining an arrangement state of sensors and motors.
  • FIG. 8 is a diagram for explaining the arrangement of sensors and motors.
  • FIG. 9 is a flowchart for describing control processing of the ECU according to the embodiment.
  • FIG. 10 is a diagram for explaining the guard process in FIG.
  • FIG. 11 is a flowchart for illustrating control processing of the ECU according to the embodiment.
  • FIG. 12 is a flowchart for describing control processing of the E
  • an ECU 10 which is an embodiment of a vehicle control device, is mounted on a vehicle to control the behavior of the vehicle.
  • the ECU 10 receives distance data with the road surface detected by the radar sensors 29, 30, 31, 32.
  • the radar sensors 29 and 30 are provided in front of the front wheel 21.
  • the radar sensors 29 and 30 are provided to simultaneously measure at least two measurement points separated from each other along the traveling direction of the vehicle.
  • the radar sensors 31 and 32 are provided in front of the rear wheel 22.
  • the radar sensors 31 and 32 are provided to simultaneously measure at least two measurement points separated from each other along the traveling direction of the vehicle.
  • the ECU 10 receives acceleration data detected by the acceleration sensor 20.
  • the ECU 10 outputs a motor control signal to the inverters 26, 28.
  • the inverter 26 controls driving of the motor 25.
  • the motor 25 drives the front wheel 21.
  • the front wheel 21 is held by a suspension mechanism 23.
  • the inverter 28 controls driving of the motor 27.
  • the motor 27 drives the rear wheel 22.
  • the rear wheel 22 is held by a suspension mechanism 24.
  • the ECU 10 includes a road condition detection unit 101, a vibration calculation unit 102, and a motor control unit 103 as functional components.
  • the road state detection unit 101 is a portion that detects the uneven state of the road on which the vehicle travels.
  • the road state detection unit 101 detects the asperity state based on the distance data with the road surface detected by the radar sensors 29, 30, 31, 32.
  • the vibration calculation unit 102 is a part that calculates an assumed vibration amount in the vertical direction assumed to be applied to the vehicle based on the detection result of the road state detection unit 101.
  • the motor control unit 103 is a part that controls the motors 25 and 27 that drive the vehicle.
  • the motor control unit 103 executes vibration suppression control for controlling the motors 25 and 27 so that a damping vibration amount for reducing the assumed vibration amount is applied to the vehicle. The details of the vibration suppression control will be described later.
  • the radar sensors 29 and 30 sequentially acquire distance data to the road surface.
  • the road surface change from the point A to the point B can be calculated as L2 (0) ⁇ L1 (0).
  • the road surface change from the point B to the point C can be calculated as L2 (2)-L1 (2).
  • a vibration control method in the case where there is a convex portion on the road surface will be described with reference to FIG.
  • the vehicle body is lifted when there is a convex portion on the road surface, the vehicle body is damped so as to sink it.
  • downward damping torque is generated on the front wheel side.
  • a downward damping torque may be generated on the rear wheel side.
  • damping torque is generated in the direction to suppress the vehicle speed, as shown in (D) of FIG.
  • a torque may be generated, and a drive torque for maintaining the vehicle speed may be generated on the rear wheel side.
  • One motor 25 for driving the front wheels 21 is provided for each of the left and right front wheels 21. Therefore, the motor 25 can drive the left and right front wheels 21 independently.
  • the radar sensors 29 and 30 are provided in front of the left and right front wheels 21 respectively. Therefore, the radar sensors 29 and 30 can independently detect the road surface condition in front of the left and right front wheels 21.
  • One motor 27 for driving the rear wheel 22 is provided for each of the left and right rear wheels 22. Accordingly, the motor 27 can drive the left and right rear wheels 22 independently.
  • the radar sensors 31 and 32 are respectively provided in front of the left and right rear wheels 22. Accordingly, the radar sensors 31, 32 can independently detect the road surface condition in front of the left and right rear wheels 22.
  • one motor 25A for driving the front wheels 21 is provided so as to drive the left and right front wheels 21 in synchronization.
  • one motor 27A for driving the rear wheel 22 is also provided to synchronously drive the left and right rear wheels 22.
  • the motor 27A for driving the rear wheel 22 can be omitted.
  • the radar sensors 31, 32 disposed in front of the rear wheel 22 may be omitted. it can.
  • step S101 the road condition detection unit 101 detects a road surface condition.
  • step S102 the vibration calculation unit 102 detects a traveling condition.
  • the traveling conditions include the vehicle speed and acceleration of the vehicle.
  • step S103 the vibration calculation unit 102 predicts vertical vibration.
  • step S104 it is determined whether the predicted vertical vibration exceeds an allowable threshold. If the predicted vertical vibration exceeds the allowable threshold, the process proceeds to step S105. If the predicted vertical vibration does not exceed the allowable threshold, the process ends.
  • step S105 the motor control unit 103 calculates a control pattern.
  • step S106 the motor control unit 103 executes a guard process.
  • Control pattern calculation and guard processing will be described with reference to FIG. (A) of FIG. 10 is the prediction curve of the up-and-down vibration which the vibration calculation part 102 calculated. Since the motor is controlled to be in the opposite phase to the predicted curve, the motor control unit 103 calculates a control pattern as indicated by a broken line in (B) of FIG. In order to control the range that does not affect the vehicle speed or acceleration of the vehicle, as shown by the solid line in FIG. 10B, guard processing is performed to adjust the amplitude without changing the control waveform. Although the upper and lower limit guard processing can be simply coped with and the calculation is easy, the amount of motor control changes smoothly in the case of amplitude adjustment as shown in FIG. It is hard to give.
  • step S107 following step S106 vibration suppression control is performed based on the control pattern determined in steps S105 and S106.
  • a control pattern can be generated to correspond to the variable damping. For example, if it is determined that the vibration is large, the damping rates of the suspension mechanisms 23 and 24 can be increased to expand the shock absorption capacity.
  • the vibration suppression control can be canceled if there is a possibility that the safe operation of the driver may be impaired.
  • the case where there is a possibility that trouble occurs in the safe driving of the driver may be, for example, road surface freezing, high vehicle speed, turning or the like.
  • step S201 vibration suppression control is performed.
  • the vibration suppression control is the same as that described with reference to FIG.
  • step S202 vertical vibration is detected based on detection data of the acceleration sensor 20.
  • step S203 it is determined whether the detected vibration exceeds the abnormal threshold value. If the detected vibration exceeds the abnormal threshold value, the process proceeds to the process of step S204. If the detected vibration does not exceed the abnormal threshold value, the process ends.
