WO2019006765A1 - 光伏组件用复合封装材料及该复合封装材料的制备方法 - Google Patents

光伏组件用复合封装材料及该复合封装材料的制备方法 Download PDF

Info

Publication number
WO2019006765A1
WO2019006765A1 PCT/CN2017/092291 CN2017092291W WO2019006765A1 WO 2019006765 A1 WO2019006765 A1 WO 2019006765A1 CN 2017092291 W CN2017092291 W CN 2017092291W WO 2019006765 A1 WO2019006765 A1 WO 2019006765A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder coating
acrylic resin
polyester resin
curing agent
thermosetting powder
Prior art date
Application number
PCT/CN2017/092291
Other languages
English (en)
French (fr)
Inventor
戴天贺
骆飚
陈文浩
龙国柱
刘皎彦
练成荣
王伟力
Original Assignee
老虎表面技术新材料(苏州)有限公司
上迈(上海)新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 老虎表面技术新材料(苏州)有限公司, 上迈(上海)新能源科技有限公司 filed Critical 老虎表面技术新材料(苏州)有限公司
Priority to CN201780092920.2A priority Critical patent/CN110832138B/zh
Priority to PCT/CN2017/092291 priority patent/WO2019006765A1/zh
Publication of WO2019006765A1 publication Critical patent/WO2019006765A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Definitions

