WO2017140002A1 - 树脂基复合薄膜材料及其制备方法、太阳电池组件 - Google Patents

树脂基复合薄膜材料及其制备方法、太阳电池组件 Download PDF

Info

Publication number
WO2017140002A1
WO2017140002A1 PCT/CN2016/075274 CN2016075274W WO2017140002A1 WO 2017140002 A1 WO2017140002 A1 WO 2017140002A1 CN 2016075274 W CN2016075274 W CN 2016075274W WO 2017140002 A1 WO2017140002 A1 WO 2017140002A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
based composite
composite film
solar cell
film material
Prior art date
Application number
PCT/CN2016/075274
Other languages
English (en)
French (fr)
Inventor
施正荣
龙国柱
刘皎彦
练成荣
曹圣龙
Original Assignee
上迈(香港)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上迈(香港)有限公司 filed Critical 上迈(香港)有限公司
Publication of WO2017140002A1 publication Critical patent/WO2017140002A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0006Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0059Organic ingredients with special effects, e.g. oil- or water-repellent, antimicrobial, flame-resistant, magnetic, bactericidal, odour-influencing agents; perfumes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • D06N3/142Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes mixture of polyurethanes with other resins in the same layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the field of new energy power generation and photovoltaic application, in particular to a resin-based composite film material, a preparation method thereof and a solar cell module.
  • Solar photovoltaic power generation relies on solar cells to convert light energy directly into electrical energy. In the past ten years, the total global production of photovoltaic cells has increased at an average annual growth rate of more than 40%. By the end of 2012, the installed capacity of global photovoltaic power generation systems has reached 100 GW. Photovoltaic power generation is expected to account for 10% of the world's energy supply by 2030, making a substantial contribution to the world's energy supply and energy mix.
  • the existing large-scale solar cell module is as shown in Fig. 1, using ultra-white embossed tempered glass as a support, using ethylene and vinyl acetate copolymer (EVA), fluorine-containing insulating material as the backing plate under vacuum
  • EVA ethylene and vinyl acetate copolymer
  • the thermo-compression seal is a laminate 4, which is mechanically supported by an aluminum alloy frame 1 edging after the package is completed, and then is mounted by a dedicated metal bracket, and then the connector 2 is used to realize electrical connection in the solar cell module, and the connector is connected. 2 is connected to the junction box 3 for the lead.
  • the packaging materials of the existing photovoltaic modules are mainly photovoltaic tempered glass, EVA, photovoltaic backsheet, wherein the glass density is 2.5 g / cubic centimeter (g / cm 3), commonly 3.2 mm (mm) glass weighing eight kilograms per square meter (Kg), by packaging the finished photovoltaic module (solar cell module using the glass packaging) usually larger mass, weight More than 10 kg per square meter, plus installation support structure, at least 12 kg per square meter, when it is applied to the top of the building or wall, etc., puts higher requirements on the supporting structure of the photovoltaic module.
  • the problem to be solved by the present invention is that the packaging material of the photovoltaic module (solar cell module) in the prior art cannot solve the problem of light weight and meet the technical standards of the photovoltaic industry such as anti-ultraviolet, anti-aging, anti-shock, fireproof and the like.
  • the technical solution of the present invention provides a resin-based composite film material composed of a fiber-based material, a resin, and a curing agent, and a mixture of the resin and the curing agent is uniformly applied to the substrate.
  • the fiber-based material is made of a fiber-based material; the weight percentage of the resin-based composite film material component is: 30% to 50% of the fiber-based material; 35% to 50% of the resin; and 15 to 20% of the curing agent.
  • the fiber-based material is glass fiber, carbon fiber or aramid fiber with good insulation and weather resistance.
  • the fiber material has a monofilament diameter of between 3 and 23 ⁇ m.
  • the fiber cloth is made by one or more weaving methods of plain, twill, satin, rib or mat, and the weight per unit area is 30 g/m 2 (g/m 2 ) to 400. Between g/m2.
  • the resin is formed by mixing one or more of a hydroxy polyester resin, an epoxy resin, an acrylic resin, a urethane resin, and a fluorocarbon resin in an arbitrary ratio.
  • the curing agent consists of triglycidyl isocyanurate (TGIC), tri- ⁇ -methyl glycidyl isocyanurate, glycidyl methacrylate, hydroxyalkylamide, isocyanate, ortho- One or more of phthalic anhydride, trimellitic anhydride, dodecanedioic acid, dicyandiamide, and dihydrazide are mixed in any ratio.
  • TGIC triglycidyl isocyanurate
  • trimellitic anhydride trimellitic anhydride
  • dodecanedioic acid dicyandiamide
  • dihydrazide dihydrazide
  • the weight of the mixture of the resin and the curing agent on the fiber cloth ranges from 30 g/m 2 to 400 g/m 2 .
  • the technical solution of the present invention further provides a method for preparing the above resin-based composite film material, comprising: after pre-mixing the resin and the curing agent, uniformly coating the fiber cloth by a coating device. Then, the mixture of the resin and the curing agent is pre-bonded with the fiber cloth by pressure heating, and finally, the resin-based composite film material of a suitable size is obtained by segment cutting.
  • the pre-bonding process has a pressurization range of 0.05 to 0.25 kPa (Kpa).
  • the pre-bonding process has a heating temperature ranging from 90 to 130 degrees Celsius (° C.) and a heating time of 5 to 20 seconds.
  • the technical solution of the present invention further provides a solar cell assembly comprising: a junction box, a connector and a junction box for a lead; the laminate comprises a fluoroplastic film sequentially laminated, a first resin base a composite film, a first EVA, a solar cell, a second resin-based composite film, and a backing plate; the connector being connected to the junction box for electrical connection in the solar cell module; the first resin-based composite
  • the film and the second resin-based composite film are the above-mentioned resin-based composite film materials.
  • the laminate further comprises a second EVA between the solar cell and the second resin-based composite film.
  • the solar cell assembly further includes a reinforcing rib and a self-tapping screw, the reinforcing rib provides mechanical support for the laminate, the self-tapping screw between the laminate and the reinforcing rib Fix it.
  • the mixture formed by the pre-mixing is uniformly coated on the fiber cloth by a coating device, and then the mixture of the resin and the curing agent and the fiber cloth are pre-heated by pressure heating.
  • the weight percentage of the resin-based composite film material component is 30% to 50% of the fiber-based material, 35% to 50% of the resin, and the curing agent 15 to 20%, the resin-based composite film material thus produced is applied as a packaging material for a photovoltaic module, which can solve the problem of light weight of the photovoltaic component, and can satisfy the anti-UV and anti-aging Technical standards for photovoltaic industry such as chemical, impact and fire protection.
  • the solar cell module is provided with a certain rigidity to protect the solar cell, so that the weight of the solar cell module can be greatly reduced, thereby adapting to more occasions.
  • the installation of solar photovoltaic power generation products can also reduce the labor intensity during installation and improve the installation convenience, thereby reducing the installation cost as a whole.
  • FIG. 1 is a schematic structural view of a solar cell module in the prior art
  • FIG. 2 is a schematic structural view of a laminate of a solar cell module in the prior art
