WO2019008816A1 - 基板モジュール及び基板モジュールの製造方法 - Google Patents

基板モジュール及び基板モジュールの製造方法 Download PDF

Info

Publication number
WO2019008816A1
WO2019008816A1 PCT/JP2018/006160 JP2018006160W WO2019008816A1 WO 2019008816 A1 WO2019008816 A1 WO 2019008816A1 JP 2018006160 W JP2018006160 W JP 2018006160W WO 2019008816 A1 WO2019008816 A1 WO 2019008816A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
pad
spacer
chip
semiconductor chip
Prior art date
Application number
PCT/JP2018/006160
Other languages
English (en)
French (fr)
Inventor
大輔 淡路
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to EP18828625.6A priority Critical patent/EP3629367A4/en
Priority to US16/626,378 priority patent/US20200120796A1/en
Publication of WO2019008816A1 publication Critical patent/WO2019008816A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/144Stacked arrangements of planar printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13199Material of the matrix
    • H01L2224/1329Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/145Material
    • H01L2224/14505Bump connectors having different materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1705Shape
    • H01L2224/17051Bump connectors having different shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/175Material
    • H01L2224/17505Bump connectors having different materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/81138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • H01L2224/81139Guiding structures on the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/81138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • H01L2224/8114Guiding structures outside the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/81138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • H01L2224/81141Guiding structures both on and outside the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81192Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81194Lateral distribution of the bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81399Material
    • H01L2224/814Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/81438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/81447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/04Assemblies of printed circuits
    • H05K2201/042Stacked spaced PCBs; Planar parts of folded flexible circuits having mounted components in between or spaced from each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10098Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas

