WO2019019293A1 - 一种横置车辆驱动总成 - Google Patents

一种横置车辆驱动总成 Download PDF

Info

Publication number
WO2019019293A1
WO2019019293A1 PCT/CN2017/101047 CN2017101047W WO2019019293A1 WO 2019019293 A1 WO2019019293 A1 WO 2019019293A1 CN 2017101047 W CN2017101047 W CN 2017101047W WO 2019019293 A1 WO2019019293 A1 WO 2019019293A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
shaft
clutch
input shaft
power source
Prior art date
Application number
PCT/CN2017/101047
Other languages
English (en)
French (fr)
Inventor
余平
李建文
Original Assignee
精进电动科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 精进电动科技股份有限公司 filed Critical 精进电动科技股份有限公司
Priority to JP2020503853A priority Critical patent/JP6987212B2/ja
Priority to EP17919066.5A priority patent/EP3659842B1/en
Priority to US15/767,608 priority patent/US11162562B2/en
Publication of WO2019019293A1 publication Critical patent/WO2019019293A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/091Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/02Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/06Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/22Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or type of main drive shafting, e.g. cardan shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/08Arrangement or mounting of internal-combustion or jet-propulsion units comprising more than one engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/089Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears all of the meshing gears being supported by a pair of parallel shafts, one being the input shaft and the other the output shaft, there being no countershaft involved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0806Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts
    • F16H37/0813Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts with only one input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/0021Transmissions for multiple ratios specially adapted for electric vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0034Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising two forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2035Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with two engaging means

