WO2019015221A1 - 波长转换装置、包含其的光源及投影装置 - Google Patents

波长转换装置、包含其的光源及投影装置 Download PDF

Info

Publication number
WO2019015221A1
WO2019015221A1 PCT/CN2017/114718 CN2017114718W WO2019015221A1 WO 2019015221 A1 WO2019015221 A1 WO 2019015221A1 CN 2017114718 W CN2017114718 W CN 2017114718W WO 2019015221 A1 WO2019015221 A1 WO 2019015221A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
conversion device
substrate
light
phosphor
Prior art date
Application number
PCT/CN2017/114718
Other languages
English (en)
French (fr)
Inventor
李乾
王艳刚
许颜正
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2019015221A1 publication Critical patent/WO2019015221A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a wavelength conversion device, a light source including the same, and a projection device.
  • the main application forms of semiconductor light sources are traditional LED light sources and emerging laser light sources.
  • the traditional LED light source technology can no longer meet the requirements of high brightness and high power.
  • the use of emerging laser sources to excite wavelength-converting materials enables the acquisition of visible light in a variety of colors.
  • This technology has been increasingly used in lighting and display applications. This technology has high efficiency, low energy consumption, low cost and long life. The advantage is an ideal alternative to existing white or monochromatic light.
  • a technique of remotely exciting a rotating fluorescent color wheel by a laser is usually employed.
  • the blue laser light emitted from the excitation light source is collected and focused on a turntable having a phosphor sheet on the surface to excite the phosphor material to emit light, and the turntable is rotated at a high speed under the driving of the motor, and the area where the phosphor sheet is excited is constantly changed but the position of the spot is not changed.
  • the change and the periodic sequence of color light sequences are generated as the turntable rotates.
  • the excitation mode is divided into two types: reflective excitation and transmissive excitation. In practical applications, in order to obtain the highest light efficiency, higher utilization of excitation light, reflective excitation is often used.
  • the wavelength conversion device of the laser light source often utilizes a silica gel encapsulation technology developed from the LED light source technology, that is, a silica gel mixed phosphor is used, and then brushed on a disc-shaped metal substrate to obtain a phosphor package light-emitting layer that can be used for rotation. .
  • a silica gel encapsulation technology developed from the LED light source technology, that is, a silica gel mixed phosphor is used, and then brushed on a disc-shaped metal substrate to obtain a phosphor package light-emitting layer that can be used for rotation.
  • a large amount of heat generated during the laser irradiation may have a significant influence on the performance of the light-emitting layer of the wavelength conversion device.
  • an object of the present invention is to provide a wavelength conversion device having higher reliability and higher conversion efficiency, a light source including the same, and a projection device.
  • the present invention provides a wavelength conversion device comprising a light emitting layer, a reflective layer and a substrate stacked in sequence, wherein the light emitting layer comprises a first glass frit and a phosphor material, wherein the phosphor material
  • the first glass frit is encapsulated into a layer, and the phosphor material has a particle diameter D50 of 5-20 ⁇ m.
  • the substrate is a ceramic substrate
  • the substrate (103) is composed of a ceramic material or a single crystal inorganic material; the shape of the substrate (103) is selected from a disc shape or a circular shape.
  • the phosphor material is selected from the group consisting of a yellow phosphor and/or a green phosphor and/or a red phosphor; wherein the yellow phosphor has a particle diameter D50 of 8 -17 ⁇ m; wherein the green phosphor has a particle diameter D50 of 15-16 ⁇ m; wherein the red phosphor has a particle diameter D50 of 10-17 ⁇ m.
  • the reflective layer includes a second glass frit and reflective particles, wherein the reflective particles are encapsulated into layers by the second glass frit, and the reflective particles have a particle diameter D50 of 0.02-3 ⁇ m. .
  • the shapes of the reflective layer and the light-emitting layer are each independently a part of a circular or a circular shape; wherein the reflective layer and the light-emitting layer are The shape is the same.
  • the first glass frit and the second glass frit are of the same type; the first glass frit has a particle diameter D50 of 3.1-3.5 ⁇ m; the second glass frit The particle diameter D50 is 0.5-1 ⁇ m.
  • the wavelength conversion device further includes a second substrate disposed under the substrate; the second substrate is selected from the group consisting of a copper substrate, an aluminum substrate, a ceramic substrate, and an aluminum nitride Single crystal substrate.
  • the invention provides a light source comprising the wavelength conversion device of the invention.
  • the present invention provides a projection apparatus comprising the wavelength conversion device of the present invention.
  • the invention controls the phosphor material in the light-emitting layer and the reflection in the light-emitting layer by controlling the phosphor material in the wavelength conversion device, preferably controlling the particle size of the reflective particles and the encapsulant.
  • the deposition filling rate of the reflective particles in the layer is higher, thereby making the light-emitting layer have higher light conversion efficiency and the reflective layer has a higher average reflectance, so that the wavelength conversion device can still be at a high excitation light power density. Can maintain high efficiency and reliability.
