WO2019021805A1 - 投射光学系および画像投射装置 - Google Patents

投射光学系および画像投射装置 Download PDF

Info

Publication number
WO2019021805A1
WO2019021805A1 PCT/JP2018/025960 JP2018025960W WO2019021805A1 WO 2019021805 A1 WO2019021805 A1 WO 2019021805A1 JP 2018025960 W JP2018025960 W JP 2018025960W WO 2019021805 A1 WO2019021805 A1 WO 2019021805A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
angle
view
projection
optical system
Prior art date
Application number
PCT/JP2018/025960
Other languages
English (en)
French (fr)
Inventor
悠介 小川
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US16/631,956 priority Critical patent/US11209722B2/en
Publication of WO2019021805A1 publication Critical patent/WO2019021805A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/008Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/317Convergence or focusing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/147Optical correction of image distortions, e.g. keystone
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/02Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen

Definitions

  • the present disclosure relates to a projection optical system and an image projection apparatus, and more particularly to a projection optical system and an image projection apparatus capable of projecting a more uniform and bright image.
  • a laser scanning type image projection device that projects an image by scanning laser light output from a laser light source two-dimensionally with a MEMS mirror manufactured using MEMS (Micro Electro Mechanical Systems) technology. It is done.
  • MEMS Micro Electro Mechanical Systems
  • C6 value is used for the maximum exposure emission level AEL (Accessible Emission Limit) allowed for each class of laser products.
  • AEL Accessible Emission Limit
  • This C6 value is measured by arranging an aperture ( ⁇ 7 mm) that corresponds to the pupil and a convex lens that corresponds to the pupil at a position 100 mm from the MEMS mirror position that corresponds to the dispersive light source, .
  • the C6 value is a coefficient proportional to the viewing angle ⁇ , and the viewing angle ⁇ is defined as the angle at which the dispersive light source (laser light on the MEMS mirror in the case of a laser scanning display) spans the pupil .
  • the C6 value, or AEL will be correlated with the image size of the laser light on the MEMS mirror.
  • the AEL is lowered.
  • the brightness is limited according to the above-mentioned safety standard.
  • the laser power at the end portion of the image is more limited than the central portion of the image because the resonant motion of the MEMS mirror reduces the scanning speed of the laser light at the end portion rather than the central portion of the projected image. become. That is, since the light intensity is detected by the aperture ( ⁇ 7 mm) according to the safety standard, the end portion of the image having a slower speed is more likely to be restricted by the safety standard as the detection intensity increases.
  • Patent Document 1 discloses that the projection power defined by the total focusing angle of the microlens, the effective diagonal panel size, and the focal length of the projection lens is lower than a reference value based on a laser beam of a predetermined wavelength.
  • a projection type liquid crystal display device with enhanced safety is disclosed.
  • the laser scanning type image projection apparatus when the angle of view scanned by the MEMS mirror is enlarged by an optical system such as a lens, the laser power is limited to satisfy the safety standard. As a result, the projected image was dark.
  • the present disclosure has been made in view of such a situation, and makes it possible to project a more uniform and bright image.
  • the projection optical system is a scanning image obtained by scanning a projection angle of view of an image projected by two-dimensionally scanning laser light output from a laser light source by a scanning unit.
  • the optical component includes an optical component that expands at a predetermined enlargement ratio with respect to an angle, and the optical component is an end part of the image with respect to the enlargement ratio that enlarges the scanning angle of view to the projection angle of view in a central part of the image.
  • the ratio of the enlargement factor for enlarging the scanning angle of view to the projection angle of view is designed to be larger than one.
  • An image projection apparatus includes: a laser light source that outputs a laser beam; a scanning unit that scans the laser beam two-dimensionally; and an image projected by scanning the laser beam two-dimensionally. And an optical component for enlarging the projection angle of view at a predetermined enlargement factor with respect to the scanning angle of view scanned by the scanning unit, the optical component projecting the scanning angle of view in the central portion of the image
  • the ratio of the enlargement ratio for enlarging the scanning angle of view to the projection angle of view at the end portion of the image is designed to be larger than 1 with respect to the enlargement ratio for expanding to the angle of view.
  • the ratio of the enlargement ratio for enlarging the scanning angle of view to the projection angle of view at the end of the image is 1 with respect to the enlargement ratio for expanding the scanning angle of view to the projection angle of view in the central part of the image.
  • the optics are designed to be larger.
  • a more uniform and bright image can be projected.
  • FIG. 1 is a block diagram showing a configuration example of an embodiment of a laser scanning type image projection apparatus to which the present technology is applied. It is a figure explaining the relationship between lateral magnification and laser power. It is a figure explaining the projection optical system of a laser scanning type image projection device. It is a figure explaining the image formation in arbitrary angle of view. It is a figure shown about the 1st example of the relation between angle of view and horizontal magnification. It is a figure shown about the 2nd example of the relation between angle of view and horizontal magnification. It is a figure shown about the 3rd example of the relation between angle of view and horizontal magnification. It is a figure which shows the 1st modification of a projection optical system. It is a figure which shows the 2nd thru
  • FIG. 1 is a block diagram showing a configuration example of an embodiment of a laser scanning type image projection apparatus to which the present technology is applied.
  • the image projection apparatus 11 includes a drive control unit 12, a laser light source 13, a MEMS mirror 14, and a projection optical system 15.
  • the drive control unit 12 controls driving of the laser light source 13 and the MEMS mirror 14 in accordance with image data supplied and reproduced by an external reproduction device (not shown) and projects the image.
  • the drive control unit 12 controls the light emission timing of the laser light by the laser light source 13 and controls the scan timing of the MEMS mirror 14 that scans the laser light so that an image according to the image data is projected. .
  • the laser light source 13 outputs laser light for projecting an image by the image projection device 11.
  • the laser power when the laser light source 13 outputs laser light can be controlled by the drive control unit 12 according to the angle of view.
  • the MEMS mirror 14 drives the reflection surface that reflects the laser light output from the laser light source 13 to two-dimensionally move in a planar direction orthogonal to the optical axis on which the image is projected by the image projection device 11. To scan the laser light.
  • the angle of the laser beam scanned by the MEMS mirror 14 is hereinafter referred to as a scanning angle of view as appropriate.
  • the projection optical system 15 is an optical system configured to have optical components such as a lens 21 as shown in FIG. 4 described later and a free curved surface mirror 22 as shown in FIG. 8 described later.
  • the projection optical system 15 enlarges the scanning angle of view of the laser beam scanned by the MEMS mirror 14 to a projection angle of view which is an angle of view on which the image is projected by the image projection device 11 at a predetermined magnification. Do.
  • the image projection apparatus 11 is configured, and the projection optical system 15 capable of meeting the safety standards as described above and capable of avoiding the limitation of the laser power is adopted.
  • the image projection device 11 has a ratio of the enlargement ratio at the end of the image to the enlargement ratio at the center of the image is greater than 1 and The projection optical system 15 designed under optical conditions such that the magnification ratio increases from the end to the end is adopted.
  • the image projection device 11 can suppress the reduction of the scanning speed of the laser light at the end portion of the image, and can increase the laser power at the end portion of the image more than before. Therefore, even if the image projection device 11 satisfies the above-described safety standard, it is possible to prevent the brightness from being reduced at the end portion of the image, and can project a more uniform and bright image.
  • FIG. 2 shows the relationship between the lateral magnification (magnification factor toward the both end portions in the line direction when scanning the laser light) and the laser power in the image projection device 11.
  • the upper part of FIG. 2 shows the relationship of the laser power to the angle of view in an optical system designed to have a constant lateral magnification, and the lower part of FIG. 2 shows the optical conditions as described above.
  • the scanning speed of the laser light decreases at both end portions in the line direction when scanning the laser light because the laser light is folded back. It will be. For this reason, as shown in the upper side of FIG. 2, in the optical system designed to have a constant lateral magnification, the detection power of the laser light at the end portion of the image is increased. It will be necessary to suppress. That is, as shown by the curve representing the limitation by the AEL of the laser power with respect to the angle of view on the upper side of FIG. 2, the laser power is reduced from the center to the end of the image and the brightness at the end of the image Will be reduced.
