WO2015020107A1 - 粉体塗料の製造方法、塗装物品およびその製造方法、ならびにカルボキシ基含有フッ素樹脂の製造方法 - Google Patents

粉体塗料の製造方法、塗装物品およびその製造方法、ならびにカルボキシ基含有フッ素樹脂の製造方法 Download PDF

Info

Publication number
WO2015020107A1
WO2015020107A1 PCT/JP2014/070776 JP2014070776W WO2015020107A1 WO 2015020107 A1 WO2015020107 A1 WO 2015020107A1 JP 2014070776 W JP2014070776 W JP 2014070776W WO 2015020107 A1 WO2015020107 A1 WO 2015020107A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororesin
powder coating
powder
group
resin
Prior art date
Application number
PCT/JP2014/070776
Other languages
English (en)
French (fr)
Inventor
俊 齋藤
将崇 相川
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015530929A priority Critical patent/JPWO2015020107A1/ja
Priority to CN201480044601.0A priority patent/CN105452405B/zh
Priority to EP14834600.0A priority patent/EP3031873B1/en
Publication of WO2015020107A1 publication Critical patent/WO2015020107A1/ja
Priority to US15/015,340 priority patent/US20160152855A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/10Homopolymers or copolymers of unsaturated ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4063Mixtures of compounds of group C08G18/62 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6275Polymers of halogen containing compounds having carbon-to-carbon double bonds; halogenated polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6279Polymers of halogen containing compounds having carbon-to-carbon double bonds; halogenated polymers of compounds having carbon-to-carbon double bonds containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • C08G18/718Monoisocyanates or monoisothiocyanates containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/807Masked polyisocyanates masked with compounds having only one group containing active hydrogen with nitrogen containing compounds
    • C08G18/8074Lactams
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/04Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/06Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C09D201/08Carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/10Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • C09D5/033Powdery paints characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • C09D5/033Powdery paints characterised by the additives
    • C09D5/035Coloring agents, e.g. pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings
    • C08G2150/20Compositions for powder coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Definitions

  • the present invention relates to a method for producing a powder coating material, a coated article and a method for producing the same, and a method for producing a carboxy group-containing fluororesin.
  • acrylic resin powder coating As the powder coating, acrylic resin powder coating, polyester resin powder coating, or epoxy resin powder coating is mainly used. However, cured films formed using these powder paints have the disadvantage of poor weather resistance.
  • a fluororesin As a resin excellent in weather resistance, a fluororesin is generally known.
  • the following powder coatings have been proposed as a powder coating containing a fluororesin.
  • a powder coating material comprising a composition containing a hydroxyl group-containing fluororesin and a polyuretdione curing agent or a block isocyanate curing agent (Patent Document 1).
  • a powder coating material comprising a composition containing a carboxy group-containing fluororesin and a ⁇ -hydroxyalkylamide curing agent (Patent Document 2).
  • the present inventors examined, when the cured film was formed using the powder coating of (1), since the melt viscosity of the hydroxyl group-containing fluororesin is high, the air or curing agent present between the powder coatings Gas generated at the time of the reaction remains in the cured film and tends to form voids.
  • the powder coating contains a pigment, the dispersibility of the pigment in the hydroxyl group-containing fluororesin is insufficient, and the pigment tends to aggregate in the cured film, so there is a void between the aggregated pigment and the fluororesin. Is more likely to occur.
  • a part of the carboxy group-containing fluororesin contained in the powder coating of (2) is easily gelled during synthesis in a solvent or after desolvation after synthesis.
  • air generated between the powder coatings and a gas generated during the reaction of the curing agent are unlikely to escape from the cured film and easily form voids.
  • the fluororesin tends to deteriorate.
  • a pigment titanium oxide or the like
  • the fluororesin is more likely to deteriorate due to the photocatalytic action of the pigment.
  • An object of the present invention is to produce a powder coating material that has excellent weather resistance and can form a cured film with less voids (voids); a coated article that has a cured film with excellent weather resistance and few voids;
  • the object of the present invention is to provide a method for producing a carboxy group-containing fluororesin with less gel.
  • the present invention provides a method for producing a powder coating material having the following configurations [1] to [12], a coated article and a method for producing the same, and a method for producing a carboxy group-containing fluororesin.
  • Powder coating containing powder (X) comprising a composition ( ⁇ ) containing a fluororesin (A) having a carboxy group or having an alkoxysilyl group and a urethane bond, and a curing agent (D)
  • a method of manufacturing The manufacturing method of a powder coating material which has the following process (a) and process (b).
  • a mixture containing a hydroxyl group-containing fluororesin (B), an acid anhydride (C1) or a compound (C2) having an alkoxysilyl group and an isocyanate group, and a curing agent (D) is melt-kneaded.
  • [7] The group in which the hydroxyl group-containing fluororesin (B) is composed of units derived from tetrafluoroethylene or chlorotrifluoroethylene, units derived from hydroxyalkyl vinyl ether, cycloalkyl vinyl ether, alkyl vinyl ether, and carboxylic acid vinyl ester. And a unit derived from one or more selected from: [1] to [6].
  • [8] The method for producing a powder coating material according to any one of [1] to [7], wherein the curing agent (D) is a blocked isocyanate curing agent (D1).
  • the number of moles of acid anhydride (C1) relative to 1 mole of hydroxyl group in the hydroxyl group-containing fluororesin (B) is 0.1 to 2.0, or relative to 1 mole of hydroxyl group in the hydroxyl group-containing fluororesin (B).
  • [11] A method for producing a coated article having a cured film on the surface of a substrate, The manufacturing method of the coated article which has the following process (e) and process (f).
  • (E) A step of coating the base material with the powder paint obtained by the method for producing a powder paint according to any one of [1] to [9] to form a coating film made of a melt of the powder paint. .
  • (F) A step of curing the coating film to form a cured film.
  • a method for producing a carboxy group-containing fluororesin wherein a mixture containing a hydroxyl group-containing fluororesin and an acid anhydride is melt-kneaded to obtain a kneaded product containing a carboxy group-containing fluororesin.
  • the method for producing a powder coating material of the present invention it is possible to produce a powder coating material that is excellent in weather resistance and can form a cured film with less voids (voids).
  • the coated article of the present invention has a cured film having excellent weather resistance and few voids.
  • a coated article having the cured film can be produced.
  • a carboxy group-containing fluororesin of the present invention a carboxy group-containing fluororesin with less gel can be obtained.
  • alkoxysilyl group is a group composed of a silicon atom and an alkoxy group bonded thereto.
  • “Dry blend” means mixing two or more powders without melting the powder and without adding a solvent.
  • the “coating film” means a film made of a melt of the powder paint formed by applying the powder paint.
  • the “cured film” means a film formed by curing the coating film.
  • One coat means painting only once. “Melting and curing the powder coating” means that the powder coating is melted, the reaction components in the powder coating are reacted and cured.
  • the “thermosetting resin” means a compound having a reactive group that can react with a curing agent by heating.
  • (Meth) acrylate is a general term for acrylate and methacrylate.
  • the “unit” means a part derived from a monomer that exists in the polymer and constitutes the polymer.
  • the unit derived from the monomer resulting from addition polymerization of a monomer having a carbon-carbon unsaturated double bond is a divalent unit generated by cleavage of the unsaturated double bond.
  • the unit derived from a polyvalent carboxylic acid compound constituting the polyester resin is a unit derived from a polyhydric alcohol compound, which is a monovalent or higher unit obtained by removing a hydroxyl group from at least one carboxy group of the polyvalent carboxylic acid compound.
  • the powder coating obtained by the production method of the present invention is a powder coating (I) containing the following powder (X), or a powder coating (II) containing the following powder (X) and the following powder (Y). It is.
  • Powder (X) Powder composed of a composition ( ⁇ ) containing a fluororesin (A) having a carboxy group or having an alkoxysilyl group and a urethane bond and a curing agent (D).
  • the composition ( ⁇ ) may contain a pigment (E), a resin (F) other than the fluororesin (A), a curing catalyst (G), and other components (H) as necessary.
  • Powder (Y) Powder comprising a composition ( ⁇ ) containing a resin (F) other than the fluororesin (A) and not containing the fluororesin (A).
  • the composition ( ⁇ ) may contain a curing agent (D), a pigment (E), a curing catalyst (G), and other components (H) as necessary.
  • the content of the powder (X) in the powder paint (I) is preferably 50 to 100% by mass, more preferably 70 to 100% by mass, further preferably 80 to 100% by mass, and 90 to 100% by mass. Particularly preferred.
  • the powder coating material (I) may be a coating material composed only of the powder (X).
  • the total content of the powder (X) and the powder (Y) in the powder coating (II) is preferably 50 to 100% by mass, more preferably 70 to 100% by mass, and 80 to 100% by mass. More preferred is 90 to 100% by mass.
  • the powder coating material (II) may be a coating material composed only of the powder (X) and the powder (Y).
  • the mixing ratio (powder (X) / powder (Y)) of the powder (X) and the powder (Y) in the powder coating (II) is 20/80 to 80/20 (mass ratio). A ratio of 25/75 to 75/25 (mass ratio) is particularly preferable. If the ratio of powder (X) is more than the said lower limit, the weather resistance of a cured film will be excellent. If the ratio of powder (Y) is more than the said lower limit, the cost of a cured film can be suppressed.
  • the powder paint (I) is used as a base material.
  • a coating film made of a melt of the powder coating material (I) is formed by coating with 1 coat, the reaction components in the coating film are reacted, and the coating film is cooled and cured, the powder (X )
  • a fluororesin layer mainly composed of a cured product of the fluororesin (A) contained in) and another resin (F) contained in the powder (X) or another resin layer mainly composed of the cured product thereof. are separated.
  • the reaction, curing, and layer separation may proceed simultaneously.
  • Another resin layer is disposed on the substrate side, and a fluororesin layer is disposed on the air side.
  • the powder coating (II) is used as a base material.
  • a coating film made of a melt of the powder coating material (II) is formed by coating with 1 coat, reaction components in the coating film are reacted, and the coating film is cooled and cured, the powder (X )
  • another resin (F) derived from the powder (Y) or another resin layer mainly composed of the cured product thereof Are separated.
  • the reaction, curing, and layer separation may proceed simultaneously.
  • Another resin layer is disposed on the substrate side, and a fluororesin layer is disposed on the air side.
  • the fluororesin (A) is a fluororesin having a carboxy group or a fluororesin having an alkoxysilyl group and a urethane bond.
  • a fluororesin (A) is obtained by the manufacturing method mentioned later. That is, the fluororesin having a carboxy group is obtained by melting and kneading a mixture containing a hydroxyl group-containing fluororesin (B), an acid anhydride (C1), and a curing agent (D). It is obtained by reacting the hydroxyl group of the acid with an acid anhydride (C1) to form an ester bond and a carboxyl group.
  • the fluororesin having an alkoxysilyl group and a urethane bond is obtained by melting and kneading a mixture containing a hydroxyl group-containing fluororesin (B), a compound (C2) having an alkoxysilyl group and an isocyanate group, and a curing agent (D).
  • a hydroxyl group-containing fluororesin (B) By reacting the hydroxyl group of the hydroxyl group-containing fluororesin (B) with the isocyanate group of the compound (C2) to form a urethane bond and introducing an alkoxysilyl group derived from the compound (C2) as a side group can get.
  • the carboxy group in the fluororesin (A) is derived from the acid anhydride (C1) used in the production method described later.
  • the alkoxysilyl group in the fluororesin (A) is derived from the alkoxysilyl group in the compound (C2) used in the production method described later.
  • the urethane bond in the fluororesin (A) is derived from the hydroxyl group in the hydroxyl group-containing fluororesin (B) used in the production method described later and the isocyanate group in the compound (C2).
  • the fluororesin (A) may have a hydroxyl group derived from the starting hydroxyl group-containing fluororesin (B).
  • the hydroxyl group-containing fluororesin (B) is derived from a unit derived from a fluoroolefin and a monomer having a hydroxyl group copolymerizable with the fluoroolefin (hereinafter also referred to as “monomer (a1)”). Hydroxyl-containing fluorine-containing heavy having a unit and a unit derived from a monomer other than the fluoroolefin and monomer (a1) (hereinafter also referred to as “monomer (a2)”) as necessary Coalescence is preferred.
  • the hydroxyl group-containing fluororesin (B) may be a hydroxyl group-containing fluoropolymer in which hydroxyl groups have been introduced by reactive group conversion of the polymer.
  • the hydroxyl group-containing fluoropolymer has a unit derived from a fluoroolefin, a unit derived from a monomer having a reactive functional group other than a hydroxyl group, and, if necessary, the monomer (a2).
  • a fluorine-containing polymer obtained by reacting a fluorine-containing polymer with a compound having a hydroxyl group with a second reactive functional group that reacts with the reactive functional group is preferred.
  • the fluoroolefin is a compound in which one or more hydrogen atoms of a hydrocarbon-based olefin (general formula C n H 2n ) are substituted with a fluorine atom.
  • the carbon number of the fluoroolefin is preferably 2-8, and particularly preferably 2-6.
  • the number of fluorine atoms in the fluoroolefin is preferably 2 or more, particularly preferably 3 to 4. When the number of fluorine atoms is 2 or more, the weather resistance of the cured film is excellent.
  • one or more hydrogen atoms not substituted with fluorine atoms may be substituted with chlorine atoms.
  • the fluoroolefin has a chlorine atom, it is easy to disperse pigments (especially colored organic pigments such as cyanine blue and cyanine green) in the fluororesin (A). Moreover, the glass transition temperature of a hydroxyl-containing fluororesin (B) can be designed to 50 degreeC or more, and blocking of a cured film can be suppressed.
  • the fluoroolefin is selected from the group consisting of tetrafluoroethylene (hereinafter also referred to as “TFE”), chlorotrifluoroethylene (hereinafter also referred to as “CTFE”), hexafluoropropylene, vinylidene fluoride, and vinyl fluoride.
  • TFE tetrafluoroethylene
  • CTFE chlorotrifluoroethylene
  • hexafluoropropylene vinylidene fluoride
  • vinyl fluoride vinyl fluoride
  • vinyl fluoride vinyl fluoride
  • a fluoroolefin may be used individually by 1 type, and may use 2 or more types together.
  • As the fluoroolefin unit a unit directly formed by polymerization of fluoroolefin is preferable.
  • the monomer (monomer (a1), monomer (a2), etc.) to be copolymerized with the fluoroolefin may be a monomer having a fluorine atom other than the fluoroolefin, but does not have a fluorine atom. Monomers are preferred.
  • the monomer (a1) is a monomer having a hydroxyl group.
  • the monomer having a hydroxyl group include allyl alcohol, hydroxyalkyl vinyl ether (2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, cyclohexanediol monovinyl ether, etc.), hydroxyalkyl allyl ether (2-hydroxyethyl allyl ether, etc.).
  • vinyl hydroxyalkanoate such as vinyl hydroxypropionate
  • hydroxyalkyl (meth) acrylate such as hydroxyethyl (meth) acrylate.
  • a monomer (a1) may be used individually by 1 type, and may use 2 or more types together.
  • the monomer (a2) is preferably a vinyl monomer, that is, a compound having a carbon-carbon double bond.
  • Vinyl monomers are excellent in alternating copolymerization with fluoroolefins and can increase the polymerization yield. Moreover, even when it remains unreacted, it has little influence on the cured film and can be easily removed in the manufacturing process.
  • vinyl monomers include vinyl ether, allyl ether, carboxylic acid vinyl ester, carboxylic acid allyl ester, and olefin.
  • vinyl ether examples include cycloalkyl vinyl ether (cyclohexyl vinyl ether (hereinafter also referred to as “CHVE”)), alkyl vinyl ether (nonyl vinyl ether, 2-ethylhexyl vinyl ether, hexyl vinyl ether, ethyl vinyl ether, n-butyl vinyl ether, tert-butyl). Vinyl ether, etc.).
  • alkyl ethers examples include alkyl allyl ethers (ethyl allyl ether, hexyl allyl ether, etc.).
  • carboxylic acid vinyl esters examples include vinyl esters of carboxylic acids (such as acetic acid, butyric acid, pivalic acid, benzoic acid, and propionic acid). Further, Veova-9, Veova-10 (both manufactured by Shell Chemical Co., Ltd.) and the like that are commercially available as vinyl esters of carboxylic acids having a branched alkyl group may be used.
  • carboxylic acid allyl esters examples include allyl esters of carboxylic acids (acetic acid, butyric acid, pivalic acid, benzoic acid, propionic acid, and the like).
  • the olefin examples include ethylene, propylene, isobutylene and the like.
  • the glass transition temperature of the hydroxyl group-containing fluororesin (B) can be designed to be 50 ° C. or higher, and cycloalkyl vinyl ether is preferable, and CHVE is particularly preferable from the viewpoint that blocking of the cured film can be suppressed. preferable.
  • the monomer (a2) those having a linear or branched alkyl group having 3 or more carbon atoms are preferred from the viewpoint of excellent flexibility of the cured film.
  • a monomer (a2) may be used individually by 1 type, and may use 2 or more types together.
  • the combination of the monomers constituting the hydroxyl group-containing fluororesin (B) is preferably the following combination (1) from the viewpoint of weather resistance, adhesion, flexibility, and blocking resistance, and the combination (2) or (3 Is particularly preferred.
  • Combination (1) Fluoroolefin: TFE or CTFE, Monomer (a1): hydroxyalkyl vinyl ether, Monomer (a2): one or more selected from cycloalkyl vinyl ether, alkyl vinyl ether and carboxylic acid vinyl ester.
  • Combination (3) Fluoroolefin: CTFE, Monomer (a1): hydroxyalkyl vinyl ether, Monomer (a2): CHVE or tert-butyl vinyl ether.
  • the proportion of fluoroolefin units is preferably 30 to 70 mol%, particularly preferably 40 to 60 mol%, based on the total units (100 mol%) in the hydroxyl group-containing fluororesin (B). If a fluoro olefin unit is more than the said lower limit, the weather resistance of a cured film will be excellent. If the fluoroolefin unit is not more than the above upper limit, when the cured film has a single layer structure, it has excellent adhesion to the substrate, and when the cured film has a two-layer structure, adhesion between the fluororesin layer and other resin layers Excellent in properties.
  • the proportion of the monomer (a1) unit is preferably 0.5 to 20 mol%, particularly preferably 1 to 15 mol%, based on the total units (100 mol%) in the hydroxyl group-containing fluororesin (B). If the ratio of the monomer (a1) unit is not less than the lower limit, when the cured film has a single-layer structure, it has excellent adhesion to the substrate, and when the cured film has a two-layer structure, the fluororesin layer and others Excellent adhesion to the resin layer. When the ratio of the monomer (a1) unit is not more than the above upper limit value, the scratch resistance of the cured film is excellent.
  • the proportion of the monomer (a2) unit is preferably 20 to 60 mol%, particularly preferably 30 to 50 mol%, based on all units (100 mol%) in the hydroxyl group-containing fluororesin (B).
