WO2019013473A2 - 금속 산화물이 코팅된 촉매 성형체와 그의 제조방법 및 이를 이용한 1,3-부타디엔 제조방법 - Google Patents

금속 산화물이 코팅된 촉매 성형체와 그의 제조방법 및 이를 이용한 1,3-부타디엔 제조방법 Download PDF

Info

Publication number
WO2019013473A2
WO2019013473A2 PCT/KR2018/007299 KR2018007299W WO2019013473A2 WO 2019013473 A2 WO2019013473 A2 WO 2019013473A2 KR 2018007299 W KR2018007299 W KR 2018007299W WO 2019013473 A2 WO2019013473 A2 WO 2019013473A2
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
inert support
alumina
catalyst powder
combinations
Prior art date
Application number
PCT/KR2018/007299
Other languages
English (en)
French (fr)
Other versions
WO2019013473A3 (ko
Inventor
김윤정
김재우
윤용희
박지원
노경호
Original Assignee
금호석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호석유화학 주식회사 filed Critical 금호석유화학 주식회사
Publication of WO2019013473A2 publication Critical patent/WO2019013473A2/ko
Publication of WO2019013473A3 publication Critical patent/WO2019013473A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/321Catalytic processes
    • C07C5/322Catalytic processes with metal oxides or metal sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/008Pyrolysis reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3332Catalytic processes with metal oxides or metal sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/20Constitutive chemical elements of heterogeneous catalysts of Group II (IIA or IIB) of the Periodic Table
    • B01J2523/22Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/20Constitutive chemical elements of heterogeneous catalysts of Group II (IIA or IIB) of the Periodic Table
    • B01J2523/27Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/50Constitutive chemical elements of heterogeneous catalysts of Group V (VA or VB) of the Periodic Table
    • B01J2523/54Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/842Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with alkali- or alkaline earth metals or beryllium

