WO2019008822A1 - 水処理方法および水処理装置 - Google Patents

水処理方法および水処理装置 Download PDF

Info

Publication number
WO2019008822A1
WO2019008822A1 PCT/JP2018/007816 JP2018007816W WO2019008822A1 WO 2019008822 A1 WO2019008822 A1 WO 2019008822A1 JP 2018007816 W JP2018007816 W JP 2018007816W WO 2019008822 A1 WO2019008822 A1 WO 2019008822A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
cod
treatment
viscosity
mpa
Prior art date
Application number
PCT/JP2018/007816
Other languages
English (en)
French (fr)
Inventor
祐司 島村
雅人 都司
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to JP2019528348A priority Critical patent/JP6738492B2/ja
Publication of WO2019008822A1 publication Critical patent/WO2019008822A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a water treatment method and a water treatment apparatus for reducing the COD of soluble COD-containing water containing soluble COD components discharged from factories such as chemical industry, paper / pulp, printing, machinery, food, and pharmaceuticals. It relates to technology.
  • Wastewater of various properties is discharged from chemical plants, paper and pulp plants, printing plants, machine manufacturing plants, food plants, pharmaceutical plants and so on. These waste waters contain organic matter whose index of chemical oxygen demand (COD) is, and if the COD component is discharged as it is, it may cause environmental pollution. Therefore, in the Water Pollution Control Law, uniform drainage standards are defined for the COD concentration of drainage discharged from the business site with specific facilities to the sea area and lakes, etc., and the COD concentration may be reduced to below the drainage standard. It has been demanded.
  • COD chemical oxygen demand
  • COD top drainage standards vary depending on the industry and region, there are also cases where a strict standard of 20 mg / L or less is set.
  • biological treatment is mainly applied to reduce the COD of wastewater.
  • the main reason is that the waste water is poorly biodegradable and contains soluble COD components. Therefore, physicochemical treatments such as aggregation treatment, Fenton treatment, ozone treatment, and activated carbon treatment are performed in order to reduce poorly biodegradable and soluble COD components.
  • Agglomeration treatment is effective for removing COD components derived from suspended matter, but the reduction rate of soluble COD components is low, and it is necessary to add a large amount of flocculant to satisfy regulatory values. There is. Thus, the removal of poorly biodegradable and soluble COD components has become a major issue.
  • COD reduction by activated carbon adsorption may be performed in the latter part of aggregation treatment.
  • Activated carbon treatment is also effective for reduction of soluble COD components, but if the reduction of soluble COD components in aggregation treatment is insufficient, it is necessary to frequently replace activated carbon, which is a problem in that running costs increase .
  • oxidation treatments such as Fenton treatment and ozone treatment are also effective in reducing soluble COD components.
  • Fenton treatment consumes a large amount of chemicals such as hydrogen peroxide, ferrous sulfate, pH adjusters and the like, and generates a large amount of sludge, so it can not be said as an economical waste water treatment method in terms of running cost.
  • the ozone treatment has a problem that the initial cost is high because the ozone generator is expensive and peripheral equipment such as an oxygen generator and a waste ozonizer are required.
  • Patent Document 1 proposes a method of reducing the soluble COD component by adding an organic fine particle having a cationic functional group capable of adsorbing the COD component in the aggregation precipitation process.
  • the concentration of the organic fine particles added is as high as 500 to 3000 mg / L in solid content, and the organic fine particles are used as sludge as they are.
  • the aliphatic hydrocarbon liquid and the surfactant are added to the drug in order to disperse the organic fine particles, there is a concern that these additives may remain in the liquid to be treated.
  • Patent Document 2 a nonionic dissolution in which an anionic polyelectrolyte having a weight-average molecular weight of 1,000 or more is added and a cationic polyelectrolyte having a weight-average molecular weight of 10,000 or more and 1,000,000 or less is added in aggregation treatment Methods for removal of toxic COD components have been proposed.
  • the removal performance of the COD component in the drainage other than the pulp and paper mill shown in the example of Patent Document 2 is an unknown number, and it can not be said that the treated water COD of the drainage can be reduced to a sufficiently low concentration. .
  • Patent Document 3 proposes an aggregation treatment method in which an amphoteric organic coagulant having a copolymerization ratio of an anionic monomer to a cationic monomer in the range of 0.1 to 3% by mass is added.
  • an amphoteric organic coagulant having a copolymerization ratio of an anionic monomer to a cationic monomer in the range of 0.1 to 3% by mass is added.
  • the treatment performance of soluble COD components is not clear. Absent.
  • Patent Document 4 proposes a method for treating papermaking drainage in which a coagulating agent is added to a wastewater treated biologically in a fluidized bed biological reaction tank, and then a cationic polymer flocculant is added to carry out coagulation treatment.
  • a coagulating agent is added to a wastewater treated biologically in a fluidized bed biological reaction tank, and then a cationic polymer flocculant is added to carry out coagulation treatment.
  • the soluble COD component of the biological treatment water used as raw water of aggregation treatment is unknown, and it is not clear about the processing performance of a soluble COD component.
  • the treatment performance of the poorly biodegradable soluble COD component can not be said to be sufficient.
  • the poorly biodegradable soluble COD component can also be reduced, but these solid adsorbents Requires a large amount of addition, and there is a problem of increasing the amount of sludge generation.
  • wastewater treatment costs may increase to reduce soluble COD components.
  • Patent No. 4923834 gazette JP, 2009-154095
  • Patent No. 5560626 gazette JP, 2014-028365
  • a Patent No. 5560626 gazette JP, 2014-028365
  • An object of the present invention is a water treatment method and a water treatment apparatus capable of reducing poorly biodegradable soluble COD components while suppressing the amount of sludge generation in the flocculation treatment of COD-containing water containing soluble COD components To provide.
  • the present invention includes an aggregation treatment step of adding a COD reducing agent to COD-containing water containing a soluble COD component to perform aggregation treatment, and the COD reducing agent has a viscosity of 50 mPa ⁇ s or more in a 50% by weight aqueous solution And a cationic polymer having a cationic colloid equivalent value of 6.0 meq / g or more (pH 6), a viscosity of a 40% by weight aqueous solution is 1,500 mPa ⁇ s or more, and a cationic colloid equivalent value of 6.0 meq Polyethyleneimine having a pH of 6 or more (pH 6), and polydiallyldimethyl having a viscosity of 5,000 mPa ⁇ s or more in a 40% by weight aqueous solution and a cationic colloid equivalent value of 6.0 meq / g or more (pH 6)
  • a method of water treatment comprising at least one
  • the solubility CODMn of the COD-containing water is preferably 20 mg / L or more.
  • the COD reducing agent has a viscosity of 500 mPa ⁇ s or more in a 50% by weight aqueous solution, and dimethylamine ⁇ epichlorohydric acid having a cationic colloid equivalent value of 6.5 meq / g or more (pH 6) Phosphorus ammonia condensate, dimethylamine epichlorohydrin ethylenediamine condensate having a viscosity of 500 mPa ⁇ s or more in a 50% by weight aqueous solution and a cation colloid equivalent value of 6.5 meq / g or more (pH 6),
  • the viscosity of the 40 wt% aqueous solution is at least 1,500 mPa ⁇ s and at least one of the polyethyleneimines having a cationic colloid equivalent value of 6.5 meq / g or more (pH 6).
  • a biological treatment step of biological treatment of the water to be treated is included in a stage prior to the aggregation treatment step, and the COD-containing water is biological treated water obtained in the biological treatment step.
  • the concentration step of concentrating the organic substance-containing water containing the organic matter and the biological treatment step of biological treatment of the concentrated water obtained in the concentration step are included in the former stage of the aggregation treatment step;
  • the COD-containing water is preferably biological treated water obtained in the biological treatment step.
  • biological treatment is preferably performed by a membrane separation activated sludge method.
  • the present invention further comprises an aggregating means for performing aggregation treatment by adding a COD reducing agent to COD-containing water containing a soluble COD component, wherein the COD reducing agent has a viscosity of 500 mPa ⁇ s in a 50% by weight aqueous solution.
  • a viscosity of a 40 wt% aqueous solution is 1,500 mPa ⁇ s or more, and a cationic colloid equivalent value of 6
  • Polyethylenimine having a viscosity of not less than 5,000 meq / g and a cationic colloid equivalent value of not less than 6.0 meq / g (pH 6)
  • a water treatment device comprising at least one of diallyldimethyl ammonium chloride.
  • the solubility CODMn of the COD-containing water is preferably 20 mg / L or more.
  • the COD reducing agent has a viscosity of 500 mPa ⁇ s or more in a 50% by weight aqueous solution, and dimethylamine ⁇ epichlorohydric acid having a cationic colloid equivalent value of 6.5 meq / g or more (pH 6) Phosphorus ammonia condensate, dimethylamine epichlorohydrin ethylenediamine condensate having a viscosity of 500 mPa ⁇ s or more in a 50% by weight aqueous solution and a cation colloid equivalent value of 6.5 meq / g or more (pH 6),
  • the viscosity of the 40 wt% aqueous solution is at least 1,500 mPa ⁇ s and at least one of the polyethyleneimines having a cationic colloid equivalent value of 6.5 meq / g or more (pH 6).
  • a biological treatment means for biological treatment of the water to be treated be provided at a front stage of the aggregation treatment means, and the COD-containing water be biological treated water obtained by the biological treatment means.
  • a concentration means for concentrating organic matter-containing water containing an organic substance, and a biological treatment means for biological treatment of the concentrated water obtained by the concentration means are provided at the front stage of the aggregation treatment means;
  • the COD-containing water is preferably biological treated water obtained by the biological treatment means.
  • the biological treatment means perform biological treatment by a membrane separation activated sludge method.
  • a water treatment method and a water treatment apparatus capable of reducing poorly biodegradable soluble COD components while suppressing the amount of sludge generation in coagulation treatment of COD-containing water containing soluble COD components. Can be provided.
  • Embodiments of the present invention will be described below.
  • the present embodiment is an example for implementing the present invention, and the present invention is not limited to the present embodiment.
  • the water treatment apparatus 1 shown in FIG. 1 includes an aggregation device 10 and a settling tank 12.
  • the flocculating apparatus 10 includes a first reaction tank 14, a second reaction tank 16, and a coagulation tank 18.
  • the first reaction vessel 14 is provided with a COD reducing agent addition line 20
  • the second reaction vessel 16 is provided with an inorganic coagulant addition line 22 and a pH adjuster addition line 24, and the aggregation vessel 18 is a polymer coagulant addition line 26 is provided.
  • a stirrer 28 a stirrer 30, and a stirrer 32 having stirring blades are installed as stirring means.
  • a water inlet line 34 is connected to the water inlet of the first reaction tank 14.
  • a COD reducing agent addition line 20 is connected to the medicine inlet of the first reaction tank 14.
  • One end of a water discharge line 36 is connected to the water outlet of the reaction tank 14, and the other end of the water discharge line 36 is connected to the water inlet of the second reaction tank 16.
  • the inorganic flocculant addition line 22 and the pH adjuster addition line 24 are connected to the drug inlet of the second reaction tank 16. Further, one end of a water discharge line 38 is connected to the water outlet of the second reaction tank 16, and the other end of the water discharge line 38 is connected to the water inlet of the aggregation tank 18.
  • a polymer coagulant addition line 26 is connected to the medicine inlet of the coagulation tank 18. Further, one end of a water discharge line 40 is connected to the water outlet of the coagulation tank 18, and the other end of the water discharge line 40 is connected to the water inlet of the sedimentation tank 12.
  • a treated water discharge line 42 is connected to the treated water outlet of the settling tank 12, and a sludge discharge line 44 is connected to the sludge outlet of the settling tank 12.
  • a COD-containing water containing a soluble COD component which is water to be treated, is supplied to the first reaction tank 14 through the water to be treated inflow line 34 and the COD reducing agent is added from the COD reducing agent addition line 20
  • One reaction vessel 14 is supplied (COD reducing agent supply step).
  • the water to be treated and the COD reducing agent in the first reaction tank 14 are stirred by the stirrer 28, and the soluble COD component is insolubilized (insolubilization step).
  • the viscosity of a 50 wt% aqueous solution is 500 mPa ⁇ s or more
  • the cationic colloid equivalent value is 6.0 meq / g or more (pH 6)
  • the viscosity of a 40 wt% aqueous solution And having a cationic colloid equivalent value of 6.0 meq / g or more (pH 6), and a viscosity of a 40 wt% aqueous solution of 5,000 mPa ⁇ s or more
  • at least one of polydiallyldimethylammonium chlorides having a cationic colloid equivalent value of 6.0 meq / g or more (pH 6).
  • the soluble COD component is charged with a negative charge and has a hydrophilic functional group such as -OH, -COOH, -NH 2 or -NH- in the molecule, so that it is dispersed and dissolved in water.
  • COD reducing agents are compounds with high cation density having positive charge in molecular structure
  • addition of COD reducing agent to COD-containing water causes the negative charge of soluble COD component to be neutralized. It is considered to be a property that tends to aggregate.
  • a polyamine-based polymer having a secondary amine -NH-, -OH or the like in the molecule forms a hydrogen bond with the hydrophilic functional group of the soluble COD component to dissolve it. It is estimated that it becomes easy to insolubilize the toxic COD component.
  • the insolubilized COD-containing water containing the insolubilized COD component is supplied from the first reaction vessel 14 through the water discharge line 36 to the second reaction vessel 16, and the inorganic flocculant is added to the inorganic flocculant addition line 22 at a pH A modifier is supplied to the second reaction tank 16 from the pH modifier addition line 24 (inorganic flocculant addition step).
  • the insolubilized COD-containing water, the inorganic flocculant and the pH adjuster in the second reaction tank 16 are stirred by the stirrer 30.
  • the inorganic flocculant adjusted to a predetermined pH becomes a metal hydroxide, and a fine floc is formed with the insolubilized COD component (floc forming step).
  • the fine floc-containing water containing fine flocs is supplied from the second reaction vessel 16 through the water discharge line 38 to the flocculation tank 18 and the polymer flocculant is supplied from the polymer flocculant addition line 26 to the flocculation tank 18 (Polymer coagulant addition step).
  • the fine floc-containing water and the polymer flocculant in the coagulation tank 18 are agitated by the agitator 32.
  • the polymer flocculant associates fine flocs with one another to grow floc (floc growth step).
  • Floc-containing water containing flocs is supplied from the coagulation tank 18 to the precipitation tank 12 through the water discharge line 40.
  • solid-liquid separation into treated water and flocs is carried out by natural sedimentation or the like (solid-liquid separation step). Then, the treated water in which the soluble COD component is reduced is discharged from the treated water discharge line 42, and the floc is discharged as sludge from the sludge discharge line 44.
  • the use of the above-mentioned COD reducing agent suppresses the amount of chemicals used for the aggregation treatment of poorly biodegradable soluble COD components, and generates sludge in the aggregation treatment It is possible to reduce poorly biodegradable soluble COD components while suppressing the amount. Moreover, it is an economical method in terms of initial cost and running cost because the amount of chemical consumption and the amount of sludge generation is small. Furthermore, it is excellent also in floc formation in flocculation treatment, floc settling, and treated water appearance.
  • the outline of another example of the water treatment apparatus according to the embodiment of the present invention is shown in FIG. 2 and the configuration thereof will be described.
  • the water treatment apparatus 3 shown in FIG. 2 has a concentration device 50 as a concentration means, a biological treatment device 52 as a biological treatment means, and an aggregation having a first reaction tank 54, a second reaction tank 56 and a precipitation tank 58 as aggregation treatment means. And a processing device.
  • the water treatment apparatus 3 may be provided with a treated water tank (not shown) for storing treated water in the front stage of the concentrator 50.
  • a treated water inflow line 60 is connected to the inlet of the concentration device 50.
  • the outlet of the concentrator 50 and the inlet of the biological treatment apparatus 52 are connected by a concentrated water line 62.
  • the outlet of the biological treatment apparatus 52 and the inlet of the first reaction tank 54 are connected by a biological treated water line 64.
  • the outlet of the first reaction vessel 54 and the inlet of the second reaction vessel 56 are connected by a water discharge line 66.
  • the outlet of the second reaction vessel 56 and the inlet of the settling vessel 58 are connected by a water discharge line 68.
  • a treated water discharge line 70 is connected to the treated water outlet of the settling tank 58, and a sludge discharge line 72 is connected to the lower sludge outlet.
  • the inorganic coagulant addition line 74, the COD reducer addition line 76, and the pH adjuster addition line 78 may be connected to the first reaction tank 54, and a stirrer 82 having a stirring blade or the like may be installed.
  • a polymer flocculant addition line 80 may be connected to the second reaction tank 56, and a stirrer 84 having a stirring blade or the like may be installed.
