WO2019020684A1 - Elektromotor mit kühleinrichtung - Google Patents

Elektromotor mit kühleinrichtung Download PDF

Info

Publication number
WO2019020684A1
WO2019020684A1 PCT/EP2018/070152 EP2018070152W WO2019020684A1 WO 2019020684 A1 WO2019020684 A1 WO 2019020684A1 EP 2018070152 W EP2018070152 W EP 2018070152W WO 2019020684 A1 WO2019020684 A1 WO 2019020684A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
electric motor
rotor
coolant
motor assembly
Prior art date
Application number
PCT/EP2018/070152
Other languages
English (en)
French (fr)
Inventor
Gabriele TEOFILI
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US16/631,012 priority Critical patent/US11271455B2/en
Priority to DE112018003826.2T priority patent/DE112018003826A5/de
Publication of WO2019020684A1 publication Critical patent/WO2019020684A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/02Hub construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/08Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of power plant cooling systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/207Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium with openings in the casing specially adapted for ambient air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks

Definitions

  • Electric motor with a cooling device The invention relates to an electric motor with an integrated cooling device, which employs as the primary coolant into ⁇ particular bleed air.
  • Such an electric or hybrid-electric drive system typically includes at least one electrical machine which is operated for driving the propulsion means of the aircraft as an electric motor ⁇ . Furthermore, a corresponding source ⁇ le electrical energy for supplying the electric motor so ⁇ as usually a power electronics are provided with their help, the electric motor is operated.
  • an internal combustion engine is provided, which is integrated serially or in parallel in the drive system and example ⁇ drives a generator, which in turn provides electrical see provides energy that stores ge in a battery ⁇ / or an electric motor can be supplied.
  • the electric drives to be used for such mobile applications and the corresponding machines must be characterized by extremely high power densities in order to generate the required power. While power densities of up to 2 kW / kg are sufficient for many technical applications, they are used, for example, for the electrification of aviation, ie for electrically or hybrid-electric powered aircraft, but also for aircraft. In particular, mobile applications are aimed at electrical machines with power densities of at least 20kW / kg. Such a machine or a rotor suitable for such a machine are described, for example, in DE102016206909.
  • An electric motor assembly according to the invention for driving a propulsion unit comprises a group of components, and a cooling device for cooling at least one of the components, wherein the group as components at least ei ⁇ NEN stator having a stator and a relative to the stator rotatable rotor.
  • the stator housing are a
  • the cooling device has a means for generating, for example, radially outwardly oriented Coolant flow of a preferred gaseous primary cooling ⁇ means on and formed in the stator housing Ka ⁇ nalsystem for receiving and then guiding the coolant flow to the component to be cooled.
  • the means for generating the coolant flow is such as bronzebil ⁇ det and arranged such that it uses bleed air which is supplied from the propellant means the agent into ⁇ particular, but not necessarily, as the primary coolant.
  • “Bleed air” is in particular that air in the vicinity of the propellant which this coming in the operating state of the Elektromo ⁇ tors of the driven by the electric motor driving means, that is, for example, accelerated by the propeller in the axial direction to the electric motor down.
  • the primary cooling ⁇ medium used Air may comprise some, albeit comparatively small, and subsequently neglected portion of air that does not originate from the propeller, but the essential portion of the primary coolant, referred to herein as "bleed air”, is intended to be within the meaning of this application come from the propellant.
  • the concept underlying the invention is therefore that the already available bleed air is used as a primary coolant.
  • the propulsion means can be considered as part of the electric motor assembly, wherein the rotor is connected to the propulsion means such that the rotor drives the propulsion means in the operating state of the electric machine.
  • the means for generating the coolant flow is designed to first compress the bleed air supplied to it and to forward the compressed bleed air to the channel system.
  • stator housing or a heat exchanger is inte ⁇ grated, wherein the channel system is arranged and removable ⁇ det, that the heat exchanger at least a portion of the primary ⁇ ren coolant is supplied via the channel system.
  • Statorblechmultimedia is to cool the same of a
  • Stator coolant for example, a silicone oil
  • Stator coolant flows around and / or flows through, wherein the stator coolant circulates in a circulatory system between the stator lamination and the heat exchanger. This will heat out of the stator coolant
  • Stator laminated core removed and transported to the heat exchanger ⁇ tion.
  • the heat exchanger there is a thermal interaction between the stator coolant and the primary coolant, so that at least a part of the stator coolant
  • Stator coolant is transferred from the laminated stator core heat dissipated to the primary coolant.
  • the stator coolant cooled in the heat exchanger is then fed back to the laminated stator core.
  • the heat exchanger described herein is integrated into the engine system, and in particular in the housing of the stator.
  • the heat exchanger in the stator housing is substantially annular and arranged coaxially with the also substantially ring-shaped stator ⁇ .
  • the saucetau ⁇ shear in the axial direction is seen from the propulsion means consist of, disposed in front of or behind the stator lamination stack, in particular between Before ⁇ leavening and stator lamination stack, ie insbeson ⁇ particular not radially inside or outside of the sheet stack wherein the radii of the heat exchanger and the laminated stator core are substantially equal.
  • Stator laminated core can also be such that in the axial direction of the heat exchanger, the laminated stator core is substantially hidden and / or vice versa.
  • the channel ⁇ system is designed to bind ⁇ ren at least a portion of him fed ⁇ th primary coolant via a coolant passage, which leads to the magnetic means of the rotor and the magnetic means.
  • the coolant passage may comprise the air gap, such that the coolant is directly attached to the magnetic means of the rotor, i.
  • the coolant is directly attached to the magnetic means of the rotor, i.
  • to permanent magnets can be passed over.
  • the coolant passage additionally comprises a space arranged in front of the air gap in the flow direction of the primary coolant in which the primary coolant is recirculated or swirled.
  • the means for generating the coolant flow is integrated into the rotor and accordingly generates the coolant flow in particular when the rotor is rotating.
  • the rotor can have wing-like devices with which the coolant flow is generated during rotation of the rotor.
  • the rotor may have a cover section equipped with substantially radially oriented spokes, the spokes being designed to generate the coolant flow upon rotation of the rotor. "Radially substantially” here also includes that the spokes are not at right angles to the axis of rotation, but for example, are oriented such that they sweep a lateral surface of a cone during rotation of the rotor.
  • the rotor may be formed, for example, bell-shaped, with a section extending from the cover in a first axial direction extending away from the cylindrical section, wherein the magnetic means on the cylindrical section angeord ⁇ net is.
  • the lid section may have a substantially conical shape with a tip and with an imaginary base opposite the tip in the first axial direction such that the spokes of the rotor substantially sweep over the conical surface of the conical shape upon rotation of the rotor. This shape allows a particularly compact design and efficient generation of the coolant ⁇ flow.
  • FIG 1 shows an exemplary of an electric motor madebil ⁇ finished electrical machine 100.
  • the electrical machine can always be operated 100 in a similar construction as a generator.
  • the structure of the machine described below is greatly simplified and in particular does not show the details explained in connection with the other figures, but merely serves to illustrate the operation of the electric motor. It can be assumed as known that depending on the design of the electric machine as a generator or as an electric motor and / or as for example radial or axial flow with a formed as an internal or external rotor rotor, etc., the various components of the machine can be arranged differently ,
  • the electric motor 100 has a stator 120 and a rotor 110 formed as an internal rotor, wherein the rotor 110 is disposed inside the stator 120 and in Melzu ⁇ stand of the electric motor 100 rotates about an axis of rotation A.
  • the rotor 110 is rotatably connected to a shaft 130, so a rotation of the rotor 110 can be transmitted via the shaft 130 to a component (not shown), for example a propeller of an aircraft, which is not shown.
  • the stator 120 has a laminated stator core 122 as well as first magnetic means 121, which may be used, for example, as a
  • Stator laminations 122 can be realized.
  • Each of the Wick ⁇ lungs 121 is formed by an electrical conductor, which is traversed in the operating state of the electric motor 100 by an electrical current ⁇ rule.
  • the rotor 110 has second magnetic means 111, which may be latestbil ⁇ det example, as permanent magnets or as ⁇ excited or energizable windings. In the following, it is assumed by way of example that they are permanent magnets 111.
  • the first and the second magnetic means 111, 121 are configured and spaced from one another by an air gap positioned to ⁇ each other that they electromagnetically interact with each other in the operating state of the electric motors ⁇ 100th
  • This concept including the conditions for the formation and arrangement of the magnetic means 111, 121 or of the rotor 110 and the stator 120, are known per se and will therefore not be explained in more detail below. Suffice it to say, that are for operating the electric machine 100 as an electric motor, the stator windings applied 121 using a current source, not shown, with an electrical current which causes the windings to generate 121 accordingly speaking magnetic fields with the Magnetfel ⁇ of the permanent magnets 111 of the rotor 110 enter into an electromagnetic interaction. As is known, this results in that, with suitable design and arrangement of said components relative to one another, the rotor 110 and with it the shaft 130 as well as the named propeller are set in rotation.