  • the proportion of the monomer (a2) unit is equal to or higher than the lower limit, the glass transition temperature of the hydroxyl group-containing fluororesin (B) is appropriate, and a powder coating can be easily produced. If the ratio of the monomer (a2) unit is less than or equal to the above upper limit, when the cured film has a single layer structure, it has excellent adhesion to the substrate, and when the cured film has a two-layer structure, the fluororesin layer and others Excellent adhesion to the resin layer.
  • the number average molecular weight of the hydroxyl group-containing fluororesin (B) is preferably 3,000 to 50,000, particularly preferably 5,000 to 30,000.
  • the cured film is excellent in water resistance and salt water resistance. If the number average molecular weight of a hydroxyl-containing fluororesin (B) is below the said upper limit, it will be excellent in the surface smoothness of a cured film.
  • the hydroxyl value of the hydroxyl group-containing fluororesin (B) is preferably 5 to 100 mgKOH / g, particularly preferably 10 to 80 mgKOH / g. If the hydroxyl value of the hydroxyl group-containing fluororesin (B) is equal to or greater than the lower limit, when the cured film has a single layer structure, it has excellent adhesion to the substrate, and when the cured film has a two-layer structure, Excellent adhesion to other resin layers. When the hydroxyl value of the hydroxyl group-containing fluororesin (B) is not more than the above upper limit, the cured film is excellent in crack resistance under a temperature cycle at a high temperature of 100 ° C. or higher and a low temperature of 10 ° C. or lower. The hydroxyl value is measured according to JIS K1557-1 (2007 edition).
  • the glass transition temperature of the hydroxyl group-containing fluororesin (B) is preferably 30 to 150 ° C, more preferably 35 to 120 ° C, and particularly preferably 35 to 100 ° C. If the glass transition temperature of the hydroxyl group-containing fluororesin (B) is at least the lower limit, it is easy to produce a powder coating material. If the glass transition temperature of a hydroxyl-containing fluororesin (B) is below the said upper limit, it will be excellent in the surface smoothness of a cured film.
  • acid anhydride As the acid anhydride, a compound having a molecular weight of 90 to 200 is preferable from the viewpoint of excellent reactivity with the hydroxyl group-containing fluororesin (B). From the viewpoint of excellent reactivity with the hydroxyl group-containing fluororesin (B), compounds having 4 to 15 carbon atoms are preferred. From the viewpoint of excellent reactivity with the hydroxyl group-containing fluororesin (B), a compound having a melting point of 20 to 180 ° C. is preferred. Examples of the acid anhydride include dibasic acid anhydrides.
  • Dibasic acid anhydrides include succinic anhydride (molecular weight: 100.1, melting point: 120 ° C., carbon number: 4), glutaric anhydride (molecular weight: 114.1, melting point: 52 ° C., carbon number: 5) Itaconic anhydride (molecular weight: 112.1, melting point: 67 ° C., carbon number: 5), 1,2-cyclohexanedicarboxylic anhydride (hexahydrophthalic anhydride) (molecular weight: 154.0, melting point: 35 ° C., carbon number 8), cis-4-cyclohexene-1,2-dicarboxylic anhydride (molecular weight: 152.0, melting point: 66 ° C., carbon number: 8), phthalic anhydride (molecular weight: 148.1, melting point: 131 ° C., Carbon number: 8), 4-methylhexahydrophthalic anhydride (molecular weight: 168.0, melting point: 22 ° C., carbon
  • the compound (C2) is a compound having an alkoxysilyl group and an isocyanate group.
  • the silane coupling agent which has an isocyanate group is mentioned.
  • the silane coupling agent include 3-isocyanatopropyltriethoxysilane and 3-isocyanatopropyltrimethoxysilane.
  • the curing agent (D) is a compound that cures the resin by reacting with a reactive group of the resin (fluororesin (A) or other resin (F)) to crosslink or increase the molecular weight of the resin.
  • the curing agent (D) has two or more reactive groups that can react with a reactive group (hydroxyl group, carboxy group, etc.) of the resin.
  • the reactive group of the curing agent (D) is preferably a reactive group that can react when the powder coating is heated and melted because it is not preferable to react with the reactive group of the resin at room temperature. .
  • a blocked isocyanate group is preferable to an isocyanate group having a highly reactive group at room temperature. The blocked isocyanate group is released from the blocking agent when the powder coating is heated and melted to form an isocyanate group, and the isocyanate group acts as a reactive group.
  • the curing agent (D) known compounds can be used.
  • blocked isocyanate curing agents amine curing agents (melamine resin, guanamine resin, sulfoamide resin, urea resin, aniline resin, etc.), ⁇ -Hydroxyalkylamide curing agents, triglycidyl isocyanurate curing agents and the like.
  • the blocked isocyanate curing agent (D1) is particularly preferred from the viewpoint of excellent adhesion to the substrate, workability of the product after coating, and water resistance of the cured film.
  • the curing agent (D) includes ⁇ -hydroxyalkylamide type curing agent and triglycidyl isocyanurate type curing agent. preferable.
  • curing agent (D) may be used individually by 1 type, and may use 2 or more types together.
  • the softening temperature of the curing agent (D) is preferably 10 to 120 ° C, particularly preferably 40 to 100 ° C.
  • the softening temperature is equal to or higher than the lower limit, the powder coating is difficult to cure at room temperature, and it is difficult to form a granular lump. If the softening temperature is equal to or lower than the above upper limit, when producing a powder by melt-kneading the composition, it is easy to uniformly disperse the curing agent (D) in the powder, and the surface smoothness of the resulting cured film Excellent in strength and moisture resistance.
  • the blocked isocyanate curing agent (D1) is preferably a solid at room temperature.
  • a polyisocyanate obtained by reacting an aliphatic, aromatic or araliphatic diisocyanate with a low molecular weight compound having active hydrogen is used as a blocking agent. Those prepared by reacting and masking are preferred.
  • diisocyanate examples include tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, 4,4′-methylenebis (cyclohexyl isocyanate), methylcyclohexane diisocyanate, Examples thereof include bis (isocyanatomethyl) cyclohexaneisophorone diisocyanate, dimer acid diisocyanate, and lysine diisocyanate.
  • Low molecular weight compounds having active hydrogen include water, ethylene glycol, propylene glycol, trimethylolpropane, glycerin, sorbitol, ethylenediamine, ethanolamine, diethanolamine, hexamethylenediamine, isocyanurate, uretidione, a low molecular weight polyester containing a hydroxyl group, Examples include polycaprolactone.
  • the blocking agent examples include alcohols (methanol, ethanol, benzyl alcohol, etc.), phenols (phenol, cresol, etc.), lactams (caprolactam, butyrolactam, etc.), oximes (cyclohexanone, oxime, methyl ethyl ketoxime, etc.) and the like. .
  • the pigment (E) is preferably at least one selected from the group consisting of bright pigments, rust preventive pigments, colored pigments and extender pigments.
  • the bright pigment is a pigment for brightening the coating film.
  • the bright pigment include aluminum powder, nickel powder, stainless steel powder, copper powder, bronze powder, gold powder, silver powder, mica powder, graphite powder, glass flake, and scale-like iron oxide powder.
  • the rust preventive pigment is a pigment for preventing the corrosion and alteration of the base material with respect to the base material that requires the antirust property.
  • a lead-free rust preventive pigment having a low environmental load is preferable.
  • lead-free rust preventive pigments include cyanamide zinc, zinc oxide, zinc phosphate, calcium magnesium phosphate, zinc molybdate, barium borate, and calcium cyanamide zinc.
  • the color pigment is a pigment for coloring the cured film.
  • examples of the color pigment include titanium oxide, carbon black, iron oxide, phthalocyanine blue, phthalocyanine green, quinacridone, isoindolinone, benzimidazolone, and dioxazine.
  • the extender pigment is a pigment for improving the hardness of the cured film and increasing the thickness of the cured film. Moreover, when the base material is cut, blending is also preferable because the cut surface of the cured film can be cleaned.
  • extender pigments include talc, barium sulfate, mica, and calcium carbonate.
  • Inorganic pigments containing titanium oxide are likely to promote photocatalytic reactions in high temperature and high humidity areas.
  • the photocatalytic reaction is promoted by moisture and ultraviolet rays.
  • voids voids
  • water enters the voids, and the cured film deteriorates due to the photocatalytic action of titanium oxide.
  • the cured film formed from the powder coating obtained by the production method of the present invention since there are few voids, even if titanium oxide is present in the cured film, the cured film is unlikely to deteriorate due to the photocatalytic reaction.
  • the titanium oxide is preferably one that has been surface-treated so that the photocatalytic reaction does not proceed easily.
  • the titanium oxide is surface-treated with silica, alumina, zirconia, selenium, organic components (polyol, etc.), etc. Titanium oxide whose titanium oxide content is adjusted to 83 to 90% by mass by these surface treatments is particularly preferable. If titanium oxide content is more than the said lower limit, it will be excellent in the whiteness of a cured film. When the titanium oxide content is not more than the above upper limit value, the cured film is unlikely to deteriorate.
  • titanium oxide Commercially available products of titanium oxide include “Taipec (registered trademark) PFC105” (titanium oxide content: 87% by mass) and “Taipec (registered trademark) CR95” (titanium oxide content: 90% by mass) manufactured by Ishihara Sangyo Co., Ltd. “D918” (titanium oxide content: 85 mass%) manufactured by Sakai Chemical Co., Ltd. “Ti-Pure (registered trademark) R960” (titanium oxide content: 89 mass%) manufactured by DuPont, “Ti-Select ( Registered trademark) ”(titanium oxide content: 90 mass%) and the like.
  • the other resin (F) is a resin other than the fluororesin (A).
  • the other resin (F) include a fluororesin (F1) other than the fluororesin (A), a thermosetting resin (F2) other than the fluororesin (A) and the fluororesin (F1), and the like.
  • fluororesin (F1) examples include TFE-perfluoro (alkyl vinyl ether) copolymer (hereinafter also referred to as “PFA”), TFE-hexafluoropropylene copolymer, TFE-perfluoro (alkyl vinyl ether) -hexafluoro.
  • Propylene copolymer ethylene-TFE copolymer (hereinafter also referred to as “ETFE”), polyvinylidene fluoride (hereinafter also referred to as “PVDF”), polyvinyl fluoride, polychlorotrifluoroethylene, ethylene-CTFE Examples thereof include a copolymer and a fluoropolymer having a reactive group described later.
  • the fluororesin (F1) may further have units derived from other monomers as long as the essential properties are not impaired as necessary.
  • the other monomer is a monomer other than a monomer that forms an essential unit as a unit constituting the fluororesin (F1) (for example, ethylene and TFE in ETFE, TFE and perfluoro (alkyl vinyl ether) in PFA) It is.
  • the obtained fluororesin (F1) has excellent adhesion to a substrate (particularly an aluminum substrate), and is easy to fix an aluminum curtain wall with a sealing agent. Fluoride is particularly preferred.
  • the melting point of the fluororesin (F1) is preferably 300 ° C. or lower, more preferably 200 ° C. or lower, and particularly preferably 180 ° C. or lower.
  • the cured film has excellent surface smoothness.
  • thermosetting resin (F2) is preferably one that can be separated into layers without being compatible with the fluororesin (A) in the melting and curing process of the powder coating.
  • thermosetting resin (F2) an acrylic resin, a polyester resin, an epoxy resin, or a urethane resin having thermosetting properties are preferable, and the adhesiveness to the base material is excellent, and the fluororesin is not easily contaminated with the cured resin layer. From the viewpoint, a polyester resin or an acrylic resin is more preferable, and a polyester resin is particularly preferable.
  • the polyester resin is a polymer in which a unit derived from a polyvalent carboxylic acid compound and a unit derived from a polyhydric alcohol compound are linked by an ester bond, and a unit other than these two types of units (for example, a hydroxycarboxylic acid compound) May be derived from a unit or the like.
  • the terminal of the polymerization chain of the polyester resin is a monovalent unit.
  • the terminal unit is a unit derived from a polyvalent carboxylic acid compound
  • the terminal unit has a carboxy group
  • the terminal unit is derived from a polyhydric alcohol compound.
  • the terminal unit has a hydroxyl group.
  • the unit other than the terminal unit is composed of a divalent or higher unit, and the linear polymer is composed of only a divalent unit excluding the terminal unit. That is, the linear polyester resin is composed of only divalent units such as a divalent unit derived from a polyvalent carboxylic acid compound and a divalent unit derived from a polyhydric alcohol compound, excluding the terminal unit.
  • the branched polyester resin has at least one trivalent or higher unit, and is substantially composed of only a divalent unit other than the trivalent or higher unit and the terminal unit.
  • the trivalent or higher unit is a unit obtained by removing a hydroxyl group from three or more carboxy groups of a trivalent or higher polyvalent carboxylic acid compound, and each hydrogen atom from three or more hydroxyl groups of a trivalent or higher polyhydric alcohol compound. Units other than are included.
  • a unit derived from a polycarboxylic acid compound is also referred to as a “polyhydric carboxylic acid unit”
  • a unit derived from a polyhydric alcohol compound is also referred to as a “polyhydric alcohol unit”.
  • the polyester resin a linear polymer or a branched polymer having a small number of branches is preferable, and a linear polymer is particularly preferable. Since a branched polymer having many branches tends to have a high softening point and melting temperature, when the polyester resin is a branched polymer, the softening point is preferably 200 ° C. or lower. As the polyester resin, those which are solid at normal temperature and have a softening point of 100 to 150 ° C. are preferable.
  • the number average molecular weight of the polyester resin is preferably 5,000 or less from the viewpoint that the melt viscosity of the coating film can be appropriately lowered.
  • the mass average molecular weight of the polyester resin is preferably from 2,000 to 20,000, more preferably from 2,000 to 10,000, from the viewpoint that the melt viscosity of the coating film can be appropriately lowered.
  • the polyester resin those having a number average molecular weight of 5,000 or less and a mass average molecular weight of 2,000 to 20,000 are more preferable, the number average molecular weight is 5,000 or less, and the mass average molecular weight. Particularly preferred are those having a 2,000 to 10,000.
  • the polyester resin has a reactive group that can react with the curing agent (D).
  • At least a part of the terminal unit of the polymer chain of the polyester resin is preferably a monovalent polyvalent carboxylic acid unit or a monovalent polyhydric alcohol unit.
  • the free carboxy contained in the unit In the latter case, the free hydroxyl group of the unit functions as a reactive group.
  • the unit having a reactive group may be a unit other than the terminal unit.
  • a divalent polyhydric alcohol unit derived from a polyhydric alcohol compound having three or more hydroxyl groups is a unit having a free hydroxyl group
  • the polyester resin is a divalent or more unit having a reactive group. You may have.
  • the reactive group in the polyester resin is preferably a hydroxyl group from the viewpoint of excellent water resistance, alkali resistance, and acid resistance of the cured film.
  • the polyester resin usually has a hydroxyl group and a carboxy group, and the polyester resin preferably has mainly a hydroxyl group.
  • the hydroxyl value of the polyester resin is preferably 20 to 100 mgKOH / g, particularly preferably 20 to 80 mgKOH / g.
  • the acid value is preferably from 1 to 80 mgKOH / g, particularly preferably from 3 to 50 mgKOH / g.
  • the hydroxyl value and acid value are measured according to JIS K 0070 (1992 version).
  • the polyester resin has a carbon number from the point that when the cured film has a two-layer structure, the adhesiveness with the fluororesin layer is excellent, the impact resistance of the cured film is excellent, and the dispersibility of the pigment (E) is excellent.
  • a polyester resin having a unit derived from an aromatic polycarboxylic acid compound having 8 to 15 carbon atoms and a unit derived from a polyhydric alcohol compound having 2 to 10 carbon atoms is preferable.
  • the polyvalent carboxylic acid unit is preferably a unit derived from an aromatic polycarboxylic acid compound having 8 to 15 carbon atoms.
  • An aromatic polyvalent carboxylic acid compound having 8 to 15 carbon atoms is a compound having an aromatic ring and two or more carboxy groups, and the carboxy group is bonded to a carbon atom of the aromatic ring.
  • the anhydride which has a structure which two carboxyl groups dehydrated may be sufficient.
  • the aromatic ring a benzene ring or a naphthalene ring is preferable, and a benzene ring is particularly preferable. In the case of a benzene ring, two may exist per molecule.
  • the number of carboxy groups in the aromatic polyvalent carboxylic acid compound is preferably 2 to 4, and particularly preferably 2.
  • the aromatic polycarboxylic acid compound having 8 to 15 carbon atoms include phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, trimellitic acid, pyromellitic acid, phthalic anhydride, and the like.
  • the polyvalent carboxylic acid unit a unit derived from isophthalic acid is preferable because the weather resistance of the cured film is excellent.
  • the polyhydric alcohol unit is preferably a unit derived from a polyhydric alcohol compound having 2 to 10 carbon atoms.
  • the polyhydric alcohol compound having 2 to 10 carbon atoms is a compound having two or more hydroxyl groups.
  • As the polyhydric alcohol compound aliphatic polyhydric alcohols and alicyclic polyhydric alcohols are preferable, and aliphatic polyhydric alcohols are particularly preferable.
  • the number of hydroxyl groups in the polyhydric alcohol compound is preferably 2 to 4, and particularly preferably 2.
  • Examples of the polyhydric alcohol compound having 2 to 10 carbon atoms include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, and 1,4-butane.
  • Examples include diol, 1,5-pentanediol, neopentyl glycol, spiroglycol, 1,10-decanediol, 1,4-cyclohexanedimethanol, trimethylolethane, trimethylolpropane, glycerin, and pentaerythritol.
  • polyhydric alcohol unit As a polyhydric alcohol unit, it has excellent adhesion to the base material, and even when heat history is applied due to excellent flexibility, the cured film has a two-layer structure. From the viewpoint that delamination is difficult, units derived from polyhydric alcohols having 3 to 8 carbon atoms are preferred, and units derived from polyhydric alcohols having 4 to 6 carbon atoms are particularly preferred.
  • the polyhydric alcohol neopentyl glycol, 1,2-pentanediol, 1,5-pentanediol, trimethylolpropane and the like are preferable, and neopentylglycol or trimethylolpropane is more preferable in terms of easy availability.
  • the polyester resin can be produced by using a known method for producing a polyester resin for powder coating, using an aromatic polyvalent carboxylic acid compound and a polyhydric alcohol compound as raw materials. For example, after a raw material is esterified or transesterified at 200 to 280 ° C., a polycondensation reaction is performed at 230 to 290 ° C. using a catalyst under reduced pressure, and then a depolymerization reaction is performed with an alcohol component to obtain a polyester resin. Is obtained.
  • the polyester resin has an appropriate ester group concentration and aromatic ring concentration. It is preferable to have.
  • the ester group concentration represents the content of the ester group in the polyester resin in mass%, and can be determined from the following formula (1).
  • Ester group concentration (mass%) 2 m / [(a + b) ⁇ m + a] (1)
  • m average value of the number of units in the polyester resin, calculated from the average value of the molecular weight of each unit and the value of the number average molecular weight of the polyester resin.
  • a Average value of the number of carbon atoms of the polyhydric alcohol unit.
  • b Average value of the number of carbon atoms of the polyvalent carboxylic acid unit.
