WO2019015220A1 - 波长转换装置、包含其的光源及投影装置 - Google Patents
波长转换装置、包含其的光源及投影装置 Download PDFInfo
- Publication number
- WO2019015220A1 WO2019015220A1 PCT/CN2017/114717 CN2017114717W WO2019015220A1 WO 2019015220 A1 WO2019015220 A1 WO 2019015220A1 CN 2017114717 W CN2017114717 W CN 2017114717W WO 2019015220 A1 WO2019015220 A1 WO 2019015220A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wavelength conversion
- conversion device
- light
- phosphor
- substrate
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K9/00—Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
- F21K9/60—Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
- F21K9/64—Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V9/00—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
- F21V9/08—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
Definitions
- the present invention relates to a wavelength conversion device, a light source including the same, and a projection device.
- the main application form of the semiconductor light source is a conventional LED light source and an emerging laser light source, wherein the laser light source adopts a technique of exciting the phosphor material with a blue laser to obtain visible light.
- laser light source has great application prospects in the field of illumination and display.
- the phosphor is the core light wavelength conversion material, and the performance and packaging method of the phosphor have an important influence on the performance of the light source.
- LED light sources and laser light sources have different performance and working methods, and each has its own characteristics in the packaging of phosphors.
- the excitation phosphor used in the conventional LED light source has a small maximum optical power density inside the spot on which the excitation light of the LED is incident on the surface of the phosphor, and the phenomenon of thermal quenching of the phosphor is not obvious. Therefore, for the preparation of the phosphor sheet, the anti-settling property and the dispersion uniformity of the phosphor in the silica gel are more paid attention to, in order to obtain a more uniform luminescence and color development effect.
- the laser source is raised, the blue laser is used as the excitation light, and the spot incident on the surface of the phosphor is close to the spot size of the LED, but the power is much higher.
- the power density of the blue spot of the LED is generally 1-3 W/mm 2
- the power density of the blue spot in the laser source is 10 W/mm 2 or more
- the maximum can reach 100 W/mm 2 or more
- the optical power density of the laser light source can be seen. It is more than 1-2 orders of magnitude higher than the LED.
- the phosphor film (ie, the wavelength conversion plate) in the LED light source is mainly obtained by using a silica gel encapsulating phosphor, and the working mode is mainly transmissive.
- the general form is that the phosphor sheet is covered on the LED chip, and the two are closely adhered or have a millimeter-level gap in the middle.
- the blue light emitted by the LED a part of the blue light is used to excite the phosphor in the light wavelength conversion sheet, and emits yellow light to the outside; a part of the blue light needs to penetrate the light wavelength conversion sheet, emit blue light to the outside, and then blue light.
- white light is emitted.
- the phosphor powder in the LED light source generally has a low content of phosphors, and the gap between the particles is large for the blue light to exit.
- Laser sources generally use remotely excited rotating phosphor technology (this method will The blue laser light emitted by the excitation light source is collected and focused on a turntable containing a phosphor sheet on the surface to excite the phosphor material to emit light, and the turntable is rotated at a high speed under the driving of the motor, and the area where the phosphor sheet is excited is constantly changed but the position of the spot is unchanged.
- a reflective excitation method is often used in order to obtain maximum yellow light in order to obtain the highest light efficiency with the rotation of the turntable.
- the phosphor film of the laser light source does not need to consider the blue light emission as the LED light source, but at the same time, it must satisfy the excitation of the high-density blue light to avoid the light saturation phenomenon, so the phosphor content of the laser light source phosphor film is compared with that of the LED. It is much higher, and the choice of phosphor particles is much stricter than that of LEDs.
- the phosphor sheet in the laser light source is more likely to generate a large amount of heat because the excitation light power density is too high, resulting in a heat quenching effect.
- an object of the present invention is to provide a wavelength conversion device having higher reliability and higher conversion efficiency, a light source including the same, and a projection device.
- the present invention provides a wavelength conversion device including a light-emitting layer 101, a reflective layer 102, and a substrate 103 which are sequentially stacked, wherein the light-emitting layer 101 includes a first organic adhesive and a phosphor material.
- the phosphor material is encapsulated into a layer by the first organic binder, and the phosphor material has a particle diameter D50 of 5-20 ⁇ m.
- the substrate 103 is a ceramic substrate, and the substrate 103 is composed of a ceramic material or a single crystal inorganic material; the shape of the substrate 103 is selected from a disc shape or a circular shape. .
- the phosphor material is selected from the group consisting of a yellow phosphor and/or a green phosphor and/or a red phosphor; wherein the yellow phosphor has a particle diameter D50 of 8 -17 ⁇ m; wherein the green phosphor has a particle diameter D50 of 15-16 ⁇ m; wherein the red phosphor has a particle diameter D50 of 10-17 ⁇ m.