Definitions

  • the present invention relates to a substrate module and a method of manufacturing the substrate module.
  • Patent Document 1 describes a wireless communication module including a wiring board and an RFIC chip laminated and bonded to the wiring board.
  • the first substrate and the second substrate are joined using the cored solder ball.
  • the distance between the first substrate and the second substrate is maintained at a predetermined distance, and the height of the first substrate and the second substrate is used as the wire length of the antenna.
  • the wire length of the antenna is formed long.
  • the mounting method using a solder is unsuitable for the board
  • ultrasonic bonding since a high load is applied to the substrate, it is not suitable for a substrate with low durability.
  • a mounting method using a conductive paste is known for a substrate having low heat resistance and low durability. According to the mounting method using the conductive paste, it is possible to electrically connect two substrates at a low temperature and a low load. However, in the case of using a conductive paste, since the two substrates are electrically connected by a soft paste-like material, as in Patent Document 1, the distance between the two substrates is maintained at a predetermined distance. Becomes difficult.
  • An object of the present invention is to electrically connect two substrates using a conductive paste while maintaining a predetermined distance between the two substrates.
  • the main invention for achieving the above object comprises a first substrate having a plurality of first pads, and a second substrate having a plurality of second pads, wherein the first substrate and the second substrate are electrically connected. And a spacer is attached to at least one of the first pad and the second pad, and the spacer is between the first pad and the second pad.
  • the substrate module is characterized in that, in a sandwiched state, the first pad and the second pad which are not sandwiched by the spacer are joined by a conductive paste.
  • the conductive paste can be used to electrically connect the two substrates while maintaining the distance between the two substrates at a predetermined distance.
  • 1A to 1C are explanatory diagrams of the wireless communication module 1 according to the first embodiment.
  • 2A and 2B show X-ray examination images of the wireless communication module 1 according to the first embodiment.
  • FIG. 2C shows an X-ray examination image in the case of the comparative example without the spacer 41.
  • 3A to 3C are explanatory diagrams of the wireless communication module 1 according to the second embodiment.
  • 4A to 4C are explanatory diagrams of the wireless communication module 1 according to the third embodiment.
  • 5A and 5B are explanatory diagrams of a comparative example.
  • a substrate module comprising: a first substrate having a plurality of first pads; and a second substrate having a plurality of second pads, wherein the first substrate and the second substrate are electrically connected.
  • a spacer is attached to at least one of the first pad and the second pad, and the spacer is sandwiched between the first pad and the second pad,
  • a substrate module characterized in that the first pad and the second pad which are not formed are joined by the conductive paste.
  • the conductive paste can be used to electrically connect the two substrates while maintaining the distance between the two substrates at a predetermined distance.
  • the spacer be attached to two pads of at least one of the first pad and the second pad. Thereby, the positional relationship between the two substrates can be inspected.
  • the attached pad of the spacer is preferably a pad for grounding. This avoids affecting the operation.
  • the spacer is preferably configured to be detectable at the time of X-ray examination. Thereby, the spacer can be used at the time of X-ray inspection.
  • the first pad is configured to be detectable at the time of X-ray examination, and the spacer is attached to the second pad.
  • the spacer is attached to the second pad.
  • the first pad sandwiching the spacer is larger than the spacer when viewed from the inspection direction at the time of the X-ray inspection. This facilitates X-ray inspection.
  • the spacer is attached to each of the first pad and the second pad, and is attached to an end of the spacer attached to the first pad on the side opposite to the first pad, and the second pad It is desirable that an end of the spacer opposite to the second pad is in contact with the spacer. This makes it possible to keep the two substrates wide apart.
  • the spacer is preferably formed by laminating metal layers. In such a case, a configuration in which the spacer is attached to each of the first pad and the second pad is particularly advantageous.
  • the first substrate is a wiring substrate having an antenna
  • the second substrate is a semiconductor chip for controlling the antenna.
  • the semiconductor chip operates at high frequency, it is possible to suppress the deterioration of the characteristics due to the influence of the wiring board.
  • a substrate module for preparing a first substrate having a plurality of first pads and a second substrate having a plurality of second pads and electrically connecting the first substrate and the second substrate
  • a spacer is attached to at least one pad of the first pad and the second pad, and sandwiching the spacer while sandwiching the spacer between the first pad and the second pad.
  • the first pad and the second pad which are not connected are joined by a conductive paste. According to such a method for manufacturing a substrate module, it is possible to electrically connect two substrates using a conductive paste while maintaining a predetermined distance between the two substrates.
  • FIG. 1A is a top view of the wireless communication module 1 according to the first embodiment, in which a semiconductor chip 20 mounted on an antenna substrate 10 is shown through.
  • FIG. 1B is an explanatory view of the appearance of the wireless communication module 1 of the first embodiment at the time of manufacture.
  • FIG. 1C is a view showing a cross section AA of FIG. 1A.
  • the direction perpendicular to the substrate surface of the antenna substrate 10 is referred to as “vertical direction”, the side of the semiconductor chip 20 viewed from the antenna substrate 10 as “upper”, and the opposite side as “lower”. There is.
  • the wireless communication module 1 of the first embodiment is a module that performs wireless communication in the millimeter wave band (30 to 300 GHz).
  • the wireless communication module 1 includes an antenna substrate 10 and a semiconductor chip 20.
  • the semiconductor chip 20 is flip chip mounted on the antenna substrate 10.
  • the conductive paste 31 is used for the electrical connection between the antenna substrate 10 and the semiconductor chip 20.
  • the antenna substrate 10 is a substrate (first substrate) on which the semiconductor chip 20 is mounted.
  • the antenna substrate 10 has a substrate body 11, a wiring pattern 12, and a substrate-side pad 13.
  • the wiring pattern 12 and the substrate-side pad 13 are formed on the top surface of the substrate body 11. Further, on the upper surface of the substrate body 11, a region on which the semiconductor chip 20 is mounted (chip mounting region: a region indicated by a dotted line in FIG. 1A) is provided. Preferably, a material having a small dielectric loss tangent is used for the substrate body 11. In the case of the wireless communication module 1 operating at a high frequency in the millimeter wave band (30 to 300 GHz), this is designed to suppress the conductor loss and the dielectric loss because the conductor loss and the dielectric loss increase as the frequency increases. It is necessary.
  • the wiring pattern 12 is a pattern that constitutes a wiring, and is formed on the substrate body 11.
  • the wiring pattern 12 is formed on the upper surface of the substrate body 11, but the wiring pattern 12 may be formed inside the substrate body 11 or on the lower surface of the substrate body 11.
  • the wiring pattern 12 includes a signal line for transmitting a signal, a ground line to be a ground potential, and the like. Further, the wiring pattern 12 of the present embodiment also includes an antenna pattern 12A.
  • the substrate-side pad 13 is a pad electrically connected to the semiconductor chip 20.
  • the substrate-side pad 13 is mainly provided on the wiring pattern 12, and is disposed inside the chip mounting area on the top surface of the substrate body 11.
  • the wiring pattern 12 and the substrate-side pad 13 of the present embodiment are made of a material that absorbs a large amount of X-rays.
  • the wiring pattern 12 and the substrate-side pad 13 are made of, for example, copper or a copper alloy.
  • the wiring pattern 12 may be configured by performing gold plating on a copper wiring.
  • the wiring pattern 12 and the substrate side pad 13 of the present embodiment can be detected by X-ray inspection.
  • the semiconductor chip 20 is a substrate (second substrate) mounted on the antenna substrate 10 (first substrate).
  • the semiconductor chip 20 is a so-called RFIC chip.
  • the characteristic of the semiconductor chip 20 operating at high frequency like the RFIC chip may be deteriorated due to the influence of the wiring on the antenna substrate 10, so in this embodiment, between the antenna substrate 10 and the semiconductor chip 20. Are spaced apart. As described above, by keeping the distance between the antenna substrate 10 and the semiconductor chip 20 at a predetermined distance, the transmission loss due to the dielectric characteristic is suppressed.
  • a plurality of chip side pads 21 are provided on the lower surface of the semiconductor chip 20.
  • the chip side pad 21 is a pad (connection terminal) provided on the semiconductor chip 20 and is electrically connected to the substrate side pad 13.
  • the chip side pads 21 and the substrate side pads 13 in which the spacers 41 are not provided are bonded by the conductive paste 31.
  • the chip-side pad 21 of the present embodiment is configured to absorb less X-rays compared to the substrate-side pad 13 and is more difficult to detect in the X-ray inspection than the substrate-side pad 13.
  • the chip side pads 21 are made of, for example, aluminum or the like.
  • the conductive paste 31 is a paste-like conductive member that electrically connects the antenna substrate 10 and the semiconductor chip 20.
  • the conductive paste 31 is a relatively soft member because it is a paste-like member before curing.