  • FIG. 3 is a schematic flow chart of a method for preparing a resin-based composite film material provided by the technical solution of the present invention
  • FIG. 4 is a schematic flow chart showing a preparation process of a resin-based composite film material according to an embodiment of the present invention
  • Figure 5 is a schematic view showing the main equipment used for preparing a resin-based composite film material in an embodiment of the present invention
  • FIG. 6 is a schematic structural view of a solar cell module according to an embodiment of the present invention.
  • Figure 7 is a schematic structural view of a laminate of a solar cell module according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural view of an aluminum alloy frame of a solar cell module in the prior art
  • FIG. 9 is a schematic structural view of an aluminum alloy frame of a solar cell module according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural view of a connector of a solar cell module according to an embodiment of the present invention.
  • Fig. 11 is a flow chart showing the production process of a solar cell module according to an embodiment of the present invention.
  • the existing photovoltaic module (solar cell module) adopts a tempered glass package, which results in heavy weight, high installation labor intensity, and may be limited by the load bearing capacity of the building during the installation of the building and the home roof. Can not be installed, difficult to adapt to the installation requirements of different buildings and other shortcomings.
  • the laminate of the prior art solar cell module is formed by laminating the ultra-white tempered embossed glass 21, the EVA film 22, the solar cell string 23, the EVA film 24, and the back sheet 25 in this order. of.
  • the technical solution of the present invention provides a novel composite material mainly applied to a photovoltaic package, and particularly relates to a lightweight resin-based composite film material and a preparation method thereof.
  • the preparation method of the resin-based composite film material includes:
  • Step S301 pre-mixing the resin with the curing agent
  • Step S302 uniformly coating the mixture formed by pre-mixing on the fiber cloth made of the fiber-based material by using a coating device
  • Step S303 pre-bonding the mixture of the resin and the curing agent to the fiber cloth by pressure heating
  • Step S304 preparing a resin-based composite film material of a suitable size by segment cutting, wherein the weight percentage of the resin-based composite film material component is: 30% to 50% of the fiber material, 35% to 50% of the resin, and the curing agent 15 to 20%.
  • the technical solution of the present invention also relates to a design and manufacturing technology of a solar cell module, and specifically provides a design and a manufacturing method of a novel lightweight solar cell module.
  • the purpose of the solar cell module and the manufacturing method thereof is as follows: 1 to reduce the weight of the product, so that the product can be installed in more occasions; 2 to achieve any change in product size and color to meet the requirements of architectural aesthetics; The labor intensity and the ease of installation increase the installation cost as a whole.
  • the resin-based composite film material provided in this embodiment is composed of a fiber-based material, a resin and a curing agent, and a mixture of the resin and the curing agent is uniformly applied to the fiber cloth made of the fiber-based material;
  • the weight percentage of the composite film material component is: fiber-based material 30% to 50%; resin 35% to 50%; curing agent 15 to 20%.
  • the weight percentage of the resin-based composite film material component can be specifically combined in one of the following ways:
  • the fiber-based material may be glass fiber, carbon fiber or aramid fiber, and the selected fiber-based material should have good insulation and weather resistance, and the diameter of the monofilament is between 3 and 23 ⁇ m, for example, A fiber-like material having a monofilament diameter of 3 ⁇ m, 13 ⁇ m or 23 ⁇ m.
  • the fiber cloth can be made by one or more weaving methods of plain weave, twill weave, satin weave, rib or mat, and the weight per unit area can be from 30 g/m2 to 400 g/sq. Between the meters, a suitable weight of fiber cloth can be selected as needed, for example, the basis weight is 30 g/m 2 , 100 g/m 2 , 200 g/m 2 , 300 g/m 2 or 400 g/m 2 .
  • the resin may be formed by mixing one or more of a hydroxy polyester resin, an epoxy resin, an acrylic resin, a urethane resin, and a fluorocarbon resin in an arbitrary ratio.
  • the curing agent may be triglycidyl isocyanurate (TGIC), tri- ⁇ -methyl glycidyl isocyanurate, glycidyl methacrylate, hydroxyalkylamide, isocyanate.
  • TGIC triglycidyl isocyanurate
  • trimellitic anhydride dodecanedioic acid, dicyandiamide, and dihydrazide are mixed in any ratio.
  • the mixture of the resin and the curing agent is on the fiber cloth.
  • the weight can range from 30 g/m2 to 400 g/m2, for example 30 g/sq. Meter, 100 g/m2, 200 g/m2, 300 g/m2 or 400 g/m2.
  • the above resin-based film composite material provided by the embodiment can be used as a key material for a novel solar cell module, which is composed of a fiber-based material as a matrix material and a composite resin material on a fiber-based material under a certain temperature and pressure.
  • the melt compounding is carried out to meet the requirements of the relevant lamination process involved in the subsequent preparation of the solar cell module.
  • the preparation process of the resin-based film composite material is as shown in FIG. 4, and mainly includes the steps of feeding, coating, hot-melt compounding, slitting and packaging.
  • the main equipment used is as shown in FIG. Figure 5 shows a fiber feeder 51, a coating machine 52 and a hot melt laminator 53, respectively corresponding to the process of feeding, coating, hot melt compounding.
  • the fiber cloth woven from the fiber-based material is placed in the fiber feeder 51, and the mixture of the resin and the curing agent formed by the pre-mixing is uniformly coated on the fiber feed by the coating device 52.
  • the fiber cloth outputted by the machine 51 is then subjected to pre-bonding process of the mixture of the resin and the curing agent and the fiber cloth by pressure heating by the hot melt laminating machine 53, and finally, the resin-based film composite material of a suitable size is obtained by segment cutting.
  • the resin-based film composite material obtained is packaged. Since the process of slitting and packaging is known to those skilled in the art, it will not be described in detail herein.
  • the pre-bonding process requires a specific pressurization and heating control, because the mixture of the resin and the curing agent and the fiber cloth can be made only under a suitable pressure and temperature.
  • the hot melt compounding process is well completed to ensure that the lamination process in the process of preparing the solar cell module is satisfied, thereby forming a packaging material that is truly applicable to the solar cell module.
  • the pre-bonding process has a pressurization range of 0.05 to 0.25 Kpa, for example, 0.05 Kpa, 0.1 Kpa, 0.2 Kpa, or 0.25 Kpa; and the pre-bonding process has a heating temperature range of 90 to 130 ° C. (° C.), for example, 90° C., 100° C., 110° C., 120° C. or 130° C.; the pre-bonding process has a heating time ranging from 5 to 20 seconds, for example 5 seconds, 10 seconds, 15 seconds or 20 seconds.
  • the coating device may also be a dusting head, in which case the coating device implements a coating process in the form of dusting, coating a powdery mixture of the resin and the curing agent. In the fiber cloth.
  • the resin-based film composite material used in the embodiment can be applied to the packaging material of the solar cell module, the photovoltaic application field is not the only application field of the resin-based film composite material.