Definitions

  • the present invention relates to a catalyst formed article coated with a metal oxide, a process for producing the same, and a process for producing 1,3-butadiene using the same.
  • Catalysts used in the oxidative dehydrogenation reaction of n-butene include ferrite-based, bismuth molybdate-based, and tin-based catalysts. These are metal oxide catalysts, generally synthesized in powder form. In the case of powdered catalysts, the pressure drop in the reactor becomes extremely high when the flow rate is more than a certain flow rate in the fixed bed reactor, and it is difficult to apply the process to the process without being processed. In addition, the heat transfer is not smoothly carried out, and the temperature inside the catalyst locally rises greatly, causing catalytic sintering and making it difficult to control the reaction.
  • the catalyst shaped body may have various types such as extruded, compressed, or coated forms depending on the manufacturing method and conditions. Among them, extruded and pressed catalyst formed bodies are most widely used. However, since the surface area is greatly decreased as the size of the catalyst particles is increased through the molding and the opportunity for the catalyst particles in the formed body to participate in the reaction is decreased, Is lowered.
  • the amount of the catalyst can be greatly reduced as compared with that of the extruded and compressed catalyst, and the amount of the catalyst which can not participate in the reaction can be reduced, which is economical and advantageous in terms of catalyst efficiency .
  • the inner support serves as a diluent and the heat is dispersed. Namely, the side reaction is suppressed through the exothermic control, and 1,3-butadiene can be produced at a high yield.
  • Korean Patent Laid-Open No. 2015-0003214 discloses a method for increasing the 1,3-butadiene yield by suppressing the temperature increase of the catalyst layer as compared with the extrusion catalyst using the coating catalyst.
  • the pore volume of the macropore of the molding catalyst is 80% or more of the total pore volume, there is a problem that a material having a small specific surface area such as alpha-alumina is not used as a support have.
  • Korean Patent Publication No. 2012-0009687 discloses that heat generation can be easily controlled by using a coating catalyst prepared by using a binder in a support having a high thermal conductivity for an oxidative dehydrogenation reaction of n-butene .
  • the use of an excess amount of the binder causes the content of the catalyst powder to be relatively small and the side reaction by the binder to increase, and the catalytic activity may be lowered.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and it is an object of the present invention to provide a method for manufacturing a catalyst, which can broaden the range of selection of a support, the present invention provides a catalyst formed body excellent in the activity for the oxidative dehydrogenation reaction of n-butene and a method for producing the same.
  • An aspect of the present invention relates to an inkjet recording method comprising: an inert support; An intermediate layer located on the surface of the inert support; And an active layer disposed on a surface of the intermediate layer, wherein the active layer comprises a catalyst powder and a binder.
  • the porosity of the inert support can be up to 70 vol.%.
  • the inert support may be selected from the group consisting of spherical, cylindrical, annular, plate, and combinations of two or more thereof.
  • the inert support may be selected from the group consisting of alumina, silica, zirconia, silicon carbide, cordierite, and combinations of two or more thereof.
  • the intermediate layer may comprise one selected from the group consisting of alumina, silica, kaolin, TiO 2 , ZnO, bentonite, and combinations of two or more thereof.
  • the weight of the intermediate layer relative to the volume of the inert support may be 3-15 g / L.
  • the catalyst powder may be one oxide selected from the group consisting of iron, magnesium, manganese, zinc, bismuth, molybdenum, and combinations of two or more thereof.
  • the binder includes an inorganic binder, and the content of the inorganic binder may be 5 to 20 wt% based on the total weight of the catalyst powder and the inorganic binder.
  • the inorganic binder is alumina, silica, sodium silicate, silica alumina, calcium silicate, calcium carbonate, barium carbonate (BaCO 3), kaolin, mica, TiO 2, ZnO, iron oxide, bentonite, and two or more of these And mixtures thereof.
  • the weight of the catalyst powder relative to the volume of the inert support may be 200 to 500 g / L.
  • a method for manufacturing a magnetic recording medium comprising the steps of: (a) mixing an inert support and a sol, drying and heat-treating the intermediate support to form an intermediate layer on the surface of the inert support; (b) dissolving at least two metal salts in a first solvent to prepare a first solution, pyrolyzing the first solution by spraying it into the reactor using a carrier gas, or adding a co-agent to the first solution Drying and heat-treating the catalyst powder to produce a catalyst powder; (c) mixing the catalyst powder, the binder and the second solvent to prepare a second solution; And (d) mixing the product of step (a) and the second solution, and drying and heat-treating the intermediate layer to produce an active layer containing the catalyst powder on the surface of the intermediate layer. to provide.
  • the porosity of the inert support can be up to 70 vol.%.
  • the inert support may be selected from the group consisting of spherical, cylindrical, annular, plate, and combinations of two or more thereof.
  • the inert support may be selected from the group consisting of alumina, silica, zirconia, silicon carbide, cordierite, and combinations of two or more thereof.
  • the intermediate layer may comprise one selected from the group consisting of alumina, silica, kaolin, TiO 2 , ZnO, bentonite, and combinations of two or more thereof.
  • the weight of the intermediate layer relative to the volume of the inert support may be 3-15 g / L.
  • the metal salt may be one nitrate selected from the group consisting of iron, magnesium, manganese, zinc, bismuth, molybdenum, and combinations of two or more thereof.
  • the co-infusion agent may be sodium hydroxide, ammonia, or a combination thereof.
  • the pyrolysis may be performed at 500 to 900 < 0 > C.
  • the binder includes an inorganic binder, and the content of the inorganic binder may be 5 to 20 wt% based on the total weight of the catalyst powder and the inorganic binder.
  • the inorganic binder is alumina, silica, sodium silicate, silica alumina, calcium silicate, calcium carbonate, barium carbonate (BaCO 3), kaolin, mica, TiO 2, ZnO, iron oxide, bentonite, and two or more of these And mixtures thereof.
  • the weight of the catalyst powder relative to the volume of the inert support may be 200 to 500 g / L.
  • Another aspect of the present invention provides a process for producing 1,3-butadiene which comprises subjecting n-butene to an oxidative dehydrogenation reaction in the presence of the catalyst formed body.
  • the catalyst formed body according to an aspect of the present invention has an intermediate layer interposed between an inert support and an active layer, so that the adhesion and binding force of the active layer to the inert support are excellent, so that the catalyst can maintain its activity for a long period of time.
  • the catalyst powder contained in the active layer exists only on the surface of the inert support, when the catalyst formed body participates in the oxidative dehydrogenation reaction of n-butene, the reaction within the catalyst formed body is inhibited, , The oxygen utilization efficiency is higher than that of the crushed catalyst, the side reaction can be suppressed to reduce the calorific value, and the conversion of n-butene and the yield of 1,3-butadiene can be improved.
  • the active layer is formed and adhered to the surface of the intermediate layer formed on the surface of the inert support
  • the kind of the inert support can be diversified without limitation depending on porosity and specific surface area.
  • the method for producing a catalyst molded body according to another aspect of the present invention can significantly reduce the amount of a binder used in the production of a catalyst molded body, which is economically advantageous.
  • FIG. 1 is a schematic view illustrating the structure of a catalyst formed body according to an embodiment of the present invention
  • FIG. 1 is a schematic view illustrating the structure of a catalyst formed body according to an embodiment of the present invention
  • a catalyst formed body according to an aspect of the present invention includes an inert support 100; An intermediate layer (200) located on the surface of the inert support; And an active layer 300 located on the surface of the intermediate layer.
  • the active layer 300 may include a catalyst powder and a binder.
  • the inert support 100 may include a plurality of pores formed therein and a surface thereof wherein the porosity of the inert support 100 is 70 vol% or less, preferably 50 vol% or less, more preferably , It may be 30% by weight or less. If the porosity of the inert support (100) is more than 70% by volume, the catalyst powder supported in an arbitrary region of the support can not participate in the reaction and it is difficult to disperse the heat generated between the reactions, so unnecessary side reactions may occur.
  • the inert support 100 may be selected from the group consisting of spherical, cylindrical, annular, plate-like, and combinations of two or more of them, and may preferably be spherical, but is not limited thereto.
  • the pores of the inert support 100 may be distributed around the surface of the inert support 100, for example, the surface of the inert support 100 and a certain thickness therefrom, It may not exist. That is, the pores of the inert support 100 may be present only in the area around the surface thereof, and in this case the inert support 100 may be " solid type " .
  • the inert support 100 in the solid form may be selected from the group consisting of alumina, silica, zirconia, silicon carbide, cordierite, and combinations of two or more thereof, preferably alumina, , Alpha-alumina, but is not limited thereto.
  • the catalyst formed body may include an intermediate layer 200 located on the surface of the inert support body 100 to enhance the adhesion and bonding force between the inert support body 100 and the active layer 300.
  • the intermediate layer 200 may be made of one selected from the group consisting of alumina, silica, kaolin, TiO 2 , ZnO, bentonite, and combinations of two or more thereof, preferably alumina and more preferably gamma- But is not limited thereto.
  • the intermediate layer 200 made of gamma-alumina may be formed by heat-treating an alumina sol applied to the inert support 100.
  • the alumina sol comprises hydrolysis and condensation of at least one aluminum precursor of boehmite, aluminum salt or aluminum alkoxide in the presence of water to form boehmite particles, and adding an acid to the boehmite particles And peptizing the boehmite particles to form a solution.
  • the aluminum salt may be selected from the group consisting of aluminum nitrate, aluminum chloride, aluminum sulfate, aluminum phosphate, and a mixture of two or more thereof, but is not limited thereto.
  • the aluminum alkoxide may be selected from the group consisting of aluminum ethoxide, aluminum isopropoxide, aluminum sesqubutoxide, and a mixture of two or more thereof, preferably aluminum alkoxide, but is not limited thereto .
  • the amount of water may be 1 to 20 moles per mole of the aluminum precursor. If the amount of the water is less than 1 mol, the amount of the solvent is insufficient and the alumina sol is difficult to form and has a high viscosity, so that the mixing with the inert support may not be uniform. When the amount of water is more than 20 mol, It is difficult for the alumina sol to be uniformly coated on the surface of the inert support because the relative distance of the support is distant.
  • the acid is nitric acid (HNO 3), hydrochloric acid (HCl), sulfuric acid (H 2 SO 4), acetic acid (CH 3 COOH), phosphoric acid (H 3 PO 4), and can be one selected from the group consisting of a mixture of two or more of these , Preferably nitric acid, but is not limited thereto.
  • the amount of the acid may be 0.01 to 0.2 mole, preferably 0.05 to 0.15 mole, per mole of the aluminum precursor, but is not limited thereto.
  • the acid is added to peptize the boehmite.
  • the amount of the acid is less than 0.01 mole per 1 mole of the aluminum precursor, the degree of dispersion of the alumina sol is low and it can not be uniformly mixed with the inert support. If the amount is more than 0.2 mole, excess electrolyte ions such as nitric acid are adsorbed on the surface of the particles, 100 is difficult to uniformly coat the alumina sol.
  • the heat treatment of the alumina sol coated on the surface of the inert support 100 may convert the alumina sol to gamma-alumina, and the surface of the intermediate layer 200 made of gamma-
  • the active layer 300 may be strongly bonded, adhered, and fixed.
  • the heat treatment may be performed at a temperature of 500 to 1000 ° C, preferably 800 ° C, but is not limited thereto. If the temperature is less than 500 ° C., the solvent may not be removed sufficiently and may remain as impurities. If the temperature is higher than 1000 ° C., the shape of the support may be arbitrarily deformed and non-uniform.
  • phase transition to gamma-, delta-, theta-, alpha-alumina occurs in the alumina, which may result in a change in the particle specific surface area.
