WO2019015183A1 - 直流电压转换电路及直流电压转换方法与液晶显示装置 - Google Patents

直流电压转换电路及直流电压转换方法与液晶显示装置 Download PDF

Info

Publication number
WO2019015183A1
WO2019015183A1 PCT/CN2017/111421 CN2017111421W WO2019015183A1 WO 2019015183 A1 WO2019015183 A1 WO 2019015183A1 CN 2017111421 W CN2017111421 W CN 2017111421W WO 2019015183 A1 WO2019015183 A1 WO 2019015183A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
diode
cathode
capacitor
electrically connected
Prior art date
Application number
PCT/CN2017/111421
Other languages
English (en)
French (fr)
Inventor
张先明
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US15/579,945 priority Critical patent/US10354601B2/en
Priority to EP17918340.5A priority patent/EP3657654A4/en
Priority to JP2020502113A priority patent/JP6836010B2/ja
Priority to KR1020207004776A priority patent/KR102229573B1/ko
Publication of WO2019015183A1 publication Critical patent/WO2019015183A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/073Charge pumps of the Schenkel-type
    • H02M3/077Charge pumps of the Schenkel-type with parallel connected charge pump stages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/08Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0204Compensation of DC component across the pixels in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a DC voltage conversion circuit, a DC voltage conversion method, and a liquid crystal display device.
  • a liquid crystal display is one of the most widely used flat panel display devices, and a liquid crystal panel is a core component of a liquid crystal display device.
  • the liquid crystal panel usually consists of a color filter substrate (CF Substrate), a thin film transistor array substrate (Thin Film Transistor Array Substrate, TFT Array Substrate), and a liquid crystal layer (Liquid Crystal Layer) disposed between the two substrates. ) constitutes.
  • a pixel electrode and a common electrode are respectively disposed on the array substrate and the color filter substrate.
  • VDD power supply voltage
  • VGH constant voltage high voltage
  • VGL constant voltage low voltage
  • FIG. 1 is a conventional charge pump circuit for generating a constant voltage high potential, comprising a first diode D10, a second diode D20, a third diode D30, and a fourth diode.
  • the cathode of the second diode D20 is electrically connected to the anode of the third diode D30
  • the cathode of the third diode D30 is electrically connected to the anode of the fourth diode D40
  • the cathode of the fourth diode D40 is electrically connected to the cathode of the fourth diode D40.
  • the first end of the first capacitor C10 is electrically connected to the cathode of the first diode D10, the second end is connected to the transformer signal DRP, and the first end of the second capacitor C20 is electrically connected to the second diode
  • the cathode of the tube D20 is grounded, the first end of the third capacitor C30 is electrically connected to the cathode of the third diode D30, the second end is connected to the transformer signal DRP, and the first end of the fourth capacitor C40 is electrically connected.
  • the voltage-varying signal DRP is a pulse signal that alternates with a low level and a high level.
  • the low level voltage is 0V
  • the high level voltage is equal to the input voltage Vin.
  • the first transform signal DRP is 0V, first and second.
  • the cathode voltage of V30 and the fourth diode D40, that is, the output voltage Vout is the input voltage Vin
  • the voltage transformation signal DRP becomes the input voltage Vin
  • the cathode voltages V10, V20, V30, and the cathode voltage of the fourth diode D40, that is, the output voltage Vout become twice the input voltage Vin, and then the voltage-varying signal DRP becomes 0V
  • the second and third diodes D20 The cathode voltages V20 and V30 of D30 and the cathode voltage of the fourth diode D40, that is,
  • Another object of the present invention is to provide a DC voltage conversion method capable of quickly converting an input voltage, having a strong driving capability and a fast response speed.
  • Another object of the present invention is to provide a liquid crystal display device which has high driving capability and fast response speed.
  • the present invention first provides a DC voltage conversion circuit including: a first diode, a second diode, a third diode, a fourth diode, a first capacitor, a second capacitor, a third capacitor, a fourth capacitor, a voltage dividing unit, and a switching unit;
  • the anode of the first diode is connected to the input voltage, the cathode is electrically connected to the anode of the second diode; the cathode of the second diode is electrically connected to the anode of the third diode; The cathode of the diode is electrically connected to the anode of the fourth diode; the cathode of the fourth diode outputs an output voltage; the first end of the voltage dividing unit is electrically connected to the anode of the first diode, The second end is electrically connected to the drain of the switch unit; the gate of the switch unit is connected to the first voltage-varying signal, the source is grounded, and the drain is further connected to the second voltage-varying signal; the first end of the first capacitor Electrically connecting the cathode of the first diode, the second end is connected to the first voltage-varying signal; the first end of the second capacitor is electrically connected to the cathode of the second diode, and the second end is grounded; The first end of the
  • the first voltage-varying signal is a pulse signal in which a high level and a low level are sequentially alternated
  • the first voltage-varying signal is a pulse signal in which a low level and a high level are sequentially alternated
  • the first transformed signal is opposite in phase to the second transformed signal.
  • the voltage of the high level of the first voltage transformation signal is equal to the input voltage, and the voltage of the low level of the first voltage transformation signal is 0V.
  • the voltage dividing unit is a resistor
  • the switch unit is an N-type field effect transistor.
  • the invention also provides a DC voltage conversion method, comprising the following steps:
  • Step S1 providing a DC voltage conversion circuit
  • the DC voltage conversion circuit includes: a first diode, a second diode, a third diode, a fourth diode, a first capacitor, a second capacitor, a third capacitor, a fourth capacitor, a voltage dividing unit, and a switching unit;
  • the anode of the first diode is connected to the input voltage, the cathode is electrically connected to the anode of the second diode; the cathode of the second diode is electrically connected to the anode of the third diode; The cathode of the diode is electrically connected to the anode of the fourth diode; the cathode of the fourth diode outputs an output voltage; the first end of the voltage dividing unit is electrically connected to the anode of the first diode, The second end is electrically connected to the drain of the switch unit; the gate of the switch unit is connected to the first voltage-varying signal, the source is grounded, and the drain is further connected to the second voltage-varying signal; the first end of the first capacitor Electrically connecting the cathode of the first diode, the second end is connected to the first voltage-varying signal; the first end of the second capacitor is electrically connected to the cathode of the second diode, and the second end is grounded; The first end of the
  • Step S2 the first voltage transformation signal is 0V, the second voltage transformation signal is an input voltage, and the cathode voltage of the fourth diode is twice the input voltage;
  • Step S3 the first voltage transformation signal becomes an input voltage, the second voltage transformation signal becomes 0V, and the cathode voltage of the fourth diode maintains twice the input voltage;
  • step S4 the first voltage transformation signal becomes 0V, the second voltage transformation signal becomes an input voltage, and the cathode voltage of the fourth diode becomes three times the input voltage.
  • the voltage dividing unit is a resistor
  • the switch unit is an N-type field effect transistor.
  • the invention also provides a DC voltage conversion method, comprising the following steps:
  • Step S1' providing a DC voltage conversion circuit, the DC voltage conversion circuit comprising: a first diode, a second diode, a third diode, a fourth diode, a first capacitor, and a second capacitor a third capacitor, a fourth capacitor, a voltage dividing unit, and a switching unit;