  • step S204 it is determined that the function of the radar sensor is abnormal.
  • step S205 following step S204 prediction control by the radar sensor is prohibited.
  • step S206 vibration detection by the acceleration sensor 20 is performed.
  • step S207 it is determined whether the detected vibration exceeds the allowable threshold. If the detected vibration exceeds the allowable threshold, the process proceeds to the process of step S208, and if the detected vibration does not exceed the allowable threshold, the process is ended.
  • step S208 a control pattern is calculated based on the detection data of the acceleration sensor 20.
  • step S209 following step S208 a guard process for suppressing excessive control is performed.
  • step S210 following step S209 vibration suppression control is executed based on the control pattern determined in steps S208 and S209.
  • step S301 vibration suppression control is performed.
  • the vibration suppression control is the same as that described with reference to FIG.
  • step S302 vertical vibration is detected based on the detection data of the acceleration sensor 20.
  • step S303 it is determined whether the detected vibration exceeds an allowable threshold for correction. If the detected vibration exceeds the allowable threshold, the process proceeds to the process of step S304, and if the detected vibration does not exceed the allowable threshold, the process is ended.
  • step S304 a control correction amount is calculated.
  • the control correction amount is set such that the detected vibration falls within the allowable threshold.
  • step S305 it is determined whether the control correction amount exceeds the abnormal threshold value. If the control correction amount exceeds the abnormal threshold value, the process proceeds to step S306. If the control correction amount does not exceed the abnormal threshold value, the process proceeds to step S309.
  • step S306 it is determined that the function of the radar sensor is abnormal. In step S307 following step S306, prediction control by the radar sensor is prohibited.
  • step S ⁇ b> 308 following step S ⁇ b> 307 vibration suppression control is performed based on the detection value of the acceleration sensor 20.
  • the vibration suppression control in step S308 is the same as the process from step S206 to step S210 described with reference to FIG.
  • step S309 a guard process for suppressing excessive control is performed on the control correction amount calculated in step S304.
  • step S310 following step S309 vibration suppression control is performed based on the control pattern determined in steps S304 and S309.
  • the ECU 10 which is a vehicle control device, is assumed to be added to the vehicle based on the detection results of the road condition detection unit 101 and the road condition detection unit 101 that detect the uneven state of the road on which the vehicle travels.
  • a motor control unit 103 for controlling a motor for driving the vehicle.
  • the motor control unit 103 executes vibration suppression control for controlling the motors 25 and 27 so that a damping vibration amount for reducing the assumed vibration amount is applied to the vehicle.
  • vibration suppression control is performed by controlling the motors 25 and 27 before the vehicle actually vibrates. Can be performed. Since it is not necessary to wait for the vehicle to actually vibrate, it is possible to realize the vibration suppression control which eliminates the behavior delay as much as possible.
  • the road state detection unit 101 detects the uneven state based on the detection results of the radar sensors 29 and 30 provided in front of the front wheel 21 of the vehicle. Since the uneven state is detected based on the detection results of the radar sensors 29 and 30 provided in front of the front wheel 21 of the vehicle, the estimated amount of vibration can be reliably calculated before the vehicle actually vibrates.
  • the senor is a radar type, and is provided so as to simultaneously measure at least two measurement points separated from each other in the traveling direction of the vehicle.
  • the distance between the vehicle and the road surface also varies depending on the weight and the number of occupants of the vehicle, and also varies depending on the weight of the loaded luggage.
  • the distance between the vehicle and the road surface also fluctuates due to pitching while traveling. Therefore, even if a sensor is simply provided to measure the distance between the vehicle and the road surface, the uneven state of the road can not be grasped. Therefore, in the present embodiment, a pair of radar type sensors is provided to simultaneously measure at least two measurement points separated from each other along the traveling direction of the vehicle. By doing this, the difference in the vertical direction between the two measurement points can be measured regardless of the behavior of the vehicle, so that the uneven state of the road can be detected.
  • the vibration calculation unit 102 calculates the assumed vibration amount including the generation timing of the vertical vibration generated in the vehicle, the vibration amplitude, and the vibration cycle
  • the motor control unit 103 calculates the assumed vibration amount. Attenuating vibration is generated to cancel out. Since the assumed vibration amount includes the generation timing of the vertical vibration generated in the vehicle, the vibration amplitude, and the vibration cycle, the damped vibration amount that offsets the assumed vibration amount is an accurate timing, amplitude, and period. Can be generated.
  • the upper limit of the amount of change of the vehicle speed and / or acceleration with respect to the traveling direction of the vehicle may be set, and the motor control unit 103 dampens the vibration amount within a range where the vehicle does not perform the behavior exceeding the upper limit of change. Executes guard processing so as to be added to the vehicle, and executes vibration suppression control.
  • the damping vibration amount is generated so as to offset the assumed vibration amount, it is assumed that the vehicle speed and / or the acceleration in the vehicle traveling direction may change, but if the change amount is too large, the drivability is affected. Therefore, by setting the change amount upper limit of the vehicle speed and / or the acceleration with respect to the vehicle traveling direction so as not to exceed the change amount upper limit, the deterioration of drivability can be reduced.
  • the acceleration sensor 20 for detecting the acceleration of the vehicle is provided, and the motor control unit 103 performs the vibration suppression control.
  • the amount of damping vibration can be corrected based on the detection result of
  • the motor control unit 103 when executing the vibration suppression control, can determine the presence or absence of abnormality of the radar sensors 29, 30, 31, 32 based on the detection result of the acceleration sensor 20.
  • the motor control unit 103 can suspend the execution of the vibration suppression control when an abnormality is recognized in the radar sensors 29, 30, 31, 32. If vibration suppression control is executed while the radar sensor 29, 30, 31, 32 has an abnormality, there is a possibility that the vibration may be amplified, so the radar sensor 29, 30, 31, 32 has an abnormality. It is preferable to suspend the execution of the vibration suppression control when it is detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