  • the present invention belongs to the field of photovoltaics, and in particular relates to a composite packaging material for a photovoltaic module, and to a method for preparing the composite packaging material.
  • Solar photovoltaic power generation relies on solar cells to directly convert light energy into electrical energy.
  • the total global production of photovoltaic cells has increased at an average annual growth rate of more than 40%.
  • the installed capacity of photovoltaic systems worldwide has reached 100 GW.
  • Photovoltaic power generation is expected to account for 10% of the world's energy supply by 2030, making a substantial contribution to the world's energy supply and energy mix.
  • the existing typical photovoltaic module packaging structure from top to bottom includes: tempered glass layer 30c, on EV A layer 21c, photovoltaic panel layer 10c, lower EVA layer 22c, back sheet layer 40c, wherein: the density of the tempered glass layer is 2.5 g/cm 3 , and the common thickness of the tempered glass is 3.2 mm, so that the tempered glass glass is The weight of square meters is up to 8Kg.
  • the PV modules packaged by them are usually of higher quality.
  • the weight of the PV modules is more than lOKg per square meter.
  • the weight of PV modules per square meter is at least 12Kg, when it is applied in construction.
  • the support structure of the photovoltaic module is put forward higher requirements, which increases the difficulty of construction and the cost of installation.
  • the specific performance is as follows: During the installation of the roof or the wall, there is heavy weight. The installation is labor intensive and difficult to implement; especially in some cases, due to the limitation of the load bearing capacity of the building, it is impossible to Installation of PV modules.
  • the existing photovoltaic module packaging structure has a single appearance and is not easily changed to meet the requirements of different architectural aesthetics.
  • the Chinese invention patent of CN102516852A discloses a weather-resistant, high-heat-conducting coating and a heat-dissipating solar backsheet, but the coating is in production. A large amount of solvent is used in the process, which is very polluting to the environment and does not meet the green environmental standards.
  • the Chinese invention patent of CN102610680A discloses a UV-curable weather-resistant coating solar cell backsheet, but the liquid coating process used is complicated, the defect rate is high, and the equipment investment is large.
  • fluoropolymers are used in a series of Chinese invention patents such as CN102712184A, CN103346182A, CN102969382B, CN101290950B, CN103958196A, etc., but the fluoropolymer is expensive and increases the production cost, and the above patents It is only a material for photovoltaic backsheets, which is opaque, low in hardness and weak in rigidity, and is not suitable for replacing existing tempered glass.
  • the object of the present invention is to provide a composite packaging material for a photovoltaic module, which is not only low in manufacturing cost, but also meets the requirements of the technical standards of the photovoltaic industry such as anti-ultraviolet, anti-aging, anti-shock, fireproof, etc. It effectively solves the problem of lighter weight of photovoltaic module packaging materials, improves installation convenience, and reduces installation cost, and is very suitable for scale application in photovoltaic field.
  • Another object of the present invention is to provide a method for preparing a composite packaging material for a photovoltaic module as described above, which realizes any change in the package size of the photovoltaic module to meet the installation requirements of different buildings, and further facilitates the installation and application of the photovoltaic component.
  • Packaging materials for photovoltaic modules made of super weather-resistant polyester powder coatings have poor weatherability in outdoor installation environments, and poor performance in mechanical properties with high mechanical installation requirements for photovoltaic modules may shorten photovoltaics The life of the component.
  • the present application hopes to find a packaging material for photovoltaic components with more excellent performance.
  • a composite packaging material for a photovoltaic module comprising the following materials:
  • a fiber cloth the fiber cloth is woven from a fiber material
  • thermosetting powder coating the raw material of the hybrid thermosetting powder coating comprises an acrylic resin
  • an acrylic resin curing agent a polyester resin, and a polyester resin curing agent
  • the fiber cloth has a basis weight ranging from 30 to 400 g/m 2
  • the mixed thermosetting powder coating has a weight per unit area of 100-400 coated on the fiber cloth. g/m 2.
  • the fiber material is any one or a combination of glass fiber, carbon fiber and aramid fiber; more preferably, the fiber material is glass fiber.
  • the fiber material has a monofilament diameter ranging from 3 to 23 ⁇ m.
  • the fiber cloth is made of a combination of any one of a plain weave, a twill, a satin, a rib, or a mat, or a plurality of weaving methods; more preferably, The fiber cloth is made of twill of the fiber material.
  • the ratio of the weight ratio of the fiber cloth to the mixed thermosetting powder coating is 20
  • the ratio of the weight ratio of the fiber cloth to the mixed thermosetting powder coating is in the range of 30-50 parts: 50-70 parts.
  • the fiber cloth has a basis weight ranging from 30 to 400 g/m 2
  • the mixed type thermosetting The powder coating is applied to the fiber cloth in a weight per unit area ranging from 100 to 400 g/m 2 .
  • the ratio by weight of the acrylic resin to the polyester resin ranges from 30 to 70 parts: 70 to 30 parts.
  • the ratio by weight of the acrylic resin to the polyester resin ranges from 40 to 60 parts: 60 to 40 parts.
  • the mixed thermosetting powder coating has a gelation range of 50-1000 s, a swash plate flow range of 10-40 cm, and a softening point temperature range of 80-120 °C.
  • the mixed thermosetting powder coating is prepared by a melt mixing process using a raw material comprising an acrylic resin, an acrylic resin cured ij, a polyester resin, and a polyester resin curing agent.
  • the mixed thermosetting powder coating is prepared by a melt mixing process using an acrylic powder coating and a polyester powder coating, wherein the acrylic powder coating adopts a raw material including an acrylic resin and an acrylic resin curing agent. It is prepared by a melt mixing process; the polyester powder coating is prepared by a melt mixing process using a raw material including a polyester resin and a polyester resin curing agent.
  • the mixed thermosetting powder coating is prepared by a dry mixing process using an acrylic powder coating and a polyester powder coating, wherein the acrylic powder coating adopts a raw material including an acrylic resin and an acrylic resin curing agent.
  • the polyester powder coating is prepared by a melt mixing process using a raw material including a polyester resin and a polyester resin curing agent.
  • the mixed thermosetting powder coating is prepared by a melt mixing process using an acrylic powder coating, a polyester resin, and a polyester resin curing agent, wherein the acrylic powder coating comprises acrylic resin and acrylic acid.
  • the raw material of the resin curing agent is prepared by a melt mixing process
  • the mixed thermosetting powder coating is prepared by a melt mixing process using an acrylic resin, an acrylic resin curing agent and a polyester powder coating, wherein the polyester powder coating comprises a polyester resin and
  • the raw material of the polyester curing agent is prepared by a melt mixing process.
  • the acrylic resin curing agent is different from the polyester resin.
  • the polyester resin curing agent is different from the acrylic resin.
  • the acrylic resin curing agent is a carboxyl polyester resin, a hydroxy polyester resin, a triglycidyl isocyanurate, a triglycidyl trimellitate, a diglycidyl terephthalate.
  • hydroxyalkylamide isocyanate, blocked polyisocyanate, uretdione, phthalic anhydride, trimellitic anhydride, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecane Any of diacid, pentadecanedioic acid, hexadecandioic acid, dicyandiamide, azelaic acid dihydrazide hydrogen, diaminodiphenyl sulfone, tetramethyl glycoluril, amino resin, hydrogenated epoxy Or a mixture of any of the ratios.
  • the polyester resin curing agent is GMA acrylic resin, triglycidyl isocyanurate, triglycidyl trimellitate, diglycidyl terephthalate, hydroxyalkylamide Any one or more of any ratio of isocyanate, blocked polyisocyanate, uretdione, phthalic anhydride, trimellitic anhydride, diaminodiphenyl sulfone, tetramethyl glycoluril, amino resin, hydrogenated epoxy mixing.
  • the acrylic resin is a mixture of one or more of a GMA acrylic resin, a hydroxy acrylic resin or a carboxy acrylic resin or a bifunctional acrylic resin.
  • the acrylic resin is composed of acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, hydroxypropyl acrylate, glycidyl acrylate, methacrylic acid, methacrylic acid.
  • the body is polymerized.
  • the acrylic resin is a GMA acrylic resin
  • the refractive index ranges from 1.40 to 1.50
  • the epoxy equivalent ranges from 300 to 800 g/eq
  • the glass transition temperature ranges from 40 to 70 ° C
  • the viscosity ranges from 75 to 75. -600Pa.s
  • softening point temperature range of 100-120 °C.
  • the acrylic resin is a hydroxy acrylic resin having a refractive index ranging from 1.40 to 1.50, a hydroxyl value ranging from 15 to 70 mgKOH/g, a glass transition temperature ranging from 40 to 70 ° C, and a viscosity range of 75- 600Pa, s, softening point temperature range of 100-120 ° C.
  • the acrylic resin is a carboxy acrylic resin having a refractive index ranging from 1.40 to 1.50, an acid value ranging from 15 to 85 mgKOH/g, a glass transition temperature ranging from 40 to 70 ° C, and a viscosity range of 75- 600Pa, s, softening point temperature range of 100-120 ° C.
  • the polyester resin is a mixture of one or both of a hydroxy polyester resin or a carboxy polyester resin.
  • the polyester resin is composed of ethylene glycol, propylene glycol, neopentyl glycol, 2-methylpropanediol, 1
  • one or more monomers of 6-hexanediol, terephthalic acid, isophthalic acid, adipic acid, sebacic acid, phthalic anhydride, and trimellitic anhydride are polymerized.
  • the polyester resin is a hydroxy polyester resin having a hydroxyl value in the range of 30 to 300 mgKOH/g, a glass transition temperature in the range of 50 to 75 ° C, and a viscosity in the range of 15-200 Pa-s.
  • the polyester resin is a carboxy polyester resin having an acid value in the range of 15-85 mgKOH/g, a glass transition temperature in the range of 50-75 ° C, and a viscosity in the range of 15-200 Pa-s.
  • the ratio by weight of the acrylic resin to the acrylic resin curing agent ranges from 95 to 75 parts.
  • the ratio by weight of the polyester resin to the polyester resin curing agent is in the range of 98-80 parts: 2-20 parts.
  • the acrylic powder coating has a gelation range of 100-600 s, a swash plate flow range of 1 5-35 cm, and a softening point temperature range of 100-110 °C.
  • the polyester powder coating has a gelatinized crucible range of 150-800 s, a swash plate flow range of 10-25 cm, and a softening point temperature range of 100-110 °C.
  • the mixed thermosetting powder coating further comprises an auxiliary; more preferably, the auxiliary component by weight is 0.1-40% by weight of the mixed thermosetting powder coating,
  • Additives are polyamide wax, polyolefin wax, amide modified phenol urea surfactant, benzoin, polydimethylsiloxane, vinyltrichlorosilane, n-butyltriethoxysilane, orthosilicate Methyl ester, monoalkoxy pyrophosphate, acrylate, phenolic resin, urea resin, melamine formaldehyde resin, distearyl ethylenediamine, mixture of ethylene oxide and propylene oxide, hindered phenol, thiodi Propionic acid diester, benzophenone, salicylate derivative, hindered amine, alumina, fumed silica, tetrabromobisphenol VIII, decabromodiphenylethane, tricresyl phosphate, aluminum hydroxide,
  • thermosetting powder coating is uniformly coated on the fiber cloth by a coating device; [0050] b), by the pressure heating to achieve thermal bonding of the hybrid thermosetting powder coating with the fiber cloth.
  • step b) finishing the thermally bonded hybrid thermosetting powder coating and the fiber cloth are cut in sections;
  • the thermal bonding process has a pressurization range of 0.05-0.25 MPa, the thermal bonding process has a heating temperature range of 90-130 ° C, and the heated turn-up range is 5-20 seconds.
  • melt mixing process covered by the present invention generally includes premixing and melt extrusion of raw materials.
  • the process steps such as milling can achieve a good uniform dispersion of the raw materials;
  • the dry mixing process according to the present invention refers to directly mixing the acrylic powder coating and the polyester powder coating;
  • the GMA referred to in the present invention refers to the shrinkage of methacrylic acid. Glycerides.
  • the present invention proposes to use a synthetic thermosetting powder coating made of an acrylic resin, an acrylic resin curing agent, a polyester resin, and a polyester resin curing agent, and then uniformly coating the mixed thermosetting powder coating on the fiber cloth.
  • a synthetic thermosetting powder coating made of an acrylic resin, an acrylic resin curing agent, a polyester resin, and a polyester resin curing agent, and then uniformly coating the mixed thermosetting powder coating on the fiber cloth.
  • the composite packaging material provided by the invention effectively avoids or reduces the penetration of moisture from the outside into the interior of the photovoltaic module. Strong resistance to humidity and heat
  • the hybrid thermosetting powder coating in the composite packaging material has good wettability with the fiber cloth, and has good adhesion to the fiber cloth.
  • the composite packaging material of the invention has excellent overall mechanical properties, and has excellent weather resistance and permeability.
  • the optical property can effectively ensure the service life of the photovoltaic module to which the invention is applied in a harsh installation environment including a high temperature and high humidity environment, an outdoor strong ultraviolet light or a strong wind environment, and a high mechanical installation environment, and the invention has low cost and is prepared.
  • the process is simple and is very conducive to large-scale promotion and implementation.
  • the present invention also uniformly coats the mixed thermosetting powder coating on the fiber cloth by a coating device, and then passes through Over-pressurization heating pre-bonds the hybrid thermosetting powder coating material to the fiber cloth, and finally cuts and fabricates a composite packaging material for a photovoltaic module of a suitable size, so that any change in the package size of the photovoltaic module can be realized to adapt to different buildings.
  • the installation requirements further facilitate the installation and application of photovoltaic modules.
  • FIG. 1 is a block diagram showing the steps of preparing a composite packaging material for a photovoltaic module according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a preparation apparatus of a composite packaging material for a photovoltaic module according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a package structure of a conventional typical photovoltaic module according to the background art of the present invention.
  • Embodiments of the present invention disclose a composite packaging material for a photovoltaic module.
  • the packaging material includes the following materials: fiber cloth, fiber cloth woven from fiber material; mixed thermosetting powder coating, mixed thermosetting powder coating
  • the raw material includes an acrylic resin, an acrylic resin curing agent, a polyester resin, and a polyester resin curing agent; wherein the mixed thermosetting powder coating is uniformly coated on the fiber cloth.
  • the embodiment of the present invention also discloses a method for preparing a composite packaging material for a photovoltaic module as described above, wherein the operation steps thereof include the following: a), uniformly mixing the mixed thermosetting powder coating material through a coating device Coating on the fiber cloth; b) thermally bonding the mixed thermosetting powder coating to the fiber cloth by pressure heating; c), performing the thermal bonding of the mixed thermosetting powder coating and the fiber cloth by the above step b) Segmentation cutting; d), obtaining composite packaging materials for photovoltaic modules.
  • a composite packaging material for a photovoltaic module comprising the following materials:
  • a fiber cloth the fiber cloth is woven from a fiber material
  • Mixed thermosetting powder coating raw materials of mixed thermosetting powder coating include acrylic resin, propylene An acid resin curing agent, a polyester resin, and a polyester resin curing agent; wherein the mixed thermosetting powder coating is uniformly coated on the fiber cloth;
  • the weight ratio of the fiber cloth to the mixed thermosetting powder coating ranges from 20 to 60 parts: 40 to 80 parts; more preferably, in the embodiment of the invention, the fiber cloth
  • the ratio by weight to the mixed thermosetting powder coating is in the range of 30-50 parts: 50-70 parts; specifically, in the present embodiment, the ratio by weight of the fiber cloth to the mixed thermosetting powder coating is 30 parts: 70 parts . It is determined by the embodiment of the present invention that the ratio by weight of the fiber cloth to the mixed thermosetting powder coating is not within the preferred range of the embodiment of the present invention, specifically, when the ratio of the weight ratio of the fiber cloth to the mixed thermosetting powder coating is 15 parts: When 85 parts of enamel, the mechanical strength is obviously deteriorated.
  • the weight ratio of the fiber cloth to the mixed type thermosetting powder coating is 85 parts: 15 parts ⁇
  • the weather resistance is obviously deteriorated, and even the photovoltaic standard requirement cannot be met, but it is also verified by the verification.
  • the suitable range of the weight ratio of the fiber cloth to the mixed thermosetting powder coating is wider than the applicable range of the applicant's prior application numbers CN201610685536.0 and CN201610685240.9, and the raw material can be improved.
  • the scope of the selection, the implementation of the present invention will not be further described.
  • the mixed thermosetting powder coating has a basis weight on the fiber cloth ranging from 100 to 400 g/m 2 , specifically, in the embodiment, the hybrid thermosetting property The powder coating was applied to the fiber cloth to have a basis weight of 100 g/m 2 .
  • the basis weight of the fiber cloth ranges from 30 to 400 g/m 2 , and the weight of the fiber cloth is ensured under the strength of the fiber cloth, specifically, in the embodiment.
  • the fiber cloth has a basis weight of 100 g/m 2 ;
  • the fiber cloth is made of a combination of any one of a plain weave, a twill, a satin, a rib, or a mat, or a plurality of weaving methods, more preferably
  • the fiber cloth is made of the fiber material by the twill weaving method, because the fiber cloth surface made by the twill weave method is flat, more favorable for the infiltration of the mixed thermosetting powder coating, and the fiber cloth is transparent. The effect is good and there is better support strength; of course, those skilled in the art can select other well-known weaving methods according to actual needs;
  • the fiber material is any one or a combination of glass fiber, carbon fiber and aramid fiber to ensure good insulation and weather resistance of the fiber cloth, and is compatible with photovoltaic Related standard requirements, more preferably, in the present embodiment, the fiber material is glass fiber, which is because of the glass The glass fiber has good light transmittance, low cost, wide source, and mature preparation and compounding process.
  • the fiber material is glass fiber, which is because of the glass The glass fiber has good light transmittance, low cost, wide source, and mature preparation and compounding process.
  • the filament diameter of the fiber material ranges from 3 to 23 ⁇ m, and particularly preferably, In the embodiment, the diameter of the monofilament of the fiber material is 3 ⁇ m ; in other embodiments of the present invention, those skilled in the art can select the range of the diameter of the monofilament according to actual needs, and the embodiments of the present invention will not be further illustrated.
  • the mixed thermosetting powder coating has a gelatinization range of 50-1000 s, a swash plate flow range of 10-40 cm, and a softening point temperature range of 80-120 ° C; more preferably, in the embodiment of the present invention.
  • the mixed thermosetting powder coating has a gelatinized crucible range of 100-800 s, a swash plate flow range of 10-3 5 cm, and a softening point temperature range of 100-110 °C.
  • the acrylic resin has good light transmittance, insulation and weather resistance, it meets the requirements of the relevant standards of photovoltaics.
  • the refractive index of the acrylic resin ranges from 1.40 to 1.50, and the glass transition temperature range It is 40-70 ° C, the viscosity range is 75-600 Pa, s, and the softening point temperature ranges from 100-120 ° C.
  • the acrylic resin is a mixture of one or more of GMA acrylic resin, hydroxy acrylic resin or carboxy acrylic resin or difunctional acrylic resin.
  • the bifunctional acrylic resin may be an acrylic resin including a hydroxyl functional group and a carboxyl functional group, and may also include other types of functional groups.
  • the acrylic resin is composed of acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, hydroxypropyl acrylate, glycidyl acrylate, methacrylic acid. , one of methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, hydroxypropyl methacrylate, glycidyl methacrylate, styrene, acrylonitrile Or a plurality of monomers are polymerized.
  • those skilled in the art can select other monomers to polymerize according to actual needs to prepare the acrylic resin of the embodiment of the present invention.
  • the acrylic resin is a GMA acrylic resin
  • the refractive index ranges from 1.40 to 1.50
  • the epoxy equivalent ranges from 300 to 800 g/eq
  • the glass transition temperature ranges from 40 to 70 ° C
  • the viscosity ranges from 75 to 600 Pa, s.
  • the softening point temperature ranges from 100 to 120 ° C; still more preferably, in the embodiment of the invention, the GMA acrylic resin has a refractive index in the range of 1.42-1.48, the epoxy equivalent range is 450-700 g/eq, and the glass transition temperature range It is 45-6 0 ° C, the viscosity range is 150-400 Pa, s, and the softening point temperature ranges from 105-110 ° C.
  • the acrylic resin is a hydroxy acrylic resin having a refractive index ranging from 1.40 to 1.50 and a hydroxyl value of 15 -70 mgKOH/g, glass transition temperature in the range of 40-70 ° C, viscosity in the range of 75-600 Pa, s, softening point temperature in the range of 100-120 ° C; still more preferably, in the embodiment of the invention, hydroxy acrylic acid
