WO2019020058A1 - 车辆、车辆定位方法及车载设备 - Google Patents

车辆、车辆定位方法及车载设备 Download PDF

Info

Publication number
WO2019020058A1
WO2019020058A1 PCT/CN2018/097079 CN2018097079W WO2019020058A1 WO 2019020058 A1 WO2019020058 A1 WO 2019020058A1 CN 2018097079 W CN2018097079 W CN 2018097079W WO 2019020058 A1 WO2019020058 A1 WO 2019020058A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
transceiver module
signal
timestamp
timestamp signal
Prior art date
Application number
PCT/CN2018/097079
Other languages
English (en)
French (fr)
Inventor
王文松
王发平
周全
车广新
李波波
周清
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2019020058A1 publication Critical patent/WO2019020058A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves

Definitions

  • the present invention relates to the field of vehicle engineering technologies, and in particular, to a vehicle, a vehicle positioning method, and an in-vehicle device.
  • the positioning technology and communication technology of vehicles in the urban rail transit signal system are the core key technologies, especially the positioning technology of the vehicle is related to controlling the driving safety and safe operation of the vehicle.
  • Radio Frequency Identification RFID
  • multiple transponders are installed on both sides of the track, and a transponder transmission unit (Balise Transmission) is installed at the bottom of the vehicle.
  • BTM Radio Frequency Identification
  • the transponders mounted on both sides of the track are read by the pre-fabricated data transmitted by the electromagnetic waves to locate the position of the vehicle.
  • the communication of the vehicle is performed by using an in-vehicle wireless access point (AP) installed on the vehicle and a plurality of APs beside the track, through a wireless local area network (WLAN) or a long term evolution (Long Term Evolution, Referring to the LTE network, a communication link is established, and a plurality of APs beside the track are composed of optical communication cables to form a trackside network.
  • a trackside network composed of a plurality of APs beside the track is connected to the control center, and the control center establishes a communication link with the vehicle to unify the position data of each vehicle, thereby realizing the positioning of the distance between the vehicle and the vehicle.
  • the prior art has at least the following drawbacks: the positioning mode of the vehicle is limited to the number of transponders installed beside the track, and the position of the vehicle cannot be sensed in real time.
  • the communication between the vehicles is usually after the vehicle and the control center establish a link, and the control center Interacting data with each vehicle to inform the position information of the front and rear vehicles is easily affected by the delay of network communication.
  • the position between the vehicle and the vehicle cannot be updated in real time, resulting in low positioning accuracy and poor timeliness, affecting the whole. Operational efficiency.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • a first object of the present invention is to provide a vehicle for achieving a positioning accuracy of improving the position between the vehicle and the vehicle, thereby improving timeliness and overall operational efficiency.
  • a second object of the present invention is to provide a vehicle positioning method.
  • a third object of the present invention is to provide an in-vehicle device.
  • a fourth object of the present invention is to provide a non-transitory computer readable storage medium.
  • a fifth object of the present invention is to provide a computer program product.
  • a first aspect of the present invention provides a vehicle including: a calculation module and a head transceiver module mounted at a vehicle head position.
  • the vehicle head transceiver module is configured to send a first timestamp signal, and receive a second timestamp signal sent by the taillight transceiver module of the preceding vehicle after receiving the first timestamp signal; wherein the first timestamp The signal includes a transmission time of the first timestamp signal and an identifier of the front-end transceiver module, the second timestamp signal including a transmission time of the second timestamp signal and a tail-end transceiver module of the preceding vehicle Logo.
  • the calculating module is configured to calculate, according to a sending time of the second timestamp signal and a sending time of the first timestamp signal, between the first front-end transceiver module and a tail-end transceiver module of the preceding vehicle a first distance and the first distance is used as a distance between the vehicle and the preceding vehicle.
  • the vehicle of the embodiment of the present invention transmits the second time stamp signal according to the time when the first time stamp signal is transmitted by the front end transceiver module installed at the front position of the vehicle, and the rear end transceiver module of the preceding vehicle receives the first time stamp signal.
  • Time that is, the time when the signal reaches the tail transceiver module of the preceding vehicle, and the distance between the vehicle and the preceding vehicle is calculated, so that the position between the vehicle and the vehicle can be updated in real time, and the position between the vehicle and the vehicle is improved.
  • Positioning accuracy which improves timeliness and overall operational efficiency.
  • the second aspect of the present invention provides a vehicle positioning method, including:
  • the front end transceiver module of the control vehicle transmits a first time stamp signal, and receives a second time stamp signal sent by the tail transceiver module of the preceding vehicle after receiving the first time stamp signal; wherein the front end transceiver module is installed at a front end position of the vehicle, the rear end transceiver module is installed at a rear end position of the vehicle, and the first time stamp signal includes a sending time of the first time stamp signal and an identifier of the front end transceiver module.
  • the second timestamp signal includes a sending time of the second timestamp signal and an identifier of a tailgate transceiver module of the preceding vehicle;
  • the vehicle positioning method transmits a second time stamp according to the time when the first time stamp signal is transmitted by the front end transceiver module installed at the front position of the vehicle, and the rear end transceiver module of the preceding vehicle receives the first time stamp signal.
  • the time of the signal that is, the time when the signal reaches the tail transceiver module of the preceding vehicle, calculates the distance between the vehicle and the vehicle in front, so that the position between the vehicle and the vehicle can be updated in real time, thereby improving the relationship between the vehicle and the vehicle. Positioning accuracy of the location, which in turn improves timeliness and overall operational efficiency.
  • an embodiment of a third aspect of the present invention provides an in-vehicle device, comprising: a memory, a processor, and a computer program stored on the memory and operable on the processor, wherein The processor executes the program for implementing the vehicle positioning method proposed by the second aspect of the present invention.
  • a fourth aspect of the present invention provides a non-transitory computer readable storage medium having stored thereon a computer program, wherein the program is executed by a processor for implementing the present invention.
  • a fifth aspect of the present invention provides a computer program product, which implements a vehicle positioning method according to an embodiment of the second aspect of the present invention when an instruction in the computer program product is executed by a processor.
  • FIG. 1 is a schematic structural view of a vehicle according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of interaction of time stamp signals between the vehicle shown in FIG. 1 and a vehicle in front and a vehicle in the rear;
  • 3 is a schematic diagram of a logic 1 state of transmitting and receiving signals
  • FIG. 4 is a schematic diagram of a logic 0 state of transmitting and receiving signals
  • FIG. 5 is a schematic structural diagram of a transceiver module
  • FIG. 6 is a schematic structural diagram of a relay module
  • FIG. 7 is a schematic diagram of a conventional data frame format
  • FIG. 8 is a schematic diagram showing interaction of a time stamp signal between a vehicle and a preceding vehicle and a rear vehicle according to another embodiment of the present invention.
  • FIG. 9 is a schematic flow chart of a vehicle positioning method according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a vehicle according to an embodiment of the present invention.
  • 2 is a schematic diagram showing an example of time stamp signal interaction between the vehicle shown in FIG. 1 and a preceding vehicle and a rear vehicle.
  • the vehicle 10 includes a calculation module 11 and a first head transceiver module 12 mounted at a front end of the vehicle 10.
  • the first head transceiver module 12 is configured to send a first timestamp signal, and receive a second timestamp signal sent by the second tail transceiver module 22 of the preceding vehicle 20 after receiving the first timestamp signal; wherein, the first time The stamp signal includes a transmission time T1 of the first timestamp signal and an identification of the first head transceiver module 12, and the second timestamp signal includes a transmission time T2 of the second timestamp signal and an identification of the second tail transceiver module 22. That is, the first head transceiver module 12 is configured to transmit a first timestamp signal to the second tail transceiver module 22 of the preceding vehicle 20, and receive the first timestamp at the second tail transceiver module 22 of the preceding vehicle 20. After the signal, the second timestamp signal transmitted by the second tail transceiver module 22 of the preceding vehicle 20 is received.
  • the calculating module 11 is configured to calculate a first distance S1 between the first head transceiver module 12 and the second tail transceiver module 22 according to the sending time T2 of the second time stamp signal and the sending time T1 of the first time stamp signal, and The first distance S1 is taken as the distance L1 between the vehicle 10 and the preceding vehicle 20.
  • the vehicle 10 may also include a first tail transceiver module 13 mounted at the rear end of the vehicle 10.
  • the first tail transceiver module 13 is configured to send a fourth timestamp signal after receiving the third timestamp signal sent by the third head transceiver module 31 of the rear vehicle 30; wherein the third timestamp signal includes a third timestamp
  • the third timestamp signal includes a third timestamp
  • the fourth timestamp signal includes the transmission time T4 of the fourth timestamp signal and the identifier of the first tail transceiver module 13.
  • the vehicle 10 is a current vehicle, and the first head transceiver module 12 is mounted at the front position, and the first tail transceiver module 13 is mounted at the rear position.
  • the front vehicle 20 has the same structure, the second front end transceiver module 21 is mounted at the front end position, and the second rear end transceiver module 22 is mounted at the rear end position.
  • the rear vehicle 30 also has the same structure, the third head transceiver module 31 is mounted at the front position, and the third tail transceiver module 32 is mounted at the rear position.
  • the first, second, and third uses are for illustrative purposes only and are not intended to illustrate the differences in the head transceiver module or the tail transceiver module of different vehicles.
