WO2019007225A1 - 锂离子动力电池及其制作方法、其隔膜及隔膜的制作方法,以及用于形成隔膜的浆料 - Google Patents

锂离子动力电池及其制作方法、其隔膜及隔膜的制作方法,以及用于形成隔膜的浆料 Download PDF

Info

Publication number
WO2019007225A1
WO2019007225A1 PCT/CN2018/092748 CN2018092748W WO2019007225A1 WO 2019007225 A1 WO2019007225 A1 WO 2019007225A1 CN 2018092748 W CN2018092748 W CN 2018092748W WO 2019007225 A1 WO2019007225 A1 WO 2019007225A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
power battery
ion power
metal foil
slurry
Prior art date
Application number
PCT/CN2018/092748
Other languages
English (en)
French (fr)
Inventor
钟旭航
Original Assignee
钟旭航
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 钟旭航 filed Critical 钟旭航
Publication of WO2019007225A1 publication Critical patent/WO2019007225A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/327Aluminium phosphate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of lithium ion power battery technology, and in particular, to a lithium ion power battery and a manufacturing method thereof, a method for manufacturing the same, a separator and a separator, and a slurry for forming a separator.
  • Lithium-ion battery has been widely used in mobile phones, portable computers, video cameras, cameras, etc. due to its high voltage, light weight, long life and no pollution. Among them, large-capacity lithium-ion battery has been electric. Used in automobiles, it has become one of the main power sources for electric vehicles. For the use of lithium-ion battery, its safety performance is an important factor to ensure its normal use.
  • a conventional lithium ion power battery is composed of a positive electrode, a negative electrode, a separator, and an electrolyte.
  • the electrolyte is an organic liquid having flammability
  • the separator is a porous organic material such as PE, which can be designed as needed.
  • lithium-ion battery has two appearances: cylindrical and rectangular.
  • the inside of the cylindrical battery is usually a spiral wound structure (winding structure), and a diaphragm is used to form a space between the positive and negative electrodes.
  • the rectangular battery is formed by laminating this form (stacked structure), that is, placing a separator on a positive electrode and then placing a negative electrode, and so on.
  • the diaphragm of the currently used lithium ion power battery is a porous organic material such as PE, the heat resistance is poor, especially when the temperature is greater than 150 ° C, the separator will be melted, thereby causing a large area short circuit of the battery, resulting in lithium ion power.
  • the battery, especially the high-capacity lithium-ion power battery, is on fire or explosion. Therefore, improving the high temperature resistance of the separator of the lithium ion power battery and avoiding short circuit in a large area of the battery are the main means for ensuring the safety performance of the lithium ion battery.
  • the Chinese patent "a ceramic film slurry for a lithium battery and a preparation method of the same is coated with the ceramic film paste pole piece” discloses that the separator of the lithium battery is coated on the positive electrode tab and A ceramic film slurry layer on the surface of the negative electrode tab.
  • it is required to spray the slurry on the surface of the battery graphite negative electrode sheet and the nickel cobalt manganese ternary positive electrode several times, and perform multiple drying and rolling treatments respectively, the process is complicated, and the required processing time is also long. Therefore, the cost is high, which is not conducive to the marketization of products.
  • the method sprays a ceramic slurry on the surface of the carbon negative electrode to form a ceramic film layer, which increases the thickness and weight of the negative electrode tab, and reduces the energy density of the lithium ion battery.
  • the surface of the positive and negative electrodes is coated with a ceramic layer, which increases the thickness of the positive and negative electrodes. After multiple rolling treatments, the bonding strength between the positive and negative electrodes and the current collector is reduced, and the battery's high current charging and discharging capacity is reduced.
  • a lithium ion power battery wherein in one aspect, is provided, wherein the negative electrode tab is a metal foil, and a separator is formed on a surface of the metal foil as a negative current collector; the separator includes at least a metal foil covering A porous structural layer of a surface, the material of which is a nano ceramic particle.
  • the metal foil is, for example, a copper foil, or other metal foil which can be used as a negative current collector in a lithium ion power battery.
  • the separator including the porous structural layer prevents direct contact between the negative electrode tab (metal foil) and the positive electrode tab, and provides a lithium ion channel for adsorbing the electrolyte, and also provides space for deposition of metallic lithium.
  • both surfaces of the metal foil are covered with a porous structural layer which may be identical or different from each other, e.g., having the same or different materials and/or structural parameters.
  • the porous structure layer may be covered on one surface, and the other surface may be covered with an insulating layer of other materials and/or structures, the porous structure layer and the insulating layer together forming a separator to prevent the metal foil Direct contact with the positive pole piece.
  • the nanoceramic particles have a particle size of no greater than 100 nm and the nanoceramic particles are particles of a lithium-containing compound and/or particles of a ceramic material.
  • the lithium-containing compound is LiAlO 2 and/or Li 3 PO 4
  • the ceramic material is Al 2 O 3 , ZrO 2 and/or AlPO 4 .
  • the porous structural layer has a thickness of from 10 ⁇ m to 40 ⁇ m, and the porous structural layer has a porosity of from 50 to 70%.
  • the lithium ion power battery thus provided may be of a cylindrical type or a rectangular shape, and the electrodes may be of a wound structure or a laminated structure.
  • metallic lithium is deposited in the porous structural layer of the separator, the porous structure of the porous structural layer can block the formation of lithium dendrites, and the negative electrode tab (metal foil) acts as a negative electrode for metallic lithium deposition.
  • current collectors can meet the requirements of the conductivity of lithium-ion power batteries.
  • the lithium ion power battery of the present invention no longer requires the use of a separator of a conventional organic material, it has greatly improved safety performance. Moreover, the lithium ion power battery thus provided no longer uses the plug-in carbon negative electrode material, so that the cost of the battery is greatly reduced; since the material of the porous structural layer is nano ceramic particles, the thickness and weight thereof are smaller than those of the conventional lithium ion power battery. The sum of the thickness and weight of the carbon negative electrode and the separator, thereby increasing the energy density of the lithium ion power battery.
  • the positive electrode tab is an aluminum foil whose surface is covered with a cover layer, and the material of the cover layer comprises an active material and conductive carbon black.
  • the active material refers to a material capable of providing a lithium ion in the embedding position (ie, a material participating in a chemical reaction) such as LiFePO 4 , LiCoO 2 , a ternary material (111, 532, 622, etc.), LiMn 2 O 4 , or the like.
  • the mass percent composition of the electrolyte is: 10-20% LiPF 6 , 25-40% EC, 30-45% DMC, 5-10% EMC, 5- 10% VC and 2-3% PS.
  • a separator for a lithium ion power battery which is formed on a surface of a negative electrode tab, wherein the negative electrode tab is a metal foil, and the separator comprises a porous structural layer, and the material of the porous structural layer is nano ceramic Particles.
  • the metal foil is, for example, a copper foil, or other metal foil which can be used as a negative current collector in a lithium ion power battery.
  • the thickness of the porous structural layer of the separator may be set as required (for example, 10 to 40 ⁇ m), and the thickness is uniform, and has a porosity of not less than 50% (and the porosity thereof may be set as needed).
  • the membrane comprises a porous structural layer formed on both surfaces of the metal foil, which may be identical or different from one another, for example having the same or different materials and/or structural parameters.
  • a method for fabricating a separator for a lithium ion power battery for fabricating the separator described above, the method comprising the steps of:
  • the mass percentage of the slurry is: 80-95% of nano ceramic particles, 5-10% of binder and 5-10% of solvent; the binder is polyvinylidene fluoride or A123 water-based glue And, when the binder is polyvinylidene fluoride, the solvent is N-methylpyrrolidone; when the binder is A123 water-based glue, the solvent is water, preferably deionized water.
  • the metal foil is, for example, a copper foil, or other metal foil which can be used as a negative current collector in a lithium ion power battery.
  • the thickness of the slurry applied to the surface of the metal foil is from 10 ⁇ m to 40 ⁇ m, and the parameters for drying include: a temperature of 80-100 ° C for a time of 24 hours or more; a metal subjected to rolling The foil is subjected to a pressure of 0.1 to 1 MPa.
  • the tight bonding of the cover layer and the metal foil can be realized, and the densification of the cover layer structure can be realized, so that the performance requirements of the lithium ion power battery can be satisfied in terms of strength, thickness and porosity, thereby ensuring the use.
  • a slurry for forming the separator described above.
  • the mass percentage component of the slurry is: 80-95% nano ceramic particles, 5-10% binder and 5-10% solvent; wherein the nano ceramic particles are lithium-containing compounds Particles of particles and/or ceramic materials; the binder is polyvinylidene fluoride or A123 water-based glue; and, when the binder is polyvinylidene fluoride, the solvent is N-methylpyrrolidone; When the binder is A123 aqueous glue, the solvent is water.
  • a method for fabricating a lithium ion power battery includes: preparing a negative electrode tab, a separator, a positive electrode tab, an electrolyte, and an outer casing; and assembling the negative electrode tab, the separator, and the positive electrode a pole piece, the electrolyte, and the outer casing.
  • the negative electrode tab is a metal foil
  • the separator is formed on the surface of the metal foil, and comprises a porous structural layer covering at least one surface of the metal foil, the material of the porous structural layer being nano ceramic particles.
  • the metal foil is, for example, a copper foil, or other metal foil which can be used as a negative current collector in a lithium ion power battery.
