WO2019017448A1 - 波長変換シート及びその製造方法 - Google Patents

波長変換シート及びその製造方法 Download PDF

Info

Publication number
WO2019017448A1
WO2019017448A1 PCT/JP2018/027167 JP2018027167W WO2019017448A1 WO 2019017448 A1 WO2019017448 A1 WO 2019017448A1 JP 2018027167 W JP2018027167 W JP 2018027167W WO 2019017448 A1 WO2019017448 A1 WO 2019017448A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
protective film
roll
wavelength conversion
conversion sheet
Prior art date
Application number
PCT/JP2018/027167
Other languages
English (en)
French (fr)
Inventor
亮 正田
孝昭 伊奈
真登 黒川
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2019530601A priority Critical patent/JP7173008B2/ja
Priority to KR1020207004358A priority patent/KR20200029016A/ko
Priority to CN201880047853.7A priority patent/CN110945390B/zh
Publication of WO2019017448A1 publication Critical patent/WO2019017448A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a wavelength conversion sheet and a method of manufacturing the same.
  • the liquid crystal display displays an image by transmitting or blocking light for each area based on application of a voltage. Therefore, external light is required to display an image on the liquid crystal display.
  • the back light As a light source for that, the back light provided in the back of a liquid crystal display is utilized.
  • a cold cathode tube is conventionally used as a backlight.
  • LEDs light emitting diodes
  • the color reproducibility of the liquid crystal display can be reduced to the NTSC ratio (TV created by the National Television Standards Committee of the United States The standard for evaluating the color gamut of a) technology is known to increase up to 100% or more.
  • a part of the blue light emitted by the near-ultraviolet or blue LED is transmitted through the phosphor, and the rest is absorbed by the green phosphor and the red phosphor and converted to green and red light respectively Is mentioned as an example.
  • This three-wavelength white LED has a peak wavelength of emission intensity derived from the blue LED in the wavelength range of 440 nm to 470 nm, and is derived from the green phosphor and the red phosphor in the wavelength range of 520 nm to 560 nm and 600 nm to 700 nm, respectively It has a peak wavelength of emission intensity.
  • FIG. 11 schematically shows a form in which a propeller curl is generated.
  • Propeller curling in which the ⁇ Z direction is at the angle A and the angle C, and the + Z direction is the convex direction at the angle D is generated.
  • the wavelength conversion sheet is cut into a display size, if such a curl is curled at a height of 2 mm or more, when assembling a member as a display, it does not enter the mold and becomes a problem.
  • the propeller curling can be suppressed by adjusting the tension at the time of bonding and the amount of heat applied, but the tension adjustment is restricted by the transportability of the film and barrier deterioration, and the adjustment range is limited.
  • the heat shrinkage rate of each film is different, so it is difficult to take measures.
  • measures to define the thermal expansion coefficient of the film can be considered, there is a limitation in the film to be used, and it becomes a problem that it is incompatible with the cost and various characteristics.
  • the present invention has been made to solve the above-mentioned problems, and the object of the present invention is to form a phosphor layer by sandwiching and bonding a phosphor layer with a first protective film and a second protective film by a roll-to-roll method.
  • the film transportability and the barrier property are not impaired, and the film to be used is not restricted or the cost is increased, and the curl generated at the corner when cut out to the display size It is providing the wavelength conversion sheet which can be suppressed, and its manufacturing method.
  • the method for producing a wavelength conversion sheet according to the present invention relates to a roll-to-roll method for producing a wavelength conversion sheet having a configuration in which a phosphor layer is sandwiched between two protective films.
  • This manufacturing method comprises the steps of preparing a roll for a first protective film, preparing a roll for a second protective film, curling of the first protective film and curling of the second protective film. And disposing the first protective film and the second protective film on both sides of the phosphor layer so as to be canceled.
  • the two protective films each include a biaxially stretched film, curling is likely to occur in the wavelength conversion sheet depending on the combination of stretching directions of these biaxially stretched films.
  • the first aspect of the manufacturing method according to the present invention comprises three steps of preparing a raw film roll for a protective film containing a biaxially stretched film, and cutting the raw film roll for a protective film along its longitudinal direction.
  • the biaxially stretched film contained in the raw film roll for protective film has a different stretching direction depending on the position in the width direction (for example, whether it is a central portion or a peripheral portion), and curling tends to occur due to this.
  • a square sample is cut out from the roll for the first protective film and the roll for the second protective film, respectively, and the curl aspect of the first protective film and the second protective film
  • the method may further include the step of confirming When the two samples each have a size of 1 m ⁇ 1 m, it is preferable that the difference between the curl sizes of the two samples be in the range of 2 mm to 10 mm.
  • the second aspect of the manufacturing method according to the present invention comprises the steps of producing a roll of three or more biaxially stretched films by cutting the original film roll comprising a biaxially stretched film along its longitudinal direction; Selecting the roll of the first biaxially stretched film and the roll of the second biaxially stretched film from the rolls of the three or more biaxially stretched films based on the position in the opposite roll, and the first biaxial stretching
  • the method further includes the steps of preparing a first protective film roll including a film, and preparing a second protective film roll including a second biaxially oriented film.
  • the original fabric roll of the biaxially stretched film has a different stretching direction depending on the position in the width direction (for example, whether it is a central portion or a peripheral portion), and curling tends to occur due to this.
  • rolls of the first and second protective films are obtained by preparing rolls for the first and second protective films and cutting the rolls in the longitudinal direction thereof, while the rolls of the first and second protective films are obtained.
  • the original film roll of the biaxially oriented film is cut in the longitudinal direction thereof to obtain the first and second rolls of the biaxially oriented film.
  • the first and second protective films may be produced by performing various treatments, taking into consideration the front and back of each other so that the curling due to the stretching direction of these biaxially stretched films can be canceled each other. it can. Therefore, in the production method according to the second aspect, a coating for a phosphor layer may be formed on the inner surface of one of the rolls of the first and second protective films. In some cases, a coating for a phosphor layer may be formed on the outer surface.
  • a square sample is cut out from the roll of the first biaxially stretched film and the roll of the second biaxially stretched film, respectively, and the first biaxially stretched film and the second biaxial are cut out.
  • the method may further include the step of confirming the curled aspect of the stretched film.
  • the two samples each have a size of 1 m ⁇ 1 m, it is preferable that the difference between the curl sizes of the two samples be in the range of 2 mm to 10 mm.
  • the wavelength conversion sheet according to the present invention has a configuration in which the phosphor layer is sandwiched between two protective films, and the phosphor of the first protective film and the curl of the second protective film cancel each other out.
  • a first protective film and a second protective film are respectively disposed on both sides of the layer.
  • the first protective film has, for example, a structure in which a resin film, a first resin film for a bulkiness increasing layer composed of a biaxially stretched film, and a barrier layer are laminated in this order.
  • the second protective film has, for example, a configuration in which a resin film, a second bulkiness increasing resin film composed of a biaxially stretched film, and a barrier layer are laminated in this order.
  • the curl of the first and second protective films is bulky when the ratio of the thickness of the resin film for bulkiness layer consisting of a biaxially stretched film to the total thickness of the first and second protective films is 50 to 90%. It is likely to be caused mainly by the resin film for the additional layer. Therefore, in this case, it is preferable to arrange the first and second protective films so that the curls of the resin films for bulkiness layers contained in the first and second protective films cancel each other.
  • the present invention in order to solve the problems, there is no limitation in particular to the materials to be used and their physical properties, and no special manufacturing conditions are used, so that the transportability and the barrier property of the film are not impaired. It is possible to suppress the curling that occurs at the corners when the film is cut out to the display size without causing any restriction on the film to be produced or an increase in cost.
  • FIG.1 (a) is a schematic cross section which shows an example of a structure of a wavelength conversion sheet
  • FIG.1 (b) is a schematic cross section which shows the other example of a structure of a wavelength conversion sheet.
  • FIG. 2 is a schematic view showing a manufacturing process of a wavelength conversion sheet by a roll-to-roll method.
  • FIG. 3 is a schematic view for explaining the steps from the original fabric roll (sometimes referred to as “jumbo roll”) to the placement of the individual rolls.
  • FIG. 4 is a schematic view for explaining the relationship between the position of the individual roll in the jumbo roll and the curl of the monitor sample of the protective film cut out from the individual roll (sometimes also referred to as “sample”).
  • FIG. 5 is a schematic view for explaining the relationship between the curl of a monitor sample of a protective film cut out from an individual roll and the occurrence of propeller curl of a conventional wavelength conversion sheet.
  • FIG. 6 is a schematic view for explaining the relationship between the curl of a monitor sample of a protective film cut out from an individual roll and the wavelength conversion sheet produced by the production method of the present invention.
  • FIG. 7 is a schematic cross section which shows the structural example of the wavelength conversion sheet which has a resin film for volume increase layers.
  • FIG. 8A and FIG. 8B are schematic cross-sectional views showing another example of the wavelength conversion sheet having the bulkiness layer resin film.