  • the position of the front-end transceiver module can be compared or set to the position of the front end, and the position of the rear-end transceiver module can be compared or set to the position of the rear end, that is, the relative position of the front-end transceiver module and the rear-end transceiver module or both.
  • the distance is a long amount that can be compared or set to the length of the vehicle.
  • the distance between the first head transceiver module 12 and the first tail transceiver module 13 can be compared or set to the length LT of the vehicle 10.
  • the identifier of the transceiver module in each timestamp signal is used to uniquely identify which vehicle is transmitting the timestamp signal, whether it is the transceiver module of the front end or the transceiver module of the rear end, and may be, for example, identity ID information.
  • each transceiver module sends a timestamp signal, it can generate a timestamp signal by means of spectrum coding. After receiving the timestamp signal, the time code of the timestamp signal and the identifier of the transceiver module are also calculated by spectrum coding. .
  • the spectrum coding is coded according to the power level of the spectrum, and the noise floor is set as the starting value, which is higher than the noise floor 3dB, marked as H, and the noise floor is relatively low, marked as L, as shown in Figure 3.
  • the transmitting parts of each transceiver module are low frequency signals FLLTX and FLRTX, and the FLLTX and FLRTX transmission signals are left and right narrowband pulses, which are 10KHz narrowband pulse signals, separated by 1 MHz.
  • each transceiver module When the spectrum of the left and right narrowband pulses is high (L) logic, it is marked as transmitting logic 1, and when the narrowband pulse spectrum is low (LH) logic, it is marked as transmitting logic 0.
  • the receiving parts of each transceiver module are high frequency signals FHLRX and FHRRX, and the FHLRX and FHRRX transmission signals are left and right narrowband pulses, which are 10KHz narrowband pulse signals, which are separated by 1 MHz.
  • the spectrum of the left and right narrowband pulses is received as high (low) (HL) logic, it is labeled as receive logic 1, and when the receive narrowband pulse spectrum is low (LH) logic, it is marked as receive logic 0.
  • the high frequency signal and the low frequency signal need to be separated by more than 10 MHz.
  • the scheme utilizes the electromagnetic wave power spectrum coding method, and uses a relatively wide power range as a logic coding mode, and simultaneously transmits and receives pulse signals of different frequencies as logical information, thereby effectively avoiding
  • each time stamp signal transmitted by each transceiver module of the vehicle 10 can be transmitted to each transceiver module of the front vehicle 20 and each transceiver module of the rear vehicle 30 through the conductor cable 15 beside the track.
  • the conductor cable 15 next to the track may specifically be an existing conductor hard wire network such as an existing power line or a power collecting rail adjacent to the track, or an ordinary conductor line laid.
  • each transceiver module such as the first head transceiver module 12 and the first tail transceiver module 13 of the vehicle 10, may specifically include a transceiver unit 51, a low frequency transmitting antenna 52, and a high frequency receiving antenna 53.
  • the transceiver unit 51 transmits each time stamp signal through the low frequency transmitting antenna 52, and receives each time stamp signal through the high frequency receiving antenna 53.
  • Both the low frequency transmitting antenna 52 and the high frequency receiving antenna 53 are directional antennas that can be mounted on the bottom or side of the vehicle 10, facing the conductor cable 15 beside the track.
  • the vertical distance between the directional antenna and the conductor cable 15 is between 0.5 and 2 meters. Thereby, efficient reception or transmission of the radio signal can be ensured.
  • each time stamp signal sent by each transceiver module of the vehicle 10 can be transmitted to the front vehicle 20 through the conductor cable 15 beside the track and the relay module 16 installed in the conductor cable.
  • Each transceiver module and each transceiver module of the rear vehicle 30 can be transmitted to the front vehicle 20 through the conductor cable 15 beside the track and the relay module 16 installed in the conductor cable.
  • Each transceiver module and each transceiver module of the rear vehicle 30 can be transmitted to the front vehicle 20 through the conductor cable 15 beside the track and the relay module 16 installed in the conductor cable.
  • the relay module 16 may specifically include a relay unit 161 and a coupling antenna 162.
  • the relay unit 161 is coupled to the conductor cable 15 beside the track by the coupling antenna 162, and is in the conductor cable 15
  • the transmitted signal is amplified. For example, it is set at 1km when the station spacing exceeds 1km, and is used to amplify the signal when the distance between the vehicle and the vehicle is too far.
  • the relay module 16 can measure the power of the signal, amplify the signal when the signal is lower than the threshold, and superimpose the new distance information, enter the sleep mode when the signal is higher than the threshold, and not amplify and change the signal. Power intensity.
  • the amplifying signal and the measuring signal of the relay module 16 are mainly coupled and coupled by the coupling antenna 162 without destroying the connection and structure of the original line, that is, the conductor cable 15 beside the track.
  • first head transceiver module 12 and the first tail transceiver module 13 of the vehicle 10 may be further configured to: transmit a first communication signal, and receive a second transmission by each transceiver module of the preceding vehicle 20 and each transceiver module of the rear vehicle 30.
  • the communication signal may specifically be a data frame mode, such as the conventional data frame format shown in FIG. 7, by a frame header, a vehicle identification ID, a data length, data (such as data describing operation and location information), and a check digit. And the end bit is composed.
  • the first head transceiver module 12 installed at the front position transmits a first time stamp signal (including the transmission time T1 of the first time stamp signal and the identification of the first head transceiver module 12).
  • the second tail transceiver module 22 of the preceding vehicle 20 resolves the transmission time T1 of the first timestamp signal according to the spectrum coding, and simultaneously transmits the second timestamp signal (including the second time).
  • the transmission time T2 of the stamp signal and the identification of the second tail transceiver module 22 After receiving the second timestamp signal, the first head transceiver module 12 solves the transmission time T2 of the second timestamp signal according to the spectrum coding.
  • the calculation module 11 according to the transmission time T2 of the second timestamp signal (ie, the time when the first timestamp signal reaches the second tail transceiver module 22 of the preceding vehicle), the transmission time T1 of the first timestamp signal, and the transmission of the timestamp signal
  • the rate ie, the transmission rate of the electromagnetic wave
  • the vehicle 10 can control its own traveling speed according to the distance L1 between itself and the preceding vehicle 20.
  • the first tail transceiver module 13 in the vehicle 10 has a similar function to the second tail transceiver module 22 in the front vehicle 20, specifically: the first tail transceiver module 13 is receiving the rear vehicle 30.
  • the third timestamp signal is sent according to the spectrum coding solution.
  • the fourth timestamp signal (including the transmission time T4 of the fourth timestamp signal and the identifier of the first tail transceiver module 13) is simultaneously transmitted for the third head transceiver module 31 of the rear vehicle 30 to receive, and then calculated.
  • the transmission time T4 of the fourth timestamp signal, the calculation module in the rear vehicle 30 calculates the third head transceiver according to the transmission time T4 of the fourth timestamp signal, the transmission time T3 of the third timestamp signal, and the transmission rate of the electromagnetic wave.
  • the second distance S2 between the module 32 and the first tail transceiver module 13 and the second distance S2 is taken as the distance L2 between the vehicle 10 and the rear vehicle 30.
  • the rear vehicle 30 can control its own traveling speed according to the distance L2 between itself and the vehicle 10.
  • the second time stamp is sent according to the time when the first head transceiver module installed at the front position of the vehicle sends the first time stamp signal, and the second tail transceiver module of the preceding vehicle receives the first time stamp signal.
  • the time of the signal that is, the time when the signal reaches the second tail transceiver module of the preceding vehicle, calculates the distance between the vehicle and the preceding vehicle, so that the position between the vehicle and the vehicle can be updated in real time, thereby improving the vehicle and the vehicle.
  • the positioning accuracy of the position between the two increases the timeliness and overall operational efficiency.
  • FIG. 8 is a schematic diagram of time stamp signal interaction between a vehicle and a preceding vehicle and a rear vehicle according to another embodiment of the present invention.
  • the first head transceiver module 12 is further configured to: after receiving the second timestamp signal, send a fifth timestamp signal; wherein, the fifth timestamp signal The transmission time T5 of the fifth time stamp signal and the identification of the first head transceiver module 12 are included.
  • the first tail transceiver module 13 is further configured to: receive a sixth timestamp signal sent by the third head transceiver module 31 after receiving the fourth timestamp signal; wherein the sixth timestamp signal includes the sixth timestamp signal The time T6 and the identification of the third head transceiver module 31 are transmitted.
  • the calculation module 11 is further configured to calculate a second distance S2 between the first tail transceiver module 13 and the third head transceiver module 31 according to the transmission time T6 of the sixth time stamp signal and the transmission time T4 of the fourth time stamp signal. And the second distance S2 is taken as the distance L2 between the vehicle and the rear vehicle.
  • the third head transceiver module 31 of the rear vehicle 30 receives the fourth timestamp signal sent by the first tail transceiver module 13 (including the transmission time T4 of the fourth timestamp signal and the first tail transceiver module 13).
  • the transmission time T4 of the fourth timestamp signal is calculated according to the spectrum coding
  • the sixth timestamp signal (including the transmission time T6 of the sixth timestamp signal and the identifier of the third head transceiver module 31) is simultaneously transmitted.
  • the first tail transceiver module 13 of the vehicle 10 calculates the transmission time T6 of the sixth timestamp signal according to the spectrum coding solution.
  • the calculation module 11 is based on the transmission time T6 of the sixth time stamp signal (ie, the time when the fourth time stamp signal reaches the third head transceiver module 31 of the rear vehicle), the transmission time T4 of the fourth time stamp signal, and the transmission rate of the time stamp signal. (ie, the transmission rate of the electromagnetic wave), the second distance S2 between the first tail transceiver module 13 and the third head transceiver module 31 is calculated, and the second distance S2 is taken as the distance L2 between the vehicle and the rear vehicle.