  • the anode of the first diode is connected to the input voltage, the cathode is electrically connected to the anode of the second diode; the cathode of the second diode is electrically connected to the anode of the third diode; The cathode of the diode is electrically connected to the anode of the fourth diode; the cathode of the fourth diode outputs an output voltage; the first end of the voltage dividing unit is electrically connected to the anode of the first diode, Two-terminal electrical connection switch a drain of the unit; a gate of the switch unit is connected to the first voltage-varying signal, the source is grounded, and the drain is further connected to the second voltage-varying signal; the first end of the first capacitor is electrically connected to the first two a cathode of the pole tube, the second end is connected to the first voltage-varying signal; the first end of the second capacitor is electrically connected to the cathode of the second diode, and the second end is grounded; the
  • Step S2' the first voltage transformation signal is an input voltage
  • the second voltage transformation signal is 0V
  • the cathode voltage of the fourth diode is twice the input voltage
  • step S3' the first transformed signal becomes 0V, the second transformed signal becomes the input voltage, and the cathode voltage of the fourth diode becomes three times the input voltage.
  • the voltage dividing unit is a resistor
  • the switch unit is an N-type field effect transistor.
  • the present invention also provides a liquid crystal display device comprising the DC voltage conversion circuit as described above.
  • a DC voltage conversion circuit provided by the present invention includes first, second, third, fourth diodes, first, second, third, fourth capacitors, voltage dividing units, And a switching unit, the second end of the first capacitor is connected to the first voltage transformation signal, the second end of the third capacitor is connected to the second voltage transformation signal, and the first and second voltage transformation signals are pulse signals The second voltage-varying signal is opposite in phase to the first voltage-varying signal.
  • the invention provides a DC voltage conversion method, which can quickly complete the conversion of the input voltage, has strong driving capability and fast response speed.
  • the liquid crystal display device provided by the invention has strong driving capability and fast response speed.
  • 1 is a circuit diagram of a conventional charge pump circuit
  • FIG. 2 is a timing chart showing the operation of the charge pump circuit shown in FIG. 1;
  • FIG. 3 is a circuit diagram of a DC voltage conversion circuit of the present invention.
  • Fig. 5 is a timing chart showing the operation of the second embodiment of the DC voltage conversion circuit of the present invention.
  • the present invention provides a DC voltage conversion circuit including: a first diode D1, a second diode D2, a third diode D3, a fourth diode D4, and a first capacitor C1.
  • the specific components are connected in the following manner: the anode of the first diode D1 is connected to the input voltage Vin, the cathode is electrically connected to the anode of the second diode D2, and the cathode of the second diode D2 is electrically connected.
  • the anode of the third diode D3; the cathode of the third diode D3 is electrically connected to the anode of the fourth diode D4; the cathode of the fourth diode D4 outputs an output voltage Vout;
  • the first end of the unit R1 is electrically connected to the anode of the first diode D1, and the second end is electrically connected to the drain of the switch unit Q1;
  • the gate of the switch unit Q1 is connected to the first voltage-varying signal DRP1, the source Grounding, the drain is also connected to the second voltage-varying signal DRP2;
  • the first end of the first capacitor C1 is electrically connected to the cathode of the first diode D1, and the second end is connected to the first voltage-varying signal DRP1;
  • the first end of the second capacitor C2 is electrically connected to the cathode of the second diode D2, and the second end is grounded;
  • the first end of the third capacitor C3 is electrically connected to the cath
  • the first transformed signal DRP1 is a pulse signal in which a high level and a low level alternate in sequence;
  • the first transformed signal DRP1 is a pulse signal in which a low level and a high level are sequentially alternated
  • the first transformed signal DRP1 is opposite in phase to the second transformed signal DRP2.
  • the voltage dividing unit R1 is a resistor.
  • the switching unit Q1 is an N-type field effect transistor.
  • the voltage of the high level of the first voltage transformation signal DRP1 is equal to the input voltage Vin, and the voltage of the low level of the first voltage transformation signal DRP1 is 0V, correspondingly, the second voltage transformation signal DRP2
  • the high level voltage is also equal to the input voltage Vin, and the low voltage of the second variable voltage signal DRP2 is also 0V.
  • the first transformed signal DRP1 is a pulse signal with a low level and a high level alternately, and the first variable voltage signal DRP1 is high.
  • the flat voltage is equal to the input voltage Vin, and the voltage of the low level of the first transformed signal DRP1 is 0V.
  • the first transformed signal DRP1 is 0V and is input to the second end of the first capacitor C1 and the gate of the switching unit Q1, the switching unit Q1 is turned off, and the second transformed signal DRP2 is the input voltage Vin And inputting the second end of the third capacitor C3.
  • the cathode voltage V1 of the first diode D1 and the cathode voltage V2 of the second diode D2 are both the input voltage Vin, and the first end of the third capacitor C3
  • the voltage of the third diode D3 is increased to twice the input voltage Vin, and the cathode voltage of the fourth diode D4, that is, the output voltage Vout is also twice the input voltage Vin;
  • the first transformed signal DRP1 becomes the input voltage Vin and is input to the second end of the first capacitor C1 and the gate of the switching unit Q1, the switching unit Q1 is turned on, and the second transformed signal DRP2 becomes 0V and is input to the third The second end of the capacitor C3, at this time, the cathode voltage V1 of the first diode D1 and the cathode voltage V2 of the second diode D2 are both increased to twice the input voltage Vin, and the cathode of the third diode D3
  • the voltage V3, the cathode voltage of the fourth diode D4, that is, the output voltage Vout at this time maintains twice the input voltage Vin;
  • the first voltage-varying signal DRP1 becomes 0V and is input to the second terminal of the first capacitor C1 and the gate of the switching unit Q1, the switching unit Q1 is turned off, and the second voltage-varying signal DRP2 becomes the input voltage Vin and is input to the third capacitor.
  • the second end of C3 increases the voltage of the first terminal of the third capacitor C3, that is, the cathode voltage V3 of the third diode D3, to three times the input voltage Vin, and the cathode voltage of the fourth diode D4 is also the output voltage.
  • Vout is also converted to the input voltage Vin by three times, and the conversion of the input voltage Vin is completed.
  • the conversion of the input voltage can be completed in two cycles of the prior art that requires the voltage-varying signal to be completed. At the end of one cycle of the first transformed signal DRP1 and the second transformed signal DPR2, the conversion of the input voltage Vin is completed, the driving capability is strong, and the response speed is fast.
  • the first transformed signal DRP1 is a pulse signal with a high level and a low level alternately, and the first variable voltage signal DRP1 is high.
  • the flat voltage is equal to the input voltage Vin, and the voltage of the low level of the first transformed signal DRP1 is 0V.
  • the first voltage-varying signal DRP1 is the input voltage Vin and is input to the second terminal of the first capacitor C1 and the gate of the switching unit Q1, the switching unit Q1 is turned on, and the second voltage-varying signal DRP2 is 0V and is input to the third capacitor C3.
  • the cathode voltage V1 of the first diode D1, the cathode voltage V2 of the second diode D2, the cathode voltage V3 of the third diode D3, and the fourth diode D4 The cathode voltage, that is, the output voltage Vout is increased to twice the input voltage Vin;
  • the first transformed signal DRP1 becomes 0V and is input to the second end of the first capacitor C1 and the gate of the switching unit Q1, the switching unit Q1 is turned off, and the second transformed signal DRP2 becomes the input voltage Vin and is input to the third capacitor.
  • the second end of C3 increases the cathode voltage V3 of the first terminal of the third capacitor C3, that is, the third diode D3, to three times the input voltage Vin, and the cathode voltage of the fourth diode D4 is also the output voltage Vout. Up to three times the input voltage Vin, the conversion of the input voltage Vin is completed, and the input voltage is completed in two cycles of the prior art, which requires a voltage-varying signal.