  • FIG.9 (a) is a perspective view which shows typically the jumbo roll of a biaxially stretched film
  • FIG.9 (b) is the curl of the monitor sample of the biaxial stretched film cut out from the separate roll
  • FIG. 10 is a schematic view for explaining the method of measuring the difference in the thermal contraction rates in the oblique direction of the two samples.
  • FIG. 11 is a schematic view showing a form in which a propeller curl is generated in a conventional wavelength conversion sheet.
  • Fig.1 (a) is a schematic cross section which shows an example of a structure of a wavelength conversion sheet.
  • the wavelength conversion sheet 100 includes a phosphor layer 50 in which one or more phosphors 52 using quantum dots and the like are mixed in a sealing resin 51 and sealed, and first and second phosphor layers respectively provided on both sides of the phosphor layer 50. It is comprised including two protective films 10a and 10b.
  • the first and second protective films 10a and 10b have a resin film 1a and barrier layers 1b and 2b, and the barrier layers 1b and 2b have inorganic thin film layers 1v and 2v and gas barrier coating layers 1c and 2c, respectively. It consists of
  • the inorganic thin film layer 1v is formed on one surface of the resin film 1a
  • the gas barrier coating layer 1c is laminated on the inorganic thin film layer 1v
  • the gas barrier An inorganic thin film layer 2v is laminated on the property covering layer 1c
  • a gas barrier covering layer 2c is laminated on the inorganic thin film layer 2v. That is, two barrier layers 1b and 2b are laminated on one surface of the resin film 1a.
  • the barrier film 1 is configured by the resin film 1a and the barrier layer 1b.
  • a barrier layer may be only one layer (refer FIG. 1 (b)). Or three or more layers (not shown).
  • the order of lamination of the inorganic thin film layer and the gas barrier coating layer may be reverse to that of FIG.
  • the first protective film 10a can be manufactured by a roll-to-roll method. Specifically, the inorganic thin film layer 1v is formed on one surface of the resin film 1a. Next, a coating agent mainly comprising an aqueous solution or a water / alcohol mixed solution containing at least one component selected from the group consisting of a hydroxyl group-containing polymer compound, a metal alkoxide, a metal alkoxide hydrolyzate and a metal alkoxide polymer The gas barrier coating layer 1c is laminated by applying on the surface of the inorganic thin film layer 1v and drying by heating.
  • a coating agent mainly comprising an aqueous solution or a water / alcohol mixed solution containing at least one component selected from the group consisting of a hydroxyl group-containing polymer compound, a metal alkoxide, a metal alkoxide hydrolyzate and a metal alkoxide polymer
  • the gas barrier coating layer 1c is laminated by applying on the surface of the inorganic thin
  • the inorganic thin film layer 2v is stacked on the gas barrier coating layer 1c, and the gas barrier coating layer 2c is stacked on the inorganic thin film layer 2v, and the roll 22a of the first protective film 10a (first protection A roll for film is obtained. Similarly, a roll 22b of the second protective film 10b (a roll for a second protective film) is produced.
  • the inorganic thin film layers 1 v and 2 v can be formed, for example, by vapor deposition of aluminum oxide, silicon oxide, silicon oxynitride, magnesium oxide or a mixture thereof. Among these inorganic materials, it is desirable to use aluminum oxide or silicon oxide from the viewpoint of barrier property and productivity.
  • the vapor deposition layer is formed by a method such as vacuum vapor deposition, sputtering, or CVD.
  • the wavelength conversion sheet 100 is manufactured by a roll-to-roll method.
  • the outline of the manufacturing process is shown in FIG.
  • the first roll 22a and the second roll 22b are disposed such that the surfaces on the barrier layer 2b side of the first and second protective films 10a and 10b face each other (S1).
  • a mixed solution is prepared by mixing the sealing resin 51, the phosphor 52, and the solvent as required.
  • the liquid mixture 50a is applied to the surface of the second protective film 10b of the second roll 22b on the barrier layer 2b side, and this surface and the surface of the first protective film 10a of the first roll 22a on the barrier layer 2b side are Paste them together (S2).
  • the sealing resin 51 is a photosensitive resin
  • the photosensitive resin is cured (UV curing) by irradiation of ultraviolet light.
  • the photosensitive resin may be further thermally cured after UV curing.
  • a thermosetting resin, a chemically curable resin, or the like may be used as the sealing resin 51.
  • the wavelength conversion sheet 100 is obtained by cutting the laminated body bonded to a predetermined size (S3).
  • S3 a predetermined size
  • the barrier film 1 may be used as a protective film, or the first and second protective films 20a and 20b shown in FIG. 3 may be used.
  • etc. Shows the aspect which produces the wavelength conversion sheet 200 using 1st and 2nd protective film 20a, 20b.
  • a protective film is made of a larger jumbo roll 21 (raw film roll for protective film), and the one obtained by dividing the jumbo roll 21 into individual rolls is used. Ru. That is, as shown in FIG. 3, the protective film 10 is manufactured with jumbo roll 21 (S-1), and jumbo roll 21 is divided into individual rolls (five lines taken here divided into five), and two of them are Select the rolls (first roll 22a and second roll 22b) (S0), turn over the second roll 22b and arrange so that the surfaces on the barrier layer 2b side of the protective films 10a and 10b face each other (S1) The state of S1 in FIG. In addition, although the case where five individual rolls were produced from the jumbo roll 21 was illustrated by 5-line taking up here, the number of the individual rolls to produce should just be three or more.
  • the tension applied to the film is divided into five parts ((1) to (5)) to be divided into individual rolls in the next step. If it considers, it will become like T1-T5 of FIG. T1 to T5 are all the combined forces of tension in the machine direction (MD), which is the transport direction, and TD (Transverse Direction) direction perpendicular to the MD direction, as indicated by the vector. The same applies to any part of the above (5) to (5).
  • MD machine direction
  • TD Transverse Direction
  • the tension in the TD direction is balanced in the part (3) and becomes 0, and the parts (1) and (5), (2) and (4) have the same size in opposite directions, respectively (1), The part of (5) is larger than the parts of (2) and (4).
  • a monitor sample having sides parallel to the MD direction and the TD direction is cut out in advance from the protective film, and the curl is measured.
  • a monitor sample of 1 m square is cut out, for example, placed on a surface plate, and the warped height of the four corners is measured with a ruler.
  • the difference in the curl size means the absolute value of a ⁇ b, where the maximum curl of each of the first protective film and the second protective film is a, b.
  • a and b are mutually opposite in sign.
  • the difference in curl size is smaller than 2 mm, the wavelength conversion sheet is not produced to such an extent as to cause problems in assembling the member as a display.
  • a curl larger than 10 mm it is difficult to suppress the curl that occurs when the display size is cut out by the method of the present invention to such an extent that it does not interfere when assembling the member.
  • the method for producing a wavelength conversion sheet of the present embodiment is also effective when the wavelength conversion sheet is provided with a bulkiness layer resin film or a functional layer on the outer layer side of the barrier layer.
  • the functional layer is configured to include a binder resin and fine particles, and is configured to be embedded in the binder resin so that a part of the fine particles is exposed from the surface of the functional layer.
  • the functional layer can have at least one function selected from the group consisting of an interference fringe prevention function, an antireflection function, a light scattering function, an antistatic function, and a scratch prevention function.
  • the functional layer is not limited to a single-layer structure, and may be a laminate of layers exhibiting a plurality of functions. Furthermore, by providing the functional layer on the outermost surface of the bulking layer resin film, by increasing the separation distance from the barrier layer to the outermost layer, small foreign matter (e.g., deposited powder) may be formed on the barrier layer. Even if it is present, when the display is assembled and the presence or absence of a defect on the display is observed, the effect of being hard to be visually recognized from the outside is exhibited.
  • FIG. 7 is a schematic cross section which shows the structural example of the wavelength conversion sheet 200 which has a resin film for volume increase layers. Comparing the configuration of FIG. 7 with the configuration of FIG. 1 (a), the wavelength conversion sheet 200 of FIG. 7 is for the bulky layer outside the resin film 1a which is the outermost layer of the wavelength conversion sheet 100 of FIG.
  • the functional layer 15 is formed on the resin film 16a and further on the outside thereof.
  • the second barrier film 2 is formed together with the barrier film 1 in the wavelength conversion sheet 200, and these are opposed and bonded by the second adhesive layer 22. Further, the barrier film 1 and the bulkiness layer resin film 16 a are bonded by the first adhesive layer 11. When the barrier film is deformed due to heating or the like at the time of production, the deformation can be alleviated by laminating the bulk increase layer resin film.
  • Materials of the resin film 1a in the wavelength conversion sheet 100 of FIG. 1 and the resin films 1a and 2a in the wavelength conversion sheet 200 of FIG. 7 and the resin film 16a for bulk increase layer are not particularly limited, but the total light transmittance A film of 85% or more is desirable.
  • a polyethylene terephthalate film, a polyethylene naphthalate film, or the like can be used as a film having high transparency and excellent heat resistance. Even when a biaxially stretched film is employed as these resin films, the method according to the present embodiment can sufficiently suppress curling of the wavelength conversion sheet.
  • the wavelength conversion sheet 200 of FIG. 7 has a larger number of layers than the wavelength conversion sheet 100 of FIG. 1, and the resin film 16a for bulkiness layer thicker than the normal resin films 1a and 2a, and the functional layer 15 And have. For this reason, the shrinkage stress and thermal expansion behavior, which cause curling during production of the protective film and the wavelength conversion sheet, become more complicated. As the parameter increases, there are some aspects in which the thick resin film for bulking layer can be particularly easily controlled, but conversely, restrictions on many layers also increase.
  • the method for producing a wavelength conversion sheet of the present embodiment can suppress the occurrence of curling of such a wavelength conversion sheet 200 by a simple method.