  • the conductive paste 31 also has a function as a bonding member for mechanically bonding the antenna substrate 10 and the semiconductor chip 20 by curing.
  • the conductive paste 31 is made of, for example, a curable resin (conductive adhesive) in which conductive particles are dispersed.
  • the conductive paste 31 is a member in which conductive metal particles are dispersed, and therefore, the conductive paste 31 is a member that is difficult to detect by X-ray inspection as compared to the substrate-side pad 13.
  • FIG. 5A and 5B are explanatory diagrams of a comparative example.
  • FIG. 5A is an explanatory view of the antenna substrate 10 and the semiconductor chip 20 before bonding.
  • FIG. 5B is an explanatory diagram of the antenna substrate 10 and the semiconductor chip 20 after bonding, and is an explanatory diagram of a configuration of the wireless communication module 1 of the comparative example.
  • the substrate-side pad 13 and the chip-side pad 21 are joined by the conductive paste 31 without the spacer 41 being interposed between the substrate-side pad 13 of the antenna substrate 10 and the chip-side pad 21 of the semiconductor chip 20.
  • two substrates (the antenna substrate 10 and the semiconductor chip 20) are electrically connected at a low temperature and a low load as compared to solder bonding or ultrasonic bonding. It is possible to However, in the case where the conductive paste 31 is used, since the two substrates (the antenna substrate 10 and the semiconductor chip 20) are electrically connected by a soft paste-like material, the distance between the two substrates (shown in FIG.
  • the antenna substrate 10 is made of a material having a small dielectric loss tangent in order to suppress loss during high frequency operation
  • the semiconductor chip 20 (RFIC) is still an antenna substrate when operating at high frequencies. Under the influence of the wiring on 10, the characteristics may be deteriorated. Therefore, it is desirable that the distance between the antenna substrate 10 and the semiconductor chip 20 be maintained at a predetermined distance so as not to be too close. In the present embodiment, the distance between the antenna substrate 10 and the semiconductor chip 20 is 50 ⁇ m or more It is assumed to be.
  • the conductive paste 31 is soft, it is possible to set a load (load applied between two substrates) such that the distance between the antenna substrate 10 and the semiconductor chip 20 is 50 ⁇ m. Extremely difficult.
  • the spacer 41 (FIG. 1B and FIG. 1C) is provided.
  • the spacer 41 is a member that defines the distance between the two substrates at a predetermined distance.
  • the spacer 41 is interposed between the substrate-side pad 13A of the antenna substrate 10 and the chip-side pad 21 of the semiconductor chip 20 so that the distance between the antenna substrate 10 and the semiconductor chip 20 can be increased. It is defined as a predetermined distance.
  • the spacer 41 is formed on the chip side pad 21.
  • the spacer 41 can be formed as a bump (bump for spacer) (the spacer 41 can be formed in the same manner as the bump).
  • the spacer 41 is formed as a copper pillar or a gold stud bump.
  • a manufacturer of the semiconductor chip 20 manufactures the semiconductor chip 20 in which the copper pillar is formed in advance on the chip side pad 21 and manufactures the module in which the semiconductor chip 20 on which the spacer 41 is formed is purchased.
  • a vendor will manufacture the wireless communication module 1 as shown in FIG. 1B.
  • the spacer 41 is a gold stud bump
  • a module manufacturer can attach the spacer 41 to the chip-side pad 21 of the semiconductor chip 20 later.
  • the lower end of the spacer 41 (the end of the spacer 41 opposite to the chip side pad 21) It projects below the side pad 21. Then, when the antenna substrate 10 and the semiconductor chip 20 are joined, as shown in FIG. 1B, the lower end of the spacer 41 is directed to the antenna substrate 10 side, and the semiconductor chip 20 is brought close to the antenna substrate 10. The lower end is brought into contact with the substrate-side pad 13A of the antenna substrate 10.
  • the electrically conductive paste 31 is apply
  • a conductive paste 31 is formed between the substrate-side pad 13 of the antenna substrate 10 and the chip-side pad 21 of the semiconductor chip 20. And the spacer 41 is sandwiched between the two substrates.
  • the load applied between the antenna substrate 10 and the semiconductor chip 20 changes. If the approach of the antenna substrate 10 and the semiconductor chip 20 is stopped at the stage of detecting the change, the distance between the two substrates becomes a distance (predetermined distance) according to the height (thickness) of the spacer 41.
  • the substrate-side pad 13 and the chip-side pad 21 are joined by the conductive paste 31 by curing the conductive paste 31. It will be.
  • the conductive paste 31 is bonded by the conductive paste 31, the soft paste-like conductive paste 31 does not collapse and the distance between the two substrates can be maintained at a predetermined distance.
  • the spacers 41 are provided on the three chip side pads 21 of the semiconductor chip 20. As described above, it is preferable that three spacers 41 be provided, and another spacer 41 not be disposed on a straight line connecting the two spacers 41. Thus, the attitude of the semiconductor chip 20 with respect to the antenna substrate 10 at the time of bonding can be stabilized, and the distance between the two substrates (the antenna substrate 10 and the semiconductor chip 20) can be easily maintained at a predetermined distance.
  • the number of the spacers 41 is not limited to three, and may be four or more. Even when four or more spacers 41 are provided, it is desirable that no other spacer 41 be disposed on a straight line connecting the two spacers 41.
  • the number of spacers 41 may be less than three (one or two). Even if there is only one spacer 41, when the lower end of the spacer 41 contacts the substrate-side pad 13A of the antenna substrate 10, the load applied between the antenna substrate 10 and the semiconductor chip 20 changes, so contact detection Is possible. When the number of the spacers 41 is less than 3, if the spacers 41 are brought into contact with the antenna substrate 10 while keeping the semiconductor chip 20 parallel to the antenna substrate 10, the two substrates (the antenna substrate 10 and the semiconductor chip 20) It is possible to maintain the spacing at a predetermined distance. In addition, if there are at least two spacers 41, it can be determined whether the positional relationship between the antenna substrate 10 and the semiconductor chip 20 is normal or abnormal at the time of X-ray inspection.
  • pads (substrate-side pads 13 and chip-side pads 21) electrically connected by conductive paste 31 are disposed in the area surrounded by three or more spacers 41. It is desirable to be done. In other words, it is desirable that the three or more spacers 41 be disposed outside the lower surface of the semiconductor chip 20 as much as possible. This makes it easy to stabilize the attitude of the semiconductor chip 20 with respect to the antenna substrate 10 at the time of bonding.
  • a large number of chip side pads 21 are provided on the lower surface of the semiconductor chip 20, and the plurality of chip side pads 21 among them are configured as pads for grounding. And in this embodiment, the spacer 41 is provided in the chip side pad 21 for such grounding. For this reason, even if the spacer 41 is provided on the chip side pad 21, it is not necessary to affect the operation of the semiconductor chip 20.
  • the spacer 41 contacts the substrate-side pad 13 A provided on the upper surface of the substrate body 11.
  • the distance between the substrate-side pad 13 and the chip-side pad 21 can be increased by the height (thickness) of the spacer 41, whereby the distance between the antenna substrate 10 and the semiconductor chip 20 can be predetermined. It can be kept at a distance.
  • the substrate-side pad 13A in contact with the spacer 41 may be connected to the ground wiring or may be independent of the wiring pattern 12.
  • the substrate-side pad 13A (inspection pad 13A) in contact with the spacer 41 is also used at the time of X-ray inspection.
  • the substrate-side pad 13A (inspection pad 13A) in contact with the spacer 41 is made of a material that absorbs a large amount of X-rays like the other substrate-side pads 13 and can be detected by X-ray inspection is there. Thereby, the substrate-side pad 13A in contact with the spacer 41 can be functioned as an alignment mark.
  • the substrate-side pad 13A (inspection pad 13A) in contact with the spacer 41 is from the inspection direction (vertical direction with respect to the antenna substrate 10) at the time of X-ray inspection in order to facilitate the X-ray inspection. As seen, it is larger than the spacer 41. Specifically, in the present embodiment, the diameter of the inspection pad 13A is larger than the diameter of the spacer 41.
  • FIG. 2A and FIG. 2B show an image (X-ray examination image) when the radio communication module 1 of the first embodiment is X-ray examined.
  • FIG. 2A is an X-ray inspection image when the positional relationship between the antenna substrate 10 and the semiconductor chip 20 is normal.
  • FIG. 2B is an X-ray inspection image in the case where there is an abnormality in the positional relationship between the antenna substrate 10 and the semiconductor chip 20.
  • hatching hatching is given to the member detected at the time of X-ray examination.
  • the members detected at the time of the X-ray inspection include the wiring pattern 12 (including the antenna pattern 12A), the substrate-side pad 13 (including the inspection pad 13A), and the spacer 41.
  • the chip side pads 21 and the conductive paste 31 do not appear in the X-ray detection image because the amount of absorption of the X-rays is small.
  • the lower end of the spacer 41 is the center position of the inspection pad 13A. (See FIG. 1C). Therefore, if the positional relationship between the circular image indicating the spacer 41 and the circular image indicating the inspection pad 13A in the X-ray inspection image is inspected, it is determined whether the positional relationship between the antenna substrate 10 and the semiconductor chip 20 is normal or abnormal. can do. In the present embodiment, since the diameter of the inspection pad 13A is larger than the diameter of the spacer 41, the small circular image showing the spacer 41 and the large circular image showing the inspection pad 13A are arranged concentrically.