  • 1 is a side view and a plan view of a configuration of a wavelength conversion device according to an embodiment of the present invention.
  • FIG 2 is a side view of a first variation of the wavelength conversion device in accordance with an embodiment of the present invention.
  • FIG 3 is a side view of a second variation of the wavelength conversion device in accordance with an embodiment of the present invention.
  • D50 means the size of the particle diameter when the cumulative particle size distribution of the particle sample reaches 50%.
  • the wavelength conversion device includes a light-emitting layer 101, a reflective layer 102, and a substrate 103 which are sequentially stacked.
  • the material for preparing the substrate 103 may be a ceramic material or a single crystal inorganic material.
  • the substrate 103 may be of any shape, and preferably the shape of the substrate 103 may be a disk shape, a circular ring shape or a part of a circular ring shape (for example, a semicircular ring shape).
  • the reflective layer 102 is attached to the substrate 103 to reflect the remaining excitation light transmitted through the light-emitting layer 101 and the laser light converted by the light-emitting layer 101, and the shape of the reflective layer may be a circular ring or a ring. Part of the shape (for example, a semicircular ring).
  • the light-emitting layer 101 is attached on the reflective layer 102 for emitting visible light having a wavelength different from the excitation light under excitation of the excitation light, wherein the shape of the light-emitting layer is a part of a circular ring or a circular ring (for example Semicircular ring).
  • the above three-layer structure can be obtained by sintering at a temperature of from 750 ° C to 950 ° C, preferably 850 ° C.
  • the above three-layer structure that is, the light-emitting layer 101, the reflective layer 102, and the substrate 103 will be described in detail.
  • the light emitting layer 101 includes a first glass frit and a phosphor material, wherein the phosphor material is encapsulated into a layer by the first glass frit as an encapsulant to form the light emitting layer 101.
  • the function of the luminescent layer 101 is to receive illumination of excitation light (e.g., blue laser light) and to excite the phosphor material in the luminescent layer to produce visible light of other wavelengths.
  • the shape of the luminescent layer 101 is generally a part of a circular or circular ring (for example, a semicircular ring shape).
  • the width of the light-emitting layer 101 is uniform or slightly wider than the width of the reflective layer 102.
  • Phosphor materials mainly use yellow phosphors such as YAG:Ce 3+ phosphors; and green phosphors such as LuAG:Ce 3+ phosphors.
  • red phosphors such as Sialon orange powder and commercial phosphors such as CaAlSiN 3 :Eu 2+ red powder can also be used.
  • the phosphor may have a particle diameter D50 of 5 to 20 ⁇ m, preferably 8 to 17 ⁇ m.
  • the phosphor when a yellow phosphor is used, the phosphor has a particle diameter D50 of 8-17 ⁇ m, preferably 8 ⁇ m, 15 ⁇ m, and 17 ⁇ m; when a green phosphor is used, the phosphor has a particle diameter D50 of 15-16 ⁇ m. Preferably, it is 15 ⁇ m and 16 ⁇ m; when a red phosphor is used, the phosphor has a particle diameter D50 of 10 to 17 ⁇ m, preferably 10 ⁇ m, 15 ⁇ m and 17 ⁇ m.
  • the shape of the phosphor material can be selected from rounded spherical, ellipsoidal or polygonal shapes; phosphor powder You can also choose sharp edges or irregular shapes.
  • a phosphor material may be used, or two different phosphor materials may be used to prepare the luminescent layer, for example, (1) in order to adjust the laser color of the luminescent layer or reduce the high calorific fluorescent material.
  • phosphor particle size D50 is determined according to the above particle size range; or (2) in order to improve filling rate, luminous efficiency and heat
  • phosphors having different particle sizes for example, a yellow phosphor having a particle diameter D50 of 17 ⁇ m and a yellow phosphor having a particle diameter D50 of 8 ⁇ m are mixed together to increase the content of phosphor particles in the light-emitting layer.
  • the first glass (also referred to as "bonding medium”; hereinafter referred to as the first glass powder) for encapsulating the phosphor material may be selected from the silicate glass powder SiO 2 -B 2 O 3 -RO, wherein R is selected From one or more of Al, Mg, Ca, Sr, Ba, Na, K.
  • the first glass frit has a particle diameter D50 of from 3.1 to 3.5 ⁇ m.
  • other lead silicate glass powders having different softening points aluminoborosilicate glass powder, aluminate glass powder, sodium calcium can be selected.
  • the thickness of the light-emitting layer 101 may generally be from 120 to 200 ⁇ m.
  • the reflective layer 102 is located between the light emitting layer 101 and the substrate 103.
  • the function of the reflective layer 102 is to reflect the remaining excitation light (such as excited blue light) transmitted through the light-emitting layer 101 and to reflect the laser light converted by the light-emitting layer 101.
  • the reflective layer 102 includes a second glass frit and a reflective particle, wherein the reflective particle is encapsulated into a layer by the second glass frit as an encapsulant, and the reflective particle has a particle diameter D50 of 0.02-3 ⁇ m, preferably 0.02-2 ⁇ m. More preferably, it is 0.05-0.5 ⁇ m.
  • the reflective layer 102 uses a second glass (hereinafter referred to as a second glass frit) as a bonding medium, and encapsulates the small-sized reflective particles into a sheet shape.