  • the conversion of the input voltage Vin is completed in one-half of the period of the first transformed signal DRP1 and the second transformed signal DRP2, thereby further enhancing the driving capability and improving The speed of the response.
  • the present invention further provides a DC voltage conversion method, including the following steps:
  • Step S1 providing a DC voltage conversion circuit
  • the DC voltage conversion circuit includes: a first diode D1, a second diode D2, a third diode D3, a fourth diode D4, and a first capacitor C1 a second capacitor C2, a third capacitor C3, a fourth capacitor C4, a voltage dividing unit R1, and a switching unit Q1;
  • the anode of the first diode D1 is connected to the input voltage Vin, the cathode is electrically connected to the anode of the second diode D2; the cathode of the second diode D2 is electrically connected to the anode of the third diode D3.
  • the cathode of the third diode D3 is electrically connected to the anode of the fourth diode D4; the cathode of the fourth diode D4 outputs the output voltage Vout; the first end of the voltage dividing unit R1 is electrically Connecting the anode of the first diode D1, the second end is electrically connected to the drain of the switch unit Q1; the gate of the switch unit Q1 is connected to the first voltage-varying signal DRP1, the source is grounded, and the drain is also connected to the first a first voltage-converting signal DRP2; a first end of the first capacitor C1 is electrically connected to a cathode of the first diode D1, a second end is connected to the first voltage-varying signal DRP1; and a first end of the second capacitor C2 is Electrically connecting the cathode of the second diode D2, the second end is grounded; the first end of the third capacitor C3 is electrically connected to the cathode of the third diode D3, and the second end is
  • the voltage dividing unit R1 is a resistor.
  • the switching unit Q1 is an N-type field effect transistor.
  • Step S2 The first transformed signal DRP1 is 0V and is input to the second end of the first capacitor C1 and the gate of the switching unit Q1, the switching unit Q1 is turned off, and the second transformed signal DRP2 is the input voltage Vin and is input to the third capacitor C3.
  • the second end, at this time, the cathode voltage V1 of the first diode D1 and the cathode voltage V2 of the second diode D2 are both the input voltage Vin, and the voltage of the first end of the third capacitor C3 is also the third
  • the cathode voltage V3 of the diode D3 is boosted to twice the input voltage Vin, and the cathode voltage of the fourth diode D4, that is, the output voltage Vout is also twice the input voltage Vin.
  • Step S3 the first transformed signal DRP1 becomes the input voltage Vin and is input to the second end of the first capacitor C1 and the gate of the switching unit Q1, the switching unit Q1 is turned on, and the second transformed signal DRP2 becomes 0V and is input.
  • the cathode voltage V3 and the cathode voltage of the fourth diode D4, that is, the output voltage Vout, are maintained at twice the input voltage Vin at this time.
  • Step S4 the first transformed signal DRP1 becomes 0V and is input to the second end of the first capacitor C1 and the gate of the switching unit Q1, the switching unit Q1 is turned off, and the second transformed signal DRP2 becomes the input voltage Vin and is input to the third
  • the second end of the capacitor C3 increases the voltage of the first terminal of the third capacitor C3, that is, the cathode voltage V3 of the third diode D3, to three times the input voltage Vin, and the cathode voltage of the fourth diode D4 is also output.
  • the voltage Vout is also increased to three times the input voltage Vin, and the conversion of the input voltage Vin is completed.
  • the conversion of the input voltage Vin is completed, the driving capability is strong, and the response speed is fast.
  • the present invention further provides another DC voltage conversion method, including the following steps:
  • Step S1' providing a DC voltage conversion circuit, the DC voltage conversion circuit comprising: a first diode D1, a second diode D2, a third diode D3, a fourth diode D4, and a first capacitor C1, second capacitor C2, third capacitor C3, fourth capacitor C4, voltage dividing unit R1, and switching unit Q1;
  • the anode of the first diode D1 is connected to the input voltage Vin, the cathode is electrically connected to the anode of the second diode D2; the cathode of the second diode D2 is electrically connected to the anode of the third diode D3.
  • the cathode of the third diode D3 is electrically connected to the anode of the fourth diode D4; the cathode of the fourth diode D4 outputs the output voltage Vout; the first end of the voltage dividing unit R1 is electrically Connecting the anode of the first diode D1, the second end is electrically connected to the drain of the switch unit Q1; the gate of the switch unit Q1 is connected to the first voltage-varying signal DRP1, the source is grounded, and the drain is also connected to the first a first voltage-converting signal DRP2; a first end of the first capacitor C1 is electrically connected to a cathode of the first diode D1, a second end is connected to the first voltage-varying signal DRP1; and a first end of the second capacitor C2 is Electrically connecting the cathode of the second diode D2, the second end is grounded; the first end of the third capacitor C3 is electrically connected to the cathode of the third diode D3, and the second end is
  • the voltage dividing unit R1 is a resistor.
  • the switching unit Q1 is an N-type field effect transistor.
  • Step S2' the first voltage-varying signal DRP is the input voltage Vin and is input to the second end of the first capacitor C1 and the gate of the switching unit Q1, the switching unit Q1 is turned on, and the second voltage-varying signal DRP2 is 0V and is input to the third The second end of the capacitor C3, at this time, the cathode voltage V1 of the first diode D1, the cathode voltage V2 of the second diode D2, the cathode voltage V3 of the third diode D3, and the fourth diode
  • the cathode voltage of D4 that is, the output voltage Vout, is increased to twice the input voltage Vin.
  • Step S3' the first transformed signal DRP1 becomes 0V and is input to the second end of the first capacitor C1.
  • the gate of the switching unit Q1, the switching unit Q1 is turned off, the second transformed signal DRP2 becomes the input voltage Vin and is input to the second end of the third capacitor C3, and the first end of the third capacitor C3 is also the third pole
  • the cathode voltage V3 of the tube D3 is increased to three times the input voltage Vin
  • the cathode voltage of the fourth diode D4 that is, the output voltage Vout is increased to three times the input voltage Vin, and the conversion of the input voltage Vin is completed.
  • the present invention completes the input voltage Vin in one-half of the first voltage-varying signal DRP1 and the second voltage-varying signal DRP2. The conversion further enhances the drive capability and speeds up the response.
  • the present invention further provides a liquid crystal display device comprising the DC voltage conversion circuit as described above, which can quickly complete the conversion of the input voltage, reduce the time required to complete the voltage conversion, and has a strong driving capability and a response speed. fast.
  • a liquid crystal display device comprising the DC voltage conversion circuit as described above, which can quickly complete the conversion of the input voltage, reduce the time required to complete the voltage conversion, and has a strong driving capability and a response speed. fast.
  • the specific structure of the DC voltage conversion circuit will not be described here.
  • the DC voltage conversion circuit of the present invention includes first, second, third, and fourth diodes, first, second, third, fourth capacitors, a voltage dividing unit, and a switching unit.
  • the second end of the first capacitor is connected to the first voltage transformation signal
  • the second end of the third capacitor is connected to the second voltage transformation signal
  • the first and second voltage transformation signals are pulse signals
  • the second The voltage transformation signal is opposite in phase to the first voltage transformation signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dc-Dc Converters (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种直流电压转换电路及直流电压转换方法与液晶显示装置。该直流电压转换电路包括第一、第二、第三、第四二极管(D1、D2、D3、D4)、第一、第二、第三、第四电容(C1、C2、C3、C4)、分压单元(R1)、及开关单元(Q1),所述第一电容(C2)的第二端接入第一变压信号(DRP1),所述第三电容(C3)的第二端接入第二变压信号(DRP2),第一、第二变压信号(DRP1、DRP2)均为脉冲信号,且第二变压信号(DRP2)与第一变压信号(DRP1)相位相反,相比于现有技术,能够快速地完成对输入电压的转换,减少完成电压转换所需的时间,驱动能力强,响应速度快,保障业务的稳定性。