  • the lithium ion power battery of the present invention the manufacturing method thereof, the method for manufacturing the separator and the separator, and the slurry for the separator can make the lithium ion power battery completely free from the separator of the organic material (including coating with 1- 5 ⁇ m ceramic layer of organic material diaphragm), which completely solves the possibility of large-area short circuit of lithium ion power battery, eliminates the occurrence of thermal runaway of lithium ion power battery, and improves the safety of lithium ion power battery.
  • the lithium ion power battery of the present invention, the method for fabricating the same, the method for producing the separator and the separator, and the slurry for the separator contribute to an increase in energy density of the lithium ion power battery.
  • the application of nano ceramic particles can change the conventional structure of existing lithium ion power batteries, including lithium ion battery, cylindrical lithium ion battery, wound lithium ion battery, laminated lithium ion battery, and conventional lithium ion battery.
  • the structure includes: a positive electrode, a separator, a negative electrode, an electrolyte, and a battery can.
  • the separator and the negative electrode tab (that is, the metal foil coated with the porous structural layer of the nano ceramic particles) prepared by using the composition of the slurry of the present invention, the separator and the manufacturing method thereof can replace the conventional lithium ion power battery.
  • the structure of the separator and the negative electrode and can replace the structure of the separator and the negative electrode in all lithium ion batteries conventionally using an organic separator.
  • the lithium ion power battery of the present invention can replace all lithium ion batteries that are conventionally used with organic separators. Unlike a conventional lithium ion battery using a ceramic layer coated with a ceramic layer, the porous structure of the nano ceramic particle material of the separator of the lithium ion power battery of the present invention has the advantages of large thickness and adjustable porosity, thereby resisting the battery. The pressure and temperature resistance are greatly improved.
  • the lithium ion power battery of the present invention thus assembled has improved cycle performance, rate discharge, and safety performance, and can meet the requirements of an electric vehicle power battery.
  • Figure 1 shows a negative electrode tab and membrane of a lithium ion power battery in accordance with the present invention, in a preferred embodiment.
  • Figure 2 shows a positive pole piece of a lithium ion power battery in accordance with the present invention in a preferred embodiment.
  • Figure 3 shows an assembly of a positive pole piece, a negative pole piece and a diaphragm in a lithium ion power battery according to the present invention, in a preferred embodiment.
  • Figure 4 shows another assembly of the positive pole piece, the negative pole piece and the diaphragm in a lithium ion power battery according to the present invention in a preferred embodiment.
  • Figure 5 shows another assembly of the positive pole piece, the negative pole piece and the diaphragm in a lithium ion power battery according to the present invention in a preferred embodiment.
  • a lithium ion power battery of the present invention a method for producing the same, a method for producing the separator and the separator, and a slurry for a separator will be described by way of three embodiments.
  • the negative electrode tab of a lithium ion power battery is a copper foil having a thickness of 12 ⁇ m. Since the thickness of the copper foil is extremely small, the surface extending in the thickness direction thereof is not considered, and it is considered that the copper foil has only two surfaces extending in a direction perpendicular to the thickness thereof. The dimensions of the copper foil used on these two surfaces (for example, the length and width of a square copper foil; the diameter of a circular copper foil; etc.) can be designed according to actual needs.
  • the separator of the present invention is used to form a separator of the lithium ion power battery. Specific steps are as follows:
  • a slurry containing nano ceramic particles is formulated.
  • the nano ceramic particles used were LiAlO 2 particles having a particle size (D50) of 50 nm, that is, 50% of the above particles had a diameter of 50 nm, and the binder used was polyvinylidene fluoride (PVDF), and the solvent used was N- Methyl pyrrolidone (NMP).
  • D50 particle size of 50 nm
  • the binder used was polyvinylidene fluoride (PVDF)
  • NMP N- Methyl pyrrolidone
  • the above three i.e., nano ceramic particles, binder, and solvent
  • the above three were mixed at a mass ratio of 8:1:1 and stirred well to form a slurry.
  • the slurry formed in the previous step was applied to both surfaces of the copper foil, and the thickness of the slurry layer coated on the surface of the copper foil was 10 ⁇ 2 ⁇ m. In this embodiment, the applied slurry layer covers the entire surface of the copper foil.
  • the slurry may be partially coated on one or both surfaces of the copper foil to form a continuous or discontinuous slurry layer, while the copper foil is not coated with the slurry.
  • the surface portion is covered with other insulating materials.
  • the slurry-coated copper foil obtained in the previous step was placed at an ambient temperature of 80 to 100 ° C and dried.
  • the drying time i.e., the time at which the copper foil is placed at the above ambient temperature
  • the drying time is 24 hours or longer.
  • the thickness of the dried slurry layer remains substantially unchanged at 10 ⁇ 2 ⁇ m.
  • a roller is used to roll the surface of the copper foil obtained in the previous step (ie, roll the dried slurry layer), for example, the copper foil is passed through a roll press, and the roll pair in the roll press is used. Pressure is applied to the surface of the copper foil. Preferably, the pressure is set to 0.1-1 MPa.
  • the pressure is set to 0.1 MPa.
  • the thickness of the rolled slurry layer changes within a certain range. Therefore, the thickness of the slurry (layer), the thickness of the porous structural layer, and the thickness of the separator described in the present invention all refer to the thickness of the dried and unrolled layer formed of the slurry.
  • the separator of the present invention thus obtained has a porosity of the porous structural layer (i.e., a percentage of the pore volume in the total volume) of about 50%.
  • Fig. 1 schematically shows the separator and the negative electrode tab obtained above, which is formed on the surface of a copper foil as a negative electrode tab, together with a copper foil for a lithium ion power battery to form a lithium ion power battery of the present invention.
  • a positive electrode tab for forming a lithium ion power battery of the present invention and a manufacturing step thereof are provided. Specific steps are as follows:
  • the active material, the conductive agent and the binder are proportioned to form a slurry.
  • the active material used is a ternary material 532 (LiNi 0.5 Mn 0.3 Co 0.2 O 2 ), and the conductive agent used is conductive carbon black (super P), and the binder used is polyethylene Fluoroethylene (PVDF) was used in a ratio of 95:2.5:2.5 (mass percent).
  • PVDF polyethylene Fluoroethylene
  • water gel A123 can also be used as a binder.
  • the above three were mixed in the above ratio, and an appropriate amount of the solvent N-methylpyrrolidone (NMP) was added thereto, followed by thorough stirring to form a slurry.
  • NMP N-methylpyrrolidone
  • the solvent added here is water, preferably deionized water.
  • the slurry formed in the previous step is applied to the surface of the aluminum foil to form a positive electrode tab.
  • the thickness of the aluminum foil is extremely small, the surface extending in the thickness direction thereof is not considered, and it is considered that the aluminum foil has only two surfaces extending in a direction perpendicular to the thickness thereof.
  • the dimensions of the aluminum foil used on these two surfaces can be designed according to actual needs.
  • Fig. 2 schematically shows the positive electrode tab obtained as described above.
  • a manufacturing step of forming the lithium ion power battery of the present invention is provided. Specific steps are as follows:
  • the dimensions of the copper foil and the aluminum foil for the negative electrode tab and the positive electrode tab are determined according to the specifications of the lithium ion power battery fabricated as needed; and the separator is formed on the surface of the copper foil according to the steps previously described in the embodiment, and A positive electrode tab was formed using an aluminum foil.
  • the formation of the above-mentioned separator and the positive electrode tab are not limited by the order, for example, the above-mentioned separator and the positive electrode tab may be formed at two processing locations; the separator may be formed at one processing site to form a positive electrode tab, or at a processing site.
  • the positive electrode tab is first formed to form a separator.
  • the size of the outer casing to be used determines the size of the outer casing to be used, and obtain a suitable outer casing, for example, by making, commissioning, and purchasing.
  • the composition and quantity (mass or volume) of the electrolyte used are determined according to the specifications of the lithium ion power battery fabricated.
  • the mass percentage components of the preferably usable electrolyte are: 10-20% LiPF 6 , 25-40% EC, 30-45% DMC, 5-10. % EMC, 5-10% VC, and 2-3% PS.
  • the following electrolytes were used, which were composed of 18% by mass of LiPF 6 , 25% of EC, 40% of DMC, 10% of EMC, 5% of VC, and 2%. PS.
  • the negative electrode piece, the separator, the positive electrode piece, the electrolyte and the outer casing obtained in the previous step are assembled to form a lithium ion power battery.
  • a conventional process for fabricating a lithium ion power battery (not described herein) is adopted, and the above-mentioned portion is assembled according to the specifications of the lithium ion power battery fabricated in actuality, and finally a lithium ion power battery is obtained.
  • Fig. 3 is a schematic view showing a manner of assembling the foregoing positive electrode tab, diaphragm and negative electrode tab together, which forms a laminated lithium ion battery and is at the same end of the battery (upper end shown in the figure)
  • the positive electrode and the negative electrode i.e., the two convex portions schematically depicted in the drawing, in which the convex portion belonging to the aluminum foil leads to the positive electrode of the battery, and the convex portion belonging to the copper foil leads to the negative electrode of the battery
  • the positive electrode and the negative electrode i.e., the two convex portions schematically depicted in the drawing, in which the convex portion belonging to the aluminum foil leads to the positive electrode of the battery, and the convex portion belonging to the copper foil leads to the negative electrode of the battery