  • the shape of the reflective layer 102 generally coincides with the shape of the light-emitting layer 101, and the reflective layer 102
  • the width is generally the same as or slightly narrower than the width of the light-emitting layer 101, and the reflective layer 102 is attached to the outside of the surface of the substrate 103.
  • the reflective particles are white inorganic powders having a relatively high refractive index, and mainly include powdery alumina and titanium oxide particles.
  • the alumina particles have a refractive index of 1.65-1.76, a particle diameter D50 of 0.1-0.5 ⁇ m, a shape of a predominantly spherical shape, a polyhedral or sheet-like structure, and a refractive index of the titanium oxide particles of 2.1 to 2.56 and a particle diameter D50. It may be 0.1 to 3 ⁇ m, preferably 0.5 to 2 ⁇ m.
  • the second glass frit may also be selected from the above silicate glass powder SiO 2 -B 2 O 3 -RO or other lead silicate glass powders having different softening points, aluminoborosilicate glass powder, aluminate One or more of glass powder, soda lime glass powder and quartz glass powder.
  • the second glass frit may be selected from the same type as the first glass frit and/or the glass powder of the particle diameter D50, or the second glass frit may be selected from the same type as the first glass frit but having a smaller particle diameter D50.
  • the smaller glass powder contributes to the adhesion between the reflective layer and the luminescent layer during sintering, increasing the reliability of the wavelength conversion device.
  • the second glass frit has a particle diameter D50 of 0.5 to 1 ⁇ m.
  • other types of glass frits may be used as long as the thermal expansion coefficient is close to the substrate, the light transmittance is high, and the sintering performance is good.
  • the substrate 103 may have a thickness of 1-1.5 mm and a thermal conductivity of 150 or more, and the shape of the substrate may be a disk shape, a circular or a ring-shaped portion, or the like.
  • An aluminum nitride substrate, an alumina substrate, an alumina single crystal (sapphire) substrate, a silicon carbide substrate, a silicon nitride substrate, or the like can be used as long as it satisfies the requirements of high temperature treatment and high thermal conductivity.
  • the configuration of the wavelength conversion device according to the embodiment of the present invention has been exemplarily described above with reference to FIG. 1, the configuration of the wavelength conversion device of the present invention is not limited thereto, and may have other configurations.
  • another substrate 104 may be introduced and the substrate 104 may be coupled to the substrate 103.
  • the substrate 104 may be a copper substrate, an aluminum substrate, a ceramic substrate or other substrate with a heat dissipation effect to provide some additional performance for the light emitting device; or may be a single crystal substrate such as alumina (sapphire) or aluminum nitride.
  • the shape of the substrate 103 may be a disk shape as shown in FIG. 2 or a circular ring as shown in FIG.
  • the invention relates to a light source comprising a wavelength conversion device according to the invention.
  • the present invention relates to a projection device comprising the wavelength conversion device of the present invention.
  • the invention relates to a lighting device comprising the wavelength conversion device according to the invention.
  • the light source can be applied, for example, to a laser education projector, a laser television, a laser engineering projector, a cinema projector, a laser DLP splicing wall, and the like.
  • the particle diameter of the phosphor material in the light-emitting layer affects the luminous efficiency and the yield (reliability).
  • the particle size of the phosphor material is in a specific range In the case of (5-20 ⁇ m), it is possible to achieve better luminous efficiency while ensuring better yield than the phosphor material having a smaller particle size ( ⁇ 5 ⁇ m); Phosphor materials with particle size (>20 ⁇ m) not only achieve better yield, but also achieve better luminous efficiency.
  • the yield here refers to the reliability of the prepared wavelength conversion device samples. The ratio of the sample that meets the requirements to the total amount of the sample.
  • the particle size of the reflective particles in the reflective layer further affects the average reflectance.
  • the particle diameter of the reflective particles is within a specific range (0.02-3 ⁇ m)
  • a higher average reflectance (91% or more) can be exhibited compared to a reflective particle having a larger particle diameter (>3 ⁇ m).
  • the inventors found that the reflectance was greatly lowered due to the drawback of increasing the binder in order to obtain the same filling ratio.
  • the wavelength conversion devices fabricated using different phosphor material particle sizes and reflective particle diameters exhibited different yields, luminous efficiencies, and reflectances.
  • the inventors have for the first time discovered the relationship between the particle size of the phosphor material and the particle size of the reflective particles and the yield, luminous efficiency, and reflectance.
  • the phosphor material is used to prepare a wavelength conversion device.
  • the particle diameter of the phosphor material is increased to 20 ⁇ m or more, since the deposition filling ratio of the phosphor is lower, the luminous efficiency of the prepared wavelength conversion device is remarkably lowered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种波长转换装置、包含其的光源及投影装置,波长转换装置包含依次层叠的发光层(101)、反射层(102)和基板(103),其特征在于,发光层(101)包括第一玻璃粉和荧光粉材料,其中荧光粉材料被第一玻璃粉封装成层,其中荧光粉材料的粒径D50为5-20μm。通过控制荧光粉材料、优选控制反射粒子及封装剂的粒径大小使得波长转换装置在保证了高粘接良率的情况下,发光层(101)中的荧光粉粒子和反射层(102)中的反射粒子的堆积填充率更高,进而使发光层(101)具有更高光转换效率以及使反射层(102)具有更高的平均反射率,以使波长转换装置能够在高激发光功率密度下仍可保持较高的效率和可靠性。