  • the protective film includes a biaxially stretched resin film for a bulking layer, and the ratio of the thickness of the bulking resin film to the total thickness of the protective film is 50 to 90% (particularly 60 to 90%).
  • the curling of the first and second protective films is likely to be mainly caused by the resin film for the bulking layer.
  • wavelength conversion is performed by arranging the first and second protective films such that the curls of the bulkiness layer resin films included in the first and second protective films cancel each other out. It is possible to suppress sheet curl.
  • the embodiment of the protective film including the resin film for bulkiness layer is not limited to the configuration shown in FIG. 7, and for example, instead of including two barrier films 1 and 2, it is one barrier film. It is also good.
  • the protective films 30 a and 30 b shown in FIG. 8A each have a configuration including one barrier film 2, and the resin film 16 a for bulk increase layer and the barrier layer 2 b face each other through the adhesive layer 11.
  • the resin film 16a for bulk increase layer has the effect of preventing damage to the barrier layer 2b.
  • the protective films 40 a and 40 b shown in FIG. 8B each have a configuration including one barrier film 1, and the resin film 16 a for bulk increase layer and the resin film 1 a face each other through the adhesive layer 11. In the configuration of FIG.
  • the barrier layer 1b is disposed on the phosphor layer side, it is possible to further prevent the entry of oxygen and water from the end of the resin film 1a. Comparing the configurations of FIGS. 8A and 8B with the configuration of FIG. 7, the ratio of the thickness of the resin film for bulking layer to the total thickness of the protective film can be increased, and the influence on the curl is Become dominant. In addition, when the barrier film is deformed by heating or the like at the time of production, the effect of alleviating the deformation is increased by the bulk increase layer resin film.
  • the rolls of the first and second protective films are produced by applying various treatments, and these protective films are used.
  • the wavelength conversion sheet As shown on the right side of FIG. 9B, the occurrence of curling can be sufficiently suppressed.
  • a coating for the phosphor layer may be formed on the inner surface of the roll of the first protective film, or the phosphor layer on the outer surface of the roll of the first protective film. In some cases, a coating film for the purpose is formed.
  • the curling of the wavelength conversion sheet may occur even when the protective film is manufactured after the jumbo roll of the resin films 1a and 2a or the resin film 16a for bulkiness layer is divided into individual rolls.
  • One factor is that the curling of the respective resin films results in propeller curling depending on the bonding method, and that the effect of the bulking layer resin film having a large film thickness is large.
  • the bulking layer resin film 16a may be disposed on the outside of the resin film 1a, and the functional layer 15 may be disposed further on the outside. It is also good.
  • Example 1 The protective film (20a, 20b) of the form shown in FIG. 2 was produced as follows with the jumbo roll apparatus. First, an acrylic resin coating liquid is applied and dried on one side of a PET film of 23 ⁇ m thickness as the resin film 1a to form an anchor coat layer, and silicon oxide is vacuum deposited on the anchor coat layer as the inorganic thin film layer 1v. The thickness was 30 nm. Furthermore, a 300 nm-thick gas barrier coating layer 1c was formed on the inorganic thin film layer 1v. The gas barrier coating layer 1c was formed by applying a coating solution containing tetraethoxysilane and polyvinyl alcohol by a wet coating method.
  • barrier film 1 in which the barrier layer 1b consisting of the inorganic thin film layer 1v and the gas barrier coating layer 1c was provided on one surface of the resin film 1a was obtained.
  • a second barrier film 2 having the same configuration as this barrier film 1 was separately prepared.
  • the two barrier films 1 and 2 obtained as described above were laminated.
  • a two-component epoxy adhesive consisting of an epoxy resin main agent and an amine curing agent is used, and the second adhesive layer 22 (30 ° C. 70% RH environment with a film thickness of 5 ⁇ m after curing)
  • Oxygen permeability: 5 cm 3 / m 2 ⁇ day ⁇ atm was formed, and a film was produced in which the gas barrier covering layers 1 c and 2 c of the two barrier films 1 and 2 were laminated so as to face each other.
  • the oxygen permeability of the second adhesive layer 22 was measured as follows.
  • the thickness of the film after curing is 5 ⁇ m on a 20 ⁇ m thick OPP film (oxygen permeability 3000 cm 3 / m 2 ⁇ day ⁇ atm (measurement limit) or more in an environment of 30 ° C 70% RH)
  • OPP film oxygen permeability 3000 cm 3 / m 2 ⁇ day ⁇ atm (measurement limit) or more in an environment of 30 ° C 70% RH
  • a liquid type epoxy adhesive film is formed, a sample for evaluation is prepared, and using a differential pressure type gas measuring device (GTR-10X manufactured by GTR Tech), according to the method described in JIS K7126A method, under an environment of 30 ° C. 70% RH.
  • the oxygen permeability of the sample was measured.
  • the functional layer 15 having a thickness of 3 ⁇ m was formed on the surface of a PET film having a thickness of 75 ⁇ m as the bulking resin film 16 a.
  • the functional layer 15 was formed by applying a coating solution containing an acrylic resin and urethane resin particles (average particle diameter: 3 ⁇ m) by a wet coating method.
  • the surface on which the functional layer 15 is formed on the above-mentioned laminated film (without the film for bulk growth) is laminated upward, and the resin film 16a for bulk growth is laminated, and a protective film (20a, 20b) of the form shown in FIG. .
  • the ratio of the thickness of the bulking resin film to the total thickness of the protective film was 55%.
  • the protective film of the form shown in FIG. 2 is prepared, and in the 5-row taking of (1) to (5) as shown in FIG. 4, the taking position of the first protective film 20a is the position of (1), A monitor sample of 1 m square is cut out having sides parallel to the MD direction and the TD direction with the taking position of the second protective film 20b as the position (5), and placed on a surface plate to set four corners (corners A, B, C). , D, or E, F, G, H) heights (curls) were measured with a ruler.
  • the phosphor layer is sandwiched between the first protective film 20a and the second protective film 20b by a roll-to-roll apparatus with the second roll having the second protective film 20b turned upside down, and is bonded, as shown in FIG. 2 and FIG.
  • the wavelength conversion sheet 200 of the form was produced. After that, it was placed on a surface plate, and the heights (curls) of the four corners were measured with a ruler. Furthermore, the maximum height difference (Peak-Valley) of the curl at the four corners was similarly measured as flatness.
  • Example 2 After preparing the jumbo roll of the protective film, instead of cutting it in the longitudinal direction, as shown in FIGS. 9 (a) and 9 (b), the jumbo roll for the bulking resin film (75 ⁇ m in thickness) After taking five lines of (1) to (5) along its longitudinal direction, the roll of taking position (1) is used to make a roll of the first protective film, and the roll of taking position (1) The second protective film was produced with the front and back sides reversed from the production of the first protective film. Except for these matters, the wavelength conversion sheet 200 having the form shown in FIGS. 2 and 7 was produced in the same manner as in Example 1, and the curl and flatness were measured in the same manner as in Example 1. The ratio of the thickness of the bulking resin film to the total thickness of the protective film was 55%.
  • Example 3 A wavelength conversion sheet is produced in the same manner as in Example 1 except that the configuration of the barrier film of the first protective film and the second protective film is as shown in FIG. 8A, and the same method as in Example 1 Curl and flatness measurements were made at. The ratio of the thickness of the bulking resin film to the total thickness of the protective film was 70%.
  • Example 4 A wavelength conversion sheet shown in FIG. 8 (a) in the same manner as in Example 3 except that a PET film of 12 ⁇ m in thickness is used instead of the PET film of 23 ⁇ m in thickness as the resin film 1a. 200 was produced, and the curl and flatness were measured in the same manner as in Example 1. The ratio of the thickness of the bulking resin film to the total thickness of the protective film was 80%. Comparative Example A wavelength conversion sheet is produced by the same method as in Example 1 except that the first protective film 20a and the second protective film 20b are both taken from the jumbo roll as the position (1), and the same method as in Example 1 Curl and flatness measurements were made at.
  • the maximum value of the thermal shrinkage difference in the oblique direction of the two films to be bonded together” in Table 1 is the two resin films for bulking (before processing) before being used as part of the protective film ( The measurement was conducted as follows for a PET film having a thickness of 75 ⁇ m. First, a square sample with a side of 1 m is cut out from two bulking resin films, and the outer surface (the surface on which the functional layer 15 shown in FIG. 7 is formed) is used as a reference, as shown in FIG. As shown in FIG. 10A, the diagonal A (the angle A and the angle C in Table 1 in the direction of arrow A1 in FIG. 10A) in the diagonal direction from the upper left to the lower right of the first sample (first bulky resin film).
  • the thermal contraction rate of a sample measures the dimension in each diagonal of a sample after heating a sample at 150 ° C. for 30 minutes and then cooling at room temperature for 30 minutes, and the difference from the dimension in each diagonal before heating was determined by dividing it by the size before heating.
  • the present invention in order to solve the problems, there is no limitation in particular to the materials to be used and their physical properties, and no special manufacturing conditions are used, so that the transportability and the barrier property of the film are not impaired. It is possible to suppress the curling that occurs at the corners when the film is cut out to the display size without causing any restriction on the film to be produced or an increase in cost.
  • barrier film 1a resin film 1b: barrier layer 1c: gas barrier coating layer 1v: inorganic thin film layer 2: second barrier film 2a: second resin film 2b: second barrier Layer 2c Second gas barrier coating layer 2v Second inorganic thin film layer 10, 20 Protective film 10a 20a First protective film 10b 20b Second protective film 11 First adhesive layer, 15: functional layer, 16a: resin film for bulking (first and second resin films for bulking), 21: jumbo roll (raw film roll for protective film), 22: second adhesive layer 22a: first roll (roll for first protective film) 22b: second roll (roll for second protective film) 31: jumbo roll (raw roll made of biaxial stretched film), 50 ... Light layer, 52 ... phosphor, 100, 200 ... wavelength conversion sheet