  • the ester group concentration of the polyester resin is preferably 20 to 60% by mass, more preferably 25 to 50% by mass, and particularly preferably 30 to 40% by mass.
  • the aromatic ring concentration is the content of aromatic rings in the polyester resin expressed in mmoL / g, and can be obtained from the following formula (2).
  • Aromatic ring concentration (mmoL / g) [(total number of aromatic rings in raw material used to obtain polyester resin (moL)) / (total weight of raw material used to obtain polyester resin (g)) ] X 1,000
  • the aromatic ring concentration of the polyester resin is preferably 20 to 35 mmol / g, more preferably 22 to 34 mmol / g, and particularly preferably 25 to 33 mmol / g.
  • polyester resins examples include “CRYLCOAT (registered trademark) 4642-3” and “CRYLCOAT (registered trademark) 4890-0” manufactured by Nippon Cytec Industries, Inc., “GV-250” and “GV- 740 ",” GV-175 "and the like.
  • the acrylic resin is a polymer having units derived from (meth) acrylate, and has a reactive group such as a carboxy group, a hydroxyl group, and a sulfo group.
  • the acrylic resin is excellent in the dispersibility of the pigment (E).
  • the glass transition temperature of the acrylic resin is preferably 30 to 60 ° C. If the glass transition temperature is equal to or higher than the lower limit, blocking is difficult. If glass transition temperature is below the said upper limit, it will be excellent in the surface smoothness of a cured film.
  • the number average molecular weight of the acrylic resin is preferably 5,000 to 100,000, particularly preferably 30,000 to 100,000. If the number average molecular weight of the acrylic resin is not less than the lower limit, blocking is difficult. If the number average molecular weight of an acrylic resin is below the said upper limit, it will be excellent in the surface smoothness of a cured film.
  • the mass average molecular weight of the acrylic resin is preferably 6,000 to 150,000, more preferably 40,000 to 150,000, and particularly preferably 60,000 to 150,000. If the mass average molecular weight of the acrylic resin is not less than the lower limit, blocking is difficult. If the mass average molecular weight of an acrylic resin is below the said upper limit, it will be excellent in the surface smoothness of a cured film.
  • the acid value of the acrylic resin is preferably 150 to 400 mgKOH / g. If the acid value of an acrylic resin is more than the said lower limit, there exists an effect of improving the dispersibility of the pigment (E). If the acid value of an acrylic resin is below the said upper limit, a cured film will be excellent in moisture resistance.
  • acrylic resins include “Fine Dick (registered trademark) A-249”, “Fine Dick (registered trademark) A-251”, “Fine Dick (registered trademark) A-266” manufactured by DIC, Mitsui Chemicals, Inc. “Almatex (registered trademark) PD6200” manufactured by the company, “Almatex (registered trademark) PD7310”, “Sanpex PA-55” manufactured by Sanyo Chemical Industries, Ltd., and the like.
  • the epoxy resin is a compound (prepolymer) having two or more epoxy groups in the molecule.
  • Commercially available epoxy resins include “Epicoat (registered trademark) 1001”, “Epicoat (registered trademark) 1002”, “Epicoat (registered trademark) 4004P” manufactured by Mitsubishi Chemical Corporation, and “Epicron (registered trademark)” manufactured by DIC.
  • the urethane resin is a mixture of a polyol (acrylic polyol, polyester polyol, polyether polyol, propylene glycol, propylene oxide, etc.) and an isocyanate compound, or a reacted resin. It is preferable to use a powder coating composed of powder polyol (acrylic polyol, polyester polyol, polyether polyol) and powdered isocyanate.
  • the curing catalyst (G) accelerates the curing reaction and imparts good chemical performance and physical performance to the cured film.
  • the curing catalyst (G) is preferably a tin catalyst (such as tin octylate, tributyltin laurate, dibutyltin dilaurate).
  • a curing catalyst may be used individually by 1 type, and may use 2 or more types together.
  • compositions ( ⁇ ) and the composition ( ⁇ ) may contain other components (H) as necessary.
  • other components (H) include ultraviolet absorbers, light stabilizers, matting agents (such as ultrafine powder synthetic silica), surfactants (nonionic surfactants, cationic surfactants, or anionic surfactants). Agent), leveling agent, surface conditioner (improves the surface smoothness of the cured film), degassing agent (air entrained in the powder, blocking agent coming out of the curing agent (D), moisture etc.
  • cured film inside the cured film (It is usually solid, but it has a very low viscosity when melted.), Filler, heat stabilizer, thickener, dispersant, antistatic agent , An antirust agent, a silane coupling agent (excluding the compound (C2)), an antifouling agent, a low-contamination treatment agent, and the like.
  • the composition ( ⁇ ), which is the material of the powder (X) contains the ultraviolet absorber, so that the ultraviolet absorber is likely to be unevenly distributed in the fluororesin layer. Therefore, the amount of ultraviolet rays that pass through the fluororesin layer and reach the other resin layers is reduced, the deterioration of the other resin layers is suppressed, and the problem that the fluororesin layer peels from the other resin layers can be avoided.
  • the ultraviolet absorber is contained not only in the composition ( ⁇ ) which is the material of the powder (X) but also in the composition ( ⁇ ) which is the material of the powder (Y).
  • the ultraviolet absorber can be unevenly distributed in the resin layer, but from the viewpoint of cost reduction, the ultraviolet absorber is not present in the other resin layers as much as possible, that is, a composition (powder (Y) material). It is preferred not to be included in ⁇ ).
  • the cured film has a two-layer structure
  • it is unevenly distributed in the fluororesin layer in consideration of the physical properties of the UV absorber.
  • a UV absorber that is easy to use.
  • a lipophilic ultraviolet absorber is more likely to be unevenly distributed in the fluororesin layer between a lipophilic ultraviolet absorber and a hydrophilic ultraviolet absorber.
  • the affinity for the fluororesin (A) may differ depending on the type of ultraviolet absorber (difference in chemical structure) and physical properties (molecular weight, melting point, boiling point, etc.).
  • an organic ultraviolet absorber or an inorganic ultraviolet absorber can be used as the ultraviolet absorber.
  • An ultraviolet absorber may be used individually by 1 type, and may be used in combination of 2 or more type.
  • organic ultraviolet absorbers examples include salicylic acid ester ultraviolet absorbers, benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and cyanoacrylate ultraviolet absorbers.
  • the organic ultraviolet absorber a compound having a molecular weight of 200 to 1,000 is preferable.
  • the molecular weight is 200 or more, it is difficult to volatilize during the melting and curing process of the powder coating material and can remain in the cured film.
  • the molecular weight is 1,000 or less, the cured film can remain in the fluororesin layer when the cured film has a two-layer structure.
  • the organic ultraviolet absorber a compound having a melting point of 50 to 150 ° C. is preferable.
  • the melting point is 50 ° C. or higher, it is difficult to volatilize during the melting and curing process of the powder coating material, and it can remain in the cured film.
  • the melting point is 150 ° C. or less, the powder coating is easily melted during the melting and curing process, and can remain in the fluororesin layer when the cured film has a two-layer structure.
  • the organic ultraviolet absorber a compound having a volatilization temperature of 180 to 400 ° C. is preferable, and a compound having a 220 to 350 ° C. is particularly preferable. Since a temperature condition of 150 to 220 ° C. is required in the melting and curing process of the powder coating, it is difficult to volatilize within the above range, and it is easy to stay in the fluororesin layer when the cured film has a two-layer structure. .
  • organic ultraviolet absorbers include “Tinvin (registered trademark) 326” (molecular weight: 315.8, melting point: 139 ° C.) and “Tinuvin (registered trademark) 405” (molecular weight: 583.8) manufactured by BASF.
  • inorganic ultraviolet absorbers include filler-type inorganic ultraviolet absorbers containing ultraviolet absorbing oxides (such as zinc oxide and cerium oxide).
  • ultraviolet absorbing oxides such as zinc oxide and cerium oxide.
  • composite particles of zinc oxide and titanium oxide, composite particles of cerium oxide and titanium oxide, composite particles of zinc oxide and cerium oxide, composite particles of titanium oxide, zinc oxide and cerium oxide are preferable.
  • the light stabilizer protects the resin (fluororesin (A) or other resin (F)) in the cured film from ultraviolet rays.
  • the composition ( ⁇ ) which is the material of the powder (Y) contains the light stabilizer, so that the light stabilizer is present in the other resin layer. Therefore, the deterioration of the other resin layer due to the ultraviolet rays that pass through the fluororesin layer and reach the other resin layer is suppressed, and the problem that the fluororesin layer is separated from the other resin layer can be avoided.
  • the light stabilizer may be included not only in the composition ( ⁇ ) that is the material of the powder (Y) but also in the composition ( ⁇ ) that is the material of the powder (X). From the viewpoint of cost reduction, it is preferable that the light stabilizer is not present in the fluororesin layer as much as possible, that is, not contained in the composition ( ⁇ ) which is a material of the powder (X).
  • a hindered amine-based light stabilizer having a molecular weight of 300 to 5,000 and a melting point of 50 to 250 ° C. from the viewpoint that it is likely to be unevenly distributed in other resin layers during the melting and curing process of the powder coating. Agents are preferred.
  • a hindered amine light stabilizer having a molecular weight of 400 to 4,000 and a melting point of 60 to 200 ° C. is more preferable from the viewpoint of uniformly diffusing into the composition at the time of kneading.
  • a light stabilizer may be used individually by 1 type and may use 2 or more types together.
  • hindered amine light stabilizers include “Tinuvin (registered trademark) 111FDL” (molecular weight: 2,000 to 4,000, melting point: 63 ° C.) and “Tinuvin (registered trademark) 144” (molecular weight) manufactured by BASF.
  • composition ( ⁇ ) Content of the hardening
  • curing agent (D) in a composition ((alpha)) is fluororesin (A) in a composition ((alpha))
  • fluororesin (A) and other resin ( 1 to 50 parts by mass is preferable, and 3 to 30 parts by mass is particularly preferable with respect to 100 parts by mass of the total of F.
  • the curing agent (D) is a blocked isocyanate curing agent (D1)
  • the content of the blocked isocyanate curing agent (D1) in the composition ( ⁇ ) is based on the hydroxyl groups in the composition ( ⁇ ).
  • an amount such that the molar ratio of isocyanate groups is 0.05 to 1.5 is preferred, and an amount such that 0.8 to 1.2 is particularly preferred.
  • the molar ratio is not less than the lower limit of the above range, the degree of cure of the coating is increased, and the adhesion to other resin layers, the hardness of the cured film, chemical resistance, and the like are excellent.
  • the molar ratio is not more than the upper limit of the above range, the cured film is hardly brittle and the cured film has excellent heat resistance, chemical resistance, moisture resistance, and the like.
  • the content of the curing catalyst (G) in the composition ( ⁇ ) is 0 with respect to a total of 100 parts by mass of solids other than the pigment (E). 0.0001 to 10 parts by mass is preferable.
  • the content of the curing catalyst (G) is equal to or higher than the lower limit value, the catalytic effect can be sufficiently obtained. If the content of the curing catalyst (G) is less than or equal to the above upper limit, the powder coating is easily melted and the gas such as air entrained in the powder coating during the curing process is easily released and the curing caused by the remaining gas. There is little decrease in heat resistance, weather resistance and water resistance of the film. 45 mass% or less is preferable among composition ((alpha)) (100 mass%), and, as for total content of the other component (H) in a composition ((alpha)), 30 mass% or less is especially preferable.
  • the content of the other resin (F) in the composition ( ⁇ ) is such that the fluororesin (A) and the other resin in the composition ( ⁇ ) 20 to 80 parts by mass is preferable with respect to 100 parts by mass in total with (F), and 25 to 75 parts by mass is particularly preferable. If content of other resin (F) is more than the said lower limit, the cost of a cured film can be suppressed. If content of other resin (F) is below the said upper limit, the weather resistance of a cured film will be excellent.
  • composition ( ⁇ ) When the composition ( ⁇ ) contains the curing agent (D), the content of the curing agent (D) in the composition ( ⁇ ) is 100 parts by mass of the other resin (F) in the composition ( ⁇ ). On the other hand, 1 to 50 parts by mass is preferable, and 3 to 30 parts by mass is particularly preferable.
  • the curing agent (D) is a blocked isocyanate curing agent (D1)
  • the content of the blocked isocyanate curing agent (D1) in the composition ( ⁇ ) is based on the hydroxyl groups in the composition ( ⁇ ).
  • An amount such that the molar ratio of isocyanate groups is 0.05 to 1.5 is preferred, and an amount such that 0.8 to 1.2 is particularly preferred.
  • the molar ratio is not less than the lower limit of the above range, the degree of cure of the coating is increased, and the adhesion to other resin layers, the hardness of the cured film, chemical resistance, and the like are excellent.
  • the molar ratio is not more than the upper limit of the above range, the cured film is hardly brittle and the cured film has excellent heat resistance, chemical resistance, moisture resistance, and the like.
  • the content of the curing catalyst (G) in the composition ( ⁇ ) is 0 with respect to a total of 100 parts by mass of solids other than the pigment (E). 0.0001 to 10 parts by mass is preferable. If the content of the curing catalyst is not less than the lower limit value, the catalytic effect can be sufficiently obtained. If the content of the curing catalyst is less than or equal to the above upper limit value, the heat of the cured film generated by the remaining of the gas, such as air that is easily evacuated in the powder coating during the melting and curing process of the powder coating, is easy to escape. There is little decrease in water resistance, weather resistance and water resistance. 45 mass% or less is preferable among composition ((beta)) (100 mass%), and, as for total content of the other component (H) in a composition ((beta)), 30 mass% or less is especially preferable.
  • the total content of the pigment (E) in the composition ( ⁇ ) and the pigment (E) in the composition ( ⁇ ) is the same as that of the fluororesin (A) (other resin (F) in the composition ( ⁇ ).
  • the total amount of fluororesin (A) and other resin (F)) and the total of 100 parts by mass of other resin (F) in the composition ( ⁇ ) is preferably 20 to 200 parts by mass, 50 to 150 parts by weight are particularly preferred.
  • the fluororesin (A) since the fluororesin (A) is included, the cured film which is excellent in a weather resistance can be formed.
  • the powder (X) contained in the powder coating (I) contains another resin (F) that can be separated into layers without being compatible with the fluororesin (A)
  • a cured film in which a fluororesin layer mainly composed of a cured product and another resin (F) or another resin layer mainly composed of the cured product is separated from each other can be formed in one coat. Since the other resin layer is disposed on the substrate side and the fluororesin layer is disposed on the air side, the cured film is excellent in weather resistance.
  • the fluororesin (A) A cured film in which a fluororesin layer mainly composed of a cured product and another resin (F) or another resin layer mainly composed of the cured product is separated from each other can be formed in one coat. Since the other resin layer is disposed on the substrate side and the fluororesin layer is disposed on the air side, the cured film is excellent in weather resistance.
  • the fluororesin (A) since the fluororesin (A) has a carboxy group or has an alkoxysilyl group and a urethane bond, as described below, a cured film with less voids (voids). Can be formed.
  • the fluororesin (A) having a carboxy group has a lower melt viscosity than the hydroxyl group-containing fluororesin. Therefore, when the powder coating material is melted to form a coating film, the gas generated during the reaction of the air and the curing agent existing between the powder coating materials tends to escape from the coating film. As a result, voids hardly remain in the cured film. 2.
  • the fluororesin (A) having a carboxy group has higher affinity with the pigment (E) than the hydroxyl group-containing fluororesin. Therefore, the dispersibility of the pigment in the fluororesin (A) is improved, and the pigment hardly aggregates in the cured film. As a result, voids hardly remain between the pigment and the fluororesin (A).
  • the fluororesin (A) having a urethane bond has a lower melt viscosity than the hydroxyl group-containing fluororesin.
  • the fluororesin (A) having an alkoxysilyl group has a higher affinity with the pigment (E) than the hydroxyl group-containing fluororesin. Therefore, the dispersibility of the pigment in the fluororesin (A) is improved, and the pigment hardly aggregates in the cured film. As a result, voids hardly remain between the pigment and the fluororesin (A).
  • the method for producing a powder coating material of the present invention includes the following steps (a), (b) and (c).
  • (A) A hydroxyl group-containing fluororesin (B), an acid anhydride (C1) or compound (C2), and a curing agent (D), and if necessary, a pigment (E) or other resin (F) ,
  • (C) A step of classifying the powder (X) as necessary.
  • the method for producing a powder coating material of the present invention includes the following step (a), step (b), step (c), step (a2), step (b2), step (c2). And step (d).
  • step (A) A hydroxyl group-containing fluororesin (B), an acid anhydride (C1) or compound (C2), and a curing agent (D), and if necessary, a pigment (E) or other resin (F) ,
  • (B) The process of grind
  • (C) A step of classifying the powder (X) as necessary.
  • (A2) Contains other resin (F), does not contain fluororesin (A), and optionally contains curing agent (D), pigment (E), curing catalyst (G), and other components (H).
  • B2) A step of pulverizing the kneaded material comprising the composition ( ⁇ ) to obtain a powder (Y).
  • (C2) A step of classifying the powder (Y) as necessary.
  • (D) A step of dry blending the powder (X) and the powder (Y).
  • Each component is preferably pulverized in advance to form a powder.
  • the apparatus used for mixing include a high-speed mixer, a V-type mixer, and an inverting mixer.
  • Examples of the apparatus used for melt kneading include a single screw extruder, a twin screw extruder, and a planetary gear. The kneaded product is preferably formed into pellets after cooling.
  • the melt kneading temperature is not lower than the glass transition temperature of the hydroxyl group-containing fluororesin (B) and lower than the reaction temperature of the curing agent (D). Specifically, 80 to 140 ° C. is preferable.
  • the melt kneading temperature is equal to or higher than the lower limit, the hydroxyl group-containing fluororesin (B) and the acid anhydride (C1) or the compound (C2) can be sufficiently brought into contact with each other, and the reaction proceeds sufficiently.
  • the melt-kneading temperature is not more than the upper limit, the reaction between the fluororesin (A) and the hydroxyl group-containing fluororesin (B) and the curing agent (D) is sufficiently suppressed.
  • the acid anhydride (C1) or compound (C2) it is preferable to select one that can be melted in the above temperature range.
  • the melt kneading time is preferably 10 seconds to 20 minutes, particularly preferably 15 seconds to 10 minutes.
  • the melt-kneading time is equal to or greater than the lower limit, the reaction between the hydroxyl group of the hydroxyl group-containing fluororesin (B) and the acid anhydride (C1) or compound (C2) proceeds sufficiently.
  • the melt-kneading time is less than or equal to the above upper limit, the reaction between the fluororesin (A) and the hydroxyl group-containing fluororesin (B) and the curing agent (D) is sufficiently suppressed.
  • the amount of the acid anhydride (C1) is preferably from 0.1 to 2.0 mol, particularly preferably from 0.2 to 1.5 mol, based on 1 mol of the hydroxyl group of the hydroxyl group-containing fluororesin (B).