Description

波长转换装置、包含其的光源及投影装置 技术领域
本发明涉及一种波长转换装置、包含其的光源及投影装置。
背景技术
目前,半导体光源的主要应用形式是传统的LED光源和新兴的激光光源,在具有高亮度要求的显示领域,传统的LED光源技术已经无法满足高亮度、高功率的需求。采用新兴的激光光源激发波长转换材料的方法能够获得各种颜色的可见光,该技术已经越来越多的应用于照明和显示领域,这种技术具有效率高、能耗少、成本低、寿命长的优势,是现有白光或者单色光的理想替代方案。
在激光光源中,通常采用激光远程激发旋转荧光色轮的技术。例如,将激发光源发出的蓝激光收集并聚焦于一个表面为荧光粉片的转盘,激发荧光粉材料发光,转盘在马达的驱动下高速旋转,荧光粉片受到激发的区域不断改变但光斑位置不变,并可随着转盘的转动产生周期性时序的色光序列。激发方式分为反射式激发和透射式激发两种。在实际应用中,为获得最高光效、更高利用率的激发光,往往采用反射式激发。激光光源的波长转换装置往往利用从LED光源技术发展而来的硅胶封装技术,即,使用硅胶混合荧光粉,然后刷涂于圆盘形金属基板之上,获得可用于旋转的荧光粉封装发光层。然而,当采用远比LED功率密度更高的激光照射时,激光照射过程中产生的大量热量会对波长转换装置发光层的性能带来显著影响。
因此,针对高功率激光光源应用中出现的上述关键问题,需要提供一种可靠性更好、转换效率更高的波长转换装置。
发明内容
鉴于上述情况,本发明的目的是提供一种可靠性更好、转换效率更高的波长转换装置、包含其的光源及投影装置。
在一方面,本发明提供了一种波长转换装置,所述波长转换装置包括依次层叠的发光层、反射层和基板,其中,发光层包括第一玻璃粉和荧光粉材料,其中该荧光粉材料被该第一玻璃粉封装成层,所述荧光粉材料的粒径D50为5-20μm。
优选的,对于本发明上述的波长转换装置,其中,所述基板为陶瓷基板, 所述基板(103)由陶瓷材料或单晶类无机材料组成;所述基板(103)的形状选自圆盘形或圆环形。
优选的,对于本发明上述的波长转换装置,其中,所述荧光粉材料选自黄色荧光粉和/或绿色荧光粉和/或红色荧光粉;其中,所述黄色荧光粉的粒径D50为8-17μm;其中,所述绿色荧光粉的粒径D50为15-16μm;其中,所述红色荧光粉的粒径D50为10-17μm。
优选地,在本发明上述的波长转换装置中,反射层包括第二玻璃粉和反射粒子,其中该反射粒子被该第二玻璃粉封装成层,所述反射粒子的粒径D50为0.02-3μm。
优选的,对于本发明上述的波长转换装置,其中,所述反射层和所述发光层的形状各自独立地为圆环形或圆环形的一部分;其中所述反射层与所述发光层的形状相同。
优选的,对于本发明上述的波长转换装置,所述第一玻璃粉和所述第二玻璃粉类型相同;所述第一玻璃粉的粒径D50为3.1-3.5μm;所述第二玻璃粉的粒径D50为0.5-1μm。
进一步优选的,对于本发明上述的波长转换装置,所述波长转换装置进一步包含设置在所述基板下方的第二基板;所述第二基板选自铜基板、铝基板、陶瓷基板、氮化铝单晶基板。
另一方面,本发明提供了一种光源,所述光源包含本发明所述的波长转换装置。
又一方面,本发明提供了一种投影装置,所述投影装置包含本发明所述的波长转换装置。
本发明通过控制波长转换装置中的荧光粉材料、优选控制反射粒子及封装剂的粒径大小使得该波长转换装置在保证了高粘接良率的情况下,发光层中的荧光粉粒子和反射层中的反射粒子的堆积填充率更高,进而使得发光层具有更高的光转换效率并使得反射层具有更高的平均反射率,以使得该波长转换装置能够在高激发光功率密度下仍然可以保持较高的效率和可靠性。
附图说明
图1是根据本发明的实施例的波长转换装置的构造的侧视图和俯视图。
图2是根据本发明的实施例的波长转换装置的第一变型的侧视图。
图3是根据本发明的实施例的波长转换装置的第二变型的侧视图。
具体实施方式
下面,将参照附图详细地说明本发明的实施方式,但本发明的保护范围并不仅限于此。
在本申请中,除非另有说明,术语“D50”表示颗粒样品的粒径累计分布达到50%时的粒径的大小。