Description

直流电压转换电路及直流电压转换方法与液晶显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种直流电压转换电路及直流电压转换方法与液晶显示装置。
背景技术
液晶显示装置(Liquid Crystal Display,LCD)是目前最广泛使用的平板显示装置之一,液晶面板是液晶显示装置的核心组成部分。液晶面板通常是由一彩色滤光片基板(Color Filter Substrate,CF Substrate)、一薄膜晶体管阵列基板(Thin Film Transistor Array Substrate,TFT Array Substrate)以及一配置于两基板间的液晶层(Liquid Crystal Layer)所构成。一般阵列基板、彩色滤光片基板上分别设置像素电极、公共电极。当电压被施加到像素电极与公共电极便会在液晶层中产生电场,该电场决定了液晶分子的取向,从而调整入射到液晶层的光的偏振,使液晶面板显示图像。
现有技术中对TFT-LCD进行驱动时,均会向TFT-LCD输入包括电源电压(VDD)、恒压高电压(VGH)、恒压低电压(VGL)在内的多种电压。其中,VGH及VGL对应的电流较小,一般利用成本较低的电荷泵(Charge Pump)电路来产生。
请参阅图1,为现有的一种用于产生恒压高电位的电荷泵电路,包括第一二极管D10、第二二极管D20、第三二极管D30、第四二极管D40、第一电容C10、第二电容C20、第三电容C30、及第四电容C40,其中,第一二极管D10的阳极接入输入电压Vin,阴极电性连接第二二极管D20的阳极,第二二极管D20的阴极电性连接第三二极管D30的阳极,第三二极管D30的阴极电性连接第四二极管D40的阳极,第四二极管D40的阴极输出输出电压Vout,第一电容C10的第一端电性连接第一二极管D10的阴极,第二端接入变压信号DRP,第二电容C20的第一端电性连接第二二极管D20的阴极,第二端接地,第三电容C30的第一端电性连接第三二极管D30的阴极,第二端接入变压信号DRP,第四电容C40的第一端电性连接第四二极管D40的阴极,第二端接地,所述变压信号DRP为低电平与高电平依次交替的脉冲信号,且其低电平的电压为0V,高电平的电压等于输入电压Vin,请参阅图2,该电荷泵电路对输入电压Vin进行升压时,首先变压信号DRP为0V,第一、第二、第三二极管D10、D20、D30的阴极电压V10、V20、 V30、以及第四二极管D40的阴极电压即输出电压Vout均为输入电压Vin,接着变压信号DRP变为输入电压Vin,第一、第二、第三二极管D10、D20、D30的阴极电压V10、V20、V30、以及第四二极管D40的阴极电压即输出电压Vout均变为两倍的输入电压Vin,之后变压信号DRP变为0V,第二、第三二极管D20、D30的阴极电压V20、V30、以及第四二极管D40的阴极电压即输出电压Vout均保持两倍的输入电压Vin,而后变压信号DRP再次变为输入电压Vin,第三二极管D30的阴极电压V30、以及第四二极管D40的阴极电压即输出电压Vout均变为三倍的输入电压Vin,需要经历变压信号DRP的两个周期才能完成对输入电压Vin的升压,驱动能力不足,响应速度较慢。
发明内容
本发明的目的在于提供一种直流电压转换电路,能够快速地完成对输入电压的转换,驱动能力强,响应速度快。
本发明的另一目的在于提供一种直流电压转换方法,能够快速地完成对输入电压的转换,驱动能力强,响应速度快。
本发明的另一目的还在于提供一种液晶显示装置,驱动能力强,响应速度快。
为实现上述目的,本发明首先提供一种直流电压转换电路,包括:第一二极管、第二二极管、第三二极管、第四二极管、第一电容、第二电容、第三电容、第四电容、分压单元、及开关单元;
所述第一二极管的阳极接入输入电压,阴极电性连接第二二极管的阳极;所述第二二极管的阴极电性连接第三二极管的阳极;所述第三二极管的阴极电性连接第四二极管的阳极;所述第四二极管的阴极输出输出电压;所述分压单元的第一端电性连接第一二极管的阳极,第二端电性连接开关单元的漏极;所述开关单元的栅极接入第一变压信号,源极接地,漏极还接入第二变压信号;所述第一电容的第一端电性连接第一二极管的阴极,第二端接入第一变压信号;所述第二电容的第一端电性连接第二二极管的阴极,第二端接地;所述第三电容的第一端电性连接第三二极管的阴极,第二端电性连接开关单元的漏极;所述第四电容的第一端电性连接第四二极管的阴极,第二端接地;
所述第一变压信号为高电平与低电平依次交替的脉冲信号;或者,
所述第一变压信号为低电平与高电平依次交替的脉冲信号;
所述第一变压信号与第二变压信号的相位相反。
所述第一变压信号的高电平的电压等于输入电压,所述第一变压信号的低电平的电压为0V。
所述分压单元为一电阻;
所述开关单元为N型场效应管。
本发明还提供一种直流电压转换方法,包括如下步骤:
步骤S1、提供一直流电压转换电路,所述直流电压转换电路包括:第一二极管、第二二极管、第三二极管、第四二极管、第一电容、第二电容、第三电容、第四电容、分压单元、及开关单元;
所述第一二极管的阳极接入输入电压,阴极电性连接第二二极管的阳极;所述第二二极管的阴极电性连接第三二极管的阳极;所述第三二极管的阴极电性连接第四二极管的阳极;所述第四二极管的阴极输出输出电压;所述分压单元的第一端电性连接第一二极管的阳极,第二端电性连接开关单元的漏极;所述开关单元的栅极接入第一变压信号,源极接地,漏极还接入第二变压信号;所述第一电容的第一端电性连接第一二极管的阴极,第二端接入第一变压信号;所述第二电容的第一端电性连接第二二极管的阴极,第二端接地;所述第三电容的第一端电性连接第三二极管的阴极,第二端电性连接开关单元的漏极;所述第四电容的第一端电性连接第四二极管的阴极,第二端接地;
步骤S2、第一变压信号为0V,第二变压信号为输入电压,第四二极管的阴极电压为两倍的输入电压;
步骤S3、第一变压信号变为输入电压,第二变压信号变为0V,第四二极管的阴极电压保持两倍的输入电压;
步骤S4、第一变压信号变为0V,第二变压信号变为输入电压,第四二极管的阴极电压变为三倍的输入电压。
所述分压单元为一电阻;
所述开关单元为N型场效应管。
本发明还提供一种直流电压转换方法,包括如下步骤:
步骤S1’、提供一直流电压转换电路,所述直流电压转换电路包括:第一二极管、第二二极管、第三二极管、第四二极管、第一电容、第二电容、第三电容、第四电容、分压单元、及开关单元;