車両制御装置は、車両が進行する道路の凹凸状態を検出する道路状態検出部(101)と、道路状態検出部(101)の検出結果に基づいて車両に対して加わると想定される上下方向の想定振動量を算出する振動算出部(102)と、車両を駆動するモータを制御するモータ制御部(103)と、を備え、モータ制御部(103)は、想定振動量を低減する減衰振動量が車両に加わるようにモータを制御する振動抑制制御を実行する。

Description

車両制御装置 関連出願の相互参照
 本出願は、2017年7月28日に出願された日本国特許出願2017-146930号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。
 本開示は、車両制御装置に関する。
 電気自動車では、車輪をモータで駆動するため、車輪に付与する駆動トルクや制動トルクを制御することができる。このことを利用して、車両の挙動を制御することが提案されている(例えば、下記特許文献1参照)。
特開2013-126821号公報
 特許文献1では、車両の車体に発生した挙動に応じて車両の車輪で発生させる駆動力又は制動力を制御することで、車両の挙動を制御している。このようなフィードバック的な制御では、特に上下振動の抑制に対して挙動遅れが発生し、有効な振動抑制ができない可能性も考えられる。
 本開示は、車両の上下振動を抑制するにあたって、挙動遅れを極力排除することが可能な車両制御装置を提供することを目的とする。
 本開示は、車両制御装置であって、車両が進行する道路の凹凸状態を検出する道路状態検出部(101)と、道路状態検出部の検出結果に基づいて車両に対して加わると想定される上下方向の想定振動量を算出する振動算出部(102)と、車両を駆動するモータを制御するモータ制御部(103)と、を備え、モータ制御部は、想定振動量を低減する減衰振動量が車両に加わるようにモータを制御する振動抑制制御を実行する。
 車両に加わると想定される上下方向の想定振動量を、道路の凹凸状態を検出した検出結果に基づいて算出するので、車両が実際に振動する前にモータを制御して振動抑制制御を実行することができる。車両が実際に振動することを待つ必要が無いので、挙動遅れを極力排除した振動抑制制御を実現することができる。
 尚、「発明の概要」及び「請求の範囲」に記載した括弧内の符号は、後述する「発明を実施するための形態」との対応関係を示すものであって、「発明の概要」及び「請求の範囲」が、後述する「発明を実施するための形態」に限定されることを示すものではない。
図1は、実施形態であるECUを搭載した車両の構成を示す図である。 図2は、センサによる凹凸検出を説明するための図である。 図3は、振動抑制制御を実行した場合の車両の挙動を説明するための図である。 図4は、振動抑制制御を実行した場合の車両の挙動を説明するための図である。 図5は、センサ及びモータの配置状況を説明するための図である。 図6は、センサ及びモータの配置状況を説明するための図である。 図7は、センサ及びモータの配置状況を説明するための図である。 図8は、センサ及びモータの配置状況を説明するための図である。 図9は、実施形態であるECUの制御処理を説明するためのフローチャートである。 図10は、図9におけるガード処理を説明するための図である。 図11は、実施形態であるECUの制御処理を説明するためのフローチャートである。 図12は、実施形態であるECUの制御処理を説明するためのフローチャートである。
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 図1に示されるように、車両制御装置の実施形態であるECU10は、車両に搭載され車両の挙動を制御する。ECU10は、レーダセンサ29,30,31,32が検出した路面との距離データを受信する。レーダセンサ29,30は、前輪21よりも前方に設けられている。レーダセンサ29,30は、車両の進行方向に沿って互いに離隔した少なくとも2つの計測点を同時に計測できるように設けられている。レーダセンサ31,32は、後輪22よりも前方に設けられている。レーダセンサ31,32は、車両の進行方向に沿って互いに離隔した少なくとも2つの計測点を同時に計測できるように設けられている。ECU10は、加速度センサ20が検出した加速度データを受信する。
 ECU10は、インバータ26,28にモータ制御信号を出力する。インバータ26は、モータ25を駆動制御する。モータ25は、前輪21を駆動する。前輪21は、サスペンション機構23によって保持されている。インバータ28は、モータ27を駆動制御する。モータ27は、後輪22を駆動する。後輪22は、サスペンション機構24によって保持されている。