  • FIG. 2 shows a radial view of a section of an electric motor 100 according to the invention, which is based on the functional principle described in connection with FIG. However, it differs from the electrical machine of Figure 1 in structure. It should be noted that the
  • Stator windings are not shown in FIG 2 for the sake of clarity.
  • the electric motor 100 drives in the operating state a propulsion ⁇ medium 200, for example, a propeller.
  • the propeller 200 is coupled to the shaft 130 at a connection point 210 by means of a connection 220, for example with a flange, and thus connected to the rotor 110 of the electric motor 100 via the shaft 130.
  • play the shaft 130 and the rotor 110 as a single, integrated component are executed.
  • the rotor 110 is insbeson ⁇ wider bell-shaped and it has a lid section 112.
  • the lid section 112 includes a plurality of spokes 113 that extend in a substantially radial direction away from the shaft 130.
  • the expression "essentially radial" should also include that the Spei ⁇ Chen 113 are not at right angles to the axis of rotation or the shaft 130, but for example, are oriented such that upon rotation of the rotor a lateral surface ei ⁇ nes straight circular cone
  • the cover section 112 has a substantially conical shape with an imaginary tip and with an imaginary base opposite the tip in a first axial direction. such that the spokes 113 of the rotor 110 substantially sweep over the conical surface of the conical shape upon rotation of the rotor 110.
  • the bell shape of the rotor 110 also includes a cylindrical section 114 extending away from the lid section 112 in the first axial direction the cylindrical section 114 are the permanent magnets 111 of the rotor positio ⁇ ni ert.
  • stator 120 of the electric motor 100 From the stator 120 of the electric motor 100 are in FIG 2 single ⁇ Lich the substantially annular, the rotor 110 coaxially arranged stator lamination 122 and a stator 124th shown.
  • the stator teeth 123 of the stator laminated core 122 and the stator coils 121 are not shown we ⁇ gene of clarity, there will be the following description taken in conjunction with the stator 120 ⁇ hang particularly related to the fact that the lamination stack 122 to be cooled.
  • the teeth 123 which in any case considered as part of the laminated core 122 ⁇ who can, as well as the windings 121 and play no supporting role.
  • the stator housing 124 is configured and arranged such that it surrounds the remaining components 121, 122, 123 of the stator 120. In particular, the stator housing 124 accommodates ⁇ addition to the said components 121, 122, 123 a
  • the stator cooling system 125 has a heat exchanger 126, which via lines 127 with the stator cooling system 125.
  • Stator laminated core 122 is connected.
  • the laminated stator core 122 is circulated and / or flowed through by a stator coolant 149, for example by a silicone oil, wherein the stator coolant 149
  • Stator coolant 149 as indicated by the arrows via the lines 127 in a circuit between the
  • Statorblechmultimeter 122 and the heat exchanger 126 circulates.
  • the stator coolant 149 conducts heat from the
  • Stator laminated core 122 and transports them to the bathtau ⁇ shear 126.
  • the comparatively warm stator coolant 149 is brought into thermal contact with a further, primarydemit ⁇ tel 148 and thereby cooled.
  • the thus cooled Statorkühlstoff 149 is then fed back to the stator lamination stack 122 to further zumony this from ⁇ .
  • the heat exchanger 126 is like the stator lamination 122 before ⁇ preferably ring-shaped and arranged coaxially with the rotor 110.
  • the heat exchanger 126 is in particular ⁇ special in or on the stator housing 124. Seen in the axial direction of the heat exchanger 126 is disposed between the driving means 200 and the stator lamination 122, where ⁇ in the heat exchanger 126 has substantially the same radius as the laminated stator core 122. cherhog that the electric motor 100, the size of which depends essentially on the dimensions of the stator housing 124, can be made relatively small.
  • the heat exchanger 126 in the radial direction arises due to the described shape and arrangement of the heat exchanger 126, a compact construction ⁇ shape, since the maximum radial extent is determined by the stator lamination 122, but not from the heat exchanger 126.
  • the stator housing 124 is indeed longer than usual in the axial direction, however, the influence on the overall size of the electric motor 100 is less relevant, because the heat exchanger 126 positioned between the driving means 200 and the laminated core 122 is arranged in a region that is in any case claimed by the electric motor 100 and in particular by the rotor 110.
  • the primary coolant 148 with the help of which
  • Stator coolant 149 heat extracted in the heat exchanger 126 who ⁇ is the heat exchanger 126 in the form of achenmit ⁇ telstroms via a first channel 142 of a likewise formed in the stator housing 124 channel system 141 a cooling device 140 of the electric motor 100 is supplied.
  • Thedeein ⁇ device 140 has besides means 144 for generating the coolant stream of the in particular gaseous primary coolant 148, the 124 abandonedbil ⁇ finished in the stator duct system 141 is arranged and configured to receive the coolant flow generated and lead specifically further, for example the the first channel 142 to the heat exchanger 126.
  • the streams of the primary coolant 148 are symbolized by corresponding arrows.
  • the duct system 141 has at least one further channel 143, can be readilylei ⁇ tet via the at least part of the primary coolant 148 for cooling the permanent magnets 111 of the rotor 110th
  • a coolant passage provided ⁇ see 145 in which the further channel 143 opens, so that the part of the air supplied via the further channel 143 primary coolant 148 enters the passage 145th
  • the coolant passage 145 leads to and past the permanent magnets 111 of the rotor 110, so that the part of the primary coolant 148 contributes to the cooling of the permanent magnets 111.
  • Thedemit ⁇ telpassage 145 includes the formed between the stator 120 and the permanent magmatic 111 air gap 150 through which the electromagnetic interaction between
  • the coolant passage 145 may include a seen in flow ⁇ direction of the primary coolant 148 in front of the air gap 150 disposed space 146, in which the primary coolant is recirculated and fluidized 148 before flowing through the air gap 150th
  • the primary coolant 148 stream provided by the coolant flow generating means 144 may pass through the first channel 142 of the channel system 141 to the heat exchanger 126, thereby contributing to the cooling of the stator 120.
  • the channel system 141 which may have the first channel 142 or the further channel 143 or both channels 142, 143, additionally or alternatively, at least part of the provided flow of the primary coolant 148 can be transmitted via the further channel 143 and over the channel Coolant passage 145 gelei ⁇ tet and so contribute to the cooling of the permanent magnets 111 ⁇ .
  • the means 144 for generating the flow of the primarydemit ⁇ means 148 is in particular an integral part of the rotor 110 and generates the coolant flow accordingly, in particular, when the rotor 110 rotates.
  • flü- gel-like devices may to the rotor 110, for example on the lid section 112 may be provided 113, 110 cause a current to the at the location of the rotor 110 verheg ⁇ cash surrounding air during rotation of the rotor, the wing-like means 113 in such a manner on the rotor 110 are arranged, that the air flow is directed into an inlet 147 of the channel system 141.
  • the air flow thus generated thus represents the flow of the primary coolant 148.
  • the spokes 113 of the rotor 110 constitute the wing-like means and thus the means 144 for generating the flow of the primary coolant 148.
  • the spokes 113 are for this purpose, for example in the manner of a
  • Compressor plate shaped and arranged so that they achieve a radial fan action with ro ⁇ tierendem rotor 110 and the primary coolant 148 to the inlet 147 of the channel system 141 convey.
  • the wing-like devices 113 can also be designed as separate components provided in addition to the spokes 113 on the rotor 110. This is not shown. In the simplest, but not shown case, that can
  • Means 144 for generating the flow of the primary coolant 148 may be realized in the form of one or more baffles. These are arranged such that the ambient air 20 accelerated by the propeller 200 is conveyed by the arrangement of the baffles to the inlet 147 of the channel system 141 alone.
  • Both embodiments of the means for generating the coolant flow 144 have in common that they rely on the same source of the primary coolant 148, namely in the operating state of the electric motor 100 from the propulsion ⁇ medium 200, ie from the propeller 200, accelerated in the axial direction ambient air L.
  • This Air used as the primary coolant 148 which of course may also include some, albeit comparatively small, and subsequently neglected portion of air not originating from the propeller 200, will be referred to as "bleed air" in the context of the present application bleed air and there ⁇ with the primary coolant 148 to thus draw insbesonde- re fact that they are essentially provided by the rotating propeller 200th Accordingly, also the means 144 for generating the coolant flow as well as the Whole cooling device 140 is set to use the bleed air as the primary coolant 148.
  • the rotating in the operating state propeller 200 sucks known to be ambient air 10 and pushes it in the axial Rich ⁇ processing to the "back", ie in the example shown here, in the direction of the electric motor 100 to the thrust for the verify ⁇ driving vehicle or aircraft to produce.
  • the ambient ⁇ air 10 is typically relatively cool and may DEM be correspondingly advantageous as the primary coolant 148 introduced ⁇ sets. Since the now accelerated by the propeller 200 to ⁇ bient flows in a substantially axial direction 20, it has by the procedure described Means 144 for generating the flow of coolant are at least partially deflected to enter the channel system 141 and act there as a primary coolant 148.
  • the wing-like devices 113 and the correspondingly formed spokes 113 are used cooling device makes therefore beneficial ⁇ way legally loos Availability of the usually cool and clean ambient air 10 to use.