  • the characteristics possessed by the resin-based film composite material can also be applied to other suitable fields by those skilled in the art.
  • an embodiment of the present invention further provides a solar cell module.
  • the solar cell module includes a laminate 34, a connector 31, a junction box 32 for leads, a rib 33, and a tapping screw 35; the connector 31 is connected to the junction box 32.
  • the stiffeners 33 provide mechanical support for the laminate 34; the self-tapping screws 35 between the laminate 34 and the stiffeners 33
  • the laminate 34 includes a fluoroplastic film 41, a first resin-based composite film 42, a first EVA 43, a solar cell 44, a second EVA 45, and a second resin-based composite film 46 which are sequentially laminated.
  • the backing plate 47 in the embodiment, the first resin-based composite film 42 and the second resin-based composite film 46 are all made of the above-mentioned resin-based composite film material.
  • the second EVA 45 may not be used, but the solar cell 44 and the second resin-based composite film 46 may be directly laminated.
  • the resin-based composite film material is applied as a packaging material of a solar cell module (photovoltaic module), which can solve the problem of light weight of the photovoltaic component, and can satisfy the anti-UV, anti-aging, anti-shock, fireproof and the like.
  • solar cell module photovoltaic module
  • the biggest difference between the laminate of the conventional solar cell module in the prior art and the laminate of the solar cell module provided by the embodiment of the present invention is that the fluoroplastic film and the resin-based composite film material are used in the embodiment of the present invention. Instead of tempered glass, it provides a certain rigidity to the solar cell module to protect the solar cell. This not only greatly reduces the weight of the solar cell module, but also accommodates the installation of solar photovoltaic products in more occasions, and also reduces the installation time of the product. Labor intensity and ease of installation reduce overall installation costs.
  • first resin-based composite film 42 and the second resin-based composite film 46 may be cut as needed or composited with different colors of resin, so that Any change in the size and color of the solar module product to suit the installation requirements of different buildings.
  • the solar cell assembly uses a conventional aluminum alloy frame as an edge snap-on structure.
  • the laminate needs to be embedded in the aluminum alloy frame and bonded using silica gel; and the solar cell module of the embodiment of the present invention
  • a simple aluminum alloy frame is used, that is, it is not a commonly used edge snap structure, but is realized by a rib, as shown in FIG.
  • the rib 33 shown in FIG. 6 may specifically be an aluminum alloy rib that provides mechanical support to the plate-like laminate 34.
  • the reinforcing ribs 33 and the laminate 34 are first bonded by double-sided tape, and then the self-tapping screws 35 are used to mechanically fix the two.
  • a support member such as a rib, an aluminum alloy frame, etc.
  • a fixing member that fixes the support member to the laminate (for example, Self-tapping screws)
  • the support member and the fixing member may not be part of the solar cell module, and the solar cell module only includes the laminate, the connector and the lead wire.
  • the junction box, ie the solar module, can be free of borders.
  • the laminate of the solar cell module in the embodiment of the present invention uses a fluoroplastic film and a resin-based composite material instead of the tempered glass, the weight of the solar cell module is reduced, so that the simple aluminum alloy frame (reinforcing rib) can be used for fixing. Laminates are made possible, and the use of a simple aluminum alloy frame further reduces the weight of the solar cell module in the embodiment of the present invention.
  • the difference between the conventional solar cell module and the solar cell module provided by the embodiment of the present invention is also the difference in the cable connector employed.
  • Conventional solar cell assemblies in the prior art use standard rapid electrical connection joints, which are costly, and the connector used in the embodiment of the present invention, as shown in FIG. 10, uses a crimp terminal 72 and a heat shrink sleeve 73 at both ends.
  • the cable 71 and the cable 74 are inserted into the crimp terminal 72, and the heat shrink sleeve 73 surrounds the crimp terminal 72. This makes the electrical connection reliable and cost-effective.
  • the lightweight solar cell module provided by the embodiment of the invention can reduce the weight by about 50% compared with the solar cell module using the conventional tempered glass.
  • the embodiment of the present invention further provides a method for manufacturing the solar cell module, comprising: the fluoroplastic film, the first resin-based composite film, the first EVA, the solar cell, and the second EVA.
  • the second resin-based composite film and the back sheet are sequentially laminated, and the laminate is formed through a lamination process; an edge cutting process is performed on the formed laminate; and the laminate is bonded The reinforcing rib; fixing the bonded laminate and the reinforcing rib with the self-tapping screw.
  • the manufacturing process of the lightweight solar cell module in the embodiment of the present invention is as shown in FIG. 11.
  • the main difference between the manufacturing process of the lightweight solar cell module and the conventional process of the prior art lies in the following aspects:
  • the conventional lamination process uses tempered glass as the substrate, and then stacks the EVA, the solar cell, the EVA, and the back sheet in sequence; and the lamination process in the embodiment of the present invention sequentially stacks the fluoroplastic film, the resin-based composite film material, the EVA, and the sun. Battery, resin-based composite film material and backsheet.
  • the lamination temperature is higher than that of the conventional solar cell module curing EVA, and the lamination time is relatively long.
  • the laminating process in the embodiment of the present invention has a lamination temperature of 5 to 25 ° C higher than that of the conventional solar cell module, and the lamination time is 5 to 15 minutes longer than that of the conventional solar cell module. Since the lamination temperature and lamination time of conventional solar cell modules are known to those skilled in the art, they will not be described in detail herein.
  • the edge cutting process in the embodiment of the present invention cuts the edge of the formed laminate by mechanical or laser means. Since the mechanical strength after the product is laminated is relatively high and forms a whole, mechanical or The laser cuts, while the traditional edge removal is removed along the edge of the tempered glass using a utility knife.
  • a square aluminum alloy profile (reinforcing rib) is bonded to the back side of the laminate by using double-sided tape, and the conventional solar cell module of the prior art is driven into the aluminum alloy profile by using silica gel, and then A laminate of tempered glass is bonded.
  • the self-tapping screw is used for fixing from the front side, whereas the conventional solar cell module of the prior art does not need this process, but conventional The solar cell module needs to be assembled using a framer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种树脂基复合薄膜材料及其制备方法、太阳电池组件,所述树脂基复合薄膜材料由纤维类材料、树脂和固化剂组成,所述树脂与固化剂的混合物均匀涂覆于由所述纤维类材料制成的纤维布;所述树脂基复合薄膜材料组份的重量百分比为:纤维类材料30%~50%;树脂35%~50%;固化剂15~20%;所述树脂基复合薄膜材料的制备方法包括:将树脂与固化剂预混;以涂覆装置把预混后形成的混合物均匀地涂覆在纤维布上;通过加压加热使所述树脂与固化剂的混合物与所述纤维布进行预粘合;分段裁切制得合适尺寸的树脂基复合薄膜材料。本发明技术方案既能够解决光伏组件轻量化的问题,又能够使光伏组件封装材料满足抗紫外、抗老化、抗冲击、防火等光伏行业技术标准。