  • the ratio of the lateral magnification in the end portion of the image to be lateral magnification in the central portion of the image is greater than 1 and lateral from the central portion to the end portion of the image.
  • an optical system designed under optical conditions that increase the magnification it is possible to reduce the detection intensity of the laser light at the end portion of the image. That is, in this optical system, the lateral magnification increases as going to the end portion of the image, and therefore the end portion of the projected image as compared with an optical system designed to have a constant lateral magnification. It is possible to suppress the decrease in the scanning speed of the laser beam in the direction (i.e., to avoid the lowering of the scanning speed).
  • the image projection device 11 can obtain a more uniform and bright image without reducing the brightness at the end portion of the image. Can be projected.
  • the image projection device 11 can project an image without distortion.
  • the image projection apparatus is realized by recognizing distortion generated in the image according to the characteristics in which the lateral magnification is changed in the screen, and performing correction to generate reverse distortion such that distortion does not occur in the image. 11 can project an image without distortion.
  • the ratio of the lateral magnification at the end of the image to the lateral magnification in the central part of the image is greater than 1 and the lateral magnification increases from the central to the edge of the image.
  • the projection optical system 15 designed under various optical conditions can be adopted. As a result, the image projection device 11 can project an image that is more uniform and bright than conventional, while avoiding the limitation of brightness at the end portion of the image.
  • FIG. 3 shows a conventional optical system 15a in which the lateral magnification is constant, and the lower part of FIG. 3 shows a projection optical system 15 designed under the optical conditions as described above. It is done.
  • the negative lens 21a used in the conventional optical system 15a shown at the top of FIG. 3 is designed to have a constant lateral magnification.
  • the negative lens 21 used in the projection optical system 15 employed by the image projection apparatus 11 shown on the lower side of FIG. 3 has a lateral magnification different depending on the angle of view, ie, the center of the image It is designed to increase the lateral magnification from part to end. That is, the transmission surface of the lens 21 is formed into a free-form surface so as to satisfy such an optical condition.
  • the small image Yi is formed at a position at a distance Si from the main plane of the lens 21 while the end portion (near the end In), a large image Yi 'is tied to a position at a distance Si' from the main plane of the lens 21. That is, in the lens 21, the real image becomes smaller as the angle of view becomes smaller, whereas the real image becomes larger as the angle of view becomes larger.
  • the negative lens 21 used in the projection optical system 15 will be more specifically described with reference to FIG.
  • FIG. 4 shows how an image is formed at a certain angle of view ⁇ o.
  • the laser light emitted at an angle between the angle of view ⁇ o and the angle of view ⁇ o + d ⁇ o finely changed from the angle of view ⁇ o is enlarged by the lens 21 to become the angle of view ⁇ i and the angle of view ⁇ i + d ⁇ i.
  • the imaging point at this time is a point that intersects when the ray of the angle of view ⁇ i and the ray of the angle of view ⁇ i + d ⁇ i are extended (that is, the tip of the image Yi).
  • the lateral magnification MT is expressed by the following equation (1).
  • the distance A is expressed by the following equation (2).
  • the lateral magnification MT has a value according to the angle of view ⁇ o and the angle of view ⁇ i. Then, as shown in FIGS. 5 to 7, when the angle of view ⁇ o and the angle of view ⁇ i have a specific relationship, the lateral magnification MT has a value that changes according to the angle of view ⁇ o.
  • 5 to 7 show examples of the relationship between the angle of view ⁇ o and the lateral magnification MT when the maximum angle of view is expanded to 1.365 times.
  • the lens 21 is designed such that the lateral magnification at each angle is equal at the angle of view ⁇ o and the angle of view ⁇ i.
  • the magnification gradually increases toward the edge of the image. For example, when the angle of view ⁇ o is 20 degrees, the lateral magnification is approximately 34%.
  • the lateral magnification of the central portion of the image is substantially constant, and the lateral magnification increases toward the end at the end portion of the image, for example, when the angle of view ⁇ o is 20 degrees , The lateral magnification is about 2.8 times.
  • the projection optical system 15 is configured to provide a laser at the end of the image. It is possible to avoid that the power is suppressed.
  • the projection optical system 15A shown in FIG. 8 is configured to magnify an image Yo of laser light on the MEMS mirror 14 using a convex free-form surface mirror 22.
  • the free curved mirror 22 has a lateral magnification different depending on the angle of view, that is, a lateral magnification increases from the central portion to the end portion of the image.
  • the reflective surface of the surface is designed to be a free-form surface of an aspheric surface.
  • the image projection device 11 can suppress the reduction of the laser power in the vicinity of the end of the image, and can project a more uniform and brighter image than in the prior art. it can.
  • a second modification of the projection optical system 15 is shown in A of FIG.
  • the projection optical system 15 B uses two lenses 21-1 and 21-2 and, like the lens 21 of FIG. 4 described above, It is configured to magnify the image Yo.
  • two or more lenses 21 may be used.
  • the image projection apparatus is designed by designing under the optical conditions as described above. 11 can project a more uniform and bright image.
  • a third modification of the projection optical system 15 is shown in B of FIG.
  • the projection optical system 15C magnifies the image Yo of the laser beam on the MEMS mirror 14 using the lens 21 and the free-form surface mirror 22 in the same manner as the lens 21 of FIG. 4 described above.
  • the image projection apparatus is designed by designing under the optical conditions as described above. 11 can project a more uniform and bright image.
  • a fourth modified example of the projection optical system 15 is shown in C of FIG.
  • the projection optical system 15D enlarges the image Yo of the laser light on the MEMS mirror 14 using the free curved surface mirror 22 and the lens 21 as in the case of the lens 21 of FIG. 4 described above.
  • the image projection apparatus is designed by designing under the optical conditions as described above. 11 can project a more uniform and bright image.
  • a fifth modification of the projection optical system 15 is shown in D of FIG.
  • the projection optical system 15E magnifies the image Yo of the laser beam on the MEMS mirror 14 using the free curved surface mirror 22 and the mirror 23 as in the case of the lens 21 of FIG. 4 described above.
  • the image projection device 11 is designed by designing under the optical conditions as described above. Can project a more uniform and bright image.
  • the image projection device 11 may adopt the projection optical system 15 of each form as described above, and in addition, a combination of various optical components such as lenses and mirrors can be adopted.
  • a projection angle of view of an image projected by two-dimensionally scanning laser light output from a laser light source by a scanning unit is enlarged at a predetermined enlargement ratio with respect to a scanning angle of view scanned by the scanning unit.
  • the optical component is configured to expand the scanning angle of view to the projection angle of view at an end portion of the image with respect to the enlargement ratio to expand the scanning angle of view to the projection angle of view at a central portion of the image.
  • Projection optics designed to have a ratio greater than one.
  • the projection optical system according to (1) wherein the optical component is designed such that the magnification is increased from a central portion to an end portion of the image.
  • the optical component has a ratio of the enlargement ratio at an end portion of the image to the enlargement ratio at a central portion of the image is greater than 1 with respect to the enlargement ratio in a line direction in which the laser light is scanned.
  • the projection optical system according to the above (1) or (2) which is designed to increase from the central portion to the both end portions of the optical system.
  • the optical component is a lens formed of a transmission surface formed into at least one free curved surface shape.
  • the projection optical system according to any one of the above (1) to (4), wherein the optical component is a mirror formed of a reflective surface formed in at least one free curved surface shape.
  • the optical component is configured by combining a lens having a transmitting surface formed in at least one free curved surface and a mirror having a reflecting surface formed in at least one free curved surface.
  • the projection optical system in any one of to (5).
  • a laser light source that outputs laser light;
  • a scanning unit that two-dimensionally scans the laser light;
  • a projection optical system having an optical component that enlarges a projection angle of view of an image projected by two-dimensionally scanning the laser light with a predetermined enlargement ratio with respect to a scanning angle of view scanned by the scanning unit; Equipped with The optical component is configured to expand the scanning angle of view to the projection angle of view at an end portion of the image with respect to the enlargement ratio to expand the scanning angle of view to the projection angle of view at a central portion of the image.
  • An image projection device designed to have a ratio greater than one.
  • 11 image projection device 12 drive control unit, 13 laser light source, 14 MEMS mirror, 15 projection optical system, 21 lens, 22 free-form surface mirror, 23 mirror