  • the vehicle 10 can control its own traveling speed according to the distance L2 between itself and the rear vehicle 30.
  • the first head transceiver module 12 in the vehicle 10 has a similar function to the third head transceiver module 31 in the rear vehicle 30. Specifically, the first head transceiver module 12 receives the second vehicle of the preceding vehicle 20 After the second timestamp signal sent by the tail sending module 22 (including the sending time T2 of the second timestamp signal and the identifier of the second tail transceiver module 22), the sending time of the second timestamp signal is calculated according to the spectrum encoding.
  • the transmission time T5 of the fifth time stamp signal the calculation module in the front vehicle 20 calculates the second tail transceiver according to the transmission time T5 of the fifth time stamp signal, the transmission time T2 of the second time stamp signal, and the transmission rate of the electromagnetic wave.
  • the first distance S1 between the module 32 and the first head transceiver module 12 is the first distance S1 as the distance L1 between the vehicle 10 and the preceding vehicle 20.
  • the preceding vehicle 20 can control its own traveling speed according to the distance L1 between itself and the vehicle 10.
  • the method may be configured to: send a seventh timestamp signal, and receive an eighth timestamp signal sent by the second tail transceiver module 22 after receiving the seventh timestamp signal; wherein the seventh timestamp signal includes a seventh timestamp signal
  • the eighth timestamp signal includes the sending time T8 of the eighth timestamp signal and the identifier of the second tail transceiver module 22.
  • the first tail transceiver module 13 is further configured to: after receiving the ninth timestamp signal sent by the third tail transceiver module 32 of the rear vehicle 30, send a tenth timestamp signal; wherein, the ninth timestamp The signal includes a transmission time T9 of the ninth timestamp signal and an identification of the third tail transceiver module 32.
  • the tenth timestamp signal includes a transmission time T10 of the tenth timestamp signal and an identification of the first tail transceiver module 13.
  • the calculation module 11 is further configured to calculate a third between the first tail transceiver module 13 and the second tail transceiver module 32 according to the transmission time T8 of the eighth time stamp signal and the transmission time T7 of the seventh time stamp signal.
  • the distance S3 is corrected according to the difference between the third distance S3 and the first distance S1 and the length LT of the vehicle, and the corrected first distance S1' is taken as between the vehicle 10 and the preceding vehicle 20.
  • the third distance S3 between the first tail transceiver module 13 and the second tail transceiver module 32 is calculated, and ideally, the difference S3 between the third distance S3 and the first distance S1 is obtained.
  • -S1 should be equal to the length LT of the vehicle 10, but in practice, it is not equal, so the first distance S1 needs to be corrected according to the length LT of the vehicle.
  • the calculated second distance S2 between the first tail transceiver module 13 and the third head transceiver module 31 is not accurate enough, so the following scheme can be used to correct the first tail transceiver module 12: For transmitting an eleventh timestamp signal, and receiving a twelfth timestamp signal sent by the third head transceiver module 31 after receiving the eleventh timestamp signal; wherein the eleventh timestamp signal includes the eleventh The transmission time T11 of the time stamp signal and the identifier of the first head transceiver module 12, the twelve time stamp signal includes the transmission time T12 of the twelfth timestamp signal and the identifier of the third head transceiver module 31.
  • the first head transceiver module 12 is further configured to: after receiving the thirteenth timestamp signal sent by the second head transceiver module 21 of the preceding vehicle 20, send the fourteenth timestamp signal; wherein, the thirteenth time The stamp signal includes a transmission time T13 of the thirteenth timestamp signal and an identification of the second head transceiver module 21, and the fourteenth timestamp signal includes a transmission time T14 of the fourteenth timestamp signal and an identification of the first head transceiver module 12.
  • the calculation module 11 is further configured to calculate a fourth between the first head transceiver module 12 and the third head transceiver module 31 according to the transmission time T12 of the twelfth timestamp signal and the transmission time T11 of the eleventh timestamp signal.
  • the distance S4 is corrected according to the difference between the fourth distance S4 and the second distance S2 and the length LT of the vehicle, and the corrected second distance S2' is taken as between the vehicle 10 and the rear vehicle 30. distance.
  • the fourth distance S4 between the first head transceiver module 12 and the third head transceiver module 31 is calculated, and ideally, the difference S4-S2 between the fourth distance S4 and the second distance S2 is calculated. It should be equal to the length LT of the vehicle 10, but in practice, it is not equal, so the second distance S2 needs to be corrected according to the length LT of the vehicle.
  • the second time stamp is sent according to the time when the first head transceiver module installed at the front position of the vehicle sends the first time stamp signal, and the second tail transceiver module of the preceding vehicle receives the first time stamp signal.
  • the time of the signal that is, the time when the signal reaches the second tail transceiver module of the preceding vehicle, calculates the distance between the vehicle and the preceding vehicle, so that the position between the vehicle and the vehicle can be updated in real time, thereby improving the vehicle and the vehicle.
  • the positioning accuracy of the position between the two increases the timeliness and overall operational efficiency.
  • FIG. 9 is a schematic flow chart of a vehicle positioning method according to an embodiment of the present invention. As shown in FIG. 9, the vehicle positioning method specifically includes:
  • the first head transceiver module that controls the vehicle sends the first timestamp signal, and receives the second timestamp signal sent by the second tail transceiver module of the preceding vehicle after receiving the first timestamp signal.
  • the first timestamp signal includes a sending time of the first timestamp signal and an identifier of the first head transceiver module
  • the second timestamp signal includes a sending time of the second timestamp signal and an identifier of the second tail transceiver module.
  • the first tail transceiver module of the control vehicle sends the fourth time after receiving the third time stamp signal sent by the third head transceiver module of the rear vehicle.
  • Stamp signal includes a sending time of the third timestamp signal and an identifier of the third head transceiver module
  • the fourth timestamp signal includes a sending time of the fourth timestamp signal and an identifier of the first tail transceiver module.
  • the second time stamp is sent according to the time when the first head transceiver module installed at the front position of the vehicle sends the first time stamp signal, and the second tail transceiver module of the preceding vehicle receives the first time stamp signal.
  • the time of the signal that is, the time when the signal reaches the second tail transceiver module of the preceding vehicle, calculates the distance between the vehicle and the preceding vehicle, so that the position between the vehicle and the vehicle can be updated in real time, thereby improving the vehicle and the vehicle.
  • the positioning accuracy of the position between the two increases the timeliness and overall operational efficiency.
  • an embodiment of the present invention further provides a possible implementation manner of a vehicle positioning method.
  • the vehicle positioning method may further include:
  • the fifth timestamp signal includes a sending time of the fifth timestamp signal and an identifier of the first head transceiver module;
  • the vehicle positioning method may further include:
  • the ninth timestamp signal includes sending the ninth timestamp signal
  • the time and the identifier of the third tail transceiver module, the tenth timestamp signal includes a transmission time of the tenth timestamp signal and an identifier of the first tail transceiver module;
  • the value and the length of the vehicle are corrected for the first distance, and the corrected first distance is taken as the distance between the vehicle and the preceding vehicle.
  • the vehicle positioning method may further include:
  • the first head transceiver module Controlling the first head transceiver module to transmit the thirteenth timestamp signal after receiving the thirteenth timestamp signal sent by the second head transceiver module of the preceding vehicle; wherein the thirteenth timestamp signal includes the thirteenth timestamp signal
  • the sending time and the identifier of the second head transceiver module, the fourteenth timestamp signal includes a sending time of the fourteenth timestamp signal and an identifier of the first head transceiver module;
  • the value and the length of the vehicle are corrected for the second distance, and the corrected second distance is used as the distance between the vehicle and the rear vehicle.
  • the second time stamp is sent according to the time when the first head transceiver module installed at the front position of the vehicle sends the first time stamp signal, and the second tail transceiver module of the preceding vehicle receives the first time stamp signal.
  • the time of the signal that is, the time when the signal reaches the second tail transceiver module of the preceding vehicle, calculates the distance between the vehicle and the preceding vehicle, so that the position between the vehicle and the vehicle can be updated in real time, thereby improving the vehicle and the vehicle.
  • the positioning accuracy of the position between the two increases the timeliness and overall operational efficiency.
  • the present invention also provides an in-vehicle device including a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor executing a program for implementing the vehicle positioning method described above.
  • the present invention also provides a non-transitory computer readable storage medium having stored thereon a computer program, characterized in that the program is executed by a processor for implementing the above-described vehicle positioning method.
  • the present invention also provides a computer program product that implements the above-described vehicle positioning method when instructions in the computer program product are executed by the processor.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware and in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: discrete with logic gates for implementing logic functions on data signals Logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), and the like.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明提出一种车辆、车辆定位方法及车载设备,其中,车辆包括:计算模块和安装在车辆车头位置的车头收发模块;车头收发模块发送第一时间戳信号,并接收前方车辆的车尾收发模块发送的第二时间戳信号;计算模块根据第二时间戳信号的发送时间和第一时间戳信号的发送时间,计算车头收发模块与前方车辆的车尾收发模块之间的第一距离,并作为车辆与前方车辆之间的距离。本发明提出的车辆、车辆定位方法及车载设备,提高了车辆与车辆之间的位置的定位精度,进而提高了时效性和整体的运营效率。