- the reflective layer 102 includes a second organic binder and reflective particles, wherein the reflective particles are encapsulated into layers by the second adhesive, the reflective particles
- the particle diameter D50 was 0.02-3 ⁇ m.
- the first organic binder and the first The two organic binder may be selected from a silica gel or a resin material, wherein the second organic binder may be the same as or different from the first organic binder.
- an adhesive layer is further disposed between the reflective layer 102 and the substrate 103, wherein the adhesive layer is composed of a silica gel or a resin material.
- the invention provides a light source comprising the wavelength conversion device of the invention.
- the present invention provides a projection apparatus comprising the wavelength conversion device of the present invention.
- the invention controls the phosphor material in the wavelength conversion device, preferably the particle size of the reflective particles and the encapsulant, so that the wavelength conversion device ensures the high adhesion yield, the phosphor particles and the reflection layer in the luminescent layer
- the deposition filling rate of the reflective particles is higher, thereby making the luminescent layer have higher light conversion efficiency and the reflective layer has a higher average reflectance, so that the wavelength conversion device can still be at a high excitation light power density. Maintain high efficiency and reliability.
- 1 is a side view and a plan view of a configuration of a wavelength conversion device according to an embodiment of the present invention.
- D50 means the size of the particle diameter when the cumulative particle size distribution of the particle sample reaches 50%.
- the wavelength conversion device includes a light-emitting layer 101, a reflective layer 102, and a substrate 103 which are sequentially stacked.
- the material for preparing the substrate 103 may be a ceramic material or a single crystal inorganic material.
- the substrate 103 may be of any shape, and preferably the shape of the substrate 103 may be a disk shape, a circular ring shape or a part of a circular ring shape (for example, a semicircular ring shape).
- the reflective layer 102 is attached to the substrate 103 to reflect the remaining excitation light transmitted through the light-emitting layer 101 and the laser light converted by the light-emitting layer 101, and the shape of the reflective layer may be a circular ring or a ring. Part of the shape Such as a semicircular ring).
- the light-emitting layer 101 is attached on the reflective layer 102 for emitting visible light having a wavelength different from the excitation light under excitation of the excitation light, wherein the shape of the light-emitting layer is a part of a circular ring or a circular ring (for example Semicircular ring).
- the above three-layer structure that is, the light-emitting layer 101, the reflective layer 102, and the substrate 103 will be described in detail.
- the light emitting layer 101 includes a first organic binder and a phosphor material, wherein the phosphor material is encapsulated into a layer by a first organic binder as a matrix to form the light emitting layer 101.
- the function of the luminescent layer 101 is to receive illumination of excitation light (e.g., blue laser light) and to excite the phosphor material in the luminescent layer to produce visible light of other wavelengths.
- the shape of the luminescent layer 101 is generally a part of a circular or circular ring (for example, a semicircular ring shape).
- the width of the light-emitting layer 101 is uniform or slightly wider than the width of the reflective layer 102.
- Phosphor materials mainly use yellow phosphors such as YAG:Ce 3+ phosphors; and green phosphors such as LuAG:Ce 3+ phosphors.
- red phosphors such as Sialon orange powder and commercial phosphors such as CaAlSiN 3 :Eu 2+ red powder can also be used.
- the phosphor may have a particle diameter D50 of 5 to 20 ⁇ m, preferably 8 to 17 ⁇ m.
- the phosphor when a yellow phosphor is used, the phosphor has a particle diameter D50 of 8-17 ⁇ m, preferably 8 ⁇ m, 15 ⁇ m, and 17 ⁇ m; when a green phosphor is used, the phosphor has a particle diameter D50 of 15-16 ⁇ m. Preferably, it is 15 ⁇ m and 16 ⁇ m; when a red phosphor is used, the phosphor has a particle diameter D50 of 10 to 17 ⁇ m, preferably 10 ⁇ m, 15 ⁇ m and 17 ⁇ m.
- the shape of the phosphor material can be selected from rounded spherical, ellipsoidal or polygonal shapes; the phosphor material can also be selected with sharp edges or irregular shapes.
- a phosphor material may be used, or two different phosphor materials may be used to prepare the luminescent layer, for example, (1) in order to adjust the laser color of the luminescent layer or reduce the high calorific fluorescent material.
- phosphor particle size is determined according to the above particle size range; or (2) in order to improve filling rate, luminous efficiency and thermal stability
- the phosphors having different particle sizes (such as a yellow phosphor having a particle diameter D50 of 17 ⁇ m and a yellow phosphor having a particle diameter D50 of 8 ⁇ m) are mixed together to increase the content of phosphor particles in the light-emitting layer.
- the first organic binder used to encapsulate the phosphor material may be selected from silica gel or a resin.
- silica gel having a refractive index of from 1.40 to 1.55, preferably from 1.41 to 1.52, is preferably used.
- the refractive index of the silica gel used refers to the native properties of silica gel.