  • the antenna substrate 10 and the semiconductor chip 20 are inspected by inspecting the positional relationship between the image showing the spacer 41 and the image showing the inspection pad 13A. It is possible to determine whether the positional relationship with is normal or abnormal.
  • FIG. 2C shows an X-ray examination image in the case of the comparative example without the spacer 41.
  • the spacer 41 is not attached to the semiconductor chip 20 (see FIG. 5B), as shown in FIG. 2C, the position of the semiconductor chip 20 can not be detected based on the X-ray inspection image.
  • the antenna substrate 10 and the semiconductor chip 20 are obtained based on the X-ray inspection image.
  • the effect of being able to detect the positional relationship with is obtained. Note that this effect can be said to be a different effect (significant effect) as compared to the effect of the spacer 41 in which the distance between the two substrates is defined as a predetermined distance.
  • the spacer 41 is configured to be detectable at the time of X-ray inspection. For this reason, the spacer 41 is configured to be easily detected by the X-ray inspection as compared with the chip-side pad 21. Specifically, the spacer 41 is configured such that the intensity I of the following equation is larger than that of the chip-side pad 21.
  • I 0 is the intensity of the incident ray (gamma ray). I is the intensity after passing through the absorbing layer.
  • d is the thickness of the absorbing layer.
  • is the absorption coefficient.
  • is the density.
  • is an absorption coefficient when the thickness d of the absorption layer is represented by an area mass.
  • the spacer 41 is desirably a material having a high mass absorption coefficient ( ⁇ / ⁇ ) as compared to the chip side pad 21.
  • the spacer 41 is configured using, for example, copper or gold as described above.
  • the spacer 41 may be formed thicker than the chip side pad 21.
  • the spacer 41 is attached to the chip side pad 21. However, the spacer 41 may be attached to at least one of the substrate-side pad 13 and the chip-side pad 21. In the second embodiment, the spacer 41 is attached to both the substrate-side pad 13 and the chip-side pad 21.
  • FIG. 3A to 3C are explanatory diagrams of the wireless communication module 1 according to the second embodiment.
  • FIG. 3A is a top view of the wireless communication module 1 according to the second embodiment, in which the semiconductor chip 20 mounted on the antenna substrate 10 is shown through.
  • FIG. 3A shows an image (X-ray examination image) when the radio communication module 1 is X-ray examined.
  • FIG. 3A the members detected at the time of the X-ray inspection are hatched in a shaded manner.
  • FIG. 3B is an explanatory diagram of the appearance of the wireless communication module 1 of the second embodiment during manufacturing.
  • FIG. 3C is a view showing a cross section BB of FIG. 3A.
  • the spacer 41 is attached to both the substrate-side pad 13 and the chip-side pad 21. Therefore, as shown in FIG. 3B, on the upper surface of the antenna substrate 10, the upper end of the spacer 41 attached to the substrate pad 13 (the end of the spacer 41 opposite to the substrate pad 13) is the substrate pad. The lower end (the end of the spacer 41 opposite to the chip-side pad 21) of the spacer 41 attached to the chip-side pad 21 protrudes on the lower side of the semiconductor chip 20 while projecting above the chip 13. It projects lower than it.
  • the upper end of the spacer 41 attached to the substrate-side pad 13 and the lower end of the spacer 41 attached to the chip-side pad 21 It will hit (contact).
  • the electrically conductive paste 31 is apply
  • the conductive paste 31 is disposed between the substrate pad 13 of the antenna substrate 10 and the chip pad 21 of the semiconductor chip 20, and the spacer 41 It will be sandwiched between the pads of the two substrates. Also in the second embodiment, the distance between the two substrates is defined to a predetermined distance by the spacer 41, and the soft paste-like conductive paste 31 does not collapse.
  • the lower end of the spacer 41 attached to the chip-side pad 21 of the semiconductor chip 20 is abutted against the upper end of the spacer 41 attached to the substrate-side pad 13 of the antenna substrate 10, and then the conductive paste 31 is cured.
  • the substrate-side pad 13 and the chip-side pad 21 in which the spacer 41 is not sandwiched are bonded by the conductive paste 31.
  • the spacer 41 is sandwiched between the substrate-side pad 13A of the antenna substrate 10 and the chip-side pad 21 of the semiconductor chip 20.
  • the substrate-side pad 13 and the chip-side pad 21 are joined together by the conductive paste 31.
  • the soft paste-like conductive paste 31 does not collapse, and the distance between the two substrates (the antenna substrate 10 and the semiconductor chip 20) can be maintained at a predetermined distance.
  • the spacer 41 is attached to both the substrate-side pad 13 and the chip-side pad 21 so that the two substrates (the antenna substrate 10 and the semiconductor chip 20) can be maintained at a wide distance.
  • the two substrates the antenna substrate 10 and the semiconductor chip 20
  • the spacer 41 may be used as both the substrate-side pad 13 and the chip-side pad 21. It is desirable to be attached.
  • the spacer 41 when forming a spacer 41 by laminating a metal layer on a pad like a copper pillar, since the height of the spacer 41 depends on the area of the pad, the substrate-side pad 13 and the chip-side pad 21 Since the spacer 41 which can be stacked on the pad becomes lower if the area of the above becomes smaller, it is preferable that the spacer 41 be attached to both the substrate-side pad 13 and the chip-side pad 21 under such circumstances.
  • the spacer 41 is configured to be detectable at the time of X-ray inspection. Therefore, if the positional relationship between the circular image showing the spacer 41 of the substrate side pad 13 and the circular image showing the spacer 41 of the chip side pad 21 in the X-ray inspection image is inspected, the antenna substrate 10 and the semiconductor chip 20 It can be determined whether the positional relationship of is normal or abnormal. For example, in the X-ray inspection image shown in FIG. 3A, based on the fact that the circular image showing the spacer 41 of the substrate side pad 13 and the circular image showing the spacer 41 of the chip side pad 21 overlap, It can be determined that the positional relationship with the semiconductor chip 20 is normal.
  • the spacer 41 may be attached to at least one of the substrate pad 13 and the chip pad 21. In the third embodiment, the spacer 41 is not attached to the chip-side pad 21 but attached to the substrate-side pad 13.
  • FIG. 4A to 4C are explanatory diagrams of the wireless communication module 1 according to the third embodiment.
  • FIG. 4A is a top view of the wireless communication module 1 according to the third embodiment, in which the semiconductor chip 20 mounted on the antenna substrate 10 is shown through.
  • FIG. 4B is an explanatory diagram of the appearance of the wireless communication module 1 of the third embodiment during manufacturing.
  • FIG. 4C is a view showing a cross section taken along a line CC in FIG. 4A.
  • the spacer 41 is attached to the substrate-side pad 13. Therefore, as shown in FIG. 4B, the upper end of the spacer 41 protrudes above the substrate-side pad 13 on the upper surface of the antenna substrate 10. Then, when the antenna substrate 10 and the semiconductor chip 20 are bonded, as shown in FIG. 4B, the upper end of the spacer 41 and the chip-side pad 21 abut on each other.
  • the electrically conductive paste 31 is apply
  • the conductive paste 31 is disposed between the substrate-side pad 13 of the antenna substrate 10 and the chip-side pad 21 of the semiconductor chip 20.
  • the spacer 41 is sandwiched between the pads of the two substrates.
  • the distance between the two substrates is defined by the spacer 41 to a predetermined distance, and the soft paste-like conductive paste 31 does not collapse.
  • the semiconductor chip 20 is not provided with a member (for example, the spacer 41) that can be detected at the time of X-ray inspection. Therefore, in the configuration of the third embodiment, it is difficult to determine the positional relationship between the antenna substrate 10 and the semiconductor chip 20 based on the X-ray inspection image (see FIG. 4A).
  • the spacer 41 is sandwiched between the substrate-side pad 13A of the antenna substrate 10 and the chip-side pad 21 of the semiconductor chip 20.
  • the substrate-side pad 13 and the chip-side pad 21 which are not connected are joined by the conductive paste 31. Therefore, also in the third embodiment, since the soft paste-like conductive paste 31 does not collapse, the distance between the two substrates (the antenna substrate 10 and the semiconductor chip 20) can be maintained at a predetermined distance. .
  • the wireless communication module including the antenna substrate 10 (first substrate) having an antenna and the semiconductor chip 20 (second substrate) for controlling the antenna has been described.
  • a substrate including two substrates The module is not limited to a wireless communication module equipped with an antenna.
  • the spacer 41 is attached to at least one of the first pad and the second pad, and the spacer 41 is sandwiched in a state in which the spacer 41 is sandwiched between the first pad and the second pad. If the first and second pads are not joined by the conductive paste 31, the soft paste-like conductive paste 31 does not collapse, so the distance between the two substrates is maintained at a predetermined distance. Can.
  • the wireless communication module 1 operating at high frequency in the millimeter wave band (30 to 300 GHz) as in the above embodiment, the semiconductor chip 20 (RFIC) operating at high frequency It is desirable that the antenna substrate 10 be maintained at a predetermined distance since there is a possibility that the characteristics may deteriorate. Therefore, the configuration in which the first pad and the second pad are joined by the conductive paste 31 in a state in which the spacer 41 is sandwiched between the first substrate and the second substrate is used particularly for the wireless communication module 1 It is desirable that
  • 1 wireless communication module 10 antenna substrate (first substrate), 11 substrate body, 12 wiring patterns, 12A antenna patterns, 13 board side pad (first pad), 13A inspection pad, 20 semiconductor chips (second substrate), 21 chip side pads (second pads), 31 Conductive paste, 41 Spacer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