所述第一二极管的阳极接入输入电压,阴极电性连接第二二极管的阳极;所述第二二极管的阴极电性连接第三二极管的阳极;所述第三二极管的阴极电性连接第四二极管的阳极;所述第四二极管的阴极输出输出电压;所述分压单元的第一端电性连接第一二极管的阳极,第二端电性连接开关 单元的漏极;所述开关单元的栅极接入第一变压信号,源极接地,漏极还接入第二变压信号;所述第一电容的第一端电性连接第一二极管的阴极,第二端接入第一变压信号;所述第二电容的第一端电性连接第二二极管的阴极,第二端接地;所述第三电容的第一端电性连接第三二极管的阴极,第二端电性连接开关单元的漏极;所述第四电容的第一端电性连接第四二极管的阴极,第二端接地;
步骤S2’、第一变压信号为输入电压,第二变压信号为0V,第四二极管的阴极电压为两倍的输入电压;
步骤S3’、第一变压信号变为0V,第二变压信号变为输入电压,第四二极管的阴极电压变为三倍的输入电压。
所述分压单元为一电阻;
所述开关单元为N型场效应管。
本发明还提供一种液晶显示装置,包括如上所述的直流电压转换电路。
本发明的有益效果:本发明提供的一种直流电压转换电路,包括第一、第二、第三、第四二极管、第一、第二、第三、第四电容、分压单元、及开关单元,所述第一电容的第二端接入第一变压信号,所述第三电容的第二端接入第二变压信号,第一、第二变压信号均为脉冲信号,且第二变压信号与第一变压信号相位相反,相比于现有技术,能够快速地完成对输入电压的转换,减少完成电压转换所需的时间,驱动能力强,响应速度快。本发明提供的一种直流电压转换方法,能够快速地完成对输入电压的转换,驱动能力强,响应速度快。本发明提供的一种液晶显示装置,驱动能力强,响应速度快。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为现有的一种电荷泵电路的电路图;
图2为图1所示的电荷泵电路的工作时序图;
图3为本发明的直流电压转换电路的电路图;
图4为本发明的直流电压转换电路的第一实施例的工作时序图;
图5为本发明的直流电压转换电路的第二实施例的工作时序图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图3,本发明提供一种直流电压转换电路,包括:第一二极管D1、第二二极管D2、第三二极管D3、第四二极管D4、第一电容C1、第二电容C2、第三电容C3、第四电容C4、分压单元R1、及开关单元Q1;
具体各元件的连接方式如下:所述第一二极管D1的阳极接入输入电压Vin,阴极电性连接第二二极管D2的阳极;所述第二二极管D2的阴极电性连接第三二极管D3的阳极;所述第三二极管D3的阴极电性连接第四二极管D4的阳极;所述第四二极管D4的阴极输出输出电压Vout;所述分压单元R1的第一端电性连接第一二极管D1的阳极,第二端电性连接开关单元Q1的漏极;所述开关单元Q1的栅极接入第一变压信号DRP1,源极接地,漏极还接入第二变压信号DRP2;所述第一电容C1的第一端电性连接第一二极管D1的阴极,第二端接入第一变压信号DRP1;所述第二电容C2的第一端电性连接第二二极管D2的阴极,第二端接地;所述第三电容C3的第一端电性连接第三二极管D3的阴极,第二端电性连接开关单元Q1的漏极;所述第四电容C4的第一端电性连接第四二极管D4的阴极,第二端接地;
其中,所述第一变压信号DRP1为高电平与低电平依次交替的脉冲信号;或者,
所述第一变压信号DRP1为低电平与高电平依次交替的脉冲信号;
所述第一变压信号DRP1与第二变压信号DRP2的相位相反。
具体地,所述分压单元R1为一电阻。
具体地,所述开关单元Q1为N型场效应管。
优选地,所述第一变压信号DRP1的高电平的电压等于输入电压Vin,所述第一变压信号DRP1的低电平的电压为0V,对应地,所述第二变压信号DRP2的高电平的电压也等于输入电压Vin,所述第二变压信号DRP2的低电平的电压也为0V。
请结合图3及图4,在本发明的第一实施例中,所述第一变压信号DRP1为低电平与高电平依次交替的脉冲信号,且第一变压信号DRP1的高电平的电压等于输入电压Vin,第一变压信号DRP1的低电平的电压为0V,本发明的第一实施例的工作过程如下:
首先,第一变压信号DRP1为0V并输入第一电容C1的第二端及开关单元Q1的栅极,开关单元Q1截止,第二变压信号DRP2为输入电压Vin 并输入第三电容C3的第二端,此时,第一二极管D1的阴极电压V1、以及第二二极管D2的阴极电压V2均为输入电压Vin,而第三电容C3第一端的电压也即第三二极管D3的阴极电压V3提升至两倍的输入电压Vin,第四二极管D4的阴极电压也即输出电压Vout此时也为两倍的输入电压Vin;
接着,第一变压信号DRP1变为输入电压Vin并输入第一电容C1的第二端及开关单元Q1的栅极,开关单元Q1导通,第二变压信号DRP2变为0V并输入第三电容C3的第二端,此时,第一二极管D1的阴极电压V1、以及第二二极管D2的阴极电压V2均提升为两倍的输入电压Vin,第三二极管D3的阴极电压V3、第四二极管D4的阴极电压也即输出电压Vout此时保持两倍的输入电压Vin;
之后,第一变压信号DRP1变为0V并输入第一电容C1的第二端及开关单元Q1的栅极,开关单元Q1截止,第二变压信号DRP2变为输入电压Vin并输入第三电容C3的第二端,使第三电容C3第一端的电压也即第三二极管D3的阴极电压V3提升至三倍的输入电压Vin,第四二极管D4的阴极电压也即输出电压Vout此时也为提升至三倍的输入电压Vin,完成对输入电压Vin的转换,相比于现有技术需要经历变压信号的两个周期才能完成对输入电压的转换,该第一实施例在第一变压信号DRP1及第二变压信号DPR2的一个周期结束时即完成了对输入电压Vin的转换,驱动能力强,响应速度快。
请结合图3及图5,在本发明的第二实施例中,所述第一变压信号DRP1为高电平与低电平依次交替的脉冲信号,且第一变压信号DRP1的高电平的电压等于输入电压Vin,第一变压信号DRP1的低电平的电压为0V,本发明的第二实施例的工作过程如下:
首先,第一变压信号DRP1为输入电压Vin并输入第一电容C1的第二端及开关单元Q1的栅极,开关单元Q1导通,第二变压信号DRP2为0V并输入第三电容C3的第二端,而此时,第一二极管D1的阴极电压V1、以及第二二极管D2的阴极电压V2、第三二极管D3的阴极电压V3、第四二极管D4的阴极电压也即输出电压Vout均提升至两倍的输入电压Vin;