- Silica gel having a relatively low refractive index (for example, about 1.41) is preferably used in the light-emitting layer of the present invention.
- Silica gel having a relatively high refractive index and silica gel having a refractive index of about 1.52 can also be used.
- the thickness of the light-emitting layer 101 is generally from 120 to 200 ⁇ m, preferably from 80 to 120 ⁇ m.
- the reflective layer 102 is located between the light emitting layer 101 and the substrate 103.
- the function of the reflective layer 102 is to reflect the remaining excitation light (such as excited blue light) transmitted through the light-emitting layer 101 and to reflect the laser light converted by the light-emitting layer 101.
- the reflective layer 102 includes a second organic binder and reflective particles, wherein the reflective particles are encapsulated into layers by the second adhesive, and the reflective particles have a particle diameter D50 of 0.02-3 ⁇ m, preferably 0.02-2 ⁇ m, and more. It is preferably 0.05-0.5 ⁇ m.
- the reflective layer 102 uses a second organic adhesive as a bonding medium, and encapsulates the small-sized reflective particles into a sheet shape.
- the shape of the reflective layer 102 is generally the same as the shape of the light-emitting layer 101.
- the width of the reflective layer 102 is usually the same as the light-emitting layer.
- the width of 101 is uniform or slightly narrow, and the reflective layer 102 is attached to the outside of the surface of the substrate 103.
- the reflective particles are white inorganic powder particles having a relatively high refractive index, and mainly include powdery alumina and titanium oxide particles.
- the alumina particles have a refractive index of 1.65-1.76, a particle diameter D50 of 0.1-0.5 ⁇ m, a shape of a predominantly spherical shape, or a polyhedral or sheet-like structure; the refractive index of the titanium oxide particles is 2.1-2.56, and the particle diameter D50 can be It is 0.1 to 3 ⁇ m, preferably 0.5 to 2 ⁇ m.
- the second organic binder may be the same organic binder as the first organic binder (for example, silica gel), or may be an organic binder different from the first organic binder, for example, different types, refractive index Organic binders with different and/or different properties.
- the second organic binder may be selected from silica gel having a different refractive index than the first organic binder.
- the selection of the second organic binder mainly considers the adhesion properties of the reflective layer to the substrate.
- the second organic binder used in the reflective layer is required to be higher than the organic binder used in the light-emitting layer.
- the thickness of the reflective layer may be from 60 to 120 um, preferably from 80 to 100 um.
- the thickness of the substrate 103 may be 0.6 to 1.5 mm, preferably 0.8 to 1 mm.
- the shape of the substrate may be a disk shape, a circular or a ring-shaped portion, or the like.
- the substrate can be a substrate commonly used in the art.
- a substrate based on aluminum, copper, or the like can be used.
- An inorganic ceramic substrate such as an aluminum nitride substrate, an alumina substrate, an alumina single crystal (sapphire) substrate, a silicon carbide substrate, or a silicon nitride substrate, or a single crystal substrate may be used.
- the substrate may be a ceramic substrate, made of a ceramic material or a single crystal Inorganic material composition.
- an aluminum film may be plated on the side where the substrate (103) is in contact with the reflective layer to further enhance the reflectance of the wavelength conversion device and enhance the adhesion of the substrate to an organic adhesive (for example, silicone).
- an organic adhesive for example, silicone
- the configuration of the wavelength conversion device according to the embodiment of the present invention has been exemplarily described above with reference to FIG. 1, the configuration of the wavelength conversion device of the present invention is not limited thereto, and may have other configurations.
- an adhesive layer may be further disposed between the reflective layer (102) and the substrate (103).
- the bonding layer is a silica gel layer.
- the performance index of the bonding layer is selected to be strong in adhesion and good in thermal conductivity as a transition layer between the substrate (especially the metal substrate) and the reflective layer.
- the invention relates to a light source comprising a wavelength conversion device according to the invention.
- the invention relates to a projection device comprising the wavelength conversion device according to the invention.
- the light source can be applied, for example, to a laser education projector, a laser television, a laser engineering projector, a cinema projector, a laser DLP splicing wall, and the like.
- the particle size of the phosphor material in the light-emitting layer affects the luminous efficiency and the yield (reliability).
- the particle size of the phosphor material is within a specific range (5-20 ⁇ m)
- Good luminescence efficiency not only achieve better yield, but also achieve better luminescence efficiency than phosphor materials with larger particle size (>20 ⁇ m).
- the ratio of the sample whose reliability meets the requirements to the total amount of the sample.
- the particle diameter of the reflective particles in the reflective layer further affects the average reflectance.
- the particle size of the reflective particles is within a specific range (0.02-3 ⁇ m)
- the particle diameter of the emitted particles was more than 3 ⁇ m, the inventors found that the reflectance was greatly lowered due to the drawback of increasing the binder in order to obtain the same filling ratio.