首先,参照图1说明根据本发明的实施例的波长转换装置的构造。如图1所示,波长转换装置包括依次层叠的发光层101、反射层102和基板103。制备基板103的材料可以是陶瓷材料或单晶类无机材料。所述基板103可为任意形状,优选所述基板103的形状可以是圆盘形、圆环形或圆环形的一部分(例如半圆环形)。反射层102附着在基板103上,以将反射层102用于反射透过发光层101剩余的激发光和发光层101转换的受激光,并且所述反射层的形状可以是圆环形或圆环形的一部分(例如半圆环形)。另外,发光层101附着在反射层102上,以用于在激发光的激发下发出具有不同于激发光的波长的可见光,其中该发光层的形状是圆环形或圆环形的一部分(例如半圆环形)。上述三层结构可通过在750℃-950℃、优选850℃的温度下烧结得到。
接着,将详细地说明上述的三层结构,即,发光层101、反射层102和基板103。
发光层101
发光层101包括第一玻璃粉和荧光粉材料,其中该荧光粉材料被作为封装剂的该第一玻璃粉封装成层,形成该发光层101。发光层101的作用是接受激发光(例如,蓝色激光)的照射并激发该发光层中的荧光粉材料产生其它波长的可见光。发光层101的形状通常是圆环形或圆环形的一部分(例如半圆环形)。通常,发光层101的宽度与反射层102的宽度一致或略宽。
荧光粉材料主要采用黄色荧光粉,如YAG:Ce3+荧光粉;以及绿色荧光粉,如LuAG:Ce3+荧光粉。此外,也可以采用红色荧光粉,如Sialon类橙色粉和CaAlSiN3:Eu2+类红色粉等商业化的荧光粉。所述荧光粉的粒径D50可为5-20μm、优选8-17μm。例如,当采用黄色荧光粉时,所述荧光粉的粒径D50为8-17μm,优选为8μm、15μm和17μm;当采用绿色荧光粉时,所述荧光粉的粒径D50为15-16μm,优选为15μm和16μm;当采用红色荧光粉时,所述荧光粉的粒径D50为10-17μm,优选为10μm、15μm和17μm。
荧光粉材料的形状可以选择边缘圆润的球形、椭球形或多边形;荧光粉材 料也可以选择边缘尖锐的多边形或不规则形状。在制作发光层时,可选用一种荧光粉材料,亦可以选用两种不同的荧光粉材料混合制作发光层,例如,(1)为了调整发光层的受激光颜色或降低高发热量荧光粉材料的含量,将不同颜色的荧光粉材料混合,如短波长黄色荧光粉+长波长黄色荧光粉,荧光粉粒径D50按上述粒径范围选择确定;或者(2)为了提高填充率、发光效率和热稳定性,将粒径大小不同的荧光粉(如粒径D50为17μm的黄色荧光粉、粒径D50为8μm的黄色荧光粉)混合在一起,增加发光层中的荧光粉颗粒的含量。
用于封装荧光粉材料的第一玻璃(也称为“粘接介质”;以下称为第一玻璃粉)可选用硅酸盐玻璃粉SiO2-B2O3-RO,其中,R为选自Al、Mg、Ca、Sr、Ba、Na、K中的一种或多种。优选,第一玻璃粉的粒径D50为3.1-3.5μm。此外,除上述硅酸盐玻璃粉外,作为第一玻璃粉,还可以选择其它的具有不同软化点的铅硅酸盐玻璃粉、铝硼硅酸盐玻璃粉、铝酸盐玻璃粉、钠钙玻璃粉和石英玻璃粉中的一种或多种。
发光层101的厚度一般可为120-200μm。
反射层102
反射层102位于发光层101和基板103之间。反射层102的作用是对透过发光层101的剩余的激发光(如激发蓝光)进行反射以及对发光层101转换的受激光进行反射。其中,反射层102包括第二玻璃粉和反射粒子,其中该反射粒子被作为封装剂的该第二玻璃粉封装成层,所述反射粒子的粒径D50为0.02-3μm、优选0.02-2μm、更优选0.05-0.5μm。反射层102采用第二玻璃(以下称为第二玻璃粉)作为粘接介质,将小粒径的反射粒子封装成为片状,反射层102的形状通常与发光层101的形状一致,反射层102的宽度通常与发光层101的宽度一致或略窄,反射层102附着于基板103的表面外侧。
反射粒子采用折射率较高的白色无机粉末,主要包括粉末状的氧化铝和氧化钛粒子。优选氧化铝粒子的折射率为1.65-1.76,粒径D50可为0.1-0.5μm,形状主要为球形,也可以为多面体或片状结构;氧化钛粒子的折射率为2.1-2.56,粒径D50可为0.1-3μm、优选0.5-2μm。
第二玻璃粉同样可选自上述的硅酸盐玻璃粉SiO2-B2O3-RO或者其它的具有不同软化点的铅硅酸盐玻璃粉、铝硼硅酸盐玻璃粉、铝酸盐玻璃粉、钠钙玻璃粉和石英玻璃粉中的一种或多种。第二玻璃粉可以选用与第一玻璃粉的类型和/或粒径D50相同的玻璃粉,或者,第二玻璃粉可以选用与第一玻璃粉的类 型相同但粒径D50更小的玻璃粉,其中更小的玻璃粉会有助于烧结时反射层与发光层之间的粘接,增加波长转换装置的可靠性。优选第二玻璃粉的粒径D50为0.5-1μm。另外,还可以使用其它类型的玻璃粉,只要满足热膨胀系数与基板接近、透光率高、烧结性能好等条件即可。
