WO2019019558A1 - 接地支重装置、履带式脱困装置及设备 - Google Patents

接地支重装置、履带式脱困装置及设备 Download PDF

Info

Publication number
WO2019019558A1
WO2019019558A1 PCT/CN2018/000271 CN2018000271W WO2019019558A1 WO 2019019558 A1 WO2019019558 A1 WO 2019019558A1 CN 2018000271 W CN2018000271 W CN 2018000271W WO 2019019558 A1 WO2019019558 A1 WO 2019019558A1
Authority
WO
WIPO (PCT)
Prior art keywords
crawler type
crawler
block
hinged
assembly
Prior art date
Application number
PCT/CN2018/000271
Other languages
English (en)
French (fr)
Inventor
万军
Original Assignee
济南匠夫万自动化科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 济南匠夫万自动化科技有限公司 filed Critical 济南匠夫万自动化科技有限公司
Publication of WO2019019558A1 publication Critical patent/WO2019019558A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/04Endless track vehicles with tracks and alternative ground wheels, e.g. changeable from endless track vehicle into wheeled vehicle and vice versa

Definitions

  • the present invention relates to a grounding weight device, a crawler type detachment device having the grounding weight device, and an apparatus having the crawler type detachment device.
  • Chinese patent document CN106828631A proposes a crawler-type escape device for the existing vehicle release device, and the deformed portion adopts a parallelogram mechanism, and the distance between the frame and the support frame is changed based on the rotation of the two linked rods, thereby having Zhang
  • the two basic states are opened and closed, and are used for the escape of the vehicle in the open state or the auxiliary travel under the specific road condition, and the reduction of the traversability of the vehicle is greatly affected in the stowed state.
  • the auxiliary support for the escape is dependent on the distraction force of the deformation control mechanism, and in order to obtain a relatively large driving force (friction with the ground) under a given expansion force, the crawler and the ground are required. Maintain a good contact, or maintain a large contact area, so that you can get good driving ability.
  • the structure of the support wheel train has certain flexibility, and the flexibility is mainly provided by the assembly formed by the elastic block through the upper support member and the lower support block, and the flexibility of the support wheel train frame makes it have certain The ability to adapt to the terrain to maintain a large contact area with, for example, an uneven bottom surface.
  • the main body of the supporting wheel train frame is a wire harness group composed of a linear elastic material, and the wire harness group is locked and riveted by linearly arranging the connecting blocks on the wire bundle group.
  • the deformation controllability of the wire harness group is relatively poor, especially in addition to being able to adapt to the up and down deformation of the terrain, and also having deformation parallel to the ground, for example, and a deformation form between the two deformations, resulting in overall structural stability relative to Poor.
  • the deformation ability of the wire harness group is also relatively poor, so that the deformation ability of the roller train with the terrain is poor during the grounding operation. Therefore, when the complex terrain is encountered, the contact area between the track and the ground is small, and the friction required for the crawler walking is insufficient. Full, walking efficiency is low.
  • an amphibious vessel includes an expandable movable pod and an unfolding mechanism movable between a deployed position and a stowed position, the deployment mechanism being configured to
  • the movable pod can be moved between its deployed position and its retracted position, the main body of the movable pod is a crawler chassis structure, the crawler walking is driven by a hydraulic system, the movable pod is in a deployed position and supports the ship from the hydraulic system
  • the crawler-type chassis drives the land-walking function, but the movable pod for supporting and walking does not have the contraction function itself, and the traveling power is provided by the hydraulic system, so the space is large and the walking efficiency is low.
  • the object of the present invention is to provide a grounding weight device with better grounding reliability and easy deformation direction design, and the present invention also provides a crawler type detachment device having the grounding weight device, and a device equipped with the crawler type detachment device .
  • a grounding weight device comprising:
  • each frame assembly is parallel to each other and have a first distance, and each frame assembly is hinged by a plurality of first units and a plurality of second units in series, and the axis of the hinge is horizontal and aligned.
  • the direction is vertical;
  • the first heavy wheel is mounted on the shaft head.
  • a crawler type detachment device having the above grounding weight device, wherein the crawler type detachment device comprises an in-band bracket, and the main body of the in-band bracket has a quadrangular structure;
  • the grounding weight device constitutes a lower side of the quadrilateral structure, and the upper side of the quadrilateral structure constitutes a main frame, the upper ends of the remaining two sides of the quadrilateral structure are hinged to the upper side, and the lower ends of the remaining two sides are hinged to the lower side to constitute a rocker;
  • the crawler type escape device is further provided with a drive mechanism for driving a change in the distance between the lower side and the upper side.
  • an apparatus incorporating the aforementioned crawler type escape device is provided.
  • the frame of the grounding weight device used is hinged by a plurality of first units and a plurality of second units arranged in series, because the axis of the hinge is horizontal and before and after the grounding device The direction is vertical, and the rotation between the first unit and the second unit is constrained by the hinge, and the rotation direction thereof is relatively controllable, thereby making the deformation design easier.
  • the first unit and the second unit based on the hinge connection do not have to use a flexible structure as in the Chinese patent document CN106828631A, and the rigidity makes it more reliable.
  • FIG. 1 is a schematic view showing the structure of an off-road vehicle equipped with a crawler type escape device in an embodiment.
  • FIG. 2 is a schematic view of a bottom view corresponding to FIG. 1.
  • Fig. 3 is a schematic top plan view of a bus equipped with a crawler type escape device in an embodiment.
  • FIG. 4 is a schematic diagram of a front view corresponding to FIG. 3.
  • Fig. 5 is a top plan view showing a ship equipped with a crawler type escape device in an embodiment.
  • Figure 6 is a schematic view showing the state of the crawler-type escape device corresponding to Figure 5 after being opened.
  • Fig. 7 is a structural schematic view showing the stowed state of the crawler type detachment device in an embodiment.
  • Figure 8 is a partial view of the crawler type escape device.
  • Fig. 9 is a schematic view showing the structure of a crawler type detachment device in an open state.
  • Fig. 10 is a schematic view showing the structure of a crawler type detachment device in an open state.
  • Fig. 11 is a structural schematic view showing the opening state of a crawler type escape device according to the terrain.
  • Fig. 12 is a perspective view showing the three-dimensional structure of the crawler-type escape device in a state of being opened (the partial main frame and the crawler are hidden).
  • Figure 13 is a schematic view showing the structure of a drive mechanism.
  • Figure 14 is a schematic view showing the upper structure of a crawler type escape device.
  • Figure 15 is a schematic view showing the structure of a crawler type escape device.
  • Figure 16 is a schematic view showing the structure of a deformation control mechanism of a crawler type escape device.
  • Figure 17 is a schematic diagram corresponding to Figure 16.
  • FIG. 18 is a schematic structural view of a deformation control mechanism of a crawler type escape device.
  • Figure 19 is a schematic view showing the structure of a lock mechanism of a crawler type escape device.
  • Figure 20 is a schematic view showing the structure of an auxiliary connecting mechanism of a crawler type escape device.
  • Figure 21 is a schematic view showing the structure of a tensioning device for an auxiliary connection mechanism of a crawler type escape device.
  • Figure 22 is a schematic view showing the structure of a movable elastic component of the tensioning device of the auxiliary connecting mechanism of the crawler type escape device.
  • Figure 23 is a schematic view showing the structure of an auxiliary retracting mechanism of the auxiliary connecting mechanism of the crawler type escape device.
  • Figure 24 is a schematic view showing the structure of the retracting adjustment mechanism of the auxiliary connecting mechanism of the crawler type escape device.
  • Fig. 25 is a structural schematic view of a grounding weight device of a crawler type escape device.
  • Fig. 26 is a schematic view showing the crawler-type release device fully retracted and locked.
  • Figure 27 is a schematic view showing the connection of the auxiliary connecting mechanism of the crawler type escape device.
  • Figure 28 is a schematic view of a quadrilateral mechanism formed by an auxiliary connecting mechanism of a crawler type escape device.
  • 29 is a schematic structural view of a grounding weight device of a crawler type escape device.
  • Figure 30 is a schematic view showing the state of the auxiliary retracting mechanism push rod and the rotating bracket when the crawler type escape device is in the stowed state.
  • Fig. 31 is a schematic view showing a state in which the crawler type escape device is assumed to be unloaded.
  • the vehicle 100 has a defined head and tail so as to have a defined front and rear, and left and right.
  • the direction determined by the front and rear of the vehicle 100 is the first reference direction.
  • the width direction of the vehicle 100 is a direction perpendicular to the first reference direction in the horizontal plane.
  • the desired deformation direction of the crawler type escape device 200 or the height change direction.
  • the change in height is not necessarily achieved by a purely vertical mechanism movement.
  • connection are to be understood broadly, and may be, for example, a fixed connection, a detachable connection, or an integral, unless otherwise explicitly defined and defined.
  • the structure may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediate medium, and may be internal communication between the two elements.
  • the specific meaning of the above terms in the present invention can be understood by those skilled in the art as the case may be.
  • first grade first grade
  • secondary grade second grade
  • third grade third grade
  • rod length refers to the linear distance between two connecting points of a member, such as the active deformation support mechanism 12, the length of which refers to the length of the connecting line of the hinge points at both ends thereof.
  • the frame of the vehicle is its reference frame
  • the front and rear direction of the vehicle is referred to as the longitudinal direction
  • the left and right direction is referred to as the lateral direction.
  • the longitudinal beam and the cross member of the frame are named.
  • 1 to 4 show an arrangement of the crawler type escape device 200 on the vehicle 100.
  • a pair of crawler type escape devices 200 may be disposed, and the left and right sides are provided on the chassis of the vehicle 100.
  • the bus shown in Figs. 3 and 4 is provided with six crawler type escape devices 200, and a pair is provided in front of the front and rear of the bus.
  • FIG. 5 and FIG. 6 is a schematic view showing the installation of a crawler type escape device 200 on the ship 100a.
  • One set is provided on both sides of the ship 100a.
  • the crawler type escape device 200 is in a stowed position.
  • the track-type escape device is opened in the water, and the crawler-type escape device is operated to drive the ship away from the normal sailing waters.
  • the wheel train configuration of the crawler type detachment device 200 in the embodiment is configured by dividing the wheel train into upper and lower parts, and the lower part is the grounding weight device 10, due to the grounding weight device
  • the left and right frame chain structure of 10 can be an equivalent flexible structure, which is different from the flexible structure in the Chinese patent document CN106828631A.
  • the chain structure is constrained by the chain pin axis, and the deformation depends on the chain pin axis. And only one rotation degree of freedom.