Abstract

Die Erfindung betrifft einen Elektromotor mit einer integrierten Kühleinrichtung, welche als primäres Kühlmittel zum Kühlen von Komponenten des Stators und/oder des Rotors insbesondere Zapfluft einsetzt. Als Zapfluft kommt hierbei die von einem vom Elektromotor angetriebenen Vortriebsmittel, beispielsweise von einem Propeller, beschleunigte Umgebungsluft zum Einsatz. In das Statorgehäuse ist ein Kanalsystem integriert, welches einen oder mehrere Kanäle zum gezielten Führen des primären Kühlmittels zur zu kühlenden Komponente aufweist. Im Fall der Kühlung des Stators ist im Statorgehäuse desweiteren ein beispielsweise ringförmiger und koaxial zum Stator angeordneter Wärmetauscher integriert, dem das primäre Kühlmittel zugeführt wird. Zur Kühlung des Rotors ist eine Kühmittelpassage vorgesehen, die beispielsweise auch den Luftspalt der elektrischen Maschine umfasst.

Description

Beschreibung
Elektromotor mit Kühleinrichtung Die Erfindung betrifft einen Elektromotor mit einer integrierten Kühleinrichtung, welche als primäres Kühlmittel ins¬ besondere Zapfluft einsetzt.
Zum Antrieb von Luftfahrzeugen, beispielsweise für Flugzeuge oder Helikopter, werden als Alternative zu den gebräuchlichen Verbrennungskraftmaschinen Konzepte beruhend auf elektrischen Antriebssystemen untersucht und eingesetzt. Ein derartiges elektrisches oder hybrid-elektrisches Antriebssystem weist in der Regel zumindest eine elektrische Maschine auf, die zum Antreiben des Vortriebsmittels des Luftfahrzeugs als Elektro¬ motor betrieben wird. Weiterhin sind eine entsprechende Quel¬ le elektrischer Energie zur Versorgung des Elektromotors so¬ wie in der Regel eine Leistungselektronik vorgesehen, mit deren Hilfe der Elektromotor betrieben wird.
Im Falle eines hybrid-elektrischen Antriebssystems ist des¬ weiteren ein Verbrennungsmotor vorgesehen, der seriell oder parallel in das Antriebssystem integriert ist und beispiels¬ weise einen Generator antreibt, welcher seinerseits elektri- sehe Energie zur Verfügung stellt, die in einer Batterie ge¬ speichert und/oder einem Elektromotor zugeführt werden kann.
Derartige Systeme werden beispielsweise in WO2015106993A1, WO2015128121A1 oder auch in WO2017025224A1 beschrieben.
Die für derartige mobile Anwendungen einzusetzenden elektrischen Antriebe sowie die entsprechenden Maschinen müssen sich, um die benötigten Leistungen erzeugen zu können, durch extrem hohe Leistungsdichten auszeichnen. Während für viele technische Anwendungen Leistungsdichten in Größenordnungen bis zu 2kW/kg ausreichend sind, werden beispielsweise für die Elektrifizierung der Luftfahrt, d.h. für elektrisch oder hybrid-elektrisch angetriebene Luftfahrzeuge, aber auch für an- dere -insbesondere mobile- Anwendungen elektrische Maschinen mit Leistungsdichten von mindestens 20kW/kg angestrebt. Eine solche Maschine bzw. ein für eine solche Maschine geeigneter Rotor werden beispielsweise in der DE102016206909 beschrie- ben .
Für die genannten mobilen Anwendungen werden demnach hochleistungsdichte, elektrische Motoren benötigt, wobei mit steigender Leistungsdichte insbesondere die Kühlung der Ma- schine eine wesentliche Rolle spielt. Dies wird üblicherweise mit Hilfe von Wärmetauschern oder, wie in der DE102016218741 erläutert, auch mit Hilfe von Wärmerohren erreicht. Es ist jedoch davon auszugehen, dass weitere Ansätze benötigt wer¬ den, um eine hocheffiziente Kühlung des Elektromotors zu ge- währleisten.
Es ist daher eine Aufgabe der vorliegenden Erfindung, eine alternative Möglichkeit anzugeben, einen Elektromotor zu kühlen .
Diese Aufgabe wird durch den in Anspruch 1 beschriebenen Elektromotor gelöst. Die Unteransprüche beschreiben vorteil¬ hafte Ausgestaltungen. Eine erfindungsgemäße Elektromotoranordnung zum Antreiben eines Vortriebsmittels weist eine Gruppe von Komponenten sowie eine Kühleinrichtung zur Kühlung von zumindest einer der Komponenten auf, wobei die Gruppe als Komponenten zumindest ei¬ nen Stator mit einem Statorgehäuse sowie einen gegenüber dem Stator rotierbaren Rotor. In dem Statorgehäuse sind ein
Blechpaket des Stators sowie eine auf dem Blechpaket angeord¬ nete Statorwicklung angeordnet, und der Rotor weist zumindest ein magnetisches Mittel auf, wobei die Statorwicklung und das magnetische Mittel derart ausgebildet und angeordnet sind, dass sie im Betriebszustand des Elektromotors über einen zwi¬ schen ihnen gebildeten Luftspalt elektromagnetisch miteinander wechselwirken. Die Kühleinrichtung weist ein Mittel zum Erzeugen eines beispielsweise radial nach außen orientierten Kühlmittelstroms eines bevorzugt gasförmigen primären Kühl¬ mittels auf sowie ein in dem Statorgehäuse ausgebildetes Ka¬ nalsystem zum Aufnehmen und anschließenden Führen des Kühlmittelstroms zu der zu kühlenden Komponente. Insbesondere das Mittel zum Erzeugen des Kühlmittelstroms ist derart ausgebil¬ det und angeordnet, dass es Zapfluft, welche dem Mittel ins¬ besondere, aber nicht notwendigerweise, vom Vortriebsmittel zugeführt wird, als primäres Kühlmittel einsetzt. Die hier als primäres Kühlmittel Verwendung findende
„Zapfluft" ist insbesondere diejenige Luft in der Umgebung des Vortriebsmittels, die im Betriebszustand des Elektromo¬ tors von dem vom Elektromotor angetriebenen Vortriebsmittel, d.h. beispielsweise vom Propeller, in axialer Richtung zum Elektromotor hin beschleunigt wird. Diese als primäres Kühl¬ mittel zum Einsatz kommende Luft kann natürlich einen gewissen, wenn auch vergleichsweise kleinen und im Folgenden vernachlässigten Anteil von Luft umfassen kann, der nicht vom Propeller stammt. Den wesentlichen Anteil des primären Kühl- mittels, welcher hier als „Zapfluft" bezeichnet wird, soll aber im Sinne der hier vorliegenden Anwendung vom Vortriebsmittel stammen.
Das der Erfindung zu Grunde liegende Konzept liegt demnach darin, dass die ohnehin zur Verfügung stehende Zapfluft als primäres Kühlmittel Verwendung findet.
Das Vortriebsmittel kann als Teil der Elektromotoranordnung angesehen werden, wobei der Rotor mit dem Vortriebsmittel derart verbunden ist, dass der Rotor das Vortriebsmittel im Betriebszustand der elektrischen Maschine antreibt. Dies hat zur Folge, dass zumindest ein Teil der als primäres Kühlmit¬ tel einzusetzenden Zapfluft vom angetriebenen Vortriebsmittel zum Mittel zum Erzeugen des Kühlmittelstroms beschleunigt wird. Zur Kühlung der zu kühlenden Komponente steht demnach stets ein vergleichsweise frisches, sauberes und kühles Medi¬ um zur Verfügung, welches im Betriebszustand des Elektromo¬ tors aufgrund der Funktion des Vortriebsmittels ohnehin ver- fügbar wäre, und nun aufgrund der vorteilhaften Anordnung genutzt werden kann.
Das Mittel zum Erzeugen des Kühlmittelstroms ist ausgebildet, um die ihm zugeführte Zapfluft zunächst zu komprimieren und die komprimierte Zapfluft zum Kanalsystem weiter zu leiten.
In das oder an das Statorgehäuse ist ein Wärmetauscher inte¬ griert, wobei das Kanalsystem derart angeordnet und ausgebil¬ det ist, dass dem Wärmetauscher zumindest ein Teil des primä¬ ren Kühlmittels über das Kanalsystem zuführbar ist. Das
Statorblechpaket wird zur Kühlung desselben von einem
Statorkühlmittel, beispielsweise von einem Silikonöl, um- und/oder durchströmt, wobei das Statorkühlmittel in einem Kreislaufsystem zwischen dem Statorblechpaket und dem Wärmetauscher zirkuliert. Hiermit wird Wärme aus dem
Statorblechpaket abgeführt und zum Wärmetauscher transpor¬ tiert. Im Wärmetauscher kommt es zu einer thermischen Wechselwirkung zwischen dem Statorkühlmittel und dem primären Kühlmittel, so dass zumindest ein Teil der mit dem
Statorkühlmittel aus dem Statorblechpaket abgeführten Wärme auf das primäre Kühlmittel übertragen wird. Das hierbei im Wärmetauscher abgekühlte Statorkühlmittel wird anschließend zurück zum Statorblechpaket geführt.
Im Unterschied zu gängigen Wärmetauschern für elektrische Ma¬ schinen, bei denen der Wärmetauscher beispielsweise außen am Gehäuse der jeweiligen Maschine positioniert ist, ist der hier beschriebene Wärmetauscher in das Motorsystem und insbesondere in das Gehäuse des Stators integriert. Dabei ist der Wärmetauscher im Statorgehäuse im Wesentlichen ringförmig ausgebildet und koaxial zum ebenfalls im Wesentlichen ring¬ förmigen Stator angeordnet. Insbesondere ist der Wärmetau¬ scher in axialer Richtung vom Vortriebsmittel aus gesehen vor oder hinter dem Statorblechpaket, insbesondere zwischen Vor¬ triebsmittel und Statorblechpaket, angeordnet, d.h. insbeson¬ dere nicht radial innerhalb oder außerhalb des Blechpakets, wobei die Radien des Wärmetauschers und des Statorblechpakets im Wesentlichen gleich sind.
Dies, d.h. die Gleichheit der Radien, ist so zu verstehen, dass insbesondere die mittleren Radien des Statorblechpakets und des Wärmetauschers im Wesentlichen gleich sind. Ein je¬ weiliger mittlerer Radius liegt dabei mittig zwischen dem jeweiligen Innen- und Außenradius des jeweiligen ringförmigen Bauteils. Die Dimensionierung von Wärmetauscher und