接着,第一变压信号DRP1变为0V并输入第一电容C1的第二端及开关单元Q1的栅极,开关单元Q1截止,第二变压信号DRP2变为输入电压Vin并输入第三电容C3的第二端,将第三电容C3的第一端也即第三二极管D3的阴极电压V3提升至三倍的输入电压Vin,第四二极管D4的阴极电压也即输出电压Vout提升至三倍的输入电压Vin,完成对输入电压Vin的转换,相比于现有技术需要经历变压信号的两个周期才能完成对输入电压 的转换,本发明的第二实施例在第一变压信号DRP1及第二变压信号DRP2的二分之一个周期内即完成了对输入电压Vin的转换,进一步地增强了驱动能力,提升了响应的速度。
请结合图3及图4,基于同一发明构思,本发明还提供一种直流电压转换方法,包括如下步骤:
步骤S1、提供一直流电压转换电路,所述直流电压转换电路包括:第一二极管D1、第二二极管D2、第三二极管D3、第四二极管D4、第一电容C1、第二电容C2、第三电容C3、第四电容C4、分压单元R1、及开关单元Q1;
所述第一二极管D1的阳极接入输入电压Vin,阴极电性连接第二二极管D2的阳极;所述第二二极管D2的阴极电性连接第三二极管D3的阳极;所述第三二极管D3的阴极电性连接第四二极管D4的阳极;所述第四二极管D4的阴极输出输出电压Vout;所述分压单元R1的第一端电性连接第一二极管D1的阳极,第二端电性连接开关单元Q1的漏极;所述开关单元Q1的栅极接入第一变压信号DRP1,源极接地,漏极还接入第二变压信号DRP2;所述第一电容C1的第一端电性连接第一二极管D1的阴极,第二端接入第一变压信号DRP1;所述第二电容C2的第一端电性连接第二二极管D2的阴极,第二端接地;所述第三电容C3的第一端电性连接第三二极管D3的阴极,第二端电性连接开关单元Q1的漏极;所述第四电容C4的第一端电性连接第四二极管D4的阴极,第二端接地。
具体地,所述分压单元R1为一电阻。
具体地,所述开关单元Q1为N型场效应管。
步骤S2、第一变压信号DRP1为0V并输入第一电容C1的第二端及开关单元Q1的栅极,开关单元Q1截止,第二变压信号DRP2为输入电压Vin并输入第三电容C3的第二端,此时,第一二极管D1的阴极电压V1、以及第二二极管D2的阴极电压V2均为输入电压Vin,而第三电容C3第一端的电压也即第三二极管D3的阴极电压V3提升至两倍的输入电压Vin,第四二极管D4的阴极电压也即输出电压Vout此时也为两倍的输入电压Vin。
步骤S3、第一变压信号DRP1变为输入电压Vin并输入第一电容C1的第二端及开关单元Q1的栅极,开关单元Q1导通,第二变压信号DRP2变为0V并输入第三电容C3的第二端,此时,第一二极管D1的阴极电压V1、以及第二二极管D2的阴极电压V2均提升为两倍的输入电压Vin,第三二极管D3的阴极电压V3、第四二极管D4的阴极电压也即输出电压Vout此时保持两倍的输入电压Vin。
步骤S4、第一变压信号DRP1变为0V并输入第一电容C1的第二端及开关单元Q1的栅极,开关单元Q1截止,第二变压信号DRP2变为输入电压Vin并输入第三电容C3的第二端,使第三电容C3第一端的电压也即第三二极管D3的阴极电压V3提升至三倍的输入电压Vin,第四二极管D4的阴极电压也即输出电压Vout此时也为提升至三倍的输入电压Vin,完成对输入电压Vin的转换,相比于现有技术需要经历变压信号的两个周期才能完成对输入电压的转换,本发明在第一变压信号DRP1及第二变压信号DPR2的一个周期结束时即完成了对输入电压Vin的转换,驱动能力强,响应速度快。
请结合图3及图5,基于同一发明构思,本发明还提供另一种直流电压转换方法,包括如下步骤:
步骤S1’、提供一直流电压转换电路,所述直流电压转换电路包括:第一二极管D1、第二二极管D2、第三二极管D3、第四二极管D4、第一电容C1、第二电容C2、第三电容C3、第四电容C4、分压单元R1、及开关单元Q1;
所述第一二极管D1的阳极接入输入电压Vin,阴极电性连接第二二极管D2的阳极;所述第二二极管D2的阴极电性连接第三二极管D3的阳极;所述第三二极管D3的阴极电性连接第四二极管D4的阳极;所述第四二极管D4的阴极输出输出电压Vout;所述分压单元R1的第一端电性连接第一二极管D1的阳极,第二端电性连接开关单元Q1的漏极;所述开关单元Q1的栅极接入第一变压信号DRP1,源极接地,漏极还接入第二变压信号DRP2;所述第一电容C1的第一端电性连接第一二极管D1的阴极,第二端接入第一变压信号DRP1;所述第二电容C2的第一端电性连接第二二极管D2的阴极,第二端接地;所述第三电容C3的第一端电性连接第三二极管D3的阴极,第二端电性连接开关单元Q1的漏极;所述第四电容C4的第一端电性连接第四二极管D4的阴极,第二端接地。
具体地,所述分压单元R1为一电阻。
具体地,所述开关单元Q1为N型场效应管。
步骤S2’、第一变压信号DRP为输入电压Vin并输入第一电容C1的第二端及开关单元Q1的栅极,开关单元Q1导通,第二变压信号DRP2为0V并输入第三电容C3的第二端,而此时,第一二极管D1的阴极电压V1、以及第二二极管D2的阴极电压V2、第三二极管D3的阴极电压V3、第四二极管D4的阴极电压也即输出电压Vout均提升至两倍的输入电压Vin。
步骤S3’、第一变压信号DRP1变为0V并输入第一电容C1的第二端 及开关单元Q1的栅极,开关单元Q1截止,第二变压信号DRP2变为输入电压Vin并输入第三电容C3的第二端,将第三电容C3的第一端也即第三二极管D3的阴极电压V3提升至三倍的输入电压Vin,第四二极管D4的阴极电压也即输出电压Vout提升至三倍的输入电压Vin,完成对输入电压Vin的转换,相比于现有技术需要经历变压信号的两个周期才能完成对输入电压的转换,本发明在第一变压信号DRP1及第二变压信号DRP2的二分之一个周期内即完成了对输入电压Vin的转换,进一步地增强了驱动能力,提升了响应的速度。
基于同一发明构思,本发明还提供一种液晶显示装置,包括如上所述的直流电压转换电路,能够快速地完成对输入电压的转换,减少完成电压转换所需的时间,驱动能力强,响应速度快。在此不再对直流电压转换电路的具体结构进行赘述。
综上所述,本发明的直流电压转换电路,包括第一、第二、第三、第四二极管、第一、第二、第三、第四电容、分压单元、及开关单元,所述第一电容的第二端接入第一变压信号,所述第三电容的第二端接入第二变压信号,第一、第二变压信号均为脉冲信号,且第二变压信号与第一变压信号相位相反,相比于现有技术,能够快速地完成对输入电压的转换,减少完成电压转换所需的时间,驱动能力强,响应速度快。本发明的直流电压转换方法,能够快速地完成对输入电压的转换,驱动能力强,响应速度快。本发明的液晶显示装置,包括上述的直流电压转换电路,驱动能力强,响应速度快。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (8)