 ECU10は、機能的な構成要素として、道路状態検出部101と、振動算出部102と、モータ制御部103と、を備えている。道路状態検出部101は、車両が進行する道路の凹凸状態を検出する部分である。道路状態検出部101は、レーダセンサ29,30,31,32が検出した路面との距離データに基づいて凹凸状態を検出する。
 振動算出部102は、道路状態検出部101の検出結果に基づいて車両に対して加わると想定される上下方向の想定振動量を算出する部分である。モータ制御部103は、車両を駆動するモータ25,27を制御する部分である。モータ制御部103は、想定振動量を低減する減衰振動量が車両に加わるようにモータ25,27を制御する振動抑制制御を実行する。振動抑制制御の詳細については、後述する。
 図2に示されるように、車両が進行するに従って、レーダセンサ29,30は、順次路面との距離データを取得する。(A)は、時間T=0の状態を示し、(B)は、時間T=1の状態を示し、(C)は、時間T=2の状態を示している。
 時間T=0においては、地点Aから地点Bの路面変化を、L2(0)―L1(0)として算出することができる。時間T2においては、車体がすこし持ち上がりタイヤの位置も変化しているものの、地点Bから地点Cの路面変化を、L2(2)―L1(2)として算出することができる。このように順次測定することで、路面変化の凹凸を車体やタイヤの状況に関わらず検出することができる。
 図3を参照しながら、路面に凸部がある場合の制振方法について説明する。図3の(A)に示されるように、路面に凸部があると車体が持ち上げられるので、車体を沈み込ませるように制振する。一例としては、図3の(B)に示されるように、前輪側に下向きの制振トルクを発生させる。別例としては、図3の(C)に示されるように、後輪側に下向きの制振トルクを発生させてもよい。図3の(B)及び(C)では、いずれも車速を抑制する方向に制振トルクを発生させることになるので、図3の(D)に示されるように、前輪側に下向きの制振トルクを発生させ、後輪側に車速を維持するための駆動トルクを発生させてもよい。
 続いて、図4を参照しながら、路面に凹部がある場合の制振方法について説明する。図4の(A)に示されるように、路面に凹部があると車体が沈むので、車体を浮き上がらせるように制振する。一例としては、図4の(B)に示されるように、前輪側に上向きの制振トルクを発生させる。別例としては、図4の(C)に示されるように、後輪側に上向きの制振トルクを発生させてもよい。図4の(B)及び(C)では、いずれも車速を増大する方向に制振トルクを発生させることになるので、図4の(D)に示されるように、前輪側に上向きの制振トルクを発生させ、後輪側に車速を維持するための駆動トルクを発生させてもよい。
 続いて、図5を参照しながら、モータ及びレーダセンサの配置について説明する。前輪21を駆動するモータ25は、左右の前輪21それぞれに1つ設けられている。従って、モータ25は、左右の前輪21を独立して駆動することができる。レーダセンサ29,30は、左右の前輪21の前方にそれぞれ設けられている。従って、レーダセンサ29,30は、左右の前輪21の前方の路面状況を独立して検知することができる。
 後輪22を駆動するモータ27は、左右の後輪22それぞれに1つ設けられている。従って、モータ27は、左右の後輪22を独立して駆動することができる。レーダセンサ31,32は、左右の後輪22の前方にそれぞれ設けられている。従って、レーダセンサ31,32は、左右の後輪22の前方の路面状況を独立して検知することができる。
 図6に示されるように、モータの配置は簡略化することができる。図6に示される例では、前輪21を駆動するモータ25Aは、左右の前輪21を同調して駆動するように1つ設けられている。後輪22を駆動するモータ27Aも同様に、左右の後輪22を同調して駆動するように1つ設けられている。
 更に、図7に示されるように、後輪22を駆動するモータ27Aを省略することもできる。この場合、後輪22を前輪21に対して独立して駆動することはできないので、図8に示されるように、後輪22の前方に配置されているレーダセンサ31,32を省略することもできる。
 続いて、振動抑制制御について、図9を参照しながら説明する。ステップS101では、道路状態検出部101が路面状況を検出する。ステップS101に続くステップS102では、振動算出部102が走行条件を検出する。走行条件とは、車両の車速や加速度を含むものである。
 ステップS102に続くステップS103では、振動算出部102が上下振動を予測する。ステップS103に続くステップS104では、予測した上下振動が許容閾値を超えているか否かを判断する。予測した上下振動が許容閾値を超えていれば、ステップS105の処理に進み、予測した上下振動が許容閾値を超えていなければ、処理を終了する。