  • the specific surface area decreases sharply as it is transferred onto the alpha (alpha) phase on gamma (gamma), so that the specific surface area of the inorganic particles is drastically reduced upon thermal decomposition under conditions of more than 1000 deg. C, .
  • the weight of the alumina sol with respect to the volume of the inert support may be 3 to 15 g / L, preferably 5 to 10 g / L.
  • the weight of the alumina sol relative to the volume of the inert support is less than 3 g / L, the surface roughness of the gamma-alumina is insufficient and the catalyst powder is difficult to bond and adhere strongly.
  • the weight of the intermediate layer exceeds 15 g / L, Excessive dust may be generated during the heat treatment of the alumina sol, and in the subsequent catalyst powder coating, the dust may be coated together with the catalyst powder to cause unnecessary side reactions.
  • the active layer 300 may be formed by applying a composition including a catalyst powder, a binder, and a solvent on the surface of the intermediate layer 200 made of gamma-alumina, followed by drying and heat treatment. Since the solvent component contained in the composition is removed during the drying and heat treatment, the active layer 300 may include a catalyst powder and a binder. In particular, the catalyst powder may be uniformly distributed in the active layer 300 can do.
  • the catalyst powder may be an oxide containing a predetermined ratio of one selected from the group consisting of iron, magnesium, manganese, zinc, bismuth, molybdenum, and combinations of two or more thereof.
  • the binder may include an inorganic binder, and the content of the inorganic binder may be 5 to 20 wt%, and preferably 5 to 10 wt% based on the total weight of the catalyst powder and the inorganic binder. If the content of the inorganic binder is less than 5% by weight, the binding strength of the catalyst powder may be lowered. If the content of the inorganic binder is more than 20% by weight, the content of the catalyst powder may be relatively decreased.
  • the inorganic binders include alumina, silica, sodium silicate, silica alumina, calcium silicate, calcium carbonate, barium carbonate (BaCO 3), kaolin, mica, TiO 2, ZnO, iron oxide, bentonite and combinations of selected from the group consisting of a mixture of two or more And preferably kaolin, but is not limited thereto.
  • the binder may further include an organic binder.
  • the organic binder may be ethylcellulose, methylcellulose, or derivatives thereof, preferably methylcellulose, but is not limited thereto.
  • the organic binder improves the coating property and the moldability of the active layer and can mitigate cracking during drying.
  • the weight of the catalyst powder with respect to the volume of the inert support may be 200 to 500 g / L. If the weight of the catalyst powder is less than 200 g / L, a part of the catalyst powder coated on the support may be optionally peeled off and the distribution of the catalyst powder may be uneven. If the weight of the catalyst powder is more than 500 g / L, the thickness of the active layer becomes excessively thick, Can not participate in the reaction and it is difficult to disperse the exotherm between the reactions, so that unnecessary side reactions may occur.
  • the heat treatment of the active layer may be performed at a temperature of 500 to 650 ° C. If the temperature during the heat treatment is less than 500 ° C., the required strength can not be imparted to the active layer. If the temperature is more than 650 ° C., the phase of the catalyst may be arbitrarily changed.
  • a method for producing a catalyst compact comprising: (a) mixing an inert support and a sol, drying and heat-treating the intermediate support to form an intermediate layer on the surface of the inert support; (b) dissolving at least two metal salts in a first solvent to prepare a first solution, pyrolyzing the first solution by spraying it into the reactor using a carrier gas, or adding a co-agent to the first solution Drying and heat-treating the catalyst powder to produce a catalyst powder; (c) mixing the catalyst powder, the binder and the second solvent to prepare a second solution; And (d) coating the catalyst powder on the surface of the intermediate layer by mixing the product of step (a) and the second solution, followed by drying and heat treatment.
  • the porosity, the type and the kind of the inert support, the kind of the sol and the production method, the amount of the sol used for producing the intermediate layer, and the heat treatment temperature are as described above.
  • two or more metal salts may be dissolved in a first solvent to prepare a first solution, and the first solution may be pyrolyzed while spraying into the reactor using a carrier gas to produce a catalyst powder.
  • the metal salt may be one nitrate selected from the group consisting of iron, magnesium, manganese, zinc, bismuth, molybdenum, and combinations of two or more thereof, preferably, iron nitrate and magnesium nitrate, but is not limited thereto .
  • the first solution that is, the precursor solution
  • the first solution can be prepared by dissolving the magnesium nitrate and the ferric nitrate in a first solvent.
  • the temperature of the solution may be maintained at 10 to 80 ⁇ , preferably 15 to 60 ⁇ , more preferably 25 to 40 ⁇ .
  • the magnesium nitrate and the ferric nitrate may be mixed such that the molar ratio of magnesium to iron is 1: 1.5 to 2.5.
  • the magnesium nitrate and the iron nitrate may be magnesium nitrate and iron nitrate, respectively, but the present invention is not limited thereto, and at least one selected from the group consisting of sulfate, chloride, and carbonate may be used instead of each nitrate.
  • the first solvent may be a polar solvent, preferably water, but is not limited thereto. If the first solvent is water, impurities in the first solution can be minimized to improve the purity of the metal oxide catalyst as a final product.
  • the carrier gas may be air.
  • the pressure of the air may be 2 to 4 atm, preferably 3 atm. If the pressure of the air is less than 2 atm, the activity of the produced catalyst may be lower than the standard value required for the production of 1,3-butadiene. If the pressure of the air exceeds 4 atm, an excessive cost is required, And the catalyst activity may be lowered due to deformation of the crystal structure.
  • the pyrolysis may be performed at 500 to 900 ° C, preferably 700 to 800 ° C, more preferably 750 ° C. If the temperature at the time of pyrolysis is less than 500 ° C, catalyst crystals suitable for the standard values required for 1,3-butadiene production can not be obtained. If the temperature is higher than 900 ° C, the catalyst may melt to form a high- have.
  • the catalyst powder produced through pyrolysis may be heat-treated at a predetermined temperature to remove residual moisture, nitrate, etc. contained in the catalyst powder, thereby further improving the purity of the catalyst powder. Accordingly, the selectivity and purity of 1,3-butadiene produced using the catalyst can be improved.
  • the heat treatment of the catalyst powder may be performed at 500 to 600 ° C, preferably 530 to 570 ° C, more preferably 550 ° C. If the temperature during the heat treatment is less than 500 ° C, improvement of the purity of the catalyst and improvement of the selectivity of 1,3-butadiene are difficult to expect. If the temperature exceeds 600 ° C, the selectivity of 1,3-butadiene is improved, have.
  • the heat treatment of the catalyst powder may be performed for 1 to 10 hours, preferably for 2 to 6 hours. If the heat treatment is carried out for less than 1 hour, it is difficult to expect improvement of the purity of the catalyst and improvement of the selectivity of 1,3-butadiene. If the heat treatment is performed for more than 10 hours, the selectivity of 1,3-butadiene is improved but the conversion have.
  • a catalyst powder may be prepared by dissolving at least two metal salts in a first solvent to prepare a first solution, adding a co-agent to the first solution, and then drying and heat-treating the first solution.
  • the first solution that is, the precursor solution
  • the first solution can be prepared by dissolving the magnesium nitrate and the ferric nitrate in a first solvent.
  • the temperature of the solution may be maintained at 10 to 80 ⁇ , preferably 15 to 60 ⁇ , more preferably 25 to 40 ⁇ .
  • the magnesium nitrate and the ferric nitrate may be mixed such that the molar ratio of magnesium to iron is 1: 1.5 to 2.5.
  • a basic solution of 1.0 to 10.0 molar concentration for example, a 4 molar aqueous solution of sodium hydroxide and / or an aqueous ammonia solution may be added as a co-agent to coprecipitate the metal ions dissolved in the first solution into a solid phase. If the concentration of the basic solution is less than 1.0, the crystal structure of the catalyst powder is difficult to be formed. If the concentration of the basic solution is more than 10.0, it is difficult to remove Na ions in the case of metal ions bonded with hydroxyl groups during washing, for example, sodium hydroxide. .
  • the pH of the first solution is adjusted to 6 to 10 and the pH of the first solution is adjusted to maintain the pH of the first solution at a controlled rate so as to keep the pH of the first solution constant. , The mixture is stirred for 6 to 20 hours.
  • the stirred first solution is phase separated for a sufficient time to precipitate in a solid phase, and a solid sample precipitated through a vacuum filter or the like is obtained.
  • the obtained solid sample is dried at 70 to 200 ° C, preferably 100 to 180 ° C for 12 to 48 hours, placed in an electric furnace, and then heat-treated at a temperature of 350 to 800 ° C, preferably 500 to 700 ° C Whereby a catalyst powder can be obtained.
  • the catalyst powder, the binder and the second solvent may be mixed to prepare a second solution.
  • the second solvent may be a polar solvent, preferably water, but is not limited thereto. If the second solvent is water, impurities in the second solution can be minimized to improve the purity of the metal oxide catalyst as a final product.
  • the kind and content of the binder are as described above.
  • step (d) the product of step (a) and the second solution may be mixed, dried and heat-treated to produce an active layer containing catalyst powder on the surface of the intermediate layer.
  • the amount of the catalyst powder required for the production of the active layer and the heat treatment temperature are as described above.
  • magnesium-iron ferrite metal oxide catalyst powder was prepared by the following method.
  • the coprecipitated metal oxide was sufficiently washed with filtration and distilled water using a Buchner funnel and a vacuum filter, dried at 120 ° C. for 24 hours, and then heat-treated at 650 ° C. for 4 hours in a firing furnace to obtain a magnesium-iron ferrite metal oxide catalyst powder .
  • 1118 g of the magnesium-iron ferrite metal oxide catalyst prepared in Example 1 35 g of methylcellulose, 59 g of kaolin and 300 g of water were uniformly mixed at room temperature and then melt-kneaded using a twin-screw extruder with a diameter of 3 mm and a length of 3 The cylindrical pellets of ⁇ 5 mm were extruded.
  • the extruded magnesium-iron ferrite metal oxide catalyst was dried at room temperature, dried at 110 ° C for 24 hours, and then heat-treated at 550 ° C for 4 hours to prepare a catalyst molded body.
  • a catalyst preform was prepared in the same manner as in Example 1 except that the step of coating the alumina sol on the alpha-alumina balls was omitted.
  • the catalyst compacts prepared in the above Examples and Comparative Examples were filled in a stainless steel reactor having a diameter of 23 mm so as to have a space velocity of 400 h -1 and were activated at 370 ° C. while flowing air.
  • An oxidative dehydrogenation reaction was carried out at 370 DEG C using a mass flow rate controller using a mixed gas of n-butene: oxygen: steam at a mixing ratio of 8.6 vol%: 26.7 vol%: 64.7 vol% .
  • the steam in the reactant is supplied to the reactor by water using an initial micro-metering pump.
  • the reactor is designed to inject steam into the reactor together with other reactants by setting the pre-heating period to be set in the fixed bed reactor.
  • the catalytic activity was analyzed by analyzing the product produced by the oxidative dehydrogenation reaction on the gas chromatograph equipped with the thermal conductivity detector and the flame ion detector after 30 minutes of passing the catalyst through the catalyst layer.
  • the C4 mixture used as the reactant is 100% of 1-butene.
  • N-butene conversion after 20 hours of oxidative dehydrogenation reaction 1,3-butadiene yield and CO 2 yield are shown in Table 1 below.
  • n-butene conversion rate The 1,3-butadiene yield was calculated using the following equations (1) to (3), respectively.
  • n-butene conversion rate (%) ⁇ (weight of n-butene reacted) / (weight of n-butene injected) ⁇ * 100
  • 1,3-BD yield (%) ⁇ (1,3-BD weight produced) / (n-butene weight injected) ⁇ * 100
  • CO 2 yield (%) ⁇ (weight of produced CO 2 ) / (weight of injected n-butene) ⁇ * 100
  • Example 1 5 300 10 66.8 58.1 5 Example 2 3 300 10 66.2 57.3 5.1 Example 3 10 300 10 66.4 57.5 5 Example 4 15 300 10 66.0 57.1 5.1 Example 5 5 200 10 66.5 57.6 5 Example 6 5 500 10 66.8 57.0 5.3 Example 7 5 300 5 66.5 57.9 5 Example 8 5 300 20 66.2 57.5 5.1 Example 9 5 300 10 64.3 55.0 5.0 Comparative Example 1 0 1100 10 65.8 50.6 6.5 Comparative Example 2 0 300 10 52.1 42.1 3.4 Comparative Example 3 One 300 10 55.2 48.0 3.9 Comparative Example 4 20 300 10 63.0 51.0 5.5 Comparative Example 5 5 50 10 36.3 33.8 1.8 Comparative Example 6 5 100 10 40.2 35.1 2.3 Comparative Example 7 5 800 10 6 6