基板103
基板103的厚度可为1-1.5mm,热导率为150以上,基板的形状可以是圆盘形、圆环形或圆环形的一部分等。可以采用氮化铝基板、氧化铝基板、氧化铝单晶(蓝宝石)基板、碳化硅基板、氮化硅基板等,只要满足高温处理和高热导率的要求即可。
虽然在上文中已参照图1对根据本发明的实施例的波长转换装置的构造进行了示例性说明,但是本发明的波长转换装置的构造不限于此,也可以具有其它构造。
例如,如图2和图3所示,可以引入另一基板104,并将该基板104与基板103连接。例如,将上述的三层结构(发光层101-反射层102-基板103)烧结制备完成后,通过粘接、焊接等低温加工的方式,置于基板104之上。其中,基板104可以是铜基板、铝基板、陶瓷基板或其它自带散热效果的基板,以便为发光装置提供一些额外的性能;还可以是氧化铝(蓝宝石)、氮化铝等单晶类基板,以便提供光束穿透或镀膜等的一些额外的效果。在这种情况下,基板103的形状可以是如图2所示的圆盘形或如图3所示的圆环形。
此外,本发明还涉及一种光源,所述光源包含本发明所述的波长转换装置。
另外,本发明还涉及一种投影装置,所述投影装置包含本发明所述的波长转换装置。
此外,本发明还涉及一种照明装置,所述照明装置包含本发明所述的波长转换装置。
该光源例如可以应用于激光教育投影机、激光电视、激光工程投影机、影院投影机、激光DLP拼接墙等。
实施例
接着,将通过如下制备例来说明本发明的示例性的波长转换装置的组成和结构。
本发明人在研究中发现,对于波长转换装置而言,发光层中的荧光粉材料的粒径影响了发光效率和良率(可靠性)。当荧光粉材料的粒径处于特定范围 内(5-20μm)的时候,比起具有更小粒径(<5μm)的荧光粉材料而言,在确保较好的良率的同时,能够实现更好的发光效率;比起具有更大粒径(>20μm)的荧光粉材料而言,不仅实现了更好的良率,而且还实现了更好的发光效率,此处的良率是指在制备的波长转换装置样品中,可靠性符合要求的样品占样品总量的比值。
另外,本发明人还发现,对于波长转换装置而言,反射层中的反射粒子的粒径会进一步影响平均反射率。当反射粒子的粒径处于特定范围内(0.02-3μm)的时候,比起具有更大粒径(>3μm)的反射粒子,能够显示出更高的平均反射率(91%以上)。如下表2中所示出的,当发射粒子的粒径大于3μm时,本发明人发现由于为了得到同样的填充率需要增加粘接剂的这一缺陷,反射率会出现较大的下降。
如下表1和表2中所示,采用不同的荧光粉材料粒径和反射粒子粒径制作得到的波长转换装置表现出不同的良率、发光效率和反射率。本发明人首次发现了荧光粉材料粒径和反射粒子粒径与良率、发光效率和反射率之间的关系。
表1 不同粒径的荧光粉材料对应的发光效率和良率
Figure PCTCN2017114718-appb-000001
由上表可以看出,为了同时满足获得良好的发光效率(172Lm/W以上)和良率(80%以上)的要求,需要采用具有落入本发明所述范围内的粒径(5-20μm)的荧光粉材料来制备波长转换装置。而当荧光粉材料的粒径增大到20μm以上时,由于荧光粉的堆积填充率更低,所以制备得到的波长转换装置的发光效率明显下降。
表2 不同粒径的反射粒子对应的平均反射率
反射粒子粒径D50(μm) 相同厚度的平均反射率
0.02 91%
0.05 92%
0.1 95%
0.2 96%
0.5 95%
1 91%
3 91%
5 89%
7 88%
10 88%
12 85%
15 85%
由上表可以看出,当采用具有落入本发明所述范围内的粒径(0.02-3μm)的反射粒子制备波长转换装置时,可以进一步显示出更高的平均反射率(91%以上)。正如上文所述,当发射粒子的粒径大于3μm时,平均反射率出现了较大的下降。
尽管在上文中已经参照附图示例性地说明了根据本发明的波长转换装置,但是本发明不限于此,且本领域技术人员应理解,在不偏离本发明随附的权利要求限定的精神或构思的情况下,可以做出各种改变、组合、次组合以及变型。