 ステップS105では、モータ制御部103が制御パターンを算出する。ステップS105に続くステップS106では、モータ制御部103がガード処理を実行する。
 図10を参照しながら、制御パターンの算出及びガード処理について説明する。図10の(A)は、振動算出部102が算出した上下振動の予測曲線である。この予測曲線と逆位相になるようにモータを制御することになるので、モータ制御部103は、図10の(B)における破線で示されるような制御パターンを算出する。車両の車速や加速度に影響しない範囲の制御とするため、図10の(B)における実線のように、制御波形は変えずに振幅を調整するガード処理を実行する。単純に上下限ガード処理でも対応可能であるし、演算も容易であるけれども、図10の(B)に示されるような振幅調整の方が、モータ制御量が滑らかに変化し、ドライバに違和感を与えにくい。
 ステップS106に続くステップS107では、ステップS105,S106において決定した制御パターンに基づいて、振動抑制制御が実行される。
 サスペンション機構23,24が、減衰効果可変式の場合、その減衰可変と対応するように制御パターンを生成することもできる。例えば、振動が大きいと判断される場合は、サスペンション機構23,24の減衰率を上げて、ショックの吸収キャパシティを拡大することができる。
 また、ステップS104において予測振動が許容値以上であっても、ドライバの安全な運転に支障が出る可能性のある場合は、振動抑制制御をキャンセルすることもできる。ドライバの安全な運転に支障が出る可能性のある場合とは、例えば、路面凍結や高車速や旋回時等である。
 続いて、振動抑制制御に異常判断を組み合わせた態様について、図11を参照しながら説明する。ステップS201では、振動抑制制御を実行する。振動抑制制御は、図9を参照しながら説明したものと同様であるので、説明を省略する。
 ステップS201に続くステップS202では、加速度センサ20の検出データに基づいて、上下振動を検出する。ステップS202に続くステップS203では、検出振動が異常閾値を超えているか判断する。検出振動が異常閾値を超えていれば、ステップS204の処理に進み、検出振動が異常閾値を超えていなければ処理を終了する。
 ステップS204では、レーダセンサの機能が異常状態であると判定する。ステップS204に続くステップS205では、レーダセンサによる予測制御を禁止する。
 ステップS205に続くステップS206では、加速度センサ20による振動検出を実行する。ステップS206に続くステップS207では、検出振動が許容閾値を超えているか否かを判断する。検出振動が許容閾値を超えていれば、ステップS208の処理に進み、検出振動が許容閾値を超えていなければ処理を終了する。
 ステップS208では、加速度センサ20の検出データに基づいて制御パターンを算出する。ステップS208に続くステップS209では、過剰制御を抑制するためのガード処理を実行する。ステップS209に続くステップS210では、ステップS208,S209において決定した制御パターンに基づいて、振動抑制制御が実行される。
 続いて、振動抑制制御に異常判断を組み合わせた態様の別例について、図12を参照しながら説明する。ステップS301では、振動抑制制御を実行する。振動抑制制御は、図9を参照しながら説明したものと同様であるので、説明を省略する。
 ステップS301に続くステップS302では、加速度センサ20の検出データに基づいて、上下振動を検出する。ステップS302に続くステップS303では、検出振動が補正のための許容閾値を超えているか判断する。検出振動が許容閾値を超えていれば、ステップS304の処理に進み、検出振動が許容閾値を超えていなければ処理を終了する。
 ステップS304では、制御補正量を算出する。制御補正量は、検出振動が許容閾値内に収まるように設定される。
 ステップS304に続くステップS305では、制御補正量が異常閾値を超えているか否かを判断する。制御補正量が異常閾値を超えていれば、ステップS306の処理に進み、制御補正量が異常閾値を超えていなければ、ステップS309の処理に進む。
 ステップS306では、レーダセンサの機能が異常状態であると判定する。ステップS306に続くステップS307では、レーダセンサによる予測制御を禁止する。
 ステップS307に続くステップS308では、加速度センサ20による検出値に基づいて、振動抑制制御を実行する。ステップS308における振動抑制制御は、図11を参照しながら説明した、ステップS206からステップS210の処理と同様であるので、その説明を省略する。
 ステップS309では、ステプS304で算出した制御補正量に対して、過剰制御を抑制するためのガード処理を実行する。ステップS309に続くステップS310では、ステップS304,S309において決定した制御パターンに基づいて、振動抑制制御が実行される。