Abstract

本発明に係る波長変換シートの製造方法は、二つの保護フィルムによって蛍光体層が挟まれた構成を有する波長変換シートをロールtoロール方式で製造する方法であって、第1の保護フィルム用のロールを準備する工程と、第2の保護フィルム用のロールを準備する工程と、第1の保護フィルムのカールと第2の保護フィルムのカールが互いに打ち消されるように、蛍光体層の両側に第1の保護フィルム及び第2の保護フィルムをそれぞれ配置する工程とを含む。

Description

波長変換シート及びその製造方法
 本発明は、波長変換シート及びその製造方法に関する。
 液晶ディスプレイは、電圧の印加に基づき、領域ごとに光を透過又は遮断することで映像を表示する。従って、液晶ディスプレイに映像を表示するためには、外部の光が必要となる。そのための光源として、液晶ディスプレイの背面に設けられたバックライトが利用される。バックライトには従来冷陰極管が使用されている。最近では長寿命、発色の良さ等の理由から、冷陰極管に代わって、LED(発光ダイオード)も使用されている。
 液晶ディスプレイのバックライトを一般的な白色LEDから波長変換材料を用いた3波長白色LEDに代替することで、液晶ディスプレイの色再現性を、NTSC比(アメリカの国家テレビ標準化委員会が作成したテレビの色域を評価するための規格)で100%以上まで高める技術が知られている。
 3波長白色LEDは、近紫外あるいは青色LEDが放射する青色光の一部が蛍光体を透過し、残りは緑色蛍光体と赤色蛍光体に吸収され、それぞれ緑色と赤色の光に変換されるものが一例として挙げられる。この3波長白色LEDは、440nmから470nmの波長範囲に青色LED由来の発光強度のピーク波長を有し、520nmから560nm、及び600nmから700nmの波長範囲にそれぞれ緑色蛍光体、赤色蛍光体に由来する発光強度のピーク波長を有する。
 前記技術を実現するためには波長変換材料である蛍光体をバックライト光路に設置する必要があるが、蛍光体は一般に酸素や水と反応して容易に劣化するため、外気からの保護が必要になる。これを実現する方法として、蛍光体を含む層を、透明樹脂材料からなる支持フィルムとその表面上に形成された保護フィルムで保護した波長変換シートとする方法が有力である(例えば、特許文献1、特許文献2)。
特開2011-13567号公報 特許第5979319号公報
 しかしながら、作製した波長変換シートの4隅にいわゆるプロペラカールが発生することがある。図11にプロペラカールが発生した形態を模式的に示す。角A、角Cに-Z方向、角B、角Dに+Z方向を凸方向とするプロペラカールが発生している。波長変換シートをディスプレイサイズに切り出した際に、このようなカールが2mm以上の高さでカールしていると、ディスプレイとして部材を組み上げる際、金型に入らず問題となる。
 前記プロペラカールは貼合時の各々の張力や、加える熱量の調整によって抑制することはできるが、張力調整はフィルムの搬送性やバリア劣化による制約があり調整範囲に限りがある。また、熱量は各々のフィルムの熱収縮率が異なるため、対策が困難である。フィルムの熱膨張係数を規定する対策も考えられるが、使用するフィルムに制約があり、コストや諸特性と両立しないことが問題となる。
 本発明は、上記問題を解決するためになされたものであり、その目的とするところは、ロールtoロール方式によって、蛍光体層を第1保護フィルム及び第2保護フィルムで挟持し貼り合わせて作製する波長変換シートの製造において、フィルムの搬送性やバリア性を損なわず、使用するフィルムに制約を生じることやコスト上昇につながることがなく、ディスプレイサイズに切り出した際に角部に発生するカールを抑制することができる波長変換シート及びその製造方法を提供することにある。
 本発明に係る波長変換シートの製造方法は、二つの保護フィルムによって蛍光体層が挟まれた構成を有する波長変換シートをロールtoロール方式で製造する方法に関する。この製造方法は、第1の保護フィルム用のロールを準備する工程と、第2の保護フィルム用のロールを準備する工程と、第1の保護フィルムのカールと第2の保護フィルムのカールが互いに打ち消されるように、蛍光体層の両側に第1の保護フィルム及び第2の保護フィルムをそれぞれ配置する工程とを含む。従来、二つの保護フィルムが二軸延伸フィルムをそれぞれ含む場合、これらの二軸延伸フィルムの延伸方向の組み合わせによっては波長変換シートにカールが発生しやすかった。
 本発明に係る製造方法の第1の態様は、二軸延伸フィルムを含む保護フィルム用原反ロールを準備する工程と、保護フィルム用原反ロールをその長手方向に沿って切断することによって三つ以上の保護フィルムのロールを作製する工程と、保護フィルム用原反ロールにおける位置に基づいて上記三つ以上の保護フィルムのロールから第1の保護フィルム用のロール及び第2の保護フィルム用のロールを選択する工程とを更に含む。保護フィルム用原反ロールに含まれる二軸延伸フィルムは、幅方向における位置(例えば、中央部であるか、周縁部であるか)によって延伸方向が異なり、これに起因してカールが生じやすい。保護フィルム用原反ロールにおける位置に基づいて第1及び第2の保護フィルム用のロールを選択し、これらを使用することで、両者のカールが互いに打ち消されるように両者を配置することができる。
 第1の態様に係る製造方法は、第1の保護フィルム用のロール及び第2の保護フィルム用のロールから正方形の試料をそれぞれ切り出し、第1の保護フィルム及び第2の保護フィルムのカールの態様を確認する工程を更に含んでもよい。二つの試料のサイズをいずれも1m×1mとした場合、両者のカールの大きさの差は2mm~10mmの範囲であることが好ましい。
 本発明に係る製造方法の第2の態様は、二軸延伸フィルムからなる原反ロールをその長手方向に沿って切断することによって三つ以上の二軸延伸フィルムのロールを作製する工程と、原反ロールにおける位置に基づいて上記三つ以上の二軸延伸フィルムのロールから第1の二軸延伸フィルムのロール及び第2の二軸延伸フィルムのロールを選択する工程と、第1の二軸延伸フィルムを含む第1の保護フィルム用ロールを作製する工程と、第2の二軸延伸フィルムを含む第2の保護フィルム用ロールを作製する工程とを更に含む。二軸延伸フィルムの原反ロールは幅方向における位置(例えば、中央部であるか、周縁部であるか)によって延伸方向が異なり、これに起因してカールが生じやすい。二軸延伸フィルムの原反ロールにおける位置に基づいて第1及び第2の二軸延伸フィルムのロールを選択し、これらを使用することで、両者のカールが互いに打ち消されるように両者を配置することができる。
 上記第1の態様においては、第1及び第2の保護フィルム用のロールを作製し、これをその長手方向に切断することによって第1及び第2の保護フィルムのロールを得るのに対し、第2の態様においては、まず、二軸延伸フィルムの原反ロールをその長手方向に切断することによって第1及び第2の二軸延伸フィルムのロールを得る。その後、これらの二軸延伸フィルムの延伸方向に起因するカールを互いに打ち消すことができるようにこれらの表裏を考慮し、各種の処理を施すことによって第1及び第2の保護フィルムを作製することができる。よって、第2の態様に係る製造方法においては、上記第1及び第2の保護フィルムのロールのうち、一方のロールの内側の面に蛍光体層用の塗膜を形成する場合もあるし、外側の面に蛍光体層用の塗膜を形成する場合もある。
 第2の態様に係る製造方法は、第1の二軸延伸フィルムのロール及び第2の二軸延伸フィルムのロールから正方形の試料をそれぞれ切り出し、第1の二軸延伸フィルム及び第2の二軸延伸フィルムのカールの態様を確認する工程を更に含んでもよい。二つの試料のサイズをいずれも1m×1mとした場合、両者のカールの大きさの差は2mm~10mmの範囲であることが好ましい。
 本発明に係る波長変換シートは、二つの保護フィルムによって蛍光体層が挟まれた構成を有し、第1の保護フィルムのカールと第2の保護フィルムのカールが互いに打ち消されるように、蛍光体層の両側に第1の保護フィルム及び第2の保護フィルムがそれぞれ配置されている。