  • the flexible structure in the Chinese patent document CN106828631A has too much freedom of deformation, and the controllability of deformation is relatively poor.
  • the grounding weight device 10 is the frame portion of the crawler type detachment device 200 with the inner bracket located below.
  • the mechanical schematic diagram of the inner bracket can be represented as the plane four-bar linkage mechanism shown in FIG. 31,
  • the basic concept of the planar four-bar linkage is used to describe the in-band bracket, and for further simplification of the description, the lower side is used to directly indicate the grounding weight device 10, the upper side is the quadrilateral structure of the carrier structure assembly, and the other two of the planar four-bar linkage mechanism are used.
  • the edge, based on the length, is a double crank, but the range of the rotation angle is relatively small, and therefore, it is represented as a double rocker.
  • the upper side body of the planar four-bar linkage mechanism is the carrier frame 2 shown in FIG. 12, and the side of the carrier frame 2 is fixed to the main frame 3, and the main frame 3 avoids the coverage of the track 9 in the up and down direction. It is used for a fixed connection between the crawler type escape device 200 and, for example, a vehicle frame.
  • the carrier frame 2 is configured as a carrier wheel frame body for mounting the carrier gear train 5, as shown in FIG.
  • the planar four-bar linkage used by the vehicle 100 is a parallelogram mechanism, and the planar four-bar linkage used by the vessel 100a is an unequal plane four-bar linkage.
  • the planar four-bar linkage mechanism can control the change in the distance of a pair of sides thereof, so that the crawler type escape device 200 has a deformation capability of height or thickness, which is not the same as the structure in which the height of the conventional crawler chassis cannot be changed.
  • a crawler type escape device 200 shown in FIG. 12 includes the following mechanisms and components: a drive mechanism 1, a carrier frame 2, a main frame 3, a deformation control mechanism 4, a carrier train 5, and a support bar system. 6. Locking mechanism 7, auxiliary connecting mechanism 8, crawler belt 9, grounding weight device 10, support shaft 11 and active deformation support mechanism 12. The various mechanisms and components are described in detail below.
  • the first is the grounding weight device 10, which acts like a roller assembly in a tracked chassis.
  • the grounding weight device 10 includes the following main components: a guide wheel 1001, a guide wheel shaft 1002, a roller 1003, a guide wheel shaft 1005, a guide wheel 1006, a support slide 1007, a torsion spring 1008, and a roller axle 1009. And an articulated link 1010.
  • the grounding weight device 10 of the structure shown in FIG. 25 is suitable for an application scenario in which the crawler type escape device 200 is opened and deformed in a loaded state, such as applied to the vehicle 100.
  • the guide wheel 1001 and the guide wheel 1006 are located at both ends of the grounding weight device 10 for guiding the track 9 at both ends of the grounding weight device 10.
  • the guide wheel 1001 employs a toothed guide wheel that can be engaged with the track link link without slippage.
  • the guide wheel 1001 is sleeved on the guide wheel shaft 1002. Because it is only guided, the guide wheel 1001 needs to have a smooth rotational freedom for guiding the crawler belt 9 at the rear end of the grounding weight device 10, so that the guide wheel 1001 A roller bearing connection, for example, is required between the guide axle 1002 and the guide axle 1002.
  • the guide wheel 1006 is placed over the guide axle 1005 for guiding the track 9 to the track 9 at the front end of the grounded weight device 10.
  • the grounding weight device 10 is further provided with a support slide 1007.
  • the one end sleeve (the left end in FIG. 25, that is, the front end) of the support slide 1007 is placed on the guide wheel shaft 1005 to form a rotational connection, and the other end passes through the guide groove 1011.
  • the sleeve is placed on the adjacent roller axle 1009. Since the guide groove 1011 is a guide groove in the up and down direction, the support slide 1007 can have an active space within a certain range in the up and down direction, and the range of motion is guided. The constraint of slot 1011.
  • a torsion spring 1008 is placed on the roller axle 1009 and the two ends are connected to the support slide 1007 to form a reset device for supporting the slide 1007, and the restoring force is upward.
  • the cylindrical spring needs to be disposed in a vertical direction, which may be a tension spring or may be employed.
  • Compression springs using different springs, will have different mounting positions and will be readily implemented by those skilled in the art.
  • the function of the up and down floating can be implemented by using a torsion spring 1008 which is disposed on the roller axle 1009 and connected at both ends to the support slide 1007. In the state where the support chute 1007 is not subjected to the downward external force, it is always in the floating state (top dead center) due to the action of the torsion spring 1008.
  • the function of the upper and lower floating structure is that when the crawler type escape device 200 is in the stowed state, the support slide 1007 is pressed by the deformation control mechanism 4, and is in a downward floating state (bottom dead center), and does not affect the stowage height of the crawler type escape device 200.
  • the support slide 1007 When the crawler type escape device 200 is in the open state, the support slide 1007 is in the floating state, and does not interfere with the normal operation of the crawler belt 9, as shown in FIG.
  • the left and right frames of the grounding weight device 10 are constructed using a chain structure.
  • the chain structure is constrained by the chain pin shaft so that its deformation design is easy to control.
  • the two left and right frames have mutual reinforcing effects, and the reinforcement here is based on the link pin shaft, which has a large distribution distance in the width direction of the grounding weight device 10, and the overall torsion resistance becomes strong, so that the controllability of the deformation is also It is even stronger.
  • the hinged link 1010 of the frame of the grounding weight device 10 can be a simple plate member, and the chain link structure of the transmission chain can be employed in the preferred structure.
  • the transmission chain it can be understood that it includes an inner chain plate and an outer chain plate, which are conventional technical means in the field of chain transmission technology, and will not be described again.
  • the inner chain plate and the outer chain plate are connected in series by a chain pin shaft (referred to as a pin shaft in the field of transmission chain technology), and have a very strong tensile strength (for transmission).
  • a chain pin shaft referred to as a pin shaft in the field of transmission chain technology
  • the formed frame is mainly used for supporting the weight.
  • the two frames of the grounding weight device are also connected by the roller axle 1009 shown in the figure, so that the overall structural reliability is stronger, and the overall strength is affected by the strength of the single frame.
  • the reduction depends mainly on the connection strength of the roller axle 1009.
  • roller axle 1009 Since the roller axle 1009 is also used to install the roller 1003, it needs to have a relatively strong torsional shear resistance. Therefore, it is required to have a relatively strong torsional shear resistance, so the body of the grounding weight device 10 has a relatively strong structure. Reliability reduces the burden on the hinged link 1010 itself.
  • the frame portion of the grounding weight device 10 is mainly used for connection and controllable deformation, and the portion for providing the weight is the roller 1003 shown in Fig. 25, and the roller 1003 is mounted on the support by the bearing. On the axle 1009.
  • the crawler type escape device 200 is relatively small and includes a plurality of movable portions.
  • the roller axle 1009 has a larger arrangement density, as shown in FIG. There are a total of 11 supporting axles 1009, and correspondingly, they comprise 11 sets of roller 3, which can form a relatively strong load carrying capacity.
  • the roller axle 1009 shown in Fig. 25 has three roller wheels 1003 arranged in addition to the foremost roller axle 1009 to improve the load capacity.
  • the roller axle 1009 is used as a link pin shaft in addition to the roller axle 1009, and is exposed from the outside of the frame, and the exposed portion is used as a shaft head for mounting a small individual roller 1003; A larger roller 1003 is mounted to the portion of the roller axle 1009.
  • the inner and outer sides are constrained by the two frames of the grounding weight device 10, and the two frames are inside, and the space bound by the two frames is outside.
  • the hinge chain plate 1010 is disposed on both sides of the grounding weight device 10, and connects the roller axle 1009, the guide axle 1005 and the guide axle 1002 into a rotatable deformation link structure, which appears in different positions in the longitudinal direction.
  • the hinge chain plates 1010 at the load point will have relative rotation with each other, and the function thereof is to maximize the grounding area of the track type escape device 200, thereby increasing the friction between the track belt 9 and the ground to improve the track type escape device.
  • the walking efficiency of 200 improves the adaptability to different terrains, as shown in Figure 11 for the deformation state of the links.
  • FIG. 29 Another grounding weight device 10 shown in FIG. 29 includes the following main components: a guide wheel 1001, a guide axle 1002, a roller 1003, a roller axle 1004, a guide axle 1005, a guide wheel 1006, and an articulated link 1010. .
  • the grounding weight device 10 of the structure shown in Fig. 29 is suitable for an application scenario in which the crawler type escape device is opened and deformed under no-load conditions, such as applied to a ship.
  • the tensioning bracket 8011 of the upper end of the auxiliary connecting mechanism 8 has a pair of pillar mechanisms, and the pillar mechanism and the rear end of the carrier frame 2
  • the pair of guide sleeve mechanisms cooperate to form a pair of shaft shafts that are parallel to the front-rear direction of the load-bearing frame 2 and are movable in the axial direction, and the shafts can be moved in the axial direction to realize the crawler belts.
  • the tension adjustment function of 9 is such that one end of the retracting adjustment mechanism 805 of the lower end of the auxiliary connecting mechanism 8 is hinged to the guide wheel shaft 1002 of the grounding weight device 10 and forms a rotational connection pair.
  • the auxiliary connecting mechanism 8 and the support rod system 6 and the rear end of the carrying frame 2 together form a quadrilateral mechanism, wherein the tensioning bracket 8011 has a pair of column guiding mechanisms and the carrying frame 2
  • the mating portion of the pair of guide sleeve mechanisms of the rear end is understood as a rod member having a length that is a hinge point of the support rod system 6 and the carrier frame 2 to a hinge point of the tension bracket 8011 and the rotating bracket 802.
  • the straight line distance between the two sides of the quadrilateral mechanism should satisfy the following conditions: the sum of the support rod 6 length a and the retraction adjustment mechanism 805 rod length b should be equal to the rotating bracket 802 rod length c and the support rod system 6 and the carrier
  • Figure 20 shows the main components or components of the auxiliary attachment mechanism 8, including the track tensioning device 801, the rotating bracket 802, the track carriage wheel 803, the carriage axle 804, and the retraction adjustment mechanism 805, wherein the two of the rotation brackets 802
  • the ends are hingedly attached to the track tensioning device 801 and the carriage axle 804 and respectively form a rotating connection pair.
  • the track carrier wheel 803 is sleeved on the bracket axle 804 and forms a rotating connection pair to hold the track and form rolling friction with the track.
  • One end of the retraction adjustment mechanism 805 is hinged to the bracket axle 804 to form a rotational connection pair.
  • the crawler tensioning device 801 includes the following components: a tensioning bracket 8011, a crawler bracket wheel 8012, a guide wheel 8013, a guide axle 8014, a tension adjusting screw 8015, and tensioning.
  • the auxiliary retracting mechanism 8018 is in fixed connection with the tensioning bracket 8011.