- wavelength replacement devices fabricated using different phosphor material particle sizes and reflective particle sizes exhibited different yields, luminescence efficiencies, and reflectances.
- the inventors have for the first time discovered the relationship between the particle size of the phosphor material and the particle size of the reflective particles and the yield, luminous efficiency, and reflectance.
- the phosphor material is used to prepare a wavelength conversion device.
- the particle diameter of the phosphor material is increased to 20 ⁇ m or more, since the deposition filling ratio of the phosphor is lower, the luminous efficiency of the prepared wavelength conversion device is remarkably lowered.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Projection Apparatus (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Luminescent Compositions (AREA)
Abstract
一种波长转换装置、包含其的光源及投影装置,波长转换装置包含依次层叠的发光层(101)、反射层(102)和基板(103),发光层(101)包括第一有机粘接剂和荧光粉材料,荧光粉材料被作为基质的第一有机粘接剂封装成层,其中,荧光粉材料的粒径D50为5-20μm。通过控制波长转换装置中荧光粉材料、优选控制反射粒子及封装剂的粒径大小使得波长转换装置在保证了高粘接良率的情况下,发光层(101)中荧光粉粒子和反射层(102)中的反射粒子的堆积填充率更高,进而使发光层(101)具有更高的光转换效率以及使反射层(102)具有更高的平均反射率,以使波长转换装置能够在高激发光功率密度下仍可保持较高的效率和可靠性。
Description
本发明涉及一种波长转换装置、包含其的光源及投影装置。
目前,半导体光源的主要应用形式是传统的LED光源和新兴的激光光源,其中激光光源采用了以蓝色激光激发荧光粉材料获得可见光的技术。作为一种全新的光源体系,激光光源在照明和显示领域中极具应用前景。在LED光源和激光光源中,荧光粉均是核心的光波长转换材料,荧光粉的性能和封装方式,对光源性能的影响举足轻重。
然而,LED光源和激光光源的性能和工作方式均不同,并且在荧光粉的封装上也各有特点。
首先,就激发荧光粉而言,用于传统LED光源的激发荧光粉由于LED的激发光入射到荧光粉表面的光斑内部的最大光功率密度较小,荧光粉的热淬灭等现象不明显,因此对于荧光粉片的制备则会更注重荧光粉在硅胶中的抗沉降性能和分散均匀性,以期获得更均匀的发光及显色效果。当激光光源兴起之后,蓝色激光作为激发光,其入射到荧光粉表面的光斑与LED的光斑大小接近,但是功率却要高得多。例如,LED的蓝光光斑功率密度一般为1-3W/mm2,而激光光源中蓝光光斑功率密度则要达到10W/mm2以上,最大可达到100W/mm2以上,可见激光光源的光功率密度要高于LED 1-2个数量级以上。
其次,LED光源中的荧光粉片(即光波长转换片)主要是采用硅胶封装荧光粉的方式获得,工作方式以透射式为主。一般形式为荧光粉片覆盖于LED芯片之上,两者紧密贴合或者中间留有毫米级的空隙。以LED白光器件为例,LED发出的蓝光,一部分蓝光用来激发光波长转换片中的荧光粉,向外部发出黄光;一部分蓝光则需要穿透光波长转换片,向外部出射蓝光,然后蓝光和黄光按一定比例混合调制,则得到出射的白光。为了达到部分蓝光出射的效果,该LED光源的荧光粉片中荧光粉的含量一般较低,颗粒之间空隙较大以便蓝光的出射。而激光光源一般采用远程激发旋转荧光粉技术(该方法将
激发光源发出的蓝激光收集并聚焦于一个表面含荧光粉片的转盘上,激发荧光粉材料发光,转盘在马达的驱动下高速旋转,荧光粉片受到激发的区域不断改变但光斑位置不变,并可随着转盘的转动产生周期性时序的色光序列),在该技术中为了获得最高光效,往往采用反射式的激发方式,其主要追求最大限度的获得黄光。因此,激光光源的荧光粉片无需如LED光源那般考虑蓝光的出射,但同时要满足高密度蓝光的激发而避免出现光饱和现象,因此激光光源荧光粉片的荧光粉的含量相比LED的要高很多,并且荧光粉颗粒的选择也比LED的要严格很多。
此外,激光光源中荧光粉片更容易因为激发光功率密度太高而产生大量热量,从而导致发生热淬灭效应。
因此,针对高功率激光光源应用中出现的上述关键问题,需要提供一种可靠性更好、转换效率更高的波长转换装置。