  • Fig. 4 is a schematic view showing another manner of assembling the foregoing positive electrode tab, separator and negative electrode tab together, which also forms a laminated lithium ion battery, but at both ends of the battery (Fig.
  • the upper end and the lower end of the drawing respectively lead to the positive electrode and the negative electrode (ie, two horizontal strip portions schematically depicted in the drawing, wherein the horizontal strip portion belonging to the aluminum foil leads to the positive electrode of the battery, and the horizontal strip portion belonging to the copper foil leads to the negative electrode of the battery) .
  • the positive electrode tab, the separator and the negative electrode tab it is also possible to assemble the positive electrode tab, the separator and the negative electrode tab to form a lithium ion power battery having a wound structure.
  • the negative electrode tab and the separator are integrated, and as a layer, the layer is alternated with the positive electrode tab. After being overlapped, they are wound together to form a lithium ion power battery of a wound structure.
  • the chemical conversion system of the obtained lithium ion power battery is 0.01 C charge and 0.1 C discharge.
  • the negative electrode tab of a lithium ion power battery is a copper foil having a thickness of 15 ⁇ m.
  • the size of the copper foil on its surface can be designed according to actual needs.
  • the separator of the present invention is used to form a separator of the lithium ion power battery. Specific steps are as follows:
  • a slurry containing nano ceramic particles is formulated.
  • the nano ceramic particles used were AlPO 4 particles having a particle size (D50) of 100 nm
  • the binder used was polyvinylidene fluoride (PVDF)
  • the solvent used was N-methylpyrrolidone (NMP).
  • the binder used in the present embodiment may also be water gel A123, and the solvent used is water, preferably deionized water.
  • the slurry formed in the previous step was applied to both surfaces of the copper foil, and the thickness of the slurry layer coated on the surface of the copper foil was 30 ⁇ 2 ⁇ m. In this embodiment, the applied slurry layer covers the entire surface of the copper foil.
  • the slurry-coated copper foil obtained in the previous step was placed at an ambient temperature of 80 to 100 ° C and dried.
  • the drying time is more than 24 hours.
  • the thickness of the dried slurry layer remains substantially unchanged at 30 ⁇ 2 ⁇ m.
  • a roller is used to roll the surface of the copper foil obtained in the previous step (ie, roll the dried slurry layer), for example, the copper foil is passed through a roll press, and the roll pair in the roll press is used. Pressure is applied to the surface of the copper foil. In this embodiment, the pressure is set to 0.5 MPa.
  • the separator of the present invention was thus obtained, and the porous structural layer of the separator had a porosity of about 50%.
  • the separator obtained above was formed on the surface of a copper foil as a negative electrode tab, and used together with a copper foil for a lithium ion power battery to form a lithium ion power battery of the present invention.
  • a positive electrode tab for forming a lithium ion power battery of the present invention and a manufacturing step thereof are provided. Specific steps are as follows:
  • the active material, the conductive agent and the binder are proportioned to form a slurry.
  • the active material used is a ternary material 111 (LiMn 0.3 Co 0.3 Ni 0.3 O 2 ), and the conductive agent used is conductive carbon black (super P), and the binder used is polyethylene Fluoroethylene (PVDF) was used in a ratio of 95:2.5:2.5 (mass percent).
  • PVDF polyethylene Fluoroethylene
  • water gel A123 can also be used as a binder.
  • the above three were mixed in the above ratio, and an appropriate amount of the solvent N-methylpyrrolidone (NMP) was added thereto, followed by thorough stirring to form a slurry.
  • NMP N-methylpyrrolidone
  • the solvent added here is water, preferably deionized water.
  • the slurry formed in the previous step is applied to the surface of the aluminum foil to form a positive electrode tab.
  • the size of the aluminum foil used on its surface can be designed according to actual needs.
  • the above slurry is coated on both surfaces of the aluminum foil, and then a conventional process (not described herein) for fabricating the positive electrode tab of the lithium ion power battery is carried out, and the subsequent steps are carried out, finally obtaining a thickness of about 100 ⁇ 5 ⁇ m. Positive pole piece.
  • a manufacturing step of forming the lithium ion power battery of the present invention is provided. Specific steps are as follows:
  • the dimensions of the copper foil and the aluminum foil for the negative electrode tab and the positive electrode tab were determined according to the specifications of the lithium ion power battery fabricated as needed, and the separator and the positive electrode tab were formed according to the procedure previously described in the present embodiment.
  • the size of the outer casing to be used determines the size of the outer casing to be used, and obtain a suitable outer casing, for example, by making, commissioning, and purchasing.
  • composition and quantity (mass or volume) of the electrolyte used are determined according to the specifications of the lithium ion power battery fabricated. In the present embodiment, the following electrolytes were used, and the components by mass percentage were: 20% LiPF 6 , 30% EC, 30% DMC, 7% EMC, 10% VC, and 3%. PS.
  • the negative electrode piece, the separator, the positive electrode piece, the electrolyte and the outer casing obtained in the previous step are assembled to form a lithium ion power battery.
  • a conventional process for fabricating a lithium ion power battery (not described herein) is adopted, and the above-mentioned portion is assembled according to the specifications of the lithium ion power battery fabricated in actuality, and finally a lithium ion power battery is obtained.
  • the chemical conversion system of the obtained lithium ion power battery is 0.01 C charge and 0.1 C discharge.
  • the negative electrode tab of a lithium ion power battery is a copper foil having a thickness of 15 ⁇ m.
  • the size of the copper foil on its surface can be designed according to actual needs.
  • the separator of the present invention is used to form a separator of the lithium ion power battery. Specific steps are as follows:
  • a slurry containing nano ceramic particles is formulated.
  • the nano ceramic particles used were ZrO 2 particles having a particle size (D50) of 100 nm, the binder used was polyvinylidene fluoride (PVDF), and the solvent used was N-methylpyrrolidone (NMP).
  • D50 particle size of 100 nm
  • the binder used was polyvinylidene fluoride (PVDF)
  • the solvent used was N-methylpyrrolidone (NMP).
  • the slurry formed in the previous step was applied to both surfaces of the copper foil, and the thickness of the slurry layer coated on the surface of the copper foil was 40 ⁇ 2 ⁇ m. In this embodiment, the applied slurry layer covers the entire surface of the copper foil.
  • the slurry-coated copper foil obtained in the previous step was placed at an ambient temperature of 80 to 100 ° C and dried.
  • the drying time is more than 24 hours.
  • the thickness of the dried slurry layer remains substantially unchanged at 40 ⁇ 2 ⁇ m.
  • a roller is used to roll the surface of the copper foil obtained in the previous step (ie, roll the dried slurry layer), for example, the copper foil is passed through a roll press, and the roll pair in the roll press is used. Pressure is applied to the surface of the copper foil. In this embodiment, the pressure is set to 0.8 MPa.
  • the separator of the present invention was thus obtained, and the porous structural layer of the separator had a porosity of about 50%.
  • the separator obtained above was formed on the surface of a copper foil as a negative electrode tab, and used together with a copper foil for a lithium ion power battery to form a lithium ion power battery of the present invention.
  • a positive electrode tab for forming a lithium ion power battery of the present invention and a manufacturing step thereof are provided. Specific steps are as follows:
  • the active material, the conductive agent and the binder are proportioned to form a slurry.
  • the active material used is a ternary material 532 (LiNi 0.5 Mn 0.3 Co 0.2 O 2 ), and the conductive agent used is conductive carbon black (super P), and the binder used is polyethylene Fluoroethylene (PVDF) was used in a ratio of 95:2.5:2.5 (mass percent).
  • PVDF polyethylene Fluoroethylene
  • water gel A123 can also be used as a binder.
  • the above three were mixed in the above ratio, and an appropriate amount of the solvent N-methylpyrrolidone (NMP) was added thereto, followed by thorough stirring to form a slurry.
  • NMP N-methylpyrrolidone
  • the solvent added here is water, preferably deionized water.
  • the slurry formed in the previous step is applied to the surface of the aluminum foil to form a positive electrode tab.
  • the size of the aluminum foil used on its surface can be designed according to actual needs.
  • the above slurry is coated on both surfaces of the aluminum foil, and then a conventional process (not described herein) for fabricating the positive electrode tab of the lithium ion power battery is carried out, and the subsequent steps are carried out, finally obtaining a thickness of about 100 ⁇ 5 ⁇ m. Positive pole piece.
  • a manufacturing step of forming the lithium ion power battery of the present invention is provided. Specific steps are as follows:
  • the dimensions of the copper foil and the aluminum foil as the negative electrode tab and the positive electrode tab were determined according to the specifications of the lithium ion power battery fabricated as needed, and the separator and the positive electrode tab were formed according to the procedure previously described in the present embodiment.
  • the size of the outer casing to be used determines the size of the outer casing to be used, and obtain a suitable outer casing, for example, by making, commissioning, and purchasing.
  • composition and quantity (mass or volume) of the electrolyte used are determined according to the specifications of the lithium ion power battery fabricated.
  • the following electrolytes are used, which are 10% by mass of LiPF 6 , 30% of EC, 40% of DMC, 8% of EMC, 10% of VC, and 2%. PS.
  • the negative electrode piece, the separator, the positive electrode piece, the electrolyte and the outer casing obtained in the previous step are assembled to form a lithium ion power battery.
  • a conventional process for fabricating a lithium ion power battery (not described herein) is adopted, and the above-mentioned portion is assembled according to the specifications of the lithium ion power battery fabricated in actuality, and finally a lithium ion power battery is obtained.
  • the chemical conversion system of the obtained lithium ion power battery is 0.01 C charge and 0.1 C discharge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