Description

树脂基复合薄膜材料及其制备方法、太阳电池组件 技术领域
本发明涉及新能源发电和光伏应用领域,特别涉及一种树脂基复合薄膜材料及其制备方法、太阳电池组件。
背景技术
在当前社会,能源矛盾与环境问题越来越凸显,发展各类清洁能源是必然趋势。近年来,光伏行业快速发展,技术更新逐步加快,目前光伏行业正向产品多元化发展,高可靠性、高功率、低安装成本的各种功能组件研究开发已成为光伏组件发展的一种方向。
太阳能光伏发电依靠太阳电池把光能直接转变为电能。在过去的十年中,光伏电池全球总产量以平均超过40%的年增长率增加,至2012年底全球光伏发电系统装机容量已达100GW。预计光伏发电在2030年占到世界能源供给的10%,对世界的能源供给和能源结构做出实质性的贡献。
现有大规模制造的太阳电池组件如附图1所示,采用超白压花钢化玻璃作为支撑,使用乙烯和醋酸乙烯酯共聚物(EVA),含氟的绝缘材料做背板在真空状态下热压密封为层压件4,封装完成后采用铝合金边框1镶边提供机械支撑,然后采用专用的金属支架完成安装,再利用连接器2实现太阳电池组件内的电气连接,并将连接器2与引线用的接线盒3相连。
作为光伏领域运用的封装材料,要求其具备抗紫外、抗老化等性能,现有光伏组件(太阳电池组件)的封装材料主要为光伏钢化玻璃、EVA、光伏背板,其中玻璃密度达2.5克/立方厘米(g/cm3),常用3.2毫米(mm)玻璃每平方米重量达8公斤(Kg),由其封装完成的光伏组件(太阳电池组件采用钢化玻璃封装)通常质量较大,其重量每平方米达到10公斤以上,加上安装支撑结构,每平方米至少达到12公斤以上,当其应用在建筑物顶部或墙面等场合中,对光伏组件的支撑结构提出了较高的要求,增加了工程建设、安装的成本。在建筑及家庭屋顶安装过程中,存在重量重,安装劳动强度大,实施 困难;有些场合由于建筑承重载荷的限制不能安装;产品外观单一,不太容易变化以适应不同建筑美观的要求等缺点。
目前也有一些技术方案提出通过改变封装材料解决光伏组件轻量化的问题,以高透过薄膜、透明背板替代钢化玻璃,但是在实际应用过程中,封装大多仅采用EVA、POE等胶膜,如此封装后的光伏组件,在抗冲击、防火等性能无法满足光伏行业技术标准。
发明内容
本发明要解决的问题是现有技术中光伏组件(太阳电池组件)的封装材料无法既解决轻量化的问题又满足抗紫外、抗老化、抗冲击、防火等光伏行业技术标准。
为解决上述问题,本发明技术方案提供一种树脂基复合薄膜材料,所述树脂基复合薄膜材料由纤维类材料、树脂和固化剂组成,所述树脂与固化剂的混合物均匀涂覆于由所述纤维类材料制成的纤维布上;所述树脂基复合薄膜材料组份的重量百分比为:纤维类材料30%~50%;树脂35%~50%;固化剂15~20%。
可选的,所述纤维类材料为具有良好绝缘及耐候性的玻璃纤维、碳纤维或芳纶纤维。
可选的,所述纤维类材料的单丝直径在3~23μm之间。
可选的,所述纤维布采用平纹、斜纹、缎纹、罗纹或席纹中的一种或一种以上织造方式制成,单位面积重量在30克/平方米(g/m2)~400克/平方米之间。
可选的,所述树脂由羟基聚酯树脂、环氧树脂、丙烯酸树脂、聚氨酯树脂、氟碳树脂中的一种或者一种以上按照任意配比混合而成。
可选的,所述固化剂由异氰脲酸三缩水甘油酯(TGIC)、异氰脲酸三-β-甲基缩水甘油酯、甲基丙烯酸缩水甘油酯、羟烷基酰胺、异氰酸酯、邻苯二甲酸酐、偏苯三酸酐、十二碳二酸、双氰胺、二酰肼中的一种或一种以上任意配比混合组成。
可选的,所述树脂与固化剂的混合物在所述纤维布上的重量范围在30克/平方米~400克/平方米之间。
为解决上述问题,本发明技术方案还提供一种上述树脂基复合薄膜材料的制备方法,包括:将所述树脂与固化剂预混后,先通过涂覆装置均匀地涂覆在所述纤维布上,再通过加压加热使所述树脂与固化剂的混合物与所述纤维布进行预粘合过程,最后分段裁切制得合适尺寸的所述树脂基复合薄膜材料。
可选的,所述预粘合过程的加压范围在0.05~0.25千帕(Kpa)。
可选的,所述预粘合过程的加热温度范围在90~130摄氏度(℃),加热时间在5~20秒。
为解决上述问题,本发明技术方案还提供一种太阳电池组件,包括:层压件、连接器和引线用的接线盒;所述层压件包括依次叠合的氟塑料薄膜、第一树脂基复合薄膜、第一EVA、太阳电池、第二树脂基复合薄膜和背板;所述连接器与所述接线盒相连,用于所述太阳电池组件内的电气连接;所述第一树脂基复合薄膜和第二树脂基复合薄膜采用上述的树脂基复合薄膜材料。
可选的,所述层压件还包括位于所述太阳电池与第二树脂基复合薄膜之间的第二EVA。
可选的,所述太阳电池组件还包括加强筋和自攻螺钉,所述加强筋为所述层压件提供机械支撑,所述自攻螺钉将所述层压件与所述加强筋之间进行固定。
与现有技术相比,本发明的技术方案至少具有以下优点:
通过将树脂与固化剂以一定比例预混,以涂覆装置把预混后形成的混合物均匀地涂覆在纤维布上,再通过加压加热使树脂与固化剂的混合物与所述纤维布预粘合,最后分段裁切制得合适尺寸的树脂基复合薄膜材料,所述树脂基复合薄膜材料组份的重量百分比满足纤维类材料30%~50%、树脂35%~50%、固化剂15~20%,如此制成的树脂基复合薄膜材料应用为光伏组件的封装材料,既能够解决光伏组件轻量化的问题,又能够满足抗紫外、抗老 化、抗冲击、防火等光伏行业技术标准。
通过使用氟塑料薄膜以及所述树脂基复合薄膜材料替代传统的钢化玻璃,给太阳电池组件提供一定的刚性以保护太阳电池,如此不但能够大大减轻太阳电池组件的重量,由此适应更多场合的太阳能光伏发电产品的安装,而且还能降低产品安装时的劳动强度以及提高安装的便利度,从总体上降低安装成本。
附图说明
图1是现有技术中太阳电池组件的结构示意图;
图2是现有技术中太阳电池组件的层压件的结构示意图;
图3是本发明技术方案提供的树脂基复合薄膜材料的制备方法的流程示意图;
图4是本发明实施例的树脂基复合薄膜材料制备工艺的流程示意图;
图5是本发明实施例中制备树脂基复合薄膜材料所使用的主要设备示意图;
图6是本发明实施例的太阳电池组件的结构示意图;
图7是本发明实施例的太阳电池组件的层压件的结构示意图;
图8是现有技术中太阳电池组件的铝合金边框的结构示意图;
图9是本发明实施例的太阳电池组件的铝合金边框的结构示意图;
图10是本发明实施例的太阳电池组件的连接器的结构示意图;