  • the resin has a refractive index range of 1.42-1.48, a hydroxyl value range of 30-50 mgKOH/g, a glass transition temperature range of 45-60 ° C, a viscosity range of 150-400 Pa, and a softening point temperature range of 105-110 ° C. .
  • the acrylic resin is a carboxy acrylic resin having a refractive index ranging from 1.40 to 1.50 and an acid value of 15 -85 mg KOH / g, glass transition temperature in the range of 40-70 ° C, viscosity in the range of 75-600 Pa, s, softening point temperature in the range of 100-120 ° C; still more preferably, in the embodiment of the invention, carboxy acrylic acid The resin has a refractive index range of 1.42-1.48, an acid value range of 30-60 mgKOH/g, a glass transition temperature range of 45-60 ° C, a viscosity range of 150-400 Pa, and a softening point temperature range of 105-110 ° C. .
  • the acrylic resin curing agent is a carboxy polyester resin, a hydroxy polyester resin, a triglycidyl isocyanurate, a benzene benzene.
  • the polyester resin is one of a hydroxy polyester resin or a carboxy polyester resin. Or a mixture of the two.
  • the polyester resin is composed of ethylene glycol, propylene glycol, neopentyl glycol, 2-methyl Polymerization of one or more monomers of propylene glycol, 1,6-hexanediol, terephthalic acid, isophthalic acid, adipic acid, sebacic acid, phthalic anhydride, and trimellitic anhydride
  • those skilled in the art can select other monomers to polymerize to form the polyester resin of the embodiment of the present invention according to actual needs.
  • the polyester resin is a hydroxy polyester resin having a hydroxyl value ranging from 30 to 300 mgKOH/g, and a glass transition temperature range. It is 50-75 ° C, the viscosity ranges from 15 to 200 Pa, s ; still more preferably, in the embodiment of the invention, the hydroxyl group of the hydroxy polyester resin ranges from 30 to 100 mg KOH / g, and the glass transition temperature ranges from 55 -65 ° C, viscosity range of 1 5-100 Pa-s.
  • the polyester resin is a carboxyl polyester resin having an acid value ranging from 15 to 85 mgKOH/g, a glass transition temperature. The range is 50-75 ° C, and the viscosity ranges from 15 to 200 Pa, s. More preferably, in the embodiment of the present invention, the carboxyl group-containing polyester resin has an acid value in the range of 30 to 60 mgKOH/g, a glass transition temperature in the range of 55 to 65 ° C, and a viscosity in the range of 15 to 100 Pa-s.
  • the polyester resin curing agent is GMA acrylic resin, triglycidyl isocyanurate, trimellitic acid tri-shrinkage Glyceryl ester, diglycidyl terephthalate, hydroxyalkylamide, isocyanate, blocked polyisocyanate, uretdione, phthalic anhydride, trimellitic anhydride, diaminodiphenyl sulfone, tetramethyl glycoluril, amino resin Any one or a mixture of hydrogenated epoxies in any ratio.
  • the weight ratio of the acrylic resin to the acrylic resin curing agent ranges from 95 to 75 parts: 5-25 parts;
  • the ratio of the weight ratio of the polyester resin to the polyester resin curing agent in the embodiment of the present invention is preferably 98-80 parts: 2-20 parts;
  • the ratio by weight of the acrylic resin to the polyester resin ranges from 30 to 70 parts: 70 to 30 parts; still more preferably, in the embodiment of the invention, in the mixed type In the thermosetting powder coating, the ratio by weight of the acrylic resin to the polyester resin ranges from 40 to 60 parts: 60 to 40 parts.
  • the hybrid thermosetting powder coating is prepared by a melt mixing process using a raw material including an acrylic resin, an acrylic resin curing agent, a polyester resin, and a polyester resin curing agent.
  • the raw materials in the mixed system can be better dispersed in each other, so that the uniformity of the mixed system is stronger, and the transmittance and surface properties of the obtained composite packaging material are more stable;
  • the acrylic resin curing agent is different from the polyester resin; further preferably, in the embodiment of the invention, the polyester resin curing agent is different from the acrylic resin.
  • the melt mixing process according to the embodiment of the present invention generally includes a process step of premixing, melt extrusion, milling, and the like, which can achieve good uniform dispersion of the raw materials.
  • premixed mash The interval may be selected between 2 and 10 minutes, and then the premixed mixture is extruded and pressed into a sheet by a screw extruder.
  • the aspect ratio of the extruder may be selected.
  • the heating temperature of the extruder is selected between 80-120 ° C
  • the screw speed is selected at 200-800 rpm
  • the flakes are pulverized into small pieces and milled into a mill to a certain particle size.
  • the rotational speed of the mill is selected from 50 to 150 rpm.
  • the particle size range of the mixed thermosetting powder coating is controlled to be 35-300 ⁇ . between.
  • the hybrid thermosetting powder coating provided by the embodiment of the present invention may further add a certain amount of auxiliary agent (which may be added during the premixing stage of the raw material) for further use.
  • auxiliary agent which may be added during the premixing stage of the raw material
  • the auxiliary component by weight is part by weight of the mixed thermosetting powder coating 0.1-40%, the same can also be based on the actual needs of the installation of photovoltaic modules, by adding additives to adjust the color of the hybrid thermosetting powder coating, further conducive to the actual installation and application of photovoltaic modules.
  • Additives are polyamide wax, polyolefin wax, amide modified phenol urea surfactant, benzoin, polydimethylsiloxane, vinyltrichlorosilane, n-butyltriethoxysilane, orthosilicate Methyl ester, monoalkoxy pyrophosphate, acrylate, phenolic resin, urea resin, melamine formaldehyde resin, distearyl ethylenediamine, mixture of ethylene oxide and propylene oxide, hindered phenol, thiodi Propionic acid diester, benzophenone, salicylate derivative, hindered amine, alumina, fumed silica, tetrabromobisphenol octa, decabromodiphenylethane, phosphorus Any one or a mixture of any of a mixture of tricresyl ester, aluminum hydroxide, magnesium hydroxide, barium sulfate, titanium dioxide, and carbon black.
  • the acrylic resin is a GMA acrylic resin having a refractive index in the range of 1.42-1.48, an epoxy equivalent in the range of 450-700 g/eq, and a glass transition temperature in the range of 45-60 ° C.
  • viscosity range is 150-400Pa, s, softening point temperature range is 105-110 ° C
  • acrylic resin curing agent is dodecanedioic acid, wherein the ratio of GMA acrylic resin to dodecanedioic acid is 85 parts by weight : 15 parts; polyester resin is a carboxyl super weather resistant polyester resin with an acid value of 50 mgKOH/g, a glass transition temperature of 60 ° C, a viscosity of 80 Pa.s, and a polyester resin curing agent is an isocyanuric acid tricondensate a glyceride, wherein the ratio by weight of the carboxyl super weather resistant polyester resin to the triglycidyl isocyanurate is 95 parts: 5 parts; particularly preferably, in the present embodiment, the GMA acrylic resin and the carboxyl super weather resistant polyester The weight ratio of the resin was 50 parts: 50 parts.
  • the method for preparing a composite packaging material for a photovoltaic module as described above, wherein the operation steps thereof include the following:
  • the mixed thermosetting powder coating is uniformly coated on the fiber cloth by a coating device
  • the thermal bonding process needs to adopt a suitable range of pressurization and heating control, because the mixed thermosetting powder coating and the fiber can be made only under the appropriate pressure and temperature. A better hot-melt bonding process between the cloths is achieved, which ultimately ensures that the lamination process in the process of preparing the photovoltaic component package is met, thereby obtaining a packaging material that is truly applicable to the photovoltaic cell component package. Therefore, preferably, in the embodiment of the present invention, the press range of the thermal bonding process is 0.05-0.25 Mpa, the heating temperature range of the thermal bonding process is 90-130 ° C, and the heating range is 5-20 seconds. Specifically, in the present embodiment, the pressing pressure of the thermal bonding process is 0.05 MPa, the heating temperature of the thermal bonding process is 130 ° C, and the heating enthalpy range is 5 seconds.
  • the method for preparing the composite packaging material for the photovoltaic module adopts the device shown in FIG. 2, and in actual practice, the fiber cloth is placed in the fiber feeder 51, and the mixture is mixed. Thermoset The powder coating is uniformly applied to the fiber cloth output from the fiber feeder 51 by the coating device 52, and then heated by the hot melt laminator 53 to thermally bond the mixed thermosetting powder coating material to the fiber cloth, which will be completed. The thermally bonded hybrid thermosetting powder coating and the fiber cloth are subjected to sectional cutting to obtain a composite packaging material for a photovoltaic module.
  • the coating device may also employ a dusting head, and the crucible coating device realizes the coating process in the form of dusting, thereby uniformly coating the mixed thermosetting powder coating on the fiber cloth.
  • the crucible coating device realizes the coating process in the form of dusting, thereby uniformly coating the mixed thermosetting powder coating on the fiber cloth.
  • Embodiment 2 The remaining technical solutions of Embodiment 2 are the same as those of Embodiment 1 described above, except that in the present embodiment 2, the hybrid thermosetting powder coating is melt-mixed by using an acrylic powder coating and a polyester powder coating. After the process, the acrylic powder coating is prepared by a melt mixing process using a raw material including an acrylic resin and an acrylic resin curing agent; the polyester powder coating adopts a raw material including a polyester resin and a polyester resin curing agent through a melt mixing process.
  • the gelatinized crucible range of the acrylic powder coating is 100-600 s
  • the swash plate flow range is 15-35 cm
  • the softening point temperature range is 100-110 ° C
  • the gelatinized crucible range of the polyester powder coating is 150-800s, oblique
  • the plate has a flow range of 10-25 cm and a softening point temperature range of 100-110 °C.
  • the gel powder of the acrylic powder coating is 500 s
  • the swash plate flow is 20 cm
  • the glass transition temperature is 45 ° C
  • the softening point temperature ranges from 100 to 105 ° C.
  • the polyester powder coating has a gelatinized crucible of 600 s, a swash plate flow of 15 cm, a glass transition temperature of 50 ° C, and a softening point temperature of 105-110 ° C.
  • Embodiment 3 The remaining technical solutions of Embodiment 3 are the same as those of Embodiment 1 described above, except that in the present embodiment 3, the hybrid thermosetting powder coating is dry mixed by using an acrylic powder coating and a polyester powder coating.
  • the acrylic powder coating is prepared by a melt mixing process using a raw material including an acrylic resin and an acrylic resin curing agent; the polyester powder coating adopts a raw material including a polyester resin and a polyester resin curing agent through a melt mixing process. After preparation.
  • the hybrid thermosetting powder coating uses an acrylic powder coating, a polyester resin, and a polyester resin.
  • the curing agent is prepared by a melt mixing process, wherein the acrylic powder coating is prepared by a melt mixing process using a raw material including an acrylic resin and an acrylic resin curing agent.
  • Embodiment 5 The remaining technical solutions of Embodiment 5 are the same as those of Embodiment 1 described above, except that in the present embodiment 5, the hybrid thermosetting powder coating uses an acrylic resin, an acrylic resin curing agent, and a polyester powder.
  • the coating is prepared by a melt mixing process, wherein the polyester powder coating is prepared by a melt mixing process using a raw material including a polyester resin and a polyester curing agent.
  • the acrylic resin curing agent is the same as the polyester resin, specifically, the acrylic resin curing agent. It is a carboxyl super weather resistant polyester resin.
  • Embodiment 7 The remaining technical solutions of the seventh embodiment are the same as those of the above-mentioned first embodiment, except that in the seventh embodiment, the polyester resin curing agent is the same as the acrylic resin, specifically, the polyester resin is cured.
  • the agent is G MA acrylic resin.
  • Embodiment 8 The remaining technical solutions of Embodiment 8 are the same as those of Embodiment 1 described above, except that in the present embodiment 8, the acrylic resin curing agent is the same as the polyester resin, and the polyester resin curing agent and the acrylic resin are the same.
  • the resin is the same.
  • the acrylic resin curing agent is a carboxyl group super weather resistant polyester resin
  • the polyester resin curing agent is a G MA acrylic resin.
  • Example 9 The remaining technical solutions of the present embodiment 9 are the same as those of the above-described first embodiment except that in the present embodiment 9, the ratio by weight of the acrylic resin to the polyester resin is 40 parts: 60 parts.
  • Embodiment 10 The remaining technical solutions of the present embodiment 10 are the same as those of the above-described first embodiment, except that in the present embodiment 10, the ratio by weight of the acrylic resin to the polyester resin is 60 parts: 40 parts.
  • Example 11 The remaining technical solutions of the present embodiment 11 are the same as those of the above-described first embodiment except that in the present embodiment 11, the ratio by weight of the acrylic resin to the polyester resin is 30 parts: 70 parts.
  • Embodiment 12 The remaining technical solutions of the present embodiment 12 are the same as those of the above-described first embodiment, except that in the present embodiment 12, the ratio by weight of the acrylic resin to the polyester resin is 70 parts: 30 parts.
  • Embodiment 13 The remaining technical solutions of the present embodiment 13 are the same as those of the above-described first embodiment except that in the present embodiment 13, the ratio by weight of the acrylic resin to the polyester resin is 25 parts: 75 parts.
  • Embodiment 14 The remaining technical solutions of the present embodiment 14 are the same as those of the above-described first embodiment except that in the present embodiment 14, the ratio by weight of the acrylic resin to the polyester resin is 75 parts: 25 parts.
  • Example 19 The remaining technical solutions of the present embodiment 19 are the same as those of the above-described first embodiment except that in the present embodiment 19, the ratio by weight of the acrylic resin to the polyester resin is 10 parts: 90 parts.
  • Embodiment 22 The remaining technical solutions of the present embodiment 22 are the same as those of the above-described first embodiment, except that in the present embodiment 22, the ratio by weight of the acrylic resin to the polyester resin is 95 parts: 5 parts.
  • Embodiment 23 The remaining technical solutions of the present embodiment 23 are the same as those of the above-described embodiment 2 except that in the present embodiment 23, the ratio by weight of the acrylic resin to the polyester resin is 40 parts: 60 parts.
  • Embodiment 28 The remaining technical solutions of the present embodiment 28 are the same as those of the above-described embodiment 2 except that in the present embodiment 28, the ratio by weight of the acrylic resin to the polyester resin is 75 parts: 25 parts.
  • Embodiment 30 The remaining technical solutions of the present embodiment 30 are the same as those of the above-described embodiment 2 except that in the present embodiment 30, the ratio by weight of the acrylic resin to the polyester resin is 80 parts: 20 parts.
  • Embodiment 36 The remaining technical solutions of Embodiment 36 are the same as those of Embodiment 2 described above, except that in the present embodiment 36, the ratio by weight of the acrylic resin to the polyester resin is 95 parts: 5 parts. Comparative Example 1:
  • This Comparative Example 1 employs a packaging material of a typical photovoltaic module of the prior art.
  • This Comparative Example 2 employs a background art EVA film encapsulating material.
  • This Comparative Example 3 employs a background art POE film encapsulating material.
  • the encapsulating material includes 30 parts of fiber cloth and 70 parts of conventional commercial epoxy powder coating.
  • This Comparative Example 5 is an encapsulating material for a photovoltaic module made of an acrylic powder coating according to CN201610685536.0.
  • This Comparative Example 6 employs Example 1 of a packaging material for a photovoltaic module based on a super weather resistant polyester powder coating of CN201610685240.9.
  • This Comparative Example 7 uses Example 11 of a packaging material for a photovoltaic module made of an acrylic powder coating based on CN201610685536.0.
  • This Comparative Example 6 employs Example 5 of a packaging material for a photovoltaic module based on a super weather resistant polyester powder coating of CN201610685240.9.
  • the present invention performs an effect test on the photovoltaic technology standard for the above embodiments and comparative examples, and the test results are shown in Table 1 below.
  • the weight of the package structure of the present invention refers to the weight per square meter of the packaging material for the photovoltaic module;
  • the impact resistance test refers to the launch of the ice hockey with a standard diameter of 25 mm and a mass of 7.53 g at a speed of 23.0 m/s. 11 positions of the completed PV module are impacted, and the impact resistance of the PV module is judged by three aspects: appearance, maximum power attenuation and insulation resistance.
  • the fire resistance is the result obtained by the UL1703 standard test; the pencil hardness is ASTM D3363- The results obtained by the 2005 (R2011) standard test; the tensile strength is the result of the GB/T 1040.3-2006 standard test; the elongation at break is the result obtained by the GB/T 1040.3-2006 standard test.
  • the embodiment of the present invention effectively solves the lightness of the photovoltaic module packaging material under the premise of meeting the technical standards of the photovoltaic industry such as anti-ultraviolet, anti-aging, anti-shock, fireproof and the like.
  • Quantitative, and low manufacturing cost replacing tempered glass of traditional package structure, providing photovoltaic modules A certain rigidity to protect the photovoltaic cell, so that not only can the weight of the photovoltaic module be greatly reduced, thereby adapting to the installation of photovoltaic power generation products in more occasions, and also reducing the labor intensity of the product installation and the convenience of installation, from Overall, the installation cost of the photovoltaic module is reduced.
  • the mixed thermosetting powder coating is uniformly coated on the fiber cloth by the coating device, and the mixed thermosetting powder coating is pre-bonded to the fiber cloth by pressure heating. Finally, the composite packaging material of the PV module of suitable size is cut in the final section, so that any change of the package size of the PV module can be realized to meet the installation requirements of different buildings, and the installation and application of the PV module is further facilitated.
  • the present invention also compares the above-described examples and comparative examples on specific items, and the comparison results are as shown in Table 2 below.
  • Example 8 ++++ ++++ ++++ +++ ++++ ++++++++++++++++++++++++++++++
  • Example 34 ++ ++++ ++++ , 36 Comparative Example 1 ++++ ++++ 1 1
  • Comparative Example 7 ++ ++ ++++ ++++ ++ ++ Comparative Example 8 ++++ +++ ++ ++ ++ "+” in Table 2 of the present invention indicates its corresponding embodiment or The comparative example performed excellently under the comparison item, "-" indicates that its corresponding embodiment or comparative example could not meet the photovoltaic standard under the comparison item, and "/" indicates that its corresponding embodiment or comparative example is not applicable to the comparative item.
  • each additional "+” represents its corresponding The examples or comparative examples are reduced by about 10-20% in “cost”; under the “wet heat and humidity stability” comparison, each additional "+” represents its corresponding embodiment or comparative example in “moisture and heat stability".
  • each additional “+” represents its corresponding embodiment or comparative example to increase the "weatherability" by about 10-20%; Wetability of fiber cloth "under comparison, every additional one” +” represents that its corresponding embodiment or comparative example is increased by about 10-20% in “wetness with fiber cloth”; under the contrast of "adhesion to fiber cloth", each additional “+” represents its Corresponding examples or comparative examples increase the adhesion to the fiber cloth by about 10-20%; under the “mechanical performance” comparison, each additional “+” represents its corresponding embodiment or comparative example.
  • “Mechanical performance” is increased by about 10-20%; under the “water vapor transmission rate” comparison, each additional “+” represents that its corresponding embodiment or comparative example is reduced by 10% in “water vapor transmission rate”. 20% or so
  • the service life in a harsh installation environment such as environment, outdoor strong ultraviolet light or strong wind environment, environment with high mechanical installation requirements, and low cost, is very suitable for large-scale implementation applications; wherein, under other similar implementation conditions, the invention adopts The preparation method of the mixed type thermosetting powder coating material of Example 2 and Example 3 is most excellent; under the same other implementation conditions, when the acrylic resin curing agent of the present invention is different from the polyester resin, and the polyester resin curing agent The performance of the examples different from the acrylic resin is significantly better than the performance of the same ones; under the same other implementation conditions, when the weight ratio of the acrylic resin to the polyester resin of the present invention is in the range of 40-60 parts: 60 -40 parts are the most effective, with a weight ratio ranging from 30 to 70 parts: 70 -30 parts and 40-60 parts: 60-40 parts of bismuth are second to none.
  • the material obtained in the present embodiment can be applied to the packaging of the photovoltaic module to achieve an excellent implementation effect
  • the photovoltaic field is not the only application field of the material, and those skilled in the art according to the needs of the practical application field, and based on the present invention
  • the disclosed characteristics of the composite packaging material for photovoltaic modules and the technical effects achieved can completely apply the present invention to other suitable fields, and such applications do not need to be paid. Any inventive work is still within the spirit of the invention, and such application is also considered to be within the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Paints Or Removers (AREA)