【課題】2つの基板の間隔を所定の距離に維持しつつ、導電性ペーストを用いて2つの基板を電気的に接続すること。 【解決手段】本開示の基板モジュールは、複数の第1パッドを有する第1基板と、複数の第2パッドを有する第2基板と、を備え、前記第1基板と前記第2基板とが電気的に接続されている基板モジュールである。前記第1パッド及び前記第2パッドの少なくとも一方のパッドにスペーサが取り付けられており、前記スペーサが前記第1パッドと前記第2パッドとの間に挟まれた状態で、前記スペーサの挟まれていない前記第1パッドと前記第2パッドとが導電性ペーストによって接合されている。

Description

基板モジュール及び基板モジュールの製造方法
 本発明は、基板モジュール及び基板モジュールの製造方法に関する。
 アンテナを用いて無線通信を行う無線通信モジュールが知られている。例えば、特許文献1には、配線基板と、配線基板に積層接合されたRFICチップとを備えた無線通信モジュールが記載されている。
特開2014-150102号公報
 特許文献1記載の無線通信モジュールでは、コア付きはんだボールを用いて第1基板と第2基板とを接合させている。これにより、特許文献1では、第1基板と第2基板との間の間隔を所定の距離に維持させるとともに、第1基板と第2基板との高さをアンテナの配線長として利用することによって、アンテナの配線長を長く形成させている。
 しかし、特許文献1記載のように、はんだを用いて2つの基板を電気的に接続させる場合には、はんだを溶融させる必要があるため、基板を加熱する必要が生じる。このため、耐熱性の低い基板に対しては、はんだを用いた実装方法は不向きである。
 また、超音波を用いて2つの基板を電気的に接続させることも知られている。但し、超音波接合では、基板に高い荷重がかかるため、耐久性の低い基板に対しては不向きである。
 耐熱性・耐久性の低い基板に対して、導電性ペーストを用いた実装方法が知られている。導電性ペーストを用いた実装方法によれば、低温度・低荷重にて2つの基板を電気的に接続させることが可能である。
 しかし、導電性ペーストを用いた場合、柔らかなペースト状の材料で2つの基板を電気的に接続させることになるため、特許文献1のように2つの基板の間隔を所定の距離に維持することが難しくなる。
 本発明は、2つの基板の間隔を所定の距離に維持しつつ、導電性ペーストを用いて2つの基板を電気的に接続することを目的とする。
 上記目的を達成するための主たる発明は、複数の第1パッドを有する第1基板と、複数の第2パッドを有する第2基板と、を備え、前記第1基板と前記第2基板とが電気的に接続されている基板モジュールであって、前記第1パッド及び前記第2パッドの少なくとも一方のパッドにスペーサが取り付けられており、前記スペーサが前記第1パッドと前記第2パッドとの間に挟まれた状態で、前記スペーサの挟まれていない前記第1パッドと前記第2パッドとが導電性ペーストによって接合されていることを特徴とする基板モジュールである。
 本発明の他の特徴については、後述する明細書及び図面の記載により明らかにする。
 本発明の幾つかの実施形態によれば、2つの基板の間隔を所定の距離に維持しつつ、導電性ペーストを用いて2つの基板を電気的に接続することができる。
図1A~図1Cは、第1実施形態の無線通信モジュール1の説明図である。 図2A及び図2Bは、第1実施形態の無線通信モジュール1のX線検査画像を示している。図2Cは、スペーサ41の無い比較例の場合のX線検査画像を示している。 図3A~図3Cは、第2実施形態の無線通信モジュール1の説明図である。 図4A~図4Cは、第3実施形態の無線通信モジュール1の説明図である。 図5A及び図5Bは、比較例の説明図である。
 後述する明細書及び図面の記載から、少なくとも以下の事項が明らかとなる。
 複数の第1パッドを有する第1基板と、複数の第2パッドを有する第2基板と、を備え、前記第1基板と前記第2基板とが電気的に接続されている基板モジュールであって、前記第1パッド及び前記第2パッドの少なくとも一方のパッドにスペーサが取り付けられており、前記スペーサが前記第1パッドと前記第2パッドとの間に挟まれた状態で、前記スペーサの挟まれていない前記第1パッドと前記第2パッドとが導電性ペーストによって接合されていることを特徴とする基板モジュールが明らかとなる。このような基板モジュールによれば、2つの基板の間隔を所定の距離に維持しつつ、導電性ペーストを用いて2つの基板を電気的に接続することができる。
 前記第1パッド及び前記第2パッドの少なくとも一方の2つのパッドに前記スペーサが取り付けられていることが望ましい。これにより、2つの基板の位置関係を検査可能である。
 前記スペーサの取り付けられた前記パッドは、接地用のパッドであることが望ましい。これにより、動作への影響を与えずに済む。
 前記スペーサは、X線検査時に検出可能に構成されていることが望ましい。これにより、X線検査時にスペーサを利用することができる。
 前記第1パッドは、X線検査時に検出可能に構成されており、前記スペーサは、第2パッドに取り付けられていることが望ましい。これにより、X線検査画像において、第1パッドを示す画像とスペーサを示す画像との位置関係に基づいて、第1基板と第2基板との位置関係を検査可能である。
 前記X線検査時の検査方向から見て、前記スペーサを挟んでいる前記第1パッドは、前記スペーサよりも大きいことが望ましい。これにより、X線検査が容易になる。
 前記スペーサは、前記第1パッドと第2パッドのそれぞれに取り付けられており、前記第1パッドに取り付けられた前記スペーサの前記第1パッドとは反対側の端部と、前記第2パッドに取り付けられた前記スペーサの前記第2パッドとは反対側の端部とが接触していることが望ましい。これにより、2つの基板を広い間隔に保つことが可能になる。
 前記スペーサは、金属層を積層させて構成されていることが望ましい。このような場合に、前記スペーサが前記第1パッドと第2パッドのそれぞれに取り付けられている構成が特に有利になる。
 前記第1基板は、アンテナを有する配線基板であり、前記第2基板は、前記アンテナを制御する半導体チップであることが望ましい。これにより、半導体チップが高周波で動作する際に、配線基板の影響により特性が悪化することを抑制できる。
 複数の第1パッドを有する第1基板と、複数の第2パッドを有する第2基板とを準備し、前記第1基板と前記第2基板とを電気的に接続することを行う基板モジュールの製造方法であって、前記第1パッド及び前記第2パッドの少なくとも一方のパッドにスペーサが取り付けられており、前記スペーサを前記第1パッドと前記第2パッドとの間に挟みつつ、前記スペーサの挟まれていない前記第1パッドと前記第2パッドとを導電性ペーストによって接合することが望ましい。このような基板モジュールの製造方法によれば、2つの基板の間隔を所定の距離に維持しつつ、導電性ペーストを用いて2つの基板を電気的に接続することができる。
 ===第1実施形態===
 図1A~図1Cは、第1実施形態の無線通信モジュール1の説明図である。図1Aは、第1実施形態の無線通信モジュール1の上面図であり、ここではアンテナ基板10上に実装されている半導体チップ20を透過させて図示している。図1Bは、第1実施形態の無線通信モジュール1の製造時の様子の説明図である。図1Cは、図1AのA-A断面を示す図である。なお、以下の説明では、アンテナ基板10の基板面に垂直な方向を「上下方向」とし、アンテナ基板10から見て半導体チップ20の側を「上」とし、逆側を「下」と呼ぶことがある。
 第1実施形態の無線通信モジュール1は、ミリ波帯(30~300GHz)で無線通信を行うモジュールである。無線通信モジュール1は、アンテナ基板10と、半導体チップ20とを備えている。半導体チップ20は、アンテナ基板10上にフリップチップ実装されている。本実施形態では、アンテナ基板10と半導体チップ20との電気的な接続には、導電性ペースト31が用いられている。
 アンテナ基板10は、半導体チップ20を実装させる基板(第1基板)である。アンテナ基板10は、基板本体11と、配線パターン12と、基板側パッド13とを有している。
 基板本体11の上面には、配線パターン12及び基板側パッド13が形成されている。また、基板本体11の上面には、半導体チップ20の実装される領域(チップ実装領域:図1Aの点線で示す領域)が設けられている。なお、基板本体11には、誘電正接の小さい材料が用いられることが望ましい。これは、ミリ波帯(30~300GHz)の高周波で動作する無線通信モジュール1の場合、周波数が高くなるほど導体損失及び誘電体損失が大きくなるため、導体損失及び誘電体損失を抑えるように設計する必要があるためである。
 配線パターン12は、配線を構成するパターンであり、基板本体11に形成されている。ここでは、配線パターン12は基板本体11の上面に形成されているが、配線パターン12は、基板本体11の内部や、基板本体11の下面に形成されても良い。配線パターン12には、信号を伝送するための信号線や、グランド電位となるグランド配線などが含まれている。また、本実施形態の配線パターン12には、アンテナパターン12Aも含まれている。
 基板側パッド13は、半導体チップ20と電気的に接続されるパッドである。基板側パッド13は、主に配線パターン12上に設けられており、基板本体11の上面のチップ実装領域の内部に配置されている。
 本実施形態の配線パターン12や基板側パッド13は、X線の吸収の多い材料で構成されている。具体的には、配線パターン12や基板側パッド13は、例えば銅や銅合金などを用いて構成されている。また、配線パターン12は、銅配線に金メッキを施して構成されても良い。本実施形態の配線パターン12や基板側パッド13は、X線検査で検出可能である。
 半導体チップ20は、アンテナ基板10(第1基板)に実装される基板(第2基板)である。本実施形態では、半導体チップ20は、いわゆるRFICチップである。RFICチップのように高周波で動作する半導体チップ20は、アンテナ基板10上の配線などの影響を受けて特性が悪化するおそれがあるため、本実施形態では、アンテナ基板10と半導体チップ20との間に間隔があけられている。このように、アンテナ基板10と半導体チップ20との間隔を所定の距離に保つことによって、誘電特性による伝送損失を抑えた構造になっている。
 半導体チップ20の下面には、複数のチップ側パッド21が設けられている。チップ側パッド21は、半導体チップ20に設けられたパッド(接続端子)であり、基板側パッド13と電気的に接続される。本実施形態では、スペーサ41の設けられていないチップ側パッド21と基板側パッド13は、導電性ペースト31によって接合される。
 なお、本実施形態のチップ側パッド21は、基板側パッド13と比べてX線の吸収が少なく構成されており、基板側パッド13と比べてX線検査で検出し難い構成である。チップ側パッド21は、例えばアルミニウム等を用いて構成されている。
 導電性ペースト31は、アンテナ基板10と半導体チップ20とを電気的に接続するペースト状の導電性部材である。導電性ペースト31は、硬化前は、ペースト状の部材であるため、比較的柔らかい部材である。但し、導電性ペースト31は、硬化することによって、アンテナ基板10と半導体チップ20とを機械的に接合する接合部材としての機能も有する。導電性ペースト31は、例えば、導電性粒子の分散した硬化性樹脂(導電性接着剤)で構成されている。導電性ペースト31は、導電性金属粒子の分散した構成であるため、基板側パッド13と比べてX線検査で検出し難い部材である。