图11是本发明实施例的太阳电池组件的生产工艺流程示意图。
具体实施方式
如背景技术所述,现有的光伏组件(太阳电池组件)由于采用了钢化玻璃封装,导致在建筑及家庭屋顶安装过程中,存在重量重、安装劳动强度大、可能因建筑承重载荷的限制而不能安装、难以适应不同建筑的安装要求等缺点。如图2所示,现有技术中太阳电池组件的层压件是通过依次将超白钢化压花玻璃21、EVA膜22、太阳电池串23、EVA膜24以及背板25叠合而成 的。
针对光伏组件常用封装材料(钢化玻璃)重量较重的问题,虽然现有技术中也存在一些技术方案通过改变封装材料解决光伏组件轻量化的问题,然而这些方案中所使用的封装材料却又无法满足抗紫外、抗老化、抗冲击、防火等光伏行业技术标准。
为解决上述问题,本发明技术方案提供一种新型的主要应用于光伏封装的复合材料,具体涉及一种轻质树脂基复合薄膜材料及其制备方法。
如图3所示,所述树脂基复合薄膜材料的制备方法包括:
步骤S301,将树脂与固化剂预混;
步骤S302,以涂覆装置把预混后形成的混合物均匀地涂覆在由纤维类材料制成的纤维布上;
步骤S303,通过加压加热使所述树脂与固化剂的混合物与所述纤维布进行预粘合;
步骤S304,分段裁切制得合适尺寸的树脂基复合薄膜材料,所述树脂基复合薄膜材料组份的重量百分比为:纤维类材料30%~50%,树脂35%~50%,固化剂15~20%。
此外,本发明技术方案还涉及太阳电池组件的设计及制造技术,具体提供一种新型轻质量的太阳电池组件的设计及制造方法。
所述太阳电池组件及其制造方法的目的如下:①减轻产品的重量,使产品能够在更多的场合安装;②实现产品尺寸及颜色的任意改变以适应建筑美观的要求;③降低产品安装时的劳动强度以及提高安装的便利度,从总体上降低安装成本。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例作详细的说明。
本实施例提供的树脂基复合薄膜材料由纤维类材料、树脂和固化剂组成,所述树脂与固化剂的混合物均匀涂覆于由所述纤维类材料制成的纤维布上;所述树脂基复合薄膜材料组份的重量百分比为:纤维类材料30%~50%;树脂 35%~50%;固化剂15~20%。
在实际实施时,所述树脂基复合薄膜材料组份的重量百分比具体可以按照以下几种方式之一进行组配:
(1)纤维类材料30%、树脂50%、固化剂20%;
(2)纤维类材料40%、树脂40%、固化剂20%;
(3)纤维类材料40%、树脂45%、固化剂15%;
(4)纤维类材料40%、树脂45%、固化剂15%;
(5)纤维类材料50%、树脂35%、固化剂15%。
需要说明的是,以上仅举例说明所述树脂基复合薄膜材料组份的重量百分比,本领域技术人员可以根据实际情况按范围配置合理的组份构成。
作为一优选的实施例,所述纤维类材料可以为玻璃纤维、碳纤维或芳纶纤维,且选用的纤维类材料应当具有良好的绝缘及耐候性,单丝直径在3~23μm之间,例如选取单丝直径为3μm、13μm或23μm的纤维类材料。
实际实施时,所述纤维布可以采用平纹、斜纹、缎纹、罗纹或席纹中的一种或一种以上织造方式制成,其单位面积重量可以在30克/平方米~400克/平方米之间,可以根据需要选用合适重量的纤维布,例如选取单位面积重量是30克/平方米、100克/平方米、200克/平方米、300克/平方米或400克/平方米。
本实施例中,所述树脂可以由羟基聚酯树脂、环氧树脂、丙烯酸树脂、聚氨酯树脂、氟碳树脂中的一种或者一种以上按照任意配比混合而成。
本实施例中,所述固化剂可以由异氰脲酸三缩水甘油酯(TGIC)、异氰脲酸三-β-甲基缩水甘油酯、甲基丙烯酸缩水甘油酯、羟烷基酰胺、异氰酸酯、邻苯二甲酸酐、偏苯三酸酐、十二碳二酸、双氰胺、二酰肼中的一种或一种以上任意配比混合组成。
作为一优选的实施例,通过涂覆装置将所述树脂与固化剂预混后形成的混合物均匀涂覆在所述纤维布上后,所述树脂与固化剂的混合物在所述纤维布上的重量范围可以在30克/平方米~400克/平方米之间,例如为30克/平方 米、100克/平方米、200克/平方米、300克/平方米或400克/平方米。
本实施例提供的上述树脂基薄膜复合材料可以作为新型太阳电池组件所使用到的关键材料,该材料由纤维类材料作为基体材料,在纤维类材料上复合树脂材料,在一定温度、压力情况下进行熔融复合,以满足后续制备太阳电池组件过程中涉及的相关层压工艺的要求。
所述树脂基薄膜复合材料的制备工艺如图4所示,主要包括进料、涂覆、热熔复合、分切和包装这几个步骤。为了实现所述树脂基薄膜复合材料的制备工艺,所使用到的主要设备如图5所示。图5示出了纤维进料机51、涂覆机器52和热熔复合机53,分别对应进料、涂覆、热熔复合的工艺过程。在实际实施时,将由纤维类材料织造制成的纤维布放入纤维进料机51,将经过预混所形成的树脂与固化剂的混合物,通过涂覆装置52均匀地涂覆在纤维进料机51所输出的纤维布上,然后通过热熔复合机53加压加热使树脂与固化剂的混合物与纤维布进行预粘合过程,最后分段裁切制得合适尺寸的树脂基薄膜复合材料(可以作为光伏组件的封装材料),并对制得的树脂基薄膜复合材料进行包装处理。由于所述分切和包装的工艺为本领域技术人员所知晓,此处不再详细描述。
需要说明的是,在本实施例中,所述预粘合过程需采用特定的加压、加热控制,因为只有在合适的压力和温度情况下,才能使树脂与固化剂的混合物与纤维布之间较好地完成热熔复合过程,确保满足制备太阳电池组件过程中的层压工艺的要求,从而形成真正能适用于太阳电池组件的封装材料。
本实施例中,所述预粘合过程的加压范围在0.05~0.25Kpa,例如为0.05Kpa、0.1Kpa、0.2Kpa或0.25Kpa;所述预粘合过程的加热温度范围为90~130摄氏度(℃),例如为90℃、100℃、110℃、120℃或130℃;所述预粘合过程的加热时间范围为5~20秒,例如5秒、10秒、15秒或20秒。
此外,在其他实施例中,所述涂覆装置也可以为一撒粉头,此时所述涂覆装置是以撒粉的形式实现涂覆过程,将树脂与固化剂的粉状混合物涂覆于所述纤维布。
本实施例提供的树脂基薄膜复合材料的制备方法的具体实施还可以参考 上述树脂基薄膜复合材料的实施过程,此处不再赘述。