Statorblechpaket kann dabei auch derart sein, dass in axialer Blickrichtung der Wärmetauscher das Statorblechpaket im Wesentlichen verdeckt und/oder umgekehrt. Durch diese diversen die Anordnung und die Dimensionierung betreffenden Merkmale ergibt sich der Vorteil, dass das Statorgehäuse und damit auch die Elektromotoranordnung vergleichsweise klein gebaut werden können, insbesondere in radialer Richtung.
Um zusätzlich oder alternativ zur Kühlung des
Statorblechpakets den Rotor kühlen zu können, ist das Kanal¬ system ausgebildet, um zumindest einen Teil des ihm zugeführ¬ ten primären Kühlmittels über eine Kühlmittelpassage zu füh¬ ren, welche zu dem magnetischen Mittel des Rotors und an dem magnetischen Mittel vorbei führt.
Vorteilhafterweise kann die Kühlmittelpassage den Luftspalt umfassen, so dass das Kühlmittel direkt an den magnetischen Mitteln des Rotors, d.h. beispielsweise an Permanentmagneten, vorbei geleitet werden kann.
Die Kühlmittelpassage umfasst zusätzlich einen in Strömungs- richtung des primären Kühlmittels gesehen vor dem Luftspalt angeordneten Raum, in dem das primäre Kühlmittel rezirkuliert bzw. verwirbelt wird.
Für eine besonders kompakte Bauform der Elektromotoranordnung ist das Mittel zum Erzeugen des Kühlmittelstroms in den Rotor integriert und erzeugt den Kühlmittelstrom dementsprechend insbesondere dann, wenn der Rotor rotiert. In diesem Fall kann der Rotor flügelartige Einrichtungen aufweisen, mit denen bei Rotation des Rotors der Kühlmittelstrom erzeugt wird. Alternativ oder zusätzlich kann der Rotor eine mit im Wesentlichen radial orientierten Speichen ausgestattete Deckelsektion aufweisen, wobei die Speichen ausgebildet sind, um bei Rotation des Rotors den Kühlmittelstrom zu erzeugen. „Im Wesentlichen radial" beinhaltet hierbei auch, dass die Speichen nicht im rechten Winkel zur Rotationsachse stehen, sondern beispielsweise derart orientiert sind, dass sie bei Rotation des Rotors eine Mantelfläche eines Konus überstreichen .
Der Rotor kann beispielsweise glockenförmig mit einer sich von der Deckelsektion in einer ersten axialen Richtung weg erstreckenden zylindrischen Sektion ausgebildet sein, wobei das magnetische Mittel an der zylindrischen Sektion angeord¬ net ist. Die Deckelsektion kann eine im Wesentlichen konische Form mit einer Spitze und mit einer der Spitze in der ersten axialen Richtung gegenüberliegenden gedachten Grundfläche aufweisen, so dass die Speichen des Rotors bei Rotation des Rotors im Wesentlichen die konische Mantelfläche der konischen Form überstreichen. Diese Formgebung erlaubt eine besonders kompakte Bauform und eine effiziente Erzeugung des Kühlmittel¬ stroms .
Weitere Vorteile und Ausführungsformen ergeben sich aus den Zeichnungen und der entsprechenden Beschreibung.
Im Folgenden werden die Erfindung und beispielhafte Ausführungsformen anhand von Zeichnungen näher erläutert. Dort werden gleiche Komponenten in verschiedenen Figuren durch glei- che Bezugszeichen gekennzeichnet.
Es zeigen: FIG 1 eine elektrische Maschine,
FIG 2 einen Querschnitt einer erfindungsgemäßen Elektromotoranordnung . Es sei angemerkt, dass sich Begriffe wie „axial", „radial", „tangential" etc. auf die in der jeweiligen Figur bzw. im jeweils beschriebenen Beispiel zum Einsatz kommende Welle bzw. Achse beziehen. Mit anderen Worten beziehen sich die Richtungen axial, radial, tangential stets auf eine Drehachse des Läufers. Dabei beschreibt „axial" eine Richtung parallel zur Rotationsachse, „radial" beschreibt eine Richtung orthogonal zur Rotationsachse, auf diese zu oder auch von ihr weg, und „tangential" ist eine Bewegung bzw. Richtung, die in konstantem radialen Abstand zur Rotationsachse und bei konstanter Axialposition kreisförmig um die Rotationsachse herum gerichtet ist.
Die FIG 1 zeigt exemplarisch eine als Elektromotor ausgebil¬ dete elektrische Maschine 100. Es sei erwähnt, dass die elektrische Maschine 100 in ähnlichem Aufbau grundsätzlich auch als Generator betrieben werden kann. Weiterhin sei angemerkt, dass der Aufbau der im Folgenden beschriebenen Maschine stark vereinfacht ist und insbesondere die im Zusammenhang mit den weiteren Figuren erläuterten Details nicht zeigt, sondern lediglich zur Veranschaulichung der Funktionsweise des Elektromotors dient. Es kann als bekannt vorausgesetzt werden, dass je nach Ausbildung der elektrischen Maschine als Generator oder als Elektromotor und/oder als beispielsweise Radial- oder Axialflussmaschine mit einem als Innen- oder auch als Außenläufer ausgebildeten Rotor etc. die verschiedenen Komponenten der Maschine unterschiedlich angeordnet sein können .
Der Elektromotor 100 weist einen Stator 120 sowie einen als Innenläufer ausgebildeten Rotor 110 auf, wobei der Rotor 110 innerhalb des Stators 120 angeordnet ist und im Betriebszu¬ stand des Elektromotors 100 um eine Rotationsachse A rotiert. Der Rotor 110 ist drehfest mit einer Welle 130 verbunden, so dass eine Rotation des Rotors 110 über die Welle 130 auf eine nicht dargestellte anzutreibende Komponente, beispielsweise auf einen Propeller eines Flugzeugs, übertragbar ist. Der Stator 120 weist ein Statorblechpaket 122 sowie erste magnetische Mittel 121 auf, die beispielsweise als
Statorwicklungen 121 auf Statorzähnen 123 des
Statorblechpakets 122 realisiert sein können. Jede der Wick¬ lungen 121 wird durch einen elektrischen Leiter gebildet, der im Betriebszustand des Elektromotors 100 von einem elektri¬ schen Strom durchflössen wird. Der Rotor 110 weist zweite magnetische Mittel 111 auf, die beispielsweise als Permanent¬ magnete oder als erregte bzw. erregbare Wicklungen ausgebil¬ det sein können. Im Folgenden wird exemplarisch angenommen, dass es sich um Permanentmagnete 111 handelt. Die ersten und die zweiten magnetischen Mittel 111, 121 sind derart ausgebildet und durch einen Luftspalt voneinander beabstandet zu¬ einander angeordnet, dass sie im Betriebszustand des Elektro¬ motors 100 elektromagnetisch miteinander wechselwirken. Die- ses Konzept einschließlich der Bedingungen für die Ausbildung und Anordnung der magnetischen Mittel 111, 121 bzw. von Rotor 110 und Stator 120 sind an sich bekannt und werden daher im Folgenden nicht näher erläutert. Es sei lediglich erwähnt, dass zum Betreiben der elektrischen Maschine 100 als Elektro- motor die Statorwicklungen 121 mit Hilfe einer nicht dargestellten Stromquelle mit einem elektrischen Strom beaufschlagt werden, der bewirkt, dass die Wicklungen 121 dement- sprechende Magnetfelder erzeugen, welche mit den Magnetfel¬ dern der Permanentmagnete 111 des Rotors 110 in elektromagne- tische Wechselwirkung treten. Dies resultiert bekanntermaßen darin, dass bei geeigneter Ausbildung und Anordnung der genannten Komponenten zueinander der Rotor 110 und mit ihm die Welle 130 sowie der genannte Propeller in Rotation versetzt werden .
Die FIG 2 zeigt eine radiale Sicht auf einen Schnitt eines erfindungsgemäßen Elektromotors 100, der auf dem im Zusammenhang mit der FIG 1 beschriebenen Funktionsprinzip beruht, sich von der elektrischen Maschine der FIG 1 jedoch im Aufbau unterscheidet. Es sei darauf hingewiesen, dass die
Statorwicklungen in der FIG 2 der Übersichtlichkeit wegen nicht dargestellt sind.
Der Elektromotor 100 treibt im Betriebszustand ein Vortriebs¬ mittel 200 an, beispielsweise einen Propeller. Der Propeller 200 ist hierzu an einer Anschlussstelle 210 mit Hilfe einer Verbindung 220, beispielsweise mit einem Flansch, an die Wel- le 130 gekoppelt und somit über die Welle 130 mit dem Rotor 110 des Elektromotors 100 verbunden. Im hier gezeigten Bei¬ spiel sind die Welle 130 und der Rotor 110 als einstückiges, integriertes Bauteil ausgeführt. Der Rotor 110 ist insbeson¬ dere glockenförmig ausgebildet und weist dabei eine Deckel- Sektion 112 auf. Die Deckelsektion 112 umfasst eine Vielzahl von Speichen 113, die sich in im Wesentlichen radialer Richtung von der Welle 130 weg erstrecken. Der Ausdruck „im Wesentlichen radial" soll dabei auch beinhalten, dass die Spei¬ chen 113 nicht im rechten Winkel zur Rotationsachse bzw. zur Welle 130 stehen, sondern beispielsweise derart orientiert sind, dass sie bei Rotation des Rotors eine Mantelfläche ei¬ nes geraden Kreiskegels bzw. eines geraden Kreiskegelstumpfes überstreichen (im Folgenden „Kegel" oder „Konus") . Dementsprechend weist also die Deckelsektion 112 eine im Wesentli- chen konische Form mit einer gedachten Spitze und mit einer der Spitze in einer ersten axialen Richtung gegenüberliegenden gedachten Grundfläche auf, so dass die Speichen 113 des Rotors 110 bei Rotation des Rotors 110 im Wesentlichen die konische Mantelfläche der konischen Form überstreichen. Die Glockenform des Rotors 110 beinhaltet auch, dass sich eine zylindrische Sektion 114 von der Deckelsektion 112 in der ersten axialen Richtung weg erstreckt. An der zylindrischen Sektion 114 sind die Permanentmagnete 111 des Rotors positio¬ niert .