Description

车辆、车辆定位方法及车载设备
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2017年7月28日提交的、发明名称为“车辆、车辆定位方法及车载设备”的、中国专利申请号“201710633620.2”的优先权,其全文通过参考引用于此。
技术领域
本发明涉及车辆工程技术领域,尤其涉及一种车辆、车辆定位方法及车载设备。
背景技术
城市轨道交通信号系统中车辆的定位技术和通信技术是核心关键技术,特别是车辆的定位技术关系到控制车辆的行驶安全和安全运营的各个环节。
现有技术中,比较常用的车辆定位技术是无线射频识别(Radio Frequency Identification Devices,简称RFID)技术,具体的:在轨道两侧安装多个应答器,在车辆底部安装应答器传输单元(Balise Transmission Module,简称BTM),车辆通过时,通过安装在车辆上的应答器传输单元,读取安装在轨道两侧的应答器通过电磁波传来的预制数据来定位车辆的位置。车辆的通信是利用安装在车辆上的车载无线接入点(Access Point,简称AP)和轨道旁边的多个AP之间,通过无线局域网(Wireless LAN,简称WLAN)或长期演进(Long Term Evolution,简称LTE)网络的方式建立通信链接,轨道旁边的多个AP由光通信电缆组成轨旁网络。轨道旁边的多个AP组成的轨旁网络连接到控制中心,控制中心和车辆建立通信链接,统一和各个车辆交互位置数据,从而实现车辆与车辆之间距离的定位。
但现有技术至少存在如下缺陷:车辆的定位方式局限于轨道旁边安装的应答器数量,不能实时感知车辆的位置,另外车辆之间的通信通常都是车辆和控制中心建立链接后,由控制中心和各个车辆交互数据,告知前车和后车的区间位置信息,容易受到网络通信延时的影响,车辆和车辆之间的位置不能实时更新,造成定位精度不高,时效性不好,影响整体的运营效率。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的第一个目的在于提出一种车辆,以实现提高车辆与车辆之间的位置的定位精度,进而提高时效性和整体的运营效率。
本发明的第二个目的在于提出一种车辆定位方法。
本发明的第三个目的在于提出一种车载设备。
本发明的第四个目的在于提出一种非临时性计算机可读存储介质。
本发明的第五个目的在于提出一种计算机程序产品。
为达上述目的,本发明第一方面实施例提出了一种车辆,包括:计算模块和安装在车辆车头位置的车头收发模块。
所述车头收发模块用于发送第一时间戳信号,并接收前方车辆的车尾收发模块在接收到所述第一时间戳信号后发送的第二时间戳信号;其中,所述第一时间戳信号包括所述第一时间戳信号的发送时间和所述车头收发模块的标识,所述第二时间戳信号包括所述第二时间戳信号的发送时间和所述前方车辆的车尾收发模块的标识。
所述计算模块用于根据所述第二时间戳信号的发送时间和所述第一时间戳信号的发送时间,计算所述第一车头收发模块与所述前方车辆的车尾收发模块之间的第一距离,并将所述第一距离作为所述车辆与所述前方车辆之间的距离。
本发明实施例的车辆,根据安装在车头位置的车头收发模块发送第一时间戳信号的时间,和前方车辆的车尾收发模块在接收到该第一时间戳信号后发送第二时间戳信号的时间,即该信号到达前方车辆的车尾收发模块的时间,计算得到该车辆与前方车辆之间的距离,使得车辆和车辆之间的位置能够实时更新,提高了车辆与车辆之间的位置的定位精度,进而提高了时效性和整体的运营效率。
为达上述目的,本发明第二方面实施例提出了一种车辆定位方法,包括:
控制车辆的车头收发模块发送第一时间戳信号,并接收前方车辆的车尾收发模块在接收到所述第一时间戳信号后发送的第二时间戳信号;其中,所述车头收发模块安装在所述车辆的车头位置,所述车尾收发模块安装在所述车辆的车尾位置,所述第一时间戳信号包括所述第一时间戳信号的发送时间和所述车头收发模块的标识,所述第二时间戳信号包括所述第二时间戳信号的发送时间和所述前方车辆的车尾收发模块的标识;
根据所述第二时间戳信号的发送时间和所述第一时间戳信号的发送时间,计算所述车头收发模块与所述前方车辆的车尾收发模块之间的第一距离,并将所述第一距离作为所述车辆与所述前方车辆之间的距离。
本发明实施例的车辆定位方法,根据安装在车头位置的车头收发模块发送第一时间戳信号的时间,和前方车辆的车尾收发模块在接收到该第一时间戳信号后发送第二时间戳信号的时间,即该信号到达前方车辆的车尾收发模块的时间,计算得到该车辆与前方车辆之 间的距离,使得车辆和车辆之间的位置能够实时更新,提高了车辆与车辆之间的位置的定位精度,进而提高了时效性和整体的运营效率。
为达上述目的,本发明第三方面实施例提出了一种车载设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序,以用于实现本发明第二方面实施例提出的车辆定位方法。
为了实现上述目的,本发明第四方面实施例提出了一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行,以用于实现本发明第二方面实施例提出的车辆定位方法。
为了实现上述目的,本发明第五方面实施例提出了一种计算机程序产品,当所述计算机程序产品中的指令由处理器执行时,实现本发明第二方面实施例提出的车辆定位方法。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明一实施例提出的车辆的结构示意图;
图2为图1所示的车辆与前方车辆、后方车辆之间的时间戳信号交互示意图;
图3为发送和接收信号的逻辑1状态示意图;
图4为发送和接收信号的逻辑0状态示意图;
图5为收发模块的结构示意图;
图6为中继模块的结构示意图;
图7为传统的数据帧格式示意图;
图8为本发明另一实施例的车辆与前方车辆、后方车辆之间的时间戳信号交互示意图;以及
图9为本发明一实施例提出的车辆定位方法的流程示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图描述本发明实施例的车辆、车辆定位方法及车载设备。
图1为本发明一实施例提出的车辆的结构示意图。图2为图1所示的车辆与前方车辆、后方车辆之间的时间戳信号交互的示例的示意图。如图1、图2所示,该车辆10包括:计算模块11和安装在车辆10车头位置的第一车头收发模块12。
第一车头收发模块12用于发送第一时间戳信号,并接收前方车辆20的第二车尾收发模块22在接收到第一时间戳信号后发送的第二时间戳信号;其中,第一时间戳信号包括第一时间戳信号的发送时间T1和第一车头收发模块12的标识,第二时间戳信号包括第二时间戳信号的发送时间T2和第二车尾收发模块22的标识。也就是说,第一车头收发模块12用于发送第一时间戳信号至前方车辆20的第二车尾收发模块22,并在前方车辆20的第二车尾收发模块22接收到第一时间戳信号后,接收前方车辆20的第二车尾收发模块22发送的第二时间戳信号。
计算模块11用于根据第二时间戳信号的发送时间T2和第一时间戳信号的发送时间T1,计算第一车头收发模块12与第二车尾收发模块22之间的第一距离S1,并将第一距离S1作为车辆10与前方车辆20之间的距离L1。
进一步的,车辆10还可以包括安装在车辆10车尾位置的第一车尾收发模块13。第一车尾收发模块13用于在接收到后方车辆30的第三车头收发模块31发送的第三时间戳信号后,发送第四时间戳信号;其中,第三时间戳信号包括第三时间戳信号的发送时间T3和第三车头收发模块31的标识,第四时间戳信号包括第四时间戳信号的发送时间T4和第一车尾收发模块13的标识。
具体的,车辆10作为当前车辆,在车头位置安装有第一车头收发模块12,在车尾位置安装有第一车尾收发模块13。同样的,前方车辆20也具有相同的结构,在车头位置安装有第二车头收发模块21,在车尾位置安装有第二车尾收发模块22。后方车辆30也具有相同的结构,在车头位置安装有第三车头收发模块31,在车尾位置安装有第三车尾收发模块32。第一、第二、第三的使用仅为了说明清楚的目的,不用于说明不同车辆的车头收发模块或车尾收发模块不同。
车头收发模块的位置可以比拟或设定为车头的位置,车尾收发模块的位置可以比拟或设定为车尾的位置,也即车头收发模块和车尾收发模块的相对位置或两者之间的距离为长量,可以比拟或设定为车辆的长度,例如第一车头收发模块12和第一车尾收发模块13之间的距离可以比拟或设定为车辆10的长度LT。
各时间戳信号中的收发模块的标识,用于唯一标识发送该时间戳信号的是哪个车辆,是车头的收发模块还是车尾的收发模块,例如可为身份ID信息。各收发模块发送时间戳信号时,可以通过频谱编码的方式生成时间戳信号,在接收到时间戳信号后,同样通过频谱编码的方式解算出其中包括的时间戳信号的发送时间和收发模块的标识。