发明内容
鉴于上述情况,本发明的目的是提供一种可靠性更好、转换效率更高的波长转换装置、包含其的光源及投影装置。
在一方面,本发明提供了一种波长转换装置,该波长转换装置包括依次层叠的发光层101、反射层102和基板103,其中,发光层101包括第一有机粘接剂和荧光粉材料,其中该荧光粉材料被该第一有机粘接剂封装成层,所述荧光粉材料的粒径D50为5-20μm。
优选的,本发明上述的波长转换装置,其中所述基板103为陶瓷基板,所述基板103由陶瓷材料或单晶类无机材料组成;所述基板103的形状选自圆盘形或圆环性。
优选的,对于本发明上述的波长转换装置,其中,所述荧光粉材料选自黄色荧光粉和/或绿色荧光粉和/或红色荧光粉;其中,所述黄色荧光粉的粒径D50为8-17μm;其中,所述绿色荧光粉的粒径D50为15-16μm;其中,所述红色荧光粉的粒径D50为10-17μm。
进一步优选地,在本发明上述的波长转换装置中,反射层102包括第二有机粘接剂和反射粒子,其中,所述反射粒子被该第二粘接剂封装成层,所述反射粒子的粒径D50为0.02-3μm。
优选的,本发明上述的波长转换装置中,所述第一有机粘接剂和第
二有机粘接剂可选自硅胶或树脂材料,其中,所述第二有机粘接剂与所述第一有机粘接剂可相同或不同。
进一步优选的,对于本发明上述的波长转换装置,其中,所述反射层102和基板103之间进一步设置粘接层,其中,所述粘接层由硅胶或树脂材料组成。
一方面,本发明提供了一种光源,所述光源包含本发明所述的波长转换装置。
又一方面,本发明提供了一种投影装置,所述投影装置包含本发明所述的波长转换装置。
本发明通过控制波长转换装置中的荧光粉材料、优选控制反射粒子及封装剂的粒径大小使得该波长转换装置在保证了高粘接良率的情况下,发光层中荧光粉粒子和反射层中的反射粒子的堆积填充率更高,进而使得发光层具有更高的光转换效率并使得反射层具有更高的平均反射率,以使得该波长转换装置能够在高激发光功率密度下仍然可以保持较高的效率和可靠性。
图1是根据本发明的实施例的波长转换装置的构造的侧视图和俯视图。
下面,将参照附图详细地说明本发明的实施方式,但本发明的保护范围并不仅限于此。
在本申请中,除非另有说明,术语“D50”表示颗粒样品的粒径累计分布达到50%时的粒径的大小。
首先,参照图1说明根据本发明的实施例的波长转换装置的构造。如图1所示,波长转换装置包括依次层叠的发光层101、反射层102和基板103。制备基板103的材料可以是陶瓷材料或单晶类无机材料。所述基板103可为任意形状,优选所述基板103的形状可以是圆盘形、圆环形或圆环形的一部分(例如半圆环形)。反射层102附着在基板103上,以将反射层102用于反射透过发光层101剩余的激发光和发光层101转换的受激光,并且所述反射层的形状可以是圆环形或圆环形的一部分(例
如半圆环形)。另外,发光层101附着在反射层102上,以用于在激发光的激发下发出具有不同于激发光的波长的可见光,其中该发光层的形状是圆环形或圆环形的一部分(例如半圆环形)。
接着,将详细地说明上述的三层结构,即,发光层101、反射层102和基板103。
发光层101
发光层101包括第一有机粘接剂和荧光粉材料,其中该荧光粉材料被作为基质的第一有机粘接剂封装成层,形成该发光层101。发光层101的作用是接受激发光(例如,蓝色激光)的照射并激发该发光层中的荧光粉材料产生其它波长的可见光。发光层101的形状通常是圆环形或圆环形的一部分(例如半圆环形)。通常,发光层101的宽度与反射层102的宽度一致或略宽。
荧光粉材料主要采用黄色荧光粉,如YAG:Ce3+荧光粉;以及绿色荧光粉,如LuAG:Ce3+荧光粉。此外,也可以采用红色荧光粉,如Sialon类橙色粉和CaAlSiN3:Eu2+类红色粉等商业化的荧光粉。所述荧光粉的粒径D50可为5-20μm、优选8-17μm。例如,当采用黄色荧光粉时,所述荧光粉的粒径D50为8-17μm,优选为8μm、15μm和17μm;当采用绿色荧光粉时,所述荧光粉的粒径D50为15-16μm,优选为15μm和16μm;当采用红色荧光粉时,所述荧光粉的粒径D50为10-17μm,优选为10μm、15μm和17μm。
荧光粉材料的形状可以选择边缘圆润的球形、椭球形或多边形;荧光粉材料也可以选择边缘尖锐的多边形或不规则形状。在制作发光层时,可选用一种荧光粉材料,亦可以选用两种不同的荧光粉材料混合制作发光层,例如,(1)为了调整发光层的受激光颜色或降低高发热量荧光粉材料的含量,将不同颜色的荧光粉材料混合,如短波长黄色荧光粉+长波长黄色荧光粉,荧光粉粒径按上述粒径范围选择确定;或者(2)为了提高填充率、发光效率和热稳定性,将粒径大小不同的荧光粉(如粒径D50为17μm的黄色荧光粉、粒径D50为8μm的黄色荧光粉)混合在一起,增加发光层中荧光粉颗粒的含量。
用于封装荧光粉材料的第一有机粘接剂可选自硅胶或树脂。对于硅胶而言,优选使用折射率为1.40-1.55、优选1.41-1.52的硅胶。本文中所
使用的硅胶的折射率是指硅胶的原生性能。在本发明的发光层优选使用折射率相对低(例如,约1.41)的硅胶。还可使用折射率相对高的硅胶,折射率为约1.52的硅胶。
发光层101的厚度一般为120-200μm、优选80-120μm。
反射层102