Claims (9)

  1. 一种波长转换装置,所述波长转换装置包括依次层叠的发光层、反射层和基板,其特征在于,所述发光层包括第一玻璃粉和荧光粉材料,其中所述荧光粉材料被所述第一玻璃粉封装成层;
    所述荧光粉材料的粒径D50为5-20μm。
  2. 如权利要求1所述的波长转换装置,其特征在于,所述基板为陶瓷基板,所述基板由陶瓷材料或单晶类无机材料组成;
    所述基板的形状选自圆盘形或圆环形。
  3. 如权利要求1所述的波长转换装置,其中,所述荧光粉材料选自黄色荧光粉和/或绿色荧光粉和/或红色荧光粉;
    其中,所述黄色荧光粉的粒径D50为8-17μm;
    其中,所述绿色荧光粉的粒径D50为15-16μm;
    其中,所述红色荧光粉的粒径D50为10-17μm。
  4. 如权利要求1所述的波长转换装置,其中,所述反射层包括第二玻璃粉和反射粒子,其中所述反射粒子被所述第二玻璃粉封装成层;所述反射粒子的粒径D50为0.2-3μm。
  5. 如权利要求1-4中任一项所述的波长转换装置,其中,所述反射层和所述发光层的形状各自独立地为圆环形或圆环形的一部分;
    其中所述反射层与所述发光层的形状相同。
  6. 如权利要求4所述的波长转换装置,其中,所述第一玻璃粉和所述第二玻璃粉类型相同;
    其中,所述第一玻璃粉的粒径D50为3.1-3.5μm;
    其中,所述第二玻璃粉的粒径D50为0.5-1μm。
  7. 如权利要求1所述的波长转换装置,所述波长转换装置进一步包含设置在所述基板下方的第二基板;
    其中所述第二基板选自铜基板、铝基板、陶瓷基板、氮化铝单晶基板。
  8. 一种光源,所述光源包含权利要求1-7中任一项所述的波长转换装置。
  9. 一种投影装置,所述投影装置包含权利要求1-7中任一项所述的波长转换装置。
PCT/CN2017/114718 2017-07-21 2017-12-06 波长转换装置、包含其的光源及投影装置 WO2019015221A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710600503.6 2017-07-21
CN201710600503.6A CN109282169B (zh) 2017-07-21 2017-07-21 波长转换装置、包含其的光源及投影装置

Publications (1)

Publication Number Publication Date
WO2019015221A1 true WO2019015221A1 (zh) 2019-01-24

Family

ID=65014955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114718 WO2019015221A1 (zh) 2017-07-21 2017-12-06 波长转换装置、包含其的光源及投影装置

Country Status (2)