  • the amount of the compound (C2) is preferably from 0.03 to 0.2 mol, particularly preferably from 0.05 to 0.15 mol, based on 1 mol of the hydroxyl group of the hydroxyl group-containing fluororesin (B).
  • the amount of the acid anhydride (C1) or the compound (C2) is equal to or greater than the lower limit, the hydroxyl group of the hydroxyl group-containing fluororesin (B) is sufficiently converted into a carboxy group, an alkoxysilyl group and a urethane bond, and melted. A fluororesin (A) having a sufficiently low viscosity and excellent affinity with the pigment (E) can be obtained. If the amount of acid anhydride (C1) or compound (C2) is less than or equal to the above upper limit, the amount of unreacted acid anhydride (C1) or compound (C2) can be suppressed, and acid anhydride ( The influence by C1) or compound (C2) is suppressed.
  • Step (a2) After each component is mixed to prepare a mixture, the mixture is melt-kneaded to obtain a kneaded product in which each component is uniformized. Each component is preferably pulverized in advance to form a powder. Examples of the apparatus used for mixing and the apparatus used for melt kneading include the same as those in the step (a). The kneaded product is preferably formed into pellets after cooling.
  • Process (b), (b2) Examples of the apparatus used for pulverization include pulverizers such as a pin mill, a hammer mill, and a jet mill.
  • Process (c), (c2) In order to remove powder having too large particle diameter or powder having too small particle diameter, it is preferable to perform classification after pulverization. When performing classification, it is preferable to remove at least one of particles having a particle diameter of less than 10 ⁇ m and particles having a particle diameter of more than 100 ⁇ m. Examples of the classification method include a screening method and an air classification method.
  • the average particle size of the powder (X) and the powder (Y) is preferably, for example, 25 to 50 ⁇ m with a 50% average volume particle size distribution. Measurement of the particle size of the powder is usually performed using a particle size measuring machine such as a type that captures a change in potential when passing through the pores, a laser diffraction method, an image determination format, a sedimentation velocity measurement method, and the like.
  • Examples of the apparatus used for dry blending include a high speed mixer, a double cone mixer, a kneader, a dumpler mixer, a mixing shaker, a drum shaker, and a rocking shaker.
  • the fluororesin (A) is difficult to gel.
  • gas generated during the reaction of air or a curing agent present between the powder coating materials is likely to escape from the cured film, and does not easily form voids.
  • the powder containing the fluororesin (A) having a carboxy group or having an alkoxysilyl group and a urethane bond, and containing less gelled fluororesin A coating material, that is, a powder coating material capable of forming a cured film with less voids can be produced.
  • a powder coating material containing the fluororesin (A) that is, a powder coating material capable of forming a cured film having excellent weather resistance can be produced.
  • the method for producing a coated article of the present invention is a method for producing a coated article having a cured film on the surface of a substrate, and includes the following steps (e) and (f).
  • the powder coating material of the present invention is coated on a base material to form a coating film made of a melt of the powder coating material on the base material.
  • the coating film is separated into an upper layer mainly composed of a melt of the fluororesin (A) and a lower layer mainly composed of a melt of another resin (F).
  • the reaction component in each layer causes a curing reaction.
  • ⁇ Base material> As the material of the substrate, metals such as aluminum, iron, and magnesium are preferable. The shape, size, etc. of the substrate are not particularly limited.
  • the coating film made of the powder coating melt may be formed at the same time as the coating of the powder coating on the substrate. After the powder coating powder is adhered to the substrate, the powder is applied on the substrate. It may be formed by heating and melting. Since the curing reaction of the reaction components in the composition starts almost simultaneously with the powder coating being melted by heating, the powder coating is heated and melted and adhered to the substrate almost simultaneously, or the powder coating substrate It is necessary to heat and melt the powder coating after adhering to the surface.
  • a heating temperature (hereinafter also referred to as “baking temperature”) and a heating maintenance time (hereinafter also referred to as “baking time”) for heating and melting the powder coating material and maintaining the molten state for a predetermined time are: It is appropriately set depending on the kind and composition of the raw material components of the powder coating material, the desired thickness of the cured film, and the like.
  • the baking temperature is preferably set according to the reaction temperature of the curing agent (D).
  • the baking temperature when the blocked polyisocyanate curing agent (D1) is used as the curing agent (D) is preferably 170 to 210 ° C.
  • the baking time is preferably 5 to 120 minutes, particularly preferably 10 to 60 minutes.
  • Examples of the coating method include electrostatic coating, electrostatic spraying, electrostatic dipping, spraying, fluidized dipping, spraying, spraying, thermal spraying, plasma spraying, and the like. Even when the coating film is thinned, an electrostatic coating method using a powder coating gun is preferable from the viewpoint of excellent surface smoothness of the coating film and excellent concealment of the cured film.
  • Examples of the powder coating gun include a corona charging type coating gun and a friction charging type coating gun.
  • the corona electrification type coating gun sprays powder paint after corona discharge treatment.
  • the friction charging type coating gun sprays a powder coating after friction charging.
  • the discharge amount of the powder paint from the powder coating gun is preferably 50 to 200 g / min.
  • the distance from the tip of the gun portion of the powder coating gun to the substrate is preferably 150 to 400 mm from the viewpoint of coating efficiency.
  • the load voltage applied to the components constituting the powder coating by corona discharge treatment is preferably ⁇ 50 to ⁇ 100 kV, and the coating efficiency (the ratio at which the powder coating adheres to the substrate) From the viewpoint of excellent appearance of the coating film, ⁇ 60 to ⁇ 80 kV is preferable.
  • the internally generated current value of the powder coating by the frictional charging treatment is preferably 1.0 to 8.0 ⁇ A from the viewpoint of excellent coating efficiency and appearance of the coating film.
  • the electrostatic coating method When the electrostatic coating method is carried out industrially, for example, an unpainted mirror is installed, and a grounded conductive horizontal belt conveyor for grounding is laid in the coating room and painted. Install a gun at the top of the room.
  • the coating pattern width is preferably 50 to 500 mm
  • the operation speed of the gun is preferably 1 to 30 m / min
  • the conveyor speed is preferably 1 to 50 m / min, and conditions suitable for the purpose may be selected from the above range.
  • the fluidized dipping method is preferable in that a relatively thick cured film can be formed.
  • a substrate whose coating surface is heated to a temperature equal to or higher than the melting temperature of the powder coating material in a fluid tank in which the powder coating material that is flowing and supported by a gas such as air is accommodated.
  • the coated base material is taken out of the fluid tank, and in some cases for a predetermined time. It is preferable to maintain the molten state of the coating film, and then cool to cool and cure the molten coating film to obtain a substrate on which a cured film is formed.
  • the temperature in the fluidized tank is preferably 15 to 55 ° C, and the temperature of gas such as air blown into the fluidized tank in order to fluidize the powder is also preferably 15 to 55 ° C.
  • the temperature of at least the coated surface of the substrate when immersed in the fluidized tank is preferably 300 to 450 ° C., and the time for which the substrate is immersed in the fluidized tank is preferably 1 to 120 seconds.
  • the substrate taken out from the fluidized tank is preferably maintained at a temperature of 150 to 250 ° C. for 1 to 5 minutes.
  • the molten coating film is cooled to room temperature (20 to 25 ° C.) and cured to form a cured film. Cooling after baking may be either rapid cooling or slow cooling, and slow cooling is preferable in that interfacial peeling is difficult due to differences in curing shrinkage between the fluororesin layer and other resin layers.
  • the thickness of the cured film is not particularly limited, but is preferably 100 to 1,000 ⁇ m. For applications requiring high weather resistance such as outdoor units of air conditioners, signal poles and signs installed along the coast, 100 to 200 ⁇ m is preferable. In addition, as above-mentioned, when thickness is thick, it can achieve by selecting a fluid immersion method.
  • the method for producing a carboxy group-containing fluororesin of the present invention is a method for obtaining a kneaded product containing a carboxy group-containing fluororesin by melting and kneading a mixture containing a hydroxyl group-containing fluororesin and an acid anhydride.
  • hydroxyl group-containing fluororesin examples include the hydroxyl group-containing fluororesin (B) described above.
  • acid anhydride examples include the acid anhydride (C1) described above.
  • Each component is preferably pulverized in advance to form a powder.
  • Examples of the apparatus used for mixing include a high-speed mixer, a V-type mixer, and an inverting mixer.
  • Examples of the apparatus used for melt kneading include a single screw extruder, a twin screw extruder, and a planetary gear. The kneaded product is preferably formed into pellets after cooling.
  • the melt kneading temperature is not lower than the glass transition temperature of the hydroxyl group-containing fluororesin and lower than the decomposition temperature of each component. Specifically, 80 to 140 ° C. is preferable.
  • the melt kneading temperature is equal to or higher than the lower limit, the hydroxyl group-containing fluororesin and the acid anhydride can be sufficiently brought into contact with each other and the reaction proceeds sufficiently.
  • the melt-kneading temperature is not more than the upper limit, deterioration of the carboxy group-containing fluororesin and the hydroxyl group-containing fluororesin can be sufficiently suppressed. It is preferable to select an acid anhydride that can be melted in the above temperature range.
  • the melt kneading time is preferably 10 seconds to 20 minutes, particularly preferably 15 seconds to 10 minutes.
  • the melt kneading time is equal to or longer than the lower limit, the reaction between the hydroxyl group of the hydroxyl group-containing fluororesin and the acid anhydride proceeds sufficiently.
  • the melt-kneading time is less than or equal to the above upper limit, deterioration of the carboxy group-containing fluororesin and the hydroxyl group-containing fluororesin is sufficiently suppressed.
  • the amount of the acid anhydride is preferably from 0.1 to 2.0 mol, particularly preferably from 0.2 to 1.5 mol, based on 1 mol of the hydroxyl group of the hydroxyl group-containing fluororesin. If the amount of the acid anhydride is not less than the lower limit, the hydroxyl group of the hydroxyl group-containing fluororesin is sufficiently converted to a carboxyl group, the melt viscosity is sufficiently low, and the carboxyl group-containing fluororesin is excellent in affinity with the pigment. Is obtained. When the amount of the acid anhydride (C1) is not more than the above upper limit, the amount of the unreacted acid anhydride is suppressed, and the influence of the acid anhydride on the carboxy group-containing fluororesin is suppressed.
  • Examples 1 to 7 are examples, and example 8 is a comparative example.
  • the glass transition temperature is a midpoint glass transition temperature measured by a differential scanning calorimetry (DSC) method.
  • the number average molecular weight and the mass average molecular weight are values determined in terms of polystyrene by gel permeation chromatography (GPC).
  • the average particle size of the powder is a value determined by a 50% average volume particle size distribution measured with a laser diffraction particle size distribution analyzer (manufactured by Sympatec, Helos-Rodos).
  • the gloss retention was measured and calculated according to JIS K 5600-1-7. ⁇ Test conditions> Relative humidity: 70% RH Temperature: 50 ° C Light source: 80 W / m 2 (300 to 400 nm). ⁇ Criteria> ⁇ (Good): Gloss retention was 50% or more, and no discoloration of the cured film was observed. X (defect): Gloss retention was less than 50%, and discoloration of the cured film was observed.
  • Hydroxyl group-containing fluororesin (B-1) Lumiflon (registered trademark) LF710F manufactured by Asahi Glass Co., Ltd., hydroxyl value: 51.3 mgKOH / g, glass transition temperature: 55 ° C., number average molecular weight: 10,000.
  • Hydroxyl group-containing fluororesin (B-2) Lumiflon (registered trademark) LF916F manufactured by Asahi Glass Co., Ltd., hydroxyl value: 100.9 mgKOH / g, glass transition temperature: 39 ° C., number average molecular weight: 7,000.
  • Acid anhydride (C1-1) Succinic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd., reagent).
  • Acid anhydride (C1-2) Hexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Jamaicacid (registered trademark) HH).
  • Compound (C2-1) 3-isocyanatopropyltriethoxysilane (manufactured by Momentive Performance Materials Japan).
  • Curing agent (D1-1) Blocked isocyanate curing agent (Degussa, Vestagon (registered trademark) B1530).
  • Pigment (E-1) Titanium oxide (manufactured by DuPont, Ti-Pure (registered trademark) R960, titanium oxide content: 89% by mass).
  • Fluororesin (F1-1) PVDF (manufactured by Toga Co., Ltd., PVDF DS203, mass average molecular weight: 270,000, number average molecular weight: 160,000, melting point: 170 ° C.).
  • Curing catalyst (G-1) dibutyltin dilaurate.
  • Degassing agent (H-1) benzoin.
  • Examples 1 to 8 Manufacture of powder paint
  • a high-speed mixer manufactured by Amagasaki Co., Ltd.
  • the mixture was melt kneaded for 2 minutes at a barrel set temperature of 120 ° C. using a twin screw extruder (manufactured by Thermo Prism, 16 mm extruder) to obtain pellets.
  • the pellets were pulverized at room temperature using a pulverizer (manufactured by FRITSCH, apparatus name: rotor speed mill P14), and classified by a 150 mesh sieve to obtain a powder paint having an average particle size of about 40 ⁇ m.
  • the cured films formed from the powder coatings of Examples 1 to 7 had few voids (voids) in the cured films and exhibited excellent weather resistance.
  • the cured film formed from the powder coating material of Example 8 that did not use the acid anhydride (C1) or the compound (C2) had many voids (voids) in the cured film, and had no weather resistance. It was enough.
  • the powder coating obtained by the production method of the present invention includes traffic lights, telephone poles, road marking poles, bridges, railings, building materials (gates, fences, house siding materials, curtain walls, roofs, etc.), automobile bodies and Parts (bumpers, wiper blades, etc.), home appliances (air conditioner outdoor units, water heater exteriors, etc.), wind power blades, solar battery backsheet, solar power collector mirror back, eggplant battery exterior, etc. This is useful for forming a cured film on the surface.