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

본 발명의 일 실시예는 불활성 지지체; 상기 불활성 지지체의 표면에 위치한 중간층; 상기 중간층의 표면에 위치한 활성층을 포함하고, 상기 활성층은 촉매 분말 및 바인더를 포함하는 촉매 성형체와 그의 제조방법 및 이를 이용한 1,3-부타디엔 제조방법을 제공한다.

Description

금속 산화물이 코팅된 촉매 성형체와 그의 제조방법 및 이를 이용한 1,3-부타디엔 제조방법
본 발명은 금속 산화물이 코팅된 촉매 성형체와 그의 제조방법 및 이를 이용한 1,3-부타디엔 제조방법에 관한 것이다.
n-부텐의 산화적 탈수소화 반응에 사용되는 촉매로는 페라이트 계열, 비스무스 몰리브데이트 계열, 주석 계열 등이 있다. 이들은 금속 산화물 촉매로서, 일반적으로 분말 상태로 합성된다. 분말 형태의 촉매는 고정층 반응기에서 일정 유량 이상이 되면 반응기 내 압력 강하가 극심하게 일어나 공정에 적용시키기 어렵기 때문에 성형 공정을 거치지 않고는 적용이 불가능하다. 또한, 열전달이 원활하게 이루어지지 않아, 촉매 내부의 온도가 국부적으로 크게 상승하여 촉매 소결 현상을 유발하며, 반응을 제어하기 어렵게 한다.
촉매 성형체는 제조방법 및 조건에 따라 압출, 타정, 또는 코팅된 형태 등 다양한 유형을 가질 수 있다. 이 중 압출 및 타정된 촉매 성형체가 가장 널리 사용되고 있으나, 성형을 통해 촉매 입자의 크기가 증가함에 따라 표면적이 크게 감소하고 성형체 내부의 촉매 입자가 반응에 참여할 수 있는 기회가 적어짐에 따라 분말에 비해 활성이 저하되는 문제가 있다.
코팅된 촉매 성형체의 경우, 압출, 타정된 것에 비해 촉매 사용량을 대폭 감소시킬 수 있을 뿐만 아니라, 촉매 내부에서 반응에 참여하지 못하는 촉매의 양을 감소시킬 수 있어 경제적이며, 촉매의 효율 측면에서 유리하다. 특히, 발열 반응인 n-부텐의 산화적 탈수소화 반응에서 코팅된 촉매 성형체를 사용하면 내부의 지지체가 희석제 역할을 함으로써 발열이 분산되는 효과를 얻을 수 있다. 즉, 발열 제어를 통해 부반응이 억제되어 1,3-부타디엔을 고수율로 제조할 수 있다.
관련하여, 한국공개특허 제2015-0003214호는 코팅 촉매를 사용하여 압출 촉매에 비해 촉매층의 온도 증가가 억제되고, 1,3-부타디엔 수율을 향상시키는 방법을 개시한다. 다만, 성형 촉매의 마크로공의 세공 용적이 전체의 세공 용적의 80% 이상인 것으로 지지체의 종류를 한정함에 따라 알파-알루미나 등과 같이 기공이 발달하지 않고 비표면적이 작은 물질을 지지체로 사용할 수 없는 문제가 있다.
또한, 한국공개특허 제2012-0009687호는 열전전도가 높은 지지체에 바인더를 이용하여 제조한 코팅 촉매를 n-부텐의 산화적 탈수소화 반응에 사용함으로써, 발열을 용이하게 제어할 수 있음을 개시한다. 다만, 이 경우 과량의 바인더를 사용함에 따라 촉매 분말의 함량이 상대적으로 적어지고, 바인더에 의한 부반응이 증가하여 촉매 활성이 저하될 수 있다.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 지지체의 선정 범위를 넓힐 수 있고, 적은 양의 바인더를 사용한 경우에도 지지체에 대한 촉매 분말의 부착력, 결합력이 우수하며, n-부텐의 산화적 탈수소화 반응에 대한 활성이 우수한 촉매 성형체 및 그 제조방법을 제공하는 것이다.
본 발명의 일 측면은, 불활성 지지체; 상기 불활성 지지체의 표면에 위치한 중간층; 상기 중간층의 표면에 위치한 활성층을 포함하고, 상기 활성층은 촉매 분말 및 바인더를 포함하는, 촉매 성형체를 제공한다.
일 실시예에 있어서, 상기 불활성 지지체의 공극률은 70부피% 이하일 수 있다.
일 실시예에 있어서, 상기 불활성 지지체는 구형, 원통형, 고리형, 판형 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나일 수 있다.
일 실시예에 있어서, 상기 불활성 지지체는 알루미나, 실리카, 지르코니아, 실리콘카바이드, 코디어라이트 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나일 수 있다.
일 실시예에 있어서, 상기 중간층은 알루미나, 실리카, 카올린, TiO2, ZnO, 벤토나이트 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나로 이루어질 수 있다.
일 실시예에 있어서, 상기 불활성 지지체의 부피에 대한 상기 중간층의 중량은 3~15g/L일 수 있다.
일 실시예에 있어서, 상기 촉매 분말은 철, 마그네슘, 망간, 아연, 비스무스, 몰리브덴 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나의 산화물일 수 있다.
일 실시예에 있어서, 상기 바인더는 무기바인더를 포함하고, 상기 촉매 분말 및 상기 무기바인더의 총 중량을 기준으로 상기 무기바인더의 함량은 5~20중량%일 수 있다.
일 실시예에 있어서, 상기 무기바인더는 알루미나, 실리카, 규산나트륨, 규산알루미나, 규산칼슘, 탄산칼슘, 탄산바륨(BaCO3), 카올린, 마이카, TiO2, ZnO, 산화철, 벤토나이트 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나일 수 있다.
일 실시예에 있어서, 상기 불활성 지지체의 부피에 대한 상기 촉매 분말의 중량은 200~500g/L일 수 있다.
본 발명의 다른 일 측면은, (a) 불활성 지지체 및 졸을 혼합하고 건조, 열처리하여 상기 불활성 지지체의 표면에 중간층을 생성하는 단계; (b) 2 이상의 금속염을 제1 용매에 용해시켜 제1 용액을 제조하고, 상기 제1 용액을 운반가스를 이용하여 반응기 내부로 분무하면서 열분해시키거나, 상기 제1 용액에 공침제를 첨가한 후 건조, 열처리하여 촉매 분말을 제조하는 단계; (c) 상기 촉매 분말, 바인더 및 제2 용매를 혼합하여 제2 용액을 제조하는 단계; 및 (d) 상기 (a) 단계의 생성물 및 상기 제2 용액을 혼합하고 건조, 열처리하여 상기 중간층의 표면에 상기 촉매 분말을 포함하는 활성층을 생성하는 단계;를 포함하는, 촉매 성형체의 제조방법을 제공한다.
일 실시예에 있어서, 상기 불활성 지지체의 공극률은 70부피% 이하일 수 있다.
일 실시예에 있어서, 상기 불활성 지지체는 구형, 원통형, 고리형, 판형 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나일 수 있다.
일 실시예에 있어서, 상기 불활성 지지체는 알루미나, 실리카, 지르코니아, 실리콘카바이드, 코디어라이트 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나일 수 있다.
일 실시예에 있어서, 상기 중간층은 알루미나, 실리카, 카올린, TiO2, ZnO, 벤토나이트 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나로 이루어질 수 있다.
일 실시예에 있어서, 상기 불활성 지지체의 부피에 대한 상기 중간층의 중량은 3~15g/L일 수 있다.
일 실시예에 있어서, 상기 금속염은 철, 마그네슘, 망간, 아연, 비스무스, 몰리브덴 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나의 질산염일 수 있다.
일 실시예에 있어서, 상기 공침제는 수산화나트륨, 암모니아 또는 이들의 조합일 수 있다.
일 실시예에 있어서, 상기 열분해는 500~900℃에서 수행될 수 있다.
일 실시예에 있어서, 상기 바인더는 무기바인더를 포함하고, 상기 촉매 분말 및 상기 무기바인더의 총 중량을 기준으로 상기 무기바인더의 함량은 5~20중량%일 수 있다.
일 실시예에 있어서, 상기 무기바인더는 알루미나, 실리카, 규산나트륨, 규산알루미나, 규산칼슘, 탄산칼슘, 탄산바륨(BaCO3), 카올린, 마이카, TiO2, ZnO, 산화철, 벤토나이트 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나일 수 있다.
일 실시예에 있어서, 상기 불활성 지지체의 부피에 대한 상기 촉매 분말의 중량은 200~500g/L일 수 있다.
본 발명의 다른 일 측면은, 상기 촉매 성형체의 존재 하에서 n-부텐을 산화적 탈수소화 반응시키는, 1,3-부타디엔의 제조방법을 제공한다.
본 발명의 일 측면에 따른 촉매 성형체는, 불활성 지지체와 활성층 사이에 중간층이 개재되어 상기 불활성 지지체에 대한 상기 활성층의 부착력, 결합력이 우수하여 장기간 동안 활성을 유지할 수 있다.
또한, 상기 활성층에 포함된 촉매 분말이 상기 불활성 지지체의 표면에만 존재하므로 상기 촉매 성형체가 n-부텐의 산화적 탈수소화 반응에 참여하는 경우 상기 촉매 성형체의 내부에서 일어나는 축차 반응이 억제되어 종래의 압출, 타정 촉매에 비해 산소 사용효율이 높고, 부반응을 억제하여 발열량을 감소할 수 있으며, n-부텐의 전환율 및 1,3-부타디엔의 수율을 향상시킬 수 있다.
또한, 상기 활성층은 실질적으로 상기 불활성 지지체의 표면에 1차적으로 형성된 상기 중간층의 표면에 부착, 형성된 것이므로, 상기 불활성 지지체의 종류를 공극률, 비표면적에 따른 제한없이 다변화할 수 있다.
또한, 본 발명의 다른 일 측면에 따른 촉매 성형체의 제조방법은, 종래에 비해 촉매 성형체 제조 시 사용되는 바인더의 양을 현저히 감소시킬 수 있으므로, 경제적으로 유리한 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 촉매 성형체의 구조를 도식화한 것이다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
촉매 성형체
도 1은 본 발명의 일 실시예에 따른 촉매 성형체의 구조를 도식화한 것이다. 도 1을 참고하면, 본 발명의 일 측면에 따른 촉매 성형체는, 불활성 지지체(100); 상기 불활성 지지체의 표면에 위치한 중간층(200); 상기 중간층의 표면에 위치한 활성층(300)을 포함하고, 상기 활성층(300)은 촉매 분말 및 바인더를 포함할 수 있다.
상기 불활성 지지체(100)는 그 내부와 표면에 형성된 다수의 기공을 포함할 수 있고, 이 때, 상기 불활성 지지체(100)의 공극률은 70부피% 이하, 바람직하게는, 50부피% 이하, 더 바람직하게는, 30중량% 이하일 수 있다. 상기 불활성 지지체(100)의 공극률이 70부피% 초과이면 지지체의 내부의 임의의 영역에 담지된 촉매 분말이 반응에 참여할 수 없고, 반응 간 발열을 분산시키기 어려우므로 불필요한 부반응이 일어날 수 있다.
상기 불활성 지지체(100)는 구형, 원통형, 고리형, 판형 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나일 수 있고, 바람직하게는, 구형일 수 있으나, 이에 한정되는 것은 아니다. 이 때, 상기 불활성 지지체(100)의 기공은 상기 불활성 지지체(100)의 표면 주변, 예를 들어, 상기 불활성 지지체(100)의 표면 및 그로부터 일정 두께의 영역에 걸쳐 분포할 수 있으며, 중심 주변에는 존재하지 않을 수 있다. 즉, 상기 불활성 지지체(100)의 기공은 그 표면 주변의 영역에만 존재할 수 있고, 이 경우 상기 불활성 지지체(100)는 실질적으로 내부에 기공을 포함하지 않는 "솔리드 형태(solid type)"일 수 있다. 솔리드 형태의 불활성 지지체(100)는 알루미나, 실리카, 지르코니아, 실리콘카바이드, 코디어라이트 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나일 수 있고, 바람직하게는, 알루미나일 수 있으며, 더 바람직하게는, 알파-알루미나일 수 있으나, 이에 한정되는 것은 아니다.
상기 촉매 성형체는 상기 불활성 지지체(100)의 표면에 위치하여 상기 불활성 지지체(100)와 상기 활성층(300) 사이의 부착력, 결합력을 강화하는 중간층(200)을 포함할 수 있다.
상기 중간층(200)은 알루미나, 실리카, 카올린, TiO2, ZnO, 벤토나이트 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나, 바람직하게는, 알루미나, 더 바람직하게는, 감마-알루미나로 이루어질 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 상기 감마-알루미나로 이루어진 상기 중간층(200)은 상기 불활성 지지체(100)에 도포된 알루미나 졸을 열처리하여 형성될 수 있다.