 上記したように、車両制御装置であるECU10は、車両が進行する道路の凹凸状態を検出する道路状態検出部101と、道路状態検出部101の検出結果に基づいて車両に対して加わると想定される上下方向の想定振動量を算出する振動算出部102と、車両を駆動するモータを制御するモータ制御部103と、を備えている。モータ制御部103は、想定振動量を低減する減衰振動量が車両に加わるようにモータ25,27を制御する振動抑制制御を実行する。
 車両に加わると想定される上下方向の想定振動量を、道路の凹凸状態を検出した検出結果に基づいて算出するので、車両が実際に振動する前にモータ25,27を制御して振動抑制制御を実行することができる。車両が実際に振動することを待つ必要が無いので、挙動遅れを極力排除した振動抑制制御を実現することができる。
 また本実施形態では、道路状態検出部101は、車両の前輪21よりも前方に設けられたレーダセンサ29,30の検出結果に基づいて凹凸状態を検出する。車両の前輪21よりも前方に設けられたレーダセンサ29,30の検出結果に基づいて凹凸状態を検出するので、車両が実際に振動する前に想定振動量を確実に算出することができる。
 また本実施形態では、センサはレーダ式であって、車両の進行方向に沿って互いに離隔した少なくとも2つの計測点を同時に計測できるように設けられている。車両と路面との距離は、車両に乗車している乗員の体重や人数によっても変動し、積載する荷物の重量によっても変動する。また、走行中のピッチングによっても、車両と路面との距離は変動する。そのため、単純にセンサを設けて車両と路面との距離を計測しても、道路の凹凸状態を把握することができない。そこで本実施形態では、レーダ式のセンサを一対設け、車両の進行方向に沿って互いに離隔した少なくとも2つの計測点を同時に計測するようにしている。このようにすることで、車両の挙動に関わらず、2つの計測点間の上下方向の差分を計測することができるので、道路の凹凸状態を検出することができる。
 また本実施形態では、振動算出部102は、車両に発生する上下方向の振動の発生タイミング、振動振幅、及び振動周期を含めて想定振動量を算出し、モータ制御部103は、想定振動量を相殺するように減衰振動量を発生させる。想定振動量に、車両に発生する上下方向の振動の発生タイミング、振動振幅、及び振動周期を含めているので、想定振動量を相殺するような減衰振動量を的確なタイミング、振幅、及び周期で発生させることができる。
 また本実施形態では、車両進行方向に対する車速及び/又は加速度の変化量上限が設定されていてもよく、モータ制御部103は、変化量上限を超えた挙動を車両が行わない範囲で減衰振動量が車両に加わるようにガード処理を実行し、振動抑制制御を実行する。想定振動量を相殺するように減衰振動量を発生させると、車両進行方向に対する車速及び/又は加速度が変化する場合が想定されるが、その変化量が大きすぎるとドライバビリティに影響を与える。そこで、車両進行方向に対する車速及び/又は加速度の変化量上限を設定し、この変化量上限を超えないようにすることで、ドライバビリティの悪化を低減することができる。
 本実施形態では、レーダセンサ29,30,31,32に加えて、車両の加速度を検出する加速度センサ20が設けられており、モータ制御部103は、振動抑制制御を実行するにあたって、加速度センサ20の検出結果に基づいて減衰振動量を補正することができる。車両の加速度を検出する加速度センサを設け、その検出結果に基づいて減衰振動量を補正することで、フィードフォワード的に設定される減衰振動量に対し、フィードバック的に補正を行うことができ、より的確な振動抑制が可能になる。
 また本実施形態では、モータ制御部103は、振動抑制制御を実行するにあたって、加速度センサ20の検出結果に基づいてレーダセンサ29,30,31,32の異常有無を判断することができる。
 レーダセンサ29,30,31,32に異常が発生した場合、振動抑制制御を行っても狙いの振動抑制効果が発揮できない可能性がある。そこで、レーダセンサ29,30,31,32とは異なる加速度センサ20の検出結果を用いて、狙いの振動抑制効果から乖離した振動を検出した場合にはレーダセンサ29,30,31,32に異常が発生していると判断することができる。
 また本実施形態では、モータ制御部103は、レーダセンサ29,30,31,32に異常が認められた場合に、振動抑制制御の実行を保留することができる。レーダセンサ29,30,31,32に異常が発生している状態のまま振動抑制制御を実行すると、かえって振動が増幅する可能性もあるので、レーダセンサ29,30,31,32に異常が認められた場合には振動抑制制御の実行を保留することが好ましい。
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。