  • the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2013-166645 filed on August 9, 2013 are incorporated herein as the disclosure of the specification of the present invention. Is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 耐候性に優れ、ボイド(空隙)の少ない硬化膜を形成できる粉体塗料を製造する方法;耐候性に優れ、ボイドの少ない硬化膜を有する塗装物品およびその製造方法;ならびにゲルの少ないカルボキシ基含有フッ素樹脂の製造方法の提供。 カルボキシ基を有する、またはアルコキシシリル基およびウレタン結合を有するフッ素樹脂(A)と、硬化剤(D)と、を含む組成物(α)からなる粉体(X)を含む粉体塗料を製造する方法であって、(a)水酸基含有フッ素樹脂(B)と、酸無水物(C1)、またはアルコキシシリル基およびイソシアナート基を有する化合物(C2)と、硬化剤(D)と、を含む混合物を溶融混練して前記組成物(α)からなる混練物を得る工程と、(b)混練物を粉砕して粉体(X)を得る工程を有する粉体塗料の製造方法。

Description

粉体塗料の製造方法、塗装物品およびその製造方法、ならびにカルボキシ基含有フッ素樹脂の製造方法
 本発明は、粉体塗料の製造方法、塗装物品およびその製造方法、ならびにカルボキシ基含有フッ素樹脂の製造方法に関する。
 近年、地球温暖化、オゾン層破壊、酸性雨等の地球的規模の環境破壊問題が大きくクローズアップされている。国際的に地球環境汚染対策が叫ばれ、環境保護の観点から各種規制が行われるようになってきた。中でも、有機溶剤(VOC)の大気中への放出は大きな問題になり、各業界においてもVOC規制強化の流れとともに脱有機溶剤化(脱VOC)の動きが活発になっている。塗料業界においても従来の有機溶剤型塗料に代わり得るものとして、VOCを全く含まず、排気処理、廃水処理が不要で回収再利用も可能な環境に優しい塗料として粉体塗料への期待が高まっている。
 粉体塗料としては、アクリル樹脂系粉体塗料、ポリエステル樹脂系粉体塗料、またはエポキシ樹脂系粉体塗料が主に用いられている。
 しかし、これら粉体塗料を用いて形成された硬化膜は、耐候性に劣るという欠点を有する。
 耐候性に優れる樹脂としては、一般的にフッ素樹脂が知られている。フッ素樹脂を含む粉体塗料としては、下記の粉体塗料が提案されている。
 (1)水酸基含有フッ素樹脂と、ポリウレトジオン系硬化剤またはブロックイソシアナート系硬化剤とを含む組成物からなる粉体塗料(特許文献1)。
 (2)カルボキシ基含有フッ素樹脂と、β-ヒドロキシアルキルアミド系硬化剤とを含む組成物からなる粉体塗料(特許文献2)。
日本特開2003-105269号公報 日本特開2003-096377号公報
 しかし、本発明者らが検討したところ、(1)の粉体塗料を用いて硬化膜を形成した場合、水酸基含有フッ素樹脂の溶融粘度が高いため、粉体塗料間に存在した空気や硬化剤の反応時に発生するガスが硬化膜中に残存し、ボイド(空隙)となりやすい。粉体塗料が顔料を含む場合には、水酸基含有フッ素樹脂中における顔料の分散性が不充分であり、硬化膜中にて顔料が凝集しやすいため、凝集した顔料とフッ素樹脂との間にボイドがさらに発生しやすくなる。
 (2)の粉体塗料に含まれるカルボキシ基含有フッ素樹脂は、溶媒中における合成の際または合成後の脱溶媒の際に一部がゲル化しやすい。ゲル化したフッ素樹脂を含む粉体塗料から形成される硬化膜においては、粉体塗料間に存在した空気や硬化剤の反応時に発生するガスが硬化膜から抜けにくく、ボイドとなりやすい。
 そして、硬化膜のボイドに水が浸入すると、フッ素樹脂が劣化しやすくなる。硬化膜中に顔料(酸化チタン等)が存在する場合には、硬化膜のボイドに水が浸入すると、顔料の光触媒作用によってフッ素樹脂がさらに劣化しやすくなる。
 本発明の目的は、耐候性に優れ、ボイド(空隙)の少ない硬化膜を形成できる粉体塗料を製造する方法;耐候性に優れ、ボイドの少ない硬化膜を有する塗装物品およびその製造方法;ならびにゲルの少ないカルボキシ基含有フッ素樹脂の製造方法を提供することである。
 本発明は、次の[1]~[12]の構成を有する粉体塗料の製造方法、塗装物品およびその製造方法、ならびにカルボキシ基含有フッ素樹脂の製造方法を提供する。
 [1]カルボキシ基を有する、またはアルコキシシリル基およびウレタン結合を有するフッ素樹脂(A)と、硬化剤(D)と、を含む組成物(α)からなる粉体(X)を含む粉体塗料を製造する方法であって、
 下記工程(a)および工程(b)を有する、粉体塗料の製造方法。
 (a)水酸基含有フッ素樹脂(B)と、酸無水物(C1)、またはアルコキシシリル基およびイソシアナート基を有する化合物(C2)と、硬化剤(D)と、を含む混合物を溶融混練して前記組成物(α)からなる混練物を得る工程。
 (b)前記混練物を粉砕して粉体(X)を得る工程。
 [2]前記混合物が、顔料(E)をさらに含む、前記[1]の粉体塗料の製造方法。
 [3]前記混合物が、前記フッ素樹脂(A)以外の他の樹脂(F)をさらに含む、前記[1]または[2]の粉体塗料の製造方法。
 [4]前記他の樹脂(F)が、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂およびウレタン樹脂からなる群から選ばれる少なくとも1種である、前記[3]の粉体塗料の製造方法。
 [5]下記工程(d)をさらに有する、前記[1]または[2]の粉体塗料の製造方法。
 (d)前記粉体(X)と、前記フッ素樹脂(A)以外の他の樹脂(F)を含み、フッ素樹脂(A)を含まない組成物(β)からなる粉体(Y)とを、ドライブレンドする工程。
 [6]前記他の樹脂(F)が、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂およびウレタン樹脂からなる群から選ばれる少なくとも1種である、前記[5]の粉体塗料の製造方法。
 [7]前記水酸基含有フッ素樹脂(B)が、テトラフルオロエチレンまたはクロロトリフルオロエチレンに由来する単位と、ヒドロキシアルキルビニルエーテルに由来する単位と、シクロアルキルビニルエーテル、アルキルビニルエーテルおよびカルボン酸ビニルエステルからなる群から選ばれる1種以上に由来する単位と、を有する前記[1]~[6]のいずれかの粉体塗料の製造方法。
 [8]前記硬化剤(D)が、ブロック化イソシアナート系硬化剤(D1)である前記[1]~[7]のいずれかの粉体塗料の製造方法。
 [9]前記水酸基含有フッ素樹脂(B)の水酸基1モルに対する、酸無水物(C1)のモル数が0.1~2.0である、または水酸基含有フッ素樹脂(B)の水酸基1モルに対するアルコキシシリル基およびイソシアナート基を有する化合物(C2)のモル数が、0.03~0.2である前記[1]~[8]のいずれかの粉体塗料の製造方法。
 [10]基材の表面に、前記[1]~[9]のいずれかの粉体塗料の製造方法で得られた粉体塗料から得られる硬化膜を有する、塗装物品。
 [11]基材の表面に硬化膜を有する塗装物品を製造する方法であって、
 下記工程(e)および工程(f)を有する、塗装物品の製造方法。
 (e)前記[1]~[9]のいずれかの粉体塗料の製造方法で得られた粉体塗料を基材に塗装し、前記粉体塗料の溶融物からなる塗膜を形成する工程。
 (f)前記塗膜を硬化させて硬化膜を形成する工程。
 [12]水酸基含有フッ素樹脂と酸無水物とを含む混合物を溶融混練してカルボキシ基含有フッ素樹脂を含む混練物を得る、カルボキシ基含有フッ素樹脂の製造方法。
 本発明の粉体塗料の製造方法によれば、耐候性に優れ、ボイド(空隙)の少ない硬化膜を形成できる粉体塗料を製造できる。
 本発明の塗装物品は、耐候性に優れ、ボイドの少ない硬化膜を有する。
 本発明の塗装物品の製造方法によれば、前記硬化膜を有する塗装物品を製造できる。
 本発明のカルボキシ基含有フッ素樹脂の製造方法によれば、ゲルの少ないカルボキシ基含有フッ素樹脂が得られる。
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 「アルコキシシリル基」とは、ケイ素原子とそれに結合するアルコキシ基とからなる基である。
 「ドライブレンド」とは、粉体を溶融することなく、また、溶媒を添加することなく、2種以上の粉体を混合することを意味する。
 「塗膜」とは、粉体塗料を塗装して形成された該粉体塗料の溶融物からなる膜を意味する。
 「硬化膜」とは、前記塗膜を硬化させることにより形成される膜を意味する。
 「1コート」とは、1回だけ塗装することを意味する。
 「粉体塗料を溶融、硬化させる」とは、粉体塗料を溶融状態にし、その中の反応成分を反応させ、硬化させることを意味する。
 「熱硬化性樹脂」とは、加熱することによって硬化剤と反応し得る反応性基を有する化合物を意味する。
 「(メタ)アクリレート」とは、アクリレートおよびメタクリレートの総称である。
 「単位」とは、重合体中に存在して重合体を構成する、単量体に由来する部分を意味する。炭素-炭素不飽和二重結合を有する単量体の付加重合により生じる、該単量体に由来する単位は、該不飽和二重結合が開裂して生じた2価の単位である。ポリエステル樹脂を構成する、多価カルボン酸化合物に由来する単位は、多価カルボン酸化合物の少なくとも1個のカルボキシ基から水酸基を除いた1価以上の単位であり、多価アルコール化合物に由来する単位は、多価アルコール化合物の少なくとも1個の水酸基から水素原子を除いた1価以上の単位である。また、ある単位の構造を重合体形成後に化学的に変換したものも単位という。
 なお、以下、場合により、個々の単量体に由来する単位をその単量体名に「単位」を付した名称で呼ぶ。
[粉体塗料]
 本発明の製造方法で得られる粉体塗料は、下記粉体(X)を含む粉体塗料(I)、または下記粉体(X)および下記粉体(Y)を含む粉体塗料(II)である。
 粉体(X):カルボキシ基を有する、またはアルコキシシリル基およびウレタン結合を有するフッ素樹脂(A)と硬化剤(D)とを含む組成物(α)からなる粉体。組成物(α)は、必要に応じて、顔料(E)、フッ素樹脂(A)以外の他の樹脂(F)、硬化触媒(G)、その他の成分(H)を含んでもよい。また、後述する、フッ素樹脂(A)を得る際に用いた未反応の原料(水酸基含有フッ素樹脂(B)、酸無水物(C1)、化合物(C2))を含んでいてもよい。
 粉体(Y):フッ素樹脂(A)以外の他の樹脂(F)を含み、フッ素樹脂(A)を含まない組成物(β)からなる粉体。組成物(β)は、必要に応じて硬化剤(D)、顔料(E)、硬化触媒(G)、その他の成分(H)を含んでもよい。
 粉体塗料(I)中の粉体(X)の含有量は、50~100質量%が好ましく、70~100質量%がより好ましく、80~100質量%がさらに好ましく、90~100質量%が特に好ましい。粉体塗料(I)が粉体(X)のみからなる塗料であってもよい。
 粉体塗料(II)中の粉体(X)と粉体(Y)との合計の含有量は、50~100質量%が好ましく、70~100質量%がより好ましく、80~100質量%がさらに好ましく、90~100質量%が特に好ましい。粉体塗料(II)が粉体(X)および粉体(Y)のみからなる塗料であってもよい。粉体塗料(II)中の粉体(X)と粉体(Y)との混合比(粉体(X)/粉体(Y))は、20/80~80/20(質量比)が好ましく、25/75~75/25(質量比)が特に好ましい。粉体(X)の割合が前記下限値以上であれば、硬化膜の耐候性が優れる。粉体(Y)の割合が前記下限値以上であれば、硬化膜のコストを抑えることができる。
 粉体塗料(I)に含まれる粉体(X)が、フッ素樹脂(A)と相溶することなく、層分離できる他の樹脂(F)を含む場合、粉体塗料(I)を基材に1コートで塗装して粉体塗料(I)の溶融物からなる塗膜を形成し、該塗膜中の反応成分を反応させ、塗膜を冷却して硬化させる際に、粉体(X)に含まれるフッ素樹脂(A)の硬化物を主成分とするフッ素樹脂層と、粉体(X)に含まれる他の樹脂(F)またはその硬化物を主成分とする他の樹脂層とが層分離する。本発明においては、該反応と硬化と層分離とが同時進行してもよい。基材側には他の樹脂層が、空気側にはフッ素樹脂層が配置される。
 粉体塗料(II)に含まれる粉体(Y)が、フッ素樹脂(A)と相溶することなく、層分離できる他の樹脂(F)を含む場合、粉体塗料(II)を基材に1コートで塗装して粉体塗料(II)の溶融物からなる塗膜を形成し、該塗膜中の反応成分を反応させ、塗膜を冷却して硬化させる際に、粉体(X)に由来するフッ素樹脂(A)の硬化物を主成分とするフッ素樹脂層と、粉体(Y)に由来する他の樹脂(F)またはその硬化物を主成分とする他の樹脂層とが層分離する。本発明においては、該反応と硬化と層分離とが同時進行してもよい。基材側には他の樹脂層が、空気側にはフッ素樹脂層が配置される。
(フッ素樹脂(A))
 フッ素樹脂(A)は、カルボキシ基を有するフッ素樹脂、またはアルコキシシリル基およびウレタン結合を有するフッ素樹脂である。
 フッ素樹脂(A)は、後述する製造方法によって得られる。すなわち、カルボキシ基を有するフッ素樹脂は、水酸基含有フッ素樹脂(B)と、酸無水物(C1)と、硬化剤(D)とを含む混合物を溶融混練する際に、水酸基含有フッ素樹脂(B)の水酸基と酸無水物(C1)とを反応させてエステル結合およびカルボキシル基を形成させることによって得られる。アルコキシシリル基およびウレタン結合を有するフッ素樹脂は、水酸基含有フッ素樹脂(B)と、アルコキシシリル基およびイソシアナート基を有する化合物(C2)と、硬化剤(D)とを含む混合物を溶融混練する際に、水酸基含有フッ素樹脂(B)の水酸基と化合物(C2)のイソシアナート基とを反応させてウレタン結合を形成させるとともに、側基として化合物(C2)に由来するアルコキシシリル基を導入することによって得られる。
 したがって、フッ素樹脂(A)におけるカルボキシ基は、後述する製造方法において用いられる酸無水物(C1)に由来する。フッ素樹脂(A)におけるアルコキシシリル基は、後述する製造方法において用いられる化合物(C2)におけるアルコキシシリル基に由来する。フッ素樹脂(A)におけるウレタン結合は、後述する製造方法において用いられる水酸基含有フッ素樹脂(B)における水酸基と、化合物(C2)におけるイソシアナート基とに由来する。フッ素樹脂(A)は、原料の水酸基含有フッ素樹脂(B)に由来する水酸基を有していてもよい。
 組成物(α)中に未反応の原料(水酸基含有フッ素樹脂(B)、酸無水物(C1)、化合物(C2))が含まれる場合、未反応の原料は、フッ素樹脂(A)として取り扱う。
(水酸基含有フッ素樹脂(B))
 水酸基含有フッ素樹脂(B)としては、フルオロオレフィンに由来する単位と、フルオロオレフィンと共重合可能な、水酸基を有する単量体(以下、「単量体(a1)」とも記す。)に由来する単位と、必要に応じてフルオロオレフィンおよび単量体(a1)以外の他の単量体(以下、「単量体(a2)」とも記す。)に由来する単位とを有する水酸基含有含フッ素重合体が好ましい。
 水酸基含有フッ素樹脂(B)は、重合体の反応性基変換で水酸基を導入した水酸基含有含フッ素重合体であってもよい。該水酸基含有含フッ素重合体としては、フルオロオレフィンに由来する単位と、水酸基以外の反応性官能基を有する単量体に由来する単位と、必要に応じて前記単量体(a2)とを有する含フッ素重合体に、前記反応性官能基と反応する第2の反応性官能基と水酸基を有する化合物を反応させて得られる含フッ素重合体が好ましい。
 フルオロオレフィンは、炭化水素系オレフィン(一般式C2n)の水素原子の1個以上がフッ素原子で置換された化合物である。
 フルオロオレフィンの炭素数は、2~8が好ましく、2~6が特に好ましい。
 フルオロオレフィンにおけるフッ素原子の数は、2以上が好ましく、3~4が特に好ましい。フッ素原子の数が2以上であれば、硬化膜の耐候性が優れる。フルオロオレフィンにおいては、フッ素原子で置換されていない水素原子の1個以上が塩素原子で置換されていてもよい。フルオロオレフィンが塩素原子を有すると、フッ素樹脂(A)に顔料等(特にシアニンブルー、シアニングリーン等の有色の有機顔料)を分散させやすい。また、水酸基含有フッ素樹脂(B)のガラス転移温度を50℃以上に設計でき、硬化膜のブロッキングを抑えることができる。
 フルオロオレフィンとしては、テトラフルオロエチレン(以下、「TFE」とも記す。)、クロロトリフルオロエチレン(以下、「CTFE」とも記す。)、ヘキサフルオロプロピレン、ビニリデンフルオリドおよびビニルフルオリドからなる群から選ばれる1種以上が好ましく、TFE、またはCTFEが特に好ましい。
 フルオロオレフィンは、1種を単独で用いてもよく、2種以上を併用してもよい。
 フルオロオレフィン単位としては、フルオロオレフィンの重合により直接形成される単位が好ましい。
 フルオロオレフィンと共重合させる単量体(単量体(a1)、単量体(a2)等)は、フルオロオレフィン以外のフッ素原子を有する単量体であってもよいが、フッ素原子を有しない単量体が好ましい。
 単量体(a1)は、水酸基を有する単量体である。
 水酸基を有する単量体としては、たとえば、アリルアルコール、ヒドロキシアルキルビニルエーテル(2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、シクロヘキサンジオールモノビニルエーテル等)、ヒドロキシアルキルアリルエーテル(2-ヒドロキシエチルアリルエーテル等)、ヒドロキシアルカン酸ビニル(ヒドロキシプロピオン酸ビニル等)、ヒドロキシアルキル(メタ)アクリレート(ヒドロキシエチル(メタ)アクリレート等)等が挙げられる。
 単量体(a1)は、1種を単独で使用してもよく、2種以上を併用してもよい。
 単量体(a2)としては、ビニル系単量体、すなわち、炭素-炭素二重結合を有する化合物が好ましい。ビニル系単量体は、フルオロオレフィンとの交互共重合性に優れ、重合収率が高くできる。また、未反応で残存した場合でも、硬化膜への影響が少なく、かつ、製造工程で容易に除去できる。
 ビニル系単量体としては、たとえば、ビニルエーテル、アリルエーテル、カルボン酸ビニルエステル、カルボン酸アリルエステル、オレフィン等が挙げられる。
 ビニルエーテルとしては、たとえば、シクロアルキルビニルエーテル(シクロヘキシルビニルエーテル(以下、「CHVE」とも記す。)等)、アルキルビニルエーテル(ノニルビニルエーテル、2-エチルヘキシルビニルエーテル、ヘキシルビニルエーテル、エチルビニルエーテル、n-ブチルビニルエーテル、tert-ブチルビニルエーテル等)が挙げられる。
 アリルエーテルとしては、たとえば、アルキルアリルエーテル(エチルアリルエーテル、ヘキシルアリルエーテル等)が挙げられる。
 カルボン酸ビニルエステルとしては、たとえば、カルボン酸(酢酸、酪酸、ピバリン酸、安息香酸、プロピオン酸等)のビニルエステルが挙げられる。また、分枝鎖状のアルキル基を有するカルボン酸のビニルエステルとして市販されているベオバ-9、ベオバ-10(いずれもシェル化学社製、商品名)等を用いてもよい。