  • the organic substance-containing water containing organic matter which is water to be treated, is stored in the water tank to be treated, if necessary, and then supplied to the concentrator 50 through the water to be treated inflow line 60.
  • the organic substance-containing water is concentrated in the concentration device 50 (concentration step).
  • the concentrated water obtained in the concentration step is supplied to the biological treatment apparatus 52 through a concentrated water line 62.
  • the concentrated water is subjected to biological treatment (biological treatment process).
  • flocculant is added to the biological treatment water processed by the biological treatment process, and a treated water is obtained by aggregation treatment (aggregation treatment process).
  • aggregation treatment process Specifically, for example, the aggregation treatment step is as follows.
  • the biologically treated water treated in the biological treatment step is supplied from the biological treatment device 52 to the first reaction tank 54 through the biologically treated water line 64.
  • an inorganic coagulant is added through the inorganic coagulant addition line 74 (inorganic coagulant addition step), and a COD reducer is added through the COD reducer addition line 76 (COD reducer addition step).
  • the biological treatment water, the inorganic flocculant and the COD reducing agent in the first reaction tank 54 are stirred by the stirrer 82 to insolubilize the organic matter (insolubilization step).
  • a pH adjuster may be added to the first reaction tank 54 through the pH adjuster addition line 78 to perform pH adjustment (pH adjustment step).
  • the inorganic flocculant adjusted to a predetermined pH is, for example, a metal hydroxide, and fine flocs are formed together with the insolubilized organic matter (floc forming step).
  • the viscosity of a 50 wt% aqueous solution is 500 mPa ⁇ s or more
  • the cationic colloid equivalent value is 6.0 meq / g or more (pH 6)
  • the viscosity of a 40 wt% aqueous solution And having a cationic colloid equivalent value of 6.0 meq / g or more (pH 6), and a viscosity of a 40 wt% aqueous solution of 5,000 mPa ⁇ s or more
  • at least one of polydiallyldimethylammonium chlorides having a cationic colloid equivalent value of 6.0 meq / g or more (pH 6).
  • the first reaction water (fine floc-containing water) containing the fine flock is supplied from the first reaction vessel 54 to the second reaction vessel 56 through the water discharge line 66.
  • a polymer flocculant is added through the polymer flocculant addition line 80 (polymer flocculant addition step).
  • the fine floc-containing water and the polymer flocculant in the second reaction vessel 56 are agitated by the agitator 84.
  • the polymer flocculant associates fine flocs with one another to grow floc (floc growth step).
  • the second reaction water (flock-containing water) containing flock is supplied from the second reaction vessel 56 to the settling vessel 58 through the water discharge line 68.
  • solid-liquid separation into treated water and floc is performed by natural sedimentation or the like (solid-liquid separation step). Then, the treated water in which the organic matter has been reduced is discharged through the treated water discharge line 70, and the floc is discharged as sludge, which is discharged through the sludge discharge line 72.
  • the present inventors obtain concentrated water by concentrating organic substance-containing water, obtain biological treatment of the concentrated water, and then treat by flocculation, organic matter such as COD component and pigment, suspended matter, etc. It has been found that the contained organic substance-containing water exhibits good aggregation treatment performance and can effectively reduce organic substances and the like.
  • the decomposition product differs from the case where the biological treatment is performed without performing the concentration treatment, and the biological treatment water subjected to the biological treatment after the concentration treatment reduces organic matter etc. in the aggregation treatment.
  • Cheap This is because there is an increase in the number of chemical substances that are more negatively charged in the biologically treated water subjected to the biological treatment after concentration treatment, such as inorganic flocculants, COD reducers, or polymer flocculants. It is speculated that the coagulant causes it to be neutralized by charge and to be in a form that is easily aggregated.
  • the concentration in the concentration step may be carried out by various methods, for example, evaporation, membrane filtration and the like.
  • Examples of the evaporation treatment include methods such as natural evaporation, heating evaporation, spray evaporation, vacuum evaporation and the like.
  • the membrane used for the membrane filtration treatment is not particularly limited, but a microfiltration membrane (MF membrane), an ultrafiltration membrane (UF membrane), a nanofiltration membrane (NF membrane), a reverse osmosis membrane (RO membrane), etc. It can be mentioned. Microfiltration membranes (MF membranes), ultrafiltration membranes (UF membranes), and nanofiltration membranes (NF membranes) are preferred from the viewpoint of effective concentration etc. Microfiltration membranes (MF membranes), limiting An ultrafiltration membrane (UF membrane) is more preferable, and an ultrafiltration membrane (UF membrane) is more preferable.
  • RO membrane reverse osmosis membrane
  • MF membrane microfiltration membrane
  • the pore size of the microfiltration membrane is 0.1 ⁇ m or more and 10 ⁇ m or less, and the nominal pore size of the ultrafiltration membrane is 0.001 ⁇ m or more and less than 0.1 ⁇ m.
  • the molecular weight cut-off of the ultrafiltration membrane is 1,000 or more and less than 1,000,000.
  • the material of the filtration membrane is not particularly limited.
  • organic membranes such as polyvinylidene fluoride (PVDF), polyvinyl chloride (PVC), polyether sulfone (PES), cellulose acetate (CA), etc.
  • inorganic substances such as ceramic, etc. Membrane etc. are mentioned.
  • the shape of the filtration membrane is not particularly limited.
  • a tubular membrane, a flat membrane, a spiral or the like may be used.
  • the water flow system of the filtration membrane is not particularly limited, but all water flow systems such as internal pressure type and external pressure type can be applied, and all filtration methods such as cross flow filtration and dead end filtration can be applied.
  • aerobic biological treatment or anaerobic biological treatment is performed.
  • it is a treatment which biologically oxidizes or reduces organic matter in concentrated water or the like by microorganisms such as aerobic microorganisms and anaerobic microorganisms.
  • microorganisms such as aerobic microorganisms and anaerobic microorganisms.
  • standard activated sludge method, biofilm method, membrane separation activated sludge method (MBR) membrane separation activated sludge method (MBR) , Fixed bed method, fluidized bed method and the like.
  • a polyamine-based polymer having a viscosity of 500 mPa ⁇ s or more and a cationic colloid equivalent value of 6.0 meq / g or more (pH 6), which is a COD reducing agent a 50% by weight aqueous solution
  • examples thereof include phosphorus-ammonia condensates, dimethylamine-epichlorohydrin-ethylenediamine condensates and the like.
  • the viscosity of a 50% by weight aqueous solution of dimethylamine / epichlorohydrin / ammonia condensate may be 500 mPa ⁇ s or more, and is not particularly limited, but is preferably 800 mPa ⁇ s or more, 1,000 mPa ⁇ s or more Is more preferable.
  • the upper limit of the viscosity of the 50% by weight aqueous solution is not particularly limited, but is preferably 4,000 mPa ⁇ s or less, and more preferably 2,000 mPa ⁇ s or less.
  • the cationic colloid equivalent value may be 6.0 meq / g or more (pH 6), and is not particularly limited, but is preferably 6.5 meq / g or more (pH 6).
  • the viscosity of a 50% by weight aqueous solution of dimethylamine / epichlorohydrin / ethylenediamine condensate, which is a COD reducing agent may be 500 mPa ⁇ s or more, and is not particularly limited, but is preferably 800 mPa ⁇ s or more.
  • the upper limit of the viscosity of the 50% by weight aqueous solution is not particularly limited, but is preferably 4,000 mPa ⁇ s or less, and more preferably 2,000 mPa ⁇ s or less.
  • the cationic colloid equivalent value may be 6.0 meq / g or more (pH 6), and is not particularly limited, but is preferably 6.5 meq / g or more (pH 6).
  • the viscosity of a 40% by weight aqueous solution of polyethylene imine, which is a COD reducing agent may be 1,500 mPa ⁇ s or more, and is not particularly limited, but is preferably 2,000 mPa ⁇ s or more.
  • the upper limit of the viscosity of the 40% by weight aqueous solution is not particularly limited, but is preferably 4,000 mPa ⁇ s or less.
  • the cationic colloid equivalent value may be 6.0 meq / g or more (pH 6), and is not particularly limited, but is preferably 6.5 meq / g or more (pH 6).
  • the viscosity of a 40% by weight aqueous solution of polydiallyldimethyl ammonium chloride, which is a COD reducing agent may be 5,000 mPa ⁇ s or more, and is not particularly limited, but is preferably 8,000 mPa ⁇ s or more.
  • the upper limit of the viscosity of the 40% by weight aqueous solution is not particularly limited, but is preferably 15,000 mPa ⁇ s or less.
  • the cationic colloid equivalent value may be 6.0 meq / g or more (pH 6), and is not particularly limited, but is preferably 6.2 meq / g or more (pH 6).
  • dimethylamine epichlorohydrin ammonia condensate dimethylamine epichlorohydrin ammonia condensate, dimethylamine epichlorohydrin ammonia condensate, or dimethylamine having the above-mentioned range of viscosity and cationic colloid equivalent value of 50% by weight aqueous solution from the viewpoint of high reduction effect of soluble COD component etc.
  • Epichlorohydrin • ethylenediamine condensate, and polyethyleneimine having a 40 wt% aqueous solution viscosity and a cationic colloid equivalent value in the above ranges are preferred, and a 50 wt% aqueous solution viscosity and a cationic colloid equivalent value are the above ranges dimethylamine.
  • Epichlorohydrin-ammonia condensate or dimethylamine-epichlorohydrin-ethylenediamine condensate is more preferred.
  • the viscosity of the 40 wt% aqueous solution or the 50 wt% aqueous solution is an index representing the molecular weight of the compound, and the larger the value, the higher the molecular weight compound.
  • the viscosity of the 40 wt% aqueous solution or the 50 wt% aqueous solution is measured by a viscometer such as a Brookfield rotational viscometer.
  • the cationic colloid equivalent value is an index indicating the strength of positive charge in a compound, and the larger the value, the stronger the compound with positive charge.
  • the cationic colloid equivalent value is determined by colloid titration. Specifically, the aqueous solution in which the drug is dispersed is titrated with a polyvinyl potassium sulfate solution. The pH of the solution during titration is 4 to 10.
  • the dimethylamine epichlorohydrin ammonia condensate is represented by the following formula (1) And the following formula (2) It is a polymer containing the structure represented by In the above polymer, the ratio of the structure represented by Formula (2) to the structure represented by Formula (1) is a molar ratio (a structure represented by Formula (2): a structure represented by Formula (1)) For example, it may be 0.01: 9.99 to 7: 3.
  • the dimethylamine-epichlorohydrin-ethylenediamine condensate has a structure represented by the formula (1), and the following formula (3) It is a polymer containing the structure represented by In the above polymer, the ratio of the structure represented by Formula (3) to the structure represented by Formula (1) is a molar ratio (a structure represented by Formula (3): a structure represented by Formula (1)) For example, it may be 0.01: 9.99 to 7: 3.
  • Polyethyleneimine is represented by the following formula (4) It is a polymer containing the structure represented by
  • Polydiallyldimethyl ammonium chloride is represented by the following formula (5) It is a polymer containing the structure represented by
  • the addition amount of the COD reduction agent is a weight ratio of the addition amount of the COD reduction agent to the addition amount of the inorganic coagulant (addition amount of the COD reduction agent / inorganic coagulant).
  • the addition amount is preferably 0.1 or less, more preferably 0.002 or more and 0.07 or less. If this weight ratio exceeds 0.1, the amount of COD reducing agent added may be excessive, and the treated water quality may deteriorate compared to the optimum condition, and if it is less than 0.002, the COD component reducing effect is shown. It may not be.
  • the addition amount of the COD reducing agent may be set to the optimum addition amount by a jar test or the like.
  • the soluble COD-containing water containing soluble COD components to be treated may be water of any origin and is not particularly limited.
  • a chemical plant, a paper and pulp plant, a printing plant, a machine manufacturing plant, a food plant, Waste water from pharmaceutical plants and the like can be mentioned, and examples thereof include waste water such as saccharide-containing waste water, humic acid-containing waste water and cloth processing waste water discharged from the above-mentioned various plants.
  • the organic substance-containing water containing an organic substance may be water of any origin as long as it is water containing a color component such as a pigment and an organic substance such as a soluble COD component, and it is not particularly limited. Wastewater from pulp mills, printing factories, machine manufacturing factories, food factories, pharmaceutical factories, etc.
  • Soluble COD-containing water to be treated is a biological treatment such as activated sludge treated water in which the above-mentioned various wastewaters are treated by the activated sludge method, membrane separation activated sludge treated water in which the above various wastewaters are treated by the membrane separation activated sludge method It may be water, and in view of the high reduction effect of the soluble COD component by the COD reducing agent, it is suitably applied particularly to the membrane separation activated sludge treated water of the above-mentioned various waste waters.
  • the solubility CODMn of the COD-containing water may be 20 mg / L or more, preferably 60 mg / L or more, and more preferably 90 mg / L or more.
  • the solubility CODMn of COD-containing water is less than 20 mg / L, the reduction effect of the soluble COD component by the COD reducing agent may be reduced.
  • the soluble COD of the COD-containing water means the COD of the filtrate after filtering the COD-containing water with a filter paper (No. 5C).
  • the solubility CODMn of the organic substance-containing water is, for example, 8 mg / L or more, preferably 50 mg / L or more, and more preferably 100 mg / L or more. If the solubility CODMn of the organic substance-containing water is less than 8 mg / L, the reduction effect of the soluble COD component by the COD reducing agent may be reduced.
  • the soluble COD of the organic substance-containing water means the COD of the filtrate after filtering the organic substance-containing water with a filter paper (No. 5C).
  • the chromaticity of the COD-containing water is, for example, in the range of 5 to 2,000 degrees.
  • the chromaticity of the organic substance-containing water is, for example, 5 degrees or more, preferably 10 degrees or more, and more preferably 100 degrees or more.
  • the SS concentration of COD-containing water is, for example, less than 300 mg / L.
  • the SS concentration of the COD-containing water exceeds 300 mg / L, the reduction effect of the soluble COD component by the COD reducing agent may be reduced.
  • inorganic coagulant examples include iron-based inorganic coagulants such as ferric chloride and polyferric sulfate, and aluminum-based inorganic coagulants such as aluminum sulfate and polyaluminum chloride (PAC).
  • iron-based inorganic coagulants such as ferric chloride and polyferric sulfate
  • aluminum-based inorganic coagulants such as aluminum sulfate and polyaluminum chloride (PAC).
  • pH adjusters examples include acids such as hydrochloric acid and sulfuric acid, and alkalis such as sodium hydroxide.
  • the pH may be adjusted, for example, in the range of 4-11.
  • the stirring speed after addition of the inorganic flocculant may be, for example, rapid stirring at 100 to 300 rpm.
  • a polymer coagulant in order to perform better aggregation processing, it is preferable to add a polymer coagulant to grow the floc diameter. It is preferable to add a polymer flocculant after the flocculation reaction by the COD reducing agent and the inorganic flocculant is completed, in order to perform a good flocculation treatment. Specifically, a polymer coagulant may be added to the coagulation tank 18 at the rear stage of the second reaction tank 16 or to the second reaction tank 56 at the rear stage of the first reaction tank 54.
  • polymer coagulant examples include nonionic polymer coagulants, anionic polymer coagulants, cationic polymer coagulants, etc., although not particularly limited, for example, polyacrylamide, sodium polyacrylate, acrylamidopropane, etc. Examples thereof include sodium sulfonate, chitosan, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate and polyamidine.
  • the polymer flocculant may be used alone or in combination of two or more.
  • the weight average molecular weight of the polymer flocculant is, for example, in the range of 500,000 to 1,000,000,000, and preferably in the range of 1,000,000 to 50,000,000.
  • the addition amount of the polymer flocculant is not particularly limited, but is preferably in the range of, for example, 0.5 to 10 mg / L.
  • the stirring speed eg, 20 to 50 rpm
  • the liquid temperature in the aggregation treatment is not particularly limited, and is, for example, in the range of 15 to 35 ° C.
  • the solid-liquid separation between the treated water and floc after the aggregation treatment is not limited to the settling tank.
  • the solid-liquid separation method is not particularly limited, and examples thereof include precipitation, filtration and membrane separation. There is no restriction
  • the filtration process is not particularly limited, and, for example, filters such as gravity type, pressure type, siphon type, upward flow type, filter media circulation type, continuous filtration type, anthracite, sand, silica sand, gravel, activated carbon And filtration with a filter medium such as plastic.
  • the membrane separation treatment is also not particularly limited, and, for example, the membrane separation can be performed using a microfiltration membrane, an ultrafiltration membrane or the like.
  • the solubility CODMn of the concentrated water obtained by concentrating organic substance-containing water is, for example, 300 mg / L or more, preferably 500 mg / L or more, and more preferably 1000 mg / L or more. If the solubility CODMn of the concentrated water is less than 8 mg / L, the reduction effect of the soluble COD component by the COD reducing agent may be reduced.