상기 알루미나 졸은 보헤마이트, 알루미늄 염, 알루미늄알콕사이드 중 하나 이상의 알루미늄 전구체를 물 존재 하에 가수분해(hydrolysis) 및 중축합(condensation)하여 보헤마이트 입자를 형성하는 단계, 및 상기 보헤마이트 입자에 산을 첨가하여 상기 보헤마이트 입자를 해교하는(peptizing) 단계를 포함하는 일련의 공정을 통해 제조될 수 있다.
상기 알루미늄 염이 알루미늄 질산염, 염화알루미늄, 황산알루미늄, 인화알루미늄 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나일 수 있으나, 이에 한정되는 것은 아니다.
상기 알루미늄알콕사이드가 알루미늄에톡사이드, 알루미늄이소프로폭사이드, 알루미늄세크부톡사이드 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나일 수 있고, 바람직하게는, 알루미늄알콕사이드일 수 있으나, 이에 한정되는 것은 아니다.
상기 물의 양이 상기 알루미늄 전구체 1몰 당 1~20몰일 수 있다. 상기 물의 양이 1몰 미만이면 용매의 양이 충분하지 않아 상기 알루미나 졸이 형성되기 어렵고 점성이 높아 상기 불활성 지지체와의 혼합이 균일하게 이루어지지 않을 수 있으며, 20몰 초과이면 상기 알루미나 졸과 상기 불활성 지지체의 상대적인 거리가 멀어져 상기 불활성 지지체의 표면에 상기 알루미나 졸이 균일하게 코팅되기 어렵다.
상기 산은 질산(HNO3), 염산(HCl), 황산(H2SO4), 초산(CH3COOH), 인산(H3PO4) 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나일 수 있고, 바람직하게는, 질산일 수 있으나, 이에 한정되는 것은 아니다.
상기 산의 양은 상기 알루미늄 전구체 1몰 당 0.01~0.2몰일 수 있고, 바람직하게는, 0.05~0.15몰일 수 있으나, 이에 한정되는 것은 아니다. 상기 산은 상기 보헤마이트를 해교하기 위해 첨가된다.
상기 알루미늄 전구체 1몰 당 상기 산이 0.01몰 미만이면 알루미나 졸의 입자 분산도가 낮아져 불활성 지지체와 균일하게 혼합될 수 없고, 0.2몰 초과이면 질산 등 과량의 전해질 이온이 입자 표면에 흡착되어 상기 불활성 지지체(100)의 표면에 상기 알루미나 졸이 균일하게 코팅되기 어렵다.
상기 불활성 지지체(100)의 표면에 도포된 상기 알루미나 졸을 열처리하면 상기 알루미나 졸이 감마-알루미나로 전환될 수 있고, 상기 감마-알루미나로 이루어진 상기 중간층(200)의 표면에 상기 촉매 분말을 포함하는 상기 활성층(300)이 강하게 결합, 부착되어 고정될 수 있다.
상기 열처리는 500~1000℃의 온도에서 수행될 수 있고, 바람직하게는, 800℃에서 수행될 수 있으나, 이에 한정된 것은 아니다. 상기 열처리 시 온도가 500℃ 미만이면 상기 알루미나 졸 중 용매가 충분히 제거되지 않아 불순물로 잔류할 수 있고, 1000℃ 초과이면 지지체의 형태가 임의로 변형되어 불균일해질 수 있다.
또한, 알루미나는 주변 온도가 높아짐에 따라 감마-, 델타-, 세타-, 알파-알루미나로의 상전이(phase transition)가 발생하는데, 이에 따라 입자 비표면적의 변화가 수반될 수 있다. 구체적으로, 감마(γ) 상에서 알파(α)상으로 전이될수록 비표면적은 급격히 감소하므로, 1000℃ 초과인 조건에서 열분해 시 상기 무기 입자의 비표면적이 급격히 감소하여 활성층과의 결합이 약화될 수 있다.
상기 불활성 지지체의 부피에 대한 상기 알루미나 졸의 중량은 3~15g/L, 바람직하게는, 5~10g/L 일 수 있다. 상기 불활성 지지체의 부피에 대한 상기 알루미나 졸의 중량이 3g/L 미만이면 상기 감마-알루미나의 표면 조도가 불충분하여 촉매 분말이 강하게 결합, 부착되기 어렵고, 15g/L 초과이면 상기 중간층의 두께가 두꺼워져 알루미나 졸의 열처리 시 과량의 분진이 발생할 수 있고, 후속되는 촉매 분말 코팅 시 상기 분진이 상기 촉매 분말과 함께 코팅되어 불필요한 부반응을 일으킬 수 있다.
상기 활성층(300)은 상기 감마-알루미나로 이루어진 상기 중간층(200)의 표면에 촉매 분말, 바인더 및 용매를 포함하는 조성물을 도포하고, 건조 및 열처리하여 형성될 수 있다. 상기 건조, 열처리 시 상기 조성물에 포함된 상기 용매 성분이 제거되므로, 상기 활성층(300)은 실질적으로 촉매 분말 및 바인더를 포함할 수 있고, 특히, 상기 촉매 분말은 상기 활성층(300)에 균일하게 분포할 수 있다.
상기 촉매 분말은 철, 마그네슘, 망간, 아연, 비스무스, 몰리브덴 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나를 미리 정해진 비율로 포함하는 산화물일 수 있다.
상기 바인더는 무기바인더를 포함하고, 상기 촉매 분말 및 상기 무기바인더의 총 중량을 기준으로 상기 무기바인더의 함량은 5~20중량%, 바람직하게는, 5~10중량%일 수 있다. 상기 무기바인더의 함량이 5중량% 미만이면 상기 촉매 분말의 결합 강도가 낮아질 수 있고, 20중량% 초과이면 촉매 분말의 함량이 상대적으로 적어져 촉매 성형체의 활성이 저하될 수 있다.
상기 무기바인더는 알루미나, 실리카, 규산나트륨, 규산알루미나, 규산칼슘, 탄산칼슘, 탄산바륨(BaCO3), 카올린, 마이카, TiO2, ZnO, 산화철, 벤토나이트 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나일 수 있고, 바람직하게는, 카올린일 수 있으나, 이에 한정되는 것은 아니다.
상기 바인더는 유기바인더를 더 포함할 수 있다. 예를 들어, 상기 유기바인더는 에틸셀룰로오스, 메틸셀룰로오스, 또는 이들의 유도체일 수 있고, 바람직하게는 메틸셀룰로오스일 수 있으나, 이에 한정되는 것은 아니다. 상기 유기바인더는 상기 활성층의 코팅성, 성형성을 개선하고 건조 시 크랙(crack) 생성을 완화할 수 있다.
상기 촉매 성형체에서, 상기 불활성 지지체의 부피에 대한 상기 촉매 분말의 중량은 200~500g/L일 수 있다. 상기 촉매 분말의 중량이 200g/L 미만이면 지지체에 코팅된 촉매 분말 중 일부가 임의로 박리되어 촉매 분말의 분포가 불균일해질 수 있고, 500g/L 초과이면 활성층의 두께가 과도하게 두꺼워져 중간층에 인접한 영역에 존재하는 촉매 분말이 반응에 참여할 수 없고, 반응 간 발열을 분산시키기 어려우므로 불필요한 부반응이 일어날 수 있다.
상기 활성층의 열처리는 500~650℃의 온도에서 수행될 수 있다. 상기 열처리 시 온도가 500℃ 미만이면 상기 활성층에 필요한 강도를 부여할 수 없고, 650℃ 초과이면 촉매의 상이 임의로 변하여 필요한 수준의 촉매 활성을 얻을 수 없다.
촉매 성형체의 제조방법
본 발명의 다른 일 측면에 따른 촉매 성형체의 제조방법은, (a) 불활성 지지체 및 졸을 혼합하고 건조, 열처리하여 상기 불활성 지지체의 표면에 중간층을 생성하는 단계; (b) 2 이상의 금속염을 제1 용매에 용해시켜 제1 용액을 제조하고, 상기 제1 용액을 운반가스를 이용하여 반응기 내부로 분무하면서 열분해시키거나, 상기 제1 용액에 공침제를 첨가한 후 건조, 열처리하여 촉매 분말을 제조하는 단계; (c) 상기 촉매 분말, 바인더 및 제2 용매를 혼합하여 제2 용액을 제조하는 단계; 및 (d) 상기 (a) 단계의 생성물 및 상기 제2 용액을 혼합하고 건조, 열처리하여 상기 중간층의 표면에 촉매 분말을 코팅하는 단계;를 포함할 수 있다.
상기 (a) 단계에서, 상기 불활성 지지체의 공극률, 형태 및 종류, 상기 졸의 종류 및 제조방법, 상기 중간층의 생성에 필요한 졸의 사용량 및 열처리 온도에 대해서는 전술한 것과 같다.
상기 (b) 단계에서, 2 이상의 금속염을 제1 용매에 용해시켜 제1 용액을 제조하고, 상기 제1 용액을 운반가스를 이용하여 반응기 내부로 분무하면서 열분해시켜 촉매 분말을 제조할 수 있다. 상기 금속염은 철, 마그네슘, 망간, 아연, 비스무스, 몰리브덴 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나의 질산염일 수 있고, 바람직하게는, 철 질산염 및 마그네슘 질산염일 수 있으나, 이에 한정되는 것은 아니다.
예를 들어, 상기 마그네슘 질산염 및 철 질산염을 제1 용매에 용해시켜 제1 용액, 즉, 전구체 용액을 제조할 수 있다. 상기 제1 용액의 제조 시, 각 전구체의 용해도를 높이기 위해 용액의 온도를 10~80℃, 바람직하게는, 15~60℃, 더 바람직하게는, 25~40℃로 유지할 수 있다. 상기 마그네슘 질산염 및 상기 철 질산염을 마그네슘과 철의 몰 비가 1 : 1.5~2.5가 되도록 혼합할 수 있다.
상기 마그네슘 질산염 및 상기 철 질산염이 각각 질산마그네슘 및 질산철일 수 있으나, 이에 한정되는 것은 아니며, 각각의 질산염을 대신하여 황산염, 염화물, 및 카보네이트로 이루어진 군에서 선택된 하나 이상이 사용될 수도 있다.
상기 제1 용매는 극성 용매, 바람직하게는, 물일 수 있으나, 이에 한정되는 것은 아니다. 상기 제1 용매가 물인 경우, 제1 용액 내 불순물을 최소화하여 최종 생성물인 금속 산화물 촉매의 순도를 향상시킬 수 있다.
상기 운반가스가 공기일 수 있다. 상기 공기의 압력은 2~4기압, 바람직하게는, 3기압일 수 있다. 상기 공기의 압력이 2기압 미만이면 제조되는 촉매의 활성이 1,3-부타디엔의 제조를 위해 요구되는 기준치에 미달할 수 있고, 4기압 초과이면 과다한 비용이 요구되어 경제적 손실을 초래할 뿐만 아니라 고융체 형성이나 결정 구조의 변형으로 인해 촉매 활성이 저하될 수 있다.
상기 열분해는 500~900℃, 바람직하게는, 700~800℃, 더 바람직하게는, 750℃에서 수행될 수 있다. 상기 열분해 시 온도가 500℃ 미만이면 1,3-부타디엔의 제조를 위해 요구되는 기준치에 적합한 촉매 결정을 수득할 수 없고, 900℃ 초과이면 촉매가 녹아 고융체가 형성되거나 촉매의 결정 구조가 변할 수 있다.
필요에 따라, 상기 열분해를 통해 제조된 상기 촉매 분말을 일정 온도에서 열처리하여 상기 촉매 분말에 포함된 잔류 수분, 질산염 등을 제거할 수 있고, 그에 따라 상기 촉매 분말의 순도를 더 향상시킬 수 있다. 이에 따라, 상기 촉매를 이용하여 제조되는 1,3-부타디엔의 선택도 및 순도가 향상될 수 있다.
상기 촉매 분말의 열처리는 500~600℃, 바람직하게는, 530~570℃, 더 바람직하게는 550℃에서 수행될 수 있다. 상기 열처리 시 온도가 500℃ 미만이면 촉매의 순도 향상 및 1,3-부타디엔의 선택도 향상을 기대하기 어렵고, 600℃ 초과이면 1,3-부타디엔의 선택도는 향상되나 수율이 급격하게 저하될 수 있다.
또한, 상기 촉매 분말의 열처리는 1~10시간, 바람직하게는, 2~6시간 동안 수행될 수 있다. 상기 열처리가 1시간 미만으로 수행되면 촉매의 순도 향상 및 1,3-부타디엔의 선택도 향상을 기대하기 어렵고, 10시간 초과이면 1,3-부타디엔의 선택도는 향상되나 전환율이 급격하게 저하될 수 있다.
한편, 상기 (b) 단계에서, 2 이상의 금속염을 제1 용매에 용해시켜 제1 용액을 제조하고, 상기 제1 용액에 공침제를 첨가한 후 건조, 열처리하여 촉매 분말을 제조할 수 있다.
예를 들어, 상기 마그네슘 질산염 및 철 질산염을 제1 용매에 용해시켜 제1 용액, 즉, 전구체 용액을 제조할 수 있다. 상기 제1 용액의 제조 시, 각 전구체의 용해도를 높이기 위해 용액의 온도를 10~80℃, 바람직하게는, 15~60℃, 더 바람직하게는, 25~40℃로 유지할 수 있다. 상기 마그네슘 질산염 및 상기 철 질산염을 마그네슘과 철의 몰 비가 1 : 1.5~2.5가 되도록 혼합할 수 있다.
상기 제1 용액에 용해된 금속 이온을 고체 상으로 공침시키기 위해 1.0∼10.0몰 농도의 염기성 용액, 예를 들어, 4몰 농도의 수산화나트륨 수용액 및/또는 암모니아 수용액을 공침제로 첨가할 수 있다. 상기 염기성 용액의 농도가 1.0 미만이면 촉매 분말의 결정 구조가 형성되기 어렵고, 10.0 초과이면 세척시 수산기와 결합한 금속 이온, 예를 들어, 수산화나트륨의 경우 Na 이온의 제거가 어렵고, 이로 인해 활성 저하가 나타나게 된다.
상기 염기성 용액을 상기 제1 용액의 pH가 일정하게 유지되도록 속도를 조절하여 함께 주입하면서 상기 제1 용액의 pH를 6~10으로 조절, 유지시키고, 공침이 충분히 이루어지도록 1~24시간 동안, 바람직하게는, 6~20시간 동안 교반시킨다.