 カルボン酸アリルエステルとしては、たとえば、カルボン酸(酢酸、酪酸、ピバリン酸、安息香酸、プロピオン酸等)のアリルエステルが挙げられる。
 オレフィンとしては、たとえば、エチレン、プロピレン、イソブチレン等が挙げられる。
 単量体(a2)としては、水酸基含有フッ素樹脂(B)のガラス転移温度を50℃以上に設計でき、硬化膜のブロッキングを抑えることができる点からは、シクロアルキルビニルエーテルが好ましく、CHVEが特に好ましい。
 単量体(a2)としては、硬化膜の柔軟性に優れる点からは、炭素数3以上の直鎖状または分岐状のアルキル基を有するものが好ましい。
 単量体(a2)は、1種を単独で使用してもよく、2種以上を併用してもよい。
 水酸基含有フッ素樹脂(B)を構成する単量体の組み合わせとしては、耐候性、密着性、柔軟性、耐ブロッキング性の点から、下記の組み合わせ(1)が好ましく、組み合わせ(2)または(3)が特に好ましい。
 組み合わせ(1)
  フルオロオレフィン:TFEまたはCTFE、
  単量体(a1):ヒドロキシアルキルビニルエーテル、
  単量体(a2):シクロアルキルビニルエーテル、アルキルビニルエーテルおよびカルボン酸ビニルエステルから選ばれる1種以上。
 組み合わせ(2)
  フルオロオレフィン:TFE、
  単量体(a1):ヒドロキシアルキルビニルエーテル、
  単量体(a2):CHVEまたはtert-ブチルビニルエーテル。
 組み合わせ(3)
  フルオロオレフィン:CTFE、
  単量体(a1):ヒドロキシアルキルビニルエーテル、
  単量体(a2):CHVEまたはtert-ブチルビニルエーテル。
 フルオロオレフィン単位の割合は、水酸基含有フッ素樹脂(B)中の全単位(100モル%)のうち、30~70モル%が好ましく、40~60モル%が特に好ましい。フルオロオレフィン単位が前記下限値以上であれば、硬化膜の耐候性が優れる。フルオロオレフィン単位が前記上限値以下であれば、硬化膜が単層構造の場合、基材との密着性に優れ、硬化膜が2層構造の場合、フッ素樹脂層と他の樹脂層との密着性に優れる。
 単量体(a1)単位の割合は、水酸基含有フッ素樹脂(B)中の全単位(100モル%)のうち、0.5~20モル%が好ましく、1~15モル%が特に好ましい。単量体(a1)単位の割合が前記下限値以上であれば、硬化膜が単層構造の場合、基材との密着性に優れ、硬化膜が2層構造の場合、フッ素樹脂層と他の樹脂層との密着性に優れる。単量体(a1)単位の割合が前記上限値以下であれば、硬化膜の耐擦り傷性が優れる。
 単量体(a2)単位の割合は、水酸基含有フッ素樹脂(B)中の全単位(100モル%)のうち、20~60モル%が好ましく、30~50モル%が特に好ましい。単量体(a2)単位の割合が前記下限値以上であれば、水酸基含有フッ素樹脂(B)のガラス転移温度が適切で、粉体塗料を製造しやすい。単量体(a2)単位の割合が前記上限値以下であれば、硬化膜が単層構造の場合、基材との密着性に優れ、硬化膜が2層構造の場合、フッ素樹脂層と他の樹脂層との密着性に優れる。
 水酸基含有フッ素樹脂(B)の数平均分子量は、3,000~50,000が好ましく、5,000~30,000が特に好ましい。水酸基含有フッ素樹脂(B)の数平均分子量が前記下限値以上であれば、硬化膜の耐水性、耐塩水性に優れる。水酸基含有フッ素樹脂(B)の数平均分子量が前記上限値以下であれば、硬化膜の表面平滑性に優れる。
 水酸基含有フッ素樹脂(B)の水酸基価は、5~100mgKOH/gが好ましく、10~80mgKOH/gが特に好ましい。水酸基含有フッ素樹脂(B)の水酸基価が前記下限値以上であれば、硬化膜が単層構造の場合、基材との密着性に優れ、硬化膜が2層構造の場合、フッ素樹脂層と他の樹脂層との密着性に優れる。水酸基含有フッ素樹脂(B)の水酸基価が前記上限値以下であれば、100℃以上の高温と10℃以下の低温での温度サイクル下での硬化膜の耐クラック性が優れる。水酸基価の測定は、JIS K 1557-1(2007年度版)に準じて行う。
 水酸基含有フッ素樹脂(B)のガラス転移温度は、30~150℃が好ましく、35~120℃がより好ましく、35~100℃が特に好ましい。水酸基含有フッ素樹脂(B)のガラス転移温度が前記下限値以上であれば、粉体塗料を製造しやすい。水酸基含有フッ素樹脂(B)のガラス転移温度が前記上限値以下であれば、硬化膜の表面平滑性に優れる。
(酸無水物(C1))
 酸無水物としては、水酸基含有フッ素樹脂(B)との反応性に優れる点から、分子量が90~200の化合物が好ましい。水酸基含有フッ素樹脂(B)との反応性に優れる点から、炭素数が4~15の化合物が好ましい。水酸基含有フッ素樹脂(B)との反応性に優れる点から、融点が20~180℃の化合物が好ましい。
 酸無水物としては、二塩基性酸無水物が挙げられる。
 二塩基性酸無水物としては、無水コハク酸(分子量:100.1、融点:120℃、炭素数:4)、無水グルタル酸(分子量:114.1、融点:52℃、炭素数:5)、無水イタコン酸(分子量:112.1、融点:67℃、炭素数:5)、無水1,2-シクロヘキサンジカルボン酸(ヘキサヒドロ無水フタル酸)(分子量:154.0、融点:35℃、炭素数:8)、無水cis-4-シクロヘキセン-1,2-ジカルボン酸(分子量:152.0、融点:66℃、炭素数:8)、無水フタル酸(分子量:148.1、融点:131℃、炭素数:8)、4-メチルヘキサヒドロ無水フタル酸(分子量:168.0、融点:22℃、炭素数:9)、無水1,8-ナフタル酸(分子量:198.2、融点:17℃、炭素数:11)、無水マレイン酸(分子量:98.1、融点:52.6℃、炭素数:4)等が挙げられる。
(化合物(C2))
 化合物(C2)は、アルコキシシリル基およびイソシアナート基を有する化合物である。
 該化合物としては、イソシアナート基を有するシランカップリング剤が挙げられる。
 該シランカップリング剤としては、3-イソシアナートプロピルトリエトキシシラン、3-イソシアナートプロピルトリメトキシシラン等が挙げられる。
(硬化剤(D))
 硬化剤(D)は、樹脂(フッ素樹脂(A)または他の樹脂(F))の反応性基と反応して樹脂を架橋したり高分子量化して、樹脂を硬化させる化合物である。硬化剤(D)は、樹脂が有する反応性基(水酸基、カルボキシ基等)に反応し得る反応性基を2個以上有する。硬化剤(D)の反応性基は、常温で樹脂の反応性基に反応しやすいものは好ましくない点から、粉体塗料が加熱溶融された際に反応し得る反応性基であることが好ましい。たとえば、常温で高い反応性基を有するイソシアナート基よりもブロック化イソシアナート基が好ましい。ブロック化イソシアナート基は、粉体塗料が加熱溶融された際にブロック剤が脱離してイソシアナート基となり、該イソシアナート基が反応性基として作用する。
 硬化剤(D)としては、公知の化合物を用いることができ、たとえば、ブロック化イソシアナート系硬化剤、アミン系硬化剤(メラミン樹脂、グアナミン樹脂、スルホアミド樹脂、尿素樹脂、アニリン樹脂等)、β-ヒドロキシアルキルアミド系硬化剤、トリグリシジルイソシアヌレート系硬化剤等が挙げられる。基材との密着性、塗装後の製品の加工性、硬化膜の耐水性に優れる点から、ブロック化イソシアナート系硬化剤(D1)が特に好ましい。
 水酸基含有フッ素樹脂(B)の水酸基がすべてカルボキシ基に変換されたフッ素樹脂(A)の場合、硬化剤(D)としては、β-ヒドロキシアルキルアミド系硬化剤、トリグリシジルイソシアヌレート系硬化剤が好ましい。
 硬化剤(D)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 硬化剤(D)の軟化温度は、10~120℃が好ましく、40~100℃が特に好ましい。軟化温度が前記下限値以上であれば、粉体塗料が室温で硬化しにくく、粒状の塊ができにくい。軟化温度が前記上限値以下であれば、組成物を溶融練合して粉体を製造する際、硬化剤(D)を粉体中に均質に分散させやすく、得られる硬化膜の表面平滑性、強度および耐湿性等に優れる。
 ブロック化イソシアナート系硬化剤(D1)としては、室温で固体のものが好ましい。
 ブロック化イソシアナート系硬化剤(D1)としては、脂肪族、芳香族または芳香脂肪族のジイソシアナートと、活性水素を有する低分子化合物とを反応させて得たポリイソシアナートを、ブロック剤と反応させ、マスキングすることによって製造したものが好ましい。
 ジイソシアナートとしては、トリレンジイソシアナート、4,4’-ジフェニルメタンジイソシアナート、キシリレンジイソシアナート、ヘキサメチレンジイソシアナート、4,4’-メチレンビス(シクロヘキシルイソシアナート)、メチルシクロヘキサンジイソシアナート、ビス(イソシアナートメチル)シクロヘキサンイソホロンジイソシアナート、ダイマー酸ジイソシアナート、リジンジイソシアナート等が挙げられる。
 活性水素を有する低分子化合物としては、水、エチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ソルビトール、エチレンジアミン、エタノールアミン、ジエタノールアミン、ヘキサメチレンジアミン、イソシアヌレート、ウレチジオン、水酸基を含有する低分子量ポリエステル、ポリカプロラクトン等が挙げられる。
 ブロック剤としては、アルコール類(メタノール、エタノール、ベンジルアルコール等)、フェノール類(フェノール、クレゾール等)、ラクタム類(カプロラクタム、ブチロラクタム等)、オキシム類(シクロヘキサノン、オキシム、メチルエチルケトオキシム等)等が挙げられる。
(顔料(E))
 顔料(E)としては、光輝顔料、防錆顔料、着色顔料および体質顔料からなる群から選ばれる少なくとも1種が好ましい。
 光輝顔料は、塗膜を光輝かせるための顔料である。光輝顔料としては、アルミニウム粉、ニッケル粉、ステンレス粉、銅粉、ブロンズ粉、金粉、銀粉、雲母粉、グラファイト粉、ガラスフレーク、鱗片状酸化鉄粉等が挙げられる。
 防錆顔料は、防錆性が必要な基材に対して、基材の腐食や変質を防止するための顔料である。防錆顔料としては、環境への負荷が少ない無鉛防錆顔料が好ましい。無鉛防錆顔料としては、シアナミド亜鉛、酸化亜鉛、リン酸亜鉛、リン酸カルシウムマグネシウム、モリブデン酸亜鉛、ホウ酸バリウム、シアナミド亜鉛カルシウム等が挙げられる。
 着色顔料は、硬化膜を着色するための顔料である。着色顔料としては、酸化チタン、カーボンブラック、酸化鉄、フタロシアニンブルー、フタロシアニングリーン、キナクリドン、イソインドリノン、ベンズイミダゾロン、ジオキサジン等が挙げられる。
 体質顔料は、硬化膜の硬度を向上させ、かつ硬化膜の厚さを増すための顔料である。また、基材が切断された場合に、硬化膜の切断面をきれいにできることからも配合することが好ましい。体質顔料としては、タルク、硫酸バリウム、マイカ、炭酸カルシウム等が挙げられる。
 酸化チタンを含む無機顔料は、高温多湿地域において、光触媒反応を進行させやすい。光触媒反応は、水分と紫外線によって促進される。硬化膜にボイド(空隙)が存在すると、ボイドに水が浸入し、酸化チタンの光触媒作用によって硬化膜が劣化する。本発明の製造方法で得られた粉体塗料から形成される硬化膜においては、ボイドが少ないため、硬化膜に酸化チタンが存在しても、硬化膜が光触媒反応で劣化しにくい。
 酸化チタンとしては、光触媒反応が進行しにくくなるような表面処理がなされたものが好ましく、具体的には、シリカ、アルミナ、ジルコニア、セレン、有機成分(ポリオール等)等で表面処理された酸化チタンが好ましく、これらの表面処理によって、酸化チタン含有量が83~90質量%に調整された酸化チタンが特に好ましい。酸化チタン含有量が前記下限値以上であれば、硬化膜の白色度に優れる。酸化チタン含有量が前記上限値以下であれば、硬化膜が劣化しにくい。
 酸化チタンの市販品としては、石原産業社製の「タイペーク(登録商標) PFC105」(酸化チタン含有量:87質量%)、「タイペーク(登録商標) CR95」(酸化チタン含有量:90質量%)、堺化学社製の「D918」(酸化チタン含有量:85質量%)、デュポン社製の「Ti-Pure(登録商標) R960」(酸化チタン含有量:89質量%)、「Ti-Select(登録商標)」(酸化チタン含有量:90質量%)等が挙げられる。
(他の樹脂(F))
 他の樹脂(F)は、フッ素樹脂(A)以外の樹脂である。
 他の樹脂(F)としては、フッ素樹脂(A)以外のフッ素樹脂(F1)、フッ素樹脂(A)およびフッ素樹脂(F1)以外の熱硬化性樹脂(F2)等が挙げられる。
 <フッ素樹脂(F1)>
 フッ素樹脂(F1)としては、たとえば、TFE-ペルフルオロ(アルキルビニルエーテル)共重合体(以下、「PFA」とも記す。)、TFE-ヘキサフルオロプロピレン共重合体、TFE-ペルフルオロ(アルキルビニルエーテル)-ヘキサフルオロプロピレン共重合体、エチレン-TFE共重合体(以下、「ETFE」とも記す。)、ポリビニリデンフルオリド(以下、「PVDF」とも記す。)、ポリビニルフルオリド、ポリクロロトリフルオロエチレン、エチレン-CTFE共重合体、後述する反応性基を有する含フッ素重合体等が挙げられる。
 フッ素樹脂(F1)は、必要に応じて、その本質的な特性を損なわない範囲で、他の単量体に由来する単位をさらに有していてもよい。
 他の単量体は、フッ素樹脂(F1)を構成する単位として必須の単位を形成する単量体(たとえば、ETFEにおけるエチレンおよびTFE、PFAにおけるTFEおよびペルフルオロ(アルキルビニルエーテル))以外の単量体である。
 他の単量体としては、得られるフッ素樹脂(F1)が基材(特にアルミニウム製基材)への密着性に優れ、シーリング剤によるアルミニウム製カーテンウォールの固定がしやすい等の点から、ビニリデンフルオリドが特に好ましい。
 フッ素樹脂(F1)の融点は、300℃以下が好ましく、200℃以下がより好ましく、180℃以下が特に好ましい。フッ素樹脂(F1)の融点が前記上限値以下であれば、硬化膜の表面平滑性に優れる。
 <熱硬化性樹脂(F2)>
 熱硬化性樹脂(F2)としては、粉体塗料の溶融、硬化過程においてフッ素樹脂(A)と相溶することなく、層分離できるものが好ましい。熱硬化性樹脂(F2)としては、熱硬化性を有するアクリル樹脂、ポリエステル樹脂、エポキシ樹脂、またはウレタン樹脂が好ましく、基材への密着性に優れる点、フッ素樹脂が硬化樹脂層にコンタミしにくい点から、ポリエステル樹脂、またはアクリル樹脂がより好ましく、ポリエステル樹脂が特に好ましい。
 <ポリエステル樹脂>
 ポリエステル樹脂は、多価カルボン酸化合物に由来する単位と多価アルコール化合物に由来する単位とがエステル結合で連結した重合体であり、これら2種の単位以外の単位(たとえば、ヒドロキシカルボン酸化合物に由来する単位等)を有していてもよい。
 ポリエステル樹脂の重合鎖の末端は1価の単位であり、末端単位が多価カルボン酸化合物に由来する単位である場合はその末端単位はカルボキシ基を有し、末端単位が多価アルコール化合物に由来する単位である場合はその末端単位は水酸基を有する。
 末端単位以外の単位は2価以上の単位からなり、線状重合体では、末端単位を除き、2価の単位のみからなる。すなわち、線状のポリエステル樹脂は、末端単位を除き、多価カルボン酸化合物に由来する2価の単位、多価アルコール化合物に由来する2価の単位等の2価の単位のみからなる。分岐状のポリエステル樹脂は少なくとも1個の3価以上の単位を有し、その3価以上の単位と末端単位以外は実質的に2価の単位のみからなる。3価以上の単位としては、3価以上の多価カルボン酸化合物の3個以上のカルボキシ基からそれぞれ水酸基を除いた単位、3価以上の多価アルコール化合物の3個以上の水酸基からそれぞれ水素原子を除いた単位、等が挙げられる。
 以下、多価カルボン酸化合物に由来する単位を「多価カルボン酸単位」、多価アルコール化合物に由来する単位を「多価アルコール単位」とも記す。
 ポリエステル樹脂としては、線状重合体、または少数の分岐を有する分岐重合体が好ましく、線状重合体が特に好ましい。分岐の多い分岐重合体は軟化点や溶融温度が高くなりやすいことから、ポリエステル樹脂が分岐重合体である場合、軟化点は200℃以下が好ましい。ポリエステル樹脂としては、常温で固体状であり、軟化点が100~150℃であるものが好ましい。
 ポリエステル樹脂の数平均分子量は、塗膜の溶融粘度を適度に低くできる点から、5,000以下が好ましい。ポリエステル樹脂の質量平均分子量は、塗膜の溶融粘度を適度に低くできる点から、2,000~20,000が好ましく、2,000~10,000がより好ましい。ポリエステル樹脂としては、数平均分子量が5,000以下であり、かつ質量平均分子量が2,000~20,000であるものがさらに好ましく、数平均分子量が5,000以下であり、かつ質量平均分子量が2,000~10,000であるものが特に好ましい。
 ポリエステル樹脂は、硬化剤(D)と反応し得る反応性基を有する。ポリエステル樹脂の重合体鎖の末端単位の少なくとも一部は、1価の多価カルボン酸単位であるか1価の多価アルコール単位であることが好ましく、前者の場合はその単位が有するフリーのカルボキシ基が、後者の場合はその単位が有するフリーの水酸基が反応性基として機能する。反応性基を有する単位は末端単位以外の単位であってもよい。たとえば、3つ以上の水酸基を有する多価アルコール化合物に由来する2価の多価アルコール単位は、フリーの水酸基を有する単位であることから、ポリエステル樹脂は該反応性基を有する2価以上の単位を有していてもよい。
 ポリエステル樹脂における反応性基としては、硬化膜の耐水性、耐アルカリ性、耐酸性に優れる点から、水酸基が好ましい。ポリエステル樹脂は通常水酸基とカルボキシ基を有し、ポリエステル樹脂としては主として水酸基を有するものが好ましい。
 ポリエステル樹脂の水酸基価は、20~100mgKOH/gが好ましく、20~80mgKOH/gが特に好ましい。酸価は、1~80mgKOH/gが好ましく、3~50mgKOH/gが特に好ましい。
 水酸基価および酸価は、JIS K 0070(1992年度版)に準じて測定される。
 ポリエステル樹脂としては、硬化膜が2層構造の場合にフッ素樹脂層との密着性に優れる点、硬化膜の耐衝撃性に優れる点、顔料(E)等の分散性に優れる点から、炭素数8~15の芳香族多価カルボン酸化合物に由来する単位と炭素数2~10の多価アルコール化合物に由来する単位とを有するポリエステル樹脂が好ましい。
 多価カルボン酸単位としては、炭素数8~15の芳香族多価カルボン酸化合物に由来する単位が好ましい。炭素数8~15の芳香族多価カルボン酸化合物は、芳香環と2個以上のカルボキシ基を有する化合物であり、カルボキシ基は芳香環の炭素原子に結合している。また、2個のカルボキシル基が脱水した構造を有する無水物であってもよい。
 芳香環としては、ベンゼン環またはナフタレン環が好ましく、ベンゼン環が特に好ましい。ベンゼン環の場合は1分子に2個存在していてもよい。
 芳香族多価カルボン酸化合物におけるカルボキシ基の数は、2~4個が好ましく、2個が特に好ましい。
 炭素数8~15の芳香族多価カルボン酸化合物としては、たとえば、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、トリメリット酸、ピロメリット酸、フタル酸無水物等が挙げられる。