  • the soluble COD of the organic substance-containing water means the COD of the filtrate after filtering the organic substance-containing water with a filter paper (No. 5C).
  • the solubility CODM n of the treated water can achieve, for example, 20 mg / L or less by the water treatment method and the water treatment apparatus according to the present embodiment, and the chromaticity of the treated water achieves, for example, 10 degrees or less be able to.
  • the water treatment method and water treatment apparatus concentrates the water to be treated, and has a solubility of at least 30% of the biologically treated water, and at least 60% of the soluble CODMn. It is possible to reduce the chromaticity of 35% or more, preferably 80% or more of biological treated water.
  • Example 1-1 250 mL of activated sludge-treated water (soluble CODMn 94 mg / L, SS 20 mg / L or less) containing saccharide-containing wastewater is added to a glass beaker and the viscosity of a 50 wt% aqueous solution as a COD reducing agent is 1,170 mPa ⁇ s (25 ° C) And 20 mg / L of dimethylamine / epichlorohydrin / ammonia condensate (hereinafter referred to as COD reducer A1) having a cationic colloid equivalent value of 6.7 meq / g (pH 6) as a solid content The mixture was stirred for 10 minutes at a rotational speed of 150 rpm.
  • COD reducer A1 dimethylamine / epichlorohydrin / ammonia condensate
  • the COD reducer A1 is a polymer containing the structures shown in the above formulas (1) and (2), and has a weight average molecular weight of about 100,000.
  • polyaluminum chloride (PAC) was added at 400 mg / L
  • caustic soda was added to adjust the pH to 7.0
  • the mixture was stirred at a rotational speed of 150 rpm for 5 minutes.
  • add 2 mg / L of polymer flocculant anion colloid equivalent value: 50 meq / g, viscosity of 0.1 wt% aqueous solution: 50 mPa ⁇ s (25 ° C.)
  • acrylamide / acrylic acid type copolymer is an acrylamide / acrylic acid type copolymer.
  • the treated water after completion of stirring was filtered with a quantitative filter paper (manufactured by ADVANTEC, No. 5A), and CODM n of the filtrate was measured.
  • the CODM n was measured by “the oxygen consumption by potassium permanganate at 100 ° C.” according to the industrial drainage test method (JIS K 0102).
  • the viscosity of a 40% by weight aqueous solution or a 50% by weight aqueous solution of a COD reducing agent was measured using a Brookfield-type rotational viscometer (DV-1 manufactured by Eiko Seiki Co., Ltd.).
  • the cationic colloid equivalent value of the COD reducing agent was determined by the colloid titration method by the following method.
  • the solution pH at the time of titration was 6.0.
  • Analysis method of anion colloid equivalent value (1) The evaporation residue (% by weight) of the sample is measured in advance. (2) Add "pure water: 95 mL” and “N / 200-methyl glycol chitosan (MGK) aqueous solution: 5.0 mL" to a beaker, then add "0.1 N NaOH: 0.5 mL” and stir for 1 minute Do. (3) To (2), add 5.0 mL of a sample diluted to 1,000 mg / L as solid content and stir for 5 minutes. (4) Add 2-3 drops of toluidine blue indicator and stir.
  • Example 1-2 Polyethyleneimine (COD reducing agent hereinafter) having a viscosity of 2,500 mPa ⁇ s (25 ° C.) and a cationic colloid equivalent value of 6.6 meq / g (pH 6) of a 40% by weight aqueous solution of COD reducing agent A1
  • COD reducing agent B is a polymer having a structure represented by the above formula (4), and has a weight average molecular weight of about 200,000.
  • Comparative Example 1-1 Dimethylamine epichlorohydrin ammonia condensation in which the viscosity of a 50% by weight aqueous solution of COD reducer A1 is 70 mPa ⁇ s (25 ° C.) and the cationic colloid equivalent value is 6.8 meq / g (pH 6)
  • the same processing as in Example 1-1 was performed except that the substance (hereinafter, referred to as a COD reducing agent A1 ′) was changed, and CODM n of the filtrate of treated water was measured.
  • the COD reducer A1 ′ is a polymer containing the structures shown in the above formulas (1) and (2), and has a weight average molecular weight of about 10,000.
  • Comparative Example 1-2 400 mg / L of PAC was added to the above saccharide-containing wastewater without adding a COD reducing agent, caustic soda was added to adjust the pH to 7.0, and the mixture was stirred for 5 minutes at a rotational speed of 150 rpm. Thereafter, the same treatment as in Example 1-1 was performed, and CODMn of the filtrate of treated water was measured.
  • Table 1 shows the measurement results of CODMn of Examples and Comparative Examples. Moreover, the floc formation in the process of an Example and a comparative example, floc settling property, and supernatant water (treated water) external appearance were visually evaluated by the following references
  • Example 1-1 As shown in Table 1, the CODMn of Example 1-1 added with a COD reducing agent A1, Example 1-2 added with a COD reducing agent B, and Comparative Example 1-1 added with a COD reducing agent A1 'are compared. Then, in Example 1-1, COD was reduced most satisfactorily. Further, Example 1-1 and Example 1-2 were better as compared to Comparative Example 1-2 in which the COD reducing agent was not added.
  • COD reduction agent A1 and the COD reducing agent B have a COD reducing effect.
  • COD reduction agent A1 ' which is a dimethylamine epichlorohydrin ammonia condensate like COD reduction agent A1 had a low COD reduction effect compared with the Example. It is considered that the cause is that the COD reducing agent A1 'has a low viscosity.
  • Example 2-1 250 mL of activated sludge-treated water (soluble CODMn 58 mg / L, SS 20 mg / L or less) of saccharide-containing wastewater is added to a glass beaker, and the viscosity of a 50% by weight aqueous solution as a COD reducing agent is 920 mPa ⁇ s (25 ° C.) And 10 mg / L of dimethylamine epichlorohydrin ethylenediamine condensate (hereinafter referred to as COD reducer C1) having a cationic colloid equivalent value of 6.5 meq / g (pH 6) is added as a solid content, Stir for 10 minutes at a rotational speed of 150 rpm.
  • COD reducer C1 dimethylamine epichlorohydrin ethylenediamine condensate
  • the COD reducing agent C1 is a polymer containing the structures shown in the above formulas (1) and (3), and has a weight average molecular weight of about 80,000.
  • 200 mg / L of PAC was added, caustic soda was added to adjust the pH to 7.0, and the mixture was stirred at a rotational speed of 150 rpm for 5 minutes.
  • 1 mg / L of polymer flocculant anion colloid equivalent value: 50 meq / g, viscosity of an aqueous 0.1 wt% solution: 50 mPa ⁇ s (25 ° C.)
  • an acrylamide / acrylic acid type copolymer is added.
  • Example 2-2 Dimethylamine epichlorohydrin having a COD reducing agent C1 having a viscosity of 2,870 mPa ⁇ s (25 ° C.) in a 50% by weight aqueous solution and a cationic colloid equivalent value of 6.5 meq / g (pH 6)
  • the same processing as in Example 2-1 was performed except that the ethylenediamine condensate (hereinafter, referred to as a COD reducing agent C2) was changed, and CODMn of the filtrate of the treated water was measured.
  • the COD reducing agent C2 is a polymer containing the structures shown in the above formulas (1) and (3), and has a weight average molecular weight of about 250,000.
  • Example 2-3 Dimethylamine epichlorohydrin ethylene diamine condensation having a viscosity of 510 mPa ⁇ s (25 ° C.) and a cationic colloid equivalent value of 6.5 meq / g (pH 6) of a COD reducing agent C1 in a 50% by weight aqueous solution
  • a COD reducing agent C3 the substance (hereinafter, referred to as a COD reducing agent C3) was changed, and CODM n of the filtrate of treated water was measured.
  • the COD reducing agent C3 is a polymer containing the structures shown in the above formulas (1) and (3), and has a weight average molecular weight of about 40,000.
  • Comparative Example 2 200 mg / L of PAC was added to the waste water without adding a COD reducing agent, caustic soda was added to adjust the pH to 7.0, and the mixture was stirred at a rotational speed of 150 rpm for 5 minutes. Thereafter, the same treatment as in Example 2-1 was performed, and CODMn of the filtrate of treated water was measured.
  • Table 2 shows the results of measurement of CODMn in the Examples and Comparative Examples, and the evaluation results of floc formation, floc settling, and appearance of supernatant water.
  • Example 2-1 As shown in Table 2, a comparison is made between Example 2-1 to which COD reducer C1 is added, Example 2-2 to which COD reducer C2 is added, and Example 2-3 to which COD reducer C3 is added. Then, the COD was well reduced in Example 2-1. Further, in comparison with Comparative Example 2 in which the COD reducing agent was not added, Examples 2-1, 2-2 and 2-3 were better.
  • the COD reducer C1, the COD reducer C2 and the COD reducer C3 have a COD reduce effect. Further, from the comparison of Example 2-1 with Example 2-2 and Example 2-3, the viscosity of the 50 wt% aqueous solution is obtained even when the drug component is a dimethylamine.epichlorohydrin.ethylenediamine condensate. It can be seen that there is a difference in the COD reduction effect depending on the difference.
  • the drug with high COD reduction effect can be said to be COD reducer C1 having the property that the viscosity of 50% by weight aqueous solution is in the range of 800 to 2,000 mPa ⁇ s. .
  • Example 3-1 Membrane separation activated sludge treated water of chemical plant drainage (Soluble CODMn 110 mg / L, SS less than 5 mg / L) 250 mL is put into a glass beaker, COD reducer A1 is added as solid content 20 mg / L and rotation is 150 rpm Stir at speed for 10 minutes. Next, 1000 mg / L of PAC was added, caustic soda was added to adjust the pH to 7.0, and the mixture was stirred at a rotational speed of 150 rpm for 5 minutes.
  • polymer flocculant anion colloid equivalent value: 50 meq / g, viscosity of an aqueous 0.1 wt% solution: 50 mPa ⁇ s
  • polymer flocculant anion colloid equivalent value: 50 meq / g, viscosity of an aqueous 0.1 wt% solution: 50 mPa ⁇ s
  • the treated water is quantified. It filtered by 5A and measured CODMn of the filtrate.
  • Example 3-2 Polydiallyldimethyl ammonium chloride (hereinafter referred to as COD reducer A1) having a viscosity of 11,000 mPa ⁇ s (25 ° C.) and a cationic colloid equivalent value of 6.2 meq / g (pH 6) in a 40 wt% aqueous solution
  • COD reducer A1 Polydiallyldimethyl ammonium chloride having a viscosity of 11,000 mPa ⁇ s (25 ° C.) and a cationic colloid equivalent value of 6.2 meq / g (pH 6) in a 40 wt% aqueous solution
  • COD reducing agent D is a polymer containing the structure shown in the above formula (5), and has a weight average molecular weight of about 600,000.
  • Comparative Example 3 1000 mg / L of PAC was added to the above waste water without adding a COD reducing agent, caustic soda was added to adjust pH to 7.0, and the mixture was stirred for 5 minutes at a rotation speed of 150 rpm. Thereafter, the same treatment as in Example 3-1 was performed, and CODMn of the filtrate of treated water was measured.
  • Table 3 shows the results of measurement of CODMn in Examples and Comparative Examples, and evaluation results of floc formation, floc settling, and appearance of supernatant water.
  • Example 3-1 to which COD reducing agent A1 is added is compared with Example 3-2 to which COD reducing agent D is added, COD of Example 3-1 is better. Was reduced. Further, in comparison with Comparative Example 3 in which the COD reducing agent was not added, Examples 3-1 and 3-2 were better.
  • the waste water used in this test is a membrane-permeated water of membrane separation activated sludge, so the waste water contains almost no SS, and the COD component is almost soluble.
  • the waste water has a property in which COD can hardly be reduced only by the inorganic coagulant.
  • COD reducing agent A1 and COD reducing agent D are effective for reducing soluble COD components that are difficult to remove. is there.
  • COD reducing agent A1 which is a dimethylamine / epichlorohydrin / ammonia condensate is more effective than COD reducing agent D which is polydiallyldimethyl ammonium chloride.
  • Example 4-1 Add 250ml of humic acid-containing waste water (soluble CODMn 100 mg / L, SS 5 mg / L or less, chromaticity 1,900 degrees) into a glass beaker, add 20 mg / L of COD reducer A1 as solid, and rotate 150 rpm Stir at speed for 10 minutes. Next, a 35% ferric chloride solution was added at 600 mg / L, caustic soda was added to adjust the pH to 4.0, and the mixture was stirred at a rotational speed of 150 rpm for 5 minutes.
  • humic acid-containing waste water soluble CODMn 100 mg / L, SS 5 mg / L or less, chromaticity 1,900 degrees
  • polymer flocculant anion colloid equivalent value: 50 meq / g, viscosity of 0.1 wt% aqueous solution: 50 mPa ⁇ s
  • polymer flocculant anion colloid equivalent value: 50 meq / g, viscosity of 0.1 wt% aqueous solution: 50 mPa ⁇ s
  • the treated water is quantified.
  • the solution was filtered at 5 A, and the CODM n and chromaticity of the filtrate were measured. The chromaticity was measured using a chromaticity meter (Water Analyzer 2000N, manufactured by Nippon Denshoku Co., Ltd.).
  • Example 4-2 The same processing as in Example 4-1 was performed except that the COD reducing agent A1 was changed to the COD reducing agent D, and CODM n of the filtrate of the treated water was measured.
  • Comparative Example 4 To the above waste water, 600 mg / L of a 35% ferric chloride solution was added without adding a COD reducing agent, caustic soda was added to adjust the pH to 4.0, and the mixture was stirred at a rotational speed of 150 rpm for 5 minutes. Thereafter, the same processing as in Example 4-1 was performed, and CODMn and chromaticity of the filtrate of the treated water were measured.
  • Table 4 shows the results of measurement of CODMn and chromaticity of Examples and Comparative Examples, and evaluation results of flock formation, flock settling, and appearance of supernatant water.
  • Example 4-1 As shown in Table 4, when Example 4-1 to which COD reducer A1 is added is compared with Example 4-2 to which COD reducer D is added, Example 4-1 is better in COD. Was reduced. Further, when the CODMn and the chromaticity of Example 4-1 in which the COD reducing agent A1 is added and Comparative Example 4 in which the COD reducing agent is not added are compared, Example 4-1 is better.
  • the waste water used in this test contained COD components derived from color.
  • the COD reducing agent A1 is also effective for waste water treatment of such a property, and not only the reducing effect of the COD component but also the chromaticity reducing effect can be expected.
  • Example 5-1 250 mL of activated sludge-treated water (soluble CODMn 54 mg / L, SS 5 mg / L or less) of cloth processing wastewater is added to a glass beaker, 1 mg / L of COD reducing agent A1 as solid content is added, and 10 at a rotational speed of 150 rpm. Stir for a minute. Next, 420 mg / L of a 40 wt% ferric chloride solution was added, pH was adjusted to 5.0 by adding caustic soda, and the solution was stirred for 5 minutes at a rotation speed of 150 rpm.
  • polymer flocculant anion colloid equivalent value: 50 meq / g, viscosity of 0.1 wt% aqueous solution: 50 mPa ⁇ s
  • polymer flocculant anion colloid equivalent value: 50 meq / g, viscosity of 0.1 wt% aqueous solution: 50 mPa ⁇ s
  • the treated water is quantified. It filtered by 5A and measured CODMn of the filtrate. Also, the amount of generated sludge was measured.
  • Example 5-2 To the above waste water, 2 mg / L of solid content of COD reducing agent A1 was added and stirred for 10 minutes at a rotation speed of 150 rpm. Next, 390 mg / L of a 40 wt% ferric chloride solution was added, and caustic soda was added to adjust the pH to 5.0. Thereafter, the same treatment as in Example 5-1 was performed, and CODMn of the filtrate of treated water and the amount of generated sludge were measured.
  • Comparative Example 5 To the above waste water, 500 mg / L of a 40 wt% ferric chloride solution was added without adding a COD reducing agent, caustic soda was added to adjust the pH to 5.0, and the solution was stirred for 5 minutes at a rotational speed of 150 rpm. . Thereafter, the same treatment as in Example 5-1 was performed, and CODMn of the filtrate of treated water and the amount of generated sludge were measured.
  • Table 5 shows the results of measurement of CODMn in Examples and Comparative Examples, evaluation results of sludge amount, flock formation, flock settling, and appearance of supernatant water.
  • Examples 5-1 and 5- can be obtained. 2 is better.
  • the amount of sludge in Examples 5-1 and 5-2 was reduced as compared with Comparative Example 5.
  • Example 5-1 and Example 5-2 have reduced COD better than Comparative Example 5. Since the consumption of caustic soda and the amount of sludge generation are also reduced as the amount of ferric chloride added is reduced, it is possible to reduce the cost of waste water treatment. Therefore, it can be said that the wastewater treatment using the COD reducing agent A1 can contribute to the improvement of the treated water quality and the reduction of the wastewater treatment cost.
  • Example 6-1 250 mL of biofilm treated water (soluble CODMn 27 mg / L, SS 268 mg / L) of dairy factory wastewater is added to a glass beaker, 8 mg / L of COD reducing agent A1 is added as a solid, and rotation speed is 150 rpm Stir for 10 minutes. Next, 250 mg / L of a 35 wt% ferric chloride solution was added, pH was adjusted to 4.0 by adding caustic soda, and the solution was stirred for 5 minutes at a rotational speed of 150 rpm.
  • polymer flocculant anion colloid equivalent value: 50 meq / g, viscosity of 0.1 wt% aqueous solution: 50 mPa ⁇ s
  • polymer flocculant anion colloid equivalent value: 50 meq / g, viscosity of 0.1 wt% aqueous solution: 50 mPa ⁇ s
  • the treated water is quantified. It filtered by 5A and measured CODMn of the filtrate.
  • Example 6-2 A process was performed in the same manner as in Example 6-1 except that the COD reducing agent A1 was changed to the COD reducing agent D, and CODM n of the filtrate of the treated water was measured.
  • Comparative Example 6 250 mg / L of 35 wt% ferric chloride solution was added to the above waste water without adding COD reducing agent, caustic soda was added to adjust pH to 4.0, and stirred for 5 minutes at a rotation speed of 150 rpm . Thereafter, the same treatment as in Example 6-1 was performed, and CODMn of the filtrate of treated water was measured.
  • Table 6 shows the results of measurement of CODMn in Examples and Comparative Examples, and the evaluation results of floc formation, floc settling, and appearance of supernatant water.
  • Example 6-1 As shown in Table 6, when Example 6-1 to which COD reducer A1 is added is compared with Example 6-2 to which COD reducer D is added, Example 6-1 is better in COD. Was reduced. Further, when the CODMn of Comparative Example 6 in which the COD reducing agent A1 is added and Comparative Example 6 in which the COD reducing agent is not added is compared, Example 6-1 is better.
  • the COD reducing agent A1 is also effective in reducing the COD component of low concentration drainage such as soluble CODM n 27 mg / L.
  • the hardly biodegradable biodegradable COD component could be reduced while suppressing the amount of generated sludge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