Vom Stator 120 des Elektromotors 100 sind in der FIG 2 ledig¬ lich das im Wesentlichen ringförmige, zum Rotor 110 koaxial angeordnete Statorblechpaket 122 sowie ein Statorgehäuse 124 dargestellt. Die Statorzähne 123 des Statorblechpakets 122 sowie die Statorwicklungen 121 sind der Übersichtlichkeit we¬ gen nicht gezeigt, da die folgende Beschreibung im Zusammen¬ hang mit dem Stator 120 insbesondere darauf bezogen sein wird, dass das Blechpaket 122 gekühlt werden soll. Die Zähne 123, die ohnehin als Teil des Blechpakets 122 angesehen wer¬ den können, sowie die Wicklungen 121 und spielen dabei keine tragende Rolle. Das Statorgehäuse 124 ist derart ausgebildet und angeordnet, dass es die übrigen Bauteile 121, 122, 123 des Stators 120 umgibt. Insbesondere beherbergt das Statorgehäuse 124 zusätz¬ lich zu den genannten Bauteilen 121, 122, 123 ein
Statorkühlsystem 125. Das Statorkühlsystem 125 weist einen Wärmetauscher 126 auf, der über Leitungen 127 mit dem
Statorblechpaket 122 verbunden ist. Das Statorblechpaket 122 wird von einem Statorkühlmittel 149, beispielsweise von einem Silikonöl, um- und/oder durchströmt, wobei das
Statorkühlmittel 149 wie durch die Pfeile angedeutet über die Leitungen 127 in einem Kreislauf zwischen dem
Statorblechpaket 122 und dem Wärmetauscher 126 zirkuliert. Dabei führt das Statorkühlmittel 149 Wärme aus dem
Statorblechpaket 122 ab und transportiert sie zum Wärmetau¬ scher 126. Im Wärmetauscher 126 wird das vergleichsweise war- me Statorkühlmittel 149 mit einem weiteren, primären Kühlmit¬ tel 148 in thermischen Kontakt gebracht und dabei abgekühlt. Das somit abgekühlte Statorkühlmittel 149 wird anschließend zurück zum Statorblechpaket 122 geführt, um dieses weiter ab¬ zukühlen .
Der Wärmetauscher 126 ist wie das Statorblechpaket 122 vor¬ zugsweise ringförmig ausgebildet und koaxial zum Rotor 110 angeordnet. Dabei befindet sich der Wärmetauscher 126 insbe¬ sondere auch im oder am Statorgehäuse 124. In axialer Rich- tung gesehen ist der Wärmetauscher 126 zwischen dem Vortriebsmittel 200 und dem Statorblechpaket 122 angeordnet, wo¬ bei der Wärmetauscher 126 im Wesentlichen den gleichen Radius aufweist, wie das Statorblechpaket 122. Hierdurch wird si- chergestellt , dass der Elektromotor 100, dessen Baugröße im Wesentlichen von den Dimensionen des Statorgehäuses 124 abhängt, vergleichsweise klein gebaut werden kann. Insbesondere in radialer Richtung ergibt sich aufgrund der beschriebenen Form und Anordnung des Wärmetauschers 126 eine kompakte Bau¬ form, da das maximale radiale Ausmaß vom Statorblechpaket 122 bestimmt wird, nicht aber vom Wärmetauscher 126. In axialer Richtung ist zwar das Statorgehäuse 124 länger als üblich, jedoch ist der Einfluss auf die Gesamtgröße des Elektromotors 100 weniger relevant, weil der zwischen Vortriebsmittel 200 und Blechpaket 122 positionierte Wärmetauscher 126 in einem Bereich angeordnet ist, der ohnehin vom Elektromotor 100 und insbesondere vom Rotor 110 beansprucht wird. Das primäre Kühlmittel 148, mit dessen Hilfe dem
Statorkühlmittel 149 im Wärmetauscher 126 Wärme entzogen wer¬ den soll, wird dem Wärmetauscher 126 in Form eines Kühlmit¬ telstroms über einen ersten Kanal 142 eines ebenfalls im Statorgehäuse 124 ausgebildeten Kanalsystems 141 einer Kühl- einrichtung 140 des Elektromotors 100 zugeführt. Die Kühlein¬ richtung 140 verfügt desweiteren über Mittel 144 zum Erzeugen des Kühlmittelstroms des insbesondere gasförmigen primären Kühlmittels 148, wobei das in dem Statorgehäuse 124 ausgebil¬ dete Kanalsystem 141 angeordnet und ausgebildet ist, um den erzeugten Kühlmittelstrom aufzunehmen und gezielt weiter zu führen, beispielsweise über den ersten Kanal 142 zum Wärmetauscher 126. Die Ströme des primären Kühlmittels 148 sind durch entsprechende Pfeile symbolisiert. Das Kanalsystem 141 weist zumindest einen weiteren Kanal 143 auf, über den zumindest ein Teil des primären Kühlmittels 148 zur Kühlung der Permanentmagnete 111 des Rotors 110 abgelei¬ tet werden kann. Hierzu ist eine Kühlmittelpassage 145 vorge¬ sehen, in die der weitere Kanal 143 mündet, so dass der Teil des über den weiteren Kanal 143 zugeführten primären Kühlmittels 148 in die Passage 145 gelangt. Die Kühlmittelpassage 145 führt zu den Permanentmagneten 111 des Rotors 110 und an diesen vorbei, so dass der Teil des primären Kühlmittels 148 zur Kühlung der Permanentmagnete 111 beiträgt. Die Kühlmit¬ telpassage 145 umfasst dabei den zwischen dem Stator 120 und den Permanentmagenten 111 ausgebildeten Luftspalt 150, über den die elektromagnetische Wechselwirkung zwischen
Statorwicklungsssystem 121 und Permanentmagneten 111 erfolgt. Zusätzlich kann die Kühlmittelpassage 145 einen in Strömungs¬ richtung des primären Kühlmittels 148 gesehen vor dem Luftspalt 150 angeordneten Raum 146 umfassen, in dem das primäre Kühlmittel 148 rezirkuliert bzw. verwirbelt wird, bevor es durch den Luftspalt 150 strömt.
Wie beschrieben kann also zumindest ein Teil des vom Mittel 144 zum Erzeugen des Kühlmittelstroms bereitgestellten Stroms des primären Kühlmittels 148 über den ersten Kanal 142 des Kanalsystems 141 zum Wärmetauscher 126 gelangen und so zur Kühlung des Stators 120 beitragen. Je nach Ausführungsform des Kanalsystems 141, welches den ersten Kanal 142 oder den weiteren Kanal 143 oder beide Kanäle 142, 143 aufweisen kann, kann zusätzlich oder alternativ zumindest ein Teil des be- reitgestellten Stroms des primären Kühlmittels 148 über den weiteren Kanal 143 und über die Kühlmittelpassage 145 gelei¬ tet werden und so zur Kühlung der Permanentmagnete 111 bei¬ tragen . Das Mittel 144 zum Erzeugen des Stroms des primären Kühlmit¬ tels 148 ist insbesondere ein integrales Teil des Rotors 110 und erzeugt den Kühlmittelstrom dementsprechend insbesondere dann, wenn der Rotor 110 rotiert. Beispielsweise können an dem Rotor 110, beispielsweise an der Deckelsektion 112, flü- gelartige Einrichtungen 113 vorgesehen sein, die bei Rotation des Rotors 110 einen Strom der am Ort des Rotors 110 verfüg¬ baren umgebenden Luft bewirken, wobei die flügelartigen Einrichtungen 113 derart am Rotor 110 angeordnet sind, dass der Luftstrom in einen Einlass 147 des Kanalsystems 141 dirigiert wird. Der so erzeugte Luftstrom stellt demnach den Strom des primären Kühlmittels 148 dar. Vorteilhafterweise stellen die Speichen 113 des Rotors 110 die flügelartigen Einrichtungen und damit das Mittel 144 zum Erzeugen des Stroms des primären Kühlmittels 148 dar. Die Speichen 113 sind hierzu beispielsweise nach Art eines
Kompressorblechs geformt und angeordnet, so dass sie bei ro¬ tierendem Rotor 110 eine Radiallüfterwirkung erzielen und das primäre Kühlmittel 148 zum Einlass 147 des Kanalsystems 141 befördern . Es sei angemerkt, dass die flügelartigen Einrichtungen 113 auch als separate, zusätzlich zu den Speichen 113 am Rotor 110 vorgesehene Bauteile ausgebildet sein können. Dies ist jedoch nicht dargestellt. Im einfachsten, jedoch nicht dargestellten Fall, kann das
Mittel 144 zum Erzeugen des Stroms des primären Kühlmittels 148 auch in Form eines oder mehrerer Leitbleche realisiert sein. Diese sind derart angeordnet, dass die vom Propeller 200 beschleunigte Umgebungsluft 20 allein durch die Anordnung der Leitbleche zum Einlass 147 des Kanalsystems 141 befördert wird .
Beiden Ausführungsformen des Mittels 144 zum Erzeugen des Kühlmittelstroms ist gemeinsam, dass sie auf die gleiche Quelle des primären Kühlmittels 148 zurückgreifen, nämlich die im Betriebszustand des Elektromotors 100 vom Vortriebs¬ mittel 200, d.h. vom Propeller 200, in axialer Richtung beschleunigte Umgebungsluft L. Diese als primäres Kühlmittel 148 zum Einsatz kommende Luft, welche natürlich auch einen gewissen, wenn auch vergleichsweise kleinen und im Folgenden vernachlässigten Anteil von Luft umfassen kann, der nicht vom Propeller 200 stammt, wird im Zusammenhang mit der vorliegenden Anwendung als „Zapfluft" bezeichnet. Die Zapfluft und da¬ mit das primäre Kühlmittel 148 zeichnen sich also insbesonde- re dadurch aus, dass sie im Wesentlichen vom rotierenden Propeller 200 bereitgestellt werden. Dementsprechend sind auch das Mittel 144 zum Erzeugen des Kühlmittelstroms sowie die gesamte Kühleinrichtung 140 darauf eingestellt, dass sie die Zapfluft als primäres Kühlmittel 148 verwenden.
Der im Betriebszustand rotierende Propeller 200 saugt bekann- termaßen Umgebungsluft 10 an und stößt sie in axialer Rich¬ tung nach „hinten" aus, d.h. im hier gezeigten Beispiel in Richtung des Elektromotors 100, um den Schub für das anzu¬ treibende Fahrzeug bzw. Flugzeug zu erzeugen. Die Umgebungs¬ luft 10 ist typischerweise vergleichsweise kühl und kann dem- entsprechend vorteilhaft als primäres Kühlmittel 148 einge¬ setzt werden. Da die vom Propeller 200 nun beschleunigte Um¬ gebungsluft 20 in im Wesentlichen axialer Richtung strömt, muss sie durch das beschriebene Mittel 144 zum Erzeugen des Kühlmittelstroms zumindest teilweise umgelenkt werden, um in das Kanalsystem 141 zu gelangen und dort als primäres Kühlmittel 148 zu fungieren. Hierzu werden, wie ebenfalls bereits beschrieben, die flügelartigen Einrichtungen 113 bzw. die dementsprechend ausgebildeten Speichen 113 verwendet. Die beschriebene Kühleinrichtung macht sich demnach vorteil¬ hafterweise die Verfügbarkeit der in der Regel kühlen und sauberen Umgebungsluft 10 zu Nutze. Dadurch, dass die Bautei¬ le der Kühleinrichtung 140 weitestgehend im Statorgehäuse 124 untergebracht sind, ergibt sich als weiterer Vorteil eine vergleichsweise geringe Baugröße des Elektromotors 100.