교반시킨 제1 용액은 고체 상으로 침전되도록 충분한 시간 동안 상 분리시키고, 감압 여과기 등을 통해 침전된 고체 시료를 얻는다. 얻어진 고체 시료는 70~200℃, 바람직하게는, 100~180℃에서 12~48시간 동안 건조시키고, 건조된 촉매를 전기로에 넣은 후 350~800℃, 바람직하게는 500~700℃의 온도에서 열처리하여 촉매 분말을 수득할 수 있다.
상기 (c) 단계에서, 상기 촉매 분말, 바인더 및 제2 용매를 혼합하여 제2 용액을 제조할 수 있다. 상기 제2 용매는 극성 용매, 바람직하게는, 물일 수 있으나, 이에 한정되는 것은 아니다. 상기 제2 용매가 물인 경우, 제2 용액 내 불순물을 최소화하여 최종 생성물인 금속 산화물 촉매의 순도를 향상시킬 수 있다. 상기 바인더의 종류와 함량에 대해서는 전술한 것과 같다.
상기 (d) 단계에서, 상기 (a) 단계의 생성물 및 상기 제2 용액을 혼합하고 건조, 열처리하여 상기 중간층의 표면에 촉매 분말을 포함하는 활성층을 생성할 수 있다. 상기 활성층의 생성에 필요한 촉매 분말의 사용량 및 열처리 온도에 대해서는 전술한 것과 같다.
이하, 본 발명의 실시예를 상세히 설명하기로 한다.
실시예 1
질산철(Fe(NO3)39H2O, 삼전, 98.5%) 20.5kg, 질산마그네슘(Mg(NO3)26H2O, 삼전, 98%) 6.5kg을 증류수에 넣어 상온에서 2시간 동안 잘 녹도록 충분히 교반시켜 마그네슘 : 철=1 : 2의 몰 비로 함유된 혼합 용액을 제조하였다. 제조된 혼합용액을 시간 당 3.0L씩 공기를 운반가스로 하여 분무 열분해 장치의 반응기 내부로 분무하여 열분해시켰다. 이 때, 분무 열분해 조건은 공기 압력은 3기압, 반응기 내부 온도는 750℃로 운전하여 마그네슘-철 페라이트 금속 산화물 촉매 분말을 제조하였다.
보헤마이트 1.76g, 물 4.5g, 질산 0.225g을 혼합하여 알루미나 졸을 제조하였다. 여기에 알파-알루미나 볼 300mL를 넣고 회전시키면서 볼에 알루미나 졸이 균일하게 부착되도록 하였다. 이후 상온 건조 및 80℃에서 8시간 동안 건조한 후, 800℃에서 4시간 동안 열처리하여 감마-알루미나가 코팅된 볼 형태의 알파-알루미나 지지체를 제조하였다(알루미나 졸 코팅 중량/알파-알루미나 볼 부피=5g/L).
그 다음, 마그네슘-철 페라이트 금속 산화물 촉매 분말 95.3g, 카올린 10.5g, 메틸셀룰로오스 2.1g, 물 16.2g을 균일하게 혼합한 다음, 감마-알루미나가 코팅된 볼 형태의 알파-알루미나 지지체 300mL를 첨가한 후 회전시켜 감마-알루미나 상에 촉매 분말을 코팅하였다. 이후 상온 건조 및 80℃에서 8시간 동안 건조한 후, 550℃에서 4시간 동안 열처리하여 페라이트계 금속 산화물이 코팅된 볼 형태의 촉매 성형체를 제조하였다(촉매 분말 코팅 중량/알루미나 졸이 코팅된 알파-알루미나 볼 부피=300g/L).
실시예 2
알루미나 졸 코팅 중량/알파-알루미나 볼 부피=3g/L로 변경한 것을 제외하면, 상기 실시예 1과 동일한 방법으로 촉매 성형체를 제조하였다.
실시예 3
알루미나 졸 코팅 중량/알파-알루미나 볼 부피=10g/L로 변경한 것을 제외하면, 상기 실시예 1과 동일한 방법으로 촉매 성형체를 제조하였다.
실시예 4
알루미나 졸 코팅 중량/알파-알루미나 볼 부피=15g/L로 변경한 것을 제외하면, 상기 실시예 1과 동일한 방법으로 촉매 성형체를 제조하였다.
실시예 5
촉매 분말 코팅 중량/알루미나 졸이 코팅된 알파-알루미나 볼 부피=200g/L로 변경한 것을 제외하면, 상기 실시예 1과 동일한 방법으로 촉매 성형체를 제조하였다.
실시예 6
촉매 분말 코팅 중량/알루미나 졸이 코팅된 알파-알루미나 볼 부피=500g/L로 변경한 것을 제외하면, 상기 실시예 1과 동일한 방법으로 촉매 성형체를 제조하였다.
실시예 7
마그네슘-철 페라이트 금속 산화물 촉매 분말 및 카올린의 총 중량에 대한 카올린의 함량을 5중량%로 변경한 것을 제외하면, 상기 실시예 1과 동일한 방법으로 촉매 성형체를 제조하였다.
실시예 8
마그네슘-철 페라이트 금속 산화물 촉매 분말 및 카올린의 총 중량에 대한 카올린의 함량을 20중량%로 변경한 것을 제외하면, 상기 실시예 1과 동일한 방법으로 촉매 성형체를 제조하였다.
실시예 9
마그네슘-철 페라이트 금속 산화물 촉매 분말을 아래의 방법으로 제조한 것을 제외하면 상기 실시예 1과 동일한 방법으로 촉매 성형체를 제조하였다.
질산철(Fe(NO3)39H2O, 삼전, 98.5%) 2.1kg, 질산마그네슘(Mg(NO3)26H2O, 삼전, 98%) 0.7kg을 증류수에 넣어 상온에서 2시간 동안 잘 녹도록 충분히 교반시켜 마그네슘 : 철=1 : 2의 몰 비로 함유된 혼합 용액을 제조하였다. 상온에서 상기 혼합 용액에 4M 수산화나트륨 수용액을 pH 9.0이 될 때까지 첨가하면서 교반하여 Mg(OH)2-Fe(OH)3의 공침 용액을 제조하였다. 상기 공침 용액은 상온에서 3시간, 60℃에서 6시간, 90℃에서 12시간 동안 수열반응시켰다. 공침된 금속 산화물을 부흐너 깔대기와 감압 여과기를 사용하여 여과 및 증류수로 충분히 세척한 후 120℃에서 24시간 동안 건조하고, 소성로에서 650℃에서 4시간 동안 열처리하여 마그네슘-철 페라이트 금속 산화물 촉매 분말을 제조하였다.
비교예 1
상기 실시예 1에서 제조한 마그네슘-철 페라이트 금속 산화물 촉매 1118g, 메틸셀룰로오스 35g, 카올린 59g 그리고 물 300g을 상온에서 균일하게 혼합한 다음, 트윈스크류(twin-screw) 압출기를 이용하여 직경 3mm, 길이 3~5mm인 원통형 펠렛을 압출하였다. 압출된 마그네슘-철 페라이트 금속 산화물 촉매는 상온 건조 및 110℃에서 24시간 동안 건조한 후, 550℃에서 4시간 동안 열처리하여 촉매 성형체를 제조하였다.
비교예 2
알파-알루미나 볼에 알루미나 졸을 코팅하는 단계를 생략한 것을 제외하면, 상기 실시예 1과 동일한 방법으로 촉매 성형체를 제조하였다.
비교예 3
알루미나 졸 코팅 중량/알파-알루미나 볼 부피=1g/L로 변경한 것을 제외하면, 상기 실시예 1과 동일한 방법으로 촉매 성형체를 제조하였다.
비교예 4
알루미나 졸 코팅 중량/알파-알루미나 볼 부피=20g/L로 변경한 것을 제외하면, 상기 실시예 1과 동일한 방법으로 촉매 성형체를 제조하였다.
비교예 5
촉매 분말 코팅 중량/알루미나 졸이 코팅된 알파-알루미나 볼 부피=50g/L로 변경한 것을 제외하면, 상기 실시예 1과 동일한 방법으로 촉매 성형체를 제조하였다.
비교예 6
촉매 분말 코팅 중량/알루미나 졸이 코팅된 알파-알루미나 볼 부피=100g/L로 변경한 것을 제외하면, 상기 실시예 1과 동일한 방법으로 촉매 성형체를 제조하였다.
비교예 7
촉매 분말 코팅 중량/알루미나 졸이 코팅된 알파-알루미나 볼 부피=800g/L로 변경한 것을 제외하면, 상기 실시예 1과 동일한 방법으로 촉매 성형체를 제조하였다.
비교예 8
마그네슘-철 페라이트 금속 산화물 촉매 분말 및 카올린의 총 중량에 대한 카올린의 함량을 3중량%로 변경한 것을 제외하면, 상기 실시예 1과 동일한 방법으로 촉매 성형체를 제조하였다.
비교예 9
마그네슘-철 페라이트 금속 산화물 촉매 분말 및 카올린의 총 중량에 대한 카올린의 함량을 50중량%로 변경한 것을 제외하면, 상기 실시예 1과 동일한 방법으로 촉매 성형체를 제조하였다.
실험예
상기 실시예 및 비교예에서 제조한 촉매 성형체를 직경 23mm 스테인레스 반응기에 공간속도 400h-1이 되도록 충진하고, 공기를 흘려주면서 370℃에서 활성화시켰다. 370℃에서 질량유속 조절기를 사용하여 n-부텐: 산소: 스팀을 혼합비가 8.6부피%: 26.7부피%: 64.7부피%인 혼합 기체를 사용하여, 산화적 탈수소화 반응을 수행하여 1,3-부타디엔을 제조하였다. 상기 반응물 중 스팀은 초기 미세 정량펌프를 사용하여 물로 공급되나 예열 구간을 설정하여 상기 고정층 반응기에 주입되기 전에 스팀으로 기화시켜 다른 반응물과 함께 반응기에 주입되도록 반응 장치를 설계하였다.
촉매 활성은 반응물이 촉매층을 통과한지 30분 후부터 열전도도 검출기와 불꽃이온 검출기가 장착된 기체크로마토그래프에 산화적 탈수소화 반응에 의해 생성된 생성물을 각각 보내어 분석하였다. 반응물로 사용된 C4 혼합물은 1-부텐 100%이다.
산화적 탈수소화 반응 20시간 후의 n-부텐 전환율 1,3-부타디엔 수율, CO2 수율을 하기 표 1에 나타내었다. n-부텐 전환율 1,3-부타디엔 수율은 각각 하기 수학식 1 내지 3을 이용하여 계산하였다.
[수학식 1] : n-부텐 전환율
n-부텐 전환율(%)={(반응한 n-부텐 중량)/(주입한 n-부텐 중량)}*100
[수학식 2] : 1,3-부타디엔(BD) 수율
1,3-BD 수율(%)={(생성된 1,3-BD 중량)/(주입한 n-부텐 중량)}*100
[수학식 3] : CO2 수율
CO2 수율(%)={(생성된 CO2 중량)/(주입한 n-부텐 중량)}*100
구분 알루미나 졸 코팅량(g/L) 촉매 코팅량(g/L) 무기바인더 함량(중량%) n-부텐 전환율(%) 1,3-부타디엔 수율(%) CO2 수율(%)
실시예 1 5 300 10 66.8 58.1 5
실시예 2 3 300 10 66.2 57.3 5.1
실시예 3 10 300 10 66.4 57.5 5
실시예 4 15 300 10 66.0 57.1 5.1
실시예 5 5 200 10 66.5 57.6 5
실시예 6 5 500 10 66.8 57.0 5.3
실시예 7 5 300 5 66.5 57.9 5
실시예 8 5 300 20 66.2 57.5 5.1
실시예 9 5 300 10 64.3 55.0 5.0
비교예 1 0 1100 10 65.8 50.6 6.5
비교예 2 0 300 10 52.1 42.1 3.4
비교예 3 1 300 10 55.2 48.0 3.9
비교예 4 20 300 10 63.0 51.0 5.5
비교예 5 5 50 10 36.3 33.8 1.8
비교예 6 5 100 10 40.2 35.1 2.3
비교예 7 5 800 10 64.0 53.0 5.6
비교예 8 5 300 3 46.1 40.2 3.1
비교예 9 5 300 50 53.8 44.4 5.9
상기 표 1을 참고하면, 솔리드 구형의 알파-알루미나 지지체의 표면에 일정 량의 알루미나 졸을 코팅한 후 일정 량의 촉매 분말을 코팅한 촉매 성형체(실시예 1~9)의 경우, 압출 촉매 성형체(비교예 1)에 비해 1,3-부타디엔 수율이 증가하면서도 CO2 수율은 감소하였다. 알루미나 졸의 코팅을 생략한 촉매 성형체(비교예 2) 및 알루미나 졸의 코팅량이 일정 범위에 미치지 못하는 촉매 성형체(비교예3)는 촉매 분말 사이의 부착력이 약하여 촉매 분말이 지지체로부터 박리됨에 따라 n-부텐 전환율이 감소하였고, 알루미나 졸의 코팅량이 일정 범위를 초과한 촉매 성형체(비교예 4)는 촉매 성능이 개선되지 않았다.또한, 촉매 분말의 코팅량이 일정 범위에 비치지 못하는 촉매 성형체(비교예 5, 6)는 촉매 분말이 지지체 표면에 균일하게 도포되지 어렵고, 촉매 분말이 지지체로부터 박리됨에 따라 n-부텐 전환율이 감소하였고, 촉매 분말의 코팅량이 일정 범위를 초과한 촉매 성형체(비교예 7)는 비교예 1과 같이 활성층이 두껍게 형성되어 축차 반응에 의한 CO2 생성이 증가하였다.
또한, 무기바인더의 함량이 일정 범위에 미치지 못하는 촉매 성형체(비교예 8)는 활성층의 결합력이 낮아 촉매 분말이 지지체로부터 박리됨에 따라 n-부텐 전환율이 감소하였고, 무기바인더의 함량이 일정 범위를 초과한 촉매 성형체(비교예 9)는 무기바인더에 의한 부반응으로 CO2 생성이 증가하였다.
이러한 결과를 통해, 실시예 1~9의 촉매 성형체는 촉매 분말이 지지체의 표면에만 존재하므로 n-부텐의 산화적 탈수소화 반응에 참여하는 경우, 촉매 성형체의 내부에서 일어나는 축차 반응이 억제되어 종래의 압출 촉매(비교예 1)에 비해 산소 사용효율이 높고, 부반응을 억제하여 발열량을 감소시킬 수 있고, 그에 따라 n-부텐 전환율 및 1,3-부타디엔 수율을 향상시킬 수 있음을 알 수 있다. 특히, 지지체에 코팅된 알루미나 졸과 촉매 분말의 양, 및 촉매 분말과 혼합되는 무기바인더의 양을 일정 범위로 조절함으로써 이러한 효과를 더 현저하게 구현할 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (23)