溶解性COD成分を含有するCOD含有水の凝集処理において、汚泥発生量を抑えながら、難生分解性の溶解性COD成分を低減することができる水処理方法および水処理装置を提供する。溶解性COD成分を含有するCOD含有水にCOD低減剤を添加して凝集処理を行う水処理方法であって、COD低減剤は、50重量%水溶液の粘度が500mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリアミン系ポリマー、40重量%水溶液の粘度が1,500mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリエチレンイミン、および、40重量%水溶液の粘度が5,000mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリジアリルジメチルアンモニウムクロライドのうち少なくとも1つを含む水処理方法である。

Description

水処理方法および水処理装置
 本発明は、化学工業、紙・パルプ、印刷、機械、食品、製薬等の工場から排出される溶解性COD成分を含有する溶解性COD含有水のCODを低減する水処理方法および水処理装置の技術に関する。
 化学工場、紙・パルプ工場、印刷工場、機械製造工場、食品工場、製薬工場等から、様々な性状の排水が排出されている。これらの排水中には、化学的酸素要求量(COD)を指標とする有機物が含有されており、COD成分をそのまま放流すると環境汚染の原因となる可能性がある。そのため、水質汚濁防止法において、特定施設を有する事業場から海域および湖沼等に排出される排水のCOD濃度に対して一律排水基準が定められており、COD濃度を排水基準以下に低減することが求められている。
 また、一律排水基準だけでは水質汚濁防止が不十分な地域において、都道府県が条例によって上乗せ排水基準を定めている。CODの上乗せ排水基準は、業種および地域によって様々ではあるが、20mg/L以下の厳しい基準を定めている例もある。
 そこで、排水のCODを低減するため、主に生物処理が適用されている。しかし、生物処理単独ではCODを十分に低減できない性状の排水もある。この場合、排水が難生分解性であり、かつ、溶解性のCOD成分を含有することが主な原因である。そのため、難生分解性であり、かつ、溶解性のCOD成分を低減するため、凝集処理、フェントン処理、オゾン処理および活性炭処理等の物理化学的処理が行われている。
 凝集処理は、懸濁物質に由来するCOD成分の除去には効果的であるが、溶解性COD成分の低減率は低く、規制値を満足するために大量の凝集剤の添加が必要となる場合がある。このように、難生分解性であり、かつ、溶解性のCOD成分の除去が大きな課題となっている。
 また、凝集処理の後段において活性炭吸着によるCOD低減が行われることもある。活性炭処理も溶解性COD成分の低減に有効であるが、凝集処理における溶解性COD成分の低減が不十分である場合、頻繁に活性炭を交換する必要があるためランニングコストが嵩む点が課題である。
 一方、フェントン処理およびオゾン処理のような酸化処理は、溶解性COD成分の低減にも有効である。しかし、フェントン処理は、過酸化水素、硫酸第一鉄、pH調整剤等の薬品消費量および汚泥発生量が多く、ランニングコストの面において経済的な排水処理方法とは言い難い。また、オゾン処理は、オゾン発生装置が高価であり、また、酸素発生装置および廃オゾン分解装置等の周辺設備が必要であることから、イニシャルコストが高い点が問題である。
 これらの問題を解決するため、凝集処理性能の向上が図られている。例えば、特許文献1では、凝集沈殿処理において、COD成分を吸着可能なカチオン性官能基を有した有機系微粒子を添加し、溶解性COD成分を低減する方法が提案されている。しかし、この方法は有機系微粒子の添加濃度が固形分で500~3000mg/Lと多く、有機系微粒子がそのまま汚泥となるため、汚泥発生量が多い点において経済的な処理方法とは言い難い。さらに、有機系微粒子を分散させるために、薬剤中に脂肪族系炭化水素液体および界面活性剤を添加するため、これら添加物の被処理液中への残留が懸念される。
 また、特許文献2では、凝集処理において、重量平均分子量が1000以上のアニオン性高分子電解質を添加した後に重量平均分子量が1万以上100万以下のカチオン性高分子電解質を添加するノニオン性の溶解性COD成分の除去方法が提案されている。しかし、特許文献2の実施例で示されている紙パルプ工場以外の排水におけるCOD成分の除去性能は未知数であり、当該排水の処理水CODを十分に低濃度まで低減できているとは言えない。
 特許文献3では、カチオン性モノマに対するアニオン性モノマの共重合比率が0.1~3質量%の範囲である両性有機凝結剤を添加する凝集処理方法が提案されている。しかし、特許文献3の実施例で示されているように、懸濁物質を高濃度に含有する製紙工業廃水の濁度低減には有効であるが、溶解性COD成分の処理性能については明確ではない。
 特許文献4では、流動床式生物反応槽で生物処理した排水に凝結剤を添加後、カチオン性高分子凝集剤を添加して凝集処理する製紙排水の処理方法が提案されている。しかし、特許文献4では凝集処理の原水として使用された生物処理水の溶解性COD成分が不明であり、溶解性COD成分の処理性能については明確ではない。
 従来技術によって排水のCODを低減することは可能であるが、難生分解性の溶解性COD成分の処理性能は十分とは言えない。また、特許文献1に記載されている有機系微粒子や、公知である粉末活性炭を使用する凝集処理を行えば、難生分解性の溶解性COD成分も低減可能であるが、これら固形の吸着材は多くの添加量が必要であり、汚泥発生量を増大させる問題がある。このように、従来技術では、溶解性COD成分を低減するために、排水処理費用が増加することが懸念される。
特許第4923834号公報 特開2009-154095号公報 特許第5560626号公報 特開2014-028365号公報
 本発明の目的は、溶解性COD成分を含有するCOD含有水の凝集処理において、汚泥発生量を抑えながら、難生分解性の溶解性COD成分を低減することができる水処理方法および水処理装置を提供することにある。
 本発明は、溶解性COD成分を含有するCOD含有水にCOD低減剤を添加して凝集処理を行う凝集処理工程を含み、前記COD低減剤は、50重量%水溶液の粘度が500mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリアミン系ポリマー、40重量%水溶液の粘度が1,500mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリエチレンイミン、および、40重量%水溶液の粘度が5,000mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリジアリルジメチルアンモニウムクロライドのうち少なくとも1つを含む、水処理方法である。
 前記水処理方法において、前記COD含有水の溶解性CODMnは、20mg/L以上であることが好ましい。
 前記水処理方法において、前記COD低減剤は、50重量%水溶液の粘度が500mPa・s以上であり、かつ、カチオンコロイド当量値が6.5meq/g以上(pH6)であるジメチルアミン・エピクロロヒドリン・アンモニア縮合物、50重量%水溶液の粘度が500mPa・s以上であり、かつ、カチオンコロイド当量値が6.5meq/g以上(pH6)であるジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物、および、40重量%水溶液の粘度が1,500mPa・s以上であり、かつ、カチオンコロイド当量値が6.5meq/g以上(pH6)であるポリエチレンイミンのうち少なくとも1つであることが好ましい。
 前記水処理方法において、前記凝集処理工程の前段に、被処理水を生物処理する生物処理工程を含み、前記COD含有水は、前記生物処理工程で得られる生物処理水であることが好ましい。
 前記水処理方法において、前記凝集処理工程の前段に、有機物を含有する有機物含有水を濃縮する濃縮工程と、前記濃縮工程で得られた濃縮水を生物処理する生物処理工程と、を含み、前記COD含有水は、前記生物処理工程で得られる生物処理水であることが好ましい。
 前記水処理方法における前記生物処理工程において、膜分離活性汚泥法により生物処理を行うことが好ましい。
 また、本発明は、溶解性COD成分を含有するCOD含有水にCOD低減剤を添加して凝集処理を行う凝集処理手段を備え、前記COD低減剤は、50重量%水溶液の粘度が500mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリアミン系ポリマー、40重量%水溶液の粘度が1,500mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリエチレンイミン、および、40重量%水溶液の粘度が5,000mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリジアリルジメチルアンモニウムクロライドのうち少なくとも1つを含む、水処理装置である。
 前記水処理装置において、前記COD含有水の溶解性CODMnは、20mg/L以上であることが好ましい。
 前記水処理装置において、前記COD低減剤は、50重量%水溶液の粘度が500mPa・s以上であり、かつ、カチオンコロイド当量値が6.5meq/g以上(pH6)であるジメチルアミン・エピクロロヒドリン・アンモニア縮合物、50重量%水溶液の粘度が500mPa・s以上であり、かつ、カチオンコロイド当量値が6.5meq/g以上(pH6)であるジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物、および、40重量%水溶液の粘度が1,500mPa・s以上であり、かつ、カチオンコロイド当量値が6.5meq/g以上(pH6)であるポリエチレンイミンのうち少なくとも1つであることが好ましい。
 前記水処理装置において、前記凝集処理手段の前段に、被処理水を生物処理する生物処理手段を備え、前記COD含有水は、前記生物処理手段で得られる生物処理水であることが好ましい。
 前記水処理装置において、前記凝集処理手段の前段に、有機物を含有する有機物含有水を濃縮する濃縮手段と、前記濃縮手段で得られた濃縮水を生物処理する生物処理手段と、を備え、前記COD含有水は、前記生物処理手段で得られる生物処理水であることが好ましい。
 前記水処理装置において、前記生物処理手段は、膜分離活性汚泥法により生物処理を行うものであることが好ましい。
 本発明によれば、溶解性COD成分を含有するCOD含有水の凝集処理において、汚泥発生量を抑えながら、難生分解性の溶解性COD成分を低減することができる水処理方法および水処理装置を提供することができる。
本発明の実施形態に係る水処理装置の一例を示す概略構成図である。 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。
 本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。
 本発明の実施形態に係る水処理装置の一例の概略を図1に示し、その構成について説明する。図1に示す水処理装置1は、凝集装置10と、沈殿槽12とを備える。凝集装置10は、第一反応槽14と、第二反応槽16と、凝集槽18とを備える。第一反応槽14は、COD低減剤添加ライン20を備え、第二反応槽16は、無機凝集剤添加ライン22およびpH調整剤添加ライン24を備え、凝集槽18は、高分子凝集剤添加ライン26を備える。第一反応槽14、第二反応槽16、凝集槽18には、撹拌手段として例えば撹拌翼を有する撹拌機28、撹拌機30、撹拌機32がそれぞれ設置されている。
 図1に示す水処理装置1において、第一反応槽14の水入口には、被処理水流入ライン34が接続されている。第一反応槽14の薬剤入口には、COD低減剤添加ライン20が接続されている。反応槽14の水出口には、水排出ライン36の一端が接続され、第二反応槽16の水入口には、水排出ライン36の他端が接続されている。
 第二反応槽16の薬剤入口には、無機凝集剤添加ライン22およびpH調整剤添加ライン24が接続されている。また、第二反応槽16の水出口には、水排出ライン38の一端が接続され、凝集槽18の水入口には、水排出ライン38の他端が接続されている。
 凝集槽18の薬剤入口には、高分子凝集剤添加ライン26が接続されている。また、凝集槽18の水出口には、水排出ライン40の一端が接続され、沈殿槽12の水入口には、水排出ライン40の他端が接続されている。
 沈殿槽12の処理水出口には、処理水排出ライン42が接続され、沈殿槽12の汚泥排出口には、汚泥排出ライン44が接続されている。
 本実施形態に係る水処理装置1の動作の一例について説明する。
 被処理水である、溶解性COD成分を含有するCOD含有水が、被処理水流入ライン34を通り、第一反応槽14に供給されると共に、COD低減剤がCOD低減剤添加ライン20から第一反応槽14に供給される(COD低減剤供給工程)。第一反応槽14内の被処理水およびCOD低減剤は、撹拌機28により撹拌され、溶解性COD成分は不溶化される(不溶化工程)。
 ここで、COD低減剤は、50重量%水溶液の粘度が500mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリアミン系ポリマー、40重量%水溶液の粘度が1,500mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリエチレンイミン、および、40重量%水溶液の粘度が5,000mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリジアリルジメチルアンモニウムクロライドのうち少なくとも1つを含む。