  • the tensioning bracket 8011 is hinged on the guiding axle 8014 to form a rotating connecting pair, and the guiding wheel 8013 is placed as a driven component on the guiding axle 8014.
  • Forming a rotating connection pair for guiding the track 9 the track carrier wheel 8012 is sleeved on the guide wheel shaft 8014 to form a rotating connection pair for holding the track 9 and forming rolling friction with the track 9, the movable elastic component 8017 is symmetric
  • the tensioning slides 8016 are disposed on the two sides and can be moved along the tensioning slide 8016.
  • the two ends of the guiding axle 8014 are connected to the movable elastic component 8017 and move along with the tensioning slide 8016 fixedly connected to the main frame on both sides. 3, as shown in Figure 15.
  • the movable resilient member 8017 includes a set of bolts 80171 that form a threaded connection with the slider 80174 and compress the spring set 80173 by the crimp block 80172 to form a pretensioned structure between the press block 80172 and the slider 80174 and A predetermined preloaded spring set 80173 is threadedly coupled to the tensioning adjustment screw 8015 and compresses the pressure block of the spring set 80173 and the slide block 80174 that is coupled to the guide wheel axle 8014 and movable within the tensioning slide 8016.
  • the rotation of the pressing block 80172 can be displaced along the front and rear directions of the main frame 3 by rotating the tension adjusting screw 8015. Due to the action of the spring set 80173, the displacement of the pressing block causes the sliding block.
  • the 80174 changes along with the position of the generating position, and the sliding block 80174 drives the guiding wheel axle 8014 to change along the front and rear positions of the main frame 3.
  • the tensioning bracket 8011 is displaced along with the guiding axle 8014, and the tensioning bracket is in the process.
  • the pair of guide posts of the frame 8011 and the pair of guide bushes of the rear end of the load-bearing frame 2 are displaced along the axial direction of the guide post and the guide bush, as shown in FIG. 27, thereby realizing the tension of the track 9 Adjustment.
  • the pre-compression force can keep the crawler belt 9 at all times.
  • the proper tension is applied, and on the other hand, when the crawler belt 9 is subjected to an external force, it can be transmitted to the guide wheel shaft 8014 through the grounding weight device 10, and the sliding block 80174 is driven to compress the spring group 80173, thereby realizing the grounding weight device 10.
  • the spring set 80173 is mainly used to provide the buffer when the crawler type escape device 200 is walking, similar to the suspension system of the vehicle.
  • a spring set 80173 having a corresponding stiffness, preferably a superposition of a plurality of sets of disc springs.
  • a cylindrical spring with a relatively strong stiffness coefficient can also be used.
  • the auxiliary retracting mechanism 8018 includes components and a connection structure as follows: one end of the first bracket 80181 has a pillar structure, as shown in the left end of FIG. 23, and the pillar structure and bearing
  • the frame 2 has a guide sleeve structure forming a sliding fit movable in the front-rear direction of the carrier frame 2; the other end of the first bracket 80181 is fixedly coupled to the tension bracket 8011, so that the auxiliary retracting mechanism 8018 is tensioned in the track.
  • the tensioning bracket 8011 is moved and maintains a stable positional relationship with the rotating bracket 802 and the guiding axle 8014; the tail of the driving cylinder 80182 is fixed on the first bracket 80181, and the sliding rod 80184 is guided along the first bracket 80181.
  • the hole moves and is connected to the connection block 80183 to drive the connection block 80183.
  • the push rod 80184 drives the connecting block 80183 and the roller 80185 at the end thereof to advance or retreat, and when the roller 80185 advances, the rotating bracket 802 is pushed to generate the crawler type.
  • the counterclockwise rotation movement of the escape device 200 when stowed, the retraction of the roller 80185 does not hinder the clockwise rotation movement required to rotate the bracket 802 when the crawler type escape device 200 is opened, so as to realize the rotation of the crawler type escape device 200 during the folding or opening process.
  • the auxiliary retracting is represented by the chain hinge structure of the grounding weight device 10, and after the crawler deformation control mechanism drives the active deformation support mechanism 12 to retract, the contraction rotation of the support rod system 6 assumes a random state, and needs auxiliary retraction. The mechanism assists in its retraction in order to fully recover the tracked escape device 200.
  • the core of the structure of the crawler type escape device 200 is deformation, that is, the change of the distance between the load bearing frame 2 and the grounding weight device 10 shown in FIG. 12 is realized, which directly reflects the height of the crawler type escape device 200. Or the change in thickness dimension, the crawler type escape device 200 has a smaller height or thickness in the stowed state and a set height or thickness in the open state.
  • the deformed base member is a hinged quadrilateral mechanism formed by the carrier frame 2, the active deformation support mechanism 12, the grounding weight device 10, and the support bar system 6, the active deformation support mechanism 12 and the support bar system 6.
  • the rotation causes a change in the distance between the carrier frame 2 and the grounding weight device 10.
  • the quadrilateral mechanism composed of the base member carrying frame 2, the active deformation supporting mechanism 12, the ground supporting device 10 and the supporting rod system 6 deformed by the crawler type escape device 200 should have an obtuse angle ⁇ forming a quadrangle under the assumption of no load opening state.
  • the minimum height or thickness as shown in Figure 7 is shown in Figure 31.
  • the length relationship between A and C, C and F, F and I is: A is greater than C, C is greater than F, and F is greater than I.
  • plane 4 The linkage mechanism behaves as a mechanism with a certain elevation angle, which is more suitable for climbing, and is more suitable for application in, for example, the vessel 100a.
  • the grounding walking portion that is, the grounding weight device 10 shown in FIG. 12 is opposite to the supporting frame 2.
  • the grounding weight device 10 will be deformed to some extent with the external force or load to be subjected to. Therefore, the grounding weight device 10 often does not appear to be in a flat state in a state of being subjected to an external force load, and has a certain degree of deformability with respect to the ground, and exhibits a state as shown in FIG.
  • the deformation control mechanism 4 is a control mechanism that causes the active deformation support mechanism 12 and the support bar system 6 to rotate, thereby changing the distance between the carrier frame 2 and the grounding weight device 10.
  • Figure 16 shows an embodiment of a deformation control mechanism for a crawler type escape device 200, which is suitable for the case of bearing an external load during the process of expanding the track (e.g., for the vehicle 100), and the track deformation control mechanism 4
  • the utility model comprises the following components: a slide rail assembly 407 disposed on the support frame 2; a first-stage slider assembly 404 disposed on the slide rail assembly 407 and forming a first linear movement pair with the slide rail assembly 407, and a slide rail assembly 407
  • a secondary slider assembly 406 is formed between the second linear movement pair and an auxiliary slider assembly 401 forming a third linear movement pair with the slide assembly.
  • a drive connection block 405 is provided which is hinged to the primary slider assembly 404 at one end and directly connected to the second cylinder 410 at the other end and is provided with a guide slot 411.
  • the driving connection block 405 is provided with a through slot or a through hole in the left and right direction, and is configured as a guide slot 411 as shown in FIG. 16.
  • the direction of the guide slot 411 is the length direction of the upper side; the guide slot 411 is used for the second stage.
  • the driving connection block 405 is opened with a through hole communicating with the guide groove 411 in the direction of the first cylinder 409 for introduction of the first cylinder 409 push rod.
  • the primary strut 403 and the connecting arm 402 shown in Figure 16 are hinged to form a hinge that is provided with a roller 412 such that the hinge is based on rolling friction between the roller 412 and the support slide 1007, in some implementations. For example, sliding friction without providing the roller 412 can also be employed.
  • the secondary stay 408 and the connecting arm 402 shown in Fig. 16 have a relief structure to avoid interference with members of the grounded weight device 10 when the crawler type escape device is in the stowed state.
  • the operation process of the track deformation control mechanism 4 is as follows:
  • the push rods of the first oil cylinder 409 and the second oil cylinder 410 are in a retracted state, and the grounding weight device 10 and the load bearing frame 2 are in a state of being pressed.
  • the roller 412 is in contact with the support slide 1007, it has a small height or thickness set as shown in FIG. 7, and the secondary slider assembly 406 is located at the front end of the guide groove 411 in this state.
  • the drive connecting block 405 drives the primary slider assembly 404 to linearly move the primary strut 403 that is articulated thereto, while the secondary slider assembly 406 is in the first cylinder
  • the linear movement is also caused by the action of the 409 push rod, and the roller 412 of the primary support 403 and the hinge portion of the connecting arm 402 pushes the support slide 1007 downward, and the support slide 1007 drives the guide axle 1005 and the ground support device 10 connected thereto.
  • Displacement occurs, so that the active deformation support mechanism 12 produces a change in the slope, and the active deformation support mechanism 12 acts as an active member to open the quadrilateral mechanism in the state shown in FIG.
  • the primary strut 403 changes the inclination and drives the auxiliary slider assembly 401 back through the connecting arm 402.
  • the roller 412 is disengaged from the supporting slide 1007, the level of the crawler is completed.
  • the connecting arm 402 and the primary strut 403 are folded, and the primary slider assembly 404 is in contact with the auxiliary slider assembly 401.
  • the purpose of setting the primary strut 403 to achieve the graded open deformation is to ensure the ⁇ angle of a certain size in the initial state of the track opening, and reduce the driving force required in the initial deformation stage to ensure a certain load.
  • the lower track was opened smoothly.
  • the inclination of the secondary strut 408 changes along with the first opening process. Since the length of the secondary strut 408 is greater than that of the primary strut 403, the variation of the inclination of the secondary strut 408 is smaller than that of the primary strut 403.
  • the change in degree causes the secondary slider assembly 406 to move at a lower speed than the primary slider assembly 404, the relative movement between the secondary slider assembly 406 and the guide slot 411, and the secondary slider assembly 406 and the guide slide The rear end distance of the groove 411 is gradually reduced.
  • the secondary slider assembly 406 is in contact with the rear end of the guide slot 411, and the primary slider assembly 404 and the secondary slider assembly 406 move synchronously.
  • the driving connection block 405 and the first cylinder 409 jointly drive the secondary slider assembly 406, and when the upper end of the secondary strut 408 follows the secondary slider assembly 406, A rotation about the guide axle 1005 will occur, which will result in a further change in the pitch of the secondary struts 408, which in turn will result in a change in the distance between the carrier frame 2 and the grounding weight 10, enabling secondary opening of the track.
  • the auxiliary slider assembly 401, the connecting arm 402 and the primary strut 403 are advanced with the same stage slider assembly 404 until the second cylinder 410 completes the set stroke, and the secondary opening deformation of the track ends.
  • the secondary strut 408 has a large inclination change, that is, has a large ⁇ angle, and the secondary strut 408 and the secondary slider assembly 406 are hinged and guided.
  • the vertical spacing between the 1005s becomes larger, and the driving force required to achieve further expansion of the crawler belt under the same load becomes small.