频谱编码按照频谱的功率等级进行编码,设置本底噪声为起始值,超出本底噪声3dB为高,标记为H,和本底噪声相当为低,标记为L,如图3所示的发送和接收信号的逻辑1状态和图4所示的发送和接收信号的逻辑0状态。各收发模块的发送部分为低频信号FLLTX和FLRTX,FLLTX和FLRTX发送信号为左右窄带脉冲,该脉冲为10KHz的窄带脉冲信号,左右相隔1MHz。当发送左右窄带脉冲的频谱为高低(HL)逻辑时,标记为发射逻辑1,相反当发射窄带脉冲频谱为低高(LH)逻辑时,标记为发射逻辑0。各收发模块的接收部分为高频信号FHLRX和FHRRX,FHLRX和FHRRX发送信号为左右窄带脉冲,该脉冲为10KHz的窄带脉冲信号,左右相隔1MHz。当接收左右窄带脉冲的频谱为高低(HL)逻辑时,标记为接收逻辑1,相反当接收窄带脉冲频谱为低高(LH)逻辑时,标记为接收逻辑0。高频信号和低频信号需要间隔10MHz以上。本方案利用电磁波功率谱编码方式,并且用比较宽泛的功率范围作为逻辑编码方式,同时发送和接收不同频率的脉冲信号作为逻辑信息,有效的避免了外界的电磁干扰。
进一步的,如图1所示,车辆10的各收发模块发送的各时间戳信号,可以通过轨道旁边的导体线缆15传输至前方车辆20的各收发模块和后方车辆30的各收发模块中。其中,轨道旁边的导体线缆15具体可以为轨道旁边已有的电力线、集电轨等现有导体硬线网络,或铺设的普通的导体线路。
进一步的,如图5所示,各收发模块,例如车辆10的第一车头收发模块12和第一车尾收发模块13,具体可以包括收发单元51、低频发送天线52和高频接收天线53,收发单元51通过低频发送天线52发送各时间戳信号,通过高频接收天线53接收各时间戳信号。低频发送天线52和高频接收天线53均为定向天线,可以安装在车辆10的底部或侧面,朝向轨道旁边的导体线缆15。一般地,定向天线与导体线缆15之间的垂直距离为0.5米到2米之间。由此,可以保证无线电信号的有效接收或发射。
进一步的,如图1所示,车辆10的各收发模块发送的各时间戳信号,可以通过轨道旁边的导体线缆15和安装在导体线缆中的中继模块16,传输至前方车辆20的各收发模块和后方车辆30的各收发模块中。
进一步的,如图6所示,中继模块16具体可以包括中继单元161和耦合天线162,中继单元161通过耦合天线162耦合至轨道旁边的导体线缆15中,对导体线缆15中传输的信号进行放大处理。例如,在站间距超过1km以上时在1km处设置,用于车辆和车辆距离太远时放大信号。中继模块16可以测算信号的功率,在信号低于门限值的情况下放大信号,并叠加新的距离信息,在信号高于门限值的情况下,进入休眠模式,不放大和改变信号功率强度。中继模块16放大信号和测算信号主要用耦合天线162耦合接入方式,不破坏原有线路即轨道旁边的导体线缆15的连接和结构。
进一步的,各收发模块之间还可以进行数据通信。例如车辆10的第一车头收发模块12和第一车尾收发模块13还可以用于:发送第一通信信号,和接收前方车辆20的各收发模块和后方车辆30的各收发模块发送的第二通信信号。其中,通信信号具体可以为数据帧模式,例如图7所示的传统的数据帧格式,由帧头、车辆的标识ID、数据长度、数据(例如描述运行和位置信息的数据)、校验位和结束位组成。
车辆10在行驶过程中,安装在车头位置的第一车头收发模块12发送第一时间戳信号(包括第一时间戳信号的发送时间T1和第一车头收发模块12的标识)。前方车辆20的第二车尾收发模块22在接收到第一时间戳信号后,根据频谱编码解算其中的第一时间戳信号的发送时间T1,同时发送第二时间戳信号(包括第二时间戳信号的发送时间T2和第二车尾收发模块22的标识)。第一车头收发模块12在接收到第二时间戳信号后,根据频谱编码解算其中的第二时间戳信号的发送时间T2。计算模块11根据第二时间戳信号的发送时间T2(即第一时间戳信号到达前方车辆的第二车尾收发模块22的时间)、第一时间戳信号的发送时间T1和时间戳信号的传输速率(即电磁波的传输速率),计算第一车头收发模块12与第二车尾收发模块22之间的第一距离S1,并将第一距离S1作为车辆10与前方车辆20之间的距离L1。车辆10可以根据自身与前方车辆20之间的距离L1,控制自身的行驶速度。
同理,车辆10中的第一车尾收发模块13具有与前方车辆20中的第二车尾收发模块22相类似的功能,具体的:第一车尾收发模块13在接收到后方车辆30的第三车头收发模块31发送的第三时间戳信号(包括第三时间戳信号的发送时间T3和第三车头收发模块31的标识)后,根据频谱编码解算其中的第三时间戳信号的发送时间T3,同时发送第四时间戳信号(包括第四时间戳信号的发送时间T4和第一车尾收发模块13的标识),以供后方车辆30的第三车头收发模块31接收后,解算出其中的第四时间戳信号的发送时间T4,后方车辆30中的计算模块根据第四时间戳信号的发送时间T4、第三时间戳信号的发送时间T3和电磁波的传输速率,计算第三车头收发模块32与第一车尾收发模块13之间的第二距离S2,并将第二距离S2作为车辆10与后方车辆30之间的距离L2。后方车辆30可以根据自身与车辆10之间的距离L2,控制自身的行驶速度。
本实施例中,根据安装在车头位置的第一车头收发模块发送第一时间戳信号的时间,和前方车辆的第二车尾收发模块在接收到该第一时间戳信号后发送第二时间戳信号的时间,即该信号到达前方车辆的第二车尾收发模块的时间,计算得到该车辆与前方车辆之间的距离,使得车辆和车辆之间的位置能够实时更新,提高了车辆与车辆之间的位置的定位精度,进而提高了时效性和整体的运营效率。
为了清楚说明本发明,提供了另一实施例。图8为本发明另一实施例的车辆与前方车辆、后方车辆之间的时间戳信号交互示意图。如图8所示,在上一实施例的基础上,第一车头收 发模块12还可以用于:在接收到第二时间戳信号后,发送第五时间戳信号;其中,第五时间戳信号包括第五时间戳信号的发送时间T5和第一车头收发模块12的标识。
第一车尾收发模块13还可以用于:接收第三车头收发模块31在接收到第四时间戳信号后发送的第六时间戳信号;其中,第六时间戳信号包括第六时间戳信号的发送时间T6和第三车头收发模块31的标识。
计算模块11还用于:根据第六时间戳信号的发送时间T6和第四时间戳信号的发送时间T4,计算第一车尾收发模块13与第三车头收发模块31之间的第二距离S2,并将第二距离S2作为车辆与后方车辆之间的距离L2。
具体的,后方车辆30的第三车头收发模块31在接收到第一车尾收发模块13发送的第四时间戳信号(包括第四时间戳信号的发送时间T4和第一车尾收发模块13的标识)后,根据频谱编码解算出其中的第四时间戳信号的发送时间T4,同时发送第六时间戳信号(包括第六时间戳信号的发送时间T6和第三车头收发模块31的标识)。车辆10的第一车尾收发模块13在接收到第六时间戳信号后,根据频谱编码解算出其中的第六时间戳信号的发送时间T6。计算模块11根据第六时间戳信号的发送时间T6(即第四时间戳信号到达后方车辆的第三车头收发模块31的时间)、第四时间戳信号的发送时间T4和时间戳信号的传输速率(即电磁波的传输速率),计算第一车尾收发模块13与第三车头收发模块31之间的第二距离S2,并将第二距离S2作为车辆与后方车辆之间的距离L2。车辆10可以根据自身与后方车辆30之间的距离L2,控制自身的行驶速度。
同理,车辆10中的第一车头收发模块12具有与后方车辆30中的第三车头收发模块31相类似的功能,具体的:第一车头收发模块12在接收到前方车辆20的第二车尾发送模块22发送的第二时间戳信号(包括第二时间戳信号的发送时间T2和第二车尾收发模块22的标识)后,根据频谱编码解算其中的第二时间戳信号的发送时间T2,同时发送第五时间戳信号(包括第五时间戳信号的发送时间T5和第一车头收发模块12的标识),以供前方车辆20的第二车尾收发模块22接收后,解算出其中的第五时间戳信号的发送时间T5,前方车辆20中的计算模块根据第五时间戳信号的发送时间T5、第二时间戳信号的发送时间T2和电磁波的传输速率,计算第二车尾收发模块32与第一车头收发模块12之间的第一距离S1,并将第一距离S1作为车辆10与前方车辆20之间的距离L1。前方车辆20可以根据自身与车辆10之间的距离L1,控制自身的行驶速度。
进一步的,考虑到计算出的第二车尾收发模块32与第一车头收发模块12之间的第一距离S1不够准确,因此可以采用如下方案对其进行修正:第一车尾收发模块13还可以用于:发送第七时间戳信号,并接收第二车尾收发模块22在接收到第七时间戳信号后发送的第八时间戳信号;其中,第七时间戳信号包括第七时间戳信号的发送时间T7和第一车尾收发模 块13的标识,第八时间戳信号包括第八时间戳信号的发送时间T8和第二车尾收发模块22的标识。
以及,第一车尾收发模块13还可以用于:在接收到后方车辆30的第三车尾收发模块32发送的第九时间戳信号后,发送第十时间戳信号;其中,第九时间戳信号包括第九时间戳信号的发送时间T9和第三车尾收发模块32的标识,第十时间戳信号包括第十时间戳信号的发送时间T10和第一车尾收发模块13的标识。