 上記第1の保護フィルムは、例えば、樹脂フィルムと、二軸延伸フィルムからなる第1の嵩増し層用樹脂フィルムと、バリア層とがこの順で積層された構成を有する。上記第2の保護フィルムは、例えば、樹脂フィルムと、二軸延伸フィルムからなる第2の嵩増し層用樹脂フィルムと、バリア層とがこの順で積層された構成を有する。第1及び第2の保護フィルムの総厚に対する二軸延伸フィルムからなる嵩増し層用樹脂フィルムの厚さの比率が50~90%である場合、第1及び第2の保護フィルムのカールは嵩増し層用樹脂フィルムに主に起因したものとなりやすい。したがって、この場合、第1及び第2の保護フィルムに含まれる嵩増し層用樹脂フィルムのカールが互いに打ち消されるように第1及び第2の保護フィルムを配置することが好ましい。
 本発明によれば、課題の解決のために、特に使用する材料やその物性に制限を設けることや、特殊な製造条件を用いることはないので、フィルムの搬送性やバリア性を損なわず、使用するフィルムに制約を生じることやコスト上昇につながることがなく、ディスプレイサイズに切り出した際に角部に発生するカールを抑制することができる。
図1(a)は波長変換シートの構成の一例を示す模式断面図であり、図1(b)は波長変換シートの構成の他の例を示す模式断面図である。 図2はロールtoロール方式による波長変換シートの製造工程を示す概略図である。 図3は原反ロール(場合により「ジャンボロール」ともいう。)から個別ロールを配置するまでの工程を説明するための概略図である。 図4はジャンボロールにおける個別ロールの位置と、個別ロールから切り出した保護フィルムのモニタサンプル(場合により「試料」ともいう。)のカールの関係を説明するための概略図である。 図5は個別ロールから切り出した保護フィルムのモニタサンプルのカールと、従来の波長変換シートのプロペラカールの発生の関係を説明するための概略図である。 図6は個別ロールから切り出した保護フィルムのモニタサンプルのカールと、本発明の製造方法で作製した波長変換シートの関係を説明するための概略図である。 図7は嵩増し層用樹脂フィルムを有する波長変換シートの構成例を示す模式断面図である。 図8(a)及び図8(b)は嵩増し層用樹脂フィルムを有する波長変換シートの他の例をそれぞれ示す模式断面図である。 図9(a)は二軸延伸フィルムのジャンボロールを模式的に示す斜視図であり、図9(b)は個別ロールから切り出した二軸延伸フィルムのモニタサンプルのカールと、本発明の製造方法で作製した波長変換シートの関係を説明するための概略図である。 図10は二つの試料の斜め方向の熱収縮率の差を測定する方法を説明するための概略図である。 図11は従来の波長変換シートにプロペラカールが発生した形態を示す模式図である。
 以下、本発明の波長変換シートの製造方法について、図面を用いて説明するが、同一の構成要素については便宜上の理由がない限り同一の符号を付け、重複する説明は省略する。また、本発明の趣旨を逸脱しない範囲で、以下の実施形態に限定されるものではない。
 初めに、従来のロールtoロール方式による波長変換シートの製造工程と、カール発生の様態に関して説明する。
 図1(a)は、波長変換シートの構成の一例を示す模式断面図である。波長変換シート100は、量子ドット等を用いた蛍光体52が封止樹脂51に一種以上混合され封止された蛍光体層50と、蛍光体層50の両面にそれぞれ設けられた第1及び第2の保護フィルム10a,10bとを備えて構成されている。第1及び第2の保護フィルム10a,10bは、樹脂フィルム1aとバリア層1b,2bを有しており、バリア層1b,2bは、それぞれ無機薄膜層1v,2vとガスバリア性被覆層1c,2cから成っている。
 第1及び第2の保護フィルム10a,10bは、樹脂フィルム1aの一方の面上に無機薄膜層1vが形成され、この無機薄膜層1vの上にガスバリア性被覆層1cが積層され、更に前記ガスバリア性被覆層1cの上に無機薄膜層2vが、前記無機薄膜層2vの上にガスバリア性被覆層2cが積層されている。つまり、樹脂フィルム1aの一方の面上にバリア層1b、2bが2層積層される構成になっている。なお、本実施形態では、樹脂フィルム1aとバリア層1bとによって、バリアフィルム1が構成されている。
 なお、図1(a)では、樹脂フィルムの一方の面上にバリア層が2層積層される構成を例示したが、バリア層は1層のみ(図1(b)参照)であってもよく、または3層以上(不図示)であってもよい。また、無機薄膜層とガスバリア性被覆層の積層順は、図1と逆の場合もある。
 第1保護フィルム10aはロールtoロール方式によって製造することができる。具体的には、樹脂フィルム1aの一方の面上に無機薄膜層1vを形成する。次に、水酸基含有高分子化合物、金属アルコキシド、金属アルコキシド加水分解物及び金属アルコキシド重合物からなる群より選択される少なくとも一種の成分等を含む水溶液あるいは水/アルコール混合溶液を主剤とするコーティング剤を無機薄膜層1vの表面上に塗布し、加熱乾燥することで、ガスバリア性被覆層1cを積層する。同様の操作をすることで、ガスバリア性被覆層1cの上に無機薄膜層2v、無機薄膜層2vの上にガスバリア性被覆層2cを積層し、第1保護フィルム10aのロール22a(第1の保護フィルム用のロール)が得られる。同様にして、第2保護フィルム10bのロール22b(第2の保護フィルム用のロール)を作製する。
 無機薄膜層1v,2vは、例えば、酸化アルミニウム、酸化珪素、酸化窒化珪素、酸化マグネシウムあるいはそれらの混合物を蒸着させることによって形成することができる。これらの無機材料の中でも、バリア性、生産性の観点から、酸化アルミニウム又は酸化珪素を用いることが望ましい。蒸着層は、真空蒸着法、スパッタ法、CVD等の手法により形成される。
 第1及び第2ロールを作製した後、ロールtoロール方式によって波長変換シート100を製造する。図2にその製造工程の概略を示す。まず、第1ロール22aと第2ロール22bとを、第1及び第2保護フィルム10a、10bのバリア層2b側の面が対向するように配置する(S1)。他方、封止樹脂51と蛍光体52と必要に応じて溶剤とを混合して混合液を調製する。次に、第2ロール22bの第2保護フィルム10bのバリア層2b側の面に混合液50aを塗布し、この面と第1ロール22aの第1保護フィルム10aのバリア層2b側の面とを貼り合せる(S2)。この際、封止樹脂51が感光性樹脂である場合、紫外線の照射によって感光性樹脂を硬化(UV硬化)させる。感光性樹脂は、UV硬化の後に更に熱硬化させてもよい。また、封止樹脂51としては、感光性樹脂以外にも、熱硬化性樹脂や化学硬化性樹脂等を用いてもよい。然る後に、貼り合わせた積層体を所定の大きさに断裁することで、波長変換シート100が得られる(S3)。ここでは、図1(a)に示す第1及び第2保護フィルム10a,10bを使用して波長変換シート100を作製する場合を例示したが、これらの代わりに図1(b)に示す構成のバリアフィルム1を保護フィルムとして使用してもよいし、図3に示す第1及び第2保護フィルム20a,20bを使用してもよい。なお、図2等における括弧を付した符号は、第1及び第2保護フィルム20a,20bを使用して波長変換シート200を作製する態様を示したものである。
 次に、従来のロールtoロール方式による波長変換シートの製造において発生しやすかったカールを本実施形態によれば抑制できる要因について説明する。
 図2に示した、第1ロール22a及び第2ロール22bは、より大きなジャンボロール21(保護フィルム用原反ロール)で保護フィルムを作製し、ジャンボロール21を個別ロールに分割したものが使用される。すなわち、図3に示すように、ジャンボロール21で保護フィルム10を作製し(S-1)、ジャンボロール21を個別ロールに分割(ここでは5分割する5行取り)し、そのうちの2個のロール(第1ロール22a及び第2ロール22b)を選択して(S0)、第2ロール22bを裏返しして保護フィルム10a、10bのバリア層2b側の面が対向するように配置し(S1)、図2のS1の状態とする。なお、ここでは5行取りによってジャンボロール21から五つの個別ロールを作製する場合を例示したが、作製する個別ロールの数は三つ以上であればよい。
 ここで、ジャンボロール21で保護フィルム10を作製中(積層中)に、フィルムに掛かっている張力を、次工程で個別ロールに分割される5つの部分((1)~(5))に分けて考察すると、図4のT1~T5のようになる。T1~T5はいずれも、ベクトルで示すように、搬送方向であるMD(Machine Direction)方向と、MD方向に垂直なTD(Transverse Direction)方向の張力の合力となるが、MD方向については(1)~(5)のいずれの部分においても同等である。一方、TD方向の張力は(3)の部分では釣り合って0となり、(1)と(5)、(2)と(4)の部分ではそれぞれ、逆向きに同じ大きさとなり、(1)、(5)の部分は(2)、(4)の部分よりも大きい。