需要指出的是,虽然本实施例中的树脂基薄膜复合材料应用于太阳电池组件的封装材料能够取得较佳的实施效果,但光伏应用领域并非该树脂基薄膜复合材料的唯一应用领域,基于所述树脂基薄膜复合材料所具备的特性,本领域技术人员也能够将其应用在其他合适的领域中。
基于上述树脂基薄膜复合材料,本发明实施例还提供一种太阳电池组件。如图6所示,所述太阳电池组件包括:层压件34、连接器31、引线用的接线盒32、加强筋33和自攻螺钉35;所述连接器31与所述接线盒32相连,用于所述太阳电池组件内的电气连接;所述加强筋33为所述层压件34提供机械支撑;所述自攻螺钉35将所述层压件34与所述加强筋33之间进行固定;结合图7,所述层压件34包括依次叠合的氟塑料薄膜41、第一树脂基复合薄膜42、第一EVA43、太阳电池44、第二EVA45、第二树脂基复合薄膜46和背板47;本实施例中,所述第一树脂基复合薄膜42和第二树脂基复合薄膜46均采用上述树脂基复合薄膜材料。
需要说明的是,在其他实施例中,所述第二EVA45也可以不使用,而直接将太阳电池44与第二树脂基复合薄膜46进行叠合。
本实施例中,将上述树脂基复合薄膜材料应用为太阳电池组件(光伏组件)的封装材料,既能够解决光伏组件轻量化的问题,又能够满足抗紫外、抗老化、抗冲击、防火等光伏行业技术标准,而且经过实验表明,其也能满足光伏行业相关室外性能测试标准。
现有技术中常规的太阳电池组件的层压件与本发明实施例提供的太阳电池组件的层压件之间最大的不同在于:本发明实施例中使用了氟塑料薄膜以及树脂基复合薄膜材料替代了钢化玻璃给太阳电池组件提供一定的刚性从而保护太阳电池,如此不但能够大大减轻太阳电池组件的重量,由此适应更多场合的太阳能光伏发电产品的安装,而且还能降低产品安装时的劳动强度以及提高安装的便利度,从总体上降低安装成本。
此外,在本实施例中,所述第一树脂基复合薄膜42和第二树脂基复合薄膜46可以根据需要裁切或采用不同颜色的树脂进行复合而成,如此能实现太 阳电池组件产品尺寸及颜色的任意改变以适应不同建筑的安装要求。
从太阳电池组件结构上看,传统的太阳电池组件与本发明实施例提供的太阳电池组件之间的区别之一在于铝合金边框的不同。现有技术中太阳电池组件使用传统的铝合金边框为边缘卡接结构,如图8所示,需要将层压件嵌入铝合金边框中并使用硅胶粘接;而本发明实施例的太阳电池组件则使用简单铝合金边框,即:并非是常用的边缘卡接结构,而是采用加强筋的方式予以实现,如图9所示。实际实施时,图6所示的加强筋33具体可以是给板状的层压件34提供机械支撑的铝合金加强筋。本实施例中,所述加强筋33与所述层压件34之间先通过双面胶带粘接,然后再采用自攻螺丝35对两者进行机械固定。
当然,在其他实施例中,当应用上述树脂基复合薄膜材料作为太阳电池组件的封装材料时,也可以通过现有技术中常用的简单铝合金边框为所述层压件提供机械支撑。
需要指出的是,本实施例中将为所述层压件提供机械支撑的支撑部件(例如加强筋、铝合金边框等)以及将该支撑部件与所述层压件进行固定的固定部件(例如自攻螺丝)作为太阳电池组件的组成部分,在其他实施例中,所述支撑部件和固定部件也可以不作为太阳电池组件的组成部分,太阳电池组件仅包含层压件、连接器和引线用的接线盒,即太阳电池组件可以不含边框。
由于本发明实施例中太阳电池组件的层压件采用氟塑料薄膜以及树脂基复合材料替代钢化玻璃,由此减轻了太阳电池组件的重量,如此使得采用简单铝合金边框(加强筋)便能固定层压件成为可能,简单铝合金边框的采用进一步使本发明实施例中太阳电池组件的重量减轻。
传统的太阳电池组件与本发明实施例提供的太阳电池组件之间的区别还在于所采用的电缆连接器的不同。现有技术中常规的太阳电池组件采用标准快速电气连接接头,成本高,而本发明实施例中使用的连接器如图10所示,采用压接端子72以及热缩套管73,位于两端的电缆线71和电缆线74卡接入所述压接端子72,所述热缩套管73包围压接端子72,如此能够使电气连接可靠,成本低廉。
本发明实施例提供的轻质太阳电池组件与使用传统钢化玻璃的太阳电池组件相比,重量能减轻50%左右。
基于上述太阳电池组件,本发明实施例还提供一种上述太阳电池组件的制造方法,包括:将所述氟塑料薄膜、第一树脂基复合薄膜、第一EVA、太阳电池、第二EVA(可选用)、第二树脂基复合薄膜和背板依次叠合,并经层压工序形成所述层压件;对形成的所述层压件执行边缘裁切工序;粘接所述层压件与所述加强筋;以所述自攻螺钉将完成粘接的所述层压件与所述加强筋之间进行固定。
本发明实施例中的轻质太阳电池组件的制造工艺流程如图11所示,所述轻质太阳电池组件的制造工艺与现有技术的常规工艺之间的主要不同在于以下几个方面:
A)层叠工序
传统的层叠工序采用钢化玻璃做基板,然后依次叠放EVA、太阳电池、EVA、背板;而本发明实施例中的层叠工序则依次叠放氟塑料薄膜、树脂基复合薄膜材料、EVA、太阳电池、树脂基复合薄膜材料及背板。
B)层压工序
由于需要将树脂材料充分熔化粘接,层压的温度与传统太阳电池组件固化EVA相比要高,层压的时间也相对比较长。具体地,本发明实施例中的层压工序的层压温度较传统太阳电池组件层压温度高5~25℃,层压的时间较传统太阳电池组件层压时间长5~15分钟。由于传统太阳电池组件的层压温度以及层压时间为本领域技术人员所知晓,此处不再详细描述。
C)边缘裁切
本发明实施例中的边缘裁切工序采用机械或者激光的方式对形成的所述层压件的边缘进行切割,由于产品层压完成后机械强度比较高,且形成一个整体,因此需要采用机械或者激光进行切割,而传统的去边则沿着钢化玻璃边缘使用美工刀即可切除。
D)粘加强筋
本发明实施例中,使用双面胶带将方形铝合金型材(加强筋)粘接到层压件背面,而现有技术中常规的太阳电池组件则使用硅胶打入铝合金型材中,再与由钢化玻璃组成的层压件进行粘接。
E)安装自攻螺钉
本发明实施例中,在将层压件与铝合金型材(加强筋)粘接好后,使用自攻螺钉从正面固定,而现有技术中常规的太阳电池组件则不需要此工序,但是常规太阳电池组件需要使用装框机压合装框。
除了上述工艺步骤之外,本发明实施例中轻质太阳电池组件的制造工艺流程中涉及的其他工艺步骤可以参阅图11,由于所述其他工艺步骤为本领域技术人员所知晓,完全能够采用惯用的技术手段予以实现,此处不再详细描述。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。