  • the secondary slider assembly 406 continues to push the upper end of the secondary strut 408 forward, and the angle ⁇ is further increased, thereby achieving the distance between the carrying frame 2 and the grounding weight device 10. Further increasing until the set crawler opening deformation height is reached, the three-stage opening deformation of the crawler belt is completed, in which the driving connection block 405 is no longer moved forward, and the secondary slider assembly 406 is along the slide rail assembly 407 and the guide slide. The slot 411 is advanced, and after the three-stage opening deformation is completed, the secondary slider assembly 406 is at the front end of the guide slot 411.
  • the driving cylinder 80182 of the auxiliary retracting mechanism 8018 included in the auxiliary connecting mechanism 8 shown in FIG. 12 should be in the initial state of returning to avoid pushing.
  • the roller 80185 at the end of the rod 80184 obstructs the rotation of the rotating bracket 802 during the deformation of the track, as shown in FIG.
  • the crawler type escape device In the initial state, the crawler type escape device is in an open state, and the push rods of the first oil cylinder 409 and the second oil cylinder 410 are in an extended state, and at this time, the load frame 2 and the ground support device 10 have a large set distance. , has a height set as shown in FIG.
  • the first cylinder 409 and the second cylinder 410 respectively drive the secondary slider assembly 406 and the driving connection block 405 to linearly move back, thereby driving the connecting block 405 to drive one.
  • the stage slider assembly 404 is linearly moved back.
  • the auxiliary slider assembly 401 is moved back with the same stage slider assembly 404 under the action of the compression elastic assembly 413, and the folded state of the primary stay 403 and the connecting arm 402 continues to be maintained.
  • the compression-elastic component 413 is separated from the primary slider assembly 404, the folded state of the primary struts 403 and the connecting arms 402 begins to separate.
  • the secondary brace 408 and the active deformation support mechanism 12 begin to produce a rotary motion, and the distance between the load bearing frame 2 and the ground support device 10 begins to gradually decrease.
  • the folding separation is gradually increased, and the distance between the auxiliary slider assembly 401 and the primary slider assembly 404 is gradually increased until the roller of the hinge portion is restored after the loading frame 2 and the active deformation supporting mechanism 12 are restored to the set position.
  • the 412 enters the slide of the support slide 1007 and is in contact with the support slide 1007, and the retraction of the front portion of the crawler type escape device 200 is completed.
  • the grounding weight device 10 opposite to the load-bearing frame 2 in the crawler type escape device 200 shown in FIG. 12 and FIG. 25 has a function of being deformable with a load, and the support rod system shown in FIG.
  • the contraction rotation angle of 6 is not the same as the contraction rotation angle of the active deformation support mechanism 12, and the contraction rotation angle of the support rod system 6 assumes a random state.
  • the pushing of the driving cylinder 80182 push rod 80184 of the auxiliary retracting mechanism 8018 shown in FIG. 21 and FIG. 23 is started, and the push rod 80184 and the roller 80185 at the end thereof are advanced.
  • the rotating bracket 802 generates a rotary motion of the contraction of the crawler belt, thereby driving the bracket axle 804, the retracting adjustment mechanism 805 and the grounding weight device 10 shown in FIG. 20 to generate a contraction of the crawler belt, thereby completing the crawler-type escape device 200.
  • the support rod system 6 shown in Fig. 12 is reset with the rotation in the process, and the state shown in Fig. 7 is exhibited.
  • the purpose of providing the compression elastic component 413 is to ensure that the roller 412 is accurately located in the support slide 1007 after the track is retracted.
  • Figure 18 is an embodiment of a deformation control mechanism for a crawler type escape device 200.
  • the embodiment is suitable for a case where the external force load is not applied during the opening deformation of the track or the external force load is only fluid damping, that is, at no load.
  • the track deformation control mechanism connection structure in this embodiment is as follows: the slide rail assembly 407a disposed on the load bearing frame 2 is formed with the slide rail assembly 407a.
  • the slider assembly 406a of the linear motion pair is respectively hinged to the slider assembly 406a and the support rod 408a on the guide axle 1005 and the push rod end directly connected to the slider assembly 406a and fixed to the cylinder 409a on the carrier frame 2.
  • the deformation control mechanism shown in Fig. 18 is used in conjunction with the grounding weight device 10 shown in Fig. 29.
  • the stay 408a shown in Fig. 18 has a relief structure to avoid interference with members of the grounded weight device 10 when the crawler type escape device is in the stowed state.
  • the push rod of the oil cylinder 409a is in a retracted state, and the grounding weight device 10 and the load frame 2 are in a pressed state, and have the setting as shown in FIG. Smaller height or thickness.
  • the push rod of the oil cylinder 409a pushes the slider assembly 406a linearly forward, and the strut 408a hinged with the slider assembly generates a rotation about the guide axle 1005, thereby generating the strut 408a and the active deformation support.
  • the change in the inclination of the mechanism 12 causes a change in the distance between the carrier frame 2 and the grounding weight device 10, and the opening of the track is achieved until the set change distance is reached, and the opening deformation of the track ends.
  • the driving cylinder 80182 push rod 80184 in the auxiliary retracting mechanism 8018 included in the auxiliary connecting mechanism 8 shown in FIG. 12 should be in the initial state of the return position before the above-mentioned crawler opening deformation process is implemented to avoid
  • the roller 80185 at the end of the push rod 80184 obstructs the rotation of the rotating bracket 802 during the deformation of the track, as shown in FIG.
  • the crawler type escape device In the initial state, the crawler type escape device is in an open state, and the push rod of the oil cylinder 409a is in an extended state. At this time, the load frame 2 and the ground support device 10 have a large set distance, and have a setting as shown in FIG. The height of the set.
  • the grounding weight device 10 opposite to the load-bearing frame 2 has a function of being deformable with a load, and the support rod system shown in FIG.
  • the contraction rotation angle of 6 is not the same as the contraction rotation angle of the active deformation support mechanism 12, and the contraction rotation angle of the support rod system 6 assumes a random state.
  • the pushing of the driving cylinder 80182 push rod 80184 of the auxiliary retracting mechanism 8018 shown in FIG. 21 and FIG. 23 is started, and the push rod 80184 and the roller 80185 at the end thereof are advanced.
  • the rotating bracket 802 generates a rotary motion of the contraction of the crawler belt, thereby driving the carriage axle 804, the retracting adjustment mechanism 805 and the grounding weight device 10 shown in FIG. 20 to generate a contraction of the crawler belt, thereby completing the crawler-type escape device 200.
  • the support rod system 6 shown in Fig. 12 is reset with the rotation in the process, and the state shown in Fig. 7 is exhibited.
  • FIG. 30 shows the positional relationship between the push rod 80184 of the auxiliary retracting mechanism and the rotating bracket 802 after the crawler belt retracting device 200 of the embodiment is completed, and the push rod 80184 is in front of the push rod 80184.
  • the direction of movement, the contact plane of the roller 80185 with the rotating bracket 802, and the front-rear direction of the carrier frame 2 have a parallel relationship, whereby after the crawler type escape device 200 is fully retracted, that is, has a set minimum height or thickness, The push rod 80184 can still drive the roller 80185 to continue to move forward.
  • This structure facilitates the auxiliary retracting mechanism to further implement the locking function of the stowed crawler-type escape device after the completion of the crawler-type release device.
  • Figure 19 is a schematic view of the lock mechanism of the crawler type release device, showing the basic components of the track lock mechanism and their connection relationship: the connection block 80183 is fixedly connected with the push rod of the drive cylinder 80186, and the tie rod 702 is placed
  • the connecting block 80183 is configured to be slidably engaged with the mutually movable hole shafts.
  • One end of the pull rod 702 is fixedly connected to the lateral strut 703, and the other end is connected to the limiting block 701.
  • the sliding guide rod 705 is sleeved on the fixed connection with the main frame 3.
  • the rod sleeve 704 is movable back and forth along the axial direction of the guide rod sleeve 704; the locking block 709 is hinged with the pin shaft 707 fixed to the main frame 3 to form a rotating connection pair; the two ends of the torsion spring 708 are respectively connected to the locking block 709 and the main frame 3 are sleeved on the pin 707; the connecting cable 710 is connected to the sliding guide 705 and the locking block 709 through the guiding wheel 706 connected to the main frame 3; the lateral strut 703 The two ends are respectively connected to the sliding guides 705 on both sides.
  • the connecting block 80183 contacts the limiting block 701 and pushes the limiting block 701, thereby pushing the rod 702 and the lateral strut
  • the 703 moves synchronously, and the lateral strut 703 drives the sliding guide 705 to move within the guide sleeve 704, so that the sliding guide 705 generates a pulling force on the locking block 709 by connecting the pulling cord 710, and the locking block 709 overcomes the torsion spring 708.
  • the torsional force is rotated about the pin shaft 707 to achieve the locked state of the crawler belt 9 as shown in FIG.
  • the lock release process is as follows: before the crawler type escape device 200 needs to perform the open deformation, the push rod of the drive cylinder 80182 in the auxiliary retraction mechanism shown in FIG. 23 needs to be retracted first, thereby releasing FIG.
  • the connection block 80183 shown therein limits the back movement of the limiting block 701. In the locked state, the pulling force of the connecting cable 710 to the locking block 701 is released, and under the action of the torsion force of the torsion spring 708, it is in the locked state.
  • the locking block 709 rotates about the unlocking of the pin shaft 707.
  • the rotation of the locking block 709 is transmitted to the sliding guide 705 through the connecting cable 710, and the sliding guide 705 drives the lateral strut 703 and the rod 702 to move back.
  • the lock on the crawler belt 9 is released, and the state shown in FIG. 19 is exhibited.
  • the drive cylinder 80182 can be configured as an electric motor assembly.
  • the locking blocks 709 are symmetrically arranged in groups on both sides of the main frame 3, and three groups are shown in FIG. 19. When the main frame 3 is long, more locking blocks 709 can be disposed.
  • the stay 408a shown in Fig. 18 is preferably of a unitary structure to increase the support strength.
  • the quadrilateral mechanism in which the carrier frame 2, the active deformation support mechanism 12 and the support bar system 6 and the grounding weight device 10 are hinged as shown in FIG. 12 assumes that the grounding weight device 10 is not deformed (no load is opened).
  • the angle formed between the carrier frame 2 and the grounding weight device 10 can be selected according to different application scenarios. For example, when used in a vehicle, the angle formed between the carrier frame 2 and the grounding weight device 10 is Zero, at this time, the quadrilateral mechanism is a parallelogram, as shown in FIG. 9; when used in a ship, it is preferred that the load bearing frame 2 and the grounding weight device 10 have a certain angle between them, as shown in FIG.
  • the first cylinder 409 and the second cylinder 410 power the deformation control mechanism 4, and the number of the first cylinder 409 and the second cylinder 410 can be adjusted according to the vehicle type of the vehicle 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Jib Cranes (AREA)
  • Handcart (AREA)