计算模块11还可以用于:根据第八时间戳信号的发送时间T8和第七时间戳信号的发送时间T7,计算第一车尾收发模块13与第二车尾收发模块32之间的第三距离S3;根据第三距离S3与第一距离S1的差值和车辆的长度LT,对第一距离S1进行修正,并将修正后的第一距离S1’作为车辆10与前方车辆20之间的距离L1。
具体的,根据同样的原理,计算得到第一车尾收发模块13与第二车尾收发模块32之间的第三距离S3,理想情况下,第三距离S3与第一距离S1的差值S3-S1应该等于车辆10的长度LT,但实际中,并不相等,因此需根据车辆的长度LT对第一距离S1进行修正。当第三距离S3与第一距离S1的差值S3-S1大于车辆10的长度LT时,则修正后的第一距离S1’等于S1-(S3-S1-LT),即S1’=2S1-S3+LT。当第三距离S3与第一距离S1的差值S3-S1小于车辆10的长度LT时,则修正后的第一距离S1’等于S1+(LT-(S3-S1)),即S1’=2S1-S3+LT。
进一步的,考虑到计算出的第一车尾收发模块13与第三车头收发模块31之间的第二距离S2不够准确,因此可以采用如下方案对其进行修正:第一车头收发模块12还可以用于:发送第十一时间戳信号,并接收第三车头收发模块31在接收到第十一时间戳信号后发送的第十二时间戳信号;其中,第十一时间戳信号包括第十一时间戳信号的发送时间T11和第一车头收发模块12的标识,十二时间戳信号包括第十二时间戳信号的发送时间T12和第三车头收发模块31的标识。
以及,第一车头收发模块12还可以用于:在接收到前方车辆20的第二车头收发模块21发送的第十三时间戳信号后,发送第十四时间戳信号;其中,第十三时间戳信号包括第十三时间戳信号的发送时间T13和第二车头收发模块21的标识,第十四时间戳信号包括第十四时间戳信号的发送时间T14和第一车头收发模块12的标识。
计算模块11还可以用于:根据第十二时间戳信号的发送时间T12和第十一时间戳信号的发送时间T11,计算第一车头收发模块12与第三车头收发模块31之间的第四距离S4;根据第四距离S4与第二距离S2的差值和车辆的长度LT,对第二距离S2进行修正,并将修正后的第二距离S2’作为车辆10与后方车辆30之间的距离。
具体的,根据同样的原理,计算得到第一车头收发模块12与第三车头收发模块31之间的第四距离S4,理想情况下,第四距离S4与第二距离S2的差值S4-S2应该等于车辆10的长度 LT,但实际中,并不相等,因此需根据车辆的长度LT对第二距离S2进行修正。当第四距离S4与第二距离S2的差值S4-S2大于车辆10的长度LT时,则修正后的第二距离S2’等于S2-(S-S2-LT),即S2’=2S2-S4+LT。当第四距离S4与第二距离S2的差值S4-S2小于车辆10的长度LT时,则修正后的第二距离S2’等于S2+(LT-(S4-S2)),即S2’=2S2-S4+LT。
本实施例中,根据安装在车头位置的第一车头收发模块发送第一时间戳信号的时间,和前方车辆的第二车尾收发模块在接收到该第一时间戳信号后发送第二时间戳信号的时间,即该信号到达前方车辆的第二车尾收发模块的时间,计算得到该车辆与前方车辆之间的距离,使得车辆和车辆之间的位置能够实时更新,提高了车辆与车辆之间的位置的定位精度,进而提高了时效性和整体的运营效率。
基于上述实施例,本发明还提出一种车辆定位方法。本发明实施例的车辆定位方法可基于前述实施例的车辆实现。图9为本发明一实施例提出的车辆定位方法的流程示意图。如图9所示,该车辆定位方法具体包括:
S901,控制车辆的第一车头收发模块发送第一时间戳信号,并接收前方车辆的第二车尾收发模块在接收到第一时间戳信号后发送的第二时间戳信号。
其中,第一时间戳信号包括第一时间戳信号的发送时间和第一车头收发模块的标识,第二时间戳信号包括第二时间戳信号的发送时间和第二车尾收发模块的标识。
S902,根据第二时间戳信号的发送时间和第一时间戳信号的发送时间,计算第一车头收发模块与第二车尾收发模块之间的第一距离,并将第一距离作为车辆与前方车辆之间的距离。
进一步地,在本发明实施例的一种可能的实现方式中,控制车辆的第一车尾收发模块在接收到后方车辆的第三车头收发模块发送的第三时间戳信号后,发送第四时间戳信号。其中,第三时间戳信号包括第三时间戳信号的发送时间和第三车头收发模块的标识,第四时间戳信号包括第四时间戳信号的发送时间和第一车尾收发模块的标识。
需要说明的是,前述对车辆实施例的解释说明也适用于该实施例的车辆的定位方法,此处不再赘述。
本实施例中,根据安装在车头位置的第一车头收发模块发送第一时间戳信号的时间,和前方车辆的第二车尾收发模块在接收到该第一时间戳信号后发送第二时间戳信号的时间,即该信号到达前方车辆的第二车尾收发模块的时间,计算得到该车辆与前方车辆之间的距离,使得车辆和车辆之间的位置能够实时更新,提高了车辆与车辆之间的位置的定位精度,进而提高了时效性和整体的运营效率。
基于上述实施例,本发明实施例还提供了一种车辆定位方法的可能的实现方式。在上一实施例的基础上,该车辆定位方法还可以包括:
控制第一车头收发模块在接收到第二时间戳信号后,发送第五时间戳信号;其中,第五时间戳信号包括第五时间戳信号的发送时间和第一车头收发模块的标识;
控制第一车尾收发模块接收第三车头收发模块在接收到第四时间戳信号后发送的第六时间戳信号;其中,第六时间戳信号包括第六时间戳信号的发送时间和第三车头收发模块的标识;
根据第六时间戳信号的发送时间和第四时间戳信号的发送时间,计算第一车尾收发模块与第三车头收发模块之间的第二距离,并将第二距离作为车辆与后方车辆之间的距离。
进一步地,在本发明实施例的一种可能的实现方式中,该车辆定位方法还可以包括:
控制第一车尾收发模块发送第七时间戳信号,并接收第二车尾收发模块在接收到第七时间戳信号后发送的第八时间戳信号;其中,第七时间戳信号包括第七时间戳信号的发送时间和第一车尾收发模块的标识,第八时间戳信号包括第八时间戳信号的发送时间和第二车尾收发模块的标识;
控制第一车尾收发模块在接收到后方车辆的第三车尾收发模块发送的第九时间戳信号后,发送第十时间戳信号;其中,第九时间戳信号包括第九时间戳信号的发送时间和第三车尾收发模块的标识,第十时间戳信号包括第十时间戳信号的发送时间和第一车尾收发模块的标识;
根据第八时间戳信号的发送时间和第七时间戳信号的发送时间,计算第一车尾收发模块与第二车尾收发模块之间的第三距离;根据第三距离与第一距离的差值和车辆的长度,对第一距离进行修正,并将修正后的第一距离作为车辆与前方车辆之间的距离。
进一步地,在本发明实施例的一种可能的实现方式中,该车辆定位方法还可以包括:
控制第一车头收发模块发送第十一时间戳信号,并接收第三车头收发模块在接收到第十一时间戳信号后发送的第十二时间戳信号;其中,第十一时间戳信号包括第十一时间戳信号的发送时间和第一车头收发模块的标识,第十二时间戳信号包括第十二时间戳信号的发送时间和第三车头收发模块的标识;
控制第一车头收发模块在接收到前方车辆的第二车头收发模块发送的第十三时间戳信号后,发送第十四时间戳信号;其中,第十三时间戳信号包括第十三时间戳信号的发送时间和第二车头收发模块的标识,第十四时间戳信号包括第十四时间戳信号的发送时间和第一车头收发模块的标识;
根据第十二时间戳信号的发送时间和第十一时间戳信号的发送时间,计算第一车头收发模块与第三车头收发模块之间的第四距离;根据第四距离与第二距离的差值和车辆的长度,对第二距离进行修正,并将修正后的第二距离作为车辆与后方车辆之间的距离。
需要说明的是,前述对车辆实施例的解释说明也适用于该实施例的车辆的定位方法,此处不再赘述。
本实施例中,根据安装在车头位置的第一车头收发模块发送第一时间戳信号的时间,和前方车辆的第二车尾收发模块在接收到该第一时间戳信号后发送第二时间戳信号的时间,即该信号到达前方车辆的第二车尾收发模块的时间,计算得到该车辆与前方车辆之间的距离,使得车辆和车辆之间的位置能够实时更新,提高了车辆与车辆之间的位置的定位精度,进而提高了时效性和整体的运营效率。
为了实现上述实施例,本发明还提出一种车载设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序,以用于实现上述车辆定位方法。
为了实现上述实施例,本发明还提出一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行,以用于实现上述车辆定位方法。
为了实现上述实施例,本发明还提出一种计算机程序产品,当计算机程序产品中的指令由处理器执行时,实现上述车辆定位方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令 执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (16)