 図5A及び図5Bは、比較例の説明図である。図5Aは、アンテナ基板10と半導体チップ20との接合前の説明図である。図5Bは、アンテナ基板10と半導体チップ20との接合後の説明図であり、比較例の無線通信モジュール1の構成の説明図である。
 比較例では、アンテナ基板10の基板側パッド13と、半導体チップ20のチップ側パッド21との間にスペーサ41を挟まずに、基板側パッド13とチップ側パッド21とを導電性ペースト31によって接合している。このような導電性ペースト31を用いた接合方法によれば、はんだ接合や超音波接合と比べて、低温度・低荷重にて2つの基板(アンテナ基板10及び半導体チップ20)を電気的に接続させることが可能である。但し、導電性ペースト31を用いた場合、柔らかなペースト状の材料で2つの基板(アンテナ基板10及び半導体チップ20)を電気的に接続させることになるため、2つの基板の間隔(図中の矢印に示す間隔)を所定の距離に維持することが難しくなる。また、2つの基板の間隔(図中の矢印に示す間隔)を所定の距離に維持させるには、接合時の2つの基板の間にかける荷重の制御が難しくなる。
 ところで、既に説明したように、高周波動作時の損失抑制のためにアンテナ基板10が誘電正接の小さい材料で構成されているが、それでも、半導体チップ20(RFIC)は、高周波での動作時にアンテナ基板10上の配線の影響を受けて、特性が悪化するおそれがある。このため、アンテナ基板10と半導体チップ20との間隔は、近接させ過ぎないように、所定の距離に維持させることが望ましく、本実施形態では、アンテナ基板10と半導体チップ20との間隔を50μm以上にすることを想定している。但し、比較例に示す接合方法では、導電性ペースト31が柔らかいため、アンテナ基板10と半導体チップ20との間隔が50μmとなるような荷重(2つの基板の間にかかる荷重)を設定することは極めて難しい。
 そこで、本実施形態では、2つの基板(アンテナ基板10及び半導体チップ20)の接合時に、2つの基板の間隔を所定の距離に維持することを容易にするために、スペーサ41(図1B及び図1C参照)が設けられている。
 スペーサ41は、2つの基板の間隔を所定距離に規定する部材である。本実施形態では、スペーサ41は、アンテナ基板10の基板側パッド13Aと半導体チップ20のチップ側パッド21との間に挟まれて配置されることにより、アンテナ基板10と半導体チップ20との間隔を所定距離に規定している。
 スペーサ41は、チップ側パッド21に形成されている。チップ側パッド21にスペーサ41を設けることによって、スペーサ41をバンプ(スペーサ用バンプ)として形成することができる(スペーサ41をバンプと同様に形成することができる)。例えば、スペーサ41は、銅ピラーや金スタッドバンプとして形成される。なお、スペーサ41が銅ピラーの場合、半導体チップ20の製造業者が、チップ側パッド21に銅ピラーを予め形成した半導体チップ20を製造し、スペーサ41の形成済の半導体チップ20を購入したモジュール製造業者が、図1Bに示すように、無線通信モジュール1を製造することになる。一方、スペーサ41が金スタッドバンプの場合には、モジュール製造業者が、半導体チップ20のチップ側パッド21にスペーサ41を後から取り付けることが可能である。
 チップ側パッド21にスペーサ41が設けられることにより、図1Bに示すように、半導体チップ20の下面において、スペーサ41の下端(スペーサ41のチップ側パッド21とは反対側の端部)が、チップ側パッド21よりも下側に突出する。そして、アンテナ基板10と半導体チップ20とを接合させるとき、図1Bに示すように、スペーサ41の下端をアンテナ基板10の側に向けて、アンテナ基板10に半導体チップ20を近づけて、スペーサ41の下端をアンテナ基板10の基板側パッド13Aに突き当てる(接触させる)ことになる。なお、チップ側パッド21と電気的に接続すべき基板側パッド13には、図1Bに示すように、導電性ペースト31が予め塗布されている。
 スペーサ41の下端をアンテナ基板10の基板側パッド13Aに突き当てると、図1Cに示すように、アンテナ基板10の基板側パッド13と半導体チップ20のチップ側パッド21との間に導電性ペースト31が配置されるとともに、スペーサ41が2つの基板の間で挟まれることになる。図1Cに示すように、スペーサ41の下端がアンテナ基板10(アンテナ基板10の基板側パッド13A)に接触したとき、アンテナ基板10と半導体チップ20と間にかかる荷重が変化するため、その荷重の変化を検出した段階でアンテナ基板10と半導体チップ20との接近を停止すれば、2つの基板の間隔は、スペーサ41の高さ(厚さ)に応じた距離(所定の距離)になる。なお、スペーサ41の下端をアンテナ基板10の基板側パッド13Aに突き当てた後、導電性ペースト31を硬化させることによって、基板側パッド13とチップ側パッド21とが導電性ペースト31によって接合されることになる。本実施形態によれば、図1Cに示すように、スペーサ41が2つの基板のパッドの間に挟まれた状態で、スペーサ41の挟まれていない基板側パッド13とチップ側パッド21とが導電性ペースト31によって接合されるため、柔らかなペースト状の導電性ペースト31が潰れずに済み、2つの基板の間隔を所定の距離に維持することができる。
 本実施形態では、半導体チップ20の3つのチップ側パッド21にスペーサ41が設けられている。このように、スペーサ41が3つ設けられるとともに、2つのスペーサ41を結ぶ直線上に、もう1つのスペーサ41が配置されないことが望ましい。これにより、接合時のアンテナ基板10に対する半導体チップ20の姿勢を安定させることができ、2つの基板(アンテナ基板10及び半導体チップ20)の間隔を所定の距離に維持させやすくすることができる。但し、スペーサ41の数は、3つに限られるものではなく、4つ以上でもよい。スペーサ41が4つ以上設けられる場合においても、2つのスペーサ41を結ぶ直線上に、他のスペーサ41が配置されないことが望ましい。
 なお、スペーサ41の数は、3未満(1つ又は2つ)でもよい。スペーサ41が1つであっても、スペーサ41の下端がアンテナ基板10の基板側パッド13Aに接触したときに、アンテナ基板10と半導体チップ20と間にかかる荷重が変化するため、接触検出することは可能である。また、スペーサ41の数が3未満の場合、アンテナ基板10に対する半導体チップ20の平行を保ちつつ、スペーサ41をアンテナ基板10に接触させれば、2つの基板(アンテナ基板10及び半導体チップ20)の間隔を所定の距離に維持させることが可能である。また、スペーサ41が少なくとも2つあれば、X線検査時にアンテナ基板10と半導体チップ20との位置関係が正常か異常かを判別可能になる。
 3つ以上のスペーサ41が設けられる場合、3つ以上のスペーサ41によって囲まれた領域内に、導電性ペースト31で電気的に接続されるパッド(基板側パッド13やチップ側パッド21)が配置されることが望ましい。言い換えると、3つ以上のスペーサ41は、できるだけ半導体チップ20の下面外側に配置されることが望ましい。これにより、接合時のアンテナ基板10に対する半導体チップ20の姿勢を安定させやすくなる。
 半導体チップ20の下面には多数のチップ側パッド21が設けられており、そのうちの複数のチップ側パッド21は、接地用のパッドとして構成されている。そして、本実施形態では、このような接地用のチップ側パッド21に、スペーサ41が設けられている。このため、チップ側パッド21にスペーサ41が設けられていても、半導体チップ20の動作への影響を与えずに済む。
 スペーサ41は、基板本体11の上面に設けられた基板側パッド13Aに接触する。これにより、スペーサ41の高さ(厚さ)の分だけ基板側パッド13とチップ側パッド21との間隔をあけることができるため、これにより、アンテナ基板10と半導体チップ20との間隔を所定の距離に保つことができる。スペーサ41の接触する基板側パッド13Aは、グランド配線に接続されていても良いし、配線パターン12から独立していても良い。
 本実施形態では、スペーサ41の接触する基板側パッド13A(検査用パッド13A)は、X線検査時にも用いられる。このため、スペーサ41の接触する基板側パッド13A(検査用パッド13A)は、他の基板側パッド13と同様に、X線の吸収の多い材料で構成されており、X線検査で検出可能である。これにより、スペーサ41の接触する基板側パッド13Aをアライメントマークとして機能させることができる。
 本実施形態では、スペーサ41の接触する基板側パッド13A(検査用パッド13A)は、X線検査を容易にするために、X線検査時の検査方向(アンテナ基板10に対して垂直方向)から見て、スペーサ41よりも大きく形成されている。具体的には、本実施形態では、検査用パッド13Aの直径は、スペーサ41の直径よりも大きい。
 図2A及び図2Bは、第1実施形態の無線通信モジュール1をX線検査したときの画像(X線検査画像)を示している。図2Aは、アンテナ基板10と半導体チップ20との位置関係が正常な場合のX線検査画像である。図2Bは、アンテナ基板10と半導体チップ20との位置関係に異常がある場合のX線検査画像である。図2A及び図2Bには、X線検査時に検出される部材には、網掛けのハッチングが施されている。X線検査時に検出される部材には、配線パターン12(アンテナパターン12Aも含む)、基板側パッド13(検査用パッド13Aも含む)及びスペーサ41が含まれている。なお、チップ側パッド21や導電性ペースト31は、X線の吸収量が少ないため、X線検出画像には現れない。
 アンテナ基板10と半導体チップ20との位置関係が正常な場合(半導体チップ20がアンテナ基板10のチップ実装領域に正常に実装されている場合)、スペーサ41の下端は、検査用パッド13Aの中央位置に突き当てられた状態になる(図1C参照)。このため、X線検査画像においてスペーサ41を示す円形画像と検査用パッド13Aを示す円形画像との位置関係を検査すれば、アンテナ基板10と半導体チップ20との位置関係が正常か異常かを判別することができる。本実施形態では、スペーサ41の直径よりも検査用パッド13Aの直径が大きいため、スペーサ41を示す小円形画像と、検査用パッド13Aを示す大円形画像とが、同心円状に配置されていれば(図2A参照)、アンテナ基板10と半導体チップ20との位置関係が正常であると判別できる。一方、スペーサ41を示す小円形画像が、検査用パッド13Aを示す大円形画像の中心位置からずれていれば、アンテナ基板10と半導体チップ20との位置関係に異常があると判別できる。このように、スペーサ41の直径よりも検査用パッド13Aの直径を大きくすることによって、X線検査を容易にすることができる。なお、スペーサ41が検査用パッド13Aより大きい場合でも、スペーサ41を示す画像と検査用パッドを示す画像との重複部分が濃くなるため、X線検査は可能である。また、スペーサ41と検査用パッド13Aの大きさが同程度であっても、スペーサ41を示す画像と検査用パッド13Aを示す画像との位置関係を検査することによって、アンテナ基板10と半導体チップ20との位置関係が正常か異常かを判別することは可能である。