Abstract

一种接地支重装置、履带式脱困装置及设备,其中,接地支重装置(10)包括:两边框组件,两边框组件相互平行,并具有第一距离,且每一边框组件由多个第一单元和多个第二单元依序间隔串列铰接而成,铰接的轴线水平并与串列的方向垂直;多个支重轮轴(1004,1009),每一支重轮轴(1004,1009)的两端相应安装在两边框组件上,用于连接两边框组件,并提供轴头;第一支重轮,安装在轴头上。

Description

接地支重装置、履带式脱困装置及设备 技术领域
本发明涉及一种接地支重装置,具有该接地支重装置的履带式脱困装置,以及具备该履带式脱困装置的设备。
背景技术
中国专利文献CN106828631A针对现有车辆脱困装置提出了一种履带式脱困装置,其变形部分采用平行四边形机构,基于两连架杆的转动实现机架与支重构架的距离远近的变化,从而具有张开和收起两个基本状态,张开状态时用于车辆的脱困或者特定路况下的辅助行行驶,而在收起状态时减少对车辆的可通过性产生较大的影响。
基于前述的中国专利文献CN106828631A,脱困的辅助支撑取决于变形控制机构的撑开力,为了在给定的撑开力条件下获得比较大的驱动力(与地面的摩擦力),需要履带与地面保持比较良好的接触,或者说需要保持较大的接触面积,从而可以获得良好的驱动能力。有鉴于此,其支重轮系构架具有一定的柔韧性,柔韧性则主要由弹性块通过上支撑件、下支撑块形成的总成提供,支重轮系构架的柔韧性,使其具备一定的适配地形的能力,从而能够与例如不平整的底面保持较大的接触面积。
支重轮系构架的主体为线性弹性材料构成的线束组,线束组通过线性排列在线束组上的连接块锁铆起来。线束组的变形可控性比较差,尤其是除了能够适配地形的上下变形外,还具有例如平行于地面的变形,以及介于这两个变形间的变形形式,导致整体的结构稳定性相对较差。
线束组的变形能力也比较差,从而使支重轮系接地运行过程中随地形变形能力较差,因而在遇到较复杂地形时履带与地面接触面积较小,履带行走所需要的摩擦力不够充分,行走效率低下。
相对而言,即便是车辆运行路面的路况不好,驾驶员有意识的驱动车辆,也能够有效的规避较大的障碍,从而使车辆运行状况趋于良好,但在一些应用中,例如两栖船舶、两栖车辆等,水底障碍或者说从水向陆上爬坡时,线束组所构造的支重轮系构架的适应性相对较差。
另外,如中国专利文献CN106143030A公开了一种两栖船舶,该两栖船舶包括能展开的活动吊舱以及展开机构,活动吊舱能在展开位置和收起位置之间移动,展开机构构造成用于使能展开的活动吊舱在其展开位置与其收缩位置之间移动,活动吊舱的主体为履带式底盘结构,履带的行走依靠液压系统驱动实施,活动吊舱处于展开位置并 支撑起船舶由液压系统驱动履带式底盘实现陆地行走功能,但用于支撑和行走的活动吊舱本身不具备收缩功能,且行走动力依靠液压系统提供,因此占用空间大并且行走效率低。
发明内容
本发明的目的在于提供一种接地可靠性更好且变形方向易于设计的接地支重装置,本发明还提供了具备该接地支重装置的履带式脱困装置,以及具备该履带式脱困装置的设备。
依据本发明的实施例,提供一种接地支重装置,包括:
两边框组件,两边框组件相互平行,并具有第一距离,且每一边框组件由多个第一单元和多个第二单元依序间隔串列铰接而成,铰接的轴线水平并与串列的方向垂直;
多个支重轮轴,每一支重轮轴的两端相应安装在两边框组件上,用于连接两边框组件,并提供轴头;
第一支重轮,安装在所述轴头上。
依据本发明的实施例,提供一种具有上述接地支重装置的履带式脱困装置,其中,该履带式脱困装置包括带内支架,该带内支架的主体为四边形结构;
所述接地支重装置构成四边形结构的下边,而四边形结构的上边构成主机架,四边形结构剩余两边的上端与上边铰接,且剩余两边的下端与下边铰接,而构成摇杆;
相应地,所述履带式脱困装置还配有用于驱动下边与上边距离变化的驱动机构。
依据本发明的实施例,提供一种装有前述的履带式脱困装置的设备。
依据本发明的实施例,所采用的接地支重装置的边框由多个第一单元和多个第二单元依序间隔串列铰接而成,由于铰链的轴线水平,并与接地支重装置前后方向垂直,第一单元和第二单元之间的转动,受铰链的约束,其转动方向可控性比较强,从而使其变形设计更加容易。相对而言,基于铰链连接的第一单元和第二单元不必再使用如中国专利文献CN106828631A中的柔性结构,刚度则会使其可靠性更佳。
附图说明
图1为在一实施例中配有履带式脱困装置的越野车的结构示意图。
图2为相应于图1的仰视结构示意图。
图3为在一实施例中配有履带式脱困装置的大巴车仰视结构示意图。
图4为相应于图3的主视结构示意图。
图5为一实施例中配有履带式脱困装置的船舶俯视结构示意图。
图6为相应于图5的履带式脱困装置张开后状态结构示意图。
图7为一实施例中履带式脱困装置收起状态结构示意图。
图8为履带式脱困装置局部结构。
图9为一种履带式脱困装置张开状态结构示意图。
图10为一种履带式脱困装置张开状态结构示意图。
图11为一种履带式脱困装置张开状态随地形变化的结构示意图。
图12为一种履带式脱困装置张开状态立体结构示意图(隐去部分主机架和履带)。
图13为一种驱动机构结构示意图。
图14为一种履带式脱困装置上部结构示意图。
图15为一种履带式脱困装置机架结构示意图。
图16为一种履带式脱困装置变形控制机构结构示意图。
图17为相应于图16的原理图。
图18为一种履带式脱困装置变形控制机构结构示意图。
图19为一种履带式脱困装置锁止机构结构示意图。
图20为一种履带式脱困装置辅助连接机构结构示意图。
图21为一种履带式脱困装置辅助连接机构张紧装置结构示意图。
图22为一种履带式脱困装置辅助连接机构张紧装置可移动弹性组件结构示意图。
图23为一种履带式脱困装置辅助连接机构辅助回缩机构结构示意图。
图24为一种履带式脱困装置辅助连接机构回缩调整机构结构示意图。
图25为一种履带式脱困装置接地支重装置结构示意图。
图26为一种履带式脱困装置完全收起锁止状态示意图。
图27为一种履带式脱困装置辅助连接机构连接示意图。
图28为一种履带式脱困装置辅助连接机构所构成的四边形机构示意图。
图29为一种履带式脱困装置接地支重装置结构示意图。
图30为一种履带式脱困装置收起状态时辅助回缩机构推杆与转动支架状态示意图。
图31为一种履带式脱困装置假设无负载张开状态示意图。
图中:100.车辆;100a.船舶;200.履带式脱困装置。
1.驱动机构;2.承载机架;3.主机架;4.变形控制机构;5.托架轮系;6.支撑杆系;7.锁止机构;8.辅助连接机构;9.履带;10.接地支重装置;11.支撑轴;12.主动变形支撑机构。
101.驱动轴;102.驱动轮;103.键。
401.辅助滑块;402.连接臂;403.一级撑杆;404.一级滑块组件;405.驱动连接块;406.二级滑块组件;407.滑轨组件;408.二级撑杆;409.第一油缸;410.第二油 缸;411.导滑槽;412.滚轮;413.压缩弹性组件。
406a.滑块组件;407a.滑轨组件;408a.撑杆;409a.油缸。
701.限位块;702.拉杆;703.横向支杆;704.导杆套;705.滑动导杆;706.导向轮;707.销轴;708.扭簧;709.锁止块;710.连接拉绳。
801.履带张紧装置;802.转动支架;803.履带托架轮;804.托架轮轴;805.回缩调整机构。
8011.张紧托架;8012.履带托架轮;8013.导向轮;8014.导向轮轴;8015.张紧调节螺杆;8016.张紧滑道;8017.可移动弹性组件;8018.辅助回缩机构。
80171.螺栓;80172.压块;80173.弹簧组;80174.滑动块。
80181.第一支架;80182.驱动油缸;80183.连接块;80184.推杆;80185.滚轮。
8051.第二支架;8052.调节螺杆;8053.第三支架。
1001.导向轮;1002.导向轮轴;1003.支重轮;1004.支重轮轴;1005.导向轮轴;1006.导向轮;1007.支撑滑道;1008.扭簧;1009.支重轮轴;1010.铰接链板;1011.导引槽。
具体实施方式
参照说明书附图1,例如车辆100,其具有确定的头和尾,从而具有确定的前和后,以及左和右,在本发明中,以例如车辆100前后所确定的方向为第一基准方向。而车辆100的宽度方向是在水平面内与第一基准方向相垂直的方向。
可以理解的是,在一般观念上,关于例如车辆100的前方或者后方,并不具有严格的方向属性,而是基于前后所确定的大致方向,例如车大灯在车头(前端),对于一个个体相对较大的车辆100来讲,其基准点与车灯并不具有严格的在同一水平线上的关系,而是一个大致的前“面”的关系。在本发明中,该观念同样适用。
同样地,对于宽度方向,也是观念上的大致的基于方位上的“面”上的关系,而不是绝对的“线”上的关系。
同样地,在例如车辆100的高度方向,是履带式脱困装置200所期望的变形方向,或者说高度变化方向。同时,也可以理解的是高度的变化并不必然是在纯粹的竖直方向的机构运动才能实现。
此外,术语“第一”,“第二”等词语仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”,“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或者一体结构;可以是机械连接,也可以是电连接;可以是直接连接,也可以是通过中间媒介的 间接连接,可以是两个元件内部的连通。对于本领域的技术人员而言,可以视具体情况理解上述术语在本发明中的具体含义。
本发明的描述中,术语“一级”、“二级”、“三级”等词语仅用于描述目的,而不能理解为指示或暗示相对重要性。
本发明描述中,除非另有明确的说明,术语“杆长”指一构件两连接点之间的直线距离,例如主动变形支撑机构12,其长度是指其两端铰接点的连心线长度。
另外,关于车辆100,其车架为其参考系,车辆的前后方向称为纵向,左右方向称为横向,一般而言,在车辆中,例如车架的纵梁和横梁均以此命名。
图1~4是履带式脱困装置200在车辆上100的配置方式,车辆较小时,例如越野车,可以为其配置一对履带式脱困装置200,左右各一地设置在车辆100的底盘上。
车辆较大时,例如图3和图4所示的大巴,为其配置六个履带式脱困装置200,在大巴的前中后各设有一对。
图5和图6中,为一种履带式脱困装置200在船舶100a上的安装示意图,船舶100a的两侧各设置一套,船舶100a在水中正常航行时,履带式脱困装置200处于收起的初始状态,当船舶100a需要上岸停泊或行驶时,在水中控制履带式脱困装置张开,运行履带式脱困装置使其带动船舶驶离正常航行的水域。
关于履带式脱困装置200的基本机构,实施例中的履带式脱困装置200的轮系配置方式是将轮系分成上下两部分进行配置,下面的部分是接地支重装置10,由于接地支重装置10的左右边框链式结构,从而可以是等效的柔性结构,区别于中国专利文献CN106828631A中的柔性结构,链式结构受链节销轴的约束,其变形依赖于受链节销轴所约束而仅存的一个转动自由度。而中国专利文献CN106828631A中的柔性结构的变形自由度太多,变形可控性相对比较差。
接地支重装置10是履带式脱困装置200带内支架位于下面的架体部分,为了描述方便,由于带内支架的机械原理图可以表示为图31所示的平面四连杆机构,因此,以平面四连杆机构的基本概念来表述带内支架,并且为了进一步简化描述,直接使用下边表示接地支重装置10,上边表示四边形结构的托链结构总成,平面四连杆机构的其余两个边,基于长度,是双曲柄,不过转动转角范围相对较小,因此,表示为双摇杆。
另外,具体地,平面四连杆机构的上边本体是图12中所示的承载机架2,承载机架2侧面固定在主机架3,主机架3避开履带9在上下方向上的覆盖,用于履带式脱困装置200与例如车辆车架间的固定连接。
其中,承载机架2构造为托架轮系架体,用于安装托架轮系5,如图12所示。
车辆100所使用的平面四连杆机构是平行四边形机构,而船舶100a所使用的平面 四连杆机构则是不等边平面四连杆机构。平面四连杆机构可以控制其中的一对边产生距离的变化,使得履带式脱困装置200具有高度或厚度的变形能力,这与常规履带式底盘高度不能变化的结构并不相同。
本实施例中,图12示出的一种履带式脱困装置200包括如下机构和部件:驱动机构1、承载机架2、主机架3、变形控制机构4、托架轮系5、支撑杆系6、锁止机构7、辅助连接机构8、履带9、接地支重装置10、支撑轴11和主动变形支撑机构12。下面对各机构和部件进行具体的描述。
首先是接地支重装置10,接地支重装置10的作用类同于履带式底盘中的支重轮总成。
如图25所示,接地支重装置10包含以下主要部件:导向轮1001、导向轮轴1002、支重轮1003、导向轮轴1005、导向轮1006、支撑滑道1007、扭簧1008、支重轮轴1009和铰接链板1010。
图25所示结构的接地支重装置10适用于履带式脱困装置200在承载状态下张开变形的应用场景,如应用于车辆100。
其中,导向轮1001和导向轮1006位于接地支重装置10的两端,用于履带9在接地支重装置10的两端的导向。
导向轮1001采用齿型导向轮,能够与履带链板链节配合,不会产生滑动。
导向轮1001套置于导向轮轴1002上,因只是导向,因此,导向轮1001需要具有顺畅的转动自由度,用于在接地支重装置10的后端对履带9进行导引,从而导向轮1001与导向轮轴1002间需要采用例如辊子轴承连接。