反射层102位于发光层101和基板103之间。反射层102的作用是对透过发光层101的剩余的激发光(如激发蓝光)进行反射以及对发光层101转换的受激光进行反射。其中,反射层102包括第二有机粘接剂和反射粒子,其中该反射粒子被该第二粘接剂封装成层,所述反射粒子的粒径D50为0.02-3μm、优选0.02-2μm、更优选0.05-0.5μm。反射层102采用第二有机粘接剂作为粘接介质,将小粒径的反射粒子封装成为片状,反射层102的形状通常与发光层101的形状一致,反射层102的宽度通常与发光层101的宽度一致或略窄,反射层102附着于基板103的表面外侧。
反射粒子采用折射率较高的白色无机粉末粒子,主要包括粉末状的氧化铝和氧化钛粒子。优选氧化铝粒子的折射率为1.65-1.76,粒径D50为0.1-0.5μm,形状主要为球形,也可以为多面体或片状结构;氧化钛粒子的折射率为2.1-2.56,粒径D50可为0.1-3μm、优选0.5-2μm。
第二有机粘接剂可以选用与第一有机粘接剂相同的有机粘接剂(例如硅胶),或者可选用与第一有机粘接剂不同的有机粘接剂,例如,类型不同、折射率不同和/或性能不同的有机粘接剂。例如,第二有机粘接剂可以选用与第一有机粘接剂具有不同折射率的硅胶。第二有机粘接剂的选择主要考虑反射层与基板的粘接性能。一般而言,反射层所用的第二有机粘接剂的要求要比发光层中所用的有机粘接剂要高一些。
反射层的厚度可为60-120um、优选80-100um。
基板103
基板103的厚度可为0.6-1.5mm、优选0.8-1mm。基板的形状可以是圆盘形、圆环形或圆环形的一部分等。基板可以采用本领域常用的基板。例如,可以采用基于铝、铜等的基板。也可以采用氮化铝基板、氧化铝基板、氧化铝单晶(蓝宝石)基板、碳化硅基板、氮化硅基板等无机陶瓷基板或单晶类基板。例如,基板可为陶瓷基板,由陶瓷材料或单晶类
无机材料组成。
对于铝基板,可在基板(103)与反射层接触的一侧镀铝膜,以进一步增强波长转换装置的反射率并增强基板与有机粘接剂(例如,有机硅胶)的粘接力。
虽然在上文中已参照图1对根据本发明的实施例的波长转换装置的构造进行了示例性说明,但是本发明的波长转换装置的构造不限于此,也可以具有其它构造。
例如,反射层(102)和基板(103)之间可进一步设置粘接层。优选地粘接层为硅胶层。选择该粘接层的性能指标是粘接力强,导热性好,以作为基板(尤其是金属基板)与反射层之间的过渡层。
此外,本发明还涉及一种光源,所述光源包含本发明所述的波长转换装置。
此外,本发明还涉及一种投影装置,所述投影装置包含本发明所述的波长转换装置。
该光源例如可以应用于激光教育投影机、激光电视、激光工程投影机、影院投影机、激光DLP拼接墙等。
实施例
接着,将通过如下制备例来说明本发明的示例性的波长转换装置的组成和结构。
本发明人在研究中发现,对于波长装换装置而言,发光层中的荧光粉材料的粒径影响了发光效率和良率(可靠性)。当荧光粉材料的粒径处于特定范围内(5-20μm)的时候,比起具有更小粒径(<5μm)的荧光粉材料而言,在确保较好的良率的同时,能够实现更好的发光效率;比起具有更大粒径(>20μm)的荧光粉材料而言,不仅实现了更好的良率,而且还实现了更好的发光效率,此处的良率定指制备的波长转换装置样品中,可靠性符合要求的样品占样品总量的比值。
另外,本发明人还发现,对于波长装换装置而言,反射层中的反射粒子的粒径会进一步影响平均反射率。当反射粒子的粒径处于特定范围内(0.02-3μm)的时候,比起具有更大粒径(>3μm)的反射粒子,能够
显示出更高的平均反射率(91%以上)。如下表2中所示出的,当发射粒子的粒径大于3μm时,本发明人发现由于为了得到同样的填充率需要增加粘接剂的这一缺陷,反射率会出现较大的下降。
如下表1和表2中所示,采用不同的荧光粉材料粒径和反射粒子粒径制作得到的波长装换装置表现出不同的良率、发光效率和反射率。本发明人首次发现了荧光粉材料粒径和反射粒子粒径与良率、发光效率和反射率之间的关系。
表1不同粒径的荧光粉材料对应的发光效率和良率
由上表可以看出,为了同时满足获得良好的发光效率(172Lm/W以上)和良率(80%以上)的要求,需要采用具有落入本发明所述范围内的粒径(5-20μm)的荧光粉材料来制备波长转换装置。而当荧光粉材料的粒径增大到20μm以上时,由于荧光粉的堆积填充率更低,所以制备得到的波长转换装置的发光效率明显下降。
表2不同粒径的反射粒子对应的平均反射率
反射粒子粒径D50(μm) | 相同厚度的平均反射率 |
0.02 | 91% |
0.05 | 92% |
0.1 | 95% |
0.2 | 96% |
0.5 | 95% |
1 | 91% |
3 | 91% |
5 | 89% |
7 | 88% |
10 | 88% |
12 | 85% |
15 | 85% |
由上表可以看出,当采用具有落入本发明所述范围内的粒径(0.02-3μm)的反射粒子制备波长转换装置时,可以进一步显示出更高的平均发射率(91%以上)。正如上文所述,当发射粒子的粒径大于3μm
时,平均反射率出现了较大的下降。
尽管在上文中已经参照附图示例性地说明了根据本发明的波长转换装置,但是本发明不限于此,且本领域技术人员应理解,在不偏离本发明随附的权利要求限定的精神或构思的情况下,可以做出各种改变、组合、次组合以及变型。
Claims (9)