本发明提供了一种锂离子动力电池及其隔膜,其中隔膜形成在作为负极极片的金属箔表面,其包括形成在金属箔的至少一个表面上的多孔结构层,该多孔结构层的材料是纳米陶瓷颗粒。金属箔是铜箔,或者其他可以在锂离子动力电池中做为负极集流体的金属箔。本发明的锂离子动力电池完全不使用有机材料的隔膜,从而彻底解决了锂离子动力电池大面积短路的可能性,消除了锂离子动力电池热失控的发生,提高了锂离子动力电池的安全性;并有助于提高锂离子动力电池的能量密度。本发明还提供了锂离子动力电池的制作方法、隔膜的制作方法,以及用于形成隔膜的浆料。

Description

锂离子动力电池及其制作方法、其隔膜及隔膜的制作方法,以及用于形成隔膜的浆料 技术领域
本发明涉及锂离子动力电池技术领域,尤其涉及一种锂离子动力电池及其制作方法、其隔膜及隔膜的制作方法,以及用于形成隔膜的浆料。
背景技术
锂离子动力电池由于其电压高、重量轻、寿命长、无污染等特点,目前已大量应用在移动电话、便携式计算机、摄像机、照相机等设备中,并且其中大容量的锂离子动力电池已在电动汽车中使用,成为电动汽车的主要动力电源之一。对于锂离子动力电池的使用而言,其安全性能是保证其正常使用的重要因素。
常规锂离子动力电池由正极、负极、隔膜、电解液组成。其中,电解液是具有可燃性的有机液体,隔膜是PE等多孔有机材料,可根据需要设计。通常锂离子动力电池有两种外型:圆柱型和长方型。圆柱型电池内部通常采用螺旋绕制结构(卷绕结构),使用隔膜在正、负极间间隔而成。而长方型电池则是通过叠片这种形式(层叠结构),即在一正极上放置隔膜然后放置负极,以此类推叠加而成。
由于当前使用的锂离子动力电池的隔膜为PE等多孔有机材料,其耐热性较差,特别是当温度大于150℃时,隔膜会发生熔断现象,从而引发电池大面积短路,导致锂离子动力电池特别是高容量锂离子动力电池着火、爆炸事故发生。因此,提高锂离子动力电池的隔膜的耐高温性能,避免电池大面积内短路,是保证锂离子电池安全性能的主要手段。
但是,目前大多数隔膜材料包括常见的陶瓷隔膜,都是以PE隔膜为基材,并不能起到很好的安全保护效果。而其他手段,例如陶瓷涂层手段,如在正、负极极片表面涂覆陶瓷层、在PE隔膜表面涂覆陶瓷层等,也都没有起到好的效果。并且,纯度大于95%的陶瓷薄膜由于其韧性和强度限制,很难单独地作为隔膜以在锂离子动力电池中作用。中国专利“一种用于锂电池的陶瓷膜浆料及涂有该陶瓷膜浆料极片的制备方法”(申请号:201310599986.4),公开了其锂电池的隔膜为涂覆在正极极片和负极极片表面的陶瓷膜浆料层。但是其需要将浆料多次地分别喷涂在电池石墨负极片和镍钴锰三元正极的表面上,并分别进行多次烘干、辊压处理,工艺较为复杂,需要的处理时间也较长,从而成本较高,不利于产品的市场化。并且,该方法在碳负极表面喷涂陶瓷浆料形成陶瓷膜层,增加了负极极片的厚度和重量,将会降低锂离子电池的能量密度。同时正负极表面涂覆陶瓷层,增加了正负极的厚度,通过多次滚压处理后,会降低正负极与集流体的结合强度,会降低电池大电流充放电能力。
因此,希望提供一种锂电池动力电池,能保证其安全性能,尤其是在高温环境中的安全性能。
发明内容
前述需求由本发明满足,其中在一个方面,提供一种锂离子动力电池,其负极极片为金属箔,其隔膜形成在作为负极集流体的金属箔的表面;该隔膜包括覆盖在金属箔的至少一个表面的多孔结构层,该多孔结构层的材料是纳米陶瓷颗粒。金属箔例如是铜箔,或者其他可以在锂离子动力电池中做为负极集流体的金属箔。
在锂离子动力电池中,包括多孔结构层的隔膜阻止了负极极片(金属箔)与正极极片的直接接触,并为吸附电解液提供锂离子通道,又为金属锂的沉积提供空间。
在较佳的实施例中,金属箔的两个表面皆覆盖有多孔结构层,这两个 多孔结构层可以彼此相同或不同,例如具有相同或不同的材料和/或结构参数。
金属箔的两个表面中,可以在一个表面上覆盖多孔结构层,而另一个表面上覆盖其他材料和/或结构的绝缘层,该多孔结构层和该绝缘层一起构成隔膜,以阻止金属箔与正极极片的直接接触。
在较佳的实施例中,纳米陶瓷颗粒的粒径不大于100nm,纳米陶瓷颗粒为含锂的化合物的颗粒和/或陶瓷材料的颗粒。其中,含锂的化合物为LiAlO 2和/或Li 3PO 4,陶瓷材料是Al 2O 3、ZrO 2和/或AlPO 4。多孔结构层的厚度为10μm-40μm,多孔结构层具有的气孔率为50-70%。
由此提供的锂离子动力电池可以是圆柱型的或长方型的,其中的电极可以是卷绕结构的或层叠结构的。在本发明的锂离子动力电池充电时,金属锂沉积在隔膜的多孔结构层内,多孔结构层的多孔结构能阻挡锂枝晶的形成,而负极极片(金属箔)充当金属锂沉积的负极和集流体,能够满足锂离子动力电池导电性能的要求。
由于本发明的锂离子动力电池不再需要使用常规的有机材料的隔膜,从而具有大大提高的安全性能。并且,由此提供的锂离子动力电池,不再使用插入式的碳负极材料,使得电池的成本大大降低;由于多孔结构层的材料是纳米陶瓷颗粒,其厚度和重量小于常规锂离子动力电池的碳负极与隔膜的厚度和重量之和,从而提高了锂离子动力电池的能量密度。
在较佳的实施例中,正极极片是表面覆盖有覆盖层的铝箔,该覆盖层的材料包括活性材料和导电炭黑。活性材料是指能够提供锂离子嵌入嵌出位的材料(即,参与化学反应的材料),诸如LiFePO 4、LiCoO 2、三元材料(111、532、622等)、LiMn 2O 4等。
在较佳的实施例中,电解液的按质量百分比的组分为:10-20%的LiPF 6、25-40%的EC、30-45%的DMC、5-10%的EMC、5-10%的VC以及2-3%的PS。
在第二个方面,提供一种锂离子动力电池的隔膜,其形成在负极极片 的表面,其中负极极片是金属箔,所述隔膜包括多孔结构层,该多孔结构层的材料是纳米陶瓷颗粒。金属箔例如是铜箔,或者其他可以在锂离子动力电池中做为负极集流体的金属箔。
其中隔膜的多孔结构层的厚度可根据需要设定(例如,10-40μm),并且厚度均匀,具有不低于50%的气孔率(且可根据需要设定其气孔率)。
在较佳的实施例中,隔膜包括形成在金属箔的两个表面的多孔结构层,这两个多孔结构层可以彼此相同或不同,例如具有相同或不同的材料和/或结构参数。
在第三个方面,提供一种锂离子动力电池的隔膜的制作方法,用于制作上述的隔膜,该制作方法包括以下步骤:
1、调配含有纳米陶瓷颗粒的浆料;
2、将浆料涂覆到金属箔的至少一个表面上;
3、烘干涂覆有浆料的金属箔;
4、滚压完成烘干的金属箔的该表面。
其中,浆料的按质量百分比的组分为:80-95%的纳米陶瓷颗粒、5-10%的粘结剂和5-10%的溶剂;粘结剂为聚偏氟乙烯或A123水性胶;且,当粘结剂为聚偏氟乙烯时,溶剂是N-甲基吡咯烷酮;当粘结剂是A123水性胶时,溶剂是水,较佳地为去离子水。其中,金属箔例如是铜箔,或者其他可以在锂离子动力电池中做为负极集流体的金属箔。
在较佳的实施例中,涂覆到金属箔的表面上的浆料的厚度为10μm-40μm,烘干的参数包括:温度为80-100℃,时间为24小时以上;经受滚压的金属箔受到的压力为0.1-1Mpa。
通过滚压金属箔,可以实现覆盖层与金属箔的紧密结合,实现覆盖层结构的致密化,使其在强度、厚度、气孔率等方面都能满足锂离子动力电池的性能要求,从而确保使用由该制作方法制作的隔膜的锂离子动力电池的安全性。
在第四个方面,提供一种浆料,用于形成上述的隔膜。其中,浆料的按质量百分比的组分为:80-95%的纳米陶瓷颗粒、5-10%的粘结剂和5-10%的溶剂;其中,所述纳米陶瓷颗粒为含锂的化合物的颗粒和/或陶瓷材料的颗粒;所述粘结剂为聚偏氟乙烯或A123水性胶;且,当所述粘结剂为聚偏氟乙烯时,所述溶剂是N-甲基吡咯烷酮;当所述粘结剂是A123水性胶时,所述溶剂是水。