 溶解性COD成分は、負電荷に帯電すると共に、分子内に-OH、-COOH、-NH、-NH-等の親水性の官能基を有するため、水中に分散および溶解している状態であるが、COD低減剤は分子構造中に正電荷を有するカチオン密度が高い化合物であるため、COD含有水にCOD低減剤が添加されることで、溶解性COD成分の負電荷が荷電中和され、凝集しやすい性状となると考えられる。また、上記COD低減剤のうち、第2級アミンである-NH-、または-OH等を分子内に有するポリアミン系ポリマーは、溶解性COD成分の親水性官能基と水素結合を形成し、溶解性COD成分を不溶化しやすくなると推定される。
 不溶化されたCOD成分を含む不溶化COD含有水は、第一反応槽14から水排出ライン36を通り、第二反応槽16に供給されると共に、無機凝集剤が無機凝集剤添加ライン22から、pH調整剤がpH調整剤添加ライン24から第二反応槽16に供給される(無機凝集剤添加工程)。第二反応槽16内の不溶化COD含有水、無機凝集剤およびpH調整剤は、撹拌機30により撹拌される。所定のpHに調整された無機凝集剤は金属水酸化物となり、不溶化されたCOD成分と共に微細フロックが形成される(フロック形成工程)。
 微細フロックを含む微細フロック含有水は、第二反応槽16から水排出ライン38を通り、凝集槽18に供給されると共に、高分子凝集剤が高分子凝集剤添加ライン26から凝集槽18に供給される(高分子凝集剤添加工程)。凝集槽18内の微細フロック含有水および高分子凝集剤は、撹拌機32により撹拌される。高分子凝集剤は微細フロック同士を会合させ、フロックを成長させる(フロック成長工程)。
 フロックを含むフロック含有水は、凝集槽18から水排出ライン40を通り、沈殿槽12に供給される。沈殿槽12内では、自然沈降等により処理水とフロックとに固液分離される(固液分離工程)。そして、溶解性COD成分が低減された処理水が、処理水排出ライン42から排出され、フロックが汚泥として、汚泥排出ライン44から排出される。
 本実施形態に係る水処理方法および水処理装置では、上記COD低減剤を用いることにより、難生分解性の溶解性COD成分の凝集処理に使用する薬品の使用量を抑え、凝集処理における汚泥発生量を抑えながら、難生分解性の溶解性COD成分を低減することができる。また、薬品消費量および汚泥発生量が少なく、イニシャルコスト、ランニングコストの面において経済的な方法である。さらに、凝集処理におけるフロック形成、フロック沈降性、処理水外観にも優れる。
 本発明の実施形態に係る水処理装置の他の例の概略を図2に示し、その構成について説明する。図2に示す水処理装置3は、濃縮手段として濃縮装置50と、生物処理手段として生物処理装置52と、凝集処理手段として第一反応槽54、第二反応槽56および沈殿槽58を有する凝集処理装置と、を備える。水処理装置3は、濃縮装置50の前段に被処理水を貯留するための被処理水槽(図示せず)を備えてもよい。
 図2に示す水処理装置3において、濃縮装置50の入口には、被処理水流入ライン60が接続されている。濃縮装置50の出口と生物処理装置52の入口とは、濃縮水ライン62により接続されている。生物処理装置52の出口と第一反応槽54の入口とは、生物処理水ライン64により接続されている。第一反応槽54の出口と第二反応槽56の入口とは、水排出ライン66により接続されている。第二反応槽56の出口と沈殿槽58の入口とは、水排出ライン68により接続されている。沈殿槽58の処理水出口には、処理水排出ライン70が接続され、下部の汚泥出口には、汚泥排出ライン72が接続されている。第一反応槽54には、無機凝集剤添加ライン74、COD低減剤添加ライン76、pH調整剤添加ライン78が接続され、撹拌羽根等を有する撹拌機82が設置されていてもよい。第二反応槽56には、高分子凝集剤添加ライン80が接続され、撹拌羽根等を有する撹拌機84が設置されていてもよい。
 本実施形態に係る水処理方法および水処理装置3の動作の一例について説明する。
 被処理水である、有機物を含有する有機物含有水は、必要に応じて被処理水槽に貯留された後、被処理水流入ライン60を通して、濃縮装置50に供給される。濃縮装置50において、有機物含有水が濃縮される(濃縮工程)。濃縮工程で得られた濃縮水は、濃縮水ライン62を通して、生物処理装置52に供給される。生物処理装置52において、濃縮水は生物処理される(生物処理工程)。
 次に、生物処理工程で処理された生物処理水に凝集剤が添加され、凝集処理により処理水が得られる(凝集処理工程)。凝集処理工程は、具体的には例えば以下の通りである。
 生物処理工程で処理された生物処理水は、生物処理装置52から生物処理水ライン64を通して第一反応槽54に供給される。第一反応槽54において、無機凝集剤が無機凝集剤添加ライン74を通して添加され(無機凝集剤添加工程)、COD低減剤がCOD低減剤添加ライン76を通して添加される(COD低減剤添加工程)。第一反応槽54内の生物処理水、無機凝集剤およびCOD低減剤は、撹拌機82により撹拌され、有機物が不溶化される(不溶化工程)。必要に応じてpH調整剤がpH調整剤添加ライン78を通して第一反応槽54に添加されて、pH調整が行われてもよい(pH調整工程)。所定のpHに調整された無機凝集剤は例えば金属水酸化物となり、不溶化された有機物と共に微細フロックが形成される(フロック形成工程)。
 ここで、COD低減剤は、50重量%水溶液の粘度が500mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリアミン系ポリマー、40重量%水溶液の粘度が1,500mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリエチレンイミン、および、40重量%水溶液の粘度が5,000mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリジアリルジメチルアンモニウムクロライドのうち少なくとも1つを含む。
 微細フロックを含む第一反応水(微細フロック含有水)は、第一反応槽54から水排出ライン66を通して、第二反応槽56に供給される。第二反応槽56において、高分子凝集剤が高分子凝集剤添加ライン80を通して添加される(高分子凝集剤添加工程)。第二反応槽56内の微細フロック含有水および高分子凝集剤は、撹拌機84により撹拌される。高分子凝集剤は微細フロック同士を会合させ、フロックを成長させる(フロック成長工程)。
 フロックを含む第二反応水(フロック含有水)は、第二反応槽56から水排出ライン68を通して、沈殿槽58に供給される。沈殿槽58において、自然沈降等により処理水とフロックとに固液分離される(固液分離工程)。そして、有機物が低減された処理水は、処理水排出ライン70を通して排出され、フロックは汚泥として、汚泥排出ライン72を通して排出される。
 本発明者らは、有機物含有水を濃縮処理することにより濃縮水を得て、濃縮水を生物処理した後、凝集処理により処理することにより、COD成分、色素等の有機物や、濁質等が含まれる有機物含有水において、良好な凝集処理性能を示し、有機物等を効率的に低減することができることを見出した。
 濃縮処理後に生物処理を行うことにより、濃縮処理を行わずに生物処理を行う場合と分解生成物が異なり、濃縮処理後に生物処理を行った生物処理水の方が凝集処理において有機物等が低減しやすい。これは、濃縮処理後に生物処理を行った生物処理水の方が、より負電荷に帯電をしている化学物質が増えているため、無機凝集剤、COD低減剤、または高分子凝集剤等の凝集剤により荷電中和されて凝集しやすい形状になると推測される。
 濃縮工程における濃縮は、様々な方法を用いてよく、例えば、蒸発処理や膜ろ過処理等を用いて濃縮することができる。
 蒸発処理としては、自然蒸発、加熱蒸発、噴霧蒸発、真空蒸発等の方法が挙げられる。
 膜ろ過処理に使用する膜は、特に制限はないが、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)、ナノろ過膜(NF膜)、または逆浸透膜(RO膜)等が挙げられる。濃縮を効果的に行うことができる等の点から、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)、ナノろ過膜(NF膜)が好ましく、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)がより好ましく、限外ろ過膜(UF膜)がさらに好ましい。分離粒径が小さい逆浸透膜(RO膜)であると膜が閉塞しやすく、精密ろ過膜(MF膜)であると分離粒径が大きく、他の膜よりも濃縮されにくく、凝集後の有機物を効果的に低減することができない場合がある。
 精密ろ過膜の孔径は、0.1μm以上、10μm以下であり、限外ろ過膜の公称孔径は、0.001μm以上、0.1μm未満である。分画分子量で表すと、限外ろ過膜の分画分子量は、1,000以上、1,000,000未満である。
 ろ過膜の材質は、特に制限はないが、例えば、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニル(PVC)、ポリエーテルスルホン(PES)、セルロースアセテート(CA)等の有機膜、セラミック製等の無機膜等が挙げられる。
 ろ過膜の形状は、特に制限はないが、例えば、中空糸膜の他に、管状膜、平膜、スパイラル等でもよい。ろ過膜の通水方式は、特に制限はないが、内圧式、外圧式等のあらゆる通水方式が適用可能であり、クロスフローろ過やデッドエンドろ過等のあらゆるろ過方法が適用可能である。
 生物処理工程では、好気性生物処理または嫌気性生物処理が行われる。例えば、好気性微生物や嫌気性微生物等の微生物により濃縮水中の有機物等を生物学的に酸化または還元させる処理であり、例えば、標準活性汚泥法、生物膜法、膜分離活性汚泥法(MBR)、固定床法、流動床法等の方法によるものが挙げられる。
 COD低減剤である、50重量%水溶液の粘度が500mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリアミン系ポリマーとしては、ジメチルアミン・エピクロロヒドリン・アンモニア縮合物や、ジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物等が挙げられる。ジメチルアミン・エピクロロヒドリン・アンモニア縮合物の50重量%水溶液の粘度は、500mPa・s以上であればよく、特に制限はないが、800mPa・s以上であれば好ましく、1,000mPa・s以上であればより好ましい。50重量%水溶液の粘度の上限は、特に制限はないが、4,000mPa・s以下であることが好ましく、2,000mPa・s以下であればより好ましい。カチオンコロイド当量値は、6.0meq/g以上(pH6)であればよく、特に制限はないが、6.5meq/g以上(pH6)であることが好ましい。
 COD低減剤であるジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物の50重量%水溶液の粘度は、500mPa・s以上であればよく、特に制限はないが、800mPa・s以上であれば好ましい。50重量%水溶液の粘度の上限は、特に制限はないが、4,000mPa・s以下であることが好ましく、2,000mPa・s以下であればより好ましい。カチオンコロイド当量値は、6.0meq/g以上(pH6)であればよく、特に制限はないが、6.5meq/g以上(pH6)であることが好ましい。
 COD低減剤であるポリエチレンイミンの40重量%水溶液の粘度は、1,500mPa・s以上であればよく、特に制限はないが、2,000mPa・s以上であればより好ましい。40重量%水溶液の粘度の上限は、特に制限はないが、4,000mPa・s以下であることが好ましい。カチオンコロイド当量値は、6.0meq/g以上(pH6)であればよく、特に制限はないが、6.5meq/g以上(pH6)であることが好ましい。
 COD低減剤であるポリジアリルジメチルアンモニウムクロライドの40重量%水溶液の粘度は、5,000mPa・s以上であればよく、特に制限はないが、8,000mPa・s以上であればより好ましい。40重量%水溶液の粘度の上限は、特に制限はないが、15,000mPa・s以下であることが好ましい。カチオンコロイド当量値は、6.0meq/g以上(pH6)であればよく、特に制限はないが、6.2meq/g以上(pH6)であることが好ましい。
 これらのうち、溶解性COD成分の低減効果が高い等の点から、50重量%水溶液の粘度およびカチオンコロイド当量値が上記範囲であるジメチルアミン・エピクロロヒドリン・アンモニア縮合物、またはジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物、および40重量%水溶液の粘度およびカチオンコロイド当量値が上記範囲であるポリエチレンイミンが好ましく、50重量%水溶液の粘度およびカチオンコロイド当量値が上記範囲であるジメチルアミン・エピクロロヒドリン・アンモニア縮合物、またはジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物がより好ましい。
 ここで、40重量%水溶液または50重量%水溶液の粘度は、化合物の分子量を表す指標であり、数値が大きくなるほど高分子量の化合物となる。40重量%水溶液または50重量%水溶液の粘度は、ブルックフィールド型回転粘度計等の粘度計によって測定される。
 また、カチオンコロイド当量値とは、化合物中における正電荷の強さを表す指標であり、数値が大きくなるほど正電荷の強い化合物となる。カチオンコロイド当量値は、コロイド滴定法によって求められる。具体的には、薬剤を分散させた水溶液をポリビニル硫酸カリウム溶液で滴定する。滴定時の溶液pHは4~10とする。
 ジメチルアミン・エピクロロヒドリン・アンモニア縮合物は、下記式(1)
Figure JPOXMLDOC01-appb-C000001
で表される構造、および、下記式(2)
Figure JPOXMLDOC01-appb-C000002
で表される構造を含むポリマーである。上記ポリマーでは、式(2)で表される構造と式(1)で表される構造の割合が、モル比(式(2)で表される構造:式(1)で表される構造)で例えば0.01:9.99~7:3であればよい。
 ジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物は、式(1)で表される構造、および、下記式(3)