 多価カルボン酸単位としては、硬化膜の耐候性が優れる点から、イソフタル酸に由来する単位が好ましい。
 多価アルコール単位としては、炭素数2~10の多価アルコール化合物に由来する単位が好ましい。炭素数2~10の多価アルコール化合物は、2個以上の水酸基を有する化合物である。多価アルコール化合物としては、脂肪族多価アルコール、脂環族多価アルコールが好ましく、脂肪族多価アルコールが特に好ましい。多価アルコール化合物における水酸基の数は、2~4個が好ましく、2個が特に好ましい。
 炭素数2~10の多価アルコール化合物としては、たとえば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、スピログリコール、1,10-デカンジオール、1,4-シクロヘキサンジメタノール、トリメチロールエタン、トリメチロールプロパン、グリセリン、ペンタエリスリトール等が挙げられる。
 多価アルコール単位としては、基材との密着性に優れ、また、柔軟性に優れることで熱履歴(熱サイクル)がかかった場合でも、硬化膜が2層構造の場合にフッ素樹脂層との層間剥離がしにくい点から、炭素数3~8の多価アルコールに由来する単位が好ましく、炭素数4~6の多価アルコールに由来する単位が特に好ましい。
 多価アルコールとしては、ネオペンチルグリコール、1,2-ペンタンジオール、1,5-ペンタンジオール、トリメチロールプロパン等が好ましく、入手容易の点で、ネオペンチルグリコール、またはトリメチロールプロパンがより好ましい。
 ポリエステル樹脂は、芳香族多価カルボン酸化合物と多価アルコール化合物とを原料とし、公知の粉体塗料用ポリエステル樹脂の製造方法によって製造できる。たとえば、原材料を200~280℃でエステル化またはエステル交換反応させた後、減圧下で触媒を用い、230~290℃で重縮合反応を行い、その後、アルコール成分で解重合反応を行ってポリエステル樹脂が得られる。
 粉体塗料の溶融、硬化過程でフッ素樹脂層と他の樹脂層が層分離して2層構造の硬化膜を形成しやすくするためには、ポリエステル樹脂が適切なエステル基濃度と芳香環濃度を有することが好ましい。
 エステル基濃度は、ポリエステル樹脂中のエステル基の含有割合を質量%で表したものであり、下式(1)から求めることができる。
 エステル基濃度(質量%)=2m/[(a+b)×m+a]・・・(1)
  m:各単位の分子量の平均値とポリエステル樹脂の数平均分子量の値から算出される、ポリエステル樹脂中の単位個数の平均値。
  a:多価アルコール単位の炭素原子数の平均値。
  b:多価カルボン酸単位の炭素原子数の平均値。
 ポリエステル樹脂のエステル基濃度は、20~60質量%が好ましく、25~50質量%がより好ましく、30~40質量%が特に好ましい。
 芳香環濃度とは、ポリエステル樹脂中の芳香環の含有割合をmmoL/gで表したものであり、下式(2)から求めることができる。
 芳香環濃度(mmoL/g)=[(ポリエステル樹脂を得るのに用いられた原料中の芳香環の総数(moL))/(ポリエステル樹脂を得るのに用いられた原料の総重量(g))]×1,000
 ポリエステル樹脂の芳香環濃度は、20~35mmoL/gが好ましく、22~34mmoL/gがより好ましく、25~33mmoL/gが特に好ましい。
 ポリエステル樹脂の市販品としては、日本サイテックインダストリーズ社製の「CRYLCOAT(登録商標) 4642-3」、「CRYLCOAT(登録商標) 4890-0」、日本ユピカ社製の「GV-250」、「GV-740」、「GV-175」等が挙げられる。
 <アクリル樹脂>
 アクリル樹脂は、(メタ)アクリレートに由来する単位を有する重合体であり、カルボキシ基、水酸基、スルホ基等の反応性基を有する。該アクリル樹脂は、顔料(E)の分散性に優れる。
 アクリル樹脂のガラス転移温度は、30~60℃が好ましい。ガラス転移温度が前記下限値以上であれば、ブロッキングしにくい。ガラス転移温度が前記上限値以下であれば、硬化膜の表面平滑性に優れる。
 アクリル樹脂の数平均分子量は、5,000~10万が好ましく、3万~10万が特に好ましい。アクリル樹脂の数平均分子量が前記下限値以上であれば、ブロッキングしにくい。アクリル樹脂の数平均分子量が前記上限値以下であれば、硬化膜の表面平滑性に優れる。
 アクリル樹脂の質量平均分子量は、6,000~15万が好ましく、4万~15万がより好ましく、6万~15万が特に好ましい。アクリル樹脂の質量平均分子量が前記下限値以上であれば、ブロッキングしにくい。アクリル樹脂の質量平均分子量が前記上限値以下であれば、硬化膜の表面平滑性に優れる。
 アクリル樹脂がカルボキシ基を有する場合、アクリル樹脂の酸価は、150~400mgKOH/gが好ましい。アクリル樹脂の酸価が前記下限値以上であれば、顔料(E)の分散性向上効果がある。アクリル樹脂の酸価が前記上限値以下であれば、硬化膜が耐湿性に優れる。
 アクリル樹脂の市販品としては、DIC社製の「ファインディック(登録商標) A-249」、「ファインディック(登録商標) A-251」、「ファインディック(登録商標) A-266」、三井化学社製の「アルマテックス(登録商標) PD6200」、「アルマテックス(登録商標) PD7310」、三洋化成工業社製の「サンペックス PA-55」等が挙げられる。
 <エポキシ樹脂>
 エポキシ樹脂は、分子内にエポキシ基を2つ以上有する化合物(プレポリマー)である。
 エポキシ樹脂の市販品としては、三菱化学社製の「エピコート(登録商標) 1001」、「エピコート(登録商標) 1002」、「エピコート(登録商標) 4004P」、DIC社製の「エピクロン(登録商標) 1050」、「エピクロン(登録商標) 3050」、新日鉄住金化学社製の「エポトート(登録商標) YD-012」、「エポトート(登録商標) YD-014」、ナガセケムテックス社製の「デナコール(登録商標) EX-711」、ダイセル社製の「EHPE3150」等が挙げられる。
 <ウレタン樹脂>
 ウレタン樹脂は、ポリオール(アクリルポリオール、ポリエステルポリオール、ポリエーテルポリオール、プロピレングリコール、プロピレンオキサイド等)と、イソシアネート化合物とを混合した混合物、または反応させた樹脂である。粉体のポリオール(アクリルポリオール、ポリエステルポリオール、ポリエーテルポリオール)と粉体のイソシアネートからなる粉体塗料を用いることが好ましい。
(硬化触媒(G))
 硬化触媒(G)は、硬化反応を促進し、硬化膜に良好な化学性能および物理性能を付与するものである。
 ブロック化イソシアナート系硬化剤(D1)を用いる場合、硬化触媒(G)としては、スズ触媒(オクチル酸スズ、トリブチルスズラウレート、ジブチルスズジラウレート等)が好ましい。
 硬化触媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
(その他の成分(H))
 組成物(α)および組成物(β)のいずれか一方または両方は、必要に応じて、その他の成分(H)を含んでいてもよい。
 その他の成分(H)としては、たとえば、紫外線吸収剤、光安定剤、つや消し剤(超微粉合成シリカ等)、界面活性剤(ノニオン系界面活性剤、カチオン系界面活性剤、またはアニオン系界面活性剤)、レベリング剤、表面調整剤(硬化膜の表面平滑性を向上させる)、脱ガス剤(粉体に巻き込まれる空気、硬化剤(D)から出てくるブロック剤、水分等が硬化膜内部に留まらないよう、塗膜外へ出す作用がある。なお、通常は、固体だが、溶融すると非常に低粘度になる。)、充填剤、熱安定剤、増粘剤、分散剤、帯電防止剤、防錆剤、シランカップリング剤(化合物(C2)を除く。)、防汚剤、低汚染化処理剤等が挙げられる。
 <紫外線吸収剤>
 粉体塗料(II)において、粉体(X)の材料である組成物(α)が紫外線吸収剤を含むことによって、フッ素樹脂層に紫外線吸収剤が偏在しやすくなる。そのため、フッ素樹脂層を透過して他の樹脂層に届く紫外線の量が減り、他の樹脂層の劣化が抑制され、フッ素樹脂層が他の樹脂層から剥離する問題を回避できる。
 本発明においては、紫外線吸収剤を、粉体(X)の材料である組成物(α)だけでなく、粉体(Y)の材料である組成物(β)にも含ませることにより、他の樹脂層にも紫外線吸収剤が偏在することができるが、コストを抑える点からは、紫外線吸収剤は、他の樹脂層にできるだけ存在させない、すなわち粉体(Y)の材料である組成物(β)に含ませないことが好ましい。
 硬化膜が2層構造の場合、粉体塗料の溶融、硬化過程において紫外線吸収剤をフッ素樹脂層に偏在させやすくするためには、紫外線吸収剤の物性等を考慮してフッ素樹脂層に偏在しやすい紫外線吸収剤を選択することが好ましい。たとえば、親油性の紫外線吸収剤と親水性の紫外線吸収剤とでは親油性の紫外線吸収剤の方がフッ素樹脂層に偏在しやすい。また、紫外線吸収剤の種類(化学的構造の相違)、物性(分子量、融点、沸点等)の相違によって、フッ素樹脂(A)に対する親和性が異なることがある。
 紫外線吸収剤としては、有機系紫外線吸収剤、無機系紫外線吸収剤のいずれの紫外線吸収剤も用いることができる。
 紫外線吸収剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 有機系紫外線吸収剤としては、たとえば、サリチル酸エステル系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、シアノアクリレート系紫外線吸収剤等が挙げられる。
 有機系紫外線吸収剤としては、分子量が200~1,000である化合物が好ましい。分子量が200以上であれば、粉体塗料の溶融、硬化過程で揮発しにくく、硬化膜中に残存できる。分子量が1,000以下であれば、硬化膜が2層構造の場合にフッ素樹脂層中に留まることができる。
 有機系紫外線吸収剤としては、融点が50~150℃である化合物が好ましい。融点が50℃以上であれば、粉体塗料の溶融、硬化過程で揮発しにくく、硬化膜中に残存できる。融点が150℃以下であれば、粉体塗料の溶融、硬化過程で溶融しやすくなり、硬化膜が2層構造の場合にフッ素樹脂層中に留まることができる。
 有機系紫外線吸収剤としては、揮発温度が180~400℃である化合物が好ましく、220~350℃である化合物が特に好ましい。粉体塗料の溶融、硬化過程において150~220℃の温度条件を必要とするため、前記範囲内であれば、揮発しにくく、かつ硬化膜が2層構造の場合にフッ素樹脂層中に留まりやすい。
 有機系紫外線吸収剤の市販品としては、BASF社製の「Tinuvin(登録商標) 326」(分子量:315.8、融点:139℃)、「Tinuvin(登録商標) 405」(分子量:583.8、融点:74~77℃)、「Tinuvin(登録商標) 460」(分子量:629.8、融点:93~102℃)、「Tinuvin(登録商標) 900」(分子量:447.6、融点:137~141℃)、「Tinuvin(登録商標) 928」(分子量:441.6、融点:109~113℃)、Clariant社製の「Sanduvor(登録商標) VSU powder」(分子量:312.0、融点:123~127℃)、Clariant社製の「Hastavin(登録商標) PR-25 Gran」(分子量:250.0、融点:55~59℃)等が挙げられる。
 無機系紫外線吸収剤としては、紫外線吸収性酸化物(酸化亜鉛、酸化セリウム等)を含むフィラー型無機系紫外線吸収剤等が挙げられる。
 無機系紫外線吸収剤としては、酸化亜鉛と酸化チタンの複合粒子、酸化セリウムと酸化チタンの複合粒子、酸化亜鉛と酸化セリウムの複合粒子、酸化チタンと酸化亜鉛と酸化セリウムの複合粒子等が好ましい。
 <光安定剤>
 光安定剤は、紫外線から硬化膜中の樹脂(フッ素樹脂(A)または他の樹脂(F))を保護するものである。
 粉体塗料(II)において、粉体(Y)の材料である組成物(β)が光安定剤を含むことによって、他の樹脂層に光安定剤が存在することになる。そのため、フッ素樹脂層を透過して他の樹脂層に届く紫外線による他の樹脂層の劣化が抑制され、フッ素樹脂層が他の樹脂層から剥離する問題を回避できる。
 本発明においては、光安定剤を、粉体(Y)の材料である組成物(β)だけでなく、粉体(X)の材料である組成物(α)にも含ませてもよいが、コストを抑える点からは、光安定剤は、フッ素樹脂層にできるだけ存在させない、すなわち粉体(X)の材料である組成物(α)に含ませないことが好ましい。
 光安定剤としては、粉体塗料の溶融、硬化過程で他の樹脂層に偏在しやすい点からは、分子量が300~5,000であり、かつ融点が50~250℃であるヒンダードアミン系光安定剤が好ましい。混練時に組成物中に均一に拡散していくという点からは、分子量が400~4,000であり、かつ融点が60~200℃であるヒンダードアミン系光安定剤がより好ましい。
 光安定剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 ヒンダードアミン系光安定剤の市販品としては、BASF社製の「Tinuvin(登録商標) 111FDL」(分子量:2,000~4,000、融点:63℃)、「Tinuvin(登録商標) 144」(分子量:685、融点:146~150℃)、「Tinuvin(登録商標) 152」(分子量:756.6、融点:83~90℃)、Clariant社製の「Sanduvor(登録商標) 3051 powder」(分子量:364.0、融点:225℃)、「Sanduvor(登録商標) 3070 powder」(分子量:1,500、融点:148℃)、「VP Sanduvor(登録商標) PR-31」(分子量:529、融点:120~125℃)等が挙げられる。
(組成物(α))
 組成物(α)中の硬化剤(D)の含有量は、組成物(α)中のフッ素樹脂(A)(他の樹脂(F)を含む場合はフッ素樹脂(A)と他の樹脂(F)との合計)の100質量部に対して、1~50質量部が好ましく、3~30質量部が特に好ましい。
 硬化剤(D)がブロック化イソシアナート系硬化剤(D1)の場合、組成物(α)中のブロック化イソシアナート系硬化剤(D1)の含有量は、組成物(α)中の水酸基に対するイソシアナート基のモル比が0.05~1.5となる量が好ましく、0.8~1.2となる量が特に好ましい。該モル比が前記範囲の下限値以上であれば、塗料の硬化度が高くなり、他の樹脂層との密着性、硬化膜の硬度および耐薬品性等が優れる。該モル比が前記範囲の上限値以下であれば、硬化膜が脆くなりにくく、しかも、硬化膜の耐熱性、耐薬品性、耐湿性等が優れる。
 組成物(α)が硬化触媒(G)を含む場合、組成物(α)中の硬化触媒(G)の含有量は、顔料(E)以外の固形分の合計100質量部に対して、0.0001~10質量部が好ましい。硬化触媒(G)の含有量が前記下限値以上であれば、触媒効果が充分に得られやすい。硬化触媒(G)の含有量が前記上限値以下であれば、粉体塗料の溶融、硬化過程で粉体塗料中に巻き込まれた空気等の気体が抜けやすく、気体が残存することで生じる硬化膜の耐熱性、耐候性および耐水性の低下が少ない。
 組成物(α)中のその他の成分(H)の合計の含有量は、組成物(α)(100質量%)のうち、45質量%以下が好ましく、30質量%以下が特に好ましい。
 組成物(α)が他の樹脂(F)を含む場合、組成物(α)中の他の樹脂(F)の含有量は、組成物(α)中のフッ素樹脂(A)と他の樹脂(F)との合計の100質量部に対して、20~80質量部が好ましく、25~75質量部が特に好ましい。他の樹脂(F)の含有量が前記下限値以上であれば、硬化膜のコストを抑えることができる。他の樹脂(F)の含有量が前記上限値以下であれば、硬化膜の耐候性が優れる。
(組成物(β))
 組成物(β)が硬化剤(D)を含む場合、組成物(β)中の硬化剤(D)の含有量は、組成物(β)中の他の樹脂(F)の100質量部に対して、1~50質量部が好ましく、3~30質量部が特に好ましい。
 硬化剤(D)がブロック化イソシアナート系硬化剤(D1)の場合、組成物(β)中のブロック化イソシアナート系硬化剤(D1)の含有量は、組成物(β)中の水酸基に対するイソシアナート基のモル比が0.05~1.5となる量が好ましく、0.8~1.2となる量が特に好ましい。該モル比が前記範囲の下限値以上であれば、塗料の硬化度が高くなり、他の樹脂層との密着性、硬化膜の硬度および耐薬品性等が優れる。該モル比が前記範囲の上限値以下であれば、硬化膜が脆くなりにくく、しかも、硬化膜の耐熱性、耐薬品性、耐湿性等が優れる。
 組成物(β)が硬化触媒(G)を含む場合、組成物(β)中の硬化触媒(G)の含有量は、顔料(E)以外の固形分の合計100質量部に対して、0.0001~10質量部が好ましい。硬化触媒の含有量が前記下限値以上であれば、触媒効果が充分に得られやすい。硬化触媒の含有量が前記上限値以下であれば、粉体塗料の溶融、硬化過程で粉体塗料中に巻き込まれた空気等の気体が抜けやすく、気体が残存することで生じる硬化膜の耐熱性、耐候性および耐水性の低下が少ない。
 組成物(β)中のその他の成分(H)の合計の含有量は、組成物(β)(100質量%)のうち、45質量%以下が好ましく、30質量%以下が特に好ましい。
 組成物(α)中の顔料(E)および組成物(β)中の顔料(E)の合計の含有量は、組成物(α)中のフッ素樹脂(A)(他の樹脂(F)を含む場合はフッ素樹脂(A)と他の樹脂(F)との合計)および組成物(β)中の他の樹脂(F)の合計100質量部に対して、20~200質量部が好ましく、50~150質量部が特に好ましい。
(作用機序)
 以上説明した粉体塗料にあっては、フッ素樹脂(A)を含むため、耐候性に優れる硬化膜を形成できる。特に、粉体塗料(I)に含まれる粉体(X)が、フッ素樹脂(A)と相溶することなく、層分離できる他の樹脂(F)を含有する場合、フッ素樹脂(A)の硬化物を主成分とするフッ素樹脂層と、他の樹脂(F)またはその硬化物を主成分とする他の樹脂層とが層分離した硬化膜を1コートで形成できる。基材側には他の樹脂層が、空気側にはフッ素樹脂層が配置されるため、該硬化膜は耐候性に優れる。また、粉体塗料(II)に含まれる粉体(Y)が、フッ素樹脂(A)と相溶することなく、層分離できる他の樹脂(F)を含有する場合、フッ素樹脂(A)の硬化物を主成分とするフッ素樹脂層と、他の樹脂(F)またはその硬化物を主成分とする他の樹脂層とが層分離した硬化膜を1コートで形成できる。基材側には他の樹脂層が、空気側にはフッ素樹脂層が配置されるため、該硬化膜は耐候性に優れる。
 また、以上説明した粉体塗料にあっては、フッ素樹脂(A)がカルボキシ基を有する、またはアルコキシシリル基およびウレタン結合を有するため、以下に説明するように、ボイド(空隙)の少ない硬化膜を形成できる。
 <フッ素樹脂(A)がカルボキシ基を有する場合>
 1.カルボキシ基を有するフッ素樹脂(A)は、水酸基含有フッ素樹脂に比べ、溶融粘度が低い。そのため、粉体塗料を溶融して塗膜を形成する際に、粉体塗料間に存在した空気や硬化剤の反応時に発生するガスが塗膜から抜け出しやすい。その結果、硬化膜中にボイドが残存しにくい。
 2.カルボキシ基を有するフッ素樹脂(A)は、水酸基含有フッ素樹脂に比べ、顔料(E)との親和性が高い。そのため、フッ素樹脂(A)中における顔料の分散性がよくなり、硬化膜中にて顔料が凝集しにくい。その結果、顔料とフッ素樹脂(A)との間にボイドが残存しにくい。