Definitions

  • the present invention relates to a transverse vehicle drive assembly for connection to a front or rear axle of a vehicle for driving a vehicle.
  • the present invention provides a transverse vehicle drive assembly to solve the existing powertrain single speed ratio transmission, which cannot meet the requirements of vehicle acceleration, grade and maximum speed. Adapt to the problems of complex road conditions.
  • the existing axial size of the powertrain is large, it is difficult to arrange on the vehicle, and the number of gears in the transmission is large, and the transmission structure is complicated.
  • the present invention provides a transverse vehicle drive assembly coupled to an axle axle of a vehicle, the vehicle drive assembly including a first power source and an automatic transmission, wherein the automatic transmission is provided with a first input shaft, the first a power source is coupled to the first input shaft, and a differential is disposed at the junction of the automatic transmission and the axle axle;
  • an intermediate shaft is disposed in parallel with the first input shaft
  • a first gear and a third gear are fixedly or vacantly disposed on the first input shaft, and the second shaft and the fourth gear are fixed or vacantly disposed on the intermediate shaft, and the first gear and the second gear are meshed and driven.
  • the two are mounted on the shaft in different manners, and the third gear is meshed with the fourth gear, and the two are mounted on the shaft in different manners;
  • a clutch is disposed between the first input shaft and the gear on the idler sleeve, and a clutch is disposed between the intermediate shaft and the gear on the idler sleeve;
  • a fifth gear is further fixed on the intermediate shaft, and a sixth gear is fixed on the differential, and the fifth gear is meshed with the sixth gear.
  • first gear and/or the third gear are sleeved on the first input shaft through a needle bearing
  • second gear and/or the fourth gear are sleeved on the intermediate shaft through a needle bearing on.
  • first gear and the third gear are sleeved on the first input shaft through a needle bearing, and the first input shaft is provided with a two-way clutch that cooperates with the first gear and the third gear.
  • the second gear and the fourth gear are sleeved on the intermediate shaft through a needle bearing, and the intermediate shaft is provided with a two-way clutch that cooperates with the second gear and the fourth gear.
  • first gear and the second gear meshing transmission ratio is i1
  • the third gear and the fourth gear meshing gear ratio is i2
  • the fifth gear and the sixth gear meshing gear ratio is i3
  • the automatic The meshing gear ratio in the transmission is i1 ⁇ i3 or i2 ⁇ i3.
  • the vehicle drive assembly further includes a second power source connected to the second input shaft, the second input shaft being disposed in parallel with the first input shaft and the intermediate shaft, the second a seventh gear is disposed on the input shaft, and the seventh gear meshes with the first gear, or the second gear, or the third gear, or the fourth gear, or the fifth gear, and transmits power to the axle half at all times The shaft is unaffected by the opening or closing of the clutch.
  • the seventh gear meshes with the first gear or the third gear to form a triple gear
  • the triple gear transmission ratio is i4
  • the fifth gear and the sixth gear mesh gear ratio is i3, when only When the second power source transmits power to the axle half shaft, the meshing transmission ratio of the automatic transmission is i4 ⁇ i3;
  • the two gear transmission ratio is i4
  • the fifth gear and the sixth gear meshing transmission ratio is i3, when only the first
  • the meshing transmission ratio of the automatic transmission is i4 ⁇ i3;
  • the rotor shaft of the first power source and the first input shaft are integrally designed, and the rotor shaft of the second power source and the second input shaft are integrally designed.
  • the clutch is a face gear clutch including a movable toothed disc and a fixed toothed disc, the movable toothed disc is sleeved on the first input shaft and/or the intermediate shaft, and the fixed toothed disc is fixed in an empty sleeve installation Any of the gears; or the clutch is a wet clutch.
  • the face gear clutch is electromagnetically driven, or hydraulically driven, or pneumatically driven, or electrically driven, or mechanically driven, driving the movable toothed disk to move axially in engagement with the fixed toothed disc.
  • the vehicle powertrain of the invention is connected with the rear axle half axle or the front axle half axle of the vehicle, and the vehicle powertrain can realize two speed ratio transmissions, and the transmission form is flexible, and meets the driving demand of the whole vehicle for different road conditions, when the vehicle If you need to accelerate quickly or when climbing a load, you can choose a larger speed ratio transmission to improve the driving force of the whole vehicle and make up for the shortage of the driving force of the whole vehicle. When the whole vehicle is in the cruising state, you can select a smaller speed ratio transmission to meet The vehicle requires high-speed driving, saving energy and improving the cruising range of the vehicle.
  • the first motor and the second motor are simultaneously activated, which can increase the total driving force of the driving assembly, shorten the acceleration process of the vehicle, and realize high-speed driving more quickly.
  • the transverse single motor and/or dual motor vehicle drive assembly provided by the invention shortens the axial dimension of the drive assembly on the one hand, and facilitates the arrangement of the whole vehicle; on the other hand, the number of gears used is small, which simplifies Transmission structure.
  • FIG. 1 is a schematic structural view of a transverse single power source vehicle drive assembly according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural view of a transverse single power source vehicle drive assembly according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural view of a transverse single power source vehicle drive assembly according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural view of a transverse single power source vehicle drive assembly according to Embodiment 4 of the present invention.
  • Fig. 5 is a structural schematic view showing a transverse single power source vehicle drive assembly according to a fifth embodiment of the present invention.
  • Fig. 6 is a structural schematic view showing a transverse single power source vehicle drive assembly according to a sixth embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a transverse dual power source vehicle drive assembly according to Embodiment 7 of the present invention.
  • Embodiment 8 is a schematic structural view of a transverse dual power source vehicle drive assembly according to Embodiment 8 of the present invention.
  • FIG. 9 is a schematic structural view of a transverse dual power source vehicle drive assembly according to Embodiment 9 of the present invention.
  • FIG. 10 is a schematic structural view of a transverse dual power source vehicle drive assembly according to Embodiment 10 of the present invention.
  • Figure 11 is a block diagram showing the structure of a transverse dual power source vehicle drive assembly according to an eleventh embodiment of the present invention.
  • Figure 12 is a block diagram showing the structure of a transverse dual power source vehicle drive assembly according to a twelfth embodiment of the present invention.
  • Figure 13 is a schematic view showing the structure of a transverse dual power source vehicle drive assembly according to Embodiment 13 of the present invention.
  • Figure 14 is a schematic view showing the structure of a transverse single-power source vehicle drive assembly according to Embodiment 14 of the present invention.
  • 1 is a first embodiment of the present invention, showing: 101. power source; 102. first gear; 103. first clutch; 104. third gear; 105. input shaft; 106. 107. second clutch; 108. fifth gear; 109. sixth gear; 110. right half shaft; 111. differential; 112. left half shaft; 113. second gear; 114. intermediate shaft.
  • a transverse vehicle drive assembly is coupled to the axle axle of the vehicle, the vehicle drive assembly including a power source 101 and an automatic transmission (shown in phantom in FIG. 1), the input shaft being disposed in the automatic transmission 105.
  • the power source 101 is connected to the input shaft 105, and a differential 111 is disposed at the connection between the automatic transmission and the axle half shaft.
  • an intermediate shaft 114 is provided in parallel with the input shaft 105.
  • a first gear 102 is mounted on the input shaft 105, a third gear 104 is fixedly mounted, a second gear 113 is fixedly mounted on the intermediate shaft 114, and a fourth gear 106 is mounted on the air sleeve.
  • the first gear 102 and the second gear 113 are mounted on the input shaft 105.
  • the third gear 104 meshes with the fourth gear 106.
  • the first gear 102 is mounted on the shaft in a different manner than the second gear 113.
  • the third gear 104 is mounted differently on the shaft than the fourth gear 106, as in other embodiments.
  • a first clutch 103 is disposed between the input shaft 105 and the first gear 102 on the idler, and a second clutch 107 is disposed between the intermediate shaft 114 and the fourth gear 106 on the idler.
  • a fifth gear 108 is fixed to the intermediate shaft 114, and a sixth gear 109 is fixed to the differential 111, and the fifth gear 108 is meshed with the sixth gear 109.
  • the first gear 102 is mounted on the input shaft 105 via a needle bearing sleeve
  • the fourth gear 106 is mounted on the intermediate shaft 114 via a needle bearing sleeve. Although it is an empty sleeve installation, neither the first gear 102 nor the fourth gear 106 moves axially.
  • the first clutch 103 and the second clutch 107 are end face clutches including a movable chainring and a fixed chainring.
  • the movable sprocket of the first clutch 103 is sleeved on the input shaft 105, and the mating fixed sprocket is fixed to the first gear 102.
  • the movable sprocket of the second clutch 107 is sleeved on the intermediate shaft 114, and the mating fixed sprocket is fixed to the fourth gear 106.
  • the first gear 102 and the second gear 113 are set to mesh with the transmission ratio i1, the third gear 104 and the fourth gear 106 are meshed with the transmission ratio i2, and the fifth gear 108 and the sixth gear 109 are meshed with the transmission ratio i3.
  • the power source 101 sequentially passes through the input shaft 105, the first clutch 103, the first gear 102, the second gear 113, the intermediate shaft 114, the fifth gear 108, and the sixth
  • the gear 109 and the differential 111 transmit power to the axle half shaft, and the meshing gear ratio in the automatic transmission is i1 ⁇ i3. This is the first condition.
  • the power source 101 sequentially passes through the input shaft 105, the third gear 104, the fourth gear 106, the second clutch 107, the intermediate shaft 114, the fifth gear 108, and the sixth
  • the gear 109 and the differential 111 transmit power to the axle half shaft, and the meshing gear ratio in the automatic transmission is i2 x i3. This is the second condition.
  • the sizes of the transmission ratios i1, i2, and i3 can be changed by changing the size or the number of teeth of the gear, thereby changing the transmission ratio of the automatic transmission.
  • the vehicle drive assembly can realize two speed ratio transmissions, and the automatic transmission can realize automatic shifting of two gear positions according to the control strategy program, and the transmission form is flexible, and meets the driving demand of the vehicle for different road conditions.
  • the larger speed ratio transmission can be selected to improve the driving force of the whole vehicle and make up for the shortage of the driving force of the whole vehicle; when the whole vehicle is in the cruising state, the smaller speed ratio transmission can be selected.
  • the high-speed driving requirements of the whole vehicle save energy and improve the cruising range of the vehicle.
  • the rotor shaft of the power source 101 and the input shaft 105 are integrally designed to reduce the impact of the rotor shaft on the automatic transmission.
  • the power source 101 can be an electric motor, or an engine.
  • the movable chainring can be slid on the shaft by splines.
  • the center hole of the movable chainring is provided with internal splines, correspondingly at the input shaft 105 and the intermediate shaft 114
  • the external spline is set on the length, and the length should be longer than the internal spline of the movable sprocket. Only the movable sprocket can be put on the shaft, can slide axially and output torque.
  • the movable toothed disc is provided with a face gear or a tooth groove
  • the fixed toothed disc is correspondingly provided with a face tooth groove or a transmission tooth.
  • the face tooth clutch can minimize the kinetic energy loss with respect to the friction clutch, which makes up for the defect that the conventional friction clutch has a short life due to the inability to withstand the power shock of the motor.
  • the driving method of the face tooth clutch may be electromagnetically driven by electromagnet adsorption, or hydraulically driven by hydraulic mechanism, or pneumatically driven by pneumatic mechanism, or electrically driven by motor, or mechanical fork drive. Driven by the shift fork, the movable toothed disc is axially moved to mesh with the fixed toothed disc.
  • the electromagnetic toothed clutch can disengage and combine the power and the vehicle at any time, thereby achieving smooth power. Switch to improve the smoothness of the vehicle.
  • Either the first clutch 103 and the second clutch 107 are both equipped with a wet clutch.
  • the wet clutch is internally provided with a dual friction plate and a steel plate, and the hydraulic oil is driven to contact or separate the friction plate and the steel plate to realize the clutch.