Figure JPOXMLDOC01-appb-C000003
で表される構造を含むポリマーである。上記ポリマーでは、式(3)で表される構造と式(1)で表される構造の割合が、モル比(式(3)で表される構造:式(1)で表される構造)で例えば0.01:9.99~7:3であればよい。
 ポリエチレンイミンは、下記式(4)
Figure JPOXMLDOC01-appb-C000004
で表される構造を含むポリマーである。
 ポリジアリルジメチルアンモニウムクロライドは、下記式(5)
Figure JPOXMLDOC01-appb-C000005
で表される構造を含むポリマーである。
 本実施形態に係る水処理方法および水処理装置において、COD低減剤の添加量は、無機凝集剤の添加量に対するCOD低減剤の添加量の重量比(COD低減剤の添加量/無機凝集剤の添加量)で、0.1以下であることが好ましく、0.002以上0.07以下であることがより好ましい。この重量比が0.1を超えると、COD低減剤の添加量が過剰となり、最適条件と比べて処理水質が悪化する場合があり、0.002未満であると、COD成分の低減効果を示さない場合がある。COD低減剤の添加量は、ジャーテスト等によって最適添加量を設定するとよい。
 処理対象である溶解性COD成分を含む溶解性COD含有水は、如何なる由来の水でもよく、特に制限はないが、例えば、化学工場、紙・パルプ工場、印刷工場、機械製造工場、食品工場、製薬工場等の排水が挙げられ、例えば、上記各種工場から排出される糖類含有排水、フミン酸含有排水、布加工排水等の排水が挙げられる。また、有機物を含む有機物含有水は、色素等の色度成分および溶解性COD成分等の有機物を含む水であれば如何なる由来の水でもよく、特に制限はないが、例えば、化学工場、紙・パルプ工場、印刷工場、機械製造工場、食品工場、製薬工場等の排水が挙げられ、例えば、上記各種工場から排出される糖類含有排水、フミン酸含有排水、布加工排水等の排水が挙げられる。処理対象である溶解性COD含有水は、上記各種排水が活性汚泥法により処理された活性汚泥処理水、上記各種排水が膜分離活性汚泥法により処理された膜分離活性汚泥処理水等の生物処理水であってもよく、COD低減剤による溶解性COD成分の低減効果が高い等の点から、特に上記各種排水の膜分離活性汚泥処理水に好適に適用される。
 COD含有水の溶解性CODMnは、20mg/L以上であればよく、60mg/L以上であることが好ましく、90mg/L以上であることがより好ましい。COD含有水の溶解性CODMnが20mg/L未満であると、COD低減剤による溶解性COD成分の低減効果が小さくなる場合がある。ここで、COD含有水の溶解性CODとは、COD含有水をろ紙(No.5C)でろ過した後のろ過液のCODのことを言う。
 また、有機物含有水の溶解性CODMnは、例えば、8mg/L以上であり、50mg/L以上であることが好ましく、100mg/L以上であることがより好ましい。有機物含有水の溶解性CODMnが8mg/L未満であると、COD低減剤による溶解性COD成分の低減効果が小さくなる場合がある。ここで、有機物含有水の溶解性CODとは、有機物含有水をろ紙(No.5C)でろ過した後のろ過液のCODのことを言う。
 COD含有水の色度は、例えば、5~2,000度の範囲である。
 また、有機物含有水の色度は、例えば、5度以上であり、10度以上であることが好ましく、100度以上であることがより好ましい。
 COD含有水のSS濃度は、例えば、300mg/L未満である。COD含有水のSS濃度が300mg/Lを超えると、COD低減剤による溶解性COD成分の低減効果が小さくなる場合がある。
 無機凝集剤としては、例えば、塩化第二鉄、ポリ硫酸第二鉄等の鉄系無機凝集剤、硫酸アルミニウム、ポリ塩化アルミニウム(PAC)等のアルミニウム系無機凝集剤等が挙げられる。
 無機凝集剤の添加量には、特に制限はない。処理対象の溶解性COD含有水の懸濁物質、色度およびCOD等の濃度によって変わるが、例えば50~5,000mg/Lの範囲が好ましい。
 pH調整剤としては、塩酸、硫酸等の酸や、水酸化ナトリウム等のアルカリである。
 pHは、例えば、4~11の範囲に調整すればよい。
 無機凝集剤添加後の撹拌速度は、例えば、100~300rpmの急速撹拌とすればよい。
 本実施形態では、より良好な凝集処理を行うため、高分子凝集剤を添加してフロック径を成長させることが好ましい。良好な凝集処理を行う点で、COD低減剤および無機凝集剤による凝集反応が完了した後に高分子凝集剤を添加することが好ましい。具体的には、第二反応槽16の後段の凝集槽18において、または、第一反応槽54の後段の第二反応槽56において、高分子凝集剤を添加すればよい。
 高分子凝集剤としては、ノニオン性高分子凝集剤、アニオン性高分子凝集剤またはカチオン性高分子凝集剤等、特に制限されるものではないが、例えば、ポリアクリルアミド、ポリアクリル酸ナトリウム、アクリルアミドプロパンスルフォン酸ナトリウム、キトサン、ジメチルアミノエチルメタクリレート、ジメチルアミノエチルアクリレートおよびポリアミジン等が挙げられる。高分子凝集剤は、1種単独でも、2種以上を組み合わせて用いてもよい。
 高分子凝集剤の重量平均分子量は、例えば、500,000~1,000,000,000の範囲であり、1,000,000~50,000,000の範囲であることが好ましい。
 高分子凝集剤の添加量には、特に制限はないが、例えば、0.5~10mg/Lの範囲であることが好ましい。
 高分子凝集剤添加後は撹拌速度を緩やかにし(例えば、20~50rpm)、フロック径を成長させることが好ましい。
 凝集処理(不溶化工程、フロック形成工程、フロック成長工程)における液温度は、特に制限はなく、例えば、15~35℃の範囲である。
 凝集処理後の処理水とフロックとの固液分離は、沈殿槽に限定されるものではない。固液分離方法は、特に制限はなく、例えば、沈殿処理、ろ過処理、膜分離処理等が挙げられる。沈殿処理は、特に制限はなく、例えば、沈殿槽を用いた自然沈殿処理以外に、遠心分離器等を用いた強制沈殿処理でもよい。また、ろ過処理も特に制限はなく、例えば、重力式、圧力式、サイフォン式、上向流式、ろ材循環式、連続ろ過式等のろ過器と、アンスラサイト、砂、けい砂、砂利、活性炭、プラスチック等のろ材とを用いてろ過することができる。膜分離処理も特に制限はなく、例えば、精密ろ過膜、限外ろ過膜等を用いて膜分離することができる。
 有機物含有水を濃縮処理した濃縮水の溶解性CODMnは、例えば、300mg/L以上であり、500mg/L以上であることが好ましく、1000mg/L以上であることがより好ましい。濃縮水の溶解性CODMnが8mg/L未満であると、COD低減剤による溶解性COD成分の低減効果が小さくなる場合がある。ここで、有機物含有水の溶解性CODとは、有機物含有水をろ紙(No.5C)でろ過した後のろ過液のCODのことを言う。
 処理水の溶解性CODMnは、本実施形態に係る水処理方法および水処理装置により、例えば、20mg/L以下を達成することができ、処理水の色度は、例えば、10度以下を達成することができる。
 また、本実施形態に係る水処理方法および水処理装置により、例えば、被処理水を濃縮し、生物処理した生物処理水の30%以上の溶解性CODMn、好ましくは60%以上の溶解性CODMnを低減することができ、生物処理水の35%以上、好ましくは80%以上の色度を低減することができる。
 以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。
 実施例および比較例で処理する溶解性COD含有水として、糖類含有排水の活性汚泥処理水、化学工場系排水の膜分離活性汚泥処理水、フミン酸含有排水および布加工排水の活性汚泥処理水、乳製品製造工場排水の生物膜処理水を用いた。
<実施例1-1>
 糖類含有排水の活性汚泥処理水(溶解性CODMn 94mg/L、SS 20mg/L以下)250mLをガラスビーカに入れ、COD低減剤として50重量%水溶液の粘度が1,170mPa・s(25℃)であり、かつ、カチオンコロイド当量値が6.7meq/g(pH6)であるジメチルアミン・エピクロロヒドリン・アンモニア縮合物(以下、COD低減剤A1と称する。)を固形分として20mg/L添加して、150rpmの回転速度で10分間撹拌した。COD低減剤A1は、上記式(1)および式(2)に示す構造を含むポリマーであり、重量平均分子量は約100,000である。次に、ポリ塩化アルミニウム(PAC)を400mg/L添加し、苛性ソーダを加えてpHを7.0に調整して、150rpmの回転速度で5分間撹拌した。その後、アクリルアミド・アクリル酸系共重合ポリマーである高分子凝集剤(アニオンコロイド当量値:50meq/g、0.1重量%水溶液の粘度:50mPa・s(25℃))を2mg/L添加して、150rpmの回転速度で1分間撹拌した後、40rpmで5分間撹拌して、フロック径を成長させた。撹拌終了後の処理水を定量濾紙(ADVANTEC製、No.5A)でろ過し、ろ過液のCODMnを測定した。CODMnは、工場排水試験法(JIS K 0102)の「100℃における過マンガン酸カリウムによる酸素消費量」により、測定した。
 COD低減剤の40重量%水溶液または50重量%水溶液の粘度は、ブルックフィールド型回転粘度計(英弘精機株式会社製、DV-1)を用いて測定した。
 COD低減剤のカチオンコロイド当量値は、コロイド滴定法により下記の方法で求めた。滴定時の溶液pHは6.0とした。
<コロイド滴定法>
1.カチオンコロイド当量値の分析方法
(1)予め試料の蒸発残分(重量%)を測定する。
(2)純水で固形分として20mg/Lに希釈した試料100mLをビーカーに採る。
(3)塩酸または水酸化ナトリウム水溶液でpHを6.0に調整して、約1分間撹拌する。
(4)トルイジンブルー指示薬を2~3滴加えて撹拌する。
(5)N/400ポリビニル硫酸カリウム試薬(N/400PVSK)で滴定する。滴定速度は2mL/分程度とする。検水が青から赤紫色に変色してから10秒以上保持する点を終点とする。
(6)コロイド当量値(meq/g[純分])=PVSK滴定量(mL)×PVSKファクタ/2/0.4
2.アニオンコロイド当量値の分析方法
(1)予め試料の蒸発残分(重量%)を測定する。
(2)ビーカーに「純水:95mL」と「N/200-メチルグリコールキトサン(MGK)水溶液:5.0mL」を加え、続いて「0.1N NaOH:0.5mL」を加えて1分撹拌する。
(3)(2)に、固形分として1,000mg/Lに希釈した試料5.0mLを加えて5分間撹拌する。
(4)トルイジンブルー指示薬を2~3滴加えて撹拌する。
(5)N/400ポリビニル硫酸カリウム試薬(N/400PVSK)で滴定する。滴定速度は2mL/分程度とする。検水が青から赤紫色に変色してから10秒以上保持する点を終点とする。
(6)ブランク試験(純水:100mL)を上記操作と同様に行う。
(7)コロイド当量値(meq/g[純分])=(ブランク滴定量(mL)-試料滴定量(mL))×PVSKファクタ/2/蒸発残分(%)×100
<実施例1-2>
 COD低減剤A1を、40重量%水溶液の粘度が2,500mPa・s(25℃)であり、かつ、カチオンコロイド当量値が6.6meq/g(pH6)であるポリエチレンイミン(以下、COD低減剤Bと称する。)に変更したこと以外は、実施例1-1と同様の処理を行い、処理水のろ過液のCODMnを測定した。COD低減剤Bは、上記式(4)に示す構造を含むポリマーであり、重量平均分子量は約200,000である。
<比較例1-1>
 COD低減剤A1を、50重量%水溶液の粘度が70mPa・s(25℃)であり、かつ、カチオンコロイド当量値が6.8meq/g(pH6)であるジメチルアミン・エピクロロヒドリン・アンモニア縮合物(以下、COD低減剤A1’と称する。)に変更したこと以外は、実施例1-1と同様の処理を行い、処理水のろ過液のCODMnを測定した。COD低減剤A1’は、上記式(1)および上記式(2)に示す構造を含むポリマーであり、重量平均分子量は約10,000である。
<比較例1-2>
 上記糖類含有排水にCOD低減剤を添加せずに、PACを400mg/L添加し、苛性ソーダを加えてpHを7.0に調整して、150rpmの回転速度で5分間撹拌した。その後は、実施例1-1と同様の処理を行い、処理水のろ過液のCODMnを測定した。
 表1に、実施例および比較例のCODMnの測定結果を示す。また、実施例および比較例の処理におけるフロック形成、フロック沈降性、上澄み水(処理水)外観を以下の基準により目視にて評価した。評価基準は以下の全ての実施例および比較例も同様である。
(フロック形成)
 良好:概ね2mm以上のフロックが形成される。
 やや不良:1mm前後のフロックが形成される。
 不良:フロックがほとんど形成されない。
(フロック沈降性)
 良好:撹拌終了後、3分以内にほとんどのフロックが沈降する。
 やや不良:撹拌終了後、10分以内にほとんどのフロックが沈降する。
 不良:撹拌終了後、10分経過しても上澄み水にフロックが残存する。
(上澄み水外観)
 良好:30分静置後の上澄み水は清澄で濁度および色度がほとんど無い。
 やや不良:30分静置後の上澄み水にやや濁度および色度が残存する。
 不良:30分静置後の上澄み水に濁度および色度が残存する。
Figure JPOXMLDOC01-appb-T000006
 表1に示すように、COD低減剤A1を添加した実施例1-1、COD低減剤Bを添加した実施例1-2、COD低減剤A1’を添加した比較例1-1のCODMnを比較すると、実施例1-1が最も良好にCODが低減された。また、COD低減剤を添加しなかった比較例1-2と比較すると、実施例1-1および実施例1-2の方が良好であった。
 このように、COD低減剤A1およびCOD低減剤BはCOD低減効果を有することが明らかである。また、COD低減剤A1と同じくジメチルアミン・エピクロロヒドリン・アンモニア縮合物であるCOD低減剤A1’は、実施例に比べてCOD低減効果が低かった。COD低減剤A1’が低粘度であることが原因と考えられる。