  1. 불활성 지지체;
    상기 불활성 지지체의 표면에 위치한 중간층;
    상기 중간층의 표면에 위치한 활성층을 포함하고,
    상기 활성층은 촉매 분말 및 바인더를 포함하는, 촉매 성형체.
  2. 제1항에 있어서,
    상기 불활성 지지체의 공극률은 70부피% 이하인, 촉매 성형체.
  3. 제2항에 있어서,
    상기 불활성 지지체는 구형, 원통형, 고리형, 판형 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나인, 촉매 성형체.
  4. 제3항에 있어서,
    상기 불활성 지지체는 알루미나, 실리카, 지르코니아, 실리콘카바이드, 코디어라이트 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나인, 촉매 성형체.
  5. 제1항에 있어서,
    상기 중간층은 알루미나, 실리카, 카올린, TiO2, ZnO, 벤토나이트 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나로 이루어진, 촉매 성형체.
  6. 제5항에 있어서,
    상기 불활성 지지체의 부피에 대한 상기 중간층의 중량은 3~15g/L인, 촉매 성형체.
  7. 제1항에 있어서,
    상기 촉매 분말은 철, 마그네슘, 망간, 아연, 비스무스, 몰리브덴 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나의 산화물인, 촉매 성형체.
  8. 제1항에 있어서,
    상기 바인더는 무기바인더를 포함하고,
    상기 촉매 분말 및 상기 무기바인더의 총 중량을 기준으로 상기 무기바인더의 함량은 5~20중량%인, 촉매 성형체.
  9. 제8항에 있어서,
    상기 무기바인더는 알루미나, 실리카, 규산나트륨, 규산알루미나, 규산칼슘, 탄산칼슘, 탄산바륨(BaCO3), 카올린, 마이카, TiO2, ZnO, 산화철, 벤토나이트 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나인, 촉매 성형체.
  10. 제1항에 있어서,
    상기 불활성 지지체의 부피에 대한 상기 촉매 분말의 중량은 200~500g/L인, 촉매 성형체.
  11. (a) 불활성 지지체 및 졸을 혼합하고 건조, 열처리하여 상기 불활성 지지체의 표면에 중간층을 생성하는 단계;
    (b) 2 이상의 금속염을 제1 용매에 용해시켜 제1 용액을 제조하고, 상기 제1 용액을 운반가스를 이용하여 반응기 내부로 분무하면서 열분해시키거나, 상기 제1 용액에 공침제를 첨가한 후 건조, 열처리하여 촉매 분말을 제조하는 단계;
    (c) 상기 촉매 분말, 바인더 및 제2 용매를 혼합하여 제2 용액을 제조하는 단계; 및
    (d) 상기 (a) 단계의 생성물 및 상기 제2 용액을 혼합하고 건조, 열처리하여 상기 중간층의 표면에 상기 촉매 분말을 포함하는 활성층을 생성하는 단계;를 포함하는, 촉매 성형체의 제조방법.
  12. 제11항에 있어서,
    상기 불활성 지지체의 공극률은 70부피% 이하인, 촉매 성형체의 제조방법.
  13. 제12항에 있어서,
    상기 불활성 지지체는 구형, 원통형, 고리형, 판형 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나인, 촉매 성형체의 제조방법.
  14. 제13항에 있어서,
    상기 불활성 지지체는 알루미나, 실리카, 지르코니아, 실리콘카바이드, 코디어라이트 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나인, 촉매 성형체의 제조방법.
  15. 제11항에 있어서,
    상기 중간층은 알루미나, 실리카, 카올린, TiO2, ZnO, 벤토나이트 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나로 이루어진, 촉매 성형체의 제조방법.
  16. 제11항에 있어서,
    상기 불활성 지지체의 부피에 대한 상기 중간층의 중량은 3~15g/L인, 촉매 성형체의 제조방법.
  17. 제11항에 있어서,
    상기 금속염은 철, 마그네슘, 망간, 아연, 비스무스, 몰리브덴 및 이들 중 2 이상의 조합으로 이루어진 군에서 선택된 하나의 질산염인, 촉매 성형체의 제조방법.
  18. 제11항에 있어서,
    상기 공침제는 수산화나트륨, 암모니아 또는 이들의 조합인, 촉매 성형체의 제조방법.
  19. 제11항에 있어서,
    상기 열분해는 500~900℃에서 수행되는, 촉매 성형체의 제조방법.
  20. 제11항에 있어서,
    상기 바인더는 무기바인더를 포함하고,
    상기 촉매 분말 및 상기 무기바인더의 총 중량을 기준으로 상기 무기바인더의 함량은 5~20중량%인, 촉매 성형체의 제조방법.
  21. 제20항에 있어서,
    상기 무기바인더는 알루미나, 실리카, 규산나트륨, 규산알루미나, 규산칼슘, 탄산칼슘, 탄산바륨(BaCO3), 카올린, 마이카, TiO2, ZnO, 산화철, 벤토나이트 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나인, 촉매 성형체의 제조방법.
  22. 제11항에 있어서,
    상기 불활성 지지체의 부피에 대한 상기 촉매 분말의 중량은 200~500g/L인, 촉매 성형체의 제조방법.
  23. 제1항 내지 제10항 중 어느 한 항에 따른 촉매 성형체의 존재 하에서 n-부텐을 산화적 탈수소화 반응시키는, 1,3-부타디엔의 제조방법.
PCT/KR2018/007299 2017-07-13 2018-06-27 금속 산화물이 코팅된 촉매 성형체와 그의 제조방법 및 이를 이용한 1,3-부타디엔 제조방법 WO2019013473A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0088996 2017-07-13
KR1020170088996A KR101854434B1 (ko) 2017-07-13 2017-07-13 금속 산화물이 코팅된 촉매 성형체와 그의 제조방법 및 이를 이용한 1,3-부타디엔 제조방법