 実際に、前記の5つの部分((1)~(5))から保護フィルムのモニタサンプル(試料)を切り出してカール状態を調べると、図4右側に(1)、(5)の部分について例示するようになる。すなわち、(1)、(5)の部分ではそれぞれ、T1、T5と同じ方向の対角線上に位置する2角((1)ではBとD、(5)ではEとG)にカールを発生する。また、図示しないが、(2)、(4)の部分でもそれぞれ、T2、T4と同じ方向の対角線上に位置する2角にカールを発生するが、T2、T4はT1、T5よりも小さい分カールは小さくなる。(3)では対角線上のカールは発生しない。
 そこで、(1)の部分の保護フィルムから構成される個別ロール同士を第1ロール及び第2ロールとして選択し波長変換シートを作製すると、図5左側に示すように、第2ロールの第2保護フィルムの方は裏返しとなって配置されるので、第1保護フィルムと第2保護フィルムの張力T1方向は直交する。従って、波長変換シートを作製したとき、図5右側に示すように、4角いずれにも(直交する2本の対角線上で逆方向の)カールが発生する。従来、このように、第1保護フィルム、第2保護フィルムの組合せと、ジャンボロールで作製したTD方向の右半分(例えば(1)、(2))、左半分(例えば(4)、(5))の関係が考慮されず、波長変換シートにカールが発生していた。
 本実施形態の波長変換シートの製造方法では、個別ロールを選択するときに、保護フィルムの分割された部分のうち、TD方向に対称な位置にある組み合わせ((1)と(5)、(2)と(4)、(3)同士)とすることとし、これによってカールの発生を抑制する。すなわち、図6に示すように、第1保護フィルムと第2保護フィルムの張力T1とT5の方向は同じ方向で、しかもカール方向はZ方向に逆方向となるので、波長変換シートを作製したときカールの発生は抑えられる。
 確認方法としては、本実施形態の波長変換シートの製造方法では、あらかじめ保護フィルムからMD方向、TD方向にそれぞれ平行な辺を持つモニタサンプルを切り出し、カールを測定する。具体的には、1m角のモニタサンプルを切り出し、例えば定盤に設置し4隅の反り上がった高さを定規で測定する。その結果、対角線上に位置する2角にカールを有する場合は、第1保護フィルム及び第2保護フィルムのバリア層2b側の面同士を対向させて蛍光体層を挟持し貼り合わせる際に、対角線が一致するように対向させて貼り合わせを行う。なお、モニタサンプルによる測定は、波長変換シート作製の1シート毎に行う必要はなく、同じ材料、同じ条件で作製する期間は冒頭に行っておけばよい。
 本実施形態の波長変換シートの製造方法では、第1保護フィルム及び第2保護フィルムから切り出したモニタサンプルのカールの大きさの差が2mm~10mmであるときに、前記のように貼り合わせを行い、波長変換シートを作製することが望ましい。ここで、カールの大きさの差とは、第1保護フィルム及び第2保護フィルムのそれぞれの最大カールをa、bとするとき、a-bの絶対値を意味する。但し、カール方向が逆のとき、a、bは互いに逆符号とする。
 カールの大きさの差が2mmよりも小さいときは、波長変換シートを作製しディスプレイとして部材を組み上げる際に支障をきたす程度とはならない。10mmよりも大きいカールの場合は、本発明の方法によってもディスプレイサイズに切り出した際に発生するカールを、部材を組み上げる際に支障とならない程度に抑制することは難しい。
 本実施形態の波長変換シートの製造方法は、波長変換シートがバリア層よりも外層側に嵩増し層用樹脂フィルムや機能層を備えるときにも有効である。嵩増し層用樹脂フィルムをバリアフィルムに貼り合せることで、バリアフィルムの製造工程において生じたシワやカールを低減することができる。また、機能層はバインダー樹脂と微粒子とを含んで構成されており、微粒子の一部が機能層の表面から露出するようにバインダー樹脂中に埋め込まれるように構成されている。これにより機能層は、干渉縞防止機能、反射防止機能、光散乱機能、帯電防止機能及び傷つけ防止機能からなる群から選ばれる少なくとも一種の機能を有することができる。なお、機能層は、一層構造に限定されるものではなく、複数の機能を発揮する層の積層体であってもよい。また更に嵩増し層用樹脂フィルムの最表面に機能層を設けた構成とすることにより、バリア層から最外層までの離間距離を長くすることで、バリア層上に小さな異物(例えば蒸着粉)が存在していたとしても、ディスプレイを組み立て表示上の欠陥の有無を観察したとき、外部から視認されにくいという効果が奏される。
 図7は、嵩増し層用樹脂フィルムを有する波長変換シート200の構成例を示す模式断面図である。図7の構成を図1(a)の構成と比較すると、図7の波長変換シート200では、図1(a)の波長変換シート100の最外層である樹脂フィルム1aの外側に嵩増し層用樹脂フィルム16a、更にその外側に機能層15が形成されている。更に、波長変換シート200はバリアフィルム1とともに第2のバリアフィルム2が形成され、これらは対向して第2接着層22により接着されている。また、バリアフィルム1と嵩増し層用樹脂フィルム16aは第1接着層11により接着されている。バリアフィルムが製造時の加熱等によって変形した場合に、嵩増し層用樹脂フィルムを積層することによって、変形を緩和することができる。
 図1の波長変換シート100における樹脂フィルム1a、図7の波長変換シート200における樹脂フィルム1a,2a及び嵩増し層用樹脂フィルム16aの材料としては特に限定されるものではないが、全光線透過率が85%以上のフィルムが望ましい。例えば透明性が高く、耐熱性に優れたフィルムとして、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルムなどを用いることができる。これらの樹脂フィルムとして二軸延伸フィルムを採用した場合であっても、本実施形態に係る方法によれば、波長変換シートに生じるカールを十分に抑制することができる。
 上記のように、図7の波長変換シート200は、図1の波長変換シート100よりも層数が多く、かつ通常樹脂フィルム1a,2aよりも厚い嵩増し層用樹脂フィルム16aと、機能層15とを備えている。このため、保護フィルム及び波長変換シートを作製時にカール発生の原因となる収縮応力や熱膨張の振舞いはより複雑となる。パラメータが増える分、特に厚みの大きい嵩増し層用樹脂フィルムで制御しやすくなる面もあるが、逆に多数の層への制約も増える。本実施形態の波長変換シートの製造方法は、このような波長変換シート200に対しても簡便な方法によりカール発生を抑制することができる。
 保護フィルムが二軸延伸フィルムからなる嵩増し層用樹脂フィルムを含むとともに、保護フィルムの総厚に対する嵩増し層用樹脂フィルムの厚さの比率が50~90%(特に60~90%)である場合、第1及び第2の保護フィルムのカールは嵩増し層用樹脂フィルムに主に起因したものとなりやすい。このような場合であっても、第1及び第2の保護フィルムに含まれる嵩増し層用樹脂フィルムのカールが互いに打ち消されるように第1及び第2の保護フィルムを配置することで、波長変換シートのカールを抑制できる。
 嵩増し層用樹脂フィルムを含む保護フィルムの態様は、図7に示された構成に限定されるものではなく、例えば、2つのバリアフィルム1,2を含む代わりに、1つのバリアフィルムであってもよい。図8(a)に示す保護フィルム30a,30bは、1つのバリアフィルム2をそれぞれ含む構成を有し、嵩増し層用樹脂フィルム16aとバリア層2bが接着層11を介して対向する。図8(a)の構成では、嵩増し層用樹脂フィルム16aはバリア層2bの損傷を防ぐ効果がある。
図8(b)に示す保護フィルム40a,40bは、1つのバリアフィルム1をそれぞれ含む構成を有し、嵩増し層用樹脂フィルム16aと樹脂フィルム1aが接着層11を介して対向する。図8(b)の構成では、バリア層1bが蛍光体層側に配置されているため、樹脂フィルム1aの端部からの酸素や水の浸入をより防ぐことができる。図8(a)及び図8(b)の構成を図7の構成と対比すると、保護フィルムの総厚に対する嵩増し層用樹脂フィルムの厚さの比率を大きくすることができ、カールに対する影響が支配的となる。また、バリアフィルムが製造時の加熱等によって変形した場合に、嵩増し層用樹脂フィルムによって変形を緩和する効果が大きくなる。