Country Link
CN (1) CN109282169B (zh)
WO (1) WO2019015221A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11287730B2 (en) * 2020-05-07 2022-03-29 Delta Electronics, Inc. Wavelength converting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203489181U (zh) * 2013-10-15 2014-03-19 深圳市光峰光电技术有限公司 色轮及其光源系统、投影系统
US20140085923A1 (en) * 2012-09-27 2014-03-27 Stanley Electric Co., Ltd. Light emitting device
CN104595852A (zh) * 2013-10-30 2015-05-06 深圳市绎立锐光科技开发有限公司 一种波长转换装置、漫反射层、光源系统及投影系统
CN105278225A (zh) * 2014-07-21 2016-01-27 深圳市绎立锐光科技开发有限公司 波长转换装置及其制备方法、相关发光装置和投影装置
CN105693108A (zh) * 2016-01-13 2016-06-22 南京大学 一种反射式荧光玻璃光转换组件的制备及应用
CN106206904A (zh) * 2015-04-29 2016-12-07 深圳市光峰光电技术有限公司 一种波长转换装置、荧光色轮及发光装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101620967B (zh) * 2008-06-30 2012-12-12 四川虹欧显示器件有限公司 透明介质浆料和应用该浆料的等离子显示屏
CN102031114A (zh) * 2010-11-26 2011-04-27 中国科学院理化技术研究所 一种纳米结构球形荧光粉的制备方法
CN102633440B (zh) * 2012-04-26 2015-04-08 江苏脉锐光电科技有限公司 包含荧光体的玻璃涂层及其制造方法、发光器件及其制造方法
CN103137840A (zh) * 2013-02-27 2013-06-05 中国科学院半导体研究所 一种白光发光二极管及其制作方法
CN104100933B (zh) * 2013-04-04 2016-08-10 深圳市绎立锐光科技开发有限公司 一种波长转换装置及其制作方法、相关发光装置
JP2015129257A (ja) * 2013-12-04 2015-07-16 日東電工株式会社 光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置
CN104953014B (zh) * 2014-03-28 2019-01-29 深圳光峰科技股份有限公司 一种多层结构玻璃荧光粉片及其制备方法及发光装置
CN105322433B (zh) * 2014-05-28 2020-02-04 深圳光峰科技股份有限公司 波长转换装置及其相关发光装置
CN104193346B (zh) * 2014-08-21 2017-11-17 厦门百嘉祥微晶材料科技股份有限公司 一种半透明的荧光粉/玻璃复合发光陶瓷片及其制备方法
CN106195925A (zh) * 2015-04-29 2016-12-07 深圳市光峰光电技术有限公司 一种波长转换装置、发光装置及投影装置
CN106206910B (zh) * 2015-04-30 2019-07-16 深圳光峰科技股份有限公司 一种用于大功率光源的发光陶瓷及发光装置
CN106328794A (zh) * 2015-07-02 2017-01-11 厦门百嘉祥微晶材料科技股份有限公司 一种led封装工艺
CN105470370B (zh) * 2015-11-25 2018-04-06 南京大学 一种荧光玻璃光转换材料的制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140085923A1 (en) * 2012-09-27 2014-03-27 Stanley Electric Co., Ltd. Light emitting device
CN203489181U (zh) * 2013-10-15 2014-03-19 深圳市光峰光电技术有限公司 色轮及其光源系统、投影系统
CN104595852A (zh) * 2013-10-30 2015-05-06 深圳市绎立锐光科技开发有限公司 一种波长转换装置、漫反射层、光源系统及投影系统
CN105278225A (zh) * 2014-07-21 2016-01-27 深圳市绎立锐光科技开发有限公司 波长转换装置及其制备方法、相关发光装置和投影装置
CN106206904A (zh) * 2015-04-29 2016-12-07 深圳市光峰光电技术有限公司 一种波长转换装置、荧光色轮及发光装置
CN105693108A (zh) * 2016-01-13 2016-06-22 南京大学 一种反射式荧光玻璃光转换组件的制备及应用

Also Published As

Publication number Publication date
CN109282169A (zh) 2019-01-29
CN109282169B (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
CN106206904B (zh) 一种波长转换装置、荧光色轮及发光装置
JP6428194B2 (ja) 波長変換部材及びその製造方法ならびに発光装置
WO2017148344A1 (zh) 一种波长转换装置和光源系统
US20230174862A1 (en) Narrow-Band Red Photoluminescence Materials for Solid-State Light Emitting Devices and Filaments
WO2011108194A1 (ja) 発光装置
WO2016173525A1 (zh) 一种波长转换装置、发光装置及投影装置
WO2018225424A1 (ja) 波長変換体及びその製造方法、並びに波長変換体を用いた発光装置
WO2020015363A1 (zh) 波长转换装置
WO2019136830A1 (zh) 波长转换装置
TWI823976B (zh) 波長轉換元件、製造其之方法、光轉換裝置、及產生白光的方法
TWI791044B (zh) 具有無機接合劑的磷光輪
CN102945914A (zh) 一种用于光学波长转换的荧光玻璃涂层及白光发光装置
WO2019071865A1 (zh) 波长转换装置
WO2019230934A1 (ja) 波長変換素子および光源装置
CN201237164Y (zh) 一种白光led
CN109282169B (zh) 波长转换装置、包含其的光源及投影装置
WO2013159664A1 (zh) 一种白光led发光装置及制备方法
TWI757521B (zh) 波長轉換構件及發光裝置
WO2022052616A1 (zh) 透射式波长转换装置及其发光装置
WO2019153620A1 (zh) 波长转换装置
CN102810537B (zh) 白光led发光装置
WO2019136831A1 (zh) 波长转换装置及其光源
WO2019015220A1 (zh) 波长转换装置、包含其的光源及投影装置
JP2019029648A (ja) 波長変換部材及び発光装置
TW201830733A (zh) 發光裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917929

Country of ref document: EP

Kind code of ref document: A1