Abstract

本発明は、より均一で明るい画像を投射することができるようにする投射光学系および画像投射装置に関する。 本発明の画像投射装置は、レーザ光を出力するレーザ光源と、そのレーザ光を二次元的に走査する走査部と、レーザ光を二次元的に走査することにより投射される画像の投射画角を、走査部により走査された走査画角に対して所定の拡大率で拡大する光学部品(15)とを備える。そして、光学部品(15)は、画像の中央部分において走査画角を投射画角に拡大する拡大率に対して、画像の端部分において走査画角を投射画角に拡大する拡大率の比率が1より大きくなるように設計される。

Description

投射光学系および画像投射装置
 本開示は、投射光学系および画像投射装置に関し、特に、より均一で明るい画像を投射することができるようにした投射光学系および画像投射装置に関する。
 従来、レーザ光源から出力されるレーザ光を、MEMS(Micro Electro Mechanical Systems)技術を用いて製造されるMEMSミラーによって二次元的に走査することにより画像を投射するレーザ走査型の画像投射装置が開発されている。
 このようなレーザ走査型の画像投射装置において、画像を投射する際の画角を大きくすることが、画像を投射する距離を短縮したり、画像の明るさを向上させたりすることに対して有利となる。例えば、MEMSミラーの振り角を拡大することによって画角を大きくすることができるが、MEMSミラーの振り角には信頼性における限界があるため、その限界によって、MEMSミラーの振り角による画角は制限されることになる。
 そこで、MEMSミラーの振り角による画角を、レンズなどの光学系を利用して拡大することで、実際に投射される画像の画角を大きくする手法を用いることが検討される。しかしながら、レンズなどの光学系を利用して画角を拡大した場合には、レーザ光を走査する起点となるMEMSミラー位置におけるレーザ光の像が、横倍率の分だけ小さくなってしまう。
 ところで、レーザ製品の安全規格IEC60825-1では、レーザ製品の各クラスで許容される最大の被ばく放出レベルAEL(Accessible Emission Limit)について、C6値という比例係数が用いられている。このC6値は、分散光源にあたるMEMSミラー位置から100mmの位置に、瞳孔にあたるアパーチャ(φ7mm)と瞳にあたる凸レンズとを配置し、網膜とされる結像位置に像を結像させることで測定される。
 例えば、C6値は、視角αに比例する係数であり、視角αは、分散光源(レーザ走査型ディスプレイの場合は、MEMSミラー上のレーザ光)が、瞳に対して張る角度と定義されている。従って、C6値は、即ち、AELは、MEMSミラー上におけるレーザ光の像サイズと相関関係にあることになる。
 従って、レンズなどの光学系により画角を拡大するのに伴ってレーザ光の像が縮小されると、AELが下がることになる結果、上述の安全規格に従って明るさが制限されることになる。特に、MEMSミラーの共振動作によって、投射される画像の中央部分よりも端部分においてレーザ光の走査速度が低下するため、画像の端部分におけるレーザパワーは、画像の中央部分よりも制限されることになる。即ち、安全規格ではアパーチャ(φ7mm)で光の強度を検出するため、より速度の遅い画像の端部分では、検出強度が上昇するのに伴って、安全規格による制約を受け易くなってしまう。
 例えば、特許文献1には、マイクロレンズの集光全角、有効対角パネルサイズ、および投射レンズの焦点距離により規定される投射パワーを、所定波長のレーザ光に基づく基準値より低くすることにより、安全性を高めた投射型液晶表示装置が開示されている。
特開2009-116163号公報
 上述したように、レーザ走査型の画像投射装置において、MEMSミラーにより走査された画角をレンズなどの光学系により拡大した場合には、安全規格を満たすためにレーザパワーが制限されることになる結果、投射される画像が暗くなっていた。
 本開示は、このような状況に鑑みてなされたものであり、より均一で明るい画像を投射することができるようにするものである。
 本開示の一側面の投射光学系は、レーザ光源から出力されるレーザ光を走査部によって二次元的に走査することにより投射される画像の投射画角を、前記走査部により走査された走査画角に対して所定の拡大率で拡大する光学部品を備え、前記光学部品は、前記画像の中央部分において前記走査画角を前記投射画角に拡大する拡大率に対して、前記画像の端部分において前記走査画角を前記投射画角に拡大する拡大率の比率が1より大きくなるように設計される。
 本開示の一側面の画像投射装置は、レーザ光を出力するレーザ光源と、前記レーザ光を二次元的に走査する走査部と、前記レーザ光を二次元的に走査することにより投射される画像の投射画角を、前記走査部により走査された走査画角に対して所定の拡大率で拡大する光学部品とを備え、前記光学部品は、前記画像の中央部分において前記走査画角を前記投射画角に拡大する拡大率に対して、前記画像の端部分において前記走査画角を前記投射画角に拡大する拡大率の比率が1より大きくなるように設計される。
 本開示の一側面においては、画像の中央部分において走査画角を投射画角に拡大する拡大率に対して、画像の端部分において走査画角を投射画角に拡大する拡大率の比率が1より大きくなるように、光学部品が設計される。
 本開示の一側面によれば、より均一で明るい画像を投射することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術を適用したレーザ走査型の画像投射装置の一実施の形態の構成例を示すブロック図である。 横倍率とレーザパワーとの関係について説明する図である。 レーザ走査型の画像投射装置の投射光学系について説明する図である。 任意画角における結像について説明する図である。 画角と横倍率との関係の第1の例について示す図である。 画角と横倍率との関係の第2の例について示す図である。 画角と横倍率との関係の第3の例について示す図である。 投射光学系の第1の変形例を示す図である。 投射光学系の第2乃至第5の変形例を示す図である。