 以上、本発明の実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態では、保護フィルム用のジャンボロール21を準備し、これをその長手方向に切断することによって第1及び第2の保護フィルムのロールを作製する場合を例示したが、まず、図9(a)に示すように、二軸延伸フィルムの原反ロール31をその長手方向に切断し、同じ行(図9(b)では(1)の行)の二つのロール(例えば、嵩増し層用樹脂フィルム16a用のロール)を選択してもよい。これらの二軸延伸フィルムのカールを互いに打ち消すことができるようにこれらの表裏を考慮し、各種の処理を施すことによって第1及び第2の保護フィルムのロールを作製し、これらの保護フィルムを使用して波長変換シートを作製することで、図9(b)右側に示すように、カールの発生を十分に抑制できる。この態様に製造方法においては、第1の保護フィルムのロールの内側の面に蛍光体層用の塗膜を形成する場合もあるし、第1の保護フィルムのロールの外側の面に蛍光体層用の塗膜を形成する場合もある。
 波長変換シートのカールは、樹脂フィルム1a,2a又は嵩増し層用樹脂フィルム16aのジャンボロールを個別ロールに分割した後に保護フィルムを製造する場合でも生じ得る。一つの要因としては、それぞれの樹脂フィルムのカールが貼り合せ方によってプロペラカールが生じること、また膜厚の大きい嵩増し層用樹脂フィルムの影響が大きいことが挙げられる。なお、図1(a)及び図1(b)に示す構成において、樹脂フィルム1aの外側に嵩増し層用樹脂フィルム16aを配置してもよいし、更にその外側に機能層15を配置してもよい。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
<実施例1>
 ジャンボロール装置で図2に示す形態の保護フィルム(20a、20b)を下記のように作製した。まず、樹脂フィルム1aとしての厚さ23μmのPETフィルムの片面に、アクリル樹脂塗液を塗布乾燥させてアンカーコート層を形成し、アンカーコート層上に無機薄膜層1vとして酸化珪素を真空蒸着法により厚さ30nmで設けた。更に、無機薄膜層1v上に厚さ300nmのガスバリア性被覆層1cを形成した。このガスバリア性被覆層1cは、テトラエトキシシランとポリビニルアルコールとを含む塗液をウエットコーティング法により塗工することによって形成した。これにより、樹脂フィルム1aの一方の面上に無機薄膜層1v及びガスバリア性被覆層1cからなるバリア層1bが設けられたバリアフィルム1を得た。このバリアフィルム1と同じ構成の第2のバリアフィルム2を別途作製した。
 上記のようにして得た二つのバリアフィルム1,2を貼り合せた。貼り合せにはエポキシ樹脂主剤と、アミン系硬化剤からなる二液型エポキシ系接着剤を使用し、硬化後の膜厚が5μmとなる第2接着層22(30℃70%RH環境下での酸素透過度:5cm/m・day・atm)を形成し、二枚のバリアフィルム1、2のガスバリア性被覆層1c、2c同士が対向するように積層されたフィルムを作製した。なお、第2接着層22の酸素透過度は以下のように測定した。厚さ20μmのOPPフィルム(30℃70%RH環境下での酸素透過度3000cm/m・day・atm(測定限界)以上)上に硬化後の膜厚が5μmとなるように前述の二液型エポキシ系接着剤膜を形成し評価用サンプルを作製し、差圧式ガス測定装置(GTRテック社製GTR-10X)を用いて、JIS K7126A法に記載の方法に従って30℃70%RH環境下におけるサンプルの酸素透過度を測定した。
 嵩増し用樹脂フィルム16aとしての厚さ75μmのPETフィルムの表面に、厚さ3μmの機能層15を形成した。この機能層15は、アクリル樹脂と、ウレタン樹脂粒子(平均粒径3μm)とを含む塗液をウエットコーティング法により塗工することによって形成した。上記積層フィルム(嵩増し用フィルムなし)に機能層15が形成されている面を上向きにて嵩増し用樹脂フィルム16aを重ね合わせ、図2に示す形態の保護フィルム(20a、20b)を作製した。保護フィルムの総厚に対する嵩増し用樹脂フィルムの厚さの比率は55%であった。
 上記のように図2に示す形態の保護フィルムを作製し、図4に示すような(1)~(5)の5行取りにおいて、第1保護フィルム20aの取り位置を(1)の位置、第2保護フィルム20bの取り位置を(5)の位置として、MD方向、TD方向にそれぞれ平行な辺を持つ1m角のモニタサンプルを切り出し、定盤に設置し4隅(角A、B、C、D、またはE、F、G、H)の高さ(カール)を定規で測定した。
 第2保護フィルム20bを有する第2ロールを裏返しにして、ロールtoロール装置により、蛍光体層を第1保護フィルム20aと第2保護フィルム20bで挟持し貼り合わせて、図2及び図7に示す形態の波長変換シート200を作製した。その後定盤に設置し、4隅の高さ(カール)を定規で測定した。更に平面度として、4隅のカールの最大高低差(Peak-Valley)を同様に測定した。
<実施例2>
 保護フィルムのジャンボロールを作製した後、これを長手方向に切断する代わりに、図9(a)及び図9(b)に示すように、嵩増し用樹脂フィルム(厚さ75μm)用のジャンボロールをその長手方向に沿って(1)~(5)の5行取りした後、取り位置(1)のロールを使用して第1保護フィルムのロールを作製するとともに、取り位置(1)のロールを使用するものの、上記第1保護フィルムの作製時とは表裏を反対にて第2保護フィルムを作製した。これらの事項以外は実施例1と同様にして図2及び図7に示す形態の波長変換シート200を作製し、実施例1と同じ方法にてカール及び平面度の測定を行った。保護フィルムの総厚に対する嵩増し用樹脂フィルムの厚さの比率は55%であった。
<実施例3>
 第1保護フィルム及び第2保護フィルムのバリアフィルムの構成を図8(a)に示す構成としたことの他は、実施例1と同様にして波長変換シートを作製し、実施例1と同じ方法にてカール及び平面度の測定を行った。保護フィルムの総厚に対する嵩増し用樹脂フィルムの厚さの比率は70%であった。
<実施例4>
 樹脂フィルム1aとしての厚さ23μmのPETフィルムを使用する代わりに、厚さ12μmのPETフィルムを使用したことの他は、実施例3と同様にして図8(a)に示す形態の波長変換シート200を作製し、実施例1と同じ方法にてカール及び平面度の測定を行った。保護フィルムの総厚に対する嵩増し用樹脂フィルムの厚さの比率は80%であった。
<比較例>
 第1保護フィルム20a、第2保護フィルム20bともにジャンボロールからの取り位置を(1)の位置とした以外は、実施例1と同じ方法にて波長変換シートを作製し、実施例1と同じ方法にてカール及び平面度の測定を行った。
[結果]
 以上の実施例、比較例のジャンボロールからの取り位置、保護フィルム及び波長変換シートのカール、平面度の測定結果を表1に示す。なお、第2保護フィルムについては、波長変換シートの作製時に裏返すため、カールの符号が-(マイナス)になっている。
 表1に記載の「貼り合わせる二つのフィルムの、斜め方向の熱収縮率差の最大値」は、保護フィルムの一部として使用される前(加工前)の二枚の嵩増し用樹脂フィルム(厚さ75μmのPETフィルム)を対象として以下のようにして測定したものである。まず、二枚の嵩増し用樹脂フィルムから一辺1mの正方形の試料を切り出し、外側の面(図7に示された機能層15が形成される側の面)を基準とし、図10(a)に示したとおり、一つ目の試料(第1の嵩増し用樹脂フィルム)の左上から右下の斜め方向(図10(a)における矢印A1方向、対角線AC(表1の角Aと角Cを結ぶ方向))の熱収縮率A1を測定するとともに、右上から左下の斜め方向(図9(a)における矢印A2方向、対角線BD(表1の角Bと角Dを結ぶ方向))の熱収縮率を測定した。同様に、二つ目の試料(第2の嵩増し用樹脂フィルム)の左上から右下の斜め方向(図10(b)における矢印B1方向、対角線AC(表1の角Hと角Fを結ぶ方向))の熱収縮率B1を測定するとともに、右上から左下の斜め方向(図10(b)における矢印B2方向、対角線AC(表1の角Gと角Eを結ぶ方向))の熱収縮率を測定した。一つ目の試料の熱収縮率A1と二つ目の試料の熱収縮率B2の差と、一つ目の試料の熱収縮率A2と二つ目の試料の熱収縮率B1の差とを算出した。これらの差の最大値が0.3%以下であれば、カール抑制効果が見込まれる。なお、試料の熱収縮率は、試料を150℃で30分加熱した後、30分室温で冷却した加熱後試料の各対角線での寸法を測定し、加熱前の各対角線での寸法との差を加熱前の寸法で除して求めた。
 