  1. 一种直流电压转换电路,包括:第一二极管、第二二极管、第三二极管、第四二极管、第一电容、第二电容、第三电容、第四电容、分压单元、及开关单元;
    所述第一二极管的阳极接入输入电压,阴极电性连接第二二极管的阳极;所述第二二极管的阴极电性连接第三二极管的阳极;所述第三二极管的阴极电性连接第四二极管的阳极;所述第四二极管的阴极输出输出电压;所述分压单元的第一端电性连接第一二极管的阳极,第二端电性连接开关单元的漏极;所述开关单元的栅极接入第一变压信号,源极接地,漏极还接入第二变压信号;所述第一电容的第一端电性连接第一二极管的阴极,第二端接入第一变压信号;所述第二电容的第一端电性连接第二二极管的阴极,第二端接地;所述第三电容的第一端电性连接第三二极管的阴极,第二端电性连接开关单元的漏极;所述第四电容的第一端电性连接第四二极管的阴极,第二端接地;
    所述第一变压信号为高电平与低电平依次交替的脉冲信号;或者,所述第一变压信号为低电平与高电平依次交替的脉冲信号;
    所述第一变压信号与第二变压信号的相位相反。
  2. 如权利要求1所述的直流电压转换电路,其中,所述第一变压信号的高电平的电压等于输入电压,所述第一变压信号的低电平的电压为0V。
  3. 如权利要求1所述的直流电压转换电路,其中,所述分压单元为一电阻;
    所述开关单元为N型场效应管。
  4. 一种直流电压转换方法,包括如下步骤:
    步骤S1、提供一直流电压转换电路,所述直流电压转换电路包括:第一二极管、第二二极管、第三二极管、第四二极管、第一电容、第二电容、第三电容、第四电容、分压单元、及开关单元;
    所述第一二极管的阳极接入输入电压,阴极电性连接第二二极管的阳极;所述第二二极管的阴极电性连接第三二极管的阳极;所述第三二极管的阴极电性连接第四二极管的阳极;所述第四二极管的阴极输出输出电压;所述分压单元的第一端电性连接第一二极管的阳极,第二端电性连接开关单元的漏极;所述开关单元的栅极接入第一变压信号,源极接地,漏极还接入第二变压信号;所述第一电容的第一端电性连接第一二极管的阴极, 第二端接入第一变压信号;所述第二电容的第一端电性连接第二二极管的阴极,第二端接地;所述第三电容的第一端电性连接第三二极管的阴极,第二端电性连接开关单元的漏极;所述第四电容的第一端电性连接第四二极管的阴极,第二端接地;
    步骤S2、第一变压信号为0V,第二变压信号为输入电压,第四二极管的阴极电压为两倍的输入电压;
    步骤S3、第一变压信号变为输入电压,第二变压信号变为0V,第四二极管的阴极电压保持两倍的输入电压;
    步骤S4、第一变压信号变为0V,第二变压信号变为输入电压,第四二极管的阴极电压变为三倍的输入电压。
  5. 如权利要求4所述的直流电压转换方法,其中,所述分压单元为一电阻;
    所述开关单元为N型场效应管。
  6. 一种直流电压转换方法,包括如下步骤:
    步骤S1’、提供一直流电压转换电路,所述直流电压转换电路包括:第一二极管、第二二极管、第三二极管、第四二极管、第一电容、第二电容、第三电容、第四电容、分压单元、及开关单元;
    所述第一二极管的阳极接入输入电压,阴极电性连接第二二极管的阳极;所述第二二极管的阴极电性连接第三二极管的阳极;所述第三二极管的阴极电性连接第四二极管的阳极;所述第四二极管的阴极输出输出电压;所述分压单元的第一端电性连接第一二极管的阳极,第二端电性连接开关单元的漏极;所述开关单元的栅极接入第一变压信号,源极接地,漏极还接入第二变压信号;所述第一电容的第一端电性连接第一二极管的阴极,第二端接入第一变压信号;所述第二电容的第一端电性连接第二二极管的阴极,第二端接地;所述第三电容的第一端电性连接第三二极管的阴极,第二端电性连接开关单元的漏极;所述第四电容的第一端电性连接第四二极管的阴极,第二端接地;
    步骤S2’、第一变压信号为输入电压,第二变压信号为0V,第四二极管的阴极电压为两倍的输入电压;
    步骤S3’、第一变压信号变为0V,第二变压信号变为输入电压,第四二极管的阴极电压变为三倍的输入电压。
  7. 如权利要求6所述的直流电压转换方法,其中,所述分压单元为一电阻;
    所述开关单元为N型场效应管。
  8. 一种液晶显示装置,包括如权利要求1所述的直流电压转换电路。
PCT/CN2017/111421 2017-07-19 2017-11-16 直流电压转换电路及直流电压转换方法与液晶显示装置 WO2019015183A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/579,945 US10354601B2 (en) 2017-07-19 2017-11-16 DC voltage conversion circuit, DC voltage conversion method and liquid crystal display device
EP17918340.5A EP3657654A4 (en) 2017-07-19 2017-11-16 DIRECT CURRENT VOLTAGE CONVERSION CIRCUIT, DIRECT CURRENT VOLTAGE CONVERSION PROCESS, AND LIQUID CRYSTAL DISPLAY DEVICE
JP2020502113A JP6836010B2 (ja) 2017-07-19 2017-11-16 直流電圧変換回路及び直流電圧変換方法並びに液晶表示装置
KR1020207004776A KR102229573B1 (ko) 2017-07-19 2017-11-16 직류 전압 변환 회로, 직류 전압 변환 방법 및 액정 디스플레이 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710591450.6 2017-07-19
CN201710591450.6A CN107482905A (zh) 2017-07-19 2017-07-19 直流电压转换电路及直流电压转换方法与液晶显示装置