 以下、本技術を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。
 <レーザ走査型の画像投射装置の構成例>
 図1は、本技術を適用したレーザ走査型の画像投射装置の一実施の形態の構成例を示すブロック図である。
 図1に示すように、画像投射装置11は、駆動制御部12、レーザ光源13、MEMSミラー14、および投射光学系15を備えて構成される。
 駆動制御部12は、図示しない外部の再生装置により画像が再生されて供給される画像データに従って、レーザ光源13およびMEMSミラー14の駆動を制御し、その画像を投射させる。例えば、駆動制御部12は、画像データに従った画像が投射されるように、レーザ光源13によるレーザ光の発光タイミングを制御するとともに、そのレーザ光を走査するMEMSミラー14の走査タイミングを制御する。
 レーザ光源13は、画像投射装置11により画像を投射するためのレーザ光を出力する。また、レーザ光源13によりレーザ光を出力する際のレーザパワーは、駆動制御部12によって画角に応じて制御することができる。
 MEMSミラー14は、レーザ光源13から出力されるレーザ光を反射する反射面を駆動することによって、画像投射装置11により画像を投射する光軸に対して直交する平面方向に向かって、二次元的にレーザ光を走査する。なお、MEMSミラー14により走査されるレーザ光の角度を、以下適宜、走査画角と称する。
 投射光学系15は、例えば、後述の図4に示すようなレンズ21や、後述の図8に示すような自由曲面ミラー22などの光学部品を有して構成される光学系である。例えば、投射光学系15は、MEMSミラー14により走査されたレーザ光の走査画角が、所定の拡大率で、画像投射装置11により画像を投射する画角である投射画角となるように拡大する。
 このように画像投射装置11は構成されており、上述したような安全規格を満たし、かつ、レーザパワーが制限されることを回避することが可能な投射光学系15が採用される。例えば、画像投射装置11は、走査画角を投射画角に拡大する拡大率について、画像の中央部分における拡大率に対する画像の端部分における拡大率の比率が1より大きく、かつ、画像の中央部分から端部分に向かって拡大率が増加するような光学的な条件で設計された投射光学系15を採用する。
 これにより、画像投射装置11は、画像の端部分においてレーザ光の走査速度の低減を抑制することができ、従来よりも、画像の端部分におけるレーザパワーを増加させることができる。従って、画像投射装置11は、上述した安全規格を満たしても、画像の端部分において明るさが低減することを回避することができ、より均一で明るい画像を投射することができる。
 図2を参照して、画像投射装置11における横倍率(レーザ光を走査する際のライン方向の両端部分に向かう拡大率)とレーザパワーとの関係について説明する。図2の上側には、横倍率が一定となるように設計された光学系における画角に対するレーザパワーの関係が示されており、図2の下側には、上述したような光学的な条件で設計された光学系における画角に対するレーザパワーの関係が示されている。
 一般的に、上述したように、MEMSミラー14が共振動作するのに伴って、レーザ光を走査する際のライン方向の両端部分では、レーザ光を折り返すために、レーザ光の走査速度が低下することになる。このため、図2の上側に示すように、横倍率が一定となるように設計された光学系では、画像の端部分におけるレーザ光の検出強度が増加する結果、AELの制限に従って、レーザパワーを抑制することが必要になる。即ち、図2の上側において、画角に対するレーザパワーのAELによる制限を表す曲線で示すように、画像の中央部分から端部分に向かうに従ってレーザパワーが抑制されてしまい、画像の端部分における明るさが低減することになる。
 これに対し、図2の下側に示すように、画像の中央部分における横倍率にする画像の端部分における横倍率の比率が1より大きく、かつ、画像の中央部分から端部分に向かって横倍率が増加するような光学的な条件で設計された光学系では、画像の端部分におけるレーザ光の検出強度を低減することができる。即ち、この光学系では、画像の端部分に向かうのに従って横倍率が大きくなるため、横倍率が一定となるように設計された光学系と比較して、投射された画像上で、その端部分の方におけるレーザ光の走査速度の低下を抑制(即ち、走査速度が低くなることを回避)することができる。
 その結果、上述したような光学的な条件で設計された光学系では、AELの制限に従ってレーザパワーを抑制する際に、従来よりも、画像の端部分においてレーザパワーを抑制する程度を緩和する(レーザパワーを大きくしてもAELを満たす)ことができる。即ち、図2の下側において、画角に対するレーザパワーのAELによる制限を表す曲線で示すように、画像の中央部分から端部分に向かうに従ってレーザパワーが抑制される程度が軽減され、画像の端部分において明るさが低減してしまうことを回避することができる。このように、安全規格を満たし、かつ、レーザパワーが制限されることを回避することができるため、画像投射装置11は、画像の端部分において明るさが低減することなく、より均一で明るい画像を投射することができる。
 なお、画面内で横倍率を変えることによって、画像に歪が生じることが想定されるが、この歪は、画像を投射する際のレーザ光の発光タイミングを制御することにより補正することができ、画像投射装置11は、歪みのない画像を投射することが可能である。例えば、画面内で横倍率を変えた特性に応じて画像に発生する歪を認識しておき、画像に歪が発生しないような逆歪を生じさせるような補正を予め行うことで、画像投射装置11は、歪みのない画像を投射することができる。
 このように、画像投射装置11は、画像の中央部分における横倍率に対する画像の端部分における横倍率の比率が1より大きく、かつ、画像の中央部分から端部分に向かって横倍率が増加するような光学的な条件で設計された投射光学系15を採用することができる。これにより、画像投射装置11は、画像の端部分において明るさが制限されることを回避して、従来よりも均一で明るい画像を投射することができる。