  • To install the wet clutch it is necessary to achieve the clutching of the input shaft 105 with the first gear 102 on the idler, and the clutching of the intermediate shaft 114 with the fourth gear 106 on the idler.
  • the axle half shaft is shown in FIG. 1 and includes a right half shaft 110 and a left half shaft 112.
  • the axle half shaft is the front axle half axle or the rear axle half axle; when the vehicle driving assembly is connected with the front axle half shaft, the vehicle is in the front drive mode, and the vehicle driving assembly is connected with the rear axle half shaft. The vehicle is in the rear drive mode.
  • 2 is a second embodiment of the present invention, showing: 201. power source; 202. first gear; 203. first clutch; 204. third gear; 205. input shaft; 207. second clutch; 208. fifth gear; 209. sixth gear; 210. right half shaft; 211. differential; 212. left half shaft; 213. second gear;
  • Embodiment 2 of the present invention is an improvement made on the basis of Embodiment 1.
  • the difference between Embodiment 2 of the present invention and Embodiment 1 is that, as shown in FIG. 2, the second clutch 107 is sleeved on the input shaft 205.
  • the mating fixed sprocket is fixed to the third gear 204, and the third gear 204 is sleeved on the input shaft 205.
  • the first gear 202 and the second gear 213 are meshed with the transmission ratio i1
  • the third gear 204 and the fourth gear 206 are meshed with the transmission ratio i2
  • the fifth gear 208 and the sixth gear 209 are meshed with the transmission ratio. I3.
  • the power source 201 sequentially passes through the input shaft 205, the first clutch 203, the first gear 202, the second gear 213, the intermediate shaft 214, the fifth gear 208, and the sixth
  • the gear 209 and the differential 211 transmit power to the axle half shaft, and the meshing gear ratio in the automatic transmission is i1 ⁇ i3. This is the first condition.
  • the power source 201 sequentially passes through the input shaft 205, the second clutch 207, the third gear 204, the fourth gear 206, the intermediate shaft 214, the fifth gear 208, and the sixth
  • the gear 209 and the differential 211 transmit power to the axle half axle, and the meshing gear ratio in the automatic transmission is i2 x i3. This is the second condition.
  • Embodiment 2 of the present invention are the same as Embodiment 1, and the description thereof will not be repeated here.
  • Figure 3 shows a third embodiment of the present invention, shown in the figure: 301. power source; 302. first gear; 303. two-way clutch; 304. third gear; 305. input shaft; 306. fourth gear; 308. fifth gear; 309. sixth gear; 310. right half shaft; 311. differential; 312. left half shaft; 313. second gear;
  • Embodiment 3 of the present invention is an improvement made on the basis of Embodiment 2.
  • the difference between Embodiment 3 of the present invention and Embodiment 2 is that, as shown in FIG. 3, the two-way clutch 303 is sleeved on the input shaft 305, bidirectional.
  • the left and right sides of the clutch 303 are provided with end face teeth, which are equivalent to two movable toothed discs.
  • the third gear 304 and the first gear 302 are all sleeved on the input shaft 305, and the fixed gears are fixed on the two gears. plate.
  • the first gear 302 and the second gear 313 are meshed with the transmission ratio i1
  • the third gear 304 and the fourth gear 306 are meshed with the transmission ratio i2
  • the fifth gear 308 and the sixth gear 309 are meshed with the transmission ratio i3.
  • the power source 201 sequentially passes through the input shaft 305, the two-way clutch 303, the first gear 302, the second gear 313, the intermediate shaft 314, and the fifth.
  • the gear 308, the sixth gear 309, and the differential 311 transmit power to the axle half shaft, and the meshing gear ratio in the automatic transmission is i1 ⁇ i3. This is the first condition.
  • the power source 301 sequentially passes through the input shaft 305, the two-way clutch 303, the third gear 304, and the fourth tooth.
  • the wheel 306, the intermediate shaft 314, the fifth gear 308, the sixth gear 309, and the differential 311 transmit power to the axle half shaft, and the meshing gear ratio in the automatic transmission is i2 x i3. This is the second condition.
  • Embodiment 3 of the present invention are the same as Embodiment 2, and the description thereof will not be repeated here.
  • 4 is a fourth embodiment of the present invention, showing: 401. power source; 402. first gear; 403. first clutch; 404. third gear; 405. input shaft; 407. second clutch; 408. fifth gear; 409. sixth gear; 410. right half shaft; 411. differential; 412. left half shaft; 413. second gear;
  • Embodiment 4 of the present invention is an improvement made on the basis of Embodiment 1.
  • the difference between Embodiment 4 of the present invention and Embodiment 1 is that, as shown in FIG. 4, the first clutch 403 is sleeved on the intermediate shaft 414.
  • the mating fixed sprocket is fixedly mounted on the second gear 413, and the second gear 413 is vacantly mounted on the intermediate shaft 414.
  • the first gear 402 and the second gear 413 are set to mesh with the transmission ratio i1, the third gear 404 and the fourth gear 406 are meshed with the transmission ratio i2, and the fifth gear 408 and the sixth gear 409 are meshed with the transmission ratio i3.
  • the power source 401 sequentially passes through the input shaft 405, the first gear 402, the second gear 413, the first clutch 403, the intermediate shaft 414, the fifth gear 408, and the sixth
  • the gear 409 and the differential 411 transmit power to the axle half shaft, and the meshing gear ratio in the automatic transmission is i1 ⁇ i3. This is the first condition.
  • the power source 401 sequentially passes through the input shaft 405, the third gear 404, the fourth gear 406, the second clutch 407, the intermediate shaft 414, the fifth gear 408, and the sixth
  • the gear 409 and the differential 411 transmit power to the axle half shaft, and the meshing gear ratio in the automatic transmission is i2 ⁇ i3. This is the second condition.
  • Embodiment 4 of the present invention are the same as those of Embodiment 1, and the description thereof will not be repeated here.
  • Figure 5 shows a fifth embodiment of the present invention, shown in the figure: 501. power source; 502. first gear; 503. first clutch; 504. third gear; 505. input shaft; ;507. Second clutch; 508. fifth gear; 509. sixth gear; 510. right half shaft; 511. differential; 512. left half shaft; 513. second gear; 514.
  • the fifth embodiment of the present invention is an improvement made on the basis of the second embodiment.
  • the difference between the fifth embodiment of the present invention and the second embodiment is that, as shown in FIG. 5, the first clutch 503 is sleeved on the intermediate shaft 514.
  • the mating fixed sprocket is fixed to the second gear 513, and the second gear 513 is vacantly mounted on the intermediate shaft 514.
  • the first gear 502 and the second gear 513 are set to mesh with the transmission ratio i1, the third gear 504 and the fourth gear 506 are meshed with the transmission ratio i2, and the fifth gear 508 and the sixth gear 509 are meshed with the transmission ratio i3.
  • the power source 501 sequentially passes through the input shaft 505, the first gear 502, the second gear 513, the first clutch 503, the intermediate shaft 514, the fifth gear 508, and the sixth
  • the gear 509 and the differential 511 transmit power to the axle half shaft, and the meshing gear ratio in the automatic transmission is i1 ⁇ i3. This is the first condition.
  • the power source 501 sequentially passes through the input shaft 505, the second clutch 507, the third gear 504, the fourth gear 506, the intermediate shaft 514, the fifth gear 508, and the sixth
  • the gear 509 and the differential 511 transmit power to the axle half shaft, and the meshing gear ratio in the automatic transmission is i2 ⁇ i3. This is the second condition.
  • Embodiment 5 of the present invention are the same as Embodiment 2, and the description thereof will not be repeated here.
  • 6 is a sixth embodiment of the present invention, showing: 601. power source; 602. first gear; 603. two-way clutch; 604. third gear; 605. input shaft; 606. fourth gear; 608. Fifth gear; 609. Sixth gear; 610. Right half shaft; 611. Differential; 612. Left half shaft; 613. Second gear; 614. Intermediate shaft.
  • Embodiment 6 of the present invention is an improvement made on the basis of Embodiment 3.
  • the difference between Embodiment 6 of the present invention and Embodiment 3 is that, as shown in FIG. 6, the two-way clutch 603 is sleeved on the intermediate shaft 614, and is bidirectional.
  • the left and right sides of the clutch 603 are provided with end face teeth, which are equivalent to two movable toothed discs.
  • the second gear 613 and the fourth gear 606 are sleeved on the intermediate shaft 614, and the fixed gears are fixed on the two gears. plate.
  • the two-way clutch 603 moves to the left, it can be closed with the fixed sprocket on the second gear 613.
  • the power source 601 sequentially passes through the input shaft 605, the first gear 602, the second gear 613, the two-way clutch 603, the intermediate shaft 614, and the fifth.
  • the gear 608, the sixth gear 609, and the differential 611 transmit power to the axle half shaft, and the meshing gear ratio in the automatic transmission is i1 ⁇ i3. This is the first condition.
  • the power source 601 sequentially passes through the input shaft 605, the third gear 604, the fourth gear 606, the two-way clutch 603, the intermediate shaft 614, and the fifth.
  • the gear 608, the sixth gear 609, and the differential 611 transmit power to the axle half axle, and the meshing gear ratio in the automatic transmission is i2 x i3. This is the second condition.
  • Embodiment 6 of the present invention is the same as that of Embodiment 3, and the description thereof will not be repeated here.
  • Figure 7 is a seventh embodiment of the present invention, showing: 701. first power source; 702. first gear; 703. first clutch; 704. third gear; 705. first input shaft; Fourth gear; 707. second clutch; 708. fifth gear; 709. sixth gear; 710. right half shaft; 711. differential; 712. left half shaft; 713. second gear; 714. Axis; 715. second power source; 716. second input shaft; 717. seventh gear.
  • Embodiment 7 of the present invention is an improvement made on the basis of Embodiment 1.
  • the vehicle drive assembly further includes a second power source 715.
  • the second power source 715 is connected to the second input shaft 716.
  • the second input shaft 716 is disposed in parallel with the first input shaft 705 and the intermediate shaft 714.
  • the second input shaft 716 is provided with a seventh gear 717, and the seventh gear 717 and the first
  • the gears 702 are engaged to transmit power to the axle axles at all times, unaffected by the opening or closing of the first clutch 703 and the second clutch 707.
  • the seventh gear 717, the first gear 702, and the second gear 713 form a triple gear
  • the first gear 702 functions as an idler
  • the gear ratio of the triple gear is set to i4
  • the gear 709 meshes with the transmission ratio i3, and when only the second power source 715 transmits power to the axle half shaft, the meshing gear ratio in the automatic transmission is i4 ⁇ i3.
  • the first clutch 703 and the second clutch 707 may be simultaneously disconnected.
  • the second power source 715 is activated, and the power thereof passes through the second input shaft 716, the seventh gear 717, and the A gear 702, a second gear 713, an intermediate shaft 714, a fifth gear 708, a sixth gear 709, and a differential 711 transmit power to the axle half shaft, and the meshing gear ratio in the automatic transmission is i4 x i3.
  • the second power source 715 is activated, and the power of the second power source 715 is still transmitted to the axle half shaft, which serves to increase the total driving force of the drive assembly.
  • the vehicle can shorten the acceleration process and realize high-speed driving more quickly.
  • the double power input and the larger speed ratio transmission can be selected to improve the driving force of the whole vehicle and make up for the defect of insufficient driving force of the whole vehicle. .
  • the second power source 715 employs an electric motor, and the rotor shaft of the second power source 715 and the second input shaft 716 are also of an integrated design.
  • Embodiment 7 of the present invention are the same as those of Embodiment 1, and the description thereof will not be repeated here.
  • 8 is an embodiment 8 of the present invention, showing: 801. first power source; 802. first gear; 803. first clutch; 804. third gear; 805. first input shaft; Fourth gear; 807. second clutch; 808. fifth gear; 809. sixth gear; 810. right half shaft; 811. differential; 812. left half shaft; 813. second gear; Axis; 815. second power source; 816. second input shaft; 817. seventh gear.
  • Embodiment 8 of the present invention is an improvement made on the basis of Embodiment 7.
  • the difference between Embodiment 8 of the present invention and Embodiment 7 is that, as shown in FIG. 8, the seventh gear 817 meshes with the second gear 813, and Power is always transmitted to the axle half shaft without being affected by the opening or closing of the first clutch 803 and the second clutch 807.
  • the ratio of the seventh gear 817 to the second gear 813 engaged with it is set to i4, the fifth gear 808 and the sixth gear 809 mesh with the transmission ratio i3, and when only the second power source 815 transmits power to the axle half shaft,
  • the meshing gear ratio in the automatic transmission is i4 ⁇ i3.
  • the first clutch 803 and the second clutch 807 may be simultaneously disconnected.
  • the second power source 815 is activated, and the power thereof passes through the second input shaft 816, the seventh gear 817, and the second gear 813.
  • the intermediate shaft 814, the fifth gear 808, the sixth gear 809, and the differential 811 transmit power to the axle half shaft, and the meshing gear ratio in the automatic transmission is i4 x i3.