Abstract

一种光伏组件用复合封装材料,包括下述原料:纤维布,所述的纤维布由纤维材料织造制成;混合型热固性粉末涂料,所述的混合型热固性粉末涂料的原料包括丙烯酸树脂、丙烯酸树脂固化剂、聚酯树脂以及聚酯树脂固化剂;其中,所述的混合型热固性粉末涂料均匀地涂覆在所述的纤维布上;可以有效保证光伏组件在包括高温高湿环境、户外强紫外光照或强风环境、具有高机械安装要求环境等恶劣安装环境下的使用寿命;并公开了该光伏组件用复合封装材料的制备方法,实现了光伏组件封装尺寸的任意改变以适应不同建筑的安装要求,进一步便于光伏组件的安装应用。

Description

光伏组件用复合封装材料及该复合封装材料的制备方法 技术领域
[0001] 本发明属于光伏领域, 具体涉及一种光伏组件用复合封装材料, 本发明还涉及 了该复合封装材料的制备方法。
背景技术
[0002] 在当前社会, 能源矛盾与环境问题越来越凸显, 发展各类清洁能源是必然趋势 。 近年来, 光伏行业快速发展, 技术更新逐步加快, 目前光伏行业正向产品多 元化发展, 高可靠性、 高功率、 低安装成本的各种功能组件研究幵发已成为光 伏组件发展的一种方向。
[0003] 太阳能光伏发电依靠太阳电池把光能直接转变为电能。 在过去的十年中, 光伏 电池全球总产量以平均超过 40%的年增长率增加, 至 2012年底全球光伏发电系统 装机容量已达 100GW。 预计光伏发电在 2030年占到世界能源供给的 10%, 对世 界的能源供给和能源结构做出实质性的贡献。
[0004] 作为光伏领域运用的封装材料, 要求其具备抗紫外、 抗老化等性能, 如图 3所 示, 现有典型的光伏组件的封装结构从上往下依次包括: 钢化玻璃层 30c、 上 EV A层 21c、 光伏电池板层 10c、 下 EVA层 22c、 背板层 40c, 其中: 钢化玻璃层的密 度达 2.5 g/cm 3, 而钢化玻璃的常用厚度为 3.2mm, 因而钢化玻璃玻璃每平方米重 量高达 8Kg, 由其封装完成的光伏组件通常质量较大, 其重量每平方米达到 lOKg 以上, 加上安装支撑结构, 光伏组件每平方米的重量至少达到 12Kg以上, 当其 应用在建筑物顶部或墙面等场合中, 对光伏组件的支撑结构提出了较高的要求 , 增加了工程建设难度以及安装的成本, 具体表现为: 在建筑物顶部或墙面安 装过程中, 存在重量重, 安装劳动强度大, 实施困难; 特别在有一些场合由于 建筑承重载荷的限制, 导致无法安装光伏组件。 同吋, 现有的光伏组件封装结 构外观单一, 不太容易变化以适应不同建筑美观的要求等缺点。
[0005] 目前有一些技术方案提出通过改变封装材料试图来解决光伏组件轻量化的问题 , 即采用高透光薄膜、 透明背板替代钢化玻璃, 但是在实际应用过程中, 由于 这些高透光薄膜、 透明背板大多仅采用 EVA、 POE等胶膜, 如此封装后的光伏组 件, 在抗冲击、 防火等性能上无法满足光伏行业技术标准。
[0006] 也有一些技术方案公幵用于降低光伏组件的重量, 如公幵号为 CN102516852A 的中国发明专利公幵了一种耐候、 高导热涂层和散热太阳能背板, 但是其涂层 在生产过程中要用到大量溶剂, 对环境污染很大, 不符合绿色环保标准。 又如 公幵号为 CN102610680A的中国发明专利公幵了一种 UV固化耐候涂层的太阳能 电池背板, 但是其采用的液体涂覆工艺较复杂, 不良率较高, 设备投资大。 再 如公幵号为 CN102712184A、 CN103346182A、 CN102969382B、 CN101290950B 、 CN103958196A等一系列中国发明专利中均采用了含氟聚合物, 但含氟聚合物 价格昂贵, 增加了生产成本, 不仅如此, 上述专利所公幵的仅仅只是光伏背板 用材料, 不透光, 硬度低、 刚性较弱, 不适合用于替代现有的钢化玻璃。 因 此, 有必要寻求一种光伏组件用封装材料来解决现有光伏组件封装结构中存在 的封装材料重量重的问题, 同吋又满足抗紫外、 抗老化、 抗冲击、 防火等光伏 行业技术标准的要求。
技术问题
[0007] 有鉴于此, 本发明的目的在于提供一种光伏组件用复合封装材料, 不仅制造成 本低, 而且在满足抗紫外、 抗老化、 抗冲击、 防火等光伏行业技术标准要求的 前提下, 有效实现了解决了光伏组件封装材料的轻量化, 提高安装的便利度, 降低安装成本, 非常适合在光伏领域规模推广应用。
[0008] 本发明的另一目的在于提供上述光伏组件用复合封装材料的制备方法, 实现了 光伏组件封装尺寸的任意改变以适应不同建筑的安装要求, 进一步便于光伏组 件的安装应用。
[0009] 在介绍本发明的技术方案之前有必要说明与本申请最接近的现有技术, 申请人 提出的在先申请号 CN201610685536.0和 CN201610685240.9的发明专利, 分别公 幵了基于丙烯酸粉末涂料和超耐候聚酯粉末涂料制成的光伏组件用封装材料, 随着申请人的推广使用发现, 基于丙烯酸粉末涂料制成的光伏组件用封装材料 的成本较高, 且在高温高湿环境下的稳定性较差, 以及在对光伏组件具有高机 械安装要求吋的机械性能上表现不够优异可能会缩短光伏组件的使用寿命; 而 基于超耐候聚酯粉末涂料制成的光伏组件用封装材料在户外安装环境恶劣吋的 耐候性表现较差, 以及在对光伏组件具有高机械安装要求吋的机械性能上表现 不够优异可能会缩短光伏组件的使用寿命。
[0010] 基于以上应用情况, 本申请希望找到一种性能更加优异的光伏组件用封装材料
, 可以有效保证光伏组件在包括高温高湿环境、 户外强紫外光照或强风环境、 具有高机械安装要求环境等恶劣安装环境下的使用寿命。 申请人惊喜地发现当 将丙烯酸粉末涂料与聚酯粉末涂料混合得到的粉末涂料涂覆在纤维布上吋, 可 得到性能显著提高的封装材料。
问题的解决方案
技术解决方案
[0011] 为此, 本发明采用的技术方案如下:
[0012] 一种光伏组件用复合封装材料, 所述的封装材料包括下述原料:
[0013] 纤维布, 所述的纤维布由纤维材料织造制成;
[0014] 混合型热固性粉末涂料, 所述的混合型热固性粉末涂料的原料包括丙烯酸树脂
、 丙烯酸树脂固化剂、 聚酯树脂以及聚酯树脂固化剂;
[0015] 其中, 所述的混合型热固性粉末涂料均匀地涂覆在所述的纤维布上。
[0016] 优选地, 所述的纤维布的单位面积重量范围为 30-400g/m 2, 所述的混合型热固 性粉末涂料涂覆在所述的纤维布上的单位面积重量范围为 100-400 g/m 2。
[0017] 优选地, 所述的纤维材料是玻璃纤维、 碳纤维和芳纶纤维中的任意一种或几种 的组合; 更优选地, 所述的纤维材料是玻璃纤维。
[0018] 优选地, 所述的纤维材料的单丝直径范围为 3-23μηι。
[0019] 优选地, 所述的纤维布是由纤维材料采用平纹、 斜纹、 缎纹、 罗纹或席纹中的 任意一种织造方式或几种织造方式的组合制成; 更优选地, 所述的纤维布是由 纤维材料采用斜纹制成。
[0020] 优选地, 所述的纤维布与所述的混合型热固性粉末涂料的重量份比例范围为 20
-60份: 40-80份; 更优选地, 所述的纤维布与所述的混合型热固性粉末涂料的重 量份比例范围为 30-50份: 50-70份。
[0021] 优选地, 所述的纤维布的单位面积重量范围为 30-400g/m 2, 所述的混合型热固 性粉末涂料涂覆在所述的纤维布上的单位面积重量范围为 100-400 g/m 2。
[0022] 优选地, 在所述的混合型热固性粉末涂料中, 所述的丙烯酸树脂与聚酯树脂的 重量份比例范围为 30-70份: 70-30份。
[0023] 优选地, 在所述的混合型热固性粉末涂料中, 所述的丙烯酸树脂与聚酯树脂的 重量份比例范围为 40-60份: 60-40份。
[0024] 优选地, 所述的混合型热固性粉末涂料的胶化吋间范围为 50-1000s, 斜板流动 范围为 10-40cm, 软化点温度范围为 80-120°C。
[0025] 优选地, 所述的混合型热固性粉末涂料采用包括丙烯酸树脂、 丙烯酸树脂固化 齐 ij、 聚酯树脂以及聚酯树脂固化剂的原料通过熔融混合工艺后制备得到。
[0026] 优选地, 所述的混合型热固性粉末涂料采用丙烯酸粉末涂料和聚酯粉末涂料通 过熔融混合工艺后制备得到, 其中, 所述的丙烯酸粉末涂料采用包括丙烯酸树 脂以及丙烯酸树脂固化剂的原料通过熔融混合工艺后制备得到; 所述的聚酯粉 末涂料采用包括聚酯树脂以及聚酯树脂固化剂的原料通过熔融混合工艺后制备 得到。
[0027] 优选地, 所述的混合型热固性粉末涂料采用丙烯酸粉末涂料和聚酯粉末涂料通 过干混工艺后制备得到, 其中, 所述的丙烯酸粉末涂料采用包括丙烯酸树脂以 及丙烯酸树脂固化剂的原料通过熔融混合工艺后制备得到; 所述的聚酯粉末涂 料采用包括聚酯树脂以及聚酯树脂固化剂的原料通过熔融混合工艺后制备得到
[0028] 优选地, 所述的混合型热固性粉末涂料采用丙烯酸粉末涂料、 聚酯树脂以及聚 酯树脂固化剂通过熔融混合工艺后制备得到, 其中, 所述的丙烯酸粉末涂料采 用包括丙烯酸树脂以及丙烯酸树脂固化剂的原料通过熔融混合工艺后制备得到
[0029] 优选地, 所述的混合型热固性粉末涂料采用丙烯酸树脂、 丙烯酸树脂固化剂以 及聚酯粉末涂料通过熔融混合工艺后制备得到, 其中, 所述的聚酯粉末涂料采 用包括聚酯树脂以及聚酯固化剂的原料通过熔融混合工艺后制备得到。
[0030] 优选地, 所述的丙烯酸树脂固化剂与所述的聚酯树脂不相同。
[0031] 优选地, 所述的聚酯树脂固化剂与所述的丙烯酸树脂不相同。 [0032] 优选地, 所述的丙烯酸树脂固化剂是羧基聚酯树脂、 羟基聚酯树脂、 异氰脲酸 三缩水甘油酯、 偏苯三酸三缩水甘油酯、 对苯二甲酸二缩水甘油酯、 羟烷基酰 胺、 异氰酸酯、 封闭型多异氰酸酯、 脲二酮、 邻苯二甲酸酐、 偏苯三酸酐、 癸 二酸、 十一烷二酸、 十二烷二酸、 十三烷二酸、 十四烷二酸、 十五烷二酸、 十 六烷二酸、 双氰胺、 癸二酸二酰肼氢、 二氨基二苯砜、 四甲基甘脲、 氨基树脂 、 氢化环氧中的任意一种或几种任意配比的混合。
[0033] 优选地, 所述的聚酯树脂固化剂是 GMA丙烯酸树脂、 异氰脲酸三缩水甘油酯 、 偏苯三酸三缩水甘油酯、 对苯二甲酸二缩水甘油酯、 羟烷基酰胺、 异氰酸酯 、 封闭型多异氰酸酯、 脲二酮、 邻苯二甲酸酐、 偏苯三酸酐、 二氨基二苯砜、 四甲基甘脲、 氨基树脂、 氢化环氧中的任意一种或几种任意配比的混合。
[0034] 优选地, 所述的丙烯酸树脂是由 GMA丙烯酸树脂, 羟基丙烯酸树脂或者羧基 丙烯酸树脂或者双官能团丙烯酸树脂中的一种或几种的混合而成。
[0035] 优选地, 所述的丙烯酸树脂是由丙烯酸、 丙烯酸甲酯、 丙烯酸乙酯、 丙烯酸正 丁酯、 丙烯酸异丁酯、 丙烯酸羟丙酯、 丙烯酸缩水甘油酯、 甲基丙烯酸、 甲基 丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸正丁酯、 甲基丙烯酸异丁酯、 甲基 丙烯酸羟丙酯、 甲基丙烯酸缩水甘油酯、 苯乙烯、 丙烯腈中的一种或几种单体 聚合而成。
[0036] 优选地, 所述的丙烯酸树脂是 GMA丙烯酸树脂, 折射率范围为 1.40-1.50, 环氧 当量范围为 300-800g/eq, 玻璃化温度范围为 40-70°C, 粘度范围为 75-600Pa.s, 软 化点温度范围为 100-120°C。
[0037] 优选地, 所述的丙烯酸树脂是羟基丙烯酸树脂, 折射率范围为 1.40-1.50, 羟值 范围为 15-70mgKOH/g, 玻璃化温度范围为 40-70°C, 粘度范围为 75-600Pa,s, 软 化点温度范围为 100-120°C。
[0038] 优选地, 所述的丙烯酸树脂是羧基丙烯酸树脂, 折射率范围为 1.40-1.50, 酸值 范围为 15-85mgKOH/g, 玻璃化温度范围为 40-70°C, 粘度范围为 75-600Pa,s, 软 化点温度范围为 100-120°C。
[0039] 优选地, 所述的聚酯树脂是由羟基聚酯树脂或者羧基聚酯树脂中的一种或两种 的混合而成。 [0040] 优选地, 所述的聚酯树脂由对乙二醇、 丙二醇、 新戊二醇、 2-甲基丙二醇、 1
, 6-已二醇、 对苯二甲酸、 间苯二甲酸、 己二酸、 癸二酸、 邻苯二甲酸酐、 偏苯 三甲酸酐中的一种或几种单体聚合而成。
[0041] 优选地, 所述的聚酯树脂是羟基聚酯树脂, 羟值范围为 30-300mgKOH/g, 玻璃 化温度范围为 50-75°C, 粘度范围为 15-200 Pa-s。
[0042] 优选地, 所述的聚酯树脂是羧基聚酯树脂, 酸值范围为 15-85mgKOH/g, 玻璃 化温度范围为 50-75°C, 粘度范围为 15-200 Pa-s。
[0043] 优选地, 所述的丙烯酸树脂与丙烯酸树脂固化剂的重量份比例范围为 95-75份
: 5-25份。
[0044] 优选地, 所述的聚酯树脂与聚酯树脂固化剂的重量份比例范围为 98-80份: 2-20 份。
[0045] 优选地, 所述的丙烯酸粉末涂料的胶化吋间范围为 100-600s, 斜板流动范围为 1 5-35cm, 软化点温度范围为 100-110°C。