Publications (2)

Publication Number Publication Date
WO2019013473A2 true WO2019013473A2 (ko) 2019-01-17
WO2019013473A3 WO2019013473A3 (ko) 2019-03-07

Family

ID=62244863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007299 WO2019013473A2 (ko) 2017-07-13 2018-06-27 금속 산화물이 코팅된 촉매 성형체와 그의 제조방법 및 이를 이용한 1,3-부타디엔 제조방법

Country Status (3)

Country Link
US (1) US10604459B2 (ko)
KR (1) KR101854434B1 (ko)
WO (1) WO2019013473A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3556463A4 (en) * 2017-11-30 2019-12-25 LG Chem, Ltd. CATALYST SYSTEM FOR OXIDATIVE DEHYDRATION REACTION, REACTOR FOR PRODUCING BUTADIENE THEREFORE AND METHOD FOR PRODUCING 1,3-BUTADIENE
US10946364B2 (en) 2017-04-12 2021-03-16 Lg Chem, Ltd. Catalyst system for oxidative dehydrogenation, reactor for oxidative dehydrogenation including catalyst system, and method of performing oxidative dehydrogenation using reactor
EP3766575A4 (en) * 2018-03-13 2021-04-14 Lg Chem, Ltd. METHOD OF MANUFACTURING A FERRITE-BASED CATALYST AND METHOD OF MANUFACTURING BUTADIENE USING THEME

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101854434B1 (ko) * 2017-07-13 2018-05-03 금호석유화학 주식회사 금속 산화물이 코팅된 촉매 성형체와 그의 제조방법 및 이를 이용한 1,3-부타디엔 제조방법
KR102030121B1 (ko) * 2018-05-18 2019-10-08 금호석유화학 주식회사 금속 산화물이 코팅된 촉매 성형체를 이용한 1,3-부타디엔 제조방법
KR102436310B1 (ko) * 2018-11-19 2022-08-25 주식회사 엘지화학 산화적 탈수소화 반응용 촉매 및 이의 제조방법
KR102156078B1 (ko) * 2018-12-10 2020-09-15 금호석유화학 주식회사 1,3-부타디엔의 제조시스템 및 이를 이용한 1,3-부타디엔의 제조방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3145183A (en) * 1958-12-16 1964-08-18 Norton Co Catalyst carrying balls
US6863984B2 (en) * 1995-01-20 2005-03-08 Engelhard Corporation Catalyst and adsorption compositions having improved adhesion characteristics
KR101713328B1 (ko) * 2010-07-20 2017-03-08 에스케이이노베이션 주식회사 혼성 망간 페라이트가 코팅된 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법
KR102076675B1 (ko) * 2012-03-30 2020-02-20 존슨 맛쎄이 푸엘 셀스 리미티드 연료에 사용하기 위한 박막 촉매 물질
KR20150003214A (ko) * 2012-04-23 2015-01-08 닛뽄 가야쿠 가부시키가이샤 부타디엔의 제조용 촉매, 그 촉매의 제조 방법 및 그 촉매를 이용한 부타디엔의 제조 방법
KR101340620B1 (ko) * 2013-05-14 2013-12-31 금호석유화학 주식회사 허니컴 구조의 페라이트 금속산화물 촉매 성형체와 그의 제조방법 및 이를 이용한 1,3-부타디엔 제조방법
JP5798670B2 (ja) * 2014-05-22 2015-10-21 国立大学法人 宮崎大学 燃料電池用触媒の製造方法
KR101854434B1 (ko) * 2017-07-13 2018-05-03 금호석유화학 주식회사 금속 산화물이 코팅된 촉매 성형체와 그의 제조방법 및 이를 이용한 1,3-부타디엔 제조방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10946364B2 (en) 2017-04-12 2021-03-16 Lg Chem, Ltd. Catalyst system for oxidative dehydrogenation, reactor for oxidative dehydrogenation including catalyst system, and method of performing oxidative dehydrogenation using reactor
EP3556463A4 (en) * 2017-11-30 2019-12-25 LG Chem, Ltd. CATALYST SYSTEM FOR OXIDATIVE DEHYDRATION REACTION, REACTOR FOR PRODUCING BUTADIENE THEREFORE AND METHOD FOR PRODUCING 1,3-BUTADIENE
US10994265B2 (en) 2017-11-30 2021-05-04 Lg Chem, Ltd. Catalyst system for oxidative dehydrogenation, reactor for preparing butadiene including catalyst system, and method of preparing 1,3-butadiene
EP3766575A4 (en) * 2018-03-13 2021-04-14 Lg Chem, Ltd. METHOD OF MANUFACTURING A FERRITE-BASED CATALYST AND METHOD OF MANUFACTURING BUTADIENE USING THEME
US11465131B2 (en) 2018-03-13 2022-10-11 Lg Chem, Ltd. Method for producing ferrite-based coating catalyst and method for producing butadiene by using same

Also Published As

Publication number Publication date
WO2019013473A3 (ko) 2019-03-07
KR101854434B1 (ko) 2018-05-03
US20190016649A1 (en) 2019-01-17
US10604459B2 (en) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2019013473A2 (ko) 금속 산화물이 코팅된 촉매 성형체와 그의 제조방법 및 이를 이용한 1,3-부타디엔 제조방법
WO2021241841A1 (ko) 암모니아 분해 촉매, 및 이를 이용한 암모니아 분해 및 수소 생산 방법
US7022305B2 (en) Nanoscale corundum powders, sintered compacts produced from these powders and method for producing the same
US4113660A (en) Production of shaped catalysts or carriers comprising titanium oxides
WO2016195162A1 (ko) 페라이트 금속 산화물 촉매의 제조방법
WO2017213360A1 (ko) 산화적 탈수소화 반응 촉매 및 이의 제조방법
US9181136B2 (en) Method for producing hollow bodies having enclosed freely displaceable particles
WO2017150830A1 (ko) 페라이트계 촉매 복합체, 제조방법 및 부타디엔의 제조방법
WO2016126133A1 (ko) 고밀도 번들형 카본나노튜브 및 그의 제조방법
WO2013105780A1 (ko) 카본나노튜브용 균질 담지 촉매의 제조방법
WO2022108323A1 (ko) 암모산화 촉매 및 이의 제조 방법과, 상기 암모산화 촉매를 사용한 아크릴로니트릴의 제조 방법
JP2959683B2 (ja) 高純度アルミナ繊維成形体の製造方法
WO2014204099A1 (ko) 젖산으로부터 락타이드 직접 제조용 성형 촉매 및 이의 제조 방법
WO2019160259A1 (ko) 촉매의 충진방법 및 이를 이용한 부타디엔의 제조방법
CN1243062C (zh) 高温耐火黑色涂料及其制法和应用
WO2018190641A1 (ko) 산화적 탈수소화 반응용 촉매, 이의 제조방법 및 이를 이용한 산화적 탈수소화방법
WO2015072779A1 (ko) 촉매 조성물 및 이의 제조방법
WO2019199042A1 (ko) 금속 복합 촉매의 제조방법 및 이에 의해 제조된 금속 복합 촉매
WO2024186187A1 (ko) 네오펜틸 글리콜의 제조용 촉매 및 이의 제조 방법
CN115007163A (zh) 负载型铜铋催化剂的制备方法和负载型铜铋催化剂
CN107721450A (zh) 一种多孔陶瓷材料的制备方法
CN111454045A (zh) 一种稀土抗菌陶瓷及其制备方法
JPS6217005A (ja) 高純度ムライト粉末の製造方法
JPS6357383B2 (ko)
CN117756160B (zh) 一种Y2O3-MgO复合纳米粉体及红外陶瓷材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831706

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831706

Country of ref document: EP

Kind code of ref document: A2