  • the second power source 815 is activated, and the power of the second power source 815 is still transmitted to the axle half shaft, thereby increasing the total drive of the drive assembly. The role of force.
  • Embodiment 8 of the present invention is the same as that of Embodiment 7, and the description thereof will not be repeated here.
  • Figure 9 shows a ninth embodiment of the present invention, showing: 901. a first power source; 902. a first gear; 903. a first clutch; 904. a third gear; 905. a first input shaft; Fourth gear; 907. second clutch; 908. fifth gear; 909. sixth gear; 910. right half shaft; 911. differential; 912. left half shaft; 913. second gear; Axis; 915. second power source; 916. second input shaft; 917. seventh gear.
  • Embodiment 9 of the present invention is an improvement made on the basis of Embodiment 2.
  • the vehicle drive assembly further includes a second power source 915.
  • the second power source 915 is connected to the second input shaft 916.
  • the second input shaft 916 is disposed in parallel with the first input shaft 905 and the intermediate shaft 914.
  • the second input shaft 916 is provided with a seventh gear 917, and the seventh gear 917 and the first
  • the gear 902 is engaged to transmit power to the axle half shaft at all times without being affected by the opening or closing of the first clutch 903 and the second clutch 907.
  • the seventh gear 917, the first gear 902, and the second gear 913 form a triple gear
  • the first gear 902 functions as an idler
  • the gear ratio of the triple gear is set to i4
  • the gear 909 meshes with the transmission ratio i3, and when only the second power source 915 transmits power to the axle half shaft, the meshing gear ratio in the automatic transmission is i4 ⁇ i3.
  • the first clutch 903 and the second clutch 907 may be simultaneously disconnected.
  • the second power source 915 is activated, and the power thereof passes through the second input shaft 916, the seventh gear 917, and the first gear 902.
  • the second gear 913, the intermediate shaft 914, the fifth gear 908, the sixth gear 909, and the differential 911 transmit power to the axle half shaft, and the meshing gear ratio in the automatic transmission is i4 ⁇ i3.
  • the second power source 915 is activated, and the power of the second power source 915 is still transmitted to the axle half shaft, which serves to increase the total driving force of the drive assembly.
  • the vehicle can shorten the acceleration process and realize high-speed driving more quickly.
  • the double power input and the larger speed ratio transmission can be selected to improve the driving force of the whole vehicle and make up for the defect of insufficient driving force of the whole vehicle. .
  • the rotor shaft of the second power source 915 and the second input shaft 916 are also of an integrated design.
  • Embodiment 9 of the present invention are the same as Embodiment 2, and the description thereof will not be repeated here.
  • 10 is a first embodiment of the present invention, showing: 1001. a first power source; 1002. a first gear; 1003. a first clutch; 1004. a third gear; 1005. a first input shaft; Fourth gear; 1007. second clutch; 1008. fifth gear; 1009. sixth gear; 1010. right half shaft; 1011. differential; 1012. left half shaft; 1013. second gear; Axis; 1015. second power source; 1016. second input shaft; 1017. seventh gear.
  • Embodiment 10 of the present invention is an improvement made on the basis of Embodiment 9.
  • the difference between Embodiment 10 of the present invention and Embodiment 9 is that, as shown in FIG. 10, the seventh gear 1017 meshes with the third gear 1004, and Power is always transmitted to the axle half shaft without being affected by the opening or closing of the first clutch 1003 and the second clutch 1007.
  • the seventh gear 1017, the third gear 1004, and the fourth gear 1006 form a triple gear, and the third gear 1004 functions as an idler, setting the transmission ratio of the triple gear to i4, and the fifth gear 1008 and sixth.
  • the gear 1009 meshes with the transmission ratio i3, and when only the second power source 1015 transmits power to the axle half shaft, the meshing gear ratio in the automatic transmission is i4 ⁇ i3.
  • the first clutch 1003 and the second clutch 1007 may be simultaneously disconnected.
  • the second power source 1015 is activated, and the power thereof passes through the second input shaft 1016, the seventh gear 1017, and the third gear 1004.
  • the fourth gear 1006, the intermediate shaft 1014, the fifth gear 1008, the sixth gear 1009, and the differential 1011 transmit power to the axle half shaft, and the meshing gear ratio in the automatic transmission is i4 ⁇ i3. This is the third condition, which is the path that keeps the power uninterrupted during shifting.
  • the second power source 1015 is activated, and the power of the second power source 1015 is still transmitted to the axle half shaft, which serves to increase the total driving force of the drive assembly.
  • Embodiment 10 of the present invention are the same as Embodiment 9, and the description thereof will not be repeated here.
  • Figure 11 shows an embodiment 11 of the present invention, which shows: 1101. a first power source; 1102. a first gear; a 1103. a first clutch; a 1104. a third gear; a 1105. a first input shaft; Fourth gear; 1107. second clutch; 1108. fifth gear; 1109. sixth gear; 1110. right half shaft; 1111. differential; 1112. left half shaft; 1113. second gear; Axis; 1115. second power source; 1116. second input shaft; 1117. seventh gear.
  • the embodiment 11 of the present invention is an improvement made on the basis of the embodiment 5.
  • the vehicle drive assembly further includes a second power source 1115, as shown in FIG.
  • the second power source 1115 is connected to the second input shaft 1116, and the second input shaft 1116 is connected to the first input shaft
  • the input shaft 1105 and the intermediate shaft 1114 are arranged in parallel.
  • the second input shaft 1116 is provided with a seventh gear 1117.
  • the seventh gear 1117 meshes with the third gear 1104 to transmit power to the axle half shaft at all times, without being affected by the first clutch 1103. The effect of opening or closing with the second clutch 1107.
  • the seventh gear 1117, the third gear 1104, and the fourth gear 1106 form a triple gear, and the third gear 1104 functions as an idler, setting the transmission ratio of the triple gear to i4, and the fifth gear 1108 and sixth.
  • the gear 1109 meshes with the transmission ratio i3, and when only the second power source 1115 transmits power to the axle half shaft, the meshing gear ratio in the automatic transmission is i4 ⁇ i3.
  • the first clutch 1103 and the second clutch 1107 may be simultaneously disconnected.
  • the second power source 1115 is activated, and the power thereof passes through the second input shaft 1116, the seventh gear 1117, and the third gear 1104.
  • the fourth gear 1106, the intermediate shaft 1114, the fifth gear 1108, the sixth gear 909, and the differential 1111 transmit power to the axle half shaft, and the meshing gear ratio in the automatic transmission is i4 ⁇ i3. This is the third condition, which is the path that keeps the power uninterrupted during shifting.
  • the second power source 1115 is activated, and the power of the second power source 1115 is still transmitted to the axle half shaft, which serves to increase the total driving force of the drive assembly.
  • the vehicle can shorten the acceleration process and realize high-speed driving more quickly.
  • the double power input and the larger speed ratio transmission can be selected to improve the driving force of the whole vehicle and make up for the defect of insufficient driving force of the whole vehicle. .
  • the rotor shaft of the second power source 1115 and the second input shaft 1116 are also of an integrated design.
  • 12 is an embodiment 11 of the present invention, showing: 1201. a first power source; 1202. a first gear; 1203. a first clutch; 1204. a third gear; 1205. a first input shaft; Fourth gear; 1207. second clutch; 1208. fifth gear; 1209. sixth gear; 1210. right half shaft; 1211. differential; 1212. left half shaft; 1213. second gear; Axis; 1215. second power source; 1216. second input shaft; 1217. seventh gear.
  • Embodiment 12 of the present invention is an improvement made on the basis of Embodiment 11, and Embodiment 12 of the present invention is different from Embodiment 11 in that, as shown in FIG. 12, the seventh gear 1217 meshes with the fourth gear 1206, and Power is always transmitted to the axle half shaft without being affected by the opening or closing of the first clutch 1203 and the second clutch 1207.
  • the gear ratio of the fourth gear 1217 to which the fourth gear 1217 is meshed is set to i4, the fifth gear 1208 and the sixth gear 1209 mesh with the transmission ratio i3, and when only the second power source 1215 transmits power
  • the meshing gear ratio in the automatic transmission is i4 ⁇ i3.
  • the first clutch 1203 and the second clutch 1207 may be simultaneously disconnected.
  • the second power source 1215 is activated, and the power thereof passes through the second input shaft 1216, the seventh gear 1217, and the fourth gear 1206.
  • the intermediate shaft 1214, the fifth gear 1208, the sixth gear 1209, and the differential 1211 transmit power to the axle half shaft, and the meshing gear ratio in the automatic transmission is i4 ⁇ i3. This is the third condition, which is the path that keeps the power uninterrupted during shifting.
  • the second power source 1215 is activated, and the power of the second power source 1215 is still transmitted to the axle half shaft, which serves to increase the total driving force of the drive assembly.
  • Embodiment 12 of the present invention is the same as that of Embodiment 11, and the description thereof will not be repeated here.
  • Figure 13 shows a thirteenth embodiment of the present invention, shown in the figure: 1301. a first power source; 1302. a first gear; a 1303 clutch; a 1304. a third gear; 1305. a first input shaft; Fourth gear; 1308. fifth gear; 1309. sixth gear; 1310. right half shaft; 1311. differential; 1312. left half shaft; 1313. second gear; 1314. intermediate shaft; 1315. Source; 1316. Second input shaft; 1317. Seventh gear.
  • Embodiment 13 of the present invention is an improvement made on the basis of Embodiment 6.
  • the vehicle drive assembly further includes a second power source 1315.
  • the second power source 1315 is connected to the second input shaft 1316.
  • the second input shaft 1316 is disposed in parallel with the first input shaft 1305 and the intermediate shaft 1314.
  • the second input shaft 1316 is provided with a seventh gear 1317, and the seventh gear 1317 and the fifth.
  • the gear 1308 is engaged to transmit power to the axle half shaft at all times, unaffected by the opening or closing of the first clutch 1303 and the second clutch 1307.
  • the seventh gear 1317, the fifth gear 1308, and the sixth gear 1309 form a triple gear
  • the third gear 1304 functions as an idler, setting the transmission ratio of the triple gear to i4, and when only the second power source 1315
  • the meshing gear ratio in the automatic transmission is i4.
  • the first clutch 1303 and the second clutch 1307 may be simultaneously disconnected.
  • the second power source 1315 is activated, and the power thereof passes through the second input shaft 1316, the seventh gear 1317, and the fifth gear 1308.
  • the sixth gear 1309 and the differential 1311 transmit power to the axle half shaft, and the meshing gear ratio in the automatic transmission is i4. This is the third condition, which is the path that keeps the power uninterrupted during shifting.
  • the second power source 1315 is activated, The power of the second power source 1315 is still transmitted to the axle half shaft, which serves to increase the total driving force of the drive assembly.
  • the vehicle can be shortened to accelerate the process, and the vehicle can be driven at a higher speed.
  • you can choose dual power input and large speed ratio transmission to improve the driving force of the whole vehicle and make up for the defects of insufficient driving force of the whole vehicle.
  • the rotor shaft of the second power source 1315 and the second input shaft 1316 are also of an integrated design.
  • Embodiment 13 of the present invention are the same as Embodiment 6, and the description thereof will not be repeated here.
  • 14 is a first embodiment of the present invention, showing: 1401. a first power source; 1402. a first gear; a first clutch; a first clutch; a first gear; a first gear; a first gear; a first gear; Four gears; 1407. second clutch; 1408. fifth gear; 1409. sixth gear; 1410. right half shaft; 1411. differential; 1412. left half shaft; 1413. second gear; 1414. 1415.ISG motor.
  • Embodiment 14 of the present invention is an improvement made on the basis of Embodiment 1.
  • the difference between Embodiment 14 of the present invention and Embodiment 1 is that, as shown in FIG. 14, the first power source 1401 is a combination of an engine and an ISG motor.
  • the design reduces the idle loss and pollution of the engine.
  • the ISG motor 1415 functions as a generator, can regeneratively generate electricity, recover energy, and achieve energy saving effect.
  • the first power source 1401 is activated. When both the first clutch 1403 and the second clutch 1407 are disconnected, the power of the first power source cannot be transmitted to the axle half shaft, and only the ISG motor 1415 functions as a generator. Regenerative power generation, power storage into the battery or for use by the second power source.
  • the ISG motor 1415 can still act as an auxiliary power source to drive the input shaft 1405. At this time, the ISG motor 1415 will not be constrained by the engine operating characteristics, and the ISG motor performance can be fully utilized.
  • Embodiment 14 of the present invention are the same as Embodiment 1, and the description thereof will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Structure Of Transmissions (AREA)
  • Mechanical Operated Clutches (AREA)
  • Arrangement Of Transmissions (AREA)
  • Motor Power Transmission Devices (AREA)
  • Control Of Transmission Device (AREA)