 <投射光学系の構成例>
 図3および図4を参照して、画像の中央部分における横倍率に対する画像の端部分における横倍率の比率が1より大きく、かつ、画像の中央部分から端部分に向かって横倍率が増加するような光学的な条件で設計された投射光学系15について説明する。
 図3の上側には、横倍率が一定となる従来の光学系15aが示されており、図3の下側には、上述したような光学的な条件で設計された投射光学系15が示されている。
 図3の上側に示されている従来の光学系15aで使用される負のレンズ21aは、横倍率が一定となるように設計されている。これにより、光学系15aでは、画角を拡大する際に全ての画角において、レンズ21aの主平面から距離Soに配置されるMEMSミラー14上におけるレーザ光の像Yoに対して、レンズ21aの主平面から距離Siとなる位置に像Yiが結ばれることになる。従って、光学系15aでは、横倍率MT(=Yi/Yo)の分だけ、レーザ光の像が縮小されることになる。
 これに対し、図3の下側に示されている画像投射装置11が採用する投射光学系15で使用される負のレンズ21は、横倍率が画角によって異なるように、即ち、画像の中央部分から端部分に向かって横倍率が増加するように設計されている。即ち、レンズ21の透過面は、このような光学的な条件を満たすような自由曲面形状に形成される。
 これにより、画角が小さな画像の中央部分(中央近傍)では、レンズ21の主平面から距離Siとなる位置に小さな像Yiが結ばれる一方で、画角が大きくなる画像の端部分(端近傍)では、レンズ21の主平面から距離Si’となる位置に大きな像Yi’が結ばれる。即ち、レンズ21では、画角が小さくなると実像が小さくなるのに対し、画角が大きくなると実像が大きくなる。
 図4を参照して、投射光学系15で使用される負のレンズ21について、さらに具体的に説明する。
 図4には、ある画角θoにおける結像の様子が示されている。図示するように、画角θoと、画角θoから微細変化した画角θo+dθoとの角度で発せられるレーザ光は、レンズ21により拡大され、それぞれ画角θiおよび画角θi+dθiとなる。このときの結像点は、画角θiの光線と画角θi+dθiの光線とを延長したときに交わる点(即ち、像Yiの先端点)になる。
 ここで、横倍率MTは、次の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 一方、図4の平面内において、像Yoの先端点から画角θo方向に発せられるレーザ光と、微小変位した画角θo+dθo方向に発せられるレーザ光との、凹面のレンズ21の主平面上における距離Aに着目すると、その距離Aは、次の式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 従って、式(2)に基づいて、レンズ21の主平面から像Yiまでの光軸方向の距離Siを求め、式(1)に入力すると、横倍率MTは、次の式(3)のように表される。
Figure JPOXMLDOC01-appb-M000003
 このように、横倍率MTは、像Yoおよび距離Soが特定されると、画角θoおよび画角θiに従った値となる。そして、図5乃至図7に示すように、画角θoおよび画角θiが特定の関係にある場合、横倍率MTは、画角θoに従って変化する値となる。
 図5乃至図7には、最大画角を1.365倍まで拡大したときの画角θoおよび横倍率MTの関係の例が示されている。
 図5に示す第1の例では、画角θoおよび画角θiの関係は、θi=2(θo+1)となっている。従って、図5の上側に示すように、レンズ21は、各角度での横倍率は画角θoおよび画角θiで等しくなるように設計される。そして、MEMSミラー14上におけるレーザ光の像Yoと、レンズ21の主平面から像Yoまでの距離Soとの関係を、So/Yo=10とすると、図5の下側に示すように、横倍率は画像の端部分に向かうに従って緩やかに増加する。例えば、画角θoが20度であるとき、横倍率は約34%となっている。
 図6に示す第2の例では、画角θoおよび画角θiの関係は、θi=(0.7+θo×0.6/20)(θo+1)となっている。従って、図6の上側に示すように、レンズ21は、画像の中央部分から端部分に向かうに従って、横倍率が増加する(即ち、角度が大きくなる程、角度ごとの画角θiの間隔が広くなる)ように設計される。そして、図6の下側に示すように、画像の端部分に向かうに従って横倍率が大きく増加し、例えば、画角θoが20度であるとき、横倍率は約2.2倍となっている。
 図7に示す第3の例では、画角θoおよび画角θiの関係は、画角θiが10以下である場合にθi=θo+1となり、かつ、画角θiが10より大きい場合にθi={1+(θo-10)×0.6/20}(θo+1)となっている。従って、図7の上側に示すように、レンズ21は、画像の中央部分(θi≦10)における横倍率はほぼ一定で、画像の端部分(θi>10)に向かうに従って横倍率が大きく増加するように設計される。従って、図7の下側に示すように、画像の中央部分の横倍率はほぼ一定で、画像の端部分で端に向かうに従って横倍率が増加し、例えば、画角θoが20度であるとき、横倍率は約2.8倍となっている。
 図6および図7に示すように、画像の中央部分から端部分に向かうに従って横倍率が増加するように設計されたレンズ21を採用することで、投射光学系15は、画像の端部分においてレーザパワーが抑制されることを回避することができる。
 <投射光学系の変形例>
 図8には、投射光学系15の第1の変形例が示されている。
 図8に示す投射光学系15Aは、凸型の自由曲面ミラー22を使用して、MEMSミラー14上におけるレーザ光の像Yoを拡大するように構成される。