- 一种波长转换装置,所述波长转换装置包括依次层叠的发光层、反射层和基板,其特征在于,所述发光层包括第一有机粘接剂和荧光粉材料,其中,所述荧光粉材料被作为基质的所述第一有机粘接剂封装成层;其中,所述荧光粉材料的粒径D50为5-20μm。
- 如权利要求1所述的波长转换装置,其中,所述基板为陶瓷基板,所述基板由陶瓷材料或单晶类无机材料组成;其中,所述基板的形状选自圆盘形或圆环形。
- 如权利要求1所述的波长转换装置,其中,所述荧光粉材料选自黄色荧光粉和/或绿色荧光粉和/或红色荧光粉;其中,所述黄色荧光粉的粒径D50为8-17μm;其中,所述绿色荧光粉的粒径D50为15-16μm;其中,所述红色荧光粉的粒径D50为10-17μm。
- 如权利要求1所述的波长转换装置,其中,所述反射层包括第二有机粘接剂和反射粒子,其中,所述反射粒子被所述第二有机粘接剂封装成层;所述反射粒子的粒径D50为0.2-3μm。
- 如权利要求1-4中任一项所述的波长转换装置,其中,所述反射层和所述发光层的形状各自独立地为圆环形或圆环形的一部分。
- 如权利要求4所述的波长转换装置,其中,所述第一有机粘接剂和所述第二有机粘接剂分别由硅胶或树脂材料组成;其中,所述第二有机粘接剂与所述第一有机粘接剂相同或不同。
- 如权利要求1所述的波长转换装置,其中,在所述反射层和基板之间进一步设置粘接层;其中,所述粘接层由硅胶或树脂材料组成。
- 一种光源,所述光源包含权利要求1-7中任一项所述的波长转换装置。
- 一种投影装置,所述投影装置包含权利要求1-7中任一项所述的波长转换装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710600488.5 | 2017-07-21 | ||
CN201710600488.5A CN109424942A (zh) | 2017-07-21 | 2017-07-21 | 波长转换装置、包含其的光源及投影装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019015220A1 true WO2019015220A1 (zh) | 2019-01-24 |
Family
ID=65014934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/114717 WO2019015220A1 (zh) | 2017-07-21 | 2017-12-06 | 波长转换装置、包含其的光源及投影装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109424942A (zh) |
WO (1) | WO2019015220A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203489181U (zh) * | 2013-10-15 | 2014-03-19 | 深圳市光峰光电技术有限公司 | 色轮及其光源系统、投影系统 |
US20140085923A1 (en) * | 2012-09-27 | 2014-03-27 | Stanley Electric Co., Ltd. | Light emitting device |
CN104595852A (zh) * | 2013-10-30 | 2015-05-06 | 深圳市绎立锐光科技开发有限公司 | 一种波长转换装置、漫反射层、光源系统及投影系统 |
CN105278225A (zh) * | 2014-07-21 | 2016-01-27 | 深圳市绎立锐光科技开发有限公司 | 波长转换装置及其制备方法、相关发光装置和投影装置 |
CN105693108A (zh) * | 2016-01-13 | 2016-06-22 | 南京大学 | 一种反射式荧光玻璃光转换组件的制备及应用 |
CN106206904A (zh) * | 2015-04-29 | 2016-12-07 | 深圳市光峰光电技术有限公司 | 一种波长转换装置、荧光色轮及发光装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104566230B (zh) * | 2013-10-15 | 2017-07-11 | 深圳市光峰光电技术有限公司 | 波长转换装置及其光源系统、投影系统 |
JP2015129257A (ja) * | 2013-12-04 | 2015-07-16 | 日東電工株式会社 | 光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置 |
JP2016027613A (ja) * | 2014-05-21 | 2016-02-18 | 日本電気硝子株式会社 | 波長変換部材及びそれを用いた発光装置 |
CN105322433B (zh) * | 2014-05-28 | 2020-02-04 | 深圳光峰科技股份有限公司 | 波长转换装置及其相关发光装置 |
CN105276525A (zh) * | 2014-07-09 | 2016-01-27 | 深圳市绎立锐光科技开发有限公司 | 波长转换装置及光源系统 |
CN105591008B (zh) * | 2014-10-24 | 2019-03-29 | 比亚迪股份有限公司 | 一种led点胶方法及led灯 |