Abstract

一种横置车辆驱动总成,与车桥半轴(112、110)连接,包括第一动力源(101)和自动变速器,自动变速器设有第一输入轴(105),第一动力源(101)与第一输入轴(105)连接,自动变速器与车桥半轴(112、110)连接处设置有差速器(111);与第一输入轴(105)平行设有中间轴(114);第一输入轴(105)上固定或空套有若干齿轮(104、102),中间轴(114)上固定或空套有若干齿轮(113、106),第一输入轴(105)上的齿轮(104、102)与中间轴(114)上的齿轮(113、106)分组啮合传动,相互啮合的齿轮(104、102、113、106)在轴(105、114)上的安装方式不同;第一输入轴(105)与空套其上的齿轮(102)之间、中间轴(114)与空套其上的齿轮(106)之间设置有离合器(103、107);中间轴(114)与差速器(111)之间还设置有啮合的齿轮(108、109)传动,该驱动总成可实现两种速比传动,传动形式灵活,缩短了驱动总成的轴向尺寸,既能满足车辆的加速性和爬坡度、也能满足高车速的要求。

Description

一种横置车辆驱动总成 技术领域
本发明涉及一种横置车辆驱动总成,与车辆前桥或后桥连接,用于驱动车辆。
背景技术
目前的纯电动或混合动力新能源汽车,所采用的电动机的动力特性与整车要求有差异,无法满足速比和力矩的要求。由于新能源汽车需要面对越来越复杂的工况路况,用户对新能源汽车的舒适度和续航里程要求越来越高,单纯的电动机直驱模式、电动机连接减速器模式或油电混合动力模式的新能源汽车已不能满足新能源汽车行业的发展要求。
发明内容
针对现有技术中的上述问题,本发明提供了一种横置车辆驱动总成,以解决现有的动力总成单一速比传动,无法满足车辆加速性、爬坡度和最高车速的需求、无法适应复杂路况工况的问题。
同时通过电机和变速器的集成一体化结构,解决现有的动力总成轴向尺寸较大,难以在车辆上布置,以及变速器中齿轮个数较多,传动结构复杂的问题。
通过引进第二电机,还解决新能源汽车电机和二档变速器在换档时的动力中断,使车辆的动力性更加强劲,更具驾驶感。
为了达到上述目的,本发明的技术方案是这样实现的:
本发明提供一种横置车辆驱动总成,与车桥半轴连接,所述车辆驱动总成包括第一动力源和自动变速器,所述自动变速器中设置有第一输入轴,所述第一动力源与第一输入轴连接,所述自动变速器与所述车桥半轴连接处设置有差速器;
所述自动变速器中,与第一输入轴平行设置有中间轴;
所述第一输入轴上固定或空套有第一齿轮、第三齿轮,所述中间轴上固定或空套有第二齿轮、第四齿轮,所述第一齿轮与第二齿轮啮合传动,二者在轴上的安装方式不同,所述第三齿轮与第四齿轮啮合传动,二者在轴上的安装方式不同;
所述第一输入轴与空套其上的齿轮之间设置有离合器,所述中间轴与空套其上的齿轮之间设置有离合器;
所述中间轴上还固定有第五齿轮,所述差速器上固定有第六齿轮,所述第五齿轮与第六齿轮啮合传动。
进一步,所述第一齿轮和/或第三齿轮通过滚针轴承空套在所述第一输入轴上,所述第二齿轮和/或第四齿轮通过滚针轴承空套在所述中间轴上。
进一步,所述第一齿轮和第三齿轮通过滚针轴承空套在所述第一输入轴上,所述第一输入轴上设置有双向离合器与所述第一齿轮和第三齿轮配合。
进一步,所述第二齿轮和第四齿轮通过滚针轴承空套在所述中间轴上,所述中间轴上设置有双向离合器与所述第二齿轮和第四齿轮配合。
进一步,所述第一齿轮与第二齿轮啮合传动比为i1,所述第三齿轮与第四齿轮啮合传动比为i2,所述第五齿轮与第六齿轮啮合传动比为i3,所述自动变速器中啮合传动比为i1×i3或者i2×i3。
进一步,所述车辆驱动总成还包括第二动力源,所述第二动力源连接第二输入轴,所述第二输入轴与所述第一输入轴、中间轴平行设置,所述第二输入轴上设置有第七齿轮,所述第七齿轮与第一齿轮、或第二齿轮、或第三齿轮、或第四齿轮、或第五齿轮啮合,将动力始终传递至所述车桥半轴,不受所述离合器断开或闭合的影响。
进一步,所述第七齿轮与第一齿轮、或第三齿轮啮合时形成三连齿轮,该三连齿轮传动比为i4,所述第五齿轮与第六齿轮啮合传动比为i3,当仅所述第二动力源将动力传递至所述车桥半轴时,所述自动变速器中啮合传动比为i4×i3;
所述第七齿轮与第二齿轮、或第四齿轮啮合时形成二连齿轮,该二连齿轮传动比为i4,所述第五齿轮与第六齿轮啮合传动比为i3,当仅所述第二动力源将动力传递至所述车桥半轴时,所述自动变速器中啮合传动比为i4×i3;
所述第七齿轮与第五齿轮啮合时形成三连齿轮,该三连齿轮传动比为 i4,当仅所述第二动力源将动力传递至所述车桥半轴时,所述自动变速器中啮合传动比为i4。
进一步,所述第一动力源的转子轴和所述第一输入轴一体化设计,所述第二动力源的转子轴和所述第二输入轴一体化设计。
进一步,所述离合器为端面齿离合器,包括活动齿盘和固定齿盘,所述活动齿盘空套在所述第一输入轴和/或中间轴上,所述固定齿盘固定在空套安装的任意齿轮上;或者所述离合器为湿式离合器。
进一步,所述端面齿离合器为电磁驱动式、或液力驱动式、或气动驱动式、或电动驱动式、或机械拨叉驱动式,驱动所述活动齿盘轴向移动与固定齿盘啮合。
采用上述结构设置的本发明具有以下优点:
本发明的车辆动力总成,与车辆的后桥半轴或前桥半轴连接,车辆动力总成可实现两种速比传动,传动形式灵活,满足整车对不同路况的行驶需求,当车辆需要快速加速或在负重爬坡时,可选择较大速比传动,提高整车驱动力,弥补整车驱动力不足的缺陷;当整车在巡航状态,可选择较小速比传动,以满足整车高速行驶要求,节约能源,提高车辆续航里程。
通过引进第二电机,还解决新能源汽车电机和二档变速器在换档时的动力中断问题,使车辆的动力性更加强劲,更具驾驶感。
此外,在车辆起步时,第一电机和第二电机同时启动,可增加驱动总成的总驱动力,使车辆缩短加速过程,更快实现高速行驶。
本发明提供的横置单电机和/或双电机车辆驱动总成,一方面缩短了驱动总成的轴向尺寸,利于整车的布置;另一方面由于使用的齿轮个数较少,简化了传动结构。
附图说明
图1是本发明实施例1的横置单动力源车辆驱动总成的结构示意图。
图2是本发明实施例2的横置单动力源车辆驱动总成的结构示意图。
图3是本发明实施例3的横置单动力源车辆驱动总成的结构示意图。
图4是本发明实施例4的横置单动力源车辆驱动总成的结构示意图。
图5是本发明实施例5的横置单动力源车辆驱动总成的结构示意图。
图6是本发明实施例6的横置单动力源车辆驱动总成的结构示意图。
图7是本发明实施例7的横置双动力源车辆驱动总成的结构示意图。
图8是本发明实施例8的横置双动力源车辆驱动总成的结构示意图。
图9是本发明实施例9的横置双动力源车辆驱动总成的结构示意图。
图10是本发明实施例10的横置双动力源车辆驱动总成的结构示意图。
图11是本发明实施例11的横置双动力源车辆驱动总成的结构示意图。
图12是本发明实施例12的横置双动力源车辆驱动总成的结构示意图。
图13是本发明实施例13的横置双动力源车辆驱动总成的结构示意图。
图14是本发明实施例14的横置单动力源车辆驱动总成的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例1
如图1所示为本发明实施例1,图中所示:101.动力源;102.第一齿轮;103.第一离合器;104.第三齿轮;105.输入轴;106.第四齿轮;107.第二离合器;108.第五齿轮;109.第六齿轮;110.右半轴;111.差速器;112.左半轴;113.第二齿轮;114.中间轴。
在该实施例中,一种横置车辆驱动总成,与车桥半轴连接,该车辆驱动总成包括动力源101和自动变速器(图1中虚线所示),自动变速器中设置有输入轴105,动力源101与输入轴105连接,自动变速器与车桥半轴连接处设置有差速器111。
在自动变速器中,与输入轴105平行设置有中间轴114。
输入轴105上空套安装有第一齿轮102,固定安装有第三齿轮104,中间轴114上固定安装有第二齿轮113,空套安装有第四齿轮106,第一齿轮102与第二齿轮113啮合传动,第三齿轮104与第四齿轮106啮合传动。
第一齿轮102与第二齿轮113的在轴上的安装方式不同,第三齿轮104与第四齿轮106的在轴上的安装方式不同,在其他实施例中也是如此。
输入轴105与空套其上的第一齿轮102之间设置有第一离合器103,中间轴114与空套其上的第四齿轮106之间设置有第二离合器107。
中间轴114上还固定有第五齿轮108,差速器111上固定有第六齿轮109,第五齿轮108与第六齿轮109啮合传动。
第一齿轮102通过滚针轴承空套安装在输入轴105上,第四齿轮106通过滚针轴承空套安装在中间轴114上。虽然是空套安装,但是第一齿轮102和第四齿轮106均不发生轴向移动。
第一离合器103和第二离合器107为端面齿离合器,包括活动齿盘和固定齿盘。第一离合器103的活动齿盘空套在输入轴105上,配合的固定齿盘固定在第一齿轮102上。第二离合器107的活动齿盘空套在中间轴114上,配合的固定齿盘固定在第四齿轮106上。
设定第一齿轮102与第二齿轮113啮合传动比为i1,第三齿轮104与第四齿轮106啮合传动比为i2,第五齿轮108与第六齿轮109啮合传动比为i3。
当第一离合器103闭合、第二离合器107断开时,动力源101依次通过输入轴105、第一离合器103、第一齿轮102、第二齿轮113、中间轴114、第五齿轮108、第六齿轮109和差速器111将动力传递至车桥半轴,自动变速器中啮合传动比为i1×i3。此为第一工况。
当第一离合器103断开、第二离合器107闭合时,动力源101依次通过输入轴105、第三齿轮104、第四齿轮106、第二离合器107、中间轴114、第五齿轮108、第六齿轮109和差速器111将动力传递至车桥半轴,自动变速器中啮合传动比为i2×i3。此为第二工况。
当第一离合器103、第二离合器107均断开时,实现空档,此时无动力输出到差速器111。
其中,传动比i1、i2和i3的大小可通过改变齿轮的尺寸或齿数来改变,从而改变自动变速器的传动比。
由上述可知,该车辆驱动总成可实现两种速比传动,自动变速器根据控制策略程序,可实现两个档位电控自动换档,传动形式灵活,满足整车对不同路况的行驶需求,当车辆在启动加速和负重爬坡时,可选择较大速比传动,提高整车驱动力,弥补整车驱动力不足的缺陷;当整车在巡航状态时,可选择较小速比传动,以满足整车高速行驶要求,节约能源,提高车辆续航里程。
在本实施例中,动力源101的转子轴和输入轴105一体化设计,可以减小转子轴对自动变速器的冲击。动力源101可以是电动机、或发动机。
在第一离合器103、第二离合器107中,活动齿盘可通过花键在轴上滑动。活动齿盘的中心孔设置有内花键,相应地在输入轴105和中间轴114 上设置了外花键,而且长度应该比活动齿盘的内花键较长,只有这样活动齿盘才可以穿套在轴上,可轴向滑动并且输出力矩。
活动齿盘上设置有端面传动齿或齿槽,固定齿盘上相应设置有端面齿槽或传动齿。端面齿离合器相对于摩擦式离合器可使动能损失最大程度地降低,弥补了传统摩擦式离合器因无法承受电动机的动力冲击而寿命过短的缺陷。
端面齿离合器的驱动方式可以为电磁驱动式利用电磁铁吸附带动、或液力驱动式利用液压机构带动、或气动驱动式利用气压机构带动、或电动驱动式利用电动机带动、或机械拨叉驱动式利用拨叉带动,驱动活动齿盘轴向移动与固定齿盘啮合。
当第一离合器103和第二离合器107为电磁齿嵌式离合器时,车辆驱动总成在动力输入时,电磁齿嵌式离合器可使动力与整车随时瞬间脱开和结合,实现了动力的平顺切换,提高车辆行驶平稳度。
或者第一离合器103和第二离合器107均采用湿式离合器,湿式离合器内部设置有对偶摩擦片和钢片,利用液压油驱动使得摩擦片和钢片接触或分离从而实现离合。安装湿式离合器,需要实现输入轴105与空套其上的第一齿轮102的离合,中间轴114与空套其上的第四齿轮106的离合。
车桥半轴如图1所示,包括右半轴110和左半轴112。在本发明实施例中,车桥半轴为前桥半轴或后桥半轴;车辆驱动总成与前桥半轴连接时,车辆为前驱模式,车辆驱动总成与后桥半轴连接时,车辆为后驱模式。
实施例2
如图2所示为本发明实施例2,图中所示:201.动力源;202.第一齿轮;203.第一离合器;204.第三齿轮;205.输入轴;206.第四齿轮;207.第二离合器;208.第五齿轮;209.第六齿轮;210.右半轴;211.差速器;212.左半轴;213.第二齿轮;214.中间轴。
本发明实施例2是在实施例1的基础上做出的改进,本发明实施例2与实施例1的区别点在于,如图2所示,第二离合器107空套在输入轴205上,配合的固定齿盘固定在第三齿轮204上,第三齿轮204空套安装在输入轴205上。
设定第一齿轮202与第二齿轮213啮合传动比为i1,第三齿轮204与第四齿轮206啮合传动比为i2,第五齿轮208与第六齿轮209啮合传动比为 i3。
当第一离合器203闭合、第二离合器207断开时,动力源201依次通过输入轴205、第一离合器203、第一齿轮202、第二齿轮213、中间轴214、第五齿轮208、第六齿轮209和差速器211将动力传递至车桥半轴,自动变速器中啮合传动比为i1×i3。此为第一工况。