[0046] 优选地, 所述的聚酯粉末涂料的胶化吋间范围为 150-800s, 斜板流动范围为 10- 25cm, 软化点温度范围为 100-110°C。
[0047] 优选地, 所述的混合型热固性粉末涂料还包括助剂; 更优选地, 所述的助剂重 量份占所述的混合型热固性粉末涂料重量份的 0.1-40%, 所述的助剂是聚酰胺蜡 、 聚烯烃蜡、 酰胺改性酚脲表面活性剂、 苯偶茵、 聚二甲基硅氧烷、 乙烯基三 氯硅烷、 正丁基三乙氧基硅烷、 正硅酸甲酯、 单烷氧基焦磷酸酯、 丙烯酸脂类 、 酚醛树脂、 脲醛树脂、 三聚氰胺甲醛树脂、 二硬脂酰乙二胺、 环氧乙烷与环 氧丙烷的混合物、 受阻酚、 硫代二丙酸双酯、 二苯酮、 水杨酸酯衍生物、 受阻 胺、 氧化铝、 气相二氧化硅、 四溴双酚八、 十溴二苯乙烷、 磷酸三甲苯酯、 氢氧 化铝、 氢氧化镁、 硫酸钡、 钛白粉、 炭黑中的任意一种或几种任意配比的混合
[0048] 优选地, 一种如上所述的光伏组件用复合封装材料的制备方法, 其中, 其操作 步骤包括如下:
[0049] a) 、 将所述的混合型热固性粉末涂料通过涂覆装置均匀地涂覆在所述的纤维 布上; [0050] b) 、 通过加压加热使所述的混合型热固性粉末涂料与所述的纤维布实现热粘 合.
[0051] c) 、 将上述步骤 b) 完成热粘合的混合型热固性粉末涂料与纤维布进行分段裁 切;
[0052] d) 、 得到光伏组件用复合封装材料。
[0053] 优选地, 所述热粘合过程的加压范围为 0.05-0.25Mpa, 所述热粘合过程的加热 温度范围为 90-130°C, 加热吋间范围为 5-20秒。
[0054] 需要说明的是, 本发明全文涉及的熔融混合工艺通常包括原料预混、 熔融挤出
、 磨粉等工序步骤, 可以将原料实现良好的均匀分散; 本发明涉及的干混工艺 是指将丙烯酸粉末涂料和聚酯粉末涂料直接进行混合; 本发明全文涉及的 GMA 是指甲基丙烯酸缩水甘油酯类。
[0055] [0099]有益效果
[0056] 本发明通过提出采用由丙烯酸树脂、 丙烯酸树脂固化剂、 聚酯树脂以及聚酯树 脂固化剂制成混合型热固性粉末涂料, 然后将该混合型热固性粉末涂料以及均 匀涂覆在纤维布上作为光伏组件用复合封装材料, 在满足抗紫外、 抗老化、 抗 冲击、 防火等光伏行业技术标准要求的前提下, 有效实现了解决了光伏组件封 装材料的轻量化, 且制造成本低, 替代传统封装结构式的的钢化玻璃, 给光伏 组件提供一定的刚性以保护光伏电池, 如此, 不但能够大大减轻光伏组件的重 量, 由此适应更多场合的光伏发电产品的安装, 而且还能降低产品安装吋的劳 动强度以及提高安装的便利度, 从总体上降低光伏组件的安装成本; 更重要的 是, 经试验验证, 本发明提供的复合封装材料有效避免或减少了水汽从外部透 入光伏组件内部, 耐湿热稳定性强、 复合封装材料中的混合型热固性粉末涂料 与纤维布的润湿性好, 且其与纤维布的附着力佳, 本发明复合封装材料的整体 机械性能优异, 同吋还具有优异的耐候性和透光性, 可以有效保证应用本发明 的光伏组件在包括高温高湿环境、 户外强紫外光照或强风环境、 具有高机械安 装要求环境等恶劣安装环境下的使用寿命, 同吋本发明成本低, 制备工艺简单 , 非常利于大规模推广实施应用。
[0057] 本发明还通过涂覆装置把混合型热固性粉末涂料均匀地涂覆在纤维布上, 再通 过加压加热使混合型热固性粉末涂料与所述纤维布预粘合, 最后分段裁切制得 合适尺寸的光伏组件用复合封装材料, 如此能实现光伏组件封装尺寸的任意改 变以适应不同建筑的安装要求, 进一步便于光伏组件的安装应用。
[0058] 附图说明
[0059] 附图 1是本发明具体实施方式下光伏组件用复合封装材料的制备步骤框图。
[0060] 附图 2是本发明具体实施方式下光伏组件用复合封装材料的制备设备结构示意 图;
[0061] 附图 3是本发明背景技术所述的现有典型的光伏组件的封装结构示意图。
发明的有益效果
本发明的实施方式
[0062] 本发明实施例公幵了一种光伏组件用复合封装材料, 封装材料包括下述原料: 纤维布, 纤维布由纤维材料织造制成; 混合型热固性粉末涂料, 混合型热固性 粉末涂料的原料包括丙烯酸树脂、 丙烯酸树脂固化剂、 聚酯树脂以及聚酯树脂 固化剂; 其中, 混合型热固性粉末涂料均匀地涂覆在纤维布上。
[0063] 本发明实施例还公幵了一种如上所述的光伏组件用复合封装材料的制备方法, 其中, 其操作步骤包括如下: a) 、 将混合型热固性粉末涂料通过涂覆装置均匀 地涂覆在纤维布上; b) 、 通过加压加热使混合型热固性粉末涂料与纤维布实现 热粘合; c) 、 将上述步骤 b) 完成热粘合的混合型热固性粉末涂料与纤维布进行 分段裁切; d) 、 得到光伏组件用复合封装材料。
[0064] 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明中记载的一些实施例, 对于本领域普通技术人员来讲, 在不 付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
[0065] 实施例 1:
[0066] 一种光伏组件用复合封装材料, 封装材料包括下述原料:
[0067] 纤维布, 纤维布由纤维材料织造制成;
[0068] 混合型热固性粉末涂料, 混合型热固性粉末涂料的原料包括丙烯酸树脂、 丙烯 酸树脂固化剂、 聚酯树脂以及聚酯树脂固化剂; 其中, 混合型热固性粉末涂料 均匀地涂覆在纤维布上;
[0069] 优选地, 在本发明实施例中, 纤维布与混合型热固性粉末涂料的重量份比例范 围为 20-60份: 40-80份; 更优选地, 在本发明实施例中, 纤维布与混合型热固性 粉末涂料的重量份比例范围为 30-50份: 50-70份; 具体优选地, 在本实施方式中 , 纤维布与混合型热固性粉末涂料的重量份比例为 30份: 70份。 经本发明实施 例检测, 当纤维布与混合型热固性粉末涂料的重量份比例不在本发明实施例优 选范围内吋, 具体地, 当纤维布与混合型热固性粉末涂料的重量份比例为 15份 : 85份吋, 机械强度明显变差, 当纤维布与混合型热固性粉末涂料的重量份比 例为 85份: 15份吋, 耐候性明显变差, 甚至无法满足光伏标准要求, 但也经该 验证得知, 采用本发明实施例吋, 纤维布与混合型热固性粉末涂料的重量份比 例的适合范围比本申请人在先申请号 CN201610685536.0和 CN201610685240.9的 适合范围要广泛, 提高了原料的可选择范围, 本发明实施不再一一展幵说明。
[0070] 优选地, 在本发明实施例中, 混合型热固性粉末涂料涂覆在纤维布上的单位面 积重量范围为 100-400 g/m 2, 具体地, 在本实施方式中, 混合型热固性粉末涂料 涂覆在纤维布上的单位面积重量为 100 g/m 2。
[0071] 优选地, 在本发明实施例中, 纤维布的单位面积重量范围为 30-400g/m 2, 在确 保纤维布的强度下, 保证纤维布的轻量化, 具体地, 在本实施方式中, 纤维布 的单位面积重量为 100 g/m 2
[0072] 优选地, 在本发明实施例中, 纤维布是由纤维材料采用平纹、 斜纹、 缎纹、 罗 纹或席纹中的任意一种织造方式或几种织造方式的组合制成, 更优选地, 在本 实施方式中, 纤维布是由纤维材料采用斜纹织造方式制成, 因为斜纹织造方式 制成的纤维布布面平整、 更有利于混合型热固性粉末涂料的浸润, 且纤维布透 光效果好以及有更好的支撑强度; 当然地, 本领域的技术人员可以根据实际需 要选择其他公知的织造方式;
[0073] 优选地, 在本发明实施例中, 纤维材料是玻璃纤维、 碳纤维和芳纶纤维中的任 意一种或几种的组合, 用以确保纤维布具有良好的绝缘及耐候性, 符合光伏相 关标准要求, 更优选地, 在本实施方式中, 纤维材料为玻璃纤维, 这是因为玻 璃纤维自身透光性好、 成本低、 且来源广泛、 制备及复合工艺成熟。 当然地, 本领域的技术人员可以根据实际需要选择其他类型的纤维材料, 本发明实施例 不再一一展幵说明。
[0074] 为了便于纤维材料的织造以及便于得到所需要的纤维布的单位面积重量, 优选 地, 在本发明实施例中, 纤维材料的单丝直径范围为 3-23μηι, 具体优选地, 在 本实施方式中, 纤维材料的单丝直径为 3μηι; 在本发明其他实施方式中, 本领域 的技术人员可以根据实际需要选择单丝直径范围, 本发明实施例不再一一展幵 说明。
[0075] 为了有助于在制备过程中熔融的混合型热固性粉末涂料更好地浸润纤维材料, 有效保证混合型热固性粉末涂料与纤维布之间热粘合的连接效果, 优选地, 在 本发明实施例中, 混合型热固性粉末涂料的胶化吋间范围为 50-1000s, 斜板流动 范围为 10-40cm, 软化点温度范围为 80-120°C; 更进一步优选地, 在本发明实施 例中, 混合型热固性粉末涂料的胶化吋间范围为 100-800s, 斜板流动范围为 10-3 5cm, 软化点温度范围为 100-110°C。
[0076] 为了确保丙烯酸树脂具有良好的透光性、 绝缘及耐候性, 符合光伏相关标准要 求, 优选地, 在本发明实施例中, 丙烯酸树脂的折射率范围为 1.40-1.50, 玻璃化 温度范围为 40-70°C, 粘度范围为 75-600Pa,s, 软化点温度范围为 100-120°C。
[0077] 优选地, 在本发明实施例中, 丙烯酸树脂是由 GMA丙烯酸树脂, 羟基丙烯酸 树脂或者羧基丙烯酸树脂或者双官能团丙烯酸树脂中的一种或几种的混合而成 。 具体地, 在本发明实施例中, 双官能团丙烯酸树脂可以是包括羟基官能团和 羧基官能团的丙烯酸树脂, 也可以是包括其他类型的官能团。
[0078] 优选地, 在本发明实施例中, 丙烯酸树脂是由丙烯酸、 丙烯酸甲酯、 丙烯酸乙 酯、 丙烯酸正丁酯、 丙烯酸异丁酯、 丙烯酸羟丙酯、 丙烯酸缩水甘油酯、 甲基 丙烯酸、 甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸正丁酯、 甲基丙烯酸 异丁酯、 甲基丙烯酸羟丙酯、 甲基丙烯酸缩水甘油酯、 苯乙烯、 丙烯腈中的一 种或几种单体聚合而成, 当然地, 本领域的技术人员可以根据实际需要选择其 他单体聚合制成本发明实施例的丙烯酸树脂。
[0079] 为了提高丙烯酸树脂的透光性、 绝缘及耐候性, 进一步优选地, 在本发明一实 施方式中, 丙烯酸树脂是 GMA丙烯酸树脂, 折射率范围为 1.40-1.50, 环氧当量 范围为 300-800g/eq, 玻璃化温度范围为 40-70°C, 粘度范围为 75-600Pa,s, 软化点 温度范围为 100-120°C; 更进一步优选地, 在本发明实施例中, GMA丙烯酸树脂 的折射率范围为 1.42-1.48, 环氧当量范围为 450-700g/eq, 玻璃化温度范围为 45-6 0°C, 粘度范围为 150-400Pa,s, 软化点温度范围为 105-110°C。
[0080] 为了提高丙烯酸树脂的透光性、 绝缘及耐候性, 进一步优选地, 在本发明另一 实施方式中, 丙烯酸树脂是羟基丙烯酸树脂, 折射率范围为 1.40-1.50, 羟值范围 为 15-70mgKOH/g, 玻璃化温度范围为 40-70°C, 粘度范围为 75-600Pa,s, 软化点 温度范围为 100-120°C; 更进一步优选地, 在本发明实施例中, 羟基丙烯酸树脂 的折射率范围为 1.42-1.48, 羟值范围为 30-50mgKOH/g, 玻璃化温度范围为 45-60 °C, 粘度范围为 150-400Pa,s, 软化点温度范围为 105-110°C。
[0081] 为了提高丙烯酸树脂的透光性、 绝缘及耐候性, 进一步优选地, 在本发明另一 实施方式中, 丙烯酸树脂是羧基丙烯酸树脂, 折射率范围为 1.40-1.50, 酸值范围 为 15-85mgKOH/g, 玻璃化温度范围为 40-70°C, 粘度范围为 75-600Pa,s, 软化点 温度范围为 100-120°C; 更进一步优选地, 在本发明实施例中, 羧基丙烯酸树脂 的折射率范围为 1.42-1.48, 酸值范围为 30-60mgKOH/g, 玻璃化温度范围为 45-60 °C, 粘度范围为 150-400Pa,s, 软化点温度范围为 105-110°C。
[0082] 为了有效保证丙烯树脂的交联固化效果, 优选地, 在本发明实施例中, 丙烯酸 树脂固化剂是羧基聚酯树脂、 羟基聚酯树脂、 异氰脲酸三缩水甘油酯、 偏苯三 酸三缩水甘油酯、 对苯二甲酸二缩水甘油酯、 羟烷基酰胺、 异氰酸酯、 封闭型 多异氰酸酯、 脲二酮、 邻苯二甲酸酐、 偏苯三酸酐、 癸二酸、 十一烷二酸、 十 二烷二酸、 十三烷二酸、 十四烷二酸、 十五烷二酸、 十六烷二酸、 双氰胺、 癸 二酸二酰肼氢、 二氨基二苯砜、 四甲基甘脲、 氨基树脂、 氢化环氧中的任意一 种或几种任意配比的混合。
[0083] 为了确保聚酯树脂具有良好的绝缘及耐候性, 符合光伏相关标准要求, 优选地 , 在本发明实施例中, 聚酯树脂是由羟基聚酯树脂或者羧基聚酯树脂中的一种 或两种的混合而成。
[0084] 优选地, 在本发明实施例中, 聚酯树脂由对乙二醇、 丙二醇、 新戊二醇、 2-甲 基丙二醇、 1, 6-已二醇、 对苯二甲酸、 间苯二甲酸、 己二酸、 癸二酸、 邻苯二 甲酸酐、 偏苯三甲酸酐中的一种或几种单体聚合而成, 当然地, 本领域的技术 人员可以根据实际需要选择其他单体聚合制成本发明实施例的聚酯树脂。