 自由曲面ミラー22は、上述の図4に示した凹面のレンズ21と同様に、横倍率が画角によって異なるように、即ち、画像の中央部分から端部分に向かって横倍率が増加するような非球面の自由曲面形状となるように表面の反射面が設計されている。これにより、投射光学系15Aは、上述した投射光学系15と同様に、走査画角を投射画角に拡大する拡大率について、画像の中央部分における拡大率に対する画像の端部分における拡大率の比率が1より大きく、かつ、画像の中央部分から端部分に向かって拡大率が増加するような光学的な条件で設計されることになる。
 従って、画像投射装置11は、投射光学系15Aを採用することで、画像の端近傍においてレーザパワーを低減することを抑制することができ、従来よりも、より均一で明るい画像を投射することができる。
 図9を参照して、投射光学系15の他の変形例について説明する。
 図9のAには、投射光学系15の第2の変形例が示されている。
 図9のAに示すように、投射光学系15Bは、2枚のレンズ21-1および21-2を使用して、上述した図4のレンズ21と同様に、MEMSミラー14上におけるレーザ光の像Yoを拡大するように構成される。もちろん、2枚以上のレンズ21を使用してもよい。図示するように、レンズ21-1により拡大された画角を、さらにレンズ21-2により拡大するような投射光学系15Bにおいて、上述したような光学的な条件で設計することで、画像投射装置11は、より均一で明るい画像を投射することができる。
 図9のBには、投射光学系15の第3の変形例が示されている。
 図9のBに示すように、投射光学系15Cは、レンズ21および自由曲面ミラー22を使用して、上述した図4のレンズ21と同様に、MEMSミラー14上におけるレーザ光の像Yoを拡大するように構成される。図示するように、レンズ21により拡大された画角を、さらに自由曲面ミラー22により拡大するような構成の投射光学系15Cにおいて、上述したような光学的な条件で設計することで、画像投射装置11は、より均一で明るい画像を投射することができる。
 図9のCには、投射光学系15の第4の変形例が示されている。
 図9のCに示すように、投射光学系15Dは、自由曲面ミラー22およびレンズ21を使用して、上述した図4のレンズ21と同様に、MEMSミラー14上におけるレーザ光の像Yoを拡大するように構成される。図示するように、自由曲面ミラー22により拡大された画角を、さらにレンズ21により拡大するような構成の投射光学系15Dにおいて、上述したような光学的な条件で設計することで、画像投射装置11は、より均一で明るい画像を投射することができる。
 図9のDには、投射光学系15の第5の変形例が示されている。
 図9のDに示すように、投射光学系15Eは、自由曲面ミラー22およびミラー23を使用して、上述した図4のレンズ21と同様に、MEMSミラー14上におけるレーザ光の像Yoを拡大するように構成される。図示するように、自由曲面ミラー22により拡大された画角を、ミラー23で反射するような構成の投射光学系15Eにおいて、上述したような光学的な条件で設計することで、画像投射装置11は、より均一で明るい画像を投射することができる。
 以上のように、画像投射装置11は、上述したような各形態の投射光学系15を採用してもよく、その他、様々なレンズやミラーなどの光学部品の組み合わせを採用することができる。
 <構成の組み合わせ例>
 なお、本技術は以下のような構成も取ることができる。
(1)
 レーザ光源から出力されるレーザ光を走査部によって二次元的に走査することにより投射される画像の投射画角を、前記走査部により走査された走査画角に対して所定の拡大率で拡大する光学部品を備え、
 前記光学部品は、前記画像の中央部分において前記走査画角を前記投射画角に拡大する拡大率に対して、前記画像の端部分において前記走査画角を前記投射画角に拡大する拡大率の比率が1より大きくなるように設計される
 投射光学系。
(2)
 前記光学部品は、前記画像の中央部分から端部分に向かって前記拡大率が増加するように設計される
 上記(1)に記載の投射光学系。
(3)
 前記光学部品は、前記レーザ光が走査されるライン方向における前記拡大率について、前記画像の中央部分における前記拡大率に対する前記画像の端部分における前記拡大率の比率が1より大きく、かつ、前記画像の中央部分から両端部分に向かって増加するように設計される
 上記(1)または(2)に記載の投射光学系。
(4)
 前記光学部品は、少なくとも1枚の自由曲面形状に形成される透過面からなるレンズである
 上記(1)から(3)までのいずれかに記載の投射光学系。
(5)
 前記光学部品は、少なくとも1枚の自由曲面形状に形成される反射面からなるミラーである
 上記(1)から(4)までのいずれかに記載の投射光学系。
(6)
 前記光学部品は、少なくとも1枚の自由曲面形状に形成される透過面からなるレンズと、少なくとも1枚の自由曲面形状に形成される反射面からなるミラーとが組み合わされて構成される
 上記(1)から(5)までのいずれかに記載の投射光学系。
(7)
 レーザ光を出力するレーザ光源と、
 前記レーザ光を二次元的に走査する走査部と、
 前記レーザ光を二次元的に走査することにより投射される画像の投射画角を、前記走査部により走査された走査画角に対して所定の拡大率で拡大する光学部品を有する投射光学系と
 を備え、
 前記光学部品は、前記画像の中央部分において前記走査画角を前記投射画角に拡大する拡大率に対して、前記画像の端部分において前記走査画角を前記投射画角に拡大する拡大率の比率が1より大きくなるように設計される
 画像投射装置。
(8)
 前記投射光学系によって画像に生じることが想定される歪を、前記レーザ光の発光タイミングにより予め補正する駆動制御部をさらに備える
 上記(7)に記載の画像投射装置。
 なお、本実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
 11 画像投射装置, 12 駆動制御部, 13 レーザ光源, 14 MEMSミラー, 15 投射光学系, 21 レンズ, 22 自由曲面ミラー, 23 ミラー