当第一离合器203断开、第二离合器207闭合时,动力源201依次通过输入轴205、第二离合器207、第三齿轮204、第四齿轮206、中间轴214、第五齿轮208、第六齿轮209和差速器211将动力传递至车桥半轴,自动变速器中啮合传动比为i2×i3。此为第二工况。
当第一离合器203、第二离合器207均断开时,实现空档,此时无动力输出到差速器211。
本发明实施例2的其他内容与实施例1相同,此处不再重复描述。
实施例3
如图3所示为本发明实施例3,图中所示:301.动力源;302.第一齿轮;303.双向离合器;304.第三齿轮;305.输入轴;306.第四齿轮;308.第五齿轮;309.第六齿轮;310.右半轴;311.差速器;312.左半轴;313.第二齿轮;314.中间轴。
本发明实施例3是在实施例2的基础上做出的改进,本发明实施例3与实施例2的区别点在于,如图3所示,双向离合器303空套在输入轴305上,双向离合器303左右两侧均设置有端面齿,相当于两个活动齿盘,第三齿轮304上、第一齿轮302均空套安装在输入轴305上,两个齿轮上均固定有配合的固定齿盘。
设定第一齿轮302与第二齿轮313啮合传动比为i1,第三齿轮304与第四齿轮306啮合传动比为i2,第五齿轮308与第六齿轮309啮合传动比为i3。
当双向离合器303向左移动,可以与第一齿轮302上的固定齿盘闭合,动力源201依次通过输入轴305、双向离合器303、第一齿轮302、第二齿轮313、中间轴314、第五齿轮308、第六齿轮309和差速器311将动力传递至车桥半轴,自动变速器中啮合传动比为i1×i3。此为第一工况。
当双向离合器303向右移动,可以与第三齿轮304上的固定齿盘闭合,动力源301依次通过输入轴305、双向离合器303、第三齿轮304、第四齿 轮306、中间轴314、第五齿轮308、第六齿轮309和差速器311将动力传递至车桥半轴,自动变速器中啮合传动比为i2×i3。此为第二工况。
当双向离合器303居中时,与第一齿轮302、第二齿轮313均断开时,实现空档,此时无动力输出到差速器311。
本发明实施例3的其他内容与实施例2相同,此处不再重复描述。
实施例4
如图4所示为本发明实施例4,图中所示:401.动力源;402.第一齿轮;403.第一离合器;404.第三齿轮;405.输入轴;406.第四齿轮;407.第二离合器;408.第五齿轮;409.第六齿轮;410.右半轴;411.差速器;412.左半轴;413.第二齿轮;414.中间轴。
本发明实施例4是在实施例1的基础上做出的改进,本发明实施例4与实施例1的区别点在于,如图4所示,第一离合器403空套在中间轴414上,配合的固定齿盘固定安装在第二齿轮413上,第二齿轮413空套安装在中间轴414上。
设定第一齿轮402与第二齿轮413啮合传动比为i1,第三齿轮404与第四齿轮406啮合传动比为i2,第五齿轮408与第六齿轮409啮合传动比为i3。
当第一离合器403闭合、第二离合器407断开时,动力源401依次通过输入轴405、第一齿轮402、第二齿轮413、第一离合器403、中间轴414、第五齿轮408、第六齿轮409和差速器411将动力传递至车桥半轴,自动变速器中啮合传动比为i1×i3。此为第一工况。
当第一离合器403断开、第二离合器407闭合时,动力源401依次通过输入轴405、第三齿轮404、第四齿轮406、第二离合器407、中间轴414、第五齿轮408、第六齿轮409和差速器411将动力传递至车桥半轴,自动变速器中啮合传动比为i2×i3。此为第二工况。
当第一离合器403、第二离合器407均断开时,实现空档,此时无动力输出到差速器411。
本发明实施例4的其他内容与实施例1相同,此处不再重复描述。
实施例5
如图5所示为本发明实施例5,图中所示:501.动力源;502.第一齿轮;503.第一离合器;504.第三齿轮;505.输入轴;506.第四齿轮;507. 第二离合器;508.第五齿轮;509.第六齿轮;510.右半轴;511.差速器;512.左半轴;513.第二齿轮;514.中间轴。
本发明实施例5是在实施例2的基础上做出的改进,本发明实施例5与实施例2的区别点在于,如图5所示,第一离合器503空套在中间轴514上,配合的固定齿盘固定在第二齿轮513上,第二齿轮513空套安装在中间轴514上。
设定第一齿轮502与第二齿轮513啮合传动比为i1,第三齿轮504与第四齿轮506啮合传动比为i2,第五齿轮508与第六齿轮509啮合传动比为i3。
当第一离合器503闭合、第二离合器507断开时,动力源501依次通过输入轴505、第一齿轮502、第二齿轮513、第一离合器503、中间轴514、第五齿轮508、第六齿轮509和差速器511将动力传递至车桥半轴,自动变速器中啮合传动比为i1×i3。此为第一工况。
当第一离合器503断开、第二离合器507闭合时,动力源501依次通过输入轴505、第二离合器507、第三齿轮504、第四齿轮506、中间轴514、第五齿轮508、第六齿轮509和差速器511将动力传递至车桥半轴,自动变速器中啮合传动比为i2×i3。此为第二工况。
当第一离合器503、第二离合器507均断开时,实现空档,此时无动力输出到差速器511。
本发明实施例5的其他内容与实施例2相同,此处不再重复描述。
实施例6
如图6所示为本发明实施例6,图中所示:601.动力源;602.第一齿轮;603.双向离合器;604.第三齿轮;605.输入轴;606.第四齿轮;608.第五齿轮;609.第六齿轮;610.右半轴;611.差速器;612.左半轴;613.第二齿轮;614.中间轴。
本发明实施例6是在实施例3的基础上做出的改进,本发明实施例6与实施例3的区别点在于,如图6所示,双向离合器603空套在中间轴614上,双向离合器603左右两侧均设置有端面齿,相当于两个活动齿盘,第二齿轮613上、第四齿轮606均空套安装在中间轴614上,两个齿轮上均固定有配合的固定齿盘。
设定第一齿轮602与第二齿轮613啮合传动比为i1,第三齿轮604与第 四齿轮606啮合传动比为i2,第五齿轮608与第六齿轮609啮合传动比为i3。
当双向离合器603向左移动,可以与第二齿轮613上的固定齿盘闭合,动力源601依次通过输入轴605、第一齿轮602、第二齿轮613、双向离合器603、中间轴614、第五齿轮608、第六齿轮609和差速器611将动力传递至车桥半轴,自动变速器中啮合传动比为i1×i3。此为第一工况。
当双向离合器603向右移动,可以与第四齿轮606上的固定齿盘闭合,动力源601依次通过输入轴605、第三齿轮604、第四齿轮606、双向离合器603、中间轴614、第五齿轮608、第六齿轮609和差速器611将动力传递至车桥半轴,自动变速器中啮合传动比为i2×i3。此为第二工况。
当双向离合器603居中时,与第二齿轮613上、第四齿轮606均断开时,实现空档,此时无动力输出到差速器611。
本发明实施例6的其他内容与实施例3相同,此处不再重复描述。
实施例7
如图7所示为本发明实施例7,图中所示:701.第一动力源;702.第一齿轮;703.第一离合器;704.第三齿轮;705.第一输入轴;706.第四齿轮;707.第二离合器;708.第五齿轮;709.第六齿轮;710.右半轴;711.差速器;712.左半轴;713.第二齿轮;714.中间轴;715.第二动力源;716.第二输入轴;717.第七齿轮。
本发明实施例7是在实施例1的基础上做出的改进,本发明实施例7与实施例1的区别点在于,如图7所示,车辆驱动总成还包括第二动力源715,第二动力源715连接第二输入轴716,第二输入轴716与第一输入轴705、中间轴714平行设置,第二输入轴716上设置有第七齿轮717,第七齿轮717与第一齿轮702啮合,将动力始终传递至车桥半轴,不受第一离合器703和第二离合器707断开或闭合的影响。
第七齿轮717、第一齿轮702、第二齿轮713形成一个三连齿轮,第一齿轮702起到惰轮的作用,设定该三连齿轮的传动比为i4,第五齿轮708与第六齿轮709啮合传动比为i3,当仅第二动力源715将动力传递至车桥半轴时,自动变速器中啮合传动比为i4×i3。
当要换档时,第一离合器703和第二离合器707会有同时断开的情况,此时启动第二动力源715,其动力通过第二输入轴716、第七齿轮717、第 一齿轮702、第二齿轮713、中间轴714、第五齿轮708、第六齿轮709和差速器711将动力传递至车桥半轴,自动变速器中啮合传动比为i4×i3。此为第三工况,即在换档时保持动力不中断的路径。
如果第一离合器703或第二离合器707闭合,第二动力源715启动,第二动力源715的动力依然会传递至车桥半轴,起到增加驱动总成的总驱动力的作用,在车辆起步时,可使车辆缩短加速过程,更快实现高速行驶,当车辆在负重爬坡时,可选择双动力输入、较大速比传动,提高整车驱动力,弥补整车驱动力不足的缺陷。
第二动力源715采用电动机,第二动力源715的转子轴和第二输入轴716也采用一体化设计。
本发明实施例7的其他内容与实施例1相同,此处不再重复描述。
实施例8
如图8所示为本发明实施例8,图中所示:801.第一动力源;802.第一齿轮;803.第一离合器;804.第三齿轮;805.第一输入轴;806.第四齿轮;807.第二离合器;808.第五齿轮;809.第六齿轮;810.右半轴;811.差速器;812.左半轴;813.第二齿轮;814.中间轴;815.第二动力源;816.第二输入轴;817.第七齿轮。
本发明实施例8是在实施例7的基础上做出的改进,本发明实施例8与实施例7的区别点在于,如图8所示,第七齿轮817与第二齿轮813啮合,将动力始终传递至车桥半轴,不受第一离合器803和第二离合器807断开或闭合的影响。
设定第七齿轮817与其啮合的第二齿轮813传动比为i4,第五齿轮808与第六齿轮809啮合传动比为i3,当仅第二动力源815将动力传递至车桥半轴时,自动变速器中啮合传动比为i4×i3。
当要换档时,第一离合器803和第二离合器807会有同时断开的情况,此时启动第二动力源815,其动力通过第二输入轴816、第七齿轮817、第二齿轮813、中间轴814、第五齿轮808、第六齿轮809和差速器811将动力传递至车桥半轴,自动变速器中啮合传动比为i4×i3。此为第三工况,即在换档时保持动力不中断的路径。
如果第一离合器803或第二离合器807闭合,第二动力源815启动,第二动力源815的动力依然会传递至车桥半轴,起到增加驱动总成的总驱动 力的作用。
本发明实施例8的其他内容与实施例7相同,此处不再重复描述。
实施例9
如图9所示为本发明实施例9,图中所示:901.第一动力源;902.第一齿轮;903.第一离合器;904.第三齿轮;905.第一输入轴;906.第四齿轮;907.第二离合器;908.第五齿轮;909.第六齿轮;910.右半轴;911.差速器;912.左半轴;913.第二齿轮;914.中间轴;915.第二动力源;916.第二输入轴;917.第七齿轮。
本发明实施例9是在实施例2的基础上做出的改进,本发明实施例9与实施例2的区别点在于,如图9所示,车辆驱动总成还包括第二动力源915,第二动力源915连接第二输入轴916,第二输入轴916与第一输入轴905、中间轴914平行设置,第二输入轴916上设置有第七齿轮917,第七齿轮917与第一齿轮902啮合,将动力始终传递至车桥半轴,不受第一离合器903和第二离合器907断开或闭合的影响。
第七齿轮917、第一齿轮902、第二齿轮913形成一个三连齿轮,第一齿轮902起到惰轮的作用,设定该三连齿轮的传动比为i4,第五齿轮908与第六齿轮909啮合传动比为i3,当仅第二动力源915将动力传递至车桥半轴时,自动变速器中啮合传动比为i4×i3。
当要换档时,第一离合器903和第二离合器907会有同时断开的情况,此时启动第二动力源915,其动力通过第二输入轴916、第七齿轮917、第一齿轮902、第二齿轮913、中间轴914、第五齿轮908、第六齿轮909和差速器911将动力传递至车桥半轴,自动变速器中啮合传动比为i4×i3。此为第三工况,即在换档时保持动力不中断的路径。
如果第一离合器903或第二离合器907闭合,第二动力源915启动,第二动力源915的动力依然会传递至车桥半轴,起到增加驱动总成的总驱动力的作用,在车辆起步时,可使车辆缩短加速过程,更快实现高速行驶,当车辆在负重爬坡时,可选择双动力输入、较大速比传动,提高整车驱动力,弥补整车驱动力不足的缺陷。
第二动力源915的转子轴和第二输入轴916也采用一体化设计。
本发明实施例9的其他内容与实施例2相同,此处不再重复描述。
实施例10
如图10所示为本发明实施例10,图中所示:1001.第一动力源;1002.第一齿轮;1003.第一离合器;1004.第三齿轮;1005.第一输入轴;1006.第四齿轮;1007.第二离合器;1008.第五齿轮;1009.第六齿轮;1010.右半轴;1011.差速器;1012.左半轴;1013.第二齿轮;1014.中间轴;1015.第二动力源;1016.第二输入轴;1017.第七齿轮。
本发明实施例10是在实施例9的基础上做出的改进,本发明实施例10与实施例9的区别点在于,如图10所示,第七齿轮1017与第三齿轮1004啮合,将动力始终传递至车桥半轴,不受第一离合器1003和第二离合器1007断开或闭合的影响。