  1. 一种车辆,其特征在于,包括:计算模块和安装在车辆的车头位置的车头收发模块;
    所述车头收发模块用于发送第一时间戳信号,并接收前方车辆的车尾收发模块在接收到所述第一时间戳信号后发送的第二时间戳信号;其中,所述第一时间戳信号包括所述第一时间戳信号的发送时间和所述车头收发模块的标识,所述第二时间戳信号包括所述第二时间戳信号的发送时间和所述前方车辆的车尾收发模块的标识;
    所述计算模块用于根据所述第二时间戳信号的发送时间和所述第一时间戳信号的发送时间,计算所述车头收发模块与所述前方车辆的车尾收发模块之间的第一距离,并将所述第一距离作为所述车辆与所述前方车辆之间的距离。
  2. 根据权利要求1所述的车辆,其特征在于,还包括:安装在所述车辆的车尾位置的车尾收发模块;
    所述车尾收发模块用于在接收到后方车辆的车头收发模块发送的第三时间戳信号后,发送第四时间戳信号;其中,所述第三时间戳信号包括所述第三时间戳信号的发送时间和所述第三车头收发模块的标识,所述第四时间戳信号包括所述第四时间戳信号的发送时间和所述第一车尾收发模块的标识。
  3. 根据权利要求2所述的车辆,其特征在于,所述车头收发模块还用于:在接收到所述第二时间戳信号后,发送第五时间戳信号;其中,所述第五时间戳信号包括所述第五时间戳信号的发送时间和所述车头收发模块的标识;
    所述车尾收发模块还用于:接收所述后方车辆的车头收发模块在接收到所述第四时间戳信号后发送的第六时间戳信号;其中,所述第六时间戳信号包括所述第六时间戳信号的发送时间和所述后方车辆的车头收发模块的标识;
    所述计算模块还用于:根据所述第六时间戳信号的发送时间和所述第四时间戳信号的发送时间,计算所述车尾收发模块与所述后方车辆的车头收发模块之间的第二距离,并将所述第二距离作为所述车辆与所述后方车辆之间的距离。
  4. 根据权利要求2或3所述的车辆,其特征在于,所述车尾收发模块还用于:发送第七时间戳信号,并接收所述前方车辆的车尾收发模块在接收到所述第七时间戳信号后发送的第八时间戳信号;其中,所述第七时间戳信号包括所述第七时间戳信号的发送时间和所述前方车辆的车尾收发模块的标识,所述第八时间戳信号包括所述第八时间戳信号的发送时间和所述前方车辆的车尾收发模块的标识;
    以及,还用于:在接收到所述后方车辆的车尾收发模块发送的第九时间戳信号后,发送第十时间戳信号;其中,所述第九时间戳信号包括所述第九时间戳信号的发送时间和所 述后方车辆的车尾收发模块的标识,所述第十时间戳信号包括所述第十时间戳信号的发送时间和所述车尾收发模块的标识;
    所述计算模块还用于:根据所述第八时间戳信号的发送时间和所述第七时间戳信号的发送时间,计算所述车尾收发模块与所述前方车辆的车尾收发模块之间的第三距离;根据所述第三距离与所述第一距离的差值和所述车辆的长度,对所述第一距离进行修正,并将修正后的所述第一距离作为所述车辆与所述前方车辆之间的距离。
  5. 根据权利要求3所述的车辆,其特征在于,所述车头收发模块还用于:发送第十一时间戳信号,并接收所述后方车辆的车头收发模块在接收到所述第十一时间戳信号后发送的第十二时间戳信号;其中,所述第十一时间戳信号包括所述第十一时间戳信号的发送时间和所述车头收发模块的标识,所述第十二时间戳信号包括所述第十二时间戳信号的发送时间和所述后方车辆的车头收发模块的标识;以及
    在接收到所述前方车辆的车头收发模块发送的第十三时间戳信号后,发送第十四时间戳信号;其中,所述第十三时间戳信号包括所述第十三时间戳信号的发送时间和所述前方车辆的车头收发模块的标识,所述第十四时间戳信号包括所述第十四时间戳信号的发送时间和所述车头收发模块的标识;
    所述计算模块还用于:根据所述第十二时间戳信号的发送时间和所述第十一时间戳信号的发送时间,计算所述车头收发模块与所述后方车辆的车头收发模块之间的第四距离;根据所述第四距离与所述第二距离的差值和所述车辆的长度,对所述第二距离进行修正,并将修正后的所述第二距离作为所述车辆与所述后方车辆之间的距离。
  6. 根据权利要求1-5中任一项所述的车辆,其特征在于,所述车辆的各收发模块发送的各时间戳信号,通过轨道旁边的导体线缆传输至所述前方车辆的各收发模块和所述后方车辆的各收发模块中。
  7. 根据权利要求6所述的车辆,其特征在于,所述车辆的各收发模块包括:收发单元、低频发送天线和高频接收天线;
    所述收发单元,用于通过所述低频发送天线发送各时间戳信号,通过所述高频接收天线接收各时间戳信号。
  8. 根据权利要求1-5中任一项所述的车辆,其特征在于,所述车辆的各收发模块发送的各时间戳信号,通过轨道旁边的导体线缆和安装在所述导体线缆中的中继模块,传输至所述前方车辆的各收发模块和所述后方车辆的各收发模块中。
  9. 根据权利要求8所述的车辆,其特征在于,所述中继模块包括:中继单元和耦合天线;
    所述中继单元,通过所述耦合天线耦合至所述导体线缆中,用于对所述导体线缆中传输的信号进行放大处理。
  10. 根据权利要求1-9中任一项所述的车辆,其特征在于,所述车辆的各收发模块还用于:发送第一通信信号,和接收所述前方车辆的各收发模块和后方车辆的各收发模块发送的第二通信信号。
  11. 一种车辆定位方法,其特征在于,包括:
    控制车辆的车头收发模块发送第一时间戳信号,并接收前方车辆的车尾收发模块在接收到所述第一时间戳信号后发送的第二时间戳信号;其中,所述第一时间戳信号包括所述第一时间戳信号的发送时间和所述车头收发模块的标识,所述第二时间戳信号包括所述第二时间戳信号的发送时间和所述前方车辆的车尾收发模块的标识;
    根据所述第二时间戳信号的发送时间和所述第一时间戳信号的发送时间,计算所述车头收发模块与所述前方车辆的车尾收发模块之间的第一距离,并将所述第一距离作为所述车辆与所述前方车辆之间的距离。
  12. 根据权利要求11所述的车辆定位方法,其特征在于,还包括:
    控制所述车辆的车尾收发模块在接收到后方车辆的车头收发模块发送的第三时间戳信号后,发送第四时间戳信号;其中,所述第三时间戳信号包括所述第三时间戳信号的发送时间和所述后方车辆的车头收发模块的标识,所述第四时间戳信号包括所述第四时间戳信号的发送时间和所述车尾收发模块的标识。
  13. 根据权利要求12所述的车辆定位方法,其特征在于,还包括:
    控制所述车头收发模块在接收到所述第二时间戳信号后,发送第五时间戳信号;其中,所述第五时间戳信号包括所述第五时间戳信号的发送时间和所述第一车头收发模块的标识;
    控制所述车尾收发模块接收所述后方车辆的车头收发模块在接收到所述第四时间戳信号后发送的第六时间戳信号;其中,所述第六时间戳信号包括所述第六时间戳信号的发送时间和所述后方车辆的车头收发模块的标识;
    根据所述第六时间戳信号的发送时间和所述第四时间戳信号的发送时间,计算所述车尾收发模块与所述后方车辆的车头收发模块之间的第二距离,并将所述第二距离作为所述车辆与所述后方车辆之间的距离。
  14. 根据权利要求12或13所述的车辆定位方法,其特征在于,还包括:
    控制所述车尾收发模块发送第七时间戳信号,并接收所述前方车辆的车尾收发模块在接收到所述第七时间戳信号后发送的第八时间戳信号;其中,所述第七时间戳信号包括所 述第七时间戳信号的发送时间和所述车尾收发模块的标识,所述第八时间戳信号包括所述第八时间戳信号的发送时间和所述前方车辆的车尾收发模块的标识;
    控制所述车尾收发模块在接收到所述后方车辆的车尾收发模块发送的第九时间戳信号后,发送第十时间戳信号;其中,所述第九时间戳信号包括所述第九时间戳信号的发送时间和所述后方车辆的车尾收发模块的标识,所述第十时间戳信号包括所述第十时间戳信号的发送时间和所述车尾收发模块的标识;
    根据所述第八时间戳信号的发送时间和所述第七时间戳信号的发送时间,计算所述车尾收发模块与所述前方车辆的车尾收发模块之间的第三距离;根据所述第三距离与所述第一距离的差值和所述车辆的长度,对所述第一距离进行修正,并将修正后的所述第一距离作为所述车辆与所述前方车辆之间的距离。
  15. 根据权利要求13所述的车辆定位方法,其特征在于,还包括:
    控制所述车头收发模块发送第十一时间戳信号,并接收所述第三车头收发模块在接收到所述第十一时间戳信号后发送的第十二时间戳信号;其中,所述第十一时间戳信号包括所述第十一时间戳信号的发送时间和所述车头收发模块的标识,所述十二时间戳信号包括所述第十二时间戳信号的发送时间和所述后方车辆的车头收发模块的标识;
    控制所述车头收发模块在接收到所述前方车辆的车头收发模块发送的第十三时间戳信号后,发送第十四时间戳信号;其中,所述第十三时间戳信号包括所述第十三时间戳信号的发送时间和所述前方车辆的车头收发模块的标识,所述第十四时间戳信号包括所述第十四时间戳信号的发送时间和所述车头收发模块的标识;
    根据所述第十二时间戳信号的发送时间和所述第十一时间戳信号的发送时间,计算所述第一车头收发模块与所述后方车辆的车头收发模块之间的第四距离;根据所述第四距离与所述第二距离的差值和所述车辆的长度,对所述第二距离进行修正,并将修正后的所述第二距离作为所述车辆与所述后方车辆之间的距离。
  16. 一种车载设备,其特征在于,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序,以用于实现如权利要求11-15所述的车辆定位方法。
PCT/CN2018/097079 2017-07-28 2018-07-25 车辆、车辆定位方法及车载设备 WO2019020058A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710633620.2A CN109307861B (zh) 2017-07-28 2017-07-28 车辆、车辆定位方法及车载设备
CN201710633620.2 2017-07-28