同样地,导向轮1006套置于导向轮轴1005上,用于对履带9在接地支重装置10前端对履带9进行导引。
另,接地支重装置10上还设有支撑滑道1007,支撑滑道1007的一端套(图25中的左端,即前端)置于导向轮轴1005上形成转动连接、另一端通过导引槽1011套置于相邻的支重轮轴1009上,由于导引槽1011是上下方向的导引槽,因此,可以使支撑滑道1007具有上下方向上一定范围内的活动空间,其活动范围受导引槽1011的约束。
进而,提供一扭簧1008套置于支重轮轴1009上且两末端连接于支撑滑道1007上,构成支撑滑道1007的复位装置,复位力向上。
关于上下浮动的复位力,除了前述的扭簧1008,还可以采用其他类型的弹性部件来实现,例如圆柱弹簧,只不过圆柱弹簧需要设置在竖直方向,可以是拉伸弹簧,也可以采用采用压缩弹簧,采用不同的弹簧,其安装位置会有不同,本领域的技术人员 易于实现。
由于上下浮动结构的控制对象是支撑滑道1007,重量相对较小,因此,可以使用套件设置在支重轮轴1009上且两末端和支撑滑道1007连接的扭簧1008来实施上下浮动的功能,在支撑滑道1007不承受向下外力的状态下由于扭簧1008的作用,使其始终处于上浮状态(上止点)。
上下浮动结构的作用是履带式脱困装置200收起状态时,支撑滑道1007受到变形控制机构4的挤压,而处于下浮状态(下止点),不影响履带式脱困装置200的收起高度,而在履带式脱困装置200张开状态时,支撑滑道1007处于上浮状态,不会干涉履带9的正常运转,如图12所示。
为了克服中国专利文献CN106828631A接地支重装置10变形难以控制的问题,在本实施例中,采用链式结构构造接地支重装置10的左右边框。
链式结构受链节销轴的约束,从而其变形设计易于控制。
左右两个边框具有相互加强的作用,此处的加强是基于链节销轴在接地支重装置10的宽度方向上分布距离较大,整体的抗扭能力变强,从而变形的可控性也就更强。
接地支重装置10边框的铰接链板1010可以采用单纯的板件,在优选的结构中可以采用传动链的链节结构。对于传动链,可以理解的是其包括内链板和外链板,这属于链传动技术领域的常规技术手段,对此不再赘述。
基于内链板和外链板通过链节销轴(在传动链技术领域简称为销轴)依序串接起来,具有非常强的抗拉能力(用于传动)。在本发明中,所形成的边框主要用于支重。
在图25所示的结构中,接地支重装置的两个边框间还通过图中所示的支重轮轴1009连接,使其整体的结构可靠性更强,其整体强度受单个边框强度的影响减小,主要依靠支重轮轴1009的连接强度。
因支重轮轴1009还用于安装支重轮1003,需要具有比较强的抗扭剪能力,因此,要求其具有比较强的抗扭剪能力,因此接地支重装置10的本体具有比较强的结构可靠性,减轻了铰接链板1010自身的负担。
进而,接地支重装置10的边框部分主要用来实现连接和可控的变形,而提供支重的部分即为图25中所示的支重轮1003,支重轮1003通过轴承安装在支重轮轴1009上。
整体而言,履带式脱困装置200个体相对较小,并且包含多个可动部分,为了获得较高的支撑能力,支重轮轴1009具有较大的排布密度,如图25所示,图中共有11个支重轮轴1009,相应地,其包含11组支重轮3,可以形成比较强的承载载荷能力。
图25中所示的支重轮轴1009除最前面的支重轮轴1009外,所配置的支重轮1003 均有三个,以提高荷载能力。
支重轮轴1009除了作为支重轮轴1009外,还作为链节销轴,并且其从边框的外部露出,露出的部分作为轴头,用于安装个体较小的支重轮1003;介于两边框间的支重轮轴1009部分安装了一个较大的支重轮1003。
其中,关于内外,由接地支重装置10的两边框所约束,两边框间为内,两边框所约束的空间之外为外。
图25、图12中,铰接链板1010配置在接地支重装置10的两侧,将支重轮轴1009、导向轮轴1005和导向轮轴1002连接为可转动变形的链接结构,在纵向方向不同部位出现载荷时,载荷点处铰接链板1010互相之间会产生相对转动,其作用在于最大限度的提高履带式脱困装置200的接地面积,进而增大履带9与地面的摩擦力以提高履带式脱困装置200的行走效率,改善对不同地形的适应能力,如图11所示的链节变形状态。
附图29中示出的另一种接地支重装置10包含以下主要部件:导向轮1001、导向轮轴1002、支重轮1003、支重轮轴1004、导向轮轴1005、导向轮1006和铰接链板1010。
附图29中所示结构的接地支重装置10适用于履带式脱困装置在空载状态下张开变形的应用场景,如应用于船舶。
再看辅助连接机构,图12、图24和图27所示,辅助连接机构8的上端所具有的张紧托架8011具有一对导柱机构,该导柱机构与承载机架2后端所具有的一对导套机构配合,构成一对轴线与承载机架2前后方向平行且可沿轴线方向相互移动的孔轴滑动配合连接,该可以沿轴线方向移动的孔轴滑动配合连接能够实现履带9的张紧调整功能,辅助连接机构8的下端所具有的回缩调整机构805的一端与接地支重装置10的导向轮轴1002铰接并形成转动连接副。
图27、图28所示,辅助连接机构8与支撑杆系6以及承载机架2的后端共同构成一四边形机构,其中张紧托架8011具有的一对导柱机构和承载机架2的后端所具有的的一对导套机构的配合部分作为一杆件理解,该杆件的长度为支撑杆系6与承载机架2铰接点至张紧托架8011与转动支架802铰接点之间的直线距离,该四边形机构的边长应满足以下条件:支撑杆系6杆长a与回缩调整机构805杆长b之和应等于转动支架802杆长c与支撑杆系6和承载机架2形成铰接点至张紧托架8011和转动支架802形成铰接点之间的直线距离d之和,即a+b=c+d,以保证履带式脱困装置200收起后具有最小的高度或厚度,如图7所示。
图20示出了辅助连接机构8的主要组成机构或部件,包含履带张紧装置801、转动支架802、履带托架轮803、托架轮轴804以及回缩调整机构805,其中转动支架802 的两端相应铰接于履带张紧装置801和托架轮轴804上并分别形成转动连接副,履带托架轮803套置于托架轮轴804上并形成转动连接副以托持履带并与履带形成滚动摩擦,回缩调整机构805的一端铰接于托架轮轴804上形成转动连接副。
关于履带张紧装置801,如图21所示,履带张紧装置801包含以下部件:张紧托架8011、履带托架轮8012、导向轮8013、导向轮轴8014、张紧调节螺杆8015、张紧滑道8016、可移动弹性组件8017以及辅助回缩机构8018。
图21所示,辅助回缩机构8018与张紧托架8011形成固定连接,张紧托架8011铰接于导向轮轴8014上形成转动连接副,导向轮8013作为从动部件套置于导向轮轴8014上形成转动连接副,用于对履带9的导向,履带托架轮8012套置于导向轮轴8014上形成转动连接副,用于托持履带9并与履带9形成滚动摩擦,可移动弹性组件8017对称配置于两侧的张紧滑道8016内并可沿张紧滑道8016移动,导向轮轴8014的两端连接于可移动弹性组件8017并随同移动,张紧滑道8016固定连接于两侧主机架3,如图15所示。
图22所示,可移动弹性组件8017包含:与滑动块80174形成螺纹连接并通过压块80172压缩弹簧组80173形成预紧结构的一组螺栓80171,位于压块80172和滑动块80174之间并处于一定的预紧状态的弹簧组80173,与张紧调节螺杆8015形成螺纹连接并压缩弹簧组80173的压块以及与导向轮轴8014连接并可在张紧滑道8016内移动的滑动块80174。
图22所示,由于主机架3端面的支撑作用,通过旋转张紧调节螺杆8015能够实现压块80172沿主机架3前后方向发生位移,由于弹簧组80173的作用,压块的位移会导致滑动块80174随同产生位置的前后变化,进而滑动块80174带动导向轮轴8014产生沿主机架3前后位置的变化,如图21所示,张紧托架8011随同导向轮轴8014发生位移,此过程中张紧托架8011所具有的一对导柱和承载机架2的后端所具有的一对导套发生沿导柱、导套轴向的位移,如图27所示,从而实现履带9张紧程度的调节。
图12、图22所示,由于压块80172与滑动块80174之间存在具有一定预压缩力的弹簧组80173,在履带9张紧程度调节完成后,一方面预压缩力可以使履带9保持始终具有适当的张紧度,另一方面在于当履带9受到外力作用时可以通过接地支重装置10传递到导向轮轴8014,带动滑动块80174对弹簧组80173产生压缩,从而实现接地支重装置10的随地形变形功能,如图11所示。
其中,弹簧组80173主要用来提供履带式脱困装置200行走时的缓冲,类同于车辆的悬架系统。
同时,为确保履带9正常行走张紧的需要,应考虑使用具有相应刚度的弹簧组 80173,优选多组碟形弹簧的叠加。
在一些实施例中,也可以采用劲度系数比较强大的圆柱弹簧。
关于辅助回缩机构,如图21、图23所示,辅助回缩机构8018包含的部件以及连接结构如下:第一支架80181的一端具有导柱结构,如图23左端,该导柱结构与承载机架2具有的导套结构形成可沿承载机架2前后方向移动的滑动配合;第一支架80181的另一端固定连接于张紧托架8011上,从而使辅助回缩机构8018在履带张紧调整过程中跟随张紧托架8011移动并与转动托架802、导向轮轴8014保持稳定的位置关系;驱动油缸80182尾部固定于第一支架80181上,推杆80184沿第一支架80181设置的导滑孔移动并与连接块80183连接以带动连接块80183。
如图23所示,随驱动油缸80182推杆80184的推出或回缩,推杆80184带动连接块80183及其端部的滚轮80185前行或后退,滚轮80185前行时推动转动支架802产生履带式脱困装置200收起时的逆时针旋转运动,滚轮80185后退不会阻碍履带式脱困装置200张开时转动支架802所需要的顺时针旋转运动,以实现履带式脱困装置200收起或张开过程中转动支架802位置变化的需要。
在此,辅助回缩表现在接地支重装置10的边框为链式铰接结构,履带变形控制机构带动主动变形支撑机构12回缩后,支撑杆系6的收缩回转呈现随机状态,需要辅助回缩机构帮助其回缩,以便使履带式脱困装置200完全回收。
关于履带变形控制机构,履带式脱困装置200结构的核心在于变形,即实现图12中所示承载机架2与接地支重装置10之间距离的变化,直接反应为履带式脱困装置200的高度或厚度尺寸的变化,履带式脱困装置200在收起状态时具有较小的高度或厚度,而在张开状态时具有设定的高度或厚度。
如图12所示,变形的基础构件是承载机架2、主动变形支撑机构12、接地支重装置10和支撑杆系6所形成的铰接四边形机构,主动变形支撑机构12和支撑杆系6的回转,实现承载机架2与接地支重装置10之间距离的变化。
履带式脱困装置200变形的基础构件承载机架2、主动变形支撑机构12、接地支重装置10和支撑杆系6所构成的四边形机构在假设无负载张开状态下应具有形成四边形的钝角α与β、γ与δ、ε与ζ两边长之和相等的关系,即A+B=C+D、C+E=F+G、F+H=I+J,以保证收起状态下具有如图7所示最小的高度或厚度,如图31所示。
在优选的实施例中,A与C、C与F、F与I的长度关系为:A大于C、C大于F、F大于I,据此结构,如图6、图10所示,平面四连杆机构表现为具有一定仰角的机构,从而更适合爬坡,而更适于应用于例如船舶100a中。
接地行走部分即图12中所示接地支重装置10与承载机架2相对,在四边形机构 变形过程或者在行走过程中,接地支重装置10会随承受的外力或载荷发生一定程度的变形,因而,接地支重装置10在承受外力载荷的状态下往往并不表现为平直状态,具有一定程度的随地变形能力,呈现如图11所示状态。
附图12中所示,变形控制机构4是促使主动变形支撑机构12和支撑杆系6产生旋转、从而使承载机架2与接地支重装置10之间的距离发生变化的控制机构。
附图16所示的为履带式脱困装置200变形控制机构的一种实施例,该实施例适用于履带张开变形过程中承受外力载荷的情况(如适用于车辆100),履带变形控制机构4包含如下构件:承载机架2上设置的滑轨组件407;在滑轨组件407上设置的与滑轨组件407间形成第一直线移动副的一级滑块组件404、与滑轨组件407间形成第二直线移动副的二级滑块组件406、与滑轨组件间形成第三直线移动副的辅助滑块组件401。
提供一个一端铰接于一级滑块组件404、另一端与第二油缸410直连,并设置有导滑槽411的驱动连接块405。该驱动连接块405开有左右方向的通槽或者说通孔,构造为图16中所示的导滑槽411,导滑槽411的走向是上边的长度方向;导滑槽411用于二级滑块组件406的导引。
此外,驱动连接块405朝向第一油缸409的方向开有与导滑槽411连通的过孔,以用于第一油缸409推杆的导入。
提供一个一端铰接于二级滑块组件406,另一端铰接于导向轮轴1005上的二级撑杆408;进而,提供两个固定在承载机架2上并直连驱动连接块405的第二油缸410;提供一个固定在承载机架2上并直连二级滑块组件406的第一油缸409;提供一端铰接于一级滑块组件404上,另一端铰接于连接臂402上并与连接臂402形成铰接部的一级撑杆403;提供一端铰接于辅助滑块组件401上,另一端铰接于一级撑杆403并形成所述铰接部的连接臂402和在所述铰接部设置的滚轮412以及设置在承载机架上的压缩弹性组件413。