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、課題の解決のために、特に使用する材料やその物性に制限を設けることや、特殊な製造条件を用いることはないので、フィルムの搬送性やバリア性を損なわず、使用するフィルムに制約を生じることやコスト上昇につながることがなく、ディスプレイサイズに切り出した際に角部に発生するカールを抑制することができる。
1…バリアフィルム、1a…樹脂フィルム、1b…バリア層、1c…ガスバリア性被覆層、1v…無機薄膜層、2…第2のバリアフィルム、2a…第2の樹脂フィルム、2b…第2のバリア層、2c…第2のガスバリア性被覆層、2v…第2の無機薄膜層、10,20…保護フィルム、10a,20a…第1の保護フィルム、10b,20b…第2の保護フィルム、11…第1接着層、15…機能層、16a…嵩増し用樹脂フィルム(第1及び第2の嵩増し用樹脂フィルム)、21…ジャンボロール(保護フィルム用原反ロール)、22…第2接着層、22a…第1ロール(第1の保護フィルム用のロール)、22b…第2ロール(第2の保護フィルム用のロール)、31…ジャンボロール(二軸延伸フィルムからなる原反ロール)、50…蛍光体層、52…蛍光体、100,200…波長変換シート

Claims (13)

  1.  二つの保護フィルムによって蛍光体層が挟まれた構成を有する波長変換シートをロールtoロール方式で製造する方法であって、
     第1の保護フィルム用のロールを準備する工程と、
     第2の保護フィルム用のロールを準備する工程と、
     前記第1の保護フィルムのカールと前記第2の保護フィルムのカールが互いに打ち消されるように、前記蛍光体層の両側に前記第1の保護フィルム及び前記第2の保護フィルムをそれぞれ配置する工程と、
    を含む波長変換シートの製造方法。
  2.  二軸延伸フィルムを含む保護フィルム用原反ロールを準備する工程と、
     前記保護フィルム用原反ロールをその長手方向に沿って切断することによって三つ以上の保護フィルムのロールを作製する工程と、
     前記保護フィルム用原反ロールにおける位置に基づいて前記三つ以上の保護フィルムのロールから前記第1の保護フィルム用のロール及び前記第2の保護フィルム用のロールを選択する工程と、
    を更に含む、請求項1に記載の波長変換シートの製造方法。
  3.  前記第1の保護フィルム用のロール及び前記第2の保護フィルム用のロールから正方形の試料をそれぞれ切り出し、前記第1の保護フィルム及び前記第2の保護フィルムのカールの態様を確認する工程を更に含む、請求項1又は2に記載の波長変換シートの製造方法。
  4.  二軸延伸フィルムからなる原反ロールをその長手方向に沿って切断することによって三つ以上の二軸延伸フィルムのロールを作製する工程と、
     前記原反ロールにおける位置に基づいて前記三つ以上の二軸延伸フィルムのロールから第1の二軸延伸フィルムのロール及び第2の二軸延伸フィルムのロールを選択する工程と、
     前記第1の二軸延伸フィルムを含む第1の保護フィルム用ロールを作製する工程と、
     前記第2の二軸延伸フィルムを含む第2の保護フィルム用ロールを作製する工程と、
    を更に含む、請求項1に記載の波長変換シートの製造方法。
  5.  前記第1の二軸延伸フィルムのロール及び前記第2の二軸延伸フィルムのロールから正方形の試料をそれぞれ切り出し、前記第1の二軸延伸フィルム及び前記第2の二軸延伸フィルムのカールの態様を確認する工程を更に含む、請求項4に記載の波長変換シートの製造方法。
  6.  二つの前記試料の対角線方向の熱収縮率を測定する工程を更に含み、
     二つの前記試料の熱収縮率の差の最大値が0.3%以下である、請求項5に記載の波長変換シートの製造方法。
  7.  一方の前記保護フィルム用のロールの内側の面に前記蛍光体層用の塗膜を形成する工程を含む、請求項4~6のいずれか一項に記載の波長変換シートの製造方法。
  8.  一方の前記保護フィルム用のロールの外側の面に前記蛍光体層用の塗膜を形成する工程を含む、請求項4~6のいずれか一項に記載の波長変換シートの製造方法。
  9.  前記第1の保護フィルムは、樹脂フィルムと、二軸延伸フィルムからなる第1の嵩増し層用樹脂フィルムと、バリア層とがこの順で積層された構成を有し、
     前記第2の保護フィルムは、樹脂フィルムと、二軸延伸フィルムからなる第2の嵩増し層用樹脂フィルムと、バリア層とがこの順で積層された構成を有する、請求項1~8のいずれか一項に記載の波長変換シートの製造方法。
  10.  二つの保護フィルムによって蛍光体層が挟まれた構成を有する波長変換シートであって、
     第1の保護フィルムのカールと第2の保護フィルムのカールが互いに打ち消されるように、前記蛍光体層の両側に前記第1の保護フィルム及び前記第2の保護フィルムがそれぞれ配置されている波長変換シート。
  11.  前記第1の保護フィルムは、樹脂フィルムと、二軸延伸フィルムからなる第1の嵩増し層用樹脂フィルムと、バリア層とがこの順で積層された構成を有し、
     前記第2の保護フィルムは、樹脂フィルムと、二軸延伸フィルムからなる第2の嵩増し層用樹脂フィルムと、バリア層とがこの順で積層された構成を有する、請求項10に記載の波長変換シート。
  12.  前記第1の保護フィルムの総厚に対する前記第1の嵩増し層用樹脂フィルムの厚さの比率が50~90%であり、
     前記第2の保護フィルムの総厚に対する前記第2の嵩増し層用樹脂フィルムの厚さの比率が50~90%である、請求項11に記載の波長変換シート。
  13.  前記第1の嵩増し層用樹脂フィルム及び前記第2の嵩増し層用樹脂フィルムから切り出した正方形の2つ試料の熱収縮率の差の最大値が0.3%以下である、請求項11又は12に記載の波長変換シート。
PCT/JP2018/027167 2017-07-19 2018-07-19 波長変換シート及びその製造方法 WO2019017448A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019530601A JP7173008B2 (ja) 2017-07-19 2018-07-19 波長変換シートの製造方法
KR1020207004358A KR20200029016A (ko) 2017-07-19 2018-07-19 파장 변환 시트 및 그 제조 방법
CN201880047853.7A CN110945390B (zh) 2017-07-19 2018-07-19 波长转换片及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017139838 2017-07-19
JP2017-139838 2017-07-19

Publications (1)

Publication Number Publication Date
WO2019017448A1 true WO2019017448A1 (ja) 2019-01-24

Family

ID=65015148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027167 WO2019017448A1 (ja) 2017-07-19 2018-07-19 波長変換シート及びその製造方法

Country Status (4)

Country Link
JP (1) JP7173008B2 (ja)
KR (1) KR20200029016A (ja)
CN (1) CN110945390B (ja)
WO (1) WO2019017448A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019069827A1 (ja) * 2017-10-05 2020-09-17 凸版印刷株式会社 蛍光体保護フィルム、波長変換シート及び発光ユニット

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102999A (ja) * 2014-11-14 2016-06-02 富士フイルム株式会社 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置
WO2017043483A1 (ja) * 2015-09-07 2017-03-16 凸版印刷株式会社 波長変換シート用保護フィルム及びその製造方法、並びに、波長変換シート及びバックライトユニット
JP2017083894A (ja) * 2013-08-23 2017-05-18 富士フイルム株式会社 光変換部材、バックライトユニット、および液晶表示装置、ならびに光変換部材の製造方法
WO2017086319A1 (ja) * 2015-11-18 2017-05-26 凸版印刷株式会社 保護フィルム及び波長変換シート

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69109513T2 (de) * 1990-02-13 1996-01-18 Nippon Telegraph & Telephone Herstellungsverfahren von dielektrischen Vielschichtenfiltern.
JP5255527B2 (ja) 2009-07-03 2013-08-07 デクセリアルズ株式会社 色変換部材および表示装置
KR102558338B1 (ko) 2013-09-13 2023-07-24 도판 인사츠 가부시키가이샤 파장 변환 시트 및 백라이트 유닛
WO2016002584A1 (ja) * 2014-06-30 2016-01-07 東レ株式会社 積層体およびそれを用いた発光装置の製造方法
JP2016096276A (ja) * 2014-11-14 2016-05-26 富士フイルム株式会社 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置並びに波長変換部材の製造方法
JP2016225423A (ja) * 2015-05-29 2016-12-28 久豊技研株式会社 Led用蛍光膜、led用蛍光膜の製造方法、led面発光装置、及び画像形成装置
CN206258653U (zh) * 2015-11-20 2017-06-16 凸版印刷株式会社 气体阻隔性层叠膜和波长变换片
JP6877945B2 (ja) * 2015-11-30 2021-05-26 日東電工株式会社 位相差層付偏光板および画像表示装置
JP6595331B2 (ja) * 2015-12-24 2019-10-23 富士フイルム株式会社 波長変換部材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017083894A (ja) * 2013-08-23 2017-05-18 富士フイルム株式会社 光変換部材、バックライトユニット、および液晶表示装置、ならびに光変換部材の製造方法
JP2016102999A (ja) * 2014-11-14 2016-06-02 富士フイルム株式会社 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置
WO2017043483A1 (ja) * 2015-09-07 2017-03-16 凸版印刷株式会社 波長変換シート用保護フィルム及びその製造方法、並びに、波長変換シート及びバックライトユニット
WO2017086319A1 (ja) * 2015-11-18 2017-05-26 凸版印刷株式会社 保護フィルム及び波長変換シート

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019069827A1 (ja) * 2017-10-05 2020-09-17 凸版印刷株式会社 蛍光体保護フィルム、波長変換シート及び発光ユニット
JP7259755B2 (ja) 2017-10-05 2023-04-18 凸版印刷株式会社 蛍光体保護フィルム、波長変換シート及び発光ユニット

Also Published As

Publication number Publication date
JPWO2019017448A1 (ja) 2020-05-28
CN110945390A (zh) 2020-03-31
KR20200029016A (ko) 2020-03-17
CN110945390B (zh) 2022-04-08
JP7173008B2 (ja) 2022-11-16

Similar Documents

Publication Publication Date Title
JP6705213B2 (ja) 波長変換シート用保護フィルム、波長変換シート及びバックライトユニット
US11214038B2 (en) Wavelength conversion sheet protective films and methods of producing the same, wavelength conversion sheets and backlight units
CN107430303B (zh) 量子点保护膜以及使用其而得到的波长变换片及背光单元
US11642869B2 (en) Phosphor protection film, wavelength conversion sheet, and light-emitting unit
JP6202074B2 (ja) 波長変換シート
WO2018079495A1 (ja) ガスバリアフィルム及び色変換部材
JP2016213369A (ja) 波長変換シート用保護フィルム、波長変換シート及びバックライトユニット
WO2018030401A1 (ja) 蛍光体保護フィルム、波長変換シート及び発光ユニット
WO2017126609A1 (ja) 発光体保護フィルム及びその製造方法、並びに波長変換シート及び発光ユニット
JP2016218339A (ja) 蛍光体保護フィルム、波長変換シート及びバックライトユニット
JP7173008B2 (ja) 波長変換シートの製造方法
JP6710908B2 (ja) ガスバリア積層体、波長変換シート及びバックライトユニット
US20200009829A1 (en) Transparent conductive gas barrier laminate and device including the laminate
CN206292493U (zh) 波长转换片用保护膜、波长转换片和背光单元
WO2020204103A1 (ja) 透明導電性ガスバリア積層体及びその製造方法、並びにデバイス
JP6507847B2 (ja) バリアフィルム及び波長変換シート、並びに、それらの製造方法
JP6776591B2 (ja) 波長変換シート及びバックライトユニット
JP5157378B2 (ja) 光学シート、該光学シート備える表示装置
JP2007103426A (ja) 長尺光学フィルタ、枚葉の光学フィルタ、及びそれらの製造方法
WO2020138235A1 (ja) 機能性フィルム及び機能性合わせガラス
JP2006047687A (ja) 光学フィルタ及びプラズマディスプレイパネル
JP2019006080A (ja) 発光体保護フィルム、波長変換シート、及びバックライトユニット並びにエレクトロルミネッセンス発光ユニット
JP2017217919A (ja) ガスバリア性積層フィルム及び波長変換シート
JP2005107345A (ja) 光学フィルタ及びプラズマディスプレイパネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835403

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530601

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207004358

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18835403

Country of ref document: EP

Kind code of ref document: A1