在第五个方面,提供一种锂离子动力电池的制作方法,包括:准备负极极片、隔膜、正极极片、电解液和外壳;以及组装所述负极极片、所述隔膜、所述正极极片、所述电解液和所述外壳。其中,负极极片为金属箔;隔膜形成在金属箔的表面,包括覆盖在所述金属箔的至少一个表面的多孔结构层,所述多孔结构层的材料是纳米陶瓷颗粒。金属箔例如是铜箔,或者其他可以在锂离子动力电池中做为负极集流体的金属箔。
可见,本发明的锂离子动力电池及其制作方法、其隔膜及隔膜的制作方法,以及用于隔膜的浆料,能够使得锂离子动力电池完全不使用有机材料的隔膜(包括涂覆有1-5μm陶瓷层的有机材料的隔膜),从而彻底解决了锂离子动力电池大面积短路的可能性,消除了锂离子动力电池热失控的发生,提高了锂离子动力电池的安全性。并且本发明的锂离子动力电池及其制作方法、其隔膜及隔膜的制作方法,以及用于隔膜的浆料有助于提高锂离子动力电池的能量密度。
纳米陶瓷颗粒的应用可以改变现有锂离子动力电池的常规结构,其中的锂离子动力电池包括圆柱形锂离子电池、卷绕式锂离子电池、层叠片式锂离子电池,锂离子动力电池的常规结构包含:正极、隔膜、负极、电解液、电池壳。利用本发明的浆料的组分、隔膜及其制作方法制备的隔膜和负极极片(即涂覆有纳米陶瓷颗粒的多孔结构层的金属箔),能够替代现有常规锂离子动力电池中的隔膜和负极的结构,并且能够替代所有常规使用有机隔膜的锂离子电池中的隔膜和负极的结构。而本发明的锂离子动力电池能够替代所有常规使用有机隔膜的锂离子电池。与普通的使用有机隔膜表面涂覆陶瓷层的锂离子电池不同,本发明的锂离子动力电池的隔膜的纳 米陶瓷颗粒材料的多孔结构具有厚度大、气孔率可调的优势,由此电池的耐压、耐温性能大幅提高。由此组装而成的本发明的锂离子动力电池的循环性能、倍率放电、安全性能得到了提高,能够满足电动汽车动力电池的要求。
附图说明
图1显示了在一个较佳的实施例中,根据本发明的锂离子动力电池的负极极片和隔膜。
图2显示了在一个较佳的实施例中,根据本发明的锂离子动力电池的正极极片。
图3显示了在一个较佳的实施例中,根据本发明的锂离子动力电池中的正极极片、负极极片和隔膜的一种组装方式。
图4显示了在一个较佳的实施例中,根据本发明的锂离子动力电池中的正极极片、负极极片和隔膜的另一种组装方式。
图5显示了在一个较佳的实施例中,根据本发明的锂离子动力电池中的正极极片、负极极片和隔膜的另一种组装方式。
具体实施方式
以下通过三个实施例,说明本发明的锂离子动力电池及其制作方法、其隔膜及隔膜的制作方法,以及用于隔膜的浆料。
实施例1
锂离子动力电池的负极极片是铜箔,其厚度为12μm。由于铜箔的厚度极小,因此不考虑在其厚度方向上延伸的表面,而认为该铜箔只具有两个在垂直于其厚度的方向上延伸的表面。所用的铜箔的在这两个表面上的尺寸(例如,方形的铜箔的长度和宽度;圆形的铜箔的直径;等)可以根据实际需要设计。
以下应用本发明的隔膜的制作方法,形成该锂离子动力电池的隔膜。具体步骤如下:
1、调配含有纳米陶瓷颗粒的浆料。
所用的纳米陶瓷颗粒为LiAlO 2颗粒,其颗粒尺寸(D50)为50nm,即50%的上述颗粒的直径为50nm,所用的粘结剂为聚偏氟乙烯(PVDF),所用的溶剂是N-甲基吡咯烷酮(NMP)。
将上述三者(即,纳米陶瓷颗粒、粘结剂和溶剂三者)按照质量百分比8∶1∶1的比例混合,并充分搅拌,形成浆料。
2、将浆料涂覆到铜箔的表面上。
本实施例中,将上一步骤中形成的浆料涂覆到铜箔的两个表面上,并使得涂覆在铜箔表面上的浆料层的厚度为10±2μm。本实施例中,涂覆的浆料层覆盖铜箔的整个表面。
在其他实施例中,也可以只在铜箔的一个表面上涂覆上述浆料,形成浆料层;而在铜箔的另一个表面形成其他结构和/或材料的绝缘层(较佳地为无机材料,例如陶瓷材料的绝缘层)。
并且在其他实施例中,也可以在铜箔的一个或两个表面上部分地涂覆上述浆料,形成连续或不连续的浆料层,而在铜箔的未被涂覆该浆料的表面部分,用其他的绝缘材料加以覆盖。
3、烘干涂覆有浆料的铜箔。
将上一步骤中获得的涂覆有浆料的铜箔置于80-100℃的环境温度下,进行烘干。烘干的时间(即将该铜箔置于上述环境温度下的时间)为24小时以上。
其中,经过烘干的浆料层的厚度基本保持不变,为10±2μm。
4、滚压完成烘干的铜箔的该表面。
本实施例中,采用辊来滚压上一步骤中获得的铜箔的表面(即滚压经 过烘干的浆料层),例如将铜箔通过辊压机,由辊压机中的辊对铜箔的表面施加压力。较佳地,压力设定为0.1-1Mpa。
本实施例中,压力设定为0.1Mpa。
需要说明的是,经过滚压的浆料层的厚度会发生一定范围内的改变。因此,在本发明中所述的浆料(层)的厚度、多孔结构层的厚度、隔膜的厚度皆是指由浆料形成的经过烘干的且未经过滚压的层的厚度。
由此获得本发明的隔膜,其多孔结构层的气孔率(即,其中气孔体积占总体积的百分数)约为50%。
图1示意性地出了上述获得的隔膜和负极极片,隔膜形成在作为负极极片的铜箔的表面,与铜箔一起用于锂离子动力电池,以形成本发明的锂离子动力电池。
进一步地,本实施例中提供形成本发明的锂离子动力电池的正极极片,及其制作步骤。具体步骤如下:
1、将活性材料、导电剂和粘结剂按比例配合,形成浆料。
具体地,在本步骤中,采用的活性材料是三元材料532(LiNi 0.5Mn 0.3Co 0.2O 2),采用的导电剂是导电炭黑(super P),采用的粘结剂是聚偏二氟乙烯(PVDF),采用的比例是95∶2.5∶2.5(质量百分比)。其中,也可以使用水胶A123作为粘结剂。
将上述三者按上述比例混合,并加入适量溶剂N-甲基吡咯酮(NMP),充分搅拌,形成浆料。如果采用的是水胶A123作为粘结剂,在此加入的溶剂则为水,较佳地为去离子水。
2、将上一步骤中形成浆料涂覆到铝箔的表面,并形成正极极片。
类似地,由于铝箔的厚度极小,因此不考虑在其厚度方向上延伸的表面,而认为该铝箔只具有两个在垂直于其厚度的方向上延伸的表面。所用的铝箔的在这两个表面上的尺寸可以根据实际需要设计。
将上述的浆料涂覆在铝箔的两个表面上,形成覆盖层,然后采用制作锂离子动力电池的正极极片的常规工艺(在此不赘述),进行后续的步骤,最后获得厚度约为100±5μm的正极极片。图2示意性地出了上述获得的正极极片。
进一步地,本实施例中提供形成本发明的锂离子动力电池的制作步骤。具体步骤如下:
1、准备负极极片、隔膜、正极极片、电解液和外壳。
根据实际需要制作的锂离子动力电池的规格,确定用于负极极片和正极极片的铜箔和铝箔的尺寸;并根据本实施例中之前描述的步骤,在铜箔的表面形成隔膜,以及使用铝箔形成正极极片。形成上述隔膜和正极极片并不受次序的限制,例如:可以在两个加工地点形成上述隔膜和正极极片;也可以在一个加工地点先形成隔膜再形成正极极片,或者在一个加工地点先形成正极极片再形成隔膜。
根据实际需要制作的锂离子动力电池的规格,确定所用的外壳的尺寸,获得符合需要的外壳,例如通过制作、委托加工、购买等方式。
根据实际需要制作的锂离子动力电池的规格,确定所用的电解液的组分和量(质量或体积)。对于本发明的锂离子动力电池,较佳地可用的电解液的按质量百分比的组分为:10-20%的LiPF 6、25-40%的EC、30-45%的DMC、5-10%的EMC、5-10%的VC以及2-3%的PS。在本实施例中,采用下述的电解液,其按质量百分比的组分为:18%的LiPF 6、25%的EC、40%的DMC、10%的EMC、5%的VC以及2%的PS。
2、组装上一步骤中获得的负极极片、隔膜、正极极片、电解液和外壳,形成锂离子动力电池。
在本步骤中采用制作锂离子动力电池的常规工艺(在此不赘述),根据实际需要制作的锂离子动力电池的规格,组装上述部分,最后获得锂离子动力电池。
图3示意性地出了将前述的正极极片、隔膜和负极极片组装在一起的一种 方式,其形成叠片结构的锂离子动力电池,并在电池的同一端(图所示的上端)同时引出正极和负极(即图中示意性绘出的两个凸起部分,其中属于铝箔的凸起部分引出电池的正极,属于铜箔的凸起部分引出电池的负极)。