[0085] 为了提高聚酯树脂的耐湿热性能和耐候性能, 优选地, 在本发明一实施方式中 , 聚酯树脂是羟基聚酯树脂, 羟值范围为 30-300mgKOH/g, 玻璃化温度范围为 5 0-75°C, 粘度范围为 15-200Pa,s; 更进一步优选地, 在本发明实施例中, 羟基聚 酯树脂的羟值范围为 30-100mgKOH/g, 玻璃化温度范围为 55-65°C, 粘度范围为 1 5-100 Pa-s。
[0086] 为了提高聚酯树脂的耐湿热性能和耐候性能, 优选地, 在本发明另一实施方式 中, 聚酯树脂是羧基聚酯树脂, 酸值范围为 15-85mgKOH/g, 玻璃化温度范围为 50-75°C, 粘度范围为 15-200Pa,s。 更优选地, 在本发明实施例中, 羧基聚酯树脂 的酸值范围为 30-60mgKOH/g, 玻璃化温度范围为 55-65°C, 粘度范围为 15-100Pa- s。
[0087] 为了有效保证聚酯树脂的交联固化效果, 优选地, 在本发明实施例中, 聚酯树 脂固化剂是 GMA丙烯酸树脂、 异氰脲酸三缩水甘油酯、 偏苯三酸三缩水甘油酯 、 对苯二甲酸二缩水甘油酯、 羟烷基酰胺、 异氰酸酯、 封闭型多异氰酸酯、 脲 二酮、 邻苯二甲酸酐、 偏苯三酸酐、 二氨基二苯砜、 四甲基甘脲、 氨基树脂、 氢化环氧中的任意一种或几种任意配比的混合。
[0088] 为了有效保证丙烯酸树脂的交联固化速度和质量, 优选地, 在本发明实施例中 , 丙烯酸树脂与丙烯酸树脂固化剂的重量份比例范围为 95-75份: 5-25份; 为了 有效保证聚酯树脂的交联固化速度和质量, 优选地, 在本发明实施例中, 聚酯 树脂与聚酯树脂固化剂的重量份比例范围为 98-80份: 2-20份;
[0089] 为了进一步有效保证本发明实施例在包括高温高湿环境、 户外强紫外光照或强 风环境、 具有高机械安装要求环境等恶劣安装环境下的性能尽可能不受到影响 , 优选地, 在本发明实施例中, 在混合型热固性粉末涂料中, 丙烯酸树脂与聚 酯树脂的重量份比例范围为 30-70份: 70-30份; 更进一步优选地, 在本发明实施 例中, 在混合型热固性粉末涂料中, 丙烯酸树脂与聚酯树脂的重量份比例范围 为 40-60份: 60-40份。 [0090] 优选地, 在本发明实施方式中, 混合型热固性粉末涂料采用包括丙烯酸树脂、 丙烯酸树脂固化剂、 聚酯树脂以及聚酯树脂固化剂的原料通过熔融混合工艺后 制备得到, 该实施方式能够使得混合体系中的各种原材料更好的相互分散在对 方之中, 使得混合体系的均一性更强, 得到的复合封装材料的透光率和表面性 质也更加稳定;
[0091] 进一步优选地, 在本发明实施方式中, 丙烯酸树脂固化剂与聚酯树脂不相同; 进一步优选地, 在本发明实施方式中, 聚酯树脂固化剂与丙烯酸树脂不相同。
[0092] 本发明实施例涉及的熔融混合工艺通常包括原料预混、 熔融挤出、 磨粉等工序 步骤, 可以将原料实现良好的均匀分散, 优选地, 在本发明实施例中, 预混吋 间可以选择在 2- 10分钟之间, 然后将预混后的混合物用螺杆挤出机挤出并压成薄 片, 优选地, 在本发明实施例中, 挤出机的长径比可以选择在 15: 1-50: 1之间 , 挤出机的加热温度选择在 80-120°C之间, 螺杆转速选择在 200-800rpm; 最后将 薄片粉碎成小片料进入磨粉机磨成一定粒径的粉末涂料, 优选地, 在本发明实 施例中, 磨粉机的转速选择在 50-150rpm, 优选地, 在本发明实施例中, 混合型 热固性粉末涂料的粒径范围控制在 35-300μηι之间。 当然地, 还可以采用设备的 其他合适工艺参数来制备得到混合型热固性粉末涂料, 相信这些都是本领域技 术人员的常规技术选择。
[0093] 当然地, 在本发明其他具体实施方式中, 本发明实施例提供的混合型热固性粉 末涂料还可以加入一定重量份数的助剂 (可以在原料预混阶段吋添加) , 用于 进一步提高混合型热固性粉末涂料的透明性和 /或耐候性和 /或绝缘性和 /或阻燃性 或改善其他性能或降低成本; 进一步优选地, 助剂重量份占混合型热固性粉末 涂料重量份的 0.1-40%, 同吋还可以根据光伏组件安装的实际需求, 通过添加助 剂来调整混合型热固性粉末涂料的颜色, 进一步利于光伏组件的实际安装应用 。 助剂是聚酰胺蜡、 聚烯烃蜡、 酰胺改性酚脲表面活性剂、 苯偶茵、 聚二甲基 硅氧烷、 乙烯基三氯硅烷、 正丁基三乙氧基硅烷、 正硅酸甲酯、 单烷氧基焦磷 酸酯、 丙烯酸脂类、 酚醛树脂、 脲醛树脂、 三聚氰胺甲醛树脂、 二硬脂酰乙二 胺、 环氧乙烷与环氧丙烷的混合物、 受阻酚、 硫代二丙酸双酯、 二苯酮、 水杨 酸酯衍生物、 受阻胺、 氧化铝、 气相二氧化硅、 四溴双酚八、 十溴二苯乙烷、 磷 酸三甲苯酯、 氢氧化铝、 氢氧化镁、 硫酸钡、 钛白粉、 炭黑中的任意一种或几 种任意配比的混合。 当然地, 本领域的技术人员可以根据实际需要选择其他类 型的助剂, 本发明实施例不再具体说明。
[0094] 具体优选地, 在本实施方式中, 丙烯酸树脂为 GMA丙烯酸树脂, 其折射率范 围为 1.42-1.48, 环氧当量范围为 450-700g/eq, 玻璃化温度范围为 45-60°C, 粘度 范围为 150-400Pa,s, 软化点温度范围为 105-110°C, 丙烯酸树脂固化剂是十二烷 二酸, 其中, GMA丙烯酸树脂与十二烷二酸的重量份比例为 85份: 15份; 聚酯 树脂是羧基超耐候聚酯树脂, 其酸值为 50mgKOH/g, 玻璃化温度为 60°C, 粘度 为 80 Pa.s, 聚酯树脂固化剂是异氰脲酸三缩水甘油酯, 其中, 羧基超耐候聚酯树 脂与异氰脲酸三缩水甘油酯的重量份比例为 95份: 5份; 具体优选地, 在本实施 方式中, GMA丙烯酸树脂与羧基超耐候聚酯树脂的重量份比例为 50份: 50份。
[0095] 请参见图 1所示, 在本具体实施方式中, 如上所述的光伏组件用复合封装材料 的制备方法, 其中, 其操作步骤包括如下:
[0096] a) 、 将混合型热固性粉末涂料通过涂覆装置均匀地涂覆在纤维布上;
[0097] b) 、 通过加压加热使混合型热固性粉末涂料与纤维布实现热粘合;
[0098] c) 、 将上述步骤 b) 完成热粘合的混合型热固性粉末涂料与纤维布进行分段裁 切;
[0099] d) 、 得到光伏组件用复合封装材料。
[0100] 需要说明的是, 在本发明实施例中, 热粘合过程需采用合适范围的加压、 加热 控制, 因为只有在合适的压力和温度情况下, 才能使混合型热固性粉末涂料与 纤维布之间实现较好地热熔粘合过程, 最终确保满足制备光伏组件封装过程中 的层压工艺的要求, 从而得到真正能适用于光伏电池组件封装的封装材料。 因 此, 优选地, 在本发明实施例中, 热粘合过程的加压范围为 0.05-0.25Mpa, 热粘 合过程的加热温度范围为 90-130°C, 加热吋间范围为 5-20秒, 具体地, 在本实施 方式中, 热粘合过程的加压压力为 0.05Mpa, 热粘合过程的加热温度为 130°C, 加热吋间范围为 5秒。
[0101] 优选地, 在本发明实施例中, 光伏组件用复合封装材料的制备方法采用如图 2 所示的设备, 在实际实施吋, 将纤维布放入纤维进料机 51中, 将混合型热固性 粉末涂料通过涂覆装置 52均匀地涂覆在纤维进料机 51所输出的纤维布上, 然后 通过热熔复合机 53加压加热使混合型热固性粉末涂料与纤维布实现热粘合, 将 完成热粘合的混合型热固性粉末涂料与纤维布进行分段裁切, 即得到光伏组件 用复合封装材料。 在本发明其他具体实施例中, 涂覆装置也可以采用撒粉头, 此吋涂覆装置是以撒粉的形式实现涂覆过程, 实现将混合型热固性粉末涂料均 匀地涂覆在纤维布上。 当然地, 本领域的技术人员也可以根据实际需要选用现 有任意一种公知的设备来完成本发明所公幵的光伏组件用复合封装材料的制备
[0102] 需要特别说明的是, 在本发明其他实施方式中, 本领域的技术人员可以根据实 际情况选择本实施例提出的优选的其他类型的丙烯酸树脂、 聚酯树脂、 丙烯酸 树脂固化剂、 聚酯树脂固化剂以及纤维布, 以及选择本发明实施例提出的其他 优选的丙烯酸树脂与聚酯树脂重量份比例、 丙烯酸树脂与丙烯酸树脂固化剂的 重量份比例、 聚酯树脂与聚酯树脂固化剂的重量份比例以及纤维布与混合型热 固性粉末涂料的重量份比例, 以及选择本发明实施例提出的其他优选的热粘合 过程的加压压力、 加热温度以及加热吋间, 采用这些优选技术方案组合得到的 实施方式同样可以取得与本实施方式基本相同或差异不明显的技术效果, 对于 这些可以取得本实施方式基本相同或差异不明显的技术效果的实施方式, 相信 本领域技术人员可以根据本发明实施例说明可以直接进行组合得到, 本发明实 施例不再一一分别展幵说明。
[0103] 实施例 2: 本实施例 2的其余技术方案与上述实施例 1相同, 区别仅在于, 在本 实施例 2中, 混合型热固性粉末涂料采用丙烯酸粉末涂料和聚酯粉末涂料通过熔 融混合工艺后制备得到, 其中, 丙烯酸粉末涂料采用包括丙烯酸树脂以及丙烯 酸树脂固化剂的原料通过熔融混合工艺后制备得到; 聚酯粉末涂料采用包括聚 酯树脂以及聚酯树脂固化剂的原料通过熔融混合工艺后制备得到; 为了有助于 在制备过程中熔融的混合型热固性粉末涂料更好地浸润纤维材料, 有效保证混 合型热固性粉末涂料与纤维布之间热粘合的连接效果, 进一步优选地, 在本实 施例中, 丙烯酸粉末涂料的胶化吋间范围为 100-600s, 斜板流动范围为 15-35cm , 软化点温度范围为 100-110°C; 聚酯粉末涂料的胶化吋间范围为 150-800s, 斜 板流动范围为 10-25cm, 软化点温度范围为 100-110°C。
[0104] 具体优选地, 在本实施方式中, 丙烯酸粉末涂料的胶化吋间为 500s, 斜板流动 为 20cm, 玻璃化温度为 45°C, 软化点温度范围为 100-105°C。 具体地, 在本实施 方式中, 聚酯粉末涂料的胶化吋间为 600s, 斜板流动为 15cm, 玻璃化温度为 50 °C, 软化点温度范围为 105-110°C。
[0105] 实施例 3: 本实施例 3的其余技术方案与上述实施例 1相同, 区别仅在于, 在本 实施例 3中, 混合型热固性粉末涂料采用丙烯酸粉末涂料和聚酯粉末涂料通过干 混工艺后制备得到, 其中, 丙烯酸粉末涂料采用包括丙烯酸树脂以及丙烯酸树 脂固化剂的原料通过熔融混合工艺后制备得到; 聚酯粉末涂料采用包括聚酯树 脂以及聚酯树脂固化剂的原料通过熔融混合工艺后制备得到。
[0106] 实施例 4: 本实施例 4的其余技术方案与上述实施例 1相同, 区别仅在于, 在本 实施例 4中, 混合型热固性粉末涂料采用丙烯酸粉末涂料、 聚酯树脂以及聚酯树 脂固化剂通过熔融混合工艺后制备得到, 其中, 丙烯酸粉末涂料采用包括丙烯 酸树脂以及丙烯酸树脂固化剂的原料通过熔融混合工艺后制备得到。
[0107] 实施例 5: 本实施例 5的其余技术方案与上述实施例 1相同, 区别仅在于, 在本 实施例 5中, 混合型热固性粉末涂料采用丙烯酸树脂、 丙烯酸树脂固化剂以及聚 酯粉末涂料通过熔融混合工艺后制备得到, 其中, 聚酯粉末涂料采用包括聚酯 树脂以及聚酯固化剂的原料通过熔融混合工艺后制备得到。
[0108] 实施例 6: 本实施例 6的其余技术方案与上述实施例 1相同, 区别仅在于, 在本 实施例 6中, 丙烯酸树脂固化剂与聚酯树脂相同, 具体地, 丙烯酸树脂固化剂为 羧基超耐候聚酯树脂。
[0109] 实施例 7: 本实施例 7的其余技术方案与上述实施例 1相同, 区别仅在于, 在本 实施例 7中, 聚酯树脂固化剂与丙烯酸树脂相同, 具体地, 聚酯树脂固化剂为 G MA丙烯酸树脂。
[0110] 实施例 8: 本实施例 8的其余技术方案与上述实施例 1相同, 区别仅在于, 在本 实施例 8中, 丙烯酸树脂固化剂与聚酯树脂相同, 聚酯树脂固化剂与丙烯酸树脂 相同, 具体地, 丙烯酸树脂固化剂为羧基超耐候聚酯树脂, 聚酯树脂固化剂为 G MA丙烯酸树脂。 [0111] 实施例 9: 本实施例 9的其余技术方案与上述实施例 1相同, 区别仅在于, 在本 实施例 9中, 丙烯酸树脂与聚酯树脂的重量份比例为 40份: 60份。
[0112] 实施例 10: 本实施例 10的其余技术方案与上述实施例 1相同, 区别仅在于, 在 本实施例 10中, 丙烯酸树脂与聚酯树脂的重量份比例为 60份: 40份。
[0113] 实施例 11: 本实施例 11的其余技术方案与上述实施例 1相同, 区别仅在于, 在 本实施例 11中, 丙烯酸树脂与聚酯树脂的重量份比例为 30份: 70份。
[0114] 实施例 12: 本实施例 12的其余技术方案与上述实施例 1相同, 区别仅在于, 在 本实施例 12中, 丙烯酸树脂与聚酯树脂的重量份比例为 70份: 30份。
[0115] 实施例 13: 本实施例 13的其余技术方案与上述实施例 1相同, 区别仅在于, 在 本实施例 13中, 丙烯酸树脂与聚酯树脂的重量份比例为 25份: 75份。