Claims (13)

  1. 一种树脂基复合薄膜材料,其特征在于,所述树脂基复合薄膜材料由纤维类材料、树脂和固化剂组成,所述树脂与固化剂的混合物均匀涂覆于由所述纤维类材料制成的纤维布上;所述树脂基复合薄膜材料组份的重量百分比为:纤维类材料30%~50%;树脂35%~50%;固化剂15~20%。
  2. 根据权利要求1所述的树脂基复合薄膜材料,其特征在于,所述纤维类材料为具有良好绝缘及耐候性的玻璃纤维、碳纤维或芳纶纤维。
  3. 根据权利要求1所述的树脂基复合薄膜材料,其特征在于,所述纤维类材料的单丝直径在3~23μm之间。
  4. 根据权利要求1所述的树脂基复合薄膜材料,其特征在于,所述纤维布采用平纹、斜纹、缎纹、罗纹或席纹中的一种或一种以上织造方式制成,单位面积重量在30克/平方米~400克/平方米之间。
  5. 根据权利要求1所述的树脂基复合薄膜材料,其特征在于,所述树脂由羟基聚酯树脂、环氧树脂、丙烯酸树脂、聚氨酯树脂、氟碳树脂中的一种或者一种以上按照任意配比混合而成。
  6. 根据权利要求1所述的树脂基复合薄膜材料,其特征在于,所述固化剂由异氰脲酸三缩水甘油酯、异氰脲酸三-β-甲基缩水甘油酯、甲基丙烯酸缩水甘油酯、羟烷基酰胺、异氰酸酯、邻苯二甲酸酐、偏苯三酸酐、十二碳二酸、双氰胺、二酰肼中的一种或一种以上任意配比混合组成。
  7. 根据权利要求1所述的树脂基复合薄膜材料,其特征在于,所述树脂与固化剂的混合物在所述纤维布上的重量范围在30克/平方米~400克/平方米之间。
  8. 一种如权利要求1至7任一项所述的树脂基复合薄膜材料的制备方法,其特征在于,包括:将所述树脂与固化剂预混后,先通过涂覆装置均匀地涂覆在所述纤维布上,再通过加压加热使所述树脂与固化剂的混合物与所述纤维布进行预粘合过程,最后分段裁切制得合适尺寸的所述树脂基复合薄膜材料。
  9. 根据权利要求8所述的树脂基复合薄膜材料的制备方法,其特征在于,所述预粘合过程的加压范围在0.05~0.25Kpa。
  10. 根据权利要求8所述的树脂基复合薄膜材料的制备方法,其特征在于,所述预粘合过程的加热温度范围在90~130℃,加热时间在5~20秒。
  11. 一种太阳电池组件,其特征在于,包括:层压件、连接器和引线用的接线盒;所述层压件包括依次叠合的氟塑料薄膜、第一树脂基复合薄膜、第一EVA、太阳电池、第二树脂基复合薄膜和背板;所述连接器与所述接线盒相连,用于所述太阳电池组件内的电气连接;所述第一树脂基复合薄膜和第二树脂基复合薄膜采用如权利要求1至7任一项所述的树脂基复合薄膜材料。
  12. 根据权利要求11所述的太阳电池组件,其特征在于,所述层压件还包括位于所述太阳电池与第二树脂基复合薄膜之间的第二EVA。
  13. 根据权利要求11所述的太阳电池组件,其特征在于,所述太阳电池组件还包括加强筋和自攻螺钉,所述加强筋为所述层压件提供机械支撑,所述自攻螺钉将所述层压件与所述加强筋之间进行固定。
PCT/CN2016/075274 2016-02-18 2016-03-02 树脂基复合薄膜材料及其制备方法、太阳电池组件 WO2017140002A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610091221.3A CN107100008A (zh) 2016-02-18 2016-02-18 树脂基复合薄膜材料及其制备方法、太阳电池组件
CN201610091221.3 2016-02-18