图16中所示的一级撑杆403和连接臂402铰接,形成铰接部,该铰接部配有滚轮412,从而,铰接部基于滚轮412和支撑滑道1007之间为滚动摩擦,在一些实施例,也可以采用不设置滚轮412的滑动摩擦。
图16中所示的二级撑杆408、连接臂402具有避让结构,以使履带式脱困装置收起状态时,避免与接地支重装置10的构件干涉。
基于前述的结构,如图17所示,履带变形控制机构4的动作过程如下:
履带张开过程动作过程:
初始状态,履带式脱困装置在收起非工作状态时,第一油缸409和第二油缸410的推杆处于回缩状态,此时接地支重装置10和承载机架2处于压并状态,此时所述滚 轮412和支撑滑道1007接触,而具有如图7所示设定的较小高度或厚度,此状态下二级滑块组件406位于导滑槽411的前端。
随第一油缸409和第二油缸410推杆的推出,驱动连接块405驱动一级滑块组件404直线移动推动与其铰接的一级撑杆403,同时,二级滑块组件406在第一油缸409推杆的作用下亦产生直线移动,一级撑杆403与连接臂402铰接部的滚轮412推动支撑滑道1007下移,支撑滑道1007带动与其连接的导向轮轴1005和接地支重装置10发生位移,从而使主动变形支撑机构12产生斜度的变化,主动变形支撑机构12作为主动件使图7所示状态的四边形机构张开,进而产生图16中承载机架2与接地支重装置10之间的距离发生变化,此时一级撑杆403产生斜度的变化并通过连接臂402带动辅助滑块组件401回移,在滚轮412与支撑滑道1007脱离时,完成履带的一级张开,此时连接臂402和一级撑杆403产生折叠,一级滑块组件404与辅助滑块组件401处于接触状态。
关于一级撑杆403与连接臂402的分级变形,可参见中国专利文献CN106828631A,对其有非常详细的描述,对此,整体引用至此。
应予明确,设置一级撑杆403实现分级张开变形的目的在于最大限度的保证在履带张开初始状态具有一定大小的β角,减小初始变形阶段所需的推动力,保证在一定载荷下履带的顺利张开。
一级张开过程中二级撑杆408的斜度随同发生变化,由于二级撑杆408的长度大于一级撑杆403,二级撑杆408产生的斜度变化小于一级撑杆403斜度的变化,导致二级滑块组件406移动速度小于一级滑块组件404移动的速度,二级滑块组件406与导滑槽411之间产生相对移动,二级滑块组件406与导滑槽411的后端距离逐渐缩小。
直至滚轮412与支撑滑道1007脱离瞬间,一级张开变形完成时,二级滑块组件406与导滑槽411后端接触,一级滑块组件404和二级滑块组件406同步移动,随第一油缸409和第二油缸410推杆的进一步推出,驱动连接块405和第一油缸409共同驱动二级滑块组件406,二级撑杆408上端跟随二级滑块组件406移动时,会产生绕导向轮轴1005的转动,从而会产生二级撑杆408斜度的进一步变化,进而会产生对承载机架2与接地支重装置10间的距离的变化,实现履带的二级张开,此过程中辅助滑块组件401、连接臂402和一级撑杆403随同一级滑块组件404前移,直至第二油缸410完成设定的行程后,履带的二级张开变形结束。
二级张开变形结束后,此时二级撑杆408已产生较大的斜度变化,即已具有较大的α角,二级撑杆408与二级滑块组件406铰接端与导向轮轴1005间的垂直间距变大,相同负载下实现履带进一步张开变形所需的推动力变小。
随第一油缸409的推杆继续推出,二级滑块组件406继续推动二级撑杆408上端前移,α角进一步增大,从而实现承载机架2与接地支重装置10之间距离的进一步增大,直至达到设定的履带张开变形高度,完成履带的三级张开变形,此过程中驱动连接块405不再前移,二级滑块组件406沿滑轨组件407和导滑槽411前移,至三级张开变形完成后,二级滑块组件406处于导滑槽411的前端。
应该明确,在上述履带张开变形过程实施前,处于图12所示的辅助连接机构8中包含的辅助回缩机构8018中的驱动油缸80182推杆应先处于回位的初始状态,以避免推杆80184端部的滚轮80185阻碍转动支架802在履带张开变形过程中的转动需要,图23所示。
履带回缩过程动作过程:
初始状态,履带式脱困装置处于张开状态,第一油缸409和第二油缸410的推杆处于伸出状态,此时承载机架2与接地支重装置10之间具有较大的设定距离,具有如图9所示设定的高度。
随第一油缸409和第二油缸410推杆的回缩,第一油缸409和第二油缸410分别带动二级滑块组件406与驱动连接块405同步直线回移,进而驱动连接块405带动一级滑块组件404直线回移,此过程中辅助滑块组件401在压缩弹性组件413的作用下随同一级滑块组件404回移,一级撑杆403和连接臂402的折叠状态继续保持,直至压缩弹性组件413与一级滑块组件404分离,一级撑杆403和连接臂402的折叠状态开始产生分离。
通过二级滑块组件406对二级撑杆408的传动,二级撑杆408、主动变形支撑机构12开始产生回转运动,承载机架2与接地支重装置10之间的距离开始逐渐变小,实现履带式脱困装置200前部的回缩,此过程中一级滑块组件404跟随驱动连接块405同时回移,与一级滑块组件404铰接的一级撑杆403和连接臂402的折叠分离逐步加大,辅助滑块组件401与一级滑块组件404之间的距离逐步增加,直至承载机架2和主动变形支撑机构12间恢复到设定位置后,所述铰接部的滚轮412进入支撑滑道1007的滑道内,并与支撑滑道1007接触,履带式脱困装置200前部的回缩完成。
在此过程中,根据前述图12、图25所示的履带式脱困装置200中与承载机架2相对的接地支重装置10具有可随载荷变形的功能,图12中所示的支撑杆系6的收缩回转角度与主动变形支撑机构12的收缩回转角度并不相同,支撑杆系6的收缩回转角度呈现随机状态。
在履带式脱困装置前部回缩完成后,启动前述如图21、图23所示的辅助回缩机构8018的驱动油缸80182推杆80184的推出,推杆80184及其端部的滚轮80185前行, 使转动支架802产生履带收缩的旋转运动,进而带动图20中所示的托架轮轴804、回缩调整机构805以及接地支重装置10产生履带收缩的运动,从而完成履带式脱困装置200后部的回缩,此过程中图12中所示的支撑杆系6随同旋转复位,呈现出如图7所示状态。
需要说明的是,设置压缩弹性组件413的目的为了保证履带回缩后所述滚轮412准确地处于支撑滑道1007内。
附图18所示的为履带式脱困装置200变形控制机构的一种实施例,该实施例适用于履带张开变形过程中不承受外力载荷或外力载荷仅为流体阻尼的情况,即在空载状态下实施履带式脱困装置200的张开变形(如适用于船舶),该实施例中履带变形控制机构连接结构如下:设置在承载机架2上的滑轨组件407a,与滑轨组件407a形成直线运动副的滑块组件406a,两端分别铰接于滑块组件406a和导向轮轴1005上的撑杆408a以及推杆端直连滑块组件406a并固定于承载机架2上的油缸409a。
附图18所示的变形控制机构与附图29所示的接地支重装置10配套使用。
附图18中所示的撑杆408a具有避让结构,以使履带式脱困装置收起状态时,避免与接地支重装置10的构件干涉。
如图12、图18所示,该实施例变形控制机构动作过程如下:
履带张开过程动作过程:
初始状态,履带式脱困装置在收起非工作状态时,油缸409a推杆处于回缩状态,此时接地支重装置10和承载机架2处于压并状态,而具有如图7所示设定的较小高度或厚度。
随油缸409a推杆的推出,油缸409a的推杆推动滑块组件406a直线前移,与滑块组件铰接的撑杆408a会产生绕导向轮轴1005的转动,从而会产生撑杆408a以及主动变形支撑机构12斜度的变化,进而会产生对承载机架2与接地支重装置10间的距离的变化,实现履带的张开,直至达到设定的变化距离后,履带的张开变形结束。
应该明确,在上述履带张开变形过程实施前,处于图12所示的辅助连接机构8中包含的辅助回缩机构8018中的驱动油缸80182推杆80184应先处于回位的初始状态,以避免推杆80184端部的滚轮80185阻碍转动支架802在履带张开变形过程中的转动需要,图23所示。
履带回缩过程动作过程:
初始状态,履带式脱困装置处于张开状态,油缸409a推杆处于伸出状态,此时承载机架2与接地支重装置10之间具有较大的设定距离,具有如图10所示设定的高度。
随油缸409a推杆的回缩,通过滑块组件406a对撑杆408a的传动,撑杆408a、 主动变形支撑机构12开始产生回转运动,承载机架2与接地支重装置10之间的距离开始逐渐变小,实现履带式脱困装置200前部的回缩,直至承载机架2和主动变形支撑机构12间恢复到设定位置后,履带式脱困装置200前部的回缩完成。
在此过程中,根据前述图12、图29所示的履带式脱困装置200中与承载机架2相对的接地支重装置10具有可随载荷变形的功能,图12中所示的支撑杆系6的收缩回转角度与主动变形支撑机构12的收缩回转角度并不相同,支撑杆系6的收缩回转角度呈现随机状态。
在履带式脱困装置前部回缩完成后,启动前述如图21、图23所示的辅助回缩机构8018的驱动油缸80182推杆80184的推出,推杆80184及其端部的滚轮80185前行,使转动支架802产生履带收缩的旋转运动,进而带动图20中所示的托架轮轴804、回缩调整机构805以及接地支重装置10产生履带收缩的运动,从而完成履带式脱困装置200后部的回缩,此过程中图12中所示的支撑杆系6随同旋转复位,呈现出如图7所示状态。
关于履带锁止机构,附图30示出了实施例中的履带式脱困装置200在完成履带收起后,辅助回缩机构的推杆80184与转动支架802之间的位置关系,推杆80184前移方向、滚轮80185与转动支架802的接触平面以及承载机架2的前后方向之间具有平行的关系,由此,在履带式脱困装置200完全收起即具有设定的最小高度或厚度后,推杆80184仍然可以带动滚轮80185继续前移,此结构便于实现辅助回缩机构在完成履带式脱困装置收起后进一步实施对收起后的履带式脱困装置的锁止功能。
附图19为一种履带式脱困装置锁止机构示意图,表示出了履带锁止机构的基本零部件及其连接关系:连接块80183与驱动油缸80186的推杆形成固定连接,拉杆702套置于连接块80183上构成可相互移动的孔轴滑动配合,拉杆702的一端固定连接在横向支杆703上,另一端连接有限位块701;滑动导杆705套设于与主机架3固定连接的导杆套704内并能够沿导杆套704的轴线方向前后移动;锁止块709与固定在主机架3上的销轴707铰接形成转动连接副;扭簧708的两末端分别连接于锁止块709和主机架3并套置于销轴707上;连接拉绳710通过连接在主机架3上的导向轮706、两端分别连接于滑动导杆705和锁止块709;横向支杆703的两端分别连接于两侧的滑动导杆705。
附图19所示,在驱动油缸80182推杆带动连接块80183前移完成前述履带式脱困装置200处于完全收起状态时,根据上述附图31所示的辅助回缩机构的推杆80184与转动支架802之间的位置关系,驱动油缸80182推杆仍可带动连接块80183继续前移,此时,连接块80183与限位块701接触并推动限位块701,从而推动拉杆702和横向支 杆703同步移动,横向支杆703带动滑动导杆705在导杆套704内移动,从而滑动导杆705通过连接拉绳710对锁止块709产生牵拉力,锁止块709克服扭簧708的扭转力绕销轴707转动,实现如图26所示对履带9的锁止状态。
应予理解的锁止释放过程如下:在履带式脱困装置200需要实施张开变形前,附图23所示的辅助回缩机构中的驱动油缸80182的推杆需要先行回缩,从而解除图19中所示连接块80183对限位块701的回移的限制,锁止状态下连接拉绳710对锁止块701的牵拉力解除,在扭簧708扭转力的作用下,处于锁止状态的锁止块709发生绕销轴707的解除锁止的转动,锁止块709的转动通过连接拉绳710传递到滑动导杆705,进而滑动导杆705带动横向支杆703、拉杆702回移,解除对履带9的锁止,呈现如图19所示的状态。
如图19所示,驱动油缸80182可以设置为电动马达组件。
如图19所示,锁止块709在主机架3两侧对称成组布置,图19所示为三组,当主机架3较长时则可以布置较多的锁止块709。
以下就变形控制机构4和四边形基础机构的构件借助于说明书附图提供优选的解决方案和替代方案,并展开说明,且以下内容主要以平面机构的基本概念描述,但应当理解,平面机构中的术语名称多以理想模型为基础,例如图12、图16、图18中所示的主动变形支撑机构12、支撑杆系6等,在平面机构中都被简化为杆,而二级撑杆408以及撑杆408a,也会被简化为杆,简化的基础在于铰接点所限定的平面,该平面所约束的即为平面机构。
关于图16中所示的二级撑杆408,在结构设置上避让开连接臂402和一级撑杆403的前提下,优选为整体结构,以提高支撑强度。
图18中所示的撑杆408a优选为整体结构,以提高支撑强度。
图12中所示的承载机架2、主动变形支撑机构12和支撑杆系6以及接地支重装置10铰接形成的四边形机构,在假定接地支重装置10不变形(无负载张开)的情况下,承载机架2和接地支重装置10之间的形成的夹角可根据应用场景的不同选取,如用于车辆时优选承载机架2和接地支重装置10之间形成的夹角为零,此时所述四边形机构为平行四边形,如图9所示;如用于船舶时优选承载机架2和接地支重装置10之间具有一定大小的夹角,如图10所示。
如图16中所示,第一油缸409和第二油缸410为变形控制机构4提供动力,根据车辆100的车型不同,第一油缸409和第二油缸410的数量可以进行调整。