[0116] 实施例 14: 本实施例 14的其余技术方案与上述实施例 1相同 区别仅在于, 在 本实施例 14中, 丙烯酸树脂与聚酯树脂的重量份比例为 75份: 25份。
[0117] 实施例 15: 本实施例 15的其余技术方案与上述实施例 1相同 区别仅在于, 在 本实施例 15中, 丙烯酸树脂与聚酯树脂的重量份比例为 20份: 80份。
[0118] 实施例 16: 本实施例 16的其余技术方案与上述实施例 1相同 区别仅在于, 在 本实施例 16中, 丙烯酸树脂与聚酯树脂的重量份比例为 80份: 20份。
[0119] 实施例 17: 本实施例 17的其余技术方案与上述实施例 1相同 区别仅在于, 在 本实施例 17中, 丙烯酸树脂与聚酯树脂的重量份比例为 15份: 85份。
[0120] 实施例 18: 本实施例 18的其余技术方案与上述实施例 1相同 区别仅在于, 在 本实施例 18中, 丙烯酸树脂与聚酯树脂的重量份比例为 85份: 15份。
[0121] 实施例 19: 本实施例 19的其余技术方案与上述实施例 1相同 区别仅在于, 在 本实施例 19中, 丙烯酸树脂与聚酯树脂的重量份比例为 10份: 90份。
[0122] 实施例 20: 本实施例 20的其余技术方案与上述实施例 1相同 区别仅在于, 在 本实施例 20中, 丙烯酸树脂与聚酯树脂的重量份比例为 90份: 10份。
[0123] 实施例 21: 本实施例 21的其余技术方案与上述实施例 1相同, 区别仅在于, 在 本实施例 21中, 丙烯酸树脂与聚酯树脂的重量份比例为 5份: 95份。
[0124] 实施例 22: 本实施例 22的其余技术方案与上述实施例 1相同, 区别仅在于, 在 本实施例 22中, 丙烯酸树脂与聚酯树脂的重量份比例为 95份: 5份。 [0125] 实施例 23: 本实施例 23的其余技术方案与上述实施例 2相同, 区别仅在于, 在 本实施例 23中, 丙烯酸树脂与聚酯树脂的重量份比例为 40份: 60份。
[0126] 实施例 24: 本实施例 24的其余技术方案与上述实施例 2相同, 区别仅在于, 在 本实施例 24中, 丙烯酸树脂与聚酯树脂的重量份比例为 60份: 40份。
[0127] 实施例 25: 本实施例 25的其余技术方案与上述实施例 2相同, 区别仅在于, 在 本实施例 25中, 丙烯酸树脂与聚酯树脂的重量份比例为 30份: 70份。
[0128] 实施例 26: 本实施例 26的其余技术方案与上述实施例 2相同, 区别仅在于, 在 本实施例 26中, 丙烯酸树脂与聚酯树脂的重量份比例为 70份: 30份。
[0129] 实施例 27: 本实施例 27的其余技术方案与上述实施例 2相同, 区别仅在于, 在 本实施例 27中, 丙烯酸树脂与聚酯树脂的重量份比例为 25份: 75份。
[0130] 实施例 28: 本实施例 28的其余技术方案与上述实施例 2相同 区别仅在于, 在 本实施例 28中, 丙烯酸树脂与聚酯树脂的重量份比例为 75份: 25份。
[0131] 实施例 29: 本实施例 29的其余技术方案与上述实施例 2相同 区别仅在于, 在 本实施例 29中, 丙烯酸树脂与聚酯树脂的重量份比例为 20份: 80份。
[0132] 实施例 30: 本实施例 30的其余技术方案与上述实施例 2相同 区别仅在于, 在 本实施例 30中, 丙烯酸树脂与聚酯树脂的重量份比例为 80份: 20份。
[0133] 实施例 31: 本实施例 31的其余技术方案与上述实施例 2相同 区别仅在于, 在 本实施例 31中, 丙烯酸树脂与聚酯树脂的重量份比例为 15份: 85份。
[0134] 实施例 32: 本实施例 32的其余技术方案与上述实施例 2相同 区别仅在于, 在 本实施例 32中, 丙烯酸树脂与聚酯树脂的重量份比例为 85份: 15份。
[0135] 实施例 33: 本实施例 33的其余技术方案与上述实施例 2相同 区别仅在于, 在 本实施例 33中, 丙烯酸树脂与聚酯树脂的重量份比例为 10份: 90份。
[0136] 实施例 34: 本实施例 34的其余技术方案与上述实施例 2相同 区别仅在于, 在 本实施例 34中, 丙烯酸树脂与聚酯树脂的重量份比例为 90份: 10份。
[0137] 实施例 35: 本实施例 35的其余技术方案与上述实施例 2相同, 区别仅在于, 在 本实施例 35中, 丙烯酸树脂与聚酯树脂的重量份比例为 5份: 95份。
[0138] 实施例 36: 本实施例 36的其余技术方案与上述实施例 2相同, 区别仅在于, 在 本实施例 36中, 丙烯酸树脂与聚酯树脂的重量份比例为 95份: 5份。 比较例 1 :
本比较例 1采用背景技术现有典型的光伏组件的封装材料。
比较例 2:
本比较例 2采用背景技术 EVA胶膜封装材料。
比较例 3:
本比较例 3采用背景技术 POE胶膜封装材料。
比较例 4:
本比较例 4的其余技术方案与上述实施例 1相同, 区别仅在于, 在本比较例 4中
, 封装材料包括纤维布 30份和 70份常规商业化的环氧粉末涂料。
比较例 5:
本比较例 5采用 CN201610685536.0公幵的基于丙烯酸粉末涂料制成的光伏组件 用封装材料实施例 1。
比较例 6:
本比较例 6采用 CN201610685240.9公幵的基于超耐候聚酯粉末涂料制成的光伏 组件用封装材料实施例 1。
比较例 7:
本比较例 7采用 CN201610685536.0公幵的基于丙烯酸粉末涂料制成的光伏组件 用封装材料实施例 11。
比较例 8:
本比较例 6采用 CN201610685240.9公幵的基于超耐候聚酯粉末涂料制成的光伏 组件用封装材料实施例 5。
工业实用性
本发明针对上述实施例以及比较例进行了针对光伏技术标准的实施效果测试, 其测试结果如下表 1。
表 1各类封装材料应用于光伏组件封装的实施效果一对比
Figure imgf000022_0001
[0157] 本发明全文封装结构重量是指光伏组件用封装材料单位平方米的重量; 抗冲击 性能测试是指将标准直径为 25mm、 质量为 7.53g的冰球以 23.0m/s的速度发射出 去, 撞击完成封装的光伏组件 11个位置, 通过外观、 最大功率衰减和绝缘电阻 等三个方面要求来判断光伏组件的抗冲击性能; 防火性是通过 UL1703标准检测 得到的结果; 铅笔硬度是 ASTM D3363-2005(R2011)标准检测得到的结果; 拉伸 强度是 GB/T 1040.3-2006标准检测得到的结果; 断裂伸长率是通过 GB/T 1040.3-2006标准检测得到的结果。
[0158] 从表 1中数据可明显看出, 本发明实施例在满足抗紫外、 抗老化、 抗冲击、 防 火等光伏行业技术标准要求的前提下, 有效实现了解决了光伏组件封装材料的 轻量化, 且制造成本低, 替代传统封装结构式的的钢化玻璃, 给光伏组件提供 一定的刚性以保护光伏电池, 如此, 不但能够大大减轻光伏组件的重量, 由此 适应更多场合的光伏发电产品的安装, 而且还能降低产品安装吋的劳动强度以 及提高安装的便利度, 从总体上降低光伏组件的安装成本。
[0159] 需要进一步强调的是, 本发明实施例通过涂覆装置把混合型热固性粉末涂料均 匀地涂覆在纤维布上, 再通过加压加热使混合型热固性粉末涂料与纤维布预粘 合, 最后分段裁切制得合适尺寸的光伏组件的复合封装材料, 如此能实现光伏 组件封装尺寸的任意改变以适应不同建筑的安装要求, 进一步便于光伏组件的 安装应用。
[0160] 本发明还针对上述实施例以及比较例在特定项目上进行了对比, 其对比结果如 下表 2。
[0161] 表 2各类封装材料应用于光伏组件封装的实施效果二对比
[]
[表 1] 对比项目 成本 耐湿热稳耐候性 与纤维布与纤维布机械性能水汽透过 定性 润湿性 的附着力 率 实施例 1 ++++ ++++
实施例 2 ++++
实施例 3 ++++
实施例 4 ++++ ++++
实施例 5 ++++ ++++
实施例 6- ++++ ++++
7
实施例 8 ++++ ++++ ++++ +++ ++++ ++++ ++++ 实施例 9- ++++ ++++
12
实施例 13 ++++ ++++
、 15、 17 实施例 14 +++ ++++
、 16、 18
实施例 19 ++++ ++++
、 21
实施例 20 ++ ++++ ++++ 、 22
实施例 23 ++++
-26 实施例 27 ++++
、 29、 31
实施例 28 +++
、 30、 32
实施例 33 ++++ ++++
、 35
实施例 34 ++ ++++ ++++ 、 36 比较例 1 ++++ ++++ 1 1
比较例 2 ++++ +++ + 1 1 - ++ 比较例 3 ++++ +++ + 1 1 - ++ 比较例 4 ++++ + - + + - + 比较例 5 ++ ++ ++++ ++ 比较例 6 +++ ++ +++ ++
比较例 7 ++ ++ ++++ ++++ ++ 比较例 8 ++++ +++ ++ ++ ++ 本发明上表 2中的 "+"表示其对应的实施例或比较例在该对比项目下表现优异, "-"表示其对应的实施例或比较例在该对比项目下无法满足光伏标准, "/"表示其 对应的实施例或比较例不适用于该对比项目, 其中, "+"的数量越多, 代表其对 应的实施例或比较例在该对比项目表现越优异, 具体地, 在"成本"对比项下, 每 多 1个" +"代表其对应的实施例或比较例在"成本"上降低 10-20%左右; 在"耐湿热 稳定性 "对比项下, 每多 1个 "+"代表其对应的实施例或比较例在"耐湿热稳定性" 上提高 10-20%左右; 在"耐候性 "对比项下, 每多 1个" +"代表其对应的实施例或 比较例在"耐候性"上提高 10-20%左右; 在"与纤维布润湿性"对比项下, 每多 1个" +"代表其对应的实施例或比较例在"与纤维布润湿性"上提高 10-20%左右; 在"与 纤维布的附着力"对比项下, 每多 1个" +"代表其对应的实施例或比较例在"与纤维 布的附着力"上提高 10-20%左右; 在"机械性能"对比项下, 每多 1个 "+"代表其对 应的实施例或比较例在"机械性能"上提高 10-20%左右; 在"水汽透过率"对比项下 , 每多 1个" +"代表其对应的实施例或比较例在"水汽透过率"上降低 10-20%左右
[0163] 需要特别说明的是, 在本发明上表 2中, "耐湿热稳定性"越好、 以及"水汽透过 率"越低则表示其适合应用于高温高湿环境; "耐候性"越好则表示其适合应用于 户外强紫外光照或强风环境; "与纤维布润湿性"以及"与纤维布的附着力"分别 是指本发明实施例混合型热固性粉末涂料与纤维布的润湿性与附着力, "与纤维 布润湿性"以及"与纤维布的附着力"越好, 则表示其强度好, 且与纤维布的连接 质量好, 适合应用于具有高机械安装要求环境; "机械性能"是指本发明实施例整 体的机械性能表现, 包括了附着力、 抗冲击、 铅笔硬度等方面的机械性能。
[0164] 通过上表 2可清楚得知: 通过实施本发明可以取得大量综合性能明显优异于比 较例 5-比较例 8的实施例, 本发明这些实施例可以有效保证光伏组件在包括高温 高湿环境、 户外强紫外光照或强风环境、 具有高机械安装要求环境等恶劣安装 环境下的使用寿命, 而且成本较低, 非常适合大规模实施应用; 其中, 在其他 的相同实施条件下, 本发明采用实施例 2、 实施例 3中的混合型热固性粉末涂料 制备方法的实施效果最优异; 在其他的相同实施条件下, 当本发明丙烯酸树脂 固化剂与聚酯树脂不相同, 以及聚酯树脂固化剂与丙烯酸树脂不相同吋的实施 例性能明显优于其相同吋的实施例性能; 在其他的相同实施条件下, 当本发明 丙烯酸树脂与聚酯树脂的重量份比例范围在 40-60份: 60-40份吋的实施效果最优 异, 重量份比例范围介于 30-70份: 70-30份与 40-60份: 60-40份吋的实施效果次 之。
[0165] 虽然本实施例得到的材料应用于光伏组件的封装能够取得优异的实施效果, 但 光伏领域并不是该材料的唯一应用领域, 本领域技术人员根据实际应用领域需 要, 同吋基于本发明所公幵的光伏组件用复合封装材料所具备的特性和所实现 的技术效果, 完全可以将本发明应用在其他合适的领域中, 这种应用不需要付 出任何创造性劳动, 仍然属于本发明的精神, 因此这种应用同样被认为本发明 的权利保护范围。
[0166] 对于本领域技术人员而言, 显然本发明不限于上述示范性实施例的细节, 而且 在不背离本发明的精神或基本特征的情况下, 能够以其他的具体形式实现本发 明。 因此, 无论从哪一点来看, 均应将实施例看作是示范性的, 而且是非限制 性的, 本发明的范围由所附权利要求而不是上述说明限定, 因此旨在将落在权 利要求的等同要件的含义和范围内的所有变化囊括在本发明内。 不应将权利要 求中的任何附图标记视为限制所涉及的权利要求。
[0167] 此外, 应当理解, 虽然本说明书按照实施方式加以描述, 但并非每个实施方式 仅包含一个独立的技术方案, 说明书的这种叙述方式仅仅是为清楚起见, 本领 域技术人员应当将说明书作为一个整体, 各实施例中的技术方案也可以经适当 组合, 形成本领域技术人员可以理解的其他实施方式。