CN106195925A (zh) * | 2015-04-29 | 2016-12-07 | 深圳市光峰光电技术有限公司 | 一种波长转换装置、发光装置及投影装置 |
CN204730123U (zh) * | 2015-06-01 | 2015-10-28 | 深圳市光峰光电技术有限公司 | 波长转换装置、光源系统和投影系统 |
-
2017
- 2017-07-21 CN CN201710600488.5A patent/CN109424942A/zh active Pending
- 2017-12-06 WO PCT/CN2017/114717 patent/WO2019015220A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140085923A1 (en) * | 2012-09-27 | 2014-03-27 | Stanley Electric Co., Ltd. | Light emitting device |
CN203489181U (zh) * | 2013-10-15 | 2014-03-19 | 深圳市光峰光电技术有限公司 | 色轮及其光源系统、投影系统 |
CN104595852A (zh) * | 2013-10-30 | 2015-05-06 | 深圳市绎立锐光科技开发有限公司 | 一种波长转换装置、漫反射层、光源系统及投影系统 |
CN105278225A (zh) * | 2014-07-21 | 2016-01-27 | 深圳市绎立锐光科技开发有限公司 | 波长转换装置及其制备方法、相关发光装置和投影装置 |
CN106206904A (zh) * | 2015-04-29 | 2016-12-07 | 深圳市光峰光电技术有限公司 | 一种波长转换装置、荧光色轮及发光装置 |
CN105693108A (zh) * | 2016-01-13 | 2016-06-22 | 南京大学 | 一种反射式荧光玻璃光转换组件的制备及应用 |
Also Published As
Publication number | Publication date |
---|---|
CN109424942A (zh) | 2019-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180158995A1 (en) | Wavelength coinventor, fluorescent color wheel, and light-emitting device | |
CN105423238B (zh) | 波长变换部件、发光装置、投影机、以及波长变换部件的制造方法 | |
WO2017148344A1 (zh) | 一种波长转换装置和光源系统 | |
EP3739257B1 (en) | Wavelength conversion apparatus | |
EP4159826B1 (en) | Reflective color correction for phosphor illumination systems | |
JP6248743B2 (ja) | 蛍光光源装置 | |
CN106195925A (zh) | 一种波长转换装置、发光装置及投影装置 | |
WO2020015363A1 (zh) | 波长转换装置 | |
JP2013207049A (ja) | 波長変換体を用いた発光装置 | |
WO2019104829A1 (zh) | 波长转换装置 | |
JP2005109289A (ja) | 発光装置 | |
CN109477918A (zh) | 颜色转换元件 | |
CN112166354A (zh) | 波长转换元件以及光源装置 | |
CN113583675A (zh) | 激光激发金属衬底荧光膜、荧光转换模块及制备方法和应用 | |
JP2019054073A (ja) | 発光装置の製造方法 | |
CN109282169B (zh) | 波长转换装置、包含其的光源及投影装置 | |
WO2019015220A1 (zh) | 波长转换装置、包含其的光源及投影装置 | |
TW202426598A (zh) | 具有增強的無機黏結劑之光轉換裝置 | |
WO2022052616A1 (zh) | 透射式波长转换装置及其发光装置 | |
WO2019136831A1 (zh) | 波长转换装置及其光源 | |
JP2010199629A (ja) | 半導体発光装置 | |
TW201830733A (zh) | 發光裝置 | |
WO2014010211A1 (ja) | 発光モジュール | |
US20190264099A1 (en) | Resin powder, wavelength conversion plate, light-emitting device, and method of fabricating resin powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17918589 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17918589 Country of ref document: EP Kind code of ref document: A1 |