第七齿轮1017、第三齿轮1004、第四齿轮1006形成一个三连齿轮,第三齿轮1004起到惰轮的作用,设定该三连齿轮的传动比为i4,第五齿轮1008与第六齿轮1009啮合传动比为i3,当仅第二动力源1015将动力传递至车桥半轴时,自动变速器中啮合传动比为i4×i3。
当要换档时,第一离合器1003和第二离合器1007会有同时断开的情况,此时启动第二动力源1015,其动力通过第二输入轴1016、第七齿轮1017、第三齿轮1004、第四齿轮1006、中间轴1014、第五齿轮1008、第六齿轮1009和差速器1011将动力传递至车桥半轴,自动变速器中啮合传动比为i4×i3。此为第三工况,即在换档时保持动力不中断的路径。
如果第一离合器1003或第二离合器1007闭合,第二动力源1015启动,第二动力源1015的动力依然会传递至车桥半轴,起到增加驱动总成的总驱动力的作用。
本发明实施例10的其他内容与实施例9相同,此处不再重复描述。
实施例11
如图11所示为本发明实施例11,图中所示:1101.第一动力源;1102.第一齿轮;1103.第一离合器;1104.第三齿轮;1105.第一输入轴;1106.第四齿轮;1107.第二离合器;1108.第五齿轮;1109.第六齿轮;1110.右半轴;1111.差速器;1112.左半轴;1113.第二齿轮;1114.中间轴;1115.第二动力源;1116.第二输入轴;1117.第七齿轮。
本发明实施例11是在实施例5的基础上做出的改进,本发明实施例11与实施例5的区别点在于,如图11所示,车辆驱动总成还包括第二动力源1115,第二动力源1115连接第二输入轴1116,第二输入轴1116与第一输 入轴1105、中间轴1114平行设置,第二输入轴1116上设置有第七齿轮1117,第七齿轮1117与第三齿轮1104啮合,将动力始终传递至车桥半轴,不受第一离合器1103和第二离合器1107断开或闭合的影响。
第七齿轮1117、第三齿轮1104、第四齿轮1106形成一个三连齿轮,第三齿轮1104起到惰轮的作用,设定该三连齿轮的传动比为i4,第五齿轮1108与第六齿轮1109啮合传动比为i3,当仅第二动力源1115将动力传递至车桥半轴时,自动变速器中啮合传动比为i4×i3。
当要换档时,第一离合器1103和第二离合器1107会有同时断开的情况,此时启动第二动力源1115,其动力通过第二输入轴1116、第七齿轮1117、第三齿轮1104、第四齿轮1106、中间轴1114、第五齿轮1108、第六齿轮909和差速器1111将动力传递至车桥半轴,自动变速器中啮合传动比为i4×i3。此为第三工况,即在换档时保持动力不中断的路径。
如果第一离合器1103或第二离合器1107闭合,第二动力源1115启动,第二动力源1115的动力依然会传递至车桥半轴,起到增加驱动总成的总驱动力的作用,在车辆起步时,可使车辆缩短加速过程,更快实现高速行驶,当车辆在负重爬坡时,可选择双动力输入、较大速比传动,提高整车驱动力,弥补整车驱动力不足的缺陷。
第二动力源1115的转子轴和第二输入轴1116也采用一体化设计。
本发明实施例11的其他内容与实施例5相同,此处不再重复描述。
实施例12
如图12所示为本发明实施例11,图中所示:1201.第一动力源;1202.第一齿轮;1203.第一离合器;1204.第三齿轮;1205.第一输入轴;1206.第四齿轮;1207.第二离合器;1208.第五齿轮;1209.第六齿轮;1210.右半轴;1211.差速器;1212.左半轴;1213.第二齿轮;1214.中间轴;1215.第二动力源;1216.第二输入轴;1217.第七齿轮。
本发明实施例12是在实施例11的基础上做出的改进,本发明实施例12与实施例11的区别点在于,如图12所示,第七齿轮1217与第四齿轮1206啮合,将动力始终传递至车桥半轴,不受第一离合器1203和第二离合器1207断开或闭合的影响。
设定第七齿轮1217与其啮合的第四齿轮1206传动比为i4,第五齿轮1208与第六齿轮1209啮合传动比为i3,当仅第二动力源1215将动力传递 至车桥半轴时,自动变速器中啮合传动比为i4×i3。
当要换档时,第一离合器1203和第二离合器1207会有同时断开的情况,此时启动第二动力源1215,其动力通过第二输入轴1216、第七齿轮1217、第四齿轮1206、中间轴1214、第五齿轮1208、第六齿轮1209和差速器1211将动力传递至车桥半轴,自动变速器中啮合传动比为i4×i3。此为第三工况,即在换档时保持动力不中断的路径。
如果第一离合器1203或第二离合器1207闭合,第二动力源1215启动,第二动力源1215的动力依然会传递至车桥半轴,起到增加驱动总成的总驱动力的作用。
本发明实施例12的其他内容与实施例11相同,此处不再重复描述。
实施例13
如图13所示为本发明实施例13,图中所示:1301.第一动力源;1302.第一齿轮;1303.双向离合器;1304.第三齿轮;1305.第一输入轴;1306.第四齿轮;1308.第五齿轮;1309.第六齿轮;1310.右半轴;1311.差速器;1312.左半轴;1313.第二齿轮;1314.中间轴;1315.第二动力源;1316.第二输入轴;1317.第七齿轮。
本发明实施例13是在实施例6的基础上做出的改进,本发明实施例13与实施例6的区别点在于,如图13所示,车辆驱动总成还包括第二动力源1315,第二动力源1315连接第二输入轴1316,第二输入轴1316与第一输入轴1305、中间轴1314平行设置,第二输入轴1316上设置有第七齿轮1317,第七齿轮1317与第五齿轮1308啮合,将动力始终传递至车桥半轴,不受第一离合器1303和第二离合器1307断开或闭合的影响。
第七齿轮1317、第五齿轮1308、第六齿轮1309形成一个三连齿轮,第三齿轮1304起到惰轮的作用,设定该三连齿轮的传动比为i4,当仅第二动力源1315将动力传递至车桥半轴时,自动变速器中啮合传动比为i4。
当要换档时,第一离合器1303和第二离合器1307会有同时断开的情况,此时启动第二动力源1315,其动力通过第二输入轴1316、第七齿轮1317、第五齿轮1308、第六齿轮1309和差速器1311将动力传递至车桥半轴,自动变速器中啮合传动比为i4。此为第三工况,即在换档时保持动力不中断的路径。
如果第一离合器1303或第二离合器1307闭合,第二动力源1315启动, 第二动力源1315的动力依然会传递至车桥半轴,起到增加驱动总成的总驱动力的作用,在车辆起步时,可使车辆缩短加速过程,更快实现高速行驶,当车辆在负重爬坡时,可选择双动力输入、较大速比传动,提高整车驱动力,弥补整车驱动力不足的缺陷。
第二动力源1315的转子轴和第二输入轴1316也采用一体化设计。
本发明实施例13的其他内容与实施例6相同,此处不再重复描述。
实施例14
如图14所示为本发明实施例14,图中所示:1401.第一动力源;1402.第一齿轮;1403.第一离合器;1404.第三齿轮;1405.输入轴;1406.第四齿轮;1407.第二离合器;1408.第五齿轮;1409.第六齿轮;1410.右半轴;1411.差速器;1412.左半轴;1413.第二齿轮;1414.中间轴;1415.ISG电机。
本发明实施例14是在实施例1的基础上做出的改进,本发明实施例14与实施例1的区别点在于,如图14所示,第一动力源1401采用发动机和ISG电机组合。
采用该设计一方面减少发动机的怠速损耗和污染,另一方面ISG电机1415起到发电机的作用,可再生发电,回收能量,实现节能效果。
第一动力源1401启动,当第一离合器1403和第二离合器1407均断开时,此时第一动力源的动力无法传递至车桥半轴,仅ISG电机1415起到发电机的作用,可再生发电,电力存储至电池中或者供第二动力源运转使用。
当关闭第一动力源1401时,ISG电机1415作为电动机仍可作为辅助动力源驱动输入轴1405,此时ISG电机1415将不受发动机运转特性约束,充分发挥ISG电机性能。
本发明实施例14的其他内容与实施例1相同,此处不再重复描述。
以上,仅为本发明的具体实施方式,在本发明的上述教导下,本领域技术人员可以在上述实施例的基础上进行其他的改进或变形。本领域技术人员应该明白,上述的具体描述只是更好的解释本发明的目的,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种横置车辆驱动总成,与车桥半轴连接,所述车辆驱动总成包括第一动力源和自动变速器,所述自动变速器中设置有第一输入轴,所述第一动力源与第一输入轴连接,所述自动变速器与所述车桥半轴连接处设置有差速器;
    所述自动变速器中,与第一输入轴平行设置有中间轴;其特征在于,
    所述第一输入轴上固定或空套有第一齿轮、第三齿轮,所述中间轴上固定或空套有第二齿轮、第四齿轮,所述第一齿轮与第二齿轮啮合传动,二者在轴上的安装方式不同,所述第三齿轮与第四齿轮啮合传动,二者在轴上的安装方式不同;
    所述第一输入轴与空套其上的齿轮之间设置有离合器,所述中间轴与空套其上的齿轮之间设置有离合器;
    所述中间轴上还固定有第五齿轮,所述差速器上固定有第六齿轮,所述第五齿轮与第六齿轮啮合传动。
  2. 根据权利要求1所述的横置车辆驱动总成,其特征在于,所述第一齿轮和/或第三齿轮通过滚针轴承空套在所述第一输入轴上,所述第二齿轮和/或第四齿轮通过滚针轴承空套在所述中间轴上。
  3. 根据权利要求2所述的横置车辆驱动总成,其特征在于,所述第一齿轮和第三齿轮通过滚针轴承空套在所述第一输入轴上,所述第一输入轴上设置有双向离合器与所述第一齿轮和第三齿轮配合。
  4. 根据权利要求2所述的横置车辆驱动总成,其特征在于,所述第二齿轮和第四齿轮通过滚针轴承空套在所述中间轴上,所述中间轴上设置有双向离合器与所述第二齿轮和第四齿轮配合。
  5. 根据权利要求1所述的横置车辆驱动总成,其特征在于,所述第一齿轮与第二齿轮啮合传动比为i1,所述第三齿轮与第四齿轮啮合传动比为i2,所述第五齿轮与第六齿轮啮合传动比为i3,所述自动变速器中啮合传动比为i1×i3或者i2×i3。
  6. 根据权利要求1所述的横置车辆驱动总成,其特征在于,所述车辆 驱动总成还包括第二动力源,所述第二动力源连接第二输入轴,所述第二输入轴与所述第一输入轴、中间轴平行设置,所述第二输入轴上设置有第七齿轮,所述第七齿轮与第一齿轮、或第二齿轮、或第三齿轮、或第四齿轮、或第五齿轮啮合,将动力始终传递至所述车桥半轴,不受所述离合器断开或闭合的影响。
  7. 根据权利要求6所述的横置车辆驱动总成,其特征在于,
    所述第七齿轮与第一齿轮、或第三齿轮啮合时形成三连齿轮,该三连齿轮传动比为i4,所述第五齿轮与第六齿轮啮合传动比为i3,当仅所述第二动力源将动力传递至所述车桥半轴时,所述自动变速器中啮合传动比为i4×i3;
    所述第七齿轮与第二齿轮、或第四齿轮啮合时形成二连齿轮,该二连齿轮传动比为i4,所述第五齿轮与第六齿轮啮合传动比为i3,当仅所述第二动力源将动力传递至所述车桥半轴时,所述自动变速器中啮合传动比为i4×i3;
    所述第七齿轮与第五齿轮啮合时形成三连齿轮,该三连齿轮传动比为i4,当仅所述第二动力源将动力传递至所述车桥半轴时,所述自动变速器中啮合传动比为i4。
  8. 根据权利要求1或6所述的横置车辆驱动总成,其特征在于,所述第一动力源的转子轴和所述第一输入轴一体化设计,所述第二动力源的转子轴和所述第二输入轴一体化设计。
  9. 根据权利要求1所述的横置车辆驱动总成,其特征在于,所述离合器为端面齿离合器,包括活动齿盘和固定齿盘,所述活动齿盘空套在所述第一输入轴和/或中间轴上,所述固定齿盘固定在空套安装的任意齿轮上;或者所述离合器为湿式离合器。
  10. 根据权利要求9所述的横置车辆驱动总成,其特征在于,所述端面齿离合器为电磁驱动式、或液力驱动式、或气动驱动式、或电动驱动式、或机械拨叉驱动式,驱动所述活动齿盘轴向移动与固定齿盘啮合。
PCT/CN2017/101047 2017-07-27 2017-09-08 一种横置车辆驱动总成 WO2019019293A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020503853A JP6987212B2 (ja) 2017-07-27 2017-09-08 横置型車両用駆動アセンブリ
EP17919066.5A EP3659842B1 (en) 2017-07-27 2017-09-08 Transverse vehicle drive assembly
US15/767,608 US11162562B2 (en) 2017-07-27 2017-09-08 Transversely-placed vehicle driving assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710626171.9 2017-07-27
CN201710626171.9A CN107269775A (zh) 2017-07-27 2017-07-27 一种横置车辆驱动总成