Claims

权利要求书
一种光伏组件用复合封装材料, 其特征在于, 所述的封装材料包括下 述原料:
纤维布, 所述的纤维布由纤维材料织造制成;
混合型热固性粉末涂料, 所述的混合型热固性粉末涂料的原料包括丙 烯酸树脂、 丙烯酸树脂固化剂、 聚酯树脂以及聚酯树脂固化剂; 其中, 所述的混合型热固性粉末涂料均匀地涂覆在所述的纤维布上。 如权利要求 1所述的光伏组件用复合封装材料, 其特征在于, 所述的 纤维布与所述的混合型热固性粉末涂料的重量份比例范围为 20-60份 : 40-80份。
如权利要求 1或 2所述的光伏组件用复合封装材料, 其特征在于, 所述 的纤维布的单位面积重量范围为 30-400g/m 2, 所述的混合型热固性粉 末涂料涂覆在所述的纤维布上的单位面积重量范围为 100-400 g/m 2。 如权利要求 1所述的光伏组件用复合封装材料, 其特征在于, 在所述 的混合型热固性粉末涂料中, 所述的丙烯酸树脂与聚酯树脂的重量份 比例范围为 30-70份: 70-30份。
如权利要求 1所述的光伏组件用复合封装材料, 其特征在于, 在所述 的混合型热固性粉末涂料中, 所述的丙烯酸树脂与聚酯树脂的重量份 比例范围为 40-60份: 60-40份。
如权利要求 1所述的光伏组件用复合封装材料, 其特征在于, 所述的 混合型热固性粉末涂料的胶化吋间范围为 50-1000s, 斜板流动范围为 10-40cm, 软化点温度范围为 80-120°C。
如权利要求 1所述的光伏组件用复合封装材料, 其特征在于, 所述的 混合型热固性粉末涂料采用包括丙烯酸树脂、 丙烯酸树脂固化剂、 聚 酯树脂以及聚酯树脂固化剂的原料通过熔融混合工艺后制备得到。 如权利要求 1所述的光伏组件用复合封装材料, 其特征在于, 所述的 混合型热固性粉末涂料采用丙烯酸粉末涂料和聚酯粉末涂料通过熔融 混合工艺后制备得到, 其中, 所述的丙烯酸粉末涂料采用包括丙烯酸树脂以及丙烯酸树脂固化剂的 原料通过熔融混合工艺后制备得到;
所述的聚酯粉末涂料采用包括聚酯树脂以及聚酯树脂固化剂的原料通 过熔融混合工艺后制备得到。
如权利要求 1所述的光伏组件用复合封装材料, 其特征在于, 所述的 混合型热固性粉末涂料采用丙烯酸粉末涂料和聚酯粉末涂料通过干混 工艺后制备得到, 其中,
所述的丙烯酸粉末涂料采用包括丙烯酸树脂以及丙烯酸树脂固化剂的 原料通过熔融混合工艺后制备得到;
所述的聚酯粉末涂料采用包括聚酯树脂以及聚酯树脂固化剂的原料通 过熔融混合工艺后制备得到。
如权利要求 1所述的光伏组件用复合封装材料, 其特征在于, 所述的 混合型热固性粉末涂料采用丙烯酸粉末涂料、 聚酯树脂以及聚酯树脂 固化剂通过熔融混合工艺后制备得到, 其中, 所述的丙烯酸粉末涂料 采用包括丙烯酸树脂以及丙烯酸树脂固化剂的原料通过熔融混合工艺 后制备得到。 如权利要求 1所述的光伏组件用复合封装材料, 其特征在于, 所述的 混合型热固性粉末涂料采用丙烯酸树脂、 丙烯酸树脂固化剂以及聚酯 粉末涂料通过熔融混合工艺后制备得到, 其中, 所述的聚酯粉末涂料 采用包括聚酯树脂以及聚酯固化剂的原料通过熔融混合工艺后制备得 到。
如权利要求 7所述的光伏组件用复合封装材料, 其特征在于, 所述的 丙烯酸树脂固化剂与所述的聚酯树脂不相同。
如权利要求 7所述的光伏组件用复合封装材料, 其特征在于, 所述的 聚酯树脂固化剂与所述的丙烯酸树脂不相同。
如权利要求 1或 7或 8或 9或 10或 11或 12或 13所述的光伏组件用复合封装 材料, 其特征在于, 所述的丙烯酸树脂固化剂是羧基聚酯树脂、 羟基 聚酯树脂、 异氰脲酸三缩水甘油酯、 偏苯三酸三缩水甘油酯、 对苯二 甲酸二缩水甘油酯、 羟烷基酰胺、 异氰酸酯、 封闭型多异氰酸酯、 脲 二酮、 邻苯二甲酸酐、 偏苯三酸酐、 癸二酸、 十一烷二酸、 十二烷二 酸、 十三烷二酸、 十四烷二酸、 十五烷二酸、 十六烷二酸、 双氰胺、 癸二酸二酰肼氢、 二氨基二苯砜、 四甲基甘脲、 氨基树脂、 氢化环氧 中的任意一种或几种任意配比的混合。
如权利要求 1或 7或 8或 9或 10或 11或 12或 13所述的光伏组件用复合封装 材料, 其特征在于, 所述的聚酯树脂固化剂是 GMA丙烯酸树脂、 异 氰脲酸三缩水甘油酯、 偏苯三酸三缩水甘油酯、 对苯二甲酸二缩水甘 油酯、 羟烷基酰胺、 异氰酸酯、 封闭型多异氰酸酯、 脲二酮、 邻苯二 甲酸酐、 偏苯三酸酐、 二氨基二苯砜、 四甲基甘脲、 氨基树脂、 氢化 环氧中的任意一种或几种任意配比的混合。
一种如权利要求 1-15任意一项所述的光伏组件用复合封装材料的制备 方法, 其特征在于, 其操作步骤包括如下:
a) 、 将所述的混合型热固性粉末涂料通过涂覆装置均匀地涂覆在所 述的纤维布上;
b) 、 通过加压加热使所述的混合型热固性粉末涂料与所述的纤维布 实现热粘合;
c) 、 将上述步骤 b) 完成热粘合的混合型热固性粉末涂料与纤维布进 行分段裁切;
Figure imgf000030_0001
如权利要求 16所述的光伏组件用复合封装材料的制备方法, 其特征在 于, 所述热粘合过程的加压范围为 0.05-0.25Mpa, 所述热粘合过程的 加热温度范围为 90-130°C, 加热吋间范围为 5-20秒。
PCT/CN2017/092291 2017-07-07 2017-07-07 光伏组件用复合封装材料及该复合封装材料的制备方法 WO2019006765A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780092920.2A CN110832138B (zh) 2017-07-07 2017-07-07 光伏组件用复合封装材料及该复合封装材料的制备方法
PCT/CN2017/092291 WO2019006765A1 (zh) 2017-07-07 2017-07-07 光伏组件用复合封装材料及该复合封装材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/092291 WO2019006765A1 (zh) 2017-07-07 2017-07-07 光伏组件用复合封装材料及该复合封装材料的制备方法

Publications (1)

Publication Number Publication Date
WO2019006765A1 true WO2019006765A1 (zh) 2019-01-10

Family

ID=64950472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092291 WO2019006765A1 (zh) 2017-07-07 2017-07-07 光伏组件用复合封装材料及该复合封装材料的制备方法

Country Status (2)

Country Link
CN (1) CN110832138B (zh)
WO (1) WO2019006765A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3106698A1 (fr) 2020-01-27 2021-07-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant une couche avant et une couche arrière en matériaux composites
FR3107990A1 (fr) 2020-03-05 2021-09-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant des couches avant et arrière polymère et des renforts fibrés
CN114311888A (zh) * 2021-12-30 2022-04-12 苏州赛伍应用技术股份有限公司 一种防草垫及其制备方法和应用
FR3127089A1 (fr) 2021-09-14 2023-03-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant une couche avant en verre et polymère
WO2023135385A1 (fr) 2022-01-14 2023-07-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fabrication d'un module photovoltaïque et installation de fabrication correspondante
WO2023199005A1 (fr) 2022-04-15 2023-10-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant un cadre composite intégré
WO2023203289A1 (fr) 2022-04-20 2023-10-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger et résistant aux chocs
CN116948410A (zh) * 2023-07-07 2023-10-27 上海品诚控股集团有限公司 一种封装光伏组件的复合材料及其制备方法
FR3138001A1 (fr) 2022-07-18 2024-01-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant un cadre de renfort composite

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114472122A (zh) * 2022-01-17 2022-05-13 上迈(镇江)新能源科技有限公司 纤维基光伏背板的表面处理方法、耐老化纤维基光伏背板
CN115519869A (zh) * 2022-09-01 2022-12-27 北京金茂绿建科技有限公司 一种光伏背板、光伏组件以及光伏背板的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046066A1 (ja) * 2009-10-15 2011-04-21 三菱製紙株式会社 リチウム二次電池用基材及びリチウム二次電池用セパレータ
CN102364694A (zh) * 2011-11-01 2012-02-29 杭州福膜新材料科技有限公司 太阳能电池背板及太阳能电池
CN102808334A (zh) * 2012-08-17 2012-12-05 杭州玖合新材料有限公司 一种热固性树脂复合贴面材料及其制备方法
CN104538473A (zh) * 2014-12-25 2015-04-22 杭州福斯特光伏材料股份有限公司 一种太阳能电池组件用阻燃背板
CN106283677A (zh) * 2016-08-18 2017-01-04 老虎粉末涂料制造(太仓)有限公司 光伏组件用封装材料及该封装材料的制备方法
CN106299000A (zh) * 2016-08-18 2017-01-04 老虎粉末涂料制造(太仓)有限公司 光伏组件用封装材料及该封装材料的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569452B (zh) * 2010-10-20 2014-10-15 苏州尚善新材料科技有限公司 太阳能电池组件聚合物背板及其制造方法
CN102315285B (zh) * 2011-09-06 2013-06-19 新高电子材料(中山)有限公司 一种耐候性涂层及使用该涂层的太阳能背板
EP3031873B1 (en) * 2013-08-09 2017-10-18 Asahi Glass Company, Limited Method for manufacturing powder coating material and method for manufacturing carboxyl-group-containing fluororesin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046066A1 (ja) * 2009-10-15 2011-04-21 三菱製紙株式会社 リチウム二次電池用基材及びリチウム二次電池用セパレータ
CN102364694A (zh) * 2011-11-01 2012-02-29 杭州福膜新材料科技有限公司 太阳能电池背板及太阳能电池
CN102808334A (zh) * 2012-08-17 2012-12-05 杭州玖合新材料有限公司 一种热固性树脂复合贴面材料及其制备方法
CN104538473A (zh) * 2014-12-25 2015-04-22 杭州福斯特光伏材料股份有限公司 一种太阳能电池组件用阻燃背板
CN106283677A (zh) * 2016-08-18 2017-01-04 老虎粉末涂料制造(太仓)有限公司 光伏组件用封装材料及该封装材料的制备方法
CN106299000A (zh) * 2016-08-18 2017-01-04 老虎粉末涂料制造(太仓)有限公司 光伏组件用封装材料及该封装材料的制备方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3106698A1 (fr) 2020-01-27 2021-07-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant une couche avant et une couche arrière en matériaux composites
EP3859793A1 (fr) 2020-01-27 2021-08-04 Commissariat à l'énergie atomique et aux énergies alternatives Module photovoltaïque léger comportant une couche avant et une couche arrière en matériaux composites
FR3107990A1 (fr) 2020-03-05 2021-09-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant des couches avant et arrière polymère et des renforts fibrés
FR3127089A1 (fr) 2021-09-14 2023-03-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant une couche avant en verre et polymère
WO2023041864A1 (fr) 2021-09-14 2023-03-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant une couche avant en verre et polymère
CN114311888A (zh) * 2021-12-30 2022-04-12 苏州赛伍应用技术股份有限公司 一种防草垫及其制备方法和应用
WO2023135385A1 (fr) 2022-01-14 2023-07-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fabrication d'un module photovoltaïque et installation de fabrication correspondante
FR3131982A1 (fr) 2022-01-14 2023-07-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fabrication d’un module photovoltaïque et installation de fabrication correspondante
WO2023199005A1 (fr) 2022-04-15 2023-10-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant un cadre composite intégré
FR3134653A1 (fr) 2022-04-15 2023-10-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant un cadre composite intégré
WO2023203289A1 (fr) 2022-04-20 2023-10-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger et résistant aux chocs
FR3134919A1 (fr) 2022-04-20 2023-10-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger et résistant aux chocs
FR3138001A1 (fr) 2022-07-18 2024-01-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant un cadre de renfort composite
EP4310924A1 (fr) 2022-07-18 2024-01-24 Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives Module photovoltaïque léger comportant un cadre de renfort composite
CN116948410A (zh) * 2023-07-07 2023-10-27 上海品诚控股集团有限公司 一种封装光伏组件的复合材料及其制备方法
CN116948410B (zh) * 2023-07-07 2024-03-26 上海品诚控股集团有限公司 一种封装光伏组件的复合材料及其制备方法

Also Published As

Publication number Publication date
CN110832138B (zh) 2022-08-26
CN110832138A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2019006765A1 (zh) 光伏组件用复合封装材料及该复合封装材料的制备方法
CN108589319B (zh) 一种光伏组件用封装材料
CN111201614B (zh) 一种光伏组件的层压结构及其制备方法、光伏组件
AU2016428163B2 (en) Laminated structure of photovoltaic assembly, preparation method therefor, and photovoltaic assembly
WO2018032732A1 (zh) 光伏组件用封装材料及该封装材料的制备方法
JP2019518113A5 (zh)
CN110854226B (zh) 一种光伏高效复合背板及其制备方法、应用的光伏组件
CN108242473B (zh) 一种彩色光伏组件及其制备方法
WO2017140002A1 (zh) 树脂基复合薄膜材料及其制备方法、太阳电池组件
CN108376717B (zh) 光伏组件层压结构的制备方法以及层压结构、光伏组件
CN108695400B (zh) 一种叠片组件的层压结构及其制备方法、叠片组件
CN114134714A (zh) 一种太阳能光伏用高耐候透明前板封装材料及其制备方法
CN108695401B (zh) 一种双面组件的层压结构及其制备方法、双面组件
CN110629558A (zh) 高效防护复合板材及其制备方法、应用和应用方法
CN110629557A (zh) 高效防护复合板材及其制备方法、应用和应用方法
WO2019228049A1 (zh) 高效防护复合板材及其制备方法、应用和应用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916840

Country of ref document: EP

Kind code of ref document: A1