Claims (8)

  1.  車両制御装置であって、
     車両が進行する道路の凹凸状態を検出する道路状態検出部(101)と、
     前記道路状態検出部の検出結果に基づいて車両に対して加わると想定される上下方向の想定振動量を算出する振動算出部(102)と、
     車両を駆動するモータを制御するモータ制御部(103)と、を備え、
     前記モータ制御部は、前記想定振動量を低減する減衰振動量が車両に加わるように前記モータを制御する振動抑制制御を実行する、車両制御装置。
  2.  請求項1に記載の車両制御装置であって、
     前記道路状態検出部は、車両の前輪よりも前方に設けられたセンサの検出結果に基づいて前記凹凸状態を検出する、車両制御装置。
  3.  請求項2に記載の車両制御装置であって、
     前記センサはレーダ式であって、車両の進行方向に沿って互いに離隔した少なくとも2つの計測点を同時に計測できるように設けられている、車両制御装置。
  4.  請求項2又は3に記載の車両制御装置であって、
     前記振動算出部は、前記車両に発生する上下方向の振動の発生タイミング、振動振幅、及び振動周期を含めて前記想定振動量を算出し、
     前記モータ制御部は、前記想定振動量を相殺するように前記減衰振動量を発生させる、車両制御装置。
  5.  請求項4に記載の車両制御装置であって、
     車両進行方向に対する車速及び/又は加速度の変化量上限が設定されており、
     前記モータ制御部は、前記変化量上限を超えた挙動を車両が行わない範囲で前記減衰振動量が車両に加わるように前記振動抑制制御を実行する、車両制御装置。
  6.  請求項3から5のいずれか1項に記載の車両制御装置であって、
     レーダ式の前記センサに加えて、車両の加速度を検出する加速度センサが設けられており、
     前記モータ制御部は、前記振動抑制制御を実行するにあたって、前記加速度センサの検出結果に基づいて前記減衰振動量を補正する、車両制御装置。
  7.  請求項6に記載の車両制御装置であって、
     前記モータ制御部は、前記振動抑制制御を実行するにあたって、前記加速度センサの検出結果に基づいて前記センサの異常有無を判断する、車両制御装置。
  8.  請求項7に記載の車両制御装置であって、
     モータ制御部は、前記センサに異常が認められた場合に、前記振動抑制制御の実行を保留する、車両制御装置。
PCT/JP2018/027605 2017-07-28 2018-07-24 車両制御装置 WO2019022040A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-146930 2017-07-28
JP2017146930A JP6714875B2 (ja) 2017-07-28 2017-07-28 車両制御装置