 図2Cは、スペーサ41の無い比較例の場合のX線検査画像を示している。半導体チップ20にスペーサ41が取り付けられていない場合(図5B参照)、図2Cに示すように、X線検査画像に基づいて半導体チップ20の位置を検出できなくなる。これに対し、本実施形態では、半導体チップ20のチップ側パッド21にスペーサ41を設けることによって、図2A及び図2Bに示すように、X線検査画像に基づいて、アンテナ基板10と半導体チップ20との位置関係の検出が可能になるという効果が得られる。なお、この効果は、2つの基板の間隔を所定距離に規定するというスペーサ41としての効果と比べると、異質な効果(顕著な効果)ということができる。
 図2A及び図2Bに示すように、本実施形態では、スペーサ41は、X線検査時に検出可能に構成されている。このため、スペーサ41は、チップ側パッド21と比べて、X線検査で検出しやすく構成されている。具体的には、スペーサ41は、チップ側パッド21と比べて、次式の強度Iが大きくなるように構成されている。
Figure JPOXMLDOC01-appb-M000001
 上式において、I0は、入射線(ガンマ線)の強度である。Iは、吸収層を通過した後の強度である。dは、吸収層の厚さである。μは、吸収係数である。ρは、密度である。ωは、吸収層の厚さdを面積質量で表した時の吸収係数である。スペーサ41は、チップ側パッド21と比べて、質量吸収係数(μ/ρ)が高い材料であることが望ましい。ここでは、スペーサ41は、上述の通り、例えば銅や金などを用いて構成されている。また、スペーサ41は、チップ側パッド21と比べて、厚く形成されても良い。
 ===第2実施形態===
 前述の第1実施形態では、スペーサ41は、チップ側パッド21に取り付けられていた。但し、スペーサ41は、基板側パッド13とチップ側パッド21の少なくとも一方のパッドに取り付けられていれば良い。第2実施形態では、スペーサ41は、基板側パッド13とチップ側パッド21の両方のパッドに取り付けられている。
 図3A~図3Cは、第2実施形態の無線通信モジュール1の説明図である。図3Aは、第2実施形態の無線通信モジュール1の上面図であり、ここではアンテナ基板10上に実装されている半導体チップ20を透過させて図示している。言い換えると、図3Aは、無線通信モジュール1をX線検査したときの画像(X線検査画像)を示している。図3Aでは、X線検査時に検出される部材には、網掛けのハッチングが施されている。図3Bは、第2実施形態の無線通信モジュール1の製造時の様子の説明図である。図3Cは、図3AのB-B断面を示す図である。
 図3Bに示すように、第2実施形態では、スペーサ41は、基板側パッド13とチップ側パッド21の両方のパッドに取り付けられている。このため、図3Bに示すように、アンテナ基板10の上面において、基板側パッド13に取り付けられたスペーサ41の上端(スペーサ41の基板側パッド13とは反対側の端部)が、基板側パッド13よりも上側に突出するとともに、半導体チップ20の下面において、チップ側パッド21に取り付けられたスペーサ41の下端(スペーサ41のチップ側パッド21とは反対側の端部)が、チップ側パッド21よりも下側に突出する。そして、アンテナ基板10と半導体チップ20とを接合させるとき、図3Bに示すように、基板側パッド13に取り付けられたスペーサ41の上端と、チップ側パッド21に取り付けられたスペーサ41の下端とを突き当てる(接触させる)ことになる。なお、チップ側パッド21と電気的に接続すべき基板側パッド13には、図3Bに示すように、導電性ペースト31が予め塗布されている。
 スペーサ41同士を互いに突き当てると、図3Cに示すように、アンテナ基板10の基板側パッド13と半導体チップ20のチップ側パッド21との間に導電性ペースト31が配置されるとともに、スペーサ41が2つの基板のパッドの間に挟まれることになる。第2実施形態においても、スペーサ41によって2つの基板の間隔が所定の距離に規定され、柔らかなペースト状の導電性ペースト31が潰れずに済む。なお、半導体チップ20のチップ側パッド21に取り付けられたスペーサ41の下端をアンテナ基板10の基板側パッド13に取り付けたスペーサ41の上端に突き当てた後、導電性ペースト31を硬化させることによって、スペーサ41の挟まれていない基板側パッド13とチップ側パッド21とが導電性ペースト31によって接合されることになる。
 第2実施形態においても、図3Cに示すように、スペーサ41がアンテナ基板10の基板側パッド13Aと半導体チップ20のチップ側パッド21との間に挟まれた状態で、スペーサ41の挟まれていない基板側パッド13とチップ側パッド21とが導電性ペースト31によって接合されている。これにより、柔らかなペースト状の導電性ペースト31が潰れずに済み、2つの基板(アンテナ基板10と半導体チップ20)の間隔を所定の距離に維持することができる。
 第2実施形態のように、スペーサ41が基板側パッド13とチップ側パッド21の両方のパッドに取り付けられることにより、2つの基板(アンテナ基板10と半導体チップ20)を広い間隔に保つことが可能になる。例えば、アンテナ基板10や半導体チップ20の小型化に伴って、基板側パッド13やチップ側パッド21が小型化した場合には、パッドに取り付け可能なスペーサ41の高さ(厚さ)に制約が生じることがあるため、このような状況下で2つの基板(アンテナ基板10と半導体チップ20)を広い間隔に保ちたい場合に、スペーサ41が基板側パッド13とチップ側パッド21の両方のパッドに取り付けられることが望ましい。具体的には、銅ピラーのように金属層をパッドに積層させてスペーサ41を形成させる場合には、スペーサ41の高さがパッドの面積に依存するため、基板側パッド13やチップ側パッド21の面積が小さくなると、パッドに積層可能なスペーサ41が低くなってしまうので、このような状況下でスペーサ41が基板側パッド13とチップ側パッド21の両方のパッドに取り付けられることが好ましい。
 第2実施形態においても、スペーサ41は、X線検査時に検出可能に構成されている。このため、X線検査画像において、基板側パッド13のスペーサ41を示す円形画像と、チップ側パッド21のスペーサ41を示す円形画像との位置関係を検査すれば、アンテナ基板10と半導体チップ20との位置関係が正常か異常かを判別することができる。例えば、図3Aに示すX線検査画像では、基板側パッド13のスペーサ41を示す円形画像と、チップ側パッド21のスペーサ41を示す円形画像とが重なっていることに基づいて、アンテナ基板10と半導体チップ20との位置関係が正常であることを判別できる。
 ===第3実施形態===
 既に説明したように、スペーサ41は、基板側パッド13とチップ側パッド21の少なくとも一方のパッドに取り付けられていれば良い。第3実施形態では、スペーサ41は、チップ側パッド21には取り付けられておらず、基板側パッド13に取り付けられている。
 図4A~図4Cは、第3実施形態の無線通信モジュール1の説明図である。図4Aは、第3実施形態の無線通信モジュール1の上面図であり、ここではアンテナ基板10上に実装されている半導体チップ20を透過させて図示している。図4Bは、第3実施形態の無線通信モジュール1の製造時の様子の説明図である。図4Cは、図4AのC-C断面を示す図である。
 図4Bに示すように、第3実施形態では、スペーサ41は、基板側パッド13に取り付けられている。このため、図4Bに示すように、アンテナ基板10の上面において、スペーサ41の上端が、基板側パッド13よりも上側に突出する。そして、アンテナ基板10と半導体チップ20とを接合させるとき、図4Bに示すように、スペーサ41の上端とチップ側パッド21とを突き当てることになる。なお、チップ側パッド21と電気的に接続すべき基板側パッド13には、図4Bに示すように、導電性ペースト31が予め塗布されている。
 スペーサ41の上端をチップ側パッド21に突き当てると、図4Cに示すように、アンテナ基板10の基板側パッド13と半導体チップ20のチップ側パッド21との間に導電性ペースト31が配置されるとともに、スペーサ41が2つの基板のパッドの間に挟まれることになる。第3実施形態においても、スペーサ41によって2つの基板の間隔が所定の距離に規定され、柔らかなペースト状の導電性ペースト31が潰れずに済む。スペーサ41の上端を半導体チップ20のチップ側パッド21に突き当てた後、導電性ペースト31を硬化させることによって、スペーサの挟まれていない基板側パッド13とチップ側パッド21とが導電性ペースト31によって接合されることになる。
 第3実施形態では、半導体チップ20の側には、X線検査時に検出可能な部材(例えばスペーサ41)が設けられていない。このため、第3実施形態の構成では、X線検査画像(図4A参照)に基づいてアンテナ基板10と半導体チップ20との位置関係を判別することは難しい。但し、第3実施形態においても、図4Cに示すように、スペーサ41がアンテナ基板10の基板側パッド13Aと半導体チップ20のチップ側パッド21との間に挟まれた状態で、スペーサ41の挟まれていない基板側パッド13とチップ側パッド21とが導電性ペースト31によって接合されている。このため、第3実施形態においても、柔らかなペースト状の導電性ペースト31が潰れずに済むため、2つの基板(アンテナ基板10と半導体チップ20)の間隔を所定の距離に維持することができる。
 ===別の実施形態===
 上記の実施形態では、アンテナを有するアンテナ基板10(第1基板)と、アンテナを制御する半導体チップ20(第2基板)とを備えた無線通信モジュールについて説明したが、2つの基板を備えた基板モジュールは、アンテナを備えた無線通信モジュールに限られるものではない。
 すなわち、複数の第1パッドを有する第1基板と、複数の第2パッドを有する第2基板とを備え、第1基板と第2基板とを電気的に接続した基板モジュールにおいても、前述の実施形態の技術を適用可能である。この場合、第1パッド及び第2パッドの少なくとも一方のパッドにスペーサ41が取り付けられており、スペーサ41が第1パッドと第2パッドとの間で挟まれた状態で、スペーサ41の挟まれていない第1パッドと第2パッドとが導電性ペースト31によって接合されていれば、柔らかなペースト状の導電性ペースト31が潰れずに済むため、2つの基板の間隔を所定の距離に維持することができる。
 一方、上記の実施形態のようにミリ波帯(30~300GHz)の高周波で動作する無線通信モジュール1の場合、高周波で動作する半導体チップ20(RFIC)は、アンテナ基板10上の配線の影響を受けて特性が悪化するおそれがあるため、アンテナ基板10に対して所定の距離に維持させることが望ましい。このため、スペーサ41が第1基板と第2基板との間で挟まれた状態で、第1パッドと第2パッドとが導電性ペースト31によって接合される構成は、特に無線通信モジュール1に用いられることが望ましい。
 ===その他===
 上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更・改良され得ると共に、本発明には、その等価物が含まれることは言うまでもない。
1 無線通信モジュール、
10 アンテナ基板(第1基板)、11 基板本体、
12 配線パターン、12A アンテナパターン、
13 基板側パッド(第1パッド)、13A検査用パッド、
20 半導体チップ(第2基板)、21 チップ側パッド(第2パッド)、
31 導電性ペースト、41 スペーサ