Claims (8)

  1.  レーザ光源から出力されるレーザ光を走査部によって二次元的に走査することにより投射される画像の投射画角を、前記走査部により走査された走査画角に対して所定の拡大率で拡大する光学部品を備え、
     前記光学部品は、前記画像の中央部分において前記走査画角を前記投射画角に拡大する拡大率に対して、前記画像の端部分において前記走査画角を前記投射画角に拡大する拡大率の比率が1より大きくなるように設計される
     投射光学系。
  2.  前記光学部品は、前記画像の中央部分から端部分に向かって前記拡大率が増加するように設計される
     請求項1に記載の投射光学系。
  3.  前記光学部品は、前記レーザ光が走査されるライン方向における前記拡大率について、前記画像の中央部分における前記拡大率に対する前記画像の両端部分における前記拡大率の比率が1より大きく、かつ、前記画像の中央部分から両端部分に向かって増加するように設計される
     請求項1に記載の投射光学系。
  4.  前記光学部品は、少なくとも1枚の自由曲面形状に形成される透過面からなるレンズである
     請求項1に記載の投射光学系。
  5.  前記光学部品は、少なくとも1枚の自由曲面形状に形成される反射面からなるミラーである
     請求項1に記載の投射光学系。
  6.  前記光学部品は、少なくとも1枚の自由曲面形状に形成される透過面からなるレンズと、少なくとも1枚の自由曲面形状に形成される反射面からなるミラーとが組み合わされて構成される
     請求項1に記載の投射光学系。
  7.  レーザ光を出力するレーザ光源と、
     前記レーザ光を二次元的に走査する走査部と、
     前記レーザ光を二次元的に走査することにより投射される画像の投射画角を、前記走査部により走査された走査画角に対して所定の拡大率で拡大する光学部品を有する投射光学系と
     を備え、
     前記光学部品は、前記画像の中央部分において前記走査画角を前記投射画角に拡大する拡大率に対して、前記画像の端部分において前記走査画角を前記投射画角に拡大する拡大率の比率が1より大きくなるように設計される
     画像投射装置。
  8.  前記投射光学系によって画像に生じることが想定される歪を、前記レーザ光の発光タイミングにより予め補正する駆動制御部をさらに備える
     請求項7に記載の画像投射装置。
PCT/JP2018/025960 2017-07-24 2018-07-10 投射光学系および画像投射装置 WO2019021805A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/631,956 US11209722B2 (en) 2017-07-24 2018-07-10 Projection optical system and image projection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-142499 2017-07-24
JP2017142499A JP2019023691A (ja) 2017-07-24 2017-07-24 投射光学系および画像投射装置