Publications (1)

Publication Number Publication Date
WO2019020058A1 true WO2019020058A1 (zh) 2019-01-31

Family

ID=65039413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097079 WO2019020058A1 (zh) 2017-07-28 2018-07-25 车辆、车辆定位方法及车载设备

Country Status (2)

Country Link
CN (1) CN109307861B (zh)
WO (1) WO2019020058A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113064116B (zh) * 2020-01-02 2024-01-30 京东方科技集团股份有限公司 车辆定位方法及装置、以及汽车
CN111880142B (zh) * 2020-08-10 2023-05-09 北京天润海图科技有限公司 一种车辆定位方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854500A (zh) * 2012-08-20 2013-01-02 郭晓鹏 一种车辆上的单向无线测距方法和装置
CN102963397A (zh) * 2011-08-31 2013-03-13 周颖平 一种防追尾的监测系统及方法
CN103048980A (zh) * 2013-01-09 2013-04-17 南车株洲电力机车研究所有限公司 一种机车无线重联自动参数配置方法及系统
CN104973051A (zh) * 2015-06-11 2015-10-14 奇瑞汽车股份有限公司 调整车辆行驶速度的方法、装置和系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313199A (ja) * 1991-03-20 1992-11-05 Mitsubishi Electric Corp 車間距離検出装置
US6720920B2 (en) * 1997-10-22 2004-04-13 Intelligent Technologies International Inc. Method and arrangement for communicating between vehicles
JP3633707B2 (ja) * 1996-03-08 2005-03-30 日産ディーゼル工業株式会社 車群走行制御装置
JP3835759B2 (ja) * 2003-04-08 2006-10-18 株式会社日立製作所 車両外施設・車両間通信装置及び車両外施設・車両間通信システム並びに車両外施設・車両間通信装置を用いた通信方法
DE102006003625B4 (de) * 2006-01-26 2017-06-08 Maik Ziegler Verfahren zur Regelung des Abstands eines Fahrzeugs zu einem vorausfahrenden Führungsfahrzeug
CN2906786Y (zh) * 2006-05-09 2007-05-30 林贵生 交互式智能道钉及其路网信息系统
JP5242283B2 (ja) * 2008-08-05 2013-07-24 株式会社東芝 鉄道車両内情報ネットワーク装置
CN103123394B (zh) * 2011-11-21 2015-08-26 比亚迪股份有限公司 一种设置近距离传感器阈值的方法及系统
CN104169738B (zh) * 2012-04-26 2016-11-09 英特尔公司 确定相对定位信息
CN104237872B (zh) * 2014-09-02 2016-08-24 中国矿业大学 一种基于分段混合测距的矿井机车防撞方法及装置
CN104199016B (zh) * 2014-09-12 2016-09-07 四川九洲电器集团有限责任公司 基于css技术的无线测距方法及css无线终端
CN104459675A (zh) * 2014-12-03 2015-03-25 吕云亭 一种基于测距的物体定位和跟踪方法及使用该方法的定位设备
CN104504902B (zh) * 2014-12-29 2016-05-04 李德毅 车辆使用路权、路权计算方法及基于路权的道路计费方法
CN105116404B (zh) * 2015-06-26 2019-02-15 深圳市元征科技股份有限公司 一种车辆间距离的测量方法及车载终端
CN205098042U (zh) * 2015-08-27 2016-03-23 苏州经贸职业技术学院 用于汽车的测距系统以及载有该系统的汽车
CN105891811A (zh) * 2015-10-16 2016-08-24 乐卡汽车智能科技(北京)有限公司 车联网中的车辆距离确定方法和装置
CN105291965B (zh) * 2015-11-04 2017-12-05 石海水 一种汽车防碰撞方法及装置
CN205524233U (zh) * 2016-01-21 2016-08-31 安徽理工大学 基于红外探测技术的汽车障碍探测预警系统
CN106503698B (zh) * 2016-12-07 2019-08-02 哈尔滨工业大学 一种信号交叉口排队车辆静态间距快速测算方法
CN106842269A (zh) * 2017-01-25 2017-06-13 北京经纬恒润科技有限公司 定位方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102963397A (zh) * 2011-08-31 2013-03-13 周颖平 一种防追尾的监测系统及方法
CN102854500A (zh) * 2012-08-20 2013-01-02 郭晓鹏 一种车辆上的单向无线测距方法和装置
CN103048980A (zh) * 2013-01-09 2013-04-17 南车株洲电力机车研究所有限公司 一种机车无线重联自动参数配置方法及系统
CN104973051A (zh) * 2015-06-11 2015-10-14 奇瑞汽车股份有限公司 调整车辆行驶速度的方法、装置和系统

Also Published As

Publication number Publication date
CN109307861A (zh) 2019-02-05
CN109307861B (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
WO2019137154A1 (zh) 基于lte-u的车地无线综合承载系统和方法
US8998149B2 (en) Ground device for train control system
US9022325B2 (en) Train control system
WO2017063360A1 (zh) 车联网中的车辆距离确定方法和装置
CN106515790B (zh) 一种基于双边双程测距的辅助防撞预警方法
JP2002264810A (ja) ビーコンを備えたレールトラックに沿った点で鉄道車両を位置決めするためのシステム及び方法、またそのシステムに適するアンテナ
WO2019020058A1 (zh) 车辆、车辆定位方法及车载设备
CN104925090B (zh) 一种列车完整性的检测方法
WO2019007134A1 (zh) 无线接入点的切换方法、装置以及列车
KR20140088891A (ko) 열차의 위치 검출 시스템
DE102015213888B4 (de) Ultraschall-basierte Datenverbindung
WO2014045806A1 (ja) 列車無線通信システムの受信電文選択方法
CN110785676A (zh) 上方障碍物检测方法及装置、系统、车辆、存储介质
CN111880142A (zh) 一种车辆定位方法和装置
KR20150035303A (ko) 철도 차량의 운영 패턴에 따른 빔 포밍 장치 및 그 방법
CN105445728B (zh) 预警方法及车用雷达系统
CN112141169A (zh) 校验方法、装置、存储介质、列车及电子设备
KR101289725B1 (ko) 모노레일에서의 무선 송수신 시스템 및 그 제어 방법, 그리고 모노레일에서의 무선 송수신 시스템 데이터 처리 방법
JP4958827B2 (ja) 列車停止位置検知装置
US20210394806A1 (en) System and method for operating a system having a rail, a stationary unit, rail-guided mobile parts, and a slotted hollow waveguide
EP4053818A1 (en) Communication method and apparatus
JP4053959B2 (ja) 定位置停止制御装置
DE102007035131B4 (de) Vorrichtung zum Bestimmen einer Zugreihung
CN110626390A (zh) 一种列车定位系统和方法
KR101040170B1 (ko) 복수의 무선 송수신기의 자동 선택기 및 이를 이용하여 복수의 무선송수신기를 선택적으로 동작시키는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18839208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18839208

Country of ref document: EP

Kind code of ref document: A1