Claims

Patentansprüche
1. Elektromotoranordnung (100) zum Antreiben eines Vortriebsmittels (200), wobei die Elektromotoranordnung (100) eine Gruppe von Komponenten (110, 120) sowie eine Kühleinrichtung (140) zur Kühlung von zumindest einer der Komponenten (110, 120) aufweist, wobei die Gruppe umfasst:
- zumindest einen Stator (120) mit einem Statorgehäuse (124), wobei in dem Statorgehäuse (124) ein Statorblechpaket (122) sowie eine auf dem Statorblechpaket (122) angeordnete
Statorwicklung (121) angeordnet sind,
- einen gegenüber dem Stator (120) rotierbaren Rotor (110) mit einem magnetischen Mittel (111), wobei die Statorwicklung (121) und das magnetische Mittel (111) über einen zwischen ihnen gebildeten Luftspalt (150) elektromagnetisch miteinander wechselwirken,
und wobei
- die Kühleinrichtung (140) ein Mittel (144) zum Erzeugen eines Kühlmittelstroms eines primären Kühlmittels (148) auf- weist,
- die Kühleinrichtung (140) ein in dem Statorgehäuse (124) ausgebildetes Kanalsystem (141) zum Aufnehmen und anschließenden Führen des Kühlmittelstroms zu der zu kühlenden Kompo¬ nente (110, 120) aufweist,
- die Kühleinrichtung (140) ausgebildet und angeordnet ist, um Zapfluft, welche insbesondere vom Vortriebsmittel (200) zugeführt wird, als primäres Kühlmittel (148) einzusetzen.
2. Elektromotoranordnung (100) nach Anspruch 1, dadurch ge- kennzeichnet, dass die Elektromotoranordnung (100) das Vor¬ triebsmittel (200) umfasst, wobei der Rotor (110) mit dem Vortriebsmittel (200) derart verbunden ist, dass der Rotor (110) das Vortriebsmittel (200) im Betriebszustand der Elekt¬ romotoranordnung (100) antreibt, so dass zumindest ein Teil der als primäres Kühlmittel (148) einzusetzenden Zapfluft vom angetriebenen Vortriebsmittel (200) zum Mittel (144) zum Erzeugen des Kühlmittelstroms beschleunigt wird.
3. Elektromotoranordnung (100) nach einem der Ansprüche 1 bis
2, dadurch gekennzeichnet, dass das Mittel (144) zum Erzeugen des Kühlmittelstroms ausgebildet ist, um die ihm zugeführte Zapfluft zunächst zu komprimieren und die komprimierte
Zapfluft zum Kanalsystem (141) weiter zu leiten.
4. Elektromotoranordnung (100) nach einem der Ansprüche 1 bis
3, dadurch gekennzeichnet, dass in das Statorgehäuse (124) ein Wärmetauscher (126) integriert ist, wobei das Kanalsystem (141) derart ausgebildet ist, dass dem Wärmetauscher (126) zumindest ein Teil des primären Kühlmittels (148) über das Kanalsystem (141) zuführbar ist, wobei
- das Statorblechpaket (122) von einem Statorkühlmittel (149) um- und/oder durchströmt wird, welches in einem Kreislaufsys- tem zwischen dem Statorblechpaket (122) und dem Wärmetauscher (126) zirkuliert, um Wärme aus dem Statorblechpaket (122) ab¬ zuführen und zum Wärmetauscher (126) zu transportieren,
- das primäre Kühlmittel (148) und das Statorkühlmittel (149) im Wärmetauscher (126) derart thermisch miteinander wechsel- wirken, dass zumindest ein Teil der mit dem Statorkühlmittel (149) aus dem Statorblechpaket (122) abgeführten Wärme auf das primäre Kühlmittel (148) übertragen wird.
5. Elektromotoranordnung (100) nach Anspruch 4, dadurch ge- kennzeichnet, dass der Wärmetauscher (126) im Wesentlichen ringförmig ausgebildet und koaxial zum Stator (120) angeord¬ net ist.
6. Elektromotoranordnung (100) nach Anspruch 5, dadurch ge- kennzeichnet, dass der Wärmetauscher (126) in axialer Richtung vor oder hinter dem Statorblechpaket (122), insbesondere zwischen Vortriebsmittel (200) und Statorblechpaket (122), angeordnet ist, wobei ein Radius des Wärmetauschers (126) und ein Radius des Statorblechpakets (122) im Wesentlichen gleich sind.
7. Elektromotoranordnung (100) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Kanalsystem (141) ausge- bildet ist, um zumindest einen Teil des ihm zugeführten pri¬ mären Kühlmittels (148) über eine Kühlmittelpassage (145) zu führen, welche zu dem magnetischen Mittel (111) des Rotors (110) und an dem magnetischen Mittel (111) vorbei führt.
8. Elektromotoranordnung (100) nach Anspruch 7, dadurch gekennzeichnet, dass die Kühlmittelpassage (145) den Luftspalt (150) umfasst.
9. Elektromotoranordnung (100) nach Anspruch 8, dadurch gekennzeichnet, dass die Kühlmittelpassage (145) einen in Strö¬ mungsrichtung des primären Kühlmittels (148) gesehen vor dem Luftspalt (150) angeordneten Raum (146) umfasst, in dem das primäre Kühlmittel (148) verwirbelt wird.
10. Elektromotoranordnung (100) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Mittel (144) zum Er¬ zeugen des Kühlmittelstroms in den Rotor (110) integriert ist .
11. Elektromotoranordnung (100) nach Anspruch 10, dadurch gekennzeichnet, dass der Rotor (110) flügelartige Einrichtungen (113) aufweist, mit denen bei Rotation des Rotors (110) der Kühlmittelstrom erzeugt wird.
12. Elektromotoranordnung (100) nach Anspruch 11, dadurch gekennzeichnet, dass der Rotor (110) eine mit im Wesentlichen radial orientierten Speichen (113) ausgestattete Deckelsekti¬ on (112) aufweist, wobei die Speichen (113) die flügelartigen Einrichtungen (113) darstellen und ausgebildet sind, um bei Rotation des Rotors (110) den Kühlmittelstrom zu erzeugen.
13. Elektromotoranordnung (100) nach Anspruch 12, dadurch gekennzeichnet, dass der Rotor (110) glockenförmig mit einer sich von der Deckelsektion (112) in einer ersten axialen
Richtung weg erstreckenden zylindrischen Sektion (114) ausgebildet ist, wobei das magnetische Mittel (111) an der zylind¬ rischen Sektion (114) angeordnet ist.
14. Elektromotoranordnung (100) nach den Ansprüchen 12 und 13, dadurch gekennzeichnet, dass die Deckelsektion (112) eine im Wesentlichen konische Form mit einer Spitze und mit einer der Spitze in der ersten axialen Richtung gegenüberliegenden gedachten Grundfläche aufweist, so dass die Speichen (113) des Rotors (110) bei Rotation des Rotors (110) im Wesentli¬ chen die konische Mantelfläche der konischen Form überstrei¬ chen .
PCT/EP2018/070152 2017-07-26 2018-07-25 Elektromotor mit kühleinrichtung WO2019020684A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/631,012 US11271455B2 (en) 2017-07-26 2018-07-25 Electric motor having a cooling device
DE112018003826.2T DE112018003826A5 (de) 2017-07-26 2018-07-25 Elektromotor mit Kühleinrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017212798.8 2017-07-26
DE102017212798.8A DE102017212798A1 (de) 2017-07-26 2017-07-26 Elektromotor mit Kühleinrichtung