Publications (1)

Publication Number Publication Date
WO2019021805A1 true WO2019021805A1 (ja) 2019-01-31

Family

ID=65040565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025960 WO2019021805A1 (ja) 2017-07-24 2018-07-10 投射光学系および画像投射装置

Country Status (3)

Country Link
US (1) US11209722B2 (ja)
JP (1) JP2019023691A (ja)
WO (1) WO2019021805A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190122A (ja) * 1984-10-09 1986-05-08 Hitachi Ltd レ−ザデイスプレイ装置
US6170953B1 (en) * 1999-03-22 2001-01-09 Samsung Electronics Co., Ltd. Laser video projector for projecting image to a plurality of screens
JP2011008221A (ja) * 2009-05-29 2011-01-13 Ricoh Co Ltd 投影型画像表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083493A1 (ja) * 2004-02-27 2005-09-09 Matsushita Electric Industrial Co., Ltd. 照明光源及びそれを用いた2次元画像表示装置
JP2006154041A (ja) * 2004-11-26 2006-06-15 Konica Minolta Opto Inc プロジェクション光学系
JP5157374B2 (ja) 2007-11-08 2013-03-06 ソニー株式会社 液晶表示素子および投射型液晶表示装置、並びに電子機器
JP5304380B2 (ja) * 2008-07-23 2013-10-02 株式会社リコー 光走査装置、これを用いた画像投影装置、ヘッドアップディスプレイ装置および携帯電話機
JP6726743B2 (ja) * 2016-07-19 2020-07-22 マクセル株式会社 投写型映像表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190122A (ja) * 1984-10-09 1986-05-08 Hitachi Ltd レ−ザデイスプレイ装置
US6170953B1 (en) * 1999-03-22 2001-01-09 Samsung Electronics Co., Ltd. Laser video projector for projecting image to a plurality of screens
JP2011008221A (ja) * 2009-05-29 2011-01-13 Ricoh Co Ltd 投影型画像表示装置

Also Published As

Publication number Publication date
US20200174349A1 (en) 2020-06-04
US11209722B2 (en) 2021-12-28
JP2019023691A (ja) 2019-02-14

Similar Documents

Publication Publication Date Title
JP5223452B2 (ja) プロジェクタ及び投影画像形成方法及び車両用ヘッドアップディスプレイ装置
JP5318359B2 (ja) 画像投影装置
WO2010021215A1 (ja) 画像投影装置
EP3637170A1 (en) Image projection device
WO2016162928A1 (ja) 投影光学系およびそれを用いたヘッドアップディスプレイ装置
KR101796973B1 (ko) 자유 형상 광학 리다이렉트 장치
WO2018066062A1 (ja) 投影光学系、及びヘッドアップディスプレイ装置
JPWO2019008684A1 (ja) 投影光学系及びヘッドアップディスプレイ装置
JP2008164955A (ja) レーザ投射装置
WO2018042865A1 (ja) 画像表示装置及び投射光学系
JP2007011154A (ja) スクリーン及びそれを用いた画像表示装置
JP4962002B2 (ja) レーザ投射装置
JPWO2018056112A1 (ja) 虚像表示装置
JP2009037172A (ja) 光走査装置
WO2017122551A1 (ja) レンズモジュール、およびプロジェクタ
WO2018066081A1 (ja) 投影光学系及びヘッドアップディスプレイ装置
JP6611310B2 (ja) 車両用投影表示装置
JP2009288520A (ja) 光走査型プロジェクタ
WO2019021805A1 (ja) 投射光学系および画像投射装置
EP3955043A1 (en) Optical system
JP4963346B2 (ja) 投射光学系、及びそれを有する投射型表示装置
TWI750253B (zh) 掃描裝置
US10782521B2 (en) Virtual image display device
JP2008026409A (ja) 反射マイクロデバイスを使った映像装置
JP2024009633A (ja) 光源装置及び画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838682

Country of ref document: EP

Kind code of ref document: A1