Claims (37)

  1. 一种接地支重装置,其特征在于,包括:
    两边框组件,两边框组件相互平行,并具有第一距离,且每一边框组件由多个第一单元和多个第二单元依序间隔串列铰接而成,铰接的轴线水平并与串列的方向垂直;
    多个支重轮轴,每一支重轮轴的两端相应安装在两边框组件上,用于连接两边框组件,并提供轴头;
    第一支重轮,安装在所述轴头上。
  2. 根据权利要求1所述的接地支重装置,其特征在于,所述轴头位于两边框组件的外侧。
  3. 根据权利要求2所述的接地支重装置,其特征在于,介于两边框组件之间的支重轮轴部分提供第二支重轮安装部;
    相应地,第二支重轮安装部安装有第二支重轮。
  4. 根据权利要求1~3任一所述的接地支重装置,其特征在于,所述第一单元为内链节,第二单元为外链节。
  5. 根据权利要求4所述的接地支重装置,其特征在于,用于内链节和外链节铰接的连接销轴与所述支重轮轴为一体结构,而构成一通轴。
  6. 根据权利要求1~3任一所述的接地支重装置,其特征在于,于两边框组件的两端配装有导向轮轴;
    在导向轮轴上设有导向轮。
  7. 根据权利要求6所述的接地支重装置,其特征在于,所述导向轮为齿型导向轮。
  8. 一种具有如权利要求1~7任一所述的接地支重装置的履带式脱困装置,其中,该履带式脱困装置包括带内支架,该带内支架的主体为四边形结构;
    所述接地支重装置构成四边形结构的下边,而四边形结构的上边构成主机架,四边形结构剩余两边的上端与上边铰接,且剩余两边的下端与下边铰接,而构成摇杆;
    相应地,所述履带式脱困装置还配有用于驱动下边与上边距离变化的驱动机构。
  9. 根据权利要求8所述的履带式脱困装置,其特征在于,所述驱动机构包括:
    第一撑杆,一端铰接于下边;
    第一导引部件,在上边方向上装配在上边;
    第一滑块,与第一导引部件配合而形成导引副;
    驱动部件,输出端连接所述第一滑块,而在上边方向上驱动滑块;
    其中,第一撑杆的另一端铰接于第一滑块。
  10. 根据权利要求9所述的履带式脱困装置,其特征在于,所述第一撑杆有一对,在接地支重装置的宽度方向上左右各一;
    相应地,第一滑块也配有一对。
  11. 根据权利要求10所述的履带式脱困装置,其特征在于,两第一滑块共用一驱动部件,该驱动部件配置有:
    驱动连接块,介于两第一滑块之间,通过第一连接结构与第一滑块连接;
    原动部件,提供驱动连接块的直线运动。
  12. 根据权利要求11所述的履带式脱困装置,其特征在于,在履带式脱困装置前后方向上,在第一滑块的前方设有第二滑块;
    相应地,在上边装配有与第二滑块配合的第二导引部件;
    提供一连接臂,该连接臂的一端铰接于所述第二滑块;
    提供一第二撑杆,该第二撑杆的一端与连接臂的另一端铰接,记为支撑铰接点;
    第二撑杆的另一端铰接于下边,且第二撑杆与下边的铰接位置和第一撑杆与下边的铰接位置在下边长度方向上相同,或者位于第一撑杆与下边铰接位置后侧;
    于下边还设有在支撑铰接点与下边脱开前为所述支撑铰接点提供支撑的支撑部件。
  13. 根据权利要求12所述的履带式脱困装置,其特征在于,提供一上下导引部件,用于支撑部件在上下方向上的导引;
    为支撑部件提供一向上复位的复位部件。
  14. 根据权利要求12或13所述的履带式脱困装置,其特征在于,第二滑块配有一对;
    相应地,第一导引部件和第二导引部件为同一导引部件,该导引部件构造为滑轨组件;
    相应侧滑轨组件固定安装在相应侧上边边框上。
  15. 根据权利要求14所述的履带式脱困装置,其特征在于,第一滑块和第二滑块共用一驱动连接块,该驱动连接块配置为:
    第二滑块固定安装在驱动连接块上;
    驱动连接块在宽度方向上的侧面开有通槽,通槽走向是上边的长度方向,而构成第一连接结构的驱动连接块侧部分;
    提供一连接体,该连接体穿过通槽并导引于通槽,用于两第一滑块的连接,而构成第一连接结构的连接体部分;
    在驱动连接块朝向原动部件的一端开有通入通槽的通孔;
    相应地,原动部件配置为:
    第一原动部件,输出端穿过所述通孔连接所述连接体;
    第二原动部件,输出端直连驱动连接块。
  16. 根据权利要求15所述的履带式脱困装置,其特征在于,第一原动部件和第二原动部件为液压缸。
  17. 根据权利要求16所述的履带式脱困装置,其特征在于,第一原动部件和第二原动部件并列设置;
    其中,第一原动部件配置为一个第一液压缸,第二原动部件配置为两个第二液压缸,并且第一液压缸居中设置,两第二液压缸关于第一液压缸对称。
  18. 根据权利要求8所述的履带式脱困装置,其特征在于,在上边和下边之间还排布有至少一条支撑杆;
    支撑杆相互平行,且上端铰接于上边,下端铰接于下边。
  19. 根据权利要求8所述的履带式脱困装置,其特征在于,四边形结构配置为:
    平行四边形或具有以下结构配置:
    A+B=C+D
    其中,A为四边形结构的前边长度,B为四边形结构的下边长度,C为四边形结构的后边长度,D为四边形结构的上边长度。
  20. 根据权利要求19所述的履带式脱困装置,其特征在于,A与C的长度关系为:A大于C。
  21. 根据权利要求8所述的履带式脱困装置,其特征在于,于履带式脱困装置的后部设有履带张紧装置。
  22. 根据权利要求21所述的履带式脱困装置,其特征在于,所述履带张紧装置设置在上边;且该履带张紧装置包括:
    导向组件,具有在上边长度方向上的导引方向,具有静态部分和动态部分,其中静态部分固定安装在上边上,动态部分导引于静态部分;
    张紧轮总成,安装在导向组件的动态部分上;
    其中,静态部分上还设有用于约束静态部分的行程控制部分,并于长边的长度方向在静态部分上装有对动态部分弹性缓冲的弹性部件。
  23. 根据权利要求22所述的履带式脱困装置,其特征在于,静态部分构造为长边长度方向上的张紧滑道;
    动态部分构造为滑行在张紧滑道的滑动块;
    行程控制部分则包括对滑动块后端阻挡的后端约束结构和对弹性部件的前端约束的压块。
  24. 根据权利要求23所述的履带式脱困装置,其特征在于,提供一压块位置调整结构,用于调整压块与后端约束结构间的间距。
  25. 根据权利要求24所述的的履带式脱困装置,其特征在于,所 述压块位置调整结构包括螺杆和与该螺杆配装的螺母或一端具有螺栓头的螺杆;
    相应地,压块于长边长度方向开有螺纹孔;
    上边后端于长边长度方向开有光孔;
    螺杆与螺纹孔螺纹连接穿过光孔后与所述螺母旋合或
    螺杆的螺纹段从光孔自后向前穿过后与螺纹孔螺纹连接,螺栓头为所述光孔的后端所约束。
  26. 根据权利要求22所述的履带式脱困装置,其特征在于,所述弹性部件为碟簧组。
  27. 根据权利要求21~26任一所述的的履带式脱困装置,其特征在于,提供一端铰接于履带张紧装置并向后向下延伸的转动支架;
    提供一回缩调整装置,该回缩调整装置的一端铰接于下边后端,另一端通过托轮轴铰接于转动支架的另一端;
    其中,托轮轴上安装有用于托持履带的托轮。
  28. 根据权利要求27所述的履带式脱困装置,其特征在于,上边后部用于安装履带张紧装置的部分与上边本体采用辅助回缩机构连接,且辅助回缩机构包括:
    第一支架,在上边长度方向上导引于上边本体,且该第一支架用于安装所述履带张紧装置;
    回缩驱动部件,安装在第一支架上,输出端与所述转动支架的前侧面接合,用于推持转动支架前侧面。
  29. 根据权利要求28所述的履带式脱困装置,其特征在于,回缩驱动部件的输出端设有与转动支架接合的滚轮。
  30. 根据权利要求27所述的履带式脱困装置,其特征在于,回缩调整装置的长度可调。
  31. 根据权利要求30所述的履带式脱困装置,其特征在于,所述回缩调整装置包括:
    第一总成;
    第二总成,通过螺纹连接结构与第一总成连接。
  32. 根据权利要求31所述的履带式脱困装置,其特征在于,所述螺纹连接结构构造为:
    于第一总成上设有第一螺套,并于第二总成上设有第二螺套;
    提供一与第一螺套和第二螺套连接的调节螺杆;
    其中,第一螺套和第二螺套的螺纹旋向相反。
  33. 根据权利要求32所述的履带式脱困装置,其特征在于,在调节螺杆的两侧各设有一个辅助连接结构,该辅助连接结构构造为:
    于第一总成上设有套件,相应地,在第二总成上设有杆件,该杆件导引于所述套件。
  34. 根据权利要求28所述的履带式脱困装置,其特征在于,还包括履带锁紧装置,该履带锁紧装置设置在上边,以在履带式脱困装置收起后对履带进行锁紧。
  35. 根据权利要求34所述的履带式脱困装置,其特征在于,所述履带锁紧装置的驱动部件为所述回缩驱动部件,所述履带锁紧装置包括:
    锁止装置,具有锁止块,该锁止块位于履带上方;
    锁止块驱动装置,用于驱动锁止块给定的工作行程;
    传动链,用于锁止块驱动装置与所述回缩驱动部件的传动。
  36. 根据权利要求35所述的履带式脱困装置,其特征在于,所述传动链包括:
    拉杆总成,连接于所述回缩驱动部件上,而横置导引在上边两边框间;
    滑杆组件,包括固定安装在上边边框上的导杆套和导引于导杆套的滑动导杆;
    相应地,锁止块驱动装置包括锁止块运动方向的连接拉绳,该连接拉绳的一端连接在锁止块上,另一端经由导向轴连接在滑动导杆上。
  37. 一种装有如权利要求8~36任一所述的履带式脱困装置的设备。
PCT/CN2018/000271 2017-07-26 2018-07-26 接地支重装置、履带式脱困装置及设备 WO2019019558A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710616283.6A CN107458486B (zh) 2017-07-26 2017-07-26 接地支重装置、履带式脱困装置及设备
CN201710616283.6 2017-07-26

Publications (1)

Publication Number Publication Date
WO2019019558A1 true WO2019019558A1 (zh) 2019-01-31

Family

ID=60547233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000271 WO2019019558A1 (zh) 2017-07-26 2018-07-26 接地支重装置、履带式脱困装置及设备

Country Status (2)

Country Link
CN (1) CN107458486B (zh)
WO (1) WO2019019558A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107458486B (zh) * 2017-07-26 2019-11-15 济南匠夫万自动化科技有限公司 接地支重装置、履带式脱困装置及设备
CN109017713A (zh) * 2018-03-16 2018-12-18 曾域广 一种辅助汽车脱困的装置
CN110510015B (zh) * 2019-08-26 2020-12-08 济南匠夫万自动化科技有限公司 履带式脱困装置及车辆
CN110510016B (zh) * 2019-09-12 2021-02-12 济南匠夫万自动化科技有限公司 履带式脱困装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022427A (ja) * 2005-07-20 2007-02-01 Kubota Corp クローラ走行型作業車
US7628266B2 (en) * 2004-05-21 2009-12-08 Wrh Walter Reist Holding Ag Roller drive element
CN103847820A (zh) * 2014-02-28 2014-06-11 华南农业大学 一种履带和轮式可切换的行走底盘
CN106043479A (zh) * 2015-04-13 2016-10-26 卡特彼勒公司 无螺栓的履带板
CN106828631A (zh) * 2017-01-10 2017-06-13 济南匠夫万自动化科技有限公司 履带式脱困装置和车辆
CN106864430A (zh) * 2017-01-10 2017-06-20 济南匠夫万自动化科技有限公司 辅用行驶系及车辆
CN107458486A (zh) * 2017-07-26 2017-12-12 济南匠夫万自动化科技有限公司 接地支重装置、履带式脱困装置及设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2248428A (en) * 1990-10-03 1992-04-08 Soo Cheol Jung Auxiliary endless track mechanism for automobiles
CN205196360U (zh) * 2015-12-09 2016-05-04 江苏沃得农业机械有限公司 履带收割机可升降底盘装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7628266B2 (en) * 2004-05-21 2009-12-08 Wrh Walter Reist Holding Ag Roller drive element
JP2007022427A (ja) * 2005-07-20 2007-02-01 Kubota Corp クローラ走行型作業車
CN103847820A (zh) * 2014-02-28 2014-06-11 华南农业大学 一种履带和轮式可切换的行走底盘
CN106043479A (zh) * 2015-04-13 2016-10-26 卡特彼勒公司 无螺栓的履带板
CN106828631A (zh) * 2017-01-10 2017-06-13 济南匠夫万自动化科技有限公司 履带式脱困装置和车辆
CN106864430A (zh) * 2017-01-10 2017-06-20 济南匠夫万自动化科技有限公司 辅用行驶系及车辆
CN107458486A (zh) * 2017-07-26 2017-12-12 济南匠夫万自动化科技有限公司 接地支重装置、履带式脱困装置及设备

Also Published As

Publication number Publication date
CN107458486A (zh) 2017-12-12
CN107458486B (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
WO2019019558A1 (zh) 接地支重装置、履带式脱困装置及设备
DE2264015C3 (de) Dreieck-Spurketten-Anordnung
US7296862B2 (en) Collapsible track undercarriage for installation and tensioning
RU2672346C2 (ru) Подвеска снегохода
CN108463396B (zh) 机动车辆设备及方法
MX2013011072A (es) Mecanismo de soporte de acoplador.
US20210323365A1 (en) Vertical hi-rail device
CN105857392A (zh) 一种铰接履带车辆的三自由度铰接机构
CN205589303U (zh) 一种铰接履带车辆的三自由度铰接机构
DE102019108134A1 (de) Vorrichtung und Verfahren zur Erhöhung der Traktion einer Zugmaschine
CN216734749U (zh) 一种起落架结构
KR20110099314A (ko) 궤도 차량의 궤도 텐션 휠을 제어하기 위한 장치
CN1306483A (zh) 允许对路轴有一个横向偏移距的沿轨道的双向制导装置
CN110510015B (zh) 履带式脱困装置及车辆
DE102005031147A1 (de) Unterfahrschutzeinrichtung für ein Lastentransportfahrzeug
DE102006021754A1 (de) Rettungsboot
CN109774393B (zh) 一种用于水陆两栖车的悬浮支撑装置
DE102010030250A1 (de) Faltrad
GB2563269A (en) Motor vehicle apparatus and method
RU2653407C1 (ru) Военная гусеничная машина с повышенной проходимостью на слабых грунтах
BR112021004928A2 (pt) dispositivo de elevação, unidades de rotação e de travamento, e, veículo motorizado
DE102017126409A1 (de) Bergevorrichtung für ein militärisches Fahrzeug
CN101890975B (zh) 手推移动摄像车
DE10221621B4 (de) Motorgetriebenes Gleitboot zu Rettungszwecken (Eisrettung)
CN220884187U (zh) 一种平板清障车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18839454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18839454

Country of ref document: EP

Kind code of ref document: A1