图4示意性地出了将前述的正极极片、隔膜和负极极片组装在一起的另一种方式,其也形成叠片结构的锂离子动力电池,但在其电池的两端(图所示的上端和下端)分别引出正极和负极(即图中示意性绘出的两个横条部分,其中属于铝箔的横条部分引出电池的正极,属于铜箔的横条部分引出电池的负极)。
也可以将正极极片、隔膜和负极极片组装形成卷绕结构的锂离子动力电池,如图5所示,负极极片和隔膜是一体的,作为一层,将该层与正极极片交替重叠后一起卷绕,从而形成卷绕结构的锂离子动力电池。
本实施例中,获得的锂离子动力电池的化成制度为0.01C充、0.1C放。
实施例2
锂离子动力电池的负极极片是铜箔,其厚度为15μm。铜箔的在其表面上的尺寸可以根据实际需要设计。
以下应用本发明的隔膜的制作方法,形成该锂离子动力电池的隔膜。具体步骤如下:
1、调配含有纳米陶瓷颗粒的浆料。
所用的纳米陶瓷颗粒为AlPO 4颗粒,其颗粒尺寸(D50)为100nm,所用的粘结剂为聚偏氟乙烯(PVDF),所用的溶剂是N-甲基吡咯烷酮(NMP)。另外,本实施例中采用的粘结剂也可以是水胶A123,所用的溶剂是水,较佳的是去离子水。
将上述三者按照质量百分比9∶0.5∶0.5的比例混合,并充分搅拌,形成浆料。
2、将浆料涂覆到铜箔的表面上。
本实施例中,将上一步骤中形成的浆料涂覆到铜箔的两个表面上,并 使得涂覆在铜箔表面上的浆料层的厚度为30±2μm。本实施例中,涂覆的浆料层覆盖铜箔的整个表面。
3、烘干涂覆有浆料的铜箔。
将上一步骤中获得的涂覆有浆料的铜箔置于80-100℃的环境温度下,进行烘干。烘干的时间为24小时以上。
其中,经过烘干的浆料层的厚度基本保持不变,为30±2μm。
4、滚压完成烘干的铜箔的该表面。
本实施例中,采用辊来滚压上一步骤中获得的铜箔的表面(即滚压经过烘干的浆料层),例如将铜箔通过辊压机,由辊压机中的辊对铜箔的表面施加压力。本实施例中,压力设定为0.5Mpa。
由此获得本发明的隔膜,该隔膜的多孔结构层的气孔率约为50%。
上述获得的隔膜形成在作为负极极片的铜箔的表面,与铜箔一起用于锂离子动力电池,以形成本发明的锂离子动力电池。
进一步地,本实施例中提供形成本发明的锂离子动力电池的正极极片,及其制作步骤。具体步骤如下:
1、将活性材料、导电剂和粘结剂按比例配合,形成浆料。
具体地,在本步骤中,采用的活性材料是三元材料111(LiMn 0.3Co 0.3Ni 0.3O 2),采用的导电剂是导电炭黑(super P),采用的粘结剂是聚偏二氟乙烯(PVDF),采用的比例是95∶2.5∶2.5(质量百分比)。其中,也可以使用水胶A123作为粘结剂。
将上述三者按上述比例混合,并加入适量溶剂N-甲基吡咯酮(NMP),充分搅拌,形成浆料。如果采用的是水胶A123作为粘结剂,在此加入的溶剂则为水,较佳地为去离子水。
2、将上一步骤中形成浆料涂覆到铝箔的表面,并形成正极极片。
所用的铝箔的在其表面上的尺寸可以根据实际需要设计。
将上述的浆料涂覆在铝箔的两个表面上,然后采用制作锂离子动力电池的正极极片的常规工艺(在此不赘述),进行后续的步骤,最后获得厚度约为100±5μm的正极极片。
进一步地,本实施例中提供形成本发明的锂离子动力电池的制作步骤。具体步骤如下:
1、准备负极极片、隔膜、正极极片、电解液和外壳。
根据实际需要制作的锂离子动力电池的规格,确定用于负极极片和正极极片的铜箔和铝箔的尺寸,并根据本实施例中之前描述的步骤形成隔膜和正极极片。
根据实际需要制作的锂离子动力电池的规格,确定所用的外壳的尺寸,获得符合需要的外壳,例如通过制作、委托加工、购买等方式。
根据实际需要制作的锂离子动力电池的规格,确定所用的电解液的组分和量(质量或体积)。在本实施例中,采用下述的电解液,其按质量百分比的组分为:20%的LiPF 6、30%的EC、30%的DMC、7%的EMC、10%的VC以及3%的PS。
2、组装上一步骤中获得的负极极片、隔膜、正极极片、电解液和外壳,形成锂离子动力电池。
在本步骤中采用制作锂离子动力电池的常规工艺(在此不赘述),根据实际需要制作的锂离子动力电池的规格,组装上述部分,最后获得锂离子动力电池。
本实施例中,获得的锂离子动力电池的化成制度为0.01C充、0.1C放。
实施例3
锂离子动力电池的负极极片是铜箔,其厚度为15μm。铜箔的在其表面上的尺寸可以根据实际需要设计。
以下应用本发明的隔膜的制作方法,形成该锂离子动力电池的隔膜。具体步骤如下:
1、调配含有纳米陶瓷颗粒的浆料。
所用的纳米陶瓷颗粒为ZrO 2颗粒,其颗粒尺寸(D50)为100nm,所用的粘结剂为聚偏氟乙烯(PVDF),所用的溶剂是N-甲基吡咯烷酮(NMP)。
将上述三者按照质量百分比8∶1∶1的比例混合,并充分搅拌,形成浆料。
2、将浆料涂覆到铜箔的表面上。
本实施例中,将上一步骤中形成的浆料涂覆到铜箔的两个表面上,并使得涂覆在铜箔表面上的浆料层的厚度为40±2μm。本实施例中,涂覆的浆料层覆盖铜箔的整个表面。
3、烘干涂覆有浆料的铜箔。
将上一步骤中获得的涂覆有浆料的铜箔置于80-100℃的环境温度下,进行烘干。烘干的时间为24小时以上。
其中,经过烘干的浆料层的厚度基本保持不变,为40±2μm。
4、滚压完成烘干的铜箔的该表面。
本实施例中,采用辊来滚压上一步骤中获得的铜箔的表面(即滚压经过烘干的浆料层),例如将铜箔通过辊压机,由辊压机中的辊对铜箔的表面施加压力。本实施例中,压力设定为0.8Mpa。
由此获得本发明的隔膜,该隔膜的多孔结构层的气孔率约为50%。
上述获得的隔膜形成在作为负极极片的铜箔的表面,与铜箔一起用于锂离子动力电池,以形成本发明的锂离子动力电池。
进一步地,本实施例中提供形成本发明的锂离子动力电池的正极极片,及其制作步骤。具体步骤如下:
1、将活性材料、导电剂和粘结剂按比例配合,形成浆料。
具体地,在本步骤中,采用的活性材料是三元材料532(LiNi 0.5Mn 0.3Co 0.2O 2),采用的导电剂是导电炭黑(super P),采用的粘结剂是聚偏二氟乙烯(PVDF),采用的比例是95∶2.5∶2.5(质量百分比)。其中,也可以使用水胶A123作为粘结剂。
将上述三者按上述比例混合,并加入适量溶剂N-甲基吡咯酮(NMP),充分搅拌,形成浆料。如果采用的是水胶A123作为粘结剂,在此加入的溶剂则为水,较佳地为去离子水。
2、将上一步骤中形成浆料涂覆到铝箔的表面,并形成正极极片。
所用的铝箔的在其表面上的尺寸可以根据实际需要设计。
将上述的浆料涂覆在铝箔的两个表面上,然后采用制作锂离子动力电池的正极极片的常规工艺(在此不赘述),进行后续的步骤,最后获得厚度约为100±5μm的正极极片。
进一步地,本实施例中提供形成本发明的锂离子动力电池的制作步骤。具体步骤如下:
1、准备负极极片、隔膜、正极极片、电解液和外壳。
根据实际需要制作的锂离子动力电池的规格,确定作为负极极片和正极极片的铜箔和铝箔的尺寸,并根据本实施例中之前描述的步骤形成隔膜和正极极片。
根据实际需要制作的锂离子动力电池的规格,确定所用的外壳的尺寸,获得符合需要的外壳,例如通过制作、委托加工、购买等方式。
根据实际需要制作的锂离子动力电池的规格,确定所用的电解液的组分和量(质量或体积)。在本实施例中,采用下述的电解液,其按质量百分比的组分为:10%的LiPF 6、30%的EC、40%的DMC、8%的EMC、10%的VC以及2%的PS。
2、组装上一步骤中获得的负极极片、隔膜、正极极片、电解液和外壳, 形成锂离子动力电池。
在本步骤中采用制作锂离子动力电池的常规工艺(在此不赘述),根据实际需要制作的锂离子动力电池的规格,组装上述部分,最后获得锂离子动力电池。
本实施例中,获得的锂离子动力电池的化成制度为0.01C充、0.1C放。