Claims (10)

  1.  複数の第1パッドを有する第1基板と、
     複数の第2パッドを有する第2基板と、
    を備え、
     前記第1基板と前記第2基板とが電気的に接続されている基板モジュールであって、
     前記第1パッド及び前記第2パッドの少なくとも一方のパッドにスペーサが取り付けられており、
     前記スペーサが前記第1パッドと前記第2パッドとの間に挟まれた状態で、前記スペーサの挟まれていない前記第1パッドと前記第2パッドとが導電性ペーストによって接合されていることを特徴とする基板モジュール。
  2.  請求項1に記載の基板モジュールであって、
     前記第1パッド及び前記第2パッドの少なくとも一方の2つのパッドに前記スペーサが取り付けられていることを特徴とする基板モジュール。
  3.  請求項1又は2に記載の基板モジュールであって、
     前記スペーサの取り付けられた前記パッドは、接地用のパッドであることを特徴とする基板モジュール。
  4.  請求項1~3のいずれかに記載の基板モジュールであって、
     前記スペーサは、X線検査時に検出可能に構成されていることを特徴とする基板モジュール。
  5.  請求項4に記載の基板モジュールであって、
     前記第1パッドは、X線検査時に検出可能に構成されており、
     前記スペーサは、第2パッドに取り付けられていることを特徴とする基板モジュール。
  6.  請求項5に記載の基板モジュールであって、
     前記X線検査時の検査方向から見て、前記スペーサを挟んでいる前記第1パッドは、前記スペーサよりも大きいことを特徴とする基板モジュール。
  7.  請求項1~6のいずれかに記載の基板モジュールであって、
     前記スペーサは、前記第1パッドと第2パッドのそれぞれに取り付けられており、
     前記第1パッドに取り付けられた前記スペーサの前記第1パッドとは反対側の端部と、前記第2パッドに取り付けられた前記スペーサの前記第2パッドとは反対側の端部とが接触していることを特徴とする基板モジュール。
  8.  請求項7に記載の基板モジュールであって、
     前記スペーサは、金属層を積層させて構成されていることを特徴とする基板モジュール。
  9.  請求項1~8のいずれかに記載の基板モジュールであって、
     前記第1基板は、アンテナを有する配線基板であり、
     前記第2基板は、前記アンテナを制御する半導体チップであることを特徴とする基板モジュール。
  10.  複数の第1パッドを有する第1基板と、複数の第2パッドを有する第2基板とを準備し、
     前記第1基板と前記第2基板とを電気的に接続することを行う基板モジュールの製造方法であって、
     前記第1パッド及び前記第2パッドの少なくとも一方のパッドにスペーサが取り付けられており、
     前記スペーサを前記第1パッドと前記第2パッドとの間に挟みつつ、前記スペーサの挟まれていない前記第1パッドと前記第2パッドとを導電性ペーストによって接合することを特徴とする基板モジュールの製造方法。
PCT/JP2018/006160 2017-07-06 2018-02-21 基板モジュール及び基板モジュールの製造方法 WO2019008816A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18828625.6A EP3629367A4 (en) 2017-07-06 2018-02-21 SUBSTRATE MODULE, AND SUBSTRATE MODULE PRODUCTION PROCESS
US16/626,378 US20200120796A1 (en) 2017-07-06 2018-02-21 Substrate module and method for producing substrate module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-132497 2017-07-06
JP2017132497A JP2019016678A (ja) 2017-07-06 2017-07-06 基板モジュール及び基板モジュールの製造方法

Publications (1)

Publication Number Publication Date
WO2019008816A1 true WO2019008816A1 (ja) 2019-01-10

Family

ID=64950850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006160 WO2019008816A1 (ja) 2017-07-06 2018-02-21 基板モジュール及び基板モジュールの製造方法

Country Status (4)

Country Link
US (1) US20200120796A1 (ja)
EP (1) EP3629367A4 (ja)
JP (1) JP2019016678A (ja)
WO (1) WO2019008816A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102528016B1 (ko) * 2018-10-05 2023-05-02 삼성전자주식회사 솔더 부재 실장 방법 및 시스템
WO2021250727A1 (ja) * 2020-06-08 2021-12-16 オリンパス株式会社 電子モジュール、電子モジュールの製造方法および内視鏡

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015552A (ja) * 1999-07-02 2001-01-19 Shinkawa Ltd フリップチップ実装方法
JP2008112810A (ja) * 2006-10-30 2008-05-15 Kyocera Corp 回路基板、半導体素子収納用パッケージおよび半導体装置
JP2014150102A (ja) 2013-01-31 2014-08-21 Shinko Electric Ind Co Ltd 半導体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100698527B1 (ko) * 2005-08-11 2007-03-22 삼성전자주식회사 금속 범프를 이용한 기둥 범프를 구비하는 칩 적층 패키지및 그의 제조방법
TWI443783B (zh) * 2006-03-21 2014-07-01 Promerus Llc 用於晶片堆疊,晶片及晶圓結合之方法及材料
JP5350604B2 (ja) * 2007-05-16 2013-11-27 スパンション エルエルシー 半導体装置及びその製造方法
JP4833192B2 (ja) * 2007-12-27 2011-12-07 新光電気工業株式会社 電子装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015552A (ja) * 1999-07-02 2001-01-19 Shinkawa Ltd フリップチップ実装方法
JP2008112810A (ja) * 2006-10-30 2008-05-15 Kyocera Corp 回路基板、半導体素子収納用パッケージおよび半導体装置
JP2014150102A (ja) 2013-01-31 2014-08-21 Shinko Electric Ind Co Ltd 半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3629367A4

Also Published As

Publication number Publication date
JP2019016678A (ja) 2019-01-31
EP3629367A4 (en) 2020-10-14
US20200120796A1 (en) 2020-04-16
EP3629367A1 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
US8373997B2 (en) Semiconductor device
US8592959B2 (en) Semiconductor device mounted on a wiring board having a cap
US10068818B2 (en) Semiconductor element package, semiconductor device, and mounting structure
TWI659516B (zh) 半導體裝置封裝及其製造方法
US8120164B2 (en) Semiconductor chip package, printed circuit board assembly including the same and manufacturing methods thereof
US6249046B1 (en) Semiconductor device and method for manufacturing and mounting thereof, and circuit board mounted with the semiconductor device
US9331036B2 (en) Semiconductor device
US20060046533A1 (en) Substrate for connector
US9035442B2 (en) Semiconductor module
US10573591B2 (en) Electronic component mounting board, electronic device, and electronic module
US8436456B2 (en) Wiring board, semiconductor device and method for manufacturing semiconductor device
WO2019008816A1 (ja) 基板モジュール及び基板モジュールの製造方法
TWI566371B (zh) 積體電路裝置及裝配積體電路裝置的方法
JP2006134912A (ja) 半導体モジュールおよびその製造方法、ならびにフィルムインターポーザ
US8716868B2 (en) Semiconductor module for stacking and stacked semiconductor module
WO2019187013A1 (ja) 電子回路
JP4820798B2 (ja) 半導体装置
JP6419022B2 (ja) 高周波回路モジュール
JP2010141366A (ja) 半導体装置
JP4850056B2 (ja) 半導体装置
JP2004153179A (ja) 半導体装置および電子装置
JP6511181B2 (ja) 半導体装置
JP2007235149A (ja) 半導体装置および電子装置
JP2022034604A (ja) 無線通信モジュール
JP6320681B2 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018828625

Country of ref document: EP

Effective date: 20191223