Publications (1)

Publication Number Publication Date
WO2019019293A1 true WO2019019293A1 (zh) 2019-01-31

Family

ID=60074651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101047 WO2019019293A1 (zh) 2017-07-27 2017-09-08 一种横置车辆驱动总成

Country Status (5)

Country Link
US (1) US11162562B2 (zh)
EP (1) EP3659842B1 (zh)
JP (1) JP6987212B2 (zh)
CN (1) CN107269775A (zh)
WO (1) WO2019019293A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020212386A1 (de) * 2019-04-16 2020-10-22 Zf Friedrichshafen Ag Hybrid-getriebeeinrichtung, motor-getriebeanordnung, hybrid-antriebsstrang sowie kraftfahrzeug
WO2021152620A1 (en) * 2020-02-01 2021-08-05 Tvs Motor Company Limited Multispeed transmission for a vehicle
EP4023476A4 (en) * 2019-11-18 2022-09-07 Jing-Jin Electric Technologies Co., Ltd. POWER SUPPLY SYSTEM FOR SINGLE SPEED HYBRID VEHICLE

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206678766U (zh) * 2017-03-06 2017-11-28 精进电动科技股份有限公司 一种纵置双动力源车辆驱动总成
CN107719118A (zh) * 2017-11-08 2018-02-23 福建万润新能源科技有限公司 一种分体式主减速器
CN109435669A (zh) * 2018-12-26 2019-03-08 苏州绿控传动科技股份有限公司 一种基于单行星排的单变速箱混合动力耦合桥
CN109435668A (zh) * 2018-12-26 2019-03-08 苏州绿控传动科技股份有限公司 一种基于单行星排的混合动力耦合桥
DE102019205508A1 (de) * 2019-04-16 2020-10-22 Zf Friedrichshafen Ag Hybrid-Getriebeeinrichtung, Motor-Getriebeanordnung, Hybrid-Antriebsstrang sowie Kraftfahrzeug
US11541861B2 (en) * 2019-04-30 2023-01-03 Borgwarner Inc. Transmission system for use in a vehicle
CN114194020A (zh) * 2021-12-15 2022-03-18 奇瑞汽车股份有限公司 混合动力系统及车辆
CN114435502B (zh) * 2022-01-21 2023-04-14 北京史河科技有限公司 一种可翻面的除锈机器人
CN114313048A (zh) * 2022-01-21 2022-04-12 北京史河科技有限公司 一种磁铁摆动装置设计方法
FR3135423A1 (fr) * 2022-04-26 2023-11-17 Renault Sas Train electrique modulaire pour vehicule automobile
WO2024009312A1 (en) * 2022-07-06 2024-01-11 Tvs Motor Company Limited A multi-range transmission assembly for a powertrain
DE102022209178A1 (de) * 2022-09-05 2024-03-07 Zf Friedrichshafen Ag Elektrofahrzeuggetriebe in Mischbauweise

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130116078A1 (en) * 2011-11-07 2013-05-09 Koji Hokoi Hybrid vehicle
CN203032381U (zh) * 2012-09-18 2013-07-03 中国第一汽车股份有限公司 一种采用双离合传动装置的增程式电动汽车动力系统
CN105682966A (zh) * 2013-10-28 2016-06-15 Avl里斯脱有限公司 具有行星齿轮传动装置的扭矩传递装置及用于运行这样的扭矩传递装置的方法
CN205423703U (zh) * 2015-05-29 2016-08-03 精进电动科技(北京)有限公司 自动变速器
CN106499790A (zh) * 2016-12-26 2017-03-15 苏州绿控传动科技有限公司 一种同轴式双电机电驱动桥
CN106523629A (zh) * 2016-11-18 2017-03-22 精进电动科技股份有限公司 一种横置双动力源车辆驱动总成
CN106627078A (zh) * 2017-01-24 2017-05-10 精进电动科技股份有限公司 一种横置双动力源车辆驱动总成
CN206280446U (zh) * 2016-11-18 2017-06-27 精进电动科技股份有限公司 一种横置双动力源车辆驱动总成
CN206277947U (zh) * 2016-09-28 2017-06-27 精进电动科技股份有限公司 一种车辆电驱动总成

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991431U (ja) 1982-12-10 1984-06-21 ヤンマーディーゼル株式会社 デイ−ゼル機関の自動暖機運転装置
JPS616026U (ja) * 1984-06-18 1986-01-14 株式会社クボタ ギヤ変速機構
JPS6455452A (en) * 1987-08-21 1989-03-02 Toyota Motor Corp Manual transmission for vehicle
US6019698A (en) * 1997-12-01 2000-02-01 Daimlerchysler Corporation Automated manual transmission shift sequence controller
US5943918A (en) * 1997-12-01 1999-08-31 Chrysler Corporation Powertrain system for a hybrid electric vehicle
JP2000301959A (ja) * 1999-04-21 2000-10-31 Hitachi Ltd 自動車の動力伝達装置
US7185722B1 (en) * 2000-02-04 2007-03-06 Hitachi, Ltd. Power transmission apparatus of motor vehicles
JP3807369B2 (ja) 2002-12-27 2006-08-09 トヨタ自動車株式会社 ハイブリッド車両
CN102392885A (zh) * 2011-06-24 2012-03-28 重庆大学 纯电动汽车双离合器自动变速器
CN102758887B (zh) * 2012-07-26 2015-04-08 四川五一机械制造有限公司 农用机械变速器
DE102012015863A1 (de) 2012-08-06 2014-05-15 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Stufengetriebe für ein Kraftfahrzeug
CN102927235B (zh) * 2012-10-31 2015-04-29 奇瑞汽车股份有限公司 一种双离合器变速器
JPWO2014136364A1 (ja) 2013-03-06 2017-02-09 日産自動車株式会社 車両の変速制御装置
DE102013204227A1 (de) * 2013-03-12 2014-09-18 Zf Friedrichshafen Ag Antriebsstrang für ein Fahrzeug und Verfahren zum Durchführen eines Lastwechsels
JP6202256B2 (ja) 2013-06-28 2017-09-27 三菱自動車工業株式会社 車両のトランスアクスル装置
JP2015140127A (ja) * 2014-01-30 2015-08-03 アイシン・エーアイ株式会社 ハイブリッド車両用変速機
WO2015149874A1 (de) 2014-04-04 2015-10-08 Gkn Driveline International Gmbh Antriebsanordnung für ein kraftfahrzeug
CN105673780B (zh) 2014-11-18 2019-08-06 上海汽车集团股份有限公司 车辆混合动力驱动系统及其变速器
CN105667491B (zh) * 2014-11-18 2019-07-16 上海汽车集团股份有限公司 用于混合动力车辆变速器的控制系统和方法
CN204367890U (zh) * 2014-12-03 2015-06-03 上海瑞迪汽车科技有限公司 用于电动汽车的两档液控变速驱动单元
CN106931089A (zh) 2015-12-31 2017-07-07 重庆硬核派传动科技有限公司 一种双离合两速变速器
CN105822733A (zh) * 2016-05-30 2016-08-03 重庆青山工业有限责任公司 一种双离合器式两档纯电动变速器
CN207514163U (zh) * 2017-07-27 2018-06-19 精进电动科技股份有限公司 一种横置车辆驱动总成

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130116078A1 (en) * 2011-11-07 2013-05-09 Koji Hokoi Hybrid vehicle
CN203032381U (zh) * 2012-09-18 2013-07-03 中国第一汽车股份有限公司 一种采用双离合传动装置的增程式电动汽车动力系统
CN105682966A (zh) * 2013-10-28 2016-06-15 Avl里斯脱有限公司 具有行星齿轮传动装置的扭矩传递装置及用于运行这样的扭矩传递装置的方法
CN205423703U (zh) * 2015-05-29 2016-08-03 精进电动科技(北京)有限公司 自动变速器
CN206277947U (zh) * 2016-09-28 2017-06-27 精进电动科技股份有限公司 一种车辆电驱动总成
CN106523629A (zh) * 2016-11-18 2017-03-22 精进电动科技股份有限公司 一种横置双动力源车辆驱动总成
CN206280446U (zh) * 2016-11-18 2017-06-27 精进电动科技股份有限公司 一种横置双动力源车辆驱动总成
CN106499790A (zh) * 2016-12-26 2017-03-15 苏州绿控传动科技有限公司 一种同轴式双电机电驱动桥
CN106627078A (zh) * 2017-01-24 2017-05-10 精进电动科技股份有限公司 一种横置双动力源车辆驱动总成

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3659842A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020212386A1 (de) * 2019-04-16 2020-10-22 Zf Friedrichshafen Ag Hybrid-getriebeeinrichtung, motor-getriebeanordnung, hybrid-antriebsstrang sowie kraftfahrzeug
EP4023476A4 (en) * 2019-11-18 2022-09-07 Jing-Jin Electric Technologies Co., Ltd. POWER SUPPLY SYSTEM FOR SINGLE SPEED HYBRID VEHICLE
WO2021152620A1 (en) * 2020-02-01 2021-08-05 Tvs Motor Company Limited Multispeed transmission for a vehicle

Also Published As

Publication number Publication date
US20200240493A1 (en) 2020-07-30
US11162562B2 (en) 2021-11-02
JP6987212B2 (ja) 2021-12-22
EP3659842B1 (en) 2022-06-01
EP3659842A4 (en) 2020-06-03
EP3659842A1 (en) 2020-06-03
JP2020528529A (ja) 2020-09-24
CN107269775A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
WO2019019293A1 (zh) 一种横置车辆驱动总成
WO2018137421A1 (zh) 一种横置双动力源车辆驱动总成
WO2018137423A1 (zh) 一种横置双动力源车辆驱动总成
WO2018161389A1 (zh) 一种纵置双动力源车辆驱动总成
WO2018137422A1 (zh) 一种横置车辆驱动总成
WO2018090484A1 (zh) 一种横置双动力源车辆驱动总成
WO2019192291A1 (zh) 一种车辆双动力源双驱动总成
WO2019019292A1 (zh) 一种车辆双动力源双驱动总成
WO2018090483A1 (zh) 一种横置单动力源车辆驱动总成
WO2019192292A1 (zh) 一种纵置双动力源车辆驱动总成
CN110525194B (zh) 混合动力车辆用动力驱动系统及其控制方法
CN113879103A (zh) 一种动力传动系统及具有其的车辆
CN113978232A (zh) 一种动力传动系统及具有其的车辆
CN113879104B (zh) 一种动力传动系统及具有其的车辆
WO2019233329A1 (zh) 一种纵置多档位电驱动动力总成
CN113942382A (zh) 用于车辆的动力传动系统及车辆
WO2024045549A1 (zh) 双电机混动变速箱及作业机械
CN217022174U (zh) 用于车辆的动力传动系统及车辆
CN102910064A (zh) 基于双离合器自动变速器的重度混合动力驱动系统
CN202827108U (zh) 基于双离合器自动变速器的重度混合动力驱动系统
CN211000772U (zh) 双电机集成两档amt双速平行轴输出二级减速电驱动桥
CN110594408B (zh) 车辆、动力传动系统、换档执行机构及其换档方法
CN114714885A (zh) 两档混合动力耦合机构、控制系统及控制方法
CN216331396U (zh) 一种动力传动系统及具有其的车辆
CN216374155U (zh) 一种动力传动系统及具有其的车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503853

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017919066

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017919066

Country of ref document: EP

Effective date: 20200227