Publications (1)

Publication Number Publication Date
WO2019020684A1 true WO2019020684A1 (de) 2019-01-31

Family

ID=63168368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/070152 WO2019020684A1 (de) 2017-07-26 2018-07-25 Elektromotor mit kühleinrichtung

Country Status (3)

Country Link
US (1) US11271455B2 (de)
DE (2) DE102017212798A1 (de)
WO (1) WO2019020684A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020207862A1 (fr) * 2019-04-12 2020-10-15 Safran Propulseur d'aeronef
EP3879680A1 (de) * 2020-03-13 2021-09-15 Hamilton Sundstrand Corporation Motoranordnung

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017212798A1 (de) * 2017-07-26 2019-01-31 Siemens Aktiengesellschaft Elektromotor mit Kühleinrichtung
LU100556B1 (en) * 2017-12-13 2019-06-28 Luxembourg Inst Science & Tech List Compact halbach electrical generator for integration in a solid body
DE102019208354A1 (de) * 2019-06-07 2020-12-10 e.SAT Management GmbH Luftfahrzeug
JP7443272B2 (ja) 2021-01-18 2024-03-05 三菱重工業株式会社 ファン装置及びこれを備えた航空機
US11560235B2 (en) * 2021-02-09 2023-01-24 Joby Aero, Inc. Aircraft propulsion unit
US11691750B1 (en) * 2021-12-28 2023-07-04 Beta Air, Llc Electric aircraft lift motor with air cooling
US11685543B1 (en) 2022-03-24 2023-06-27 Toyota Motor Engineering & Manufacturing North America, Inc. Vibrating actuator based hybrid cooling systems for electric machines
DE102022203746A1 (de) 2022-04-13 2023-10-19 Rolls-Royce Deutschland Ltd & Co Kg Antriebsvorrichtung für ein Luftfahrzeug
US20230331390A1 (en) * 2022-04-19 2023-10-19 Hamilton Sundstrand Corporation Cabin air cooling system
EP4266556A1 (de) * 2022-04-22 2023-10-25 Siemens Gamesa Renewable Energy A/S Kühlkreislauf für einen elektrischen generator
WO2023214190A1 (en) * 2022-05-06 2023-11-09 Safran Aircraft Engines Electric machine heat exchanger
DE102022117847A1 (de) 2022-07-18 2024-01-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Vorrichtung zum Kühlen einer elektrischen Antriebsmaschine
WO2024081443A1 (en) * 2022-10-15 2024-04-18 Beta Air, Llc Methods and apparatus for an inertial separation of air in an electric aircraft

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1700840A (en) * 1928-05-07 1929-02-05 Frazer W Gay Heat-transfer means for closed rotating electrical machinery
US3715610A (en) * 1972-03-07 1973-02-06 Gen Electric Dynamoelectric machine cooled by a rotating heat pipe
JPS5747865U (de) * 1980-09-03 1982-03-17
EP0387743A1 (de) * 1989-03-16 1990-09-19 Gec Alsthom Moteurs Sa Geschlossener, luftgekühlter elektrischer Motor und Verfahren zu seiner Herstellung
CN1025450C (zh) * 1989-08-11 1994-07-13 北京市西城新开通用试验厂 一种动力机的冷却装置
WO2004030183A1 (de) * 2002-09-24 2004-04-08 Siemens Aktiengesellschaft Elektrische maschine mit einer kühleinrichtung
WO2005062444A1 (fr) * 2003-12-19 2005-07-07 Telma Ralentisseur electromagnetique comportant des moyens pour assurer une ventilation
US20100026109A1 (en) * 2006-06-19 2010-02-04 Thermal Motor Innovations, Llc Electric motor with heat pipes
US20100033042A1 (en) * 2008-08-06 2010-02-11 Thermal Motor Innovations , LLC Totally enclosed heat pipe cooled motor
US20100295391A1 (en) * 2009-05-19 2010-11-25 Ford Global Technologies, Llc Cooling System And Method For An Electric Motor
CN102223010A (zh) * 2011-06-03 2011-10-19 谢逢华 传导散热的节能电机
WO2013152473A1 (en) * 2012-04-10 2013-10-17 General Electric Company System and method for cooling an electric motor
EP2752976A2 (de) * 2013-01-08 2014-07-09 Hamilton Sundstrand Corporation Verbesserte Kühlung von umschlossenen, luftgekühlten Hochleistungsmotoren
EP2774853A1 (de) * 2013-03-07 2014-09-10 Siemens Aktiengesellschaft Antriebsgondel für ein Flugzeug
WO2015078730A1 (de) * 2013-11-26 2015-06-04 Siemens Aktiengesellschaft Einrichtung mit elektrischer maschine in leichtbauweise
WO2015106993A1 (de) 2014-01-15 2015-07-23 Siemens Aktiengesellschaft Redundantes antriebssystem
WO2015128121A1 (de) 2014-02-27 2015-09-03 Siemens Aktiengesellschaft Verfahren zum betrieb eines mit einem generator gekoppelten verbrennungsmotors und vorrichtung zur durchführung des verfahrens
WO2017025224A1 (de) 2015-08-07 2017-02-16 Siemens Aktiengesellschaft Antriebssystem und verfahren zum antreiben eines vortriebsmittels eines fahrzeugs, unter verwendung kryogener kühlung
DE102016206909A1 (de) 2016-04-22 2017-10-26 Siemens Aktiengesellschaft Antriebsaggregatkomponente
DE102016218741A1 (de) 2016-09-28 2018-03-29 Siemens Aktiengesellschaft Elektrische Maschine mit verbesserter Kühlung