 <フッ素樹脂(A)がアルコキシシリル基およびウレタン結合を有する場合>
 1.ウレタン結合を有するフッ素樹脂(A)は、水酸基含有フッ素樹脂に比べ、溶融粘度が低い。そのため、粉体塗料を溶融して塗膜を形成する際に、粉体塗料間に存在した空気や硬化剤の反応時に発生するガスが塗膜から抜け出しやすい。その結果、硬化膜中にボイドが残存しにくい。
 2.アルコキシシリル基を有するフッ素樹脂(A)は、水酸基含有フッ素樹脂に比べ、顔料(E)との親和性が高い。そのため、フッ素樹脂(A)中における顔料の分散性がよくなり、硬化膜中にて顔料が凝集しにくい。その結果、顔料とフッ素樹脂(A)との間にボイドが残存しにくい。
[粉体塗料の製造方法]
 本発明の粉体塗料の製造方法は、粉体塗料(I)の場合は、下記工程(a)、工程(b)および工程(c)を有する。
 (a)水酸基含有フッ素樹脂(B)と、酸無水物(C1)または化合物(C2)と、硬化剤(D)とを含み、必要に応じて、顔料(E)、他の樹脂(F)、硬化触媒(G)、その他の成分(H)を含んでもよい混合物を溶融混練して組成物(α)からなる混練物を得る工程。
 (b)組成物(α)からなる混練物を粉砕して粉体(X)を得る工程。
 (c)必要に応じて、粉体(X)の分級を行う工程。
 本発明の粉体塗料の製造方法は、粉体塗料(II)の場合は、下記工程(a)、工程(b)、工程(c)、工程(a2)、工程(b2)、工程(c2)および工程(d)を有する。
 (a)水酸基含有フッ素樹脂(B)と、酸無水物(C1)または化合物(C2)と、硬化剤(D)とを含み、必要に応じて、顔料(E)、他の樹脂(F)、硬化触媒(G)、その他の成分(H)を含んでもよい混合物を溶融混練して組成物(α)からなる混練物を得る工程。
 (b)組成物(α)からなる混練物を粉砕して粉体(X)を得る工程。
 (c)必要に応じて、粉体(X)の分級を行う工程。
 (a2)他の樹脂(F)を含み、フッ素樹脂(A)を含まず、必要に応じて、硬化剤(D)、顔料(E)、硬化触媒(G)、その他の成分(H)を含んでもよい混合物を溶融混練して組成物(β)からなる混練物を得る工程。
 (b2)組成物(β)からなる混練物を粉砕して粉体(Y)を得る工程。
 (c2)必要に応じて、粉体(Y)の分級を行う工程。
 (d)粉体(X)と粉体(Y)とをドライブレンドする工程。
(工程(a))
 各成分を混合し混合物を調製した後、該混合物を溶融混練して各成分が均一化された混練物を得る。
 水酸基含有フッ素樹脂(B)の水酸基と酸無水物(C1)または化合物(C2)とを溶融混練中に反応させることにより、水酸基の一部または全部をエステル化し、カルボキシ基を導入する。
 各成分は、あらかじめ粉砕して粉末状にすることが好ましい。
 混合に用いる装置としては、高速ミキサ、V型ミキサ、反転ミキサ等が挙げられる。
 溶融混練に用いる装置としては、1軸押出機、2軸押出機、遊星ギア等が挙げられる。
 混練物は、冷却後、ペレットとすることが好ましい。
 溶融混練温度は、水酸基含有フッ素樹脂(B)のガラス転移温度以上、硬化剤(D)の反応温度未満である。具体的には、80~140℃が好ましい。溶融混練温度が前記下限値以上であれば、水酸基含有フッ素樹脂(B)と酸無水物(C1)または化合物(C2)とが溶融した状態で充分に接触でき、反応が充分に進行する。溶融混練温度が前記上限値以下であれば、フッ素樹脂(A)および水酸基含有フッ素樹脂(B)と硬化剤(D)との反応が充分に抑えられる。
 酸無水物(C1)または化合物(C2)としては、前記温度範囲にて溶融できるものを選択することが好ましい。
 溶融混練時間は、10秒~20分間が好ましく、15秒~10分間が特に好ましい。溶融混練時間が前記下限値以上であれば、水酸基含有フッ素樹脂(B)の水酸基と酸無水物(C1)または化合物(C2)との反応が充分に進行する。溶融混練時間が前記上限値以下であれば、フッ素樹脂(A)および水酸基含有フッ素樹脂(B)と硬化剤(D)との反応が充分に抑えられる。
 酸無水物(C1)の量は、水酸基含有フッ素樹脂(B)の水酸基1モルに対して、0.1~2.0モルが好ましく、0.2~1.5モルが特に好ましい。化合物(C2)の量は、水酸基含有フッ素樹脂(B)の水酸基1モルに対して、0.03~0.2モルが好ましく、0.05~0.15モルが特に好ましい。酸無水物(C1)または化合物(C2)の量が前記下限値以上であれば、水酸基含有フッ素樹脂(B)の水酸基が、カルボキシ基、またはアルコキシシリル基およびウレタン結合に充分に変換され、溶融粘度が充分に低く、かつ顔料(E)との親和性に優れるフッ素樹脂(A)が得られる。酸無水物(C1)または化合物(C2)の量が前記上限値以下であれば、未反応の酸無水物(C1)または化合物(C2)の量が抑えられ、硬化膜への酸無水物(C1)または化合物(C2)による影響が抑えられる。
(工程(a2))
 各成分を混合し混合物を調製した後、該混合物を溶融混練して各成分が均一化された混練物を得る。
 各成分は、あらかじめ粉砕して粉末状にすることが好ましい。
 混合に用いる装置、溶融混練に用いる装置としては、工程(a)と同様のものが挙げられる。
 混練物は、冷却後、ペレットとすることが好ましい。
(工程(b)、(b2))
 粉砕に用いる装置としては、ピンミル、ハンマーミル、ジェットミル等の粉砕機が挙げられる。
(工程(c)、(c2))
 粒子径の大きすぎる粉体や粒子径の小さすぎる粉体を除去するために、粉砕後に分級を行うことが好ましい。分級を行う場合、粒子径が10μm未満の粒子および粒子径が100μmを超える粒子の少なくともいずれかを除去することが好ましい。
 分級方法としては、ふるい分けによる方法、空気分級法等が挙げられる。
 粉体(X)および粉体(Y)の平均粒子径は、たとえば、50%平均体積粒度分布で25~50μmが好ましい。粉体の粒子径の測定は、通常、細孔通過時の電位変化を捉える形式、レーザー回折方式、画像判断形式、沈降速度測定方式等の粒子径測定機を用いて行われる。
(工程(d))
 ドライブレンドに用いる装置としては、ハイスピードミキサ、ダブルコーンミキサ、ニーダ、ダンプラーミキサ、ミキシングシェーカ、ドラムシェーカ、ロッキングシェーカ等が挙げられる。
(作用機序)
 以上説明した本発明の粉体塗料の製造方法にあっては、水酸基含有フッ素樹脂(B)の水酸基と酸無水物(C1)または化合物(C2)とを溶融混練中に反応させ、フッ素樹脂(A)を得ているため、下記の理由からフッ素樹脂(A)がゲル化しにくい。
 1.混練装置内で反応させているため、溶媒中で反応させる場合に比べ熱履歴が少なく、フッ素樹脂(A)の分子量が上がりにくい。その結果、フッ素樹脂(A)がゲル化しにくい。
 2.脱溶媒工程がないため、フッ素樹脂(A)がゲル化しにくい。
 ゲル化したフッ素樹脂が少ない粉体塗料から形成される硬化膜においては、粉体塗料間に存在した空気や硬化剤の反応時に発生するガスが硬化膜から抜けやすく、ボイド(空隙)となりにくい。
 このように、本発明の粉体塗料の製造方法にあっては、カルボキシ基を有する、またはアルコキシシリル基およびウレタン結合を有するフッ素樹脂(A)を含み、かつゲル化したフッ素樹脂が少ない粉体塗料、すなわちボイドの少ない硬化膜を形成できる粉体塗料を製造できる。
 また、以上説明した本発明の粉体塗料の製造方法にあっては、フッ素樹脂(A)を含む粉体塗料、すなわち耐候性に優れる硬化膜を形成できる粉体塗料を製造できる。
[塗装物品の製造方法]
 本発明の塗装物品の製造方法は、基材の表面に硬化膜を有する塗装物品を製造する方法であって、下記工程(e)および工程(f)を有する。
 (e)本発明の粉体塗料を基材に塗装し、粉体塗料の溶融物からなる塗膜を形成する工程。
 (f)塗膜を硬化させて硬化膜を形成する工程。
(工程(e))
 本発明の粉体塗料を基材に塗装して基材上に粉体塗料の溶融物からなる塗膜を形成する。硬化膜が2層構造の場合、塗膜においては、フッ素樹脂(A)の溶融物を主成分とする上層と、他の樹脂(F)の溶融物を主成分とする下層とに層分離し、各層中の反応成分が硬化反応を起こす。
 <基材>
 基材の材質としては、アルミニウム、鉄、マグネシウム等の金属類が好ましい。
 基材の形状、サイズ等は、特に限定はされない。
 <塗膜の形成方法>
 粉体塗料の溶融物からなる塗膜は、基材への粉体塗料の塗装と同時に形成してもよく、基材に粉体塗料の粉体を付着させた後に基材上で粉体を加熱溶融させて形成してもよい。
 粉体塗料が加熱溶融されるとほぼ同時に、組成物中の反応成分の硬化反応が開始するため、粉体塗料の加熱溶融と基材への付着はほぼ同時に行うか、粉体塗料の基材への付着の後に粉体塗料の加熱溶融を行う必要がある。
 粉体塗料を加熱して溶融し、その溶融状態を所定時間維持するための加熱温度(以下、「焼付け温度」とも記す。)と加熱維持時間(以下、「焼付け時間」とも記す。)は、粉体塗料の原料成分の種類や組成、所望する硬化膜の厚さ等により適宜設定される。特に、焼付け温度は、硬化剤(D)の反応温度に応じて設定することが好ましい。たとえば、硬化剤(D)としてブロック化ポリイソシアナート系硬化剤(D1)を用いた場合の焼付け温度は、170~210℃が好ましい。焼付け時間は、5~120分が好ましく、10~60分が特に好ましい。
 <塗装方法>
 塗装方法としては、静電塗装法、静電吹付法、静電浸漬法、噴霧法、流動浸漬法、吹付法、スプレー法、溶射法、プラズマ溶射法等が挙げられる。塗膜を薄膜化した場合でも、塗膜の表面平滑性に優れ、さらに、硬化膜の隠ぺい性に優れる点からは、粉体塗装ガンを用いた静電塗装法が好ましい。
 粉体塗装ガンとしては、コロナ帯電型塗装ガンまたは摩擦帯電型塗装ガンが挙げられる。コロナ帯電型塗装ガンは、粉体塗料をコロナ放電処理して吹き付けるものである。摩擦帯電型塗装ガンは、粉体塗料を摩擦帯電処理して吹き付けるものである。
 粉体塗装ガンからの粉体塗料の吐出量は、50~200g/分が好ましい。
 粉体塗装ガンのガン部分の先端から基材までの距離は、塗着効率の点から、150~400mmが好ましい。
 コロナ帯電型塗装ガンを用いる場合、コロナ放電処理によって粉体塗料を構成する成分に加える荷電圧は、-50~-100kVが好ましく、塗着効率(粉体塗料が基材に付着する割合)と塗膜の外観に優れる点から、-60~-80kVが好ましい。
 摩擦帯電型塗装ガンを用いる場合、摩擦帯電処理による粉体塗料の内部発生電流値は、塗着効率と塗膜の外観に優れる点から、1.0~8.0μAが好ましい。
 静電塗装法を工業的に実施する場合には、たとえば、未塗装の鏡を設置し、かつアースをするための、アースが取られた導電性水平ベルトコンベアを、塗装室に敷設し、塗装室上部にガンを設置する。塗装パターン幅は50~500mmが好ましく、ガンの運行スピードは1~30m/分が好ましく、コンベアスピードは1~50m/分が好ましく、目的に合わせて前記範囲から適した条件を選択すればよい。
 塗装方法としては、比較的厚い硬化膜を形成できる点からは、流動浸漬法が好ましい。
 流動浸漬法においては、空気等のガスに担持されて流動している粉体塗料が収容されている流動槽中に、粉体塗料の溶融温度以上の温度に塗装面が加熱されている基材を浸漬し、粉体を基材の塗装面に付着させるとともに溶融し、基材上に所定の厚さの塗膜を形成した後、塗装された基材を流動槽から取り出し、場合により所定時間塗膜の溶融状態を維持し、その後冷却して溶融状態の塗膜を冷却して硬化して、硬化膜が形成された基材とすることが好ましい。
 流動浸漬法における流動槽内の温度は15~55℃が好ましく、粉体を流動化させるために流動槽に吹き込む空気等のガスの温度も15~55℃が好ましい。流動槽に浸漬する際の基材の少なくとも塗装面の温度は300~450℃が好ましく、基材を流動槽内に浸漬させておく時間は1~120秒が好ましい。流動槽から取り出した基材は1~5分間、150~250℃の温度に維持することが好ましい。
(工程(f))
 溶融状態の塗膜を室温(20~25℃)まで冷却して硬化させて硬化膜を形成する。
 焼付け後の冷却は、急冷、徐冷いずれでもよく、フッ素樹脂層と他の樹脂層との硬化収縮の違いによる界面剥離がしにくい点で、徐冷が好ましい。
 硬化膜の厚さは、特に制限されないが、100~1,000μmが好ましい。海岸沿いに設置してあるエアコンの室外機、信号機のポール、標識等の耐候性の要求が高い用途では、100~200μmが好ましい。なお、上述したように、厚さが厚い場合には、流動浸漬法を選択することで達成できる。
[カルボキシ基含有フッ素樹脂の製造方法]
 本発明のカルボキシ基含有フッ素樹脂の製造方法は、水酸基含有フッ素樹脂と酸無水物とを含む混合物を溶融混練してカルボキシ基含有フッ素樹脂を含む混練物を得る方法である。
 水酸基含有フッ素樹脂としては、上述した水酸基含有フッ素樹脂(B)が挙げられる。
 酸無水物としては、上述した酸無水物(C1)が挙げられる。
 各成分は、あらかじめ粉砕して粉末状にすることが好ましい。
 混合に用いる装置としては、高速ミキサ、V型ミキサ、反転ミキサ等が挙げられる。
 溶融混練に用いる装置としては、1軸押出機、2軸押出機、遊星ギア等が挙げられる。
 混練物は、冷却後、ペレットとすることが好ましい。
 溶融混練温度は、水酸基含有フッ素樹脂のガラス転移温度以上、各成分の分解温度未満である。具体的には、80~140℃が好ましい。溶融混練温度が前記下限値以上であれば、水酸基含有フッ素樹脂と酸無水物とが溶融した状態で充分に接触でき、反応が充分に進行する。溶融混練温度が前記上限値以下であれば、カルボキシ基含有フッ素樹脂および水酸基含有フッ素樹脂の劣化が充分に抑えられる。
 酸無水物としては、前記温度範囲にて溶融できるものを選択することが好ましい。
 溶融混練時間は、10秒~20分間が好ましく、15秒~10分間が特に好ましい。溶融混練時間が前記下限値以上であれば、水酸基含有フッ素樹脂の水酸基と酸無水物との反応が充分に進行する。溶融混練時間が前記上限値以下であれば、カルボキシ基含有フッ素樹脂および水酸基含有フッ素樹脂の劣化が充分に抑えられる。
 酸無水物の量は、水酸基含有フッ素樹脂の水酸基1モルに対して、0.1~2.0モルが好ましく、0.2~1.5モルが特に好ましい。酸無水物の量が前記下限値以上であれば、水酸基含有フッ素樹脂の水酸基が、カルボキシ基に充分に変換され、溶融粘度が充分に低く、かつ顔料との親和性に優れるカルボキシ基含有フッ素樹脂が得られる。酸無水物(C1)の量が前記上限値以下であれば、未反応の酸無水物の量が抑えられ、カルボキシ基含有フッ素樹脂への酸無水物による影響が抑えられる。
(作用機序)
 以上説明した本発明のカルボキシ基含有フッ素樹脂の製造方法にあっては、水酸基含有フッ素樹脂の水酸基と酸無水物とを溶融混練中に反応させ、カルボキシ基含有フッ素樹脂を得ているため、下記の理由からゲルの少ないカルボキシ基含有フッ素樹脂が得られる。
 1.混練装置内で反応させているため、溶媒中で反応させる場合に比べ熱履歴が少なく、カルボキシ基含有フッ素樹脂の分子量が上がりにくい。その結果、カルボキシ基含有フッ素樹脂がゲル化しにくい。
 2.脱溶媒工程がないため、カルボキシ基含有フッ素樹脂がゲル化しにくい。
 以下、実施例および比較例を示して、本発明を詳細に説明する。ただし、本発明はこれらに限定されない。例1~7は実施例であり、例8は比較例である。
[測定方法、評価方法]
(ガラス転移温度)
 ガラス転移温度は、示差走査熱量測定(DSC)法で測定した中間点ガラス転移温度である。
(分子量)
 数平均分子量および質量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)法によってポリスチレン換算で求めた値である。
(平均粒子径)
 粉体の平均粒子径は、レーザー回折式粒度分布測定機(Sympatec社製、Helos-Rodos)で測定し、50%平均体積粒度分布により求めた値である。
(硬化膜の外観)
 硬化膜の表面の状態を目視し、下記基準で判定した。
 ○(良好):硬化膜の表面平滑性に優れ、はじきや塗れ性の不良等が確認されなかった。
 ×(不良):硬化膜の表面平滑性が悪く、はじきや塗れ性の不良等が確認された。
(硬化膜中のボイド(空隙)の数)
 硬化膜付きアルミニウム板を切断し、硬化膜の断面を下記測定条件で走査電子顕微鏡によって断面観察し、下記基準にて判定した。
 <測定条件>
 試験機;日本電子社製、JSM-5900LV、
 加速電圧;20kV、
 倍率;10,000倍、
 測定前処理;日本電子社製オートファインコーター、JFC-1300による、20mA、45秒の白金コート。
 <判定基準>
 ○(良好):硬化膜中にボイド(空隙)は、ほとんど見られなかった。
 ×(不良):硬化膜中に多数のボイド(空隙)が見られた。
(耐候性)
 沖縄県那覇市の屋外に硬化膜付きアルミニウム板を設置し、設置直前の硬化膜の表面の光沢と、2年後における硬化膜の表面の光沢を、光沢計(日本電色工業社製、PG-1M)を用いて測定した。設置直前の光沢の値を100%としたときの、2年後の光沢の値の割合を光沢保持率(単位:%)として算出し、下記基準で耐候性を判定した。なお、光沢保持率は、JIS K 5600-1-7に準拠して測定、算出した。
 ○(良好):光沢保持率が80%以上であり、硬化膜の変色等は見られなかった。
 ×(不良):光沢保持率が80%未満であり、硬化膜の変色等が見られた。
(促進耐候性)
 キセノンウェザーメーター(スガ試験機社製)を用い、試験直前の硬化膜の表面の光沢と、試験100時間後における硬化膜の表面の光沢を、光沢計(日本電色工業社製、PG-1M)を用いて測定した。試験直前の光沢の値を100%としたときの、試験100時間後の光沢の値の割合を光沢保持率(単位:%)として算出し、下記基準で促進耐候性を判定した。なお、促進耐候試験では、通常は水を噴霧するが、水を噴霧する代わりに、1%の過酸化水素水を用いた。光沢保持率は、JIS K 5600-1-7に準拠して測定、算出した。
 <試験条件>
  相対湿度:70%RH、
  温度:50℃、
  光源:80W/m(300~400nm)。
 <判定基準>
 ○(良好):光沢保持率が50%以上であり、硬化膜の変色等は見られなかった。
 ×(不良):光沢保持率が50%未満であり、硬化膜の変色等が見られた。
[粉体塗料の調製に用いた各成分]
 水酸基含有フッ素樹脂(B-1):旭硝子社製、ルミフロン(登録商標) LF710F、水酸基価:51.3mgKOH/g、ガラス転移温度:55℃、数平均分子量:10,000。
 水酸基含有フッ素樹脂(B-2):旭硝子社製、ルミフロン(登録商標) LF916F、水酸基価:100.9mgKOH/g、ガラス転移温度:39℃、数平均分子量:7,000。
 酸無水物(C1-1):無水コハク酸(東京化成工業社製、試薬)。
 酸無水物(C1-2):ヘキサヒドロ無水フタル酸(新日本理化社製、リカシッド(登録商標)HH)。
 化合物(C2-1):3-イソシアナートプロピルトリエトキシシラン(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)。
 硬化剤(D1-1):ブロック化イソシアナート系硬化剤(デグサ社製