<実施例2-1>
 糖類含有排水の活性汚泥処理水(溶解性CODMn 58mg/L、SS 20mg/L以下)250mLをガラスビーカに入れ、COD低減剤として50重量%水溶液の粘度が920mPa・s(25℃)であり、かつ、カチオンコロイド当量値が6.5meq/g(pH6)であるジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物(以下、COD低減剤C1と称する。)を固形分として10mg/L添加して、150rpmの回転速度で10分間撹拌した。COD低減剤C1は、上記式(1)および上記式(3)に示す構造を含むポリマーであり、重量平均分子量は約80,000である。次に、PACを200mg/L添加し、苛性ソーダを加えてpHを7.0に調整して、150rpmの回転速度で5分間撹拌した。その後、アクリルアミド・アクリル酸系共重合ポリマーである高分子凝集剤(アニオンコロイド当量値:50meq/g、0.1重量%水溶液の粘度:50mPa・s(25℃))を1mg/L添加して、150rpmの回転速度で1分間撹拌した後、40rpmで5分間撹拌して、フロック径を成長させた。撹拌終了後の処理水を定量濾紙No.5Aでろ過し、ろ過液のCODMnを測定した。
<実施例2-2>
 COD低減剤C1を、50重量%水溶液の粘度が2,870mPa・s(25℃)であり、かつ、カチオンコロイド当量値が6.5meq/g(pH6)であるジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物(以下、COD低減剤C2と称する。)に変更したこと以外は、実施例2-1と同様の処理を行い、処理水のろ過液のCODMnを測定した。COD低減剤C2は、上記式(1)および上記式(3)に示す構造を含むポリマーであり、重量平均分子量は約250,000である。
<実施例2-3>
 COD低減剤C1を、50重量%水溶液の粘度が510mPa・s(25℃)であり、かつ、カチオンコロイド当量値が6.5meq/g(pH6)であるジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物(以下、COD低減剤C3と称する。)に変更したこと以外は、実施例2-1と同様の処理を行い、処理水のろ過液のCODMnを測定した。COD低減剤C3は、上記式(1)および上記式(3)に示す構造を含むポリマーであり、重量平均分子量は約40,000である。
<比較例2>
 上記排水にCOD低減剤を添加せずに、PACを200mg/L添加し、苛性ソーダを加えてpHを7.0に調整して、150rpmの回転速度で5分間撹拌した。その後は、実施例2-1と同様の処理を行い、処理水のろ過液のCODMnを測定した。
 表2に、実施例および比較例のCODMnの測定結果、フロック形成、フロック沈降性、上澄み水外観の評価結果を示す。
Figure JPOXMLDOC01-appb-T000007
 表2に示すように、COD低減剤C1を添加した実施例2-1と、COD低減剤C2を添加した実施例2-2、およびCOD低減剤C3を添加した実施例2-3とを比較すると、実施例2-1の方が、良好にCODが低減された。また、COD低減剤を添加しなかった比較例2と比較すると、実施例2-1、2-2および2-3の方が良好であった。
 このように、COD低減剤C1、COD低減剤C2およびCOD低減剤C3は、COD低減効果を有することが明らかである。また、実施例2-1と実施例2-2および実施例2-3との比較から、薬剤成分がジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物であっても、50重量%水溶液の粘度の違いによってCOD低減効果に差があることが分かる。ジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物の中でもCOD低減効果が高い薬剤は、50重量%水溶液の粘度が800~2,000mPa・sの範囲である性状を有するCOD低減剤C1であると言える。
<実施例3-1>
 化学工場系排水の膜分離活性汚泥処理水(溶解性CODMn 110mg/L、SS 5mg/L未満)250mLをガラスビーカに入れ、COD低減剤A1を固形分として20mg/L添加して、150rpmの回転速度で10分間撹拌した。次に、PACを1000mg/L添加し、苛性ソーダを加えてpHを7.0に調整して、150rpmの回転速度で5分間撹拌した。その後、アクリルアミド・アクリル酸系共重合ポリマーである高分子凝集剤(アニオンコロイド当量値:50meq/g、0.1重量%水溶液の粘度:50mPa・s)を2mg/L添加して、150rpmの回転速度で1分間撹拌した後、40rpmで5分間撹拌して、フロック径を成長させた。撹拌終了後の処理水を定量濾紙No.5Aでろ過し、ろ過液のCODMnを測定した。
<実施例3-2>
 COD低減剤A1を、40重量%水溶液の粘度が11,000mPa・s(25℃)であり、かつ、カチオンコロイド当量値が6.2meq/g(pH6)であるポリジアリルジメチルアンモニウムクロライド(以下、COD低減剤Dと称する。)に変更したこと以外は、実施例3-1と同様の処理を行い、処理水のろ過液のCODMnを測定した。COD低減剤Dは、上記式(5)に示す構造を含むポリマーであり、重量平均分子量は約600,000である。
<比較例3>
 上記排水にCOD低減剤を添加せずに、PACを1000mg/L添加し、苛性ソーダを加えてpHを7.0に調整して、150rpmの回転速度で5分間撹拌した。その後は、実施例3-1と同様の処理を行い、処理水のろ過液のCODMnを測定した。
 表3に、実施例および比較例のCODMnの測定結果、フロック形成、フロック沈降性、上澄み水外観の評価結果を示す。
Figure JPOXMLDOC01-appb-T000008
 表3に示すように、COD低減剤A1を添加した実施例3-1と、COD低減剤Dを添加した実施例3-2とを比較すると、実施例3-1の方が、良好にCODが低減された。また、COD低減剤を添加しなかった比較例3と比較すると、実施例3-1および3-2の方が良好であった。
 本試験に用いた排水は、膜分離活性汚泥の膜透過水であるため、排水はSSをほとんど含有せず、COD成分はほぼ溶解性である。比較例3のCODMnの測定結果から分かる通り、当該排水は無機凝集剤だけではCODをほとんど低減することができない性状である。一方、実施例3-1および3-2においてはCODMnが低減されているため、COD低減剤A1およびCOD低減剤Dは、除去が困難な溶解性COD成分の低減に有効であることが明らかである。また、ポリジアリルジメチルアンモニウムクロライドであるCOD低減剤Dよりも、ジメチルアミン・エピクロロヒドリン・アンモニア縮合物であるCOD低減剤A1の方が効果的であった。
<実施例4-1>
 フミン酸含有排水(溶解性CODMn 100mg/L、SS 5mg/L以下、色度 1,900度)250mLをガラスビーカに入れ、COD低減剤A1を固形分として20mg/L添加して、150rpmの回転速度で10分間撹拌した。次に、35%塩化第二鉄溶液を600mg/L添加し、苛性ソーダを加えてpHを4.0に調整して、150rpmの回転速度で5分間撹拌した。その後、アクリルアミド・アクリル酸系共重合ポリマーである高分子凝集剤(アニオンコロイド当量値:50meq/g、0.1重量%水溶液の粘度:50mPa・s)を3mg/L添加して、150rpmの回転速度で1分間撹拌した後、40rpmで5分間撹拌して、フロック径を成長させた。撹拌終了後の処理水を定量濾紙No.5Aでろ過し、ろ過液のCODMnおよび色度を測定した。色度は、色度計(日本電色株式会社製、Water Analyzer 2000N)を用いて測定した。
<実施例4-2>
 COD低減剤A1を、COD低減剤Dに変更したこと以外は、実施例4-1と同様の処理を行い、処理水のろ過液のCODMnを測定した。
<比較例4>
 上記排水にCOD低減剤を添加せずに、35%塩化第二鉄溶液を600mg/L添加し、苛性ソーダを加えてpHを4.0に調整して、150rpmの回転速度で5分間撹拌した。その後は、実施例4-1と同様の処理を行い、処理水のろ過液のCODMnおよび色度を測定した。
 表4に、実施例および比較例のCODMnおよび色度の測定結果、フロック形成、フロック沈降性、上澄み水外観の評価結果を示す。
Figure JPOXMLDOC01-appb-T000009
 表4に示すように、COD低減剤A1を添加した実施例4-1と、COD低減剤Dを添加した実施例4-2とを比較すると、実施例4-1の方が、良好にCODが低減された。また、COD低減剤A1を添加した実施例4-1と、COD低減剤を添加しなかった比較例4のCODMnおよび色度を比較すると、実施例4-1の方が良好である。
 本試験に用いた排水は色度由来のCOD成分を含有していた。COD低減剤A1はこのような性状の排水処理にも効果的であり、COD成分の低減効果だけでなく、色度低減効果も期待できる。
<実施例5-1>
 布加工排水の活性汚泥処理水(溶解性CODMn 54mg/L、SS 5mg/L以下)250mLをガラスビーカに入れ、COD低減剤A1を固形分として1mg/L添加して、150rpmの回転速度で10分間撹拌した。次に、40重量%塩化第二鉄溶液を420mg/L添加し、苛性ソーダを加えてpHを5.0に調整して、150rpmの回転速度で5分間撹拌した。その後、アクリルアミド・アクリル酸系共重合ポリマーである高分子凝集剤(アニオンコロイド当量値:50meq/g、0.1重量%水溶液の粘度:50mPa・s)を1mg/L添加して、150rpmの回転速度で1分間撹拌した後、40rpmで5分間撹拌して、フロック径を成長させた。撹拌終了後の処理水を定量濾紙No.5Aでろ過し、ろ過液のCODMnを測定した。また、発生した汚泥量を測定した。
<実施例5-2>
 上記排水にCOD低減剤A1を固形分として2mg/L添加して、150rpmの回転速度で10分間撹拌した。次に、40重量%塩化第二鉄溶液を390mg/L添加し、苛性ソーダを加えてpHを5.0に調整した。その後は、実施例5-1と同様の処理を行い、処理水のろ過液のCODMn、発生した汚泥量を測定した。
<比較例5>
 上記排水にCOD低減剤を添加せずに、40重量%塩化第二鉄溶液を500mg/L添加し、苛性ソーダを加えてpHを5.0に調整して、150rpmの回転速度で5分間撹拌した。その後は、実施例5-1と同様の処理を行い、処理水のろ過液のCODMn、発生した汚泥量を測定した。
 表5に、実施例および比較例のCODMnの測定結果、汚泥量、フロック形成、フロック沈降性、上澄み水外観の評価結果を示す。
Figure JPOXMLDOC01-appb-T000010
 表5に示すように、COD低減剤A1を添加した実施例5-1および5-2と、COD低減剤を添加しなかった比較例5のCODMnを比較すると、実施例5-1および5-2の方が良好である。また、実施例5-1および5-2の汚泥量は、比較例5と比較して削減されていた。
 このように、実施例5-1および実施例5-2は、比較例5より少ない塩化第二鉄添加量であるのにもかかわらず、比較例5より良好にCODが低減されている。塩化第二鉄添加量の削減に伴い、苛性ソーダの消費量および汚泥発生量も削減されるため、排水処理費用を安く抑えることが可能である。よって、COD低減剤A1を使用する排水処理は、処理水質の向上と、排水処理費用の削減に寄与できると言える。
<実施例6-1>
 乳製品製造工場排水の生物膜処理水(溶解性CODMn 27mg/L、SS 268mg/L)250mLをガラスビーカに入れ、COD低減剤A1を固形分として8mg/L添加して、150rpmの回転速度で10分間撹拌した。次に、35重量%塩化第二鉄溶液を250mg/L添加し、苛性ソーダを加えてpHを4.0に調整して、150rpmの回転速度で5分間撹拌した。その後、アクリルアミド・アクリル酸系共重合ポリマーである高分子凝集剤(アニオンコロイド当量値:50meq/g、0.1重量%水溶液の粘度:50mPa・s)を1mg/L添加して、150rpmの回転速度で1分間撹拌した後、40rpmで5分間撹拌して、フロック径を成長させた。撹拌終了後の処理水を定量濾紙No.5Aでろ過し、ろ過液のCODMnを測定した。
<実施例6-2>
 COD低減剤A1を、COD低減剤Dに変更したこと以外は、実施例6-1と同様の処理を行い、処理水のろ過液のCODMnを測定した。
<比較例6>
 上記排水にCOD低減剤を添加せずに、35重量%塩化第二鉄溶液を250mg/L添加し、苛性ソーダを加えてpHを4.0に調整して、150rpmの回転速度で5分間撹拌した。その後は、実施例6-1と同様の処理を行い、処理水のろ過液のCODMnを測定した。
 表6に、実施例および比較例のCODMnの測定結果、フロック形成、フロック沈降性、上澄み水外観の評価結果を示す。
Figure JPOXMLDOC01-appb-T000011
 表6に示すように、COD低減剤A1を添加した実施例6-1と、COD低減剤Dを添加した実施例6-2とを比較すると、実施例6-1の方が、良好にCODが低減された。また、COD低減剤A1を添加した実施例6-1と、COD低減剤を添加しなかった比較例6のCODMnを比較すると、実施例6-1の方が良好である。
 このように、COD低減剤A1は、溶解性CODMn 27mg/Lのような低濃度排水のCOD成分の低減にも効果的であると言える。
 以上のように、溶解性COD成分を含有するCOD含有水の凝集処理において、汚泥発生量を抑えながら、難生分解性の溶解性COD成分を低減することができた。
 1,3 水処理装置、10 凝集装置、12,58 沈殿槽、14,54 第一反応槽、16,56 第二反応槽、18 凝集槽、20,76 COD低減剤添加ライン、22,74 無機凝集剤添加ライン、24,78 pH調整剤添加ライン、26,80 高分子凝集剤添加ライン、28,30,32,82,84 撹拌機、34,60 被処理水流入ライン、36,38,40,66,68 水排出ライン、42,70 処理水排出ライン、44,72 汚泥排出ライン、50 濃縮装置、52 生物処理装置、62 濃縮水ライン、64 生物処理水ライン。