Claims (33)

  1. 一种锂离子动力电池,包括正极极片、隔膜、负极极片和电解液,其特征在于,
    所述负极极片为金属箔,
    所述隔膜形成在所述金属箔的表面,包括覆盖在所述金属箔的至少一个表面的多孔结构层,所述多孔结构层的材料是纳米陶瓷颗粒。
  2. 根据权利要求1所述的锂离子动力电池,其特征在于,所述金属箔是铜箔。
  3. 根据权利要求1或2所述的锂离子动力电池,其特征在于,所述正极极片是表面覆盖有覆盖层的铝箔,所述覆盖层的材料包括活性材料。
  4. 根据权利要求1或2所述的锂离子动力电池,其特征在于,所述纳米陶瓷颗粒的粒径不大于100nm。
  5. 根据权利要求4所述的锂离子动力电池,其特征在于,所述纳米陶瓷颗粒为含锂的化合物的颗粒和/或陶瓷材料的颗粒。
  6. 根据权利要求5所述的锂离子动力电池,其特征在于,所述含锂的化合物为LiAlO 2和/或Li 3PO 4
  7. 根据权利要求5所述的锂离子动力电池,其特征在于,所述陶瓷材料是Al 2O 3、ZrO 2和/或AlPO 4
  8. 根据权利要求1或2所述的锂离子动力电池,其特征在于,所述金属箔的两个表面上皆覆盖有所述多孔结构层,所述金属箔的两个表面上的两个所述多孔结构层彼此相同或不同。
  9. 根据权利要求1或2所述的锂离子动力电池,其特征在于,所述多孔结构层的厚度为10μm-40μm。
  10. 根据权利要求1或2所述的锂离子动力电池,其特征在于,所述 多孔结构的气孔率为50-70%。
  11. 根据权利要求1或2所述的锂离子动力电池,其特征在于,所述电解液的按质量百分比的组分为:10-20%的LiPF 6、25-40%的EC、30-45%的DMC、5-10%的EMC、5-10%的VC以及2-3%的PS。
  12. 一种锂离子动力电池的隔膜,其特征在于,所述隔膜形成在所述锂离子动力电池的负极极片的表面,所述负极极片是金属箔,所述隔膜包括多孔结构层,所述多孔结构层的材料是纳米陶瓷颗粒。
  13. 根据权利要求12所述的隔膜,其特征在于,所述所述金属箔是铜箔。
  14. 根据权利要求12所述的隔膜,其特征在于,所述纳米陶瓷颗粒的粒径不大于100nm。
  15. 根据权利要求12所述的隔膜,其特征在于,所述纳米陶瓷颗粒为含锂的化合物的颗粒和/或陶瓷材料的颗粒。
  16. 根据权利要求15所述的隔膜,其特征在于,所述含锂的化合物为LiAlO 2和/或Li 3PO 4
  17. 根据权利要求15所述的隔膜,其特征在于,所述陶瓷材料是Al 2O 3、Z rO 2和/或AlPO 4
  18. 根据权利要求12所述的隔膜,其特征在于,所述金属箔的两个表面上皆覆盖有所述多孔结构层,所述金属箔的两个表面上的两个所述多孔结构层彼此相同或不同。
  19. 根据权利要求12所述的隔膜,其特征在于,所述多孔结构层的气孔率为50-70%。
  20. 一种锂离子动力电池的隔膜的制作方法,用于制作根据权利要求12-19中任何一个所述的隔膜,其特征在于,包括:
    步骤一、调配含有所述纳米陶瓷颗粒的浆料;
    步骤二、将所述浆料涂覆到所述金属箔的至少一个表面上;
    步骤三、烘干所述涂覆有所述浆料的所述金属箔;
    步骤四、滚压完成所述烘干的所述金属箔的所述表面;
    其中,所述浆料的按质量百分比的组分为:80-95%的纳米陶瓷颗粒、5-10%的粘结剂和5-10%的溶剂;
    其中,所述粘结剂为聚偏氟乙烯或A123水性胶;且,
    当所述粘结剂为聚偏氟乙烯时,所述溶剂是N-甲基吡咯烷酮;当所述粘结剂是A123水性胶时,所述溶剂是水。
  21. 根据权利要求20所述的制作方法,其特征在于,所述步骤二中涂覆在所述基片的所述表面上的所述浆料的厚度为10μm-40μm。
  22. 根据权利要求20所述的制作方法,其特征在于,所述步骤三中的所述烘干的参数包括:温度为80-100℃,时间为24小时以上。
  23. 根据权利要求20所述的制作方法,其特征在于,所述步骤四中的经受所述滚压的所述金属箔受到的压力为0.1-1Mpa。
  24. 一种浆料,用于形成根据权利要求12-19中任何一个所述的隔膜,其特征在于,所述浆料的按质量百分比的组分为:80-95%的纳米陶瓷颗粒、5-10%的粘结剂和5-10%的溶剂;
    其中,所述纳米陶瓷颗粒为含锂的化合物的颗粒和/或陶瓷材料的颗粒;所述粘结剂为聚偏氟乙烯或A123水性胶;且,
    当所述粘结剂为聚偏氟乙烯时,所述溶剂是N-甲基吡咯烷酮;当所述粘结剂是A123水性胶时,所述溶剂是水。
  25. 根据权利要求24所述的浆料,其特征在于,所述含锂的化合物为LiAlO 2和/或Li 3PO 4
  26. 根据权利要求24所述的浆料,其特征在于,所述陶瓷材料是Al 2O 3、 ZrO 2和/或AlPO 4
  27. 根据权利要求24-26中任何一个所述的浆料,其特征在于,所述纳米陶瓷颗粒的粒径不大于100nm。
  28. 一种锂离子动力电池的制作方法,包括:
    准备负极极片、隔膜、正极极片、电解液和外壳;以及
    组装所述负极极片、所述隔膜、所述正极极片、所述电解液和所述外壳;
    其特征在于,
    所述负极极片为金属箔;
    所述隔膜形成在所述金属箔的表面,包括覆盖在所述金属箔的至少一个表面的多孔结构层,所述多孔结构层的材料是纳米陶瓷颗粒。
  29. 根据权利要求28所述的锂离子动力电池的制作方法,其特征在于,所述金属箔是铜箔。
  30. 根据权利要求28或29所述的锂离子动力电池的制作方法,其特征在于,所述正极极片是表面覆盖有覆盖层的铝箔,所述覆盖层的材料包括活性材料。
  31. 根据权利要求28或29所述的锂离子动力电池的制作方法,其特征在于,所述隔膜的制作步骤包括:
    步骤一、调配含有所述纳米陶瓷颗粒的浆料;
    步骤二、将所述浆料涂覆到所述金属箔的至少一个表面上;
    步骤三、烘干所述涂覆有所述浆料的所述金属箔;
    步骤四、滚压完成所述烘干的所述金属箔的所述表面;
    其中,所述浆料的按质量百分比的组分为:80-95%的纳米陶瓷颗粒、5-10%的粘结剂和5-10%的溶剂;
    其中,所述粘结剂为聚偏氟乙烯或A123水性胶;且,
    当所述粘结剂为聚偏氟乙烯时,所述溶剂是N-甲基吡咯烷酮;当所述粘结剂是A123水性胶时,所述溶剂是水。
  32. 根据权利要求31所述的锂离子动力电池的制作方法,其特征在于,
    所述步骤二中涂覆在所述基片的所述表面上的所述浆料的厚度为10μm-40μm;
    所述步骤三中的所述烘干的参数包括:温度为80-100℃,时间为24小时以上;
    所述步骤四中的经受所述滚压的所述金属箔受到的压力为0.1-1Mpa。
  33. 根据权利要求28或29所述的锂离子动力电池的制作方法,其特征在于,所述电解液的按质量百分比的组分为:10-20%的LiPF 6、25-40%的EC、30-45%的DMC、5-10%的EMC、5-10%的VC以及2-3%的PS。
PCT/CN2018/092748 2017-07-06 2018-06-26 锂离子动力电池及其制作方法、其隔膜及隔膜的制作方法,以及用于形成隔膜的浆料 WO2019007225A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710546297.5A CN107275670A (zh) 2017-07-06 2017-07-06 锂离子动力电池及其制作方法、其隔膜及隔膜的制作方法,以及用于形成隔膜的浆料
CN201710546297.5 2017-07-06