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009405A (en) * 1975-08-07 1977-02-22 General Electric Company Vertically mountable dynamoelectric machine having an improved ventilating coolant flow control structures
FI96590B (fi) * 1992-09-28 1996-04-15 Kvaerner Masa Yards Oy Laivan propulsiolaite
US7342332B2 (en) * 2004-09-22 2008-03-11 Hamilton Sundstrand Corporation Air bearing and motor cooling
JP4461180B2 (ja) * 2004-09-22 2010-05-12 ハミルトン・サンドストランド・コーポレイション モーター冷却経路およびスラストベアリング負荷設計
US9143023B1 (en) * 2010-05-17 2015-09-22 Richard Christopher Uskert Electromagnetic propulsive motor
CN103004062B (zh) * 2010-07-28 2015-08-26 三菱电机株式会社 全封闭外扇型电动机
AT510446B1 (de) * 2010-11-18 2012-04-15 Avl List Gmbh Elektrische maschine
EP2930314B1 (de) * 2014-04-08 2022-06-08 Rolls-Royce Corporation Generator mit gesteuertem luftkühlungsverstärker
EP2949574B1 (de) * 2014-05-30 2018-07-11 ABB Schweiz AG Pod-Antriebseinheit eines Schiffs
WO2015185305A1 (en) * 2014-06-03 2015-12-10 Rolls-Royce Ab Pod propulsion device and a method for cooling such
US9376953B2 (en) * 2014-06-25 2016-06-28 Aai Corporation Forced air blower bypass system
PL3213995T3 (pl) * 2014-10-27 2019-12-31 Guangzhou Xaircraft Technology Co., Ltd. Struktura rozpraszająca ciepło dla silnika wiropłatu
US10676205B2 (en) * 2016-08-19 2020-06-09 General Electric Company Propulsion engine for an aircraft
DE102017212798A1 (de) * 2017-07-26 2019-01-31 Siemens Aktiengesellschaft Elektromotor mit Kühleinrichtung
DE102017218865A1 (de) * 2017-10-23 2019-04-25 Audi Ag Elektrische Maschine und Kraftfahrzeug
US10752373B2 (en) * 2017-11-16 2020-08-25 Textron Innovation Inc. Air management systems for stacked motor assemblies
DE102017220941A1 (de) * 2017-11-23 2019-05-23 Siemens Aktiengesellschaft Elektrische Maschine mit erhöhter Betriebssicherheit
US10443620B2 (en) * 2018-01-02 2019-10-15 General Electric Company Heat dissipation system for electric aircraft engine
US10608505B1 (en) * 2018-02-09 2020-03-31 Wisk Aero Llc Cooling motor controller with a motor with duct
GB201807773D0 (en) * 2018-05-14 2018-06-27 Rolls Royce Plc Aircraft propulsion system
US10784750B2 (en) * 2018-06-12 2020-09-22 General Electric Company Electric motor having an integrated cooling system and methods of cooling an electric motor
EP3807977A4 (de) * 2018-06-15 2022-06-29 Indigo Technologies, Inc. Abgedichteter axialflussmotor mit integrierter kühlung
FR3089496B1 (fr) * 2018-12-05 2021-02-19 Airbus Operations Sas Groupe propulseur d’aéronef à ingestion de couche limite comportant un moteur électrique et un système de refroidissement en partie disposé dans le cône de sortie
BR112021023033A2 (pt) * 2019-05-16 2022-01-25 Duxion Motors Inc Sistema de propulsão de aeronaves elétricas
US10967983B2 (en) * 2019-06-05 2021-04-06 Pratt & Whitney Canada Corp. Aircraft power plant
US11047251B2 (en) * 2019-07-17 2021-06-29 Rolls-Royce Corporation Routing for electrical communication in gas turbine engines
US11258333B2 (en) * 2019-07-29 2022-02-22 Aurora Flight Sciences Corporation Propulsor system with integrated passive cooling
JP7331598B2 (ja) * 2019-09-30 2023-08-23 日本電気株式会社 マルチローターヘリコプタ及びマルチローターヘリコプタにおける冷却方法
DE102019219573A1 (de) * 2019-12-13 2021-06-17 Rolls-Royce Deutschland Ltd & Co Kg Stromrichterkühlung in der Luftfahrt
US11002146B1 (en) * 2020-10-26 2021-05-11 Antheon Research, Inc. Power generation system

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1700840A (en) * 1928-05-07 1929-02-05 Frazer W Gay Heat-transfer means for closed rotating electrical machinery
US3715610A (en) * 1972-03-07 1973-02-06 Gen Electric Dynamoelectric machine cooled by a rotating heat pipe
JPS5747865U (de) * 1980-09-03 1982-03-17
EP0387743A1 (de) * 1989-03-16 1990-09-19 Gec Alsthom Moteurs Sa Geschlossener, luftgekühlter elektrischer Motor und Verfahren zu seiner Herstellung
CN1025450C (zh) * 1989-08-11 1994-07-13 北京市西城新开通用试验厂 一种动力机的冷却装置
WO2004030183A1 (de) * 2002-09-24 2004-04-08 Siemens Aktiengesellschaft Elektrische maschine mit einer kühleinrichtung
WO2005062444A1 (fr) * 2003-12-19 2005-07-07 Telma Ralentisseur electromagnetique comportant des moyens pour assurer une ventilation
US20100026109A1 (en) * 2006-06-19 2010-02-04 Thermal Motor Innovations, Llc Electric motor with heat pipes
US20100033042A1 (en) * 2008-08-06 2010-02-11 Thermal Motor Innovations , LLC Totally enclosed heat pipe cooled motor
US20100295391A1 (en) * 2009-05-19 2010-11-25 Ford Global Technologies, Llc Cooling System And Method For An Electric Motor
CN102223010A (zh) * 2011-06-03 2011-10-19 谢逢华 传导散热的节能电机
WO2013152473A1 (en) * 2012-04-10 2013-10-17 General Electric Company System and method for cooling an electric motor
EP2752976A2 (de) * 2013-01-08 2014-07-09 Hamilton Sundstrand Corporation Verbesserte Kühlung von umschlossenen, luftgekühlten Hochleistungsmotoren
EP2774853A1 (de) * 2013-03-07 2014-09-10 Siemens Aktiengesellschaft Antriebsgondel für ein Flugzeug
WO2015078730A1 (de) * 2013-11-26 2015-06-04 Siemens Aktiengesellschaft Einrichtung mit elektrischer maschine in leichtbauweise
WO2015106993A1 (de) 2014-01-15 2015-07-23 Siemens Aktiengesellschaft Redundantes antriebssystem
WO2015128121A1 (de) 2014-02-27 2015-09-03 Siemens Aktiengesellschaft Verfahren zum betrieb eines mit einem generator gekoppelten verbrennungsmotors und vorrichtung zur durchführung des verfahrens
WO2017025224A1 (de) 2015-08-07 2017-02-16 Siemens Aktiengesellschaft Antriebssystem und verfahren zum antreiben eines vortriebsmittels eines fahrzeugs, unter verwendung kryogener kühlung
DE102016206909A1 (de) 2016-04-22 2017-10-26 Siemens Aktiengesellschaft Antriebsaggregatkomponente
DE102016218741A1 (de) 2016-09-28 2018-03-29 Siemens Aktiengesellschaft Elektrische Maschine mit verbesserter Kühlung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020207862A1 (fr) * 2019-04-12 2020-10-15 Safran Propulseur d'aeronef
EP3879680A1 (de) * 2020-03-13 2021-09-15 Hamilton Sundstrand Corporation Motoranordnung

Also Published As

Publication number Publication date
US11271455B2 (en) 2022-03-08
US20200144894A1 (en) 2020-05-07
DE102017212798A1 (de) 2019-01-31
DE112018003826A5 (de) 2020-04-16

Similar Documents

Publication Publication Date Title
WO2019020684A1 (de) Elektromotor mit kühleinrichtung
DE112008002978T5 (de) Elektromotor und Antriebsvorrichtung
DE112011100218T5 (de) Drehende Elektromaschine
WO2018172033A1 (de) Synchrone reluktanzmaschine
DE102016218741B4 (de) Elektrische Maschine mit verbesserter Kühlung
DE102014224476A1 (de) Elektrische Antriebseinheit, Hybridantriebseinrichtung und Fahrzeug
EP2930827B1 (de) Elektrische Maschine mit Strömungskühlung
WO2015086355A1 (de) Aufladevorrichtung für einen verbrennungsmotor eines kraftfahrzeugs und verfahren zur herstellung der aufladevorrichtung
EP2939331A2 (de) Elektrische maschine mit ständerdirektkühlung
DE60118124T2 (de) Permanentmagnetmotor-generator mit Spamumgsstabilisator
DE102013205623A1 (de) Turboladereinheit und Verfahren zum Betrieb einer Turboladereinheit
DE112016006235T5 (de) Elektrische Rotationsmaschine mit verbesserter Kühlung
DE3313747A1 (de) Elektrische maschine
DE102021101408A1 (de) Elektrische maschine, antriebssystem und dessen verwendung
DE102017105891A1 (de) Drehende elektrische Maschine
WO2020207861A1 (de) Statorzahn mit asymmetrischer zahngeometrie
DE102016207428A1 (de) Antriebssystem zum individuellen Antreiben von Einzelpropellern eines Doppelpropellers
EP3736943A1 (de) Drehende mehrphasen-transversalflussmaschine
DE102012022152A1 (de) Elektrische Maschine und Rotor für eine elektrische Maschine
EP2319164B1 (de) Rotor für eine elektrische maschine mit reduziertem rastmoment
EP2891237B1 (de) Kontaktkommutierter elektromotor
DE102017215269A1 (de) Elektromotor, Antriebssystem und Verfahren zum Antreiben von Einzelpropellern eines Doppelpropellersystems
DE102013009677B4 (de) Antriebseinheit für ein Luftfahrzeug
WO2023061525A1 (de) Rotor, verfahren zur herstellung eines rotors und elektrische maschine
DE102020007189A1 (de) Elektromotor mit Luftlagerung, integriertem Ringpropeller und Ringwicklung mit Statorinnenkühlung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753077

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112018003826

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18753077

Country of ref document: EP

Kind code of ref document: A1