Publications (1)

Publication Number Publication Date
WO2019022040A1 true WO2019022040A1 (ja) 2019-01-31

Family

ID=65040183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027605 WO2019022040A1 (ja) 2017-07-28 2018-07-24 車両制御装置

Country Status (2)

Country Link
JP (1) JP6714875B2 (ja)
WO (1) WO2019022040A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3708450B1 (en) * 2019-03-12 2022-04-13 C.R.F. Società Consortile per Azioni Method and system for controlling the pitching of a motor vehicle
JP2021041896A (ja) * 2019-09-13 2021-03-18 いすゞ自動車株式会社 車両

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014039451A (ja) * 2012-08-10 2014-02-27 Hyundai Motor Company Co Ltd 電気自動車のパワートレインの振動低減装置及び方法
JP2015147486A (ja) * 2014-02-06 2015-08-20 小林 正和 サスペンション制御システム及び車両

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014039451A (ja) * 2012-08-10 2014-02-27 Hyundai Motor Company Co Ltd 電気自動車のパワートレインの振動低減装置及び方法
JP2015147486A (ja) * 2014-02-06 2015-08-20 小林 正和 サスペンション制御システム及び車両

Also Published As

Publication number Publication date
JP2019026051A (ja) 2019-02-21
JP6714875B2 (ja) 2020-07-01

Similar Documents

Publication Publication Date Title
KR101980913B1 (ko) 차량용 서스펜션 제어 장치
JP2009190420A (ja) 車両の減衰力制御装置
KR102614170B1 (ko) 차량용 댐퍼 제어 방법
WO2014034597A1 (ja) ステアバイワイヤの操舵反力制御装置
WO2019022040A1 (ja) 車両制御装置
JP2016210352A (ja) サスペンションコントローラ、サスペンション装置、及び車両
JP2007245887A (ja) 車輌振動に応じてアクティブスタビライザが制御される車輌
KR102589031B1 (ko) 액티브 서스펜션 제어유닛 및 액티브 서스펜션 제어방법
JP2011230718A (ja) 車両用サスペンション制御装置
JP2009154759A (ja) 車両の減衰力制御装置
KR20110029823A (ko) 차량의 토크스티어 저감장치 및 방법
JP5113882B2 (ja) ダンパ制御装置
US10759248B2 (en) Traveling control system for vehicle
JP2005348497A (ja) 電動車両の制動時駆動力制御装置
JP6864490B2 (ja) 鉄道車両の振動制御装置
JP2009241726A (ja) 車両のサスペンション装置
JP2019026051A5 (ja)
JP2006217710A (ja) 電気自動車の車両制御装置
JP2007245956A (ja) サスペンション制御装置
KR20190000643A (ko) 차량용 액티브 롤 스태빌라이저의 응답성을 개선하기 위한 방법 및 장치
JP5260064B2 (ja) 車両前照灯の光軸調整装置
JP2010173586A (ja) サスペンション制御装置
JP5839443B2 (ja) サスペンション制御装置
JP2015132182A (ja) 車体制振制御装置
WO2024127990A1 (ja) センサ異常検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18839175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18839175

Country of ref document: EP

Kind code of ref document: A1