Publications (1)

Publication Number Publication Date
WO2019007225A1 true WO2019007225A1 (zh) 2019-01-10

Family

ID=60072307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092748 WO2019007225A1 (zh) 2017-07-06 2018-06-26 锂离子动力电池及其制作方法、其隔膜及隔膜的制作方法,以及用于形成隔膜的浆料

Country Status (2)

Country Link
CN (1) CN107275670A (zh)
WO (1) WO2019007225A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363666A (zh) * 2021-05-06 2021-09-07 惠州锂威新能源科技有限公司 隔膜的制备方法、隔膜及应用隔膜的电化学装置
CN113823878A (zh) * 2021-07-13 2021-12-21 北京工业大学 一种具有离子传输调控功能的锂电池隔膜的制备方法
CN116526069A (zh) * 2023-07-04 2023-08-01 宁德时代新能源科技股份有限公司 隔离膜、电池单体、电池和用电装置
EP4293808A1 (de) * 2022-06-14 2023-12-20 Volkswagen Ag Verfahren und vorrichtung zur herstellung eines festkörperseperators für eine batteriezelle

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275670A (zh) * 2017-07-06 2017-10-20 钟旭航 锂离子动力电池及其制作方法、其隔膜及隔膜的制作方法,以及用于形成隔膜的浆料
CN108598339A (zh) * 2017-11-16 2018-09-28 乳源东阳光氟树脂有限公司 一种智能型聚合物锂电池隔膜
KR102207528B1 (ko) * 2017-12-15 2021-01-26 주식회사 엘지화학 다공성 분리막 및 이를 포함하는 전기화학소자
CN109004153A (zh) * 2018-06-28 2018-12-14 中国电力科学研究院有限公司 一种超薄电极支撑型无机隔膜及其制备方法
US11094998B2 (en) * 2019-06-19 2021-08-17 GM Global Technology Operations LLC Ceramic-coated separators for lithium-containing electrochemical cells and methods of making the same
CN110311149A (zh) * 2019-06-27 2019-10-08 湖南立方新能源科技有限责任公司 一种锂一次电池
CN110429230A (zh) * 2019-08-12 2019-11-08 珠海格力电器股份有限公司 锂离子电池及其极片

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101002347A (zh) * 2004-09-02 2007-07-18 株式会社Lg化学 有机/无机复合多孔薄膜和由其制备的电化学装置
CN101752610A (zh) * 2008-12-18 2010-06-23 中国电子科技集团公司第十八研究所 一种非水电解质金属锂电池及其制备方法
CN202474071U (zh) * 2011-10-31 2012-10-03 珠海光宇电池有限公司 一种锂离子电池
KR20160132651A (ko) * 2015-05-11 2016-11-21 주식회사 엘지화학 유기/무기 복합 다공성 세퍼레이터 및 그를 포함하는 전기화학소자
CN106169576A (zh) * 2016-07-27 2016-11-30 芜湖凯尔电气科技有限公司 一种聚合物薄型锂电池
CN107275670A (zh) * 2017-07-06 2017-10-20 钟旭航 锂离子动力电池及其制作方法、其隔膜及隔膜的制作方法,以及用于形成隔膜的浆料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208121A (en) * 1991-06-18 1993-05-04 Wisconsin Alumni Research Foundation Battery utilizing ceramic membranes
KR100659820B1 (ko) * 2004-11-17 2006-12-19 삼성에스디아이 주식회사 리튬 이온 이차 전지
CN102044704A (zh) * 2010-12-16 2011-05-04 天津力神电池股份有限公司 抑制锂离子聚合物电池膨胀的方法
CN103633363B (zh) * 2012-08-29 2016-12-07 比亚迪股份有限公司 一种锂离子电池及其制备方法
CN104124414B (zh) * 2013-04-28 2017-06-20 华为技术有限公司 一种锂离子电池复合电极片及其制备方法和锂离子电池
CN106299214A (zh) * 2015-06-05 2017-01-04 东莞市亿顺新材料有限公司 一种锂离子电池及其陶瓷隔膜
CN105185938A (zh) * 2015-07-21 2015-12-23 大连比克动力电池有限公司 一种锂离子电池负极及其制得的锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101002347A (zh) * 2004-09-02 2007-07-18 株式会社Lg化学 有机/无机复合多孔薄膜和由其制备的电化学装置
CN101752610A (zh) * 2008-12-18 2010-06-23 中国电子科技集团公司第十八研究所 一种非水电解质金属锂电池及其制备方法
CN202474071U (zh) * 2011-10-31 2012-10-03 珠海光宇电池有限公司 一种锂离子电池
KR20160132651A (ko) * 2015-05-11 2016-11-21 주식회사 엘지화학 유기/무기 복합 다공성 세퍼레이터 및 그를 포함하는 전기화학소자
CN106169576A (zh) * 2016-07-27 2016-11-30 芜湖凯尔电气科技有限公司 一种聚合物薄型锂电池
CN107275670A (zh) * 2017-07-06 2017-10-20 钟旭航 锂离子动力电池及其制作方法、其隔膜及隔膜的制作方法,以及用于形成隔膜的浆料

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363666A (zh) * 2021-05-06 2021-09-07 惠州锂威新能源科技有限公司 隔膜的制备方法、隔膜及应用隔膜的电化学装置
CN113823878A (zh) * 2021-07-13 2021-12-21 北京工业大学 一种具有离子传输调控功能的锂电池隔膜的制备方法
EP4293808A1 (de) * 2022-06-14 2023-12-20 Volkswagen Ag Verfahren und vorrichtung zur herstellung eines festkörperseperators für eine batteriezelle
CN116526069A (zh) * 2023-07-04 2023-08-01 宁德时代新能源科技股份有限公司 隔离膜、电池单体、电池和用电装置
CN116526069B (zh) * 2023-07-04 2023-09-15 宁德时代新能源科技股份有限公司 隔离膜、电池单体、电池和用电装置

Also Published As

Publication number Publication date
CN107275670A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
WO2019007225A1 (zh) 锂离子动力电池及其制作方法、其隔膜及隔膜的制作方法,以及用于形成隔膜的浆料
CN113410432B (zh) 一种负极片、制备方法及包含其的锂离子电池
TWI443888B (zh) 鋰離子電池
US9312527B2 (en) Separator having heat resistant insulation layers
CN111540880B (zh) 一种负极片、制备方法及包含其的锂离子电池
CN111554967B (zh) 一种全固态电池及其制备方法
JP4961654B2 (ja) 非水電解質二次電池
JP6754768B2 (ja) 非水電解質二次電池
JP7269571B2 (ja) 全固体電池の製造方法
WO2021228193A1 (zh) 高能量密度长寿命的快充锂离子电池及其制备方法
JP6524610B2 (ja) 非水系二次電池用正極活物質及びその製造方法
JP6127528B2 (ja) 電極、全固体電池、およびそれらの製造方法
CN110100349B (zh) 圆筒形的非水电解质二次电池
US20210036360A1 (en) Sulfide-impregnated solid-state battery
JP2017134997A (ja) 非水電解質二次電池
CN111710900A (zh) 一种石墨烯基“磷酸亚铁锂正极-硅氧复合负极”低温高倍率高能量密度的锂离子电池
CN111883765A (zh) 锂电池正极活性材料及其制备方法和锂电池
JP2011216295A (ja) 円筒型非水電解質二次電池
CN113270571B (zh) 锂离子二次电池的制造方法和负极材料
KR20150042350A (ko) 전고상 리튬이차전지용 탄소섬유 시트 집전체의 제조방법 및 탄소섬유 시트 집전체를 포함하는 전고상 리튬이차전지
CN113488611A (zh) 一种电极组件及二次电池
JP6076802B2 (ja) リチウムイオン二次電池用負極の製造方法
TWI565125B (zh) 鋰離子電池電極複合材料及其製備方法以及電池
JP2013149407A (ja) リチウムイオン二次電池およびその製造方法
JP6626361B2 (ja) リチウムイオン二次電池用電極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828451

Country of ref document: EP

Kind code of ref document: A1