Publications (1)

Publication Number Publication Date
WO2019015183A1 true WO2019015183A1 (zh) 2019-01-24

Family

ID=60596709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111421 WO2019015183A1 (zh) 2017-07-19 2017-11-16 直流电压转换电路及直流电压转换方法与液晶显示装置

Country Status (6)

Country Link
US (1) US10354601B2 (zh)
EP (1) EP3657654A4 (zh)
JP (1) JP6836010B2 (zh)
KR (1) KR102229573B1 (zh)
CN (1) CN107482905A (zh)
WO (1) WO2019015183A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809086A (zh) * 2018-06-29 2018-11-13 深圳市华星光电半导体显示技术有限公司 电压产生电路
US10516334B1 (en) 2018-11-01 2019-12-24 HKC Corporation Limited Power circuit, driving circuit for display panel, and display device
CN209170195U (zh) * 2018-11-01 2019-07-26 惠科股份有限公司 电源电路、显示面板的驱动电路及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080309597A1 (en) * 2007-06-18 2008-12-18 Samsung Electronics Co., Ltd. Driving apparatus for a liquid crystal display and liquid crystal display including the same
CN105096893A (zh) * 2015-09-09 2015-11-25 深圳市华星光电技术有限公司 驱动电路以及液晶显示装置
CN105093598A (zh) * 2015-08-07 2015-11-25 深圳市华星光电技术有限公司 阵列基板行驱动短路保护电路及液晶面板
CN105118451A (zh) * 2015-08-19 2015-12-02 深圳市华星光电技术有限公司 驱动电路以及液晶显示装置
CN106253665A (zh) * 2016-08-29 2016-12-21 深圳市华星光电技术有限公司 增加升降压幅度的电荷泵

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100878222B1 (ko) * 2001-07-03 2009-01-13 삼성전자주식회사 액정 표시 장치용 전원 공급 장치
KR100663984B1 (ko) * 2004-12-17 2007-01-02 한양대학교 산학협력단 시스템 온 글래스(SoG)를 위한 소 면적 차지 펌프 회로
US8427113B2 (en) * 2007-08-01 2013-04-23 Intersil Americas LLC Voltage converter with combined buck converter and capacitive voltage divider
DE112010003189T5 (de) * 2009-08-05 2012-09-20 Mitsubishi Electric Corporation DC/DC-Leistungsumwandlungsvorrichtung
JP5492040B2 (ja) * 2010-09-22 2014-05-14 株式会社豊田中央研究所 電源システム
KR101315143B1 (ko) * 2012-08-22 2013-10-14 전북대학교산학협력단 높은 승압 비를 갖는 고효율 dc/dc 컨버터
JP2014187764A (ja) * 2013-03-22 2014-10-02 Toshiba Corp 電圧変換回路および切替制御回路
TWI523389B (zh) * 2013-08-16 2016-02-21 Sitronix Technology Corp A power supply circuit with a complex charge pump
CN104077988B (zh) * 2014-06-18 2016-09-21 京东方科技集团股份有限公司 驱动信号产生电路、方法和 3d 显示装置
JP2017103966A (ja) * 2015-12-04 2017-06-08 キヤノン株式会社 電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080309597A1 (en) * 2007-06-18 2008-12-18 Samsung Electronics Co., Ltd. Driving apparatus for a liquid crystal display and liquid crystal display including the same
CN105093598A (zh) * 2015-08-07 2015-11-25 深圳市华星光电技术有限公司 阵列基板行驱动短路保护电路及液晶面板
CN105118451A (zh) * 2015-08-19 2015-12-02 深圳市华星光电技术有限公司 驱动电路以及液晶显示装置
CN105096893A (zh) * 2015-09-09 2015-11-25 深圳市华星光电技术有限公司 驱动电路以及液晶显示装置
CN106253665A (zh) * 2016-08-29 2016-12-21 深圳市华星光电技术有限公司 增加升降压幅度的电荷泵

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3657654A4 *

Also Published As

Publication number Publication date
KR102229573B1 (ko) 2021-03-18
US20190027105A1 (en) 2019-01-24
KR20200028467A (ko) 2020-03-16
JP2020527020A (ja) 2020-08-31
JP6836010B2 (ja) 2021-02-24
US10354601B2 (en) 2019-07-16
CN107482905A (zh) 2017-12-15
EP3657654A4 (en) 2021-03-31
EP3657654A1 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
US9659540B1 (en) GOA circuit of reducing power consumption
US9966025B1 (en) Gate driving circuit
US9159280B1 (en) GOA circuit for liquid crystal displaying and display device
US8253655B2 (en) Common-voltage compensation circuit and compensation method for use in a liquid crystal display
US8390555B2 (en) Liquid crystal display capable of compensating common voltage signal thereof
CN111223433B (zh) 一种goa电路和显示装置
US9786239B2 (en) GOA circuit based on P-type thin film transistors
CN108665865B (zh) 栅极驱动单元以及显示装置
US10650764B2 (en) Common voltage compensation unit and compensation method, driving circuit and display panel
CN109410880B (zh) 显示面板驱动电路
US10290262B2 (en) Scanning drive circuit and flat display device
US11107381B2 (en) Shift register and method for driving the same, gate driving circuit and display device
TWI549430B (zh) 具有溫度補償之穩壓電路模組
KR20080004203A (ko) 직류/직류 컨버팅 회로, 이를 갖는 표시장치 및 이의구동방법
WO2016149994A1 (zh) Pmos栅极驱动电路
US10515601B2 (en) GOA circuit for preventing clock signals from missing
KR102229573B1 (ko) 직류 전압 변환 회로, 직류 전압 변환 방법 및 액정 디스플레이 장치
WO2011065051A1 (ja) 電源回路およびそれを備えた液晶表示装置
WO2017128645A1 (zh) 像素电路及其驱动方法、显示面板和显示装置
CN104575418A (zh) 面板驱动电路、液晶像素数据的升压电路及驱动其的方法
KR101970489B1 (ko) 액정표시장치 및 그 구동방법과 제조방법
CN107068074B (zh) Goa电路
CN100461248C (zh) 共同电压修正电路与方法
TWI269135B (en) Voltage converter and integrated circuit capable of adjusting output voltages
US20190139506A1 (en) Goa circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502113

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207004776

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017918340

Country of ref document: EP

Effective date: 20200219