Publications (1)

Publication Number Publication Date
WO2017140002A1 true WO2017140002A1 (zh) 2017-08-24

Family

ID=59625546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075274 WO2017140002A1 (zh) 2016-02-18 2016-03-02 树脂基复合薄膜材料及其制备方法、太阳电池组件

Country Status (2)

Country Link
CN (1) CN107100008A (zh)
WO (1) WO2017140002A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3696864A1 (en) 2019-02-13 2020-08-19 TIGER Coatings GmbH & Co. KG Housing material
CN115466565A (zh) * 2022-09-19 2022-12-13 江苏天合蓝途新能源科技有限公司 一种光伏组件封装用涂层组合物、封装用复合材料的制备方法及光伏组件

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108018723A (zh) * 2016-11-03 2018-05-11 上迈(上海)新能源科技有限公司 一种光电建材及其制备方法
CN109438922A (zh) * 2018-10-30 2019-03-08 深圳市普光太阳能有限公司 一种太阳能电池钢化封装材料及制备方法
CN110218438A (zh) * 2019-06-27 2019-09-10 深圳市上古光电有限公司 一种太阳电池板复合树脂薄膜材料及其制备方法
CN117683314B (zh) * 2024-01-31 2024-04-30 盘锦三力中科新材料有限公司 改性聚丙烯酸酯类聚合物、光伏背板及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1656156A (zh) * 2002-05-27 2005-08-17 日东电工株式会社 树脂片及使用该树脂片的液晶元件基板
CN102244129A (zh) * 2011-06-17 2011-11-16 常州天合光能有限公司 轻型易安装组件
CN102376805A (zh) * 2011-10-18 2012-03-14 江苏科技大学 一种太阳能电池背板及其制备方法
CN203038939U (zh) * 2012-12-12 2013-07-03 泰通(泰州)工业有限公司 无框组件支架

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204315597U (zh) * 2014-05-30 2015-05-06 郑直 轻型光伏电池组件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1656156A (zh) * 2002-05-27 2005-08-17 日东电工株式会社 树脂片及使用该树脂片的液晶元件基板
CN102244129A (zh) * 2011-06-17 2011-11-16 常州天合光能有限公司 轻型易安装组件
CN102376805A (zh) * 2011-10-18 2012-03-14 江苏科技大学 一种太阳能电池背板及其制备方法
CN203038939U (zh) * 2012-12-12 2013-07-03 泰通(泰州)工业有限公司 无框组件支架

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3696864A1 (en) 2019-02-13 2020-08-19 TIGER Coatings GmbH & Co. KG Housing material
WO2020165276A1 (en) 2019-02-13 2020-08-20 Tiger Coatings Gmbh & Co. Kg Encapsulation material
CN115466565A (zh) * 2022-09-19 2022-12-13 江苏天合蓝途新能源科技有限公司 一种光伏组件封装用涂层组合物、封装用复合材料的制备方法及光伏组件
CN115466565B (zh) * 2022-09-19 2023-11-28 江苏天合蓝途新能源科技有限公司 一种光伏组件封装用涂层组合物、封装用复合材料的制备方法及光伏组件

Also Published As

Publication number Publication date
CN107100008A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
WO2017140002A1 (zh) 树脂基复合薄膜材料及其制备方法、太阳电池组件
CN108589319B (zh) 一种光伏组件用封装材料
AU2017312824B2 (en) Packaging material for photovoltaic module and method for preparing packaging material
CN111201614B (zh) 一种光伏组件的层压结构及其制备方法、光伏组件
CN110832138B (zh) 光伏组件用复合封装材料及该复合封装材料的制备方法
CN108022988B (zh) 一种光伏组件的层压结构及其制备方法、光伏组件
CN108022989B (zh) 一种双面玻璃光伏建材构件及其制备方法
CN102704629B (zh) 一种自粘型模块化的晶体硅太阳能发电防水保温一体板系统
CN108133973A (zh) 一种玻璃光伏建材构件及其制备方法
CN106008940A (zh) 一种太阳能电池背板及用于该背板的膜用聚酯的制备方法
CN103938810B (zh) 一种光伏遮阳系统及其制备方法
CN102456766A (zh) 一种太阳电池组件的制备方法以及通过该制备方法制备的太阳电池组件
CN108018723A (zh) 一种光电建材及其制备方法
CN107968131B (zh) 太阳能电池背板、其制备方法和含有其的太阳能电池组件
CN108360759A (zh) 一种防水阻燃光伏卷材及制备方法
CN108376717B (zh) 光伏组件层压结构的制备方法以及层压结构、光伏组件
CN203821721U (zh) 一种光伏遮阳系统
CN108695401B (zh) 一种双面组件的层压结构及其制备方法、双面组件
CN108695400B (zh) 一种叠片组件的层压结构及其制备方法、叠片组件
CN109438922A (zh) 一种太阳能电池钢化封装材料及制备方法
CN220420592U (zh) 一种轻质防火光伏组件
KR102659814B1 (ko) 내화백시트를 적용한 bipv 모듈
CN110629558A (zh) 高效防护复合板材及其制备方法、应用和应用方法
CN110629557A (zh) 高效防护复合板材及其制备方法、应用和应用方法
CN109326667B (zh) 一种基于封装材料的绿电建材及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 30/11/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16890235

Country of ref document: EP

Kind code of ref document: A1