Claims (12)

  1.  溶解性COD成分を含有するCOD含有水にCOD低減剤を添加して凝集処理を行う凝集処理工程を含み、
     前記COD低減剤は、
     50重量%水溶液の粘度が500mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリアミン系ポリマー、
     40重量%水溶液の粘度が1,500mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリエチレンイミン、および、
     40重量%水溶液の粘度が5,000mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリジアリルジメチルアンモニウムクロライド
     のうち少なくとも1つを含むことを特徴とする水処理方法。
  2.  請求項1に記載の水処理方法であって、
     前記COD含有水の溶解性CODMnは、20mg/L以上であることを特徴とする水処理方法。
  3.  請求項1または2に記載の水処理方法であって、
     前記COD低減剤は、
     50重量%水溶液の粘度が500mPa・s以上であり、かつ、カチオンコロイド当量値が6.5meq/g以上(pH6)であるジメチルアミン・エピクロロヒドリン・アンモニア縮合物、
     50重量%水溶液の粘度が500mPa・s以上であり、かつ、カチオンコロイド当量値が6.5meq/g以上(pH6)であるジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物、および、
     40重量%水溶液の粘度が1,500mPa・s以上であり、かつ、カチオンコロイド当量値が6.5meq/g以上(pH6)であるポリエチレンイミン
     のうち少なくとも1つであることを特徴とする水処理方法。
  4.  請求項1~3のいずれか1項に記載の水処理方法であって、
     前記凝集処理工程の前段に、被処理水を生物処理する生物処理工程を含み、
     前記COD含有水は、前記生物処理工程で得られる生物処理水であることを特徴とする水処理方法。
  5.  請求項1~3のいずれか1項に記載の水処理方法であって、
     前記凝集処理工程の前段に、
     有機物を含有する有機物含有水を濃縮する濃縮工程と、
     前記濃縮工程で得られた濃縮水を生物処理する生物処理工程と、
     を含み、
     前記COD含有水は、前記生物処理工程で得られる生物処理水であることを特徴とする水処理方法。
  6.  請求項4または5に記載の水処理方法であって、
     前記生物処理工程において、膜分離活性汚泥法により生物処理を行うことを特徴とする水処理方法。
  7.  溶解性COD成分を含有するCOD含有水にCOD低減剤を添加して凝集処理を行う凝集処理手段を備え、
     前記COD低減剤は、
     50重量%水溶液の粘度が500mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリアミン系ポリマー、
     40重量%水溶液の粘度が1,500mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリエチレンイミン、および、
     40重量%水溶液の粘度が5,000mPa・s以上であり、かつ、カチオンコロイド当量値が6.0meq/g以上(pH6)であるポリジアリルジメチルアンモニウムクロライド
     のうち少なくとも1つを含むことを特徴とする水処理装置。
  8.  請求項7に記載の水処理装置であって、
     前記COD含有水の溶解性CODMnは、20mg/L以上であることを特徴とする水処理装置。
  9.  請求項7または8に記載の水処理装置であって、
     前記COD低減剤は、
     50重量%水溶液の粘度が500mPa・s以上であり、かつ、カチオンコロイド当量値が6.5meq/g以上(pH6)であるジメチルアミン・エピクロロヒドリン・アンモニア縮合物、
     50重量%水溶液の粘度が500mPa・s以上であり、かつ、カチオンコロイド当量値が6.5meq/g以上(pH6)であるジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物、および、
     40重量%水溶液の粘度が1,500mPa・s以上であり、かつ、カチオンコロイド当量値が6.5meq/g以上(pH6)であるポリエチレンイミン
     のうち少なくとも1つであることを特徴とする水処理装置。
  10.  請求項7~9のいずれか1項に記載の水処理装置であって、
     前記凝集処理手段の前段に、被処理水を生物処理する生物処理手段を備え、
     前記COD含有水は、前記生物処理手段で得られる生物処理水であることを特徴とする水処理装置。
  11.  請求項7~9のいずれか1項に記載の水処理装置であって、
     前記凝集処理手段の前段に、
     有機物を含有する有機物含有水を濃縮する濃縮手段と、
     前記濃縮手段で得られた濃縮水を生物処理する生物処理手段と、
     を備え、
     前記COD含有水は、前記生物処理手段で得られる生物処理水であることを特徴とする水処理装置。
  12.  請求項10または11に記載の水処理装置であって、
     前記生物処理手段は、膜分離活性汚泥法により生物処理を行うものであることを特徴とする水処理装置。
PCT/JP2018/007816 2017-07-04 2018-03-01 水処理方法および水処理装置 WO2019008822A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019528348A JP6738492B2 (ja) 2017-07-04 2018-03-01 水処理方法および水処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017130828 2017-07-04
JP2017-130828 2017-07-04

Publications (1)

Publication Number Publication Date
WO2019008822A1 true WO2019008822A1 (ja) 2019-01-10

Family

ID=64949912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007816 WO2019008822A1 (ja) 2017-07-04 2018-03-01 水処理方法および水処理装置

Country Status (2)

Country Link
JP (1) JP6738492B2 (ja)
WO (1) WO2019008822A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111233259A (zh) * 2020-01-19 2020-06-05 广州中环万代环境工程有限公司 一种高cod酸性废水的处理方法
CN114735789A (zh) * 2022-04-20 2022-07-12 青岛水清木华环境工程有限公司 一种含油乳化液污水处理用破乳剂、制备方法及应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7311951B2 (ja) * 2018-02-22 2023-07-20 オルガノ株式会社 水処理方法および水処理装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551494A (en) * 1978-10-11 1980-04-15 Kurita Water Ind Ltd Sewage treatment
JP2002079263A (ja) * 2000-09-08 2002-03-19 Hakuto Co Ltd 湿式塗装ブース循環水の管理方法
JP2005503922A (ja) * 2001-09-27 2005-02-10 ツェーウー・ヒェミー・ユティコン・アクチェンゲゼルシャフト 物質の組成物と凝集剤およびフロック剤としてのその使用
JP2006007208A (ja) * 2004-05-26 2006-01-12 Sanyo Chem Ind Ltd 樹脂粒子含有廃水の処理方法
JP2007152305A (ja) * 2005-12-08 2007-06-21 Hymo Corp 有機汚泥の処理方法
JP2009195775A (ja) * 2008-02-19 2009-09-03 Kurita Water Ind Ltd 凝集沈殿処理方法
JP2010075802A (ja) * 2008-09-24 2010-04-08 Kurita Water Ind Ltd 有機凝結剤及び排水処理方法並びに汚泥脱水方法
JP2010089073A (ja) * 2008-09-11 2010-04-22 Kurita Water Ind Ltd 有機凝結剤及び排水処理方法並びに汚泥脱水方法
JP2014073473A (ja) * 2012-10-05 2014-04-24 Kurita Water Ind Ltd 脱硫排水の処理方法
JP2014094365A (ja) * 2012-11-12 2014-05-22 Suntory Holdings Ltd 嫌気性生物学的処理を施した廃水の脱色方法
JP2014128790A (ja) * 2012-12-27 2014-07-10 Lotte Engineering And Construction Co Ltd 廃水処理装置
WO2016158632A1 (ja) * 2015-03-31 2016-10-06 栗田工業株式会社 排水処理用凝集剤及び排水の凝集処理方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551494A (en) * 1978-10-11 1980-04-15 Kurita Water Ind Ltd Sewage treatment
JP2002079263A (ja) * 2000-09-08 2002-03-19 Hakuto Co Ltd 湿式塗装ブース循環水の管理方法
JP2005503922A (ja) * 2001-09-27 2005-02-10 ツェーウー・ヒェミー・ユティコン・アクチェンゲゼルシャフト 物質の組成物と凝集剤およびフロック剤としてのその使用
JP2006007208A (ja) * 2004-05-26 2006-01-12 Sanyo Chem Ind Ltd 樹脂粒子含有廃水の処理方法
JP2007152305A (ja) * 2005-12-08 2007-06-21 Hymo Corp 有機汚泥の処理方法
JP2009195775A (ja) * 2008-02-19 2009-09-03 Kurita Water Ind Ltd 凝集沈殿処理方法
JP2010089073A (ja) * 2008-09-11 2010-04-22 Kurita Water Ind Ltd 有機凝結剤及び排水処理方法並びに汚泥脱水方法
JP2010075802A (ja) * 2008-09-24 2010-04-08 Kurita Water Ind Ltd 有機凝結剤及び排水処理方法並びに汚泥脱水方法
JP2014073473A (ja) * 2012-10-05 2014-04-24 Kurita Water Ind Ltd 脱硫排水の処理方法
JP2014094365A (ja) * 2012-11-12 2014-05-22 Suntory Holdings Ltd 嫌気性生物学的処理を施した廃水の脱色方法
JP2014128790A (ja) * 2012-12-27 2014-07-10 Lotte Engineering And Construction Co Ltd 廃水処理装置
WO2016158632A1 (ja) * 2015-03-31 2016-10-06 栗田工業株式会社 排水処理用凝集剤及び排水の凝集処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111233259A (zh) * 2020-01-19 2020-06-05 广州中环万代环境工程有限公司 一种高cod酸性废水的处理方法
CN114735789A (zh) * 2022-04-20 2022-07-12 青岛水清木华环境工程有限公司 一种含油乳化液污水处理用破乳剂、制备方法及应用
CN114735789B (zh) * 2022-04-20 2024-02-27 青岛水清木华环境工程有限公司 一种含油乳化液污水处理用破乳剂、制备方法及应用

Also Published As

Publication number Publication date
JPWO2019008822A1 (ja) 2019-12-12
JP6738492B2 (ja) 2020-08-12

Similar Documents

Publication Publication Date Title
JP7311951B2 (ja) 水処理方法および水処理装置
Sahu et al. Review on chemical treatment of industrial waste water
JP5364298B2 (ja) 分散剤含有水の処理方法
Xu et al. Impacts of organic coagulant aid on purification performance and membrane fouling of coagulation/ultrafiltration hybrid process with different Al-based coagulants
WO2013160429A1 (en) Method for a membrane bioreactor
JP6738492B2 (ja) 水処理方法および水処理装置
CN111268819A (zh) 一种钛白酸性废水中水回用工艺及装置
JP2007007563A (ja) 生物処理水の高度処理方法及び生物処理水用凝集促進剤
US20150307377A1 (en) Process for making water drinkable
Miranda et al. Understanding the efficiency of aluminum coagulants used in dissolved air flotation (DAF)
JP5659487B2 (ja) 廃水の凝集処理方法
JP2009154095A (ja) 水処理方法
WO2010050325A1 (ja) 膜分離処理方法
JP2010247057A (ja) 微粒子化法と膜除去法との組み合せによる水の浄化方法。
JP6565268B2 (ja) 無機炭素含有水の処理方法及び装置
JP6073109B2 (ja) 嫌気性生物学的処理を施した廃水の脱色方法
WO2019208532A1 (ja) 水処理方法及び水処理装置
JP2012187467A (ja) 膜分離方法及び膜分離装置
JP4799888B2 (ja) 醸造廃水の処理方法
JP6186944B2 (ja) 製紙排水の処理方法
JP2019037956A (ja) 油分を含有する有機性排水の水処理方法及び処理装置
JP2017131842A (ja) 有機性排水の処理方法および処理装置
CN103717538A (zh) 可饮用化方法
JP2009142761A (ja) 水処理方法
JP6648579B2 (ja) 高アルカリ度水中のカルシウム除去方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528348

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828822

Country of ref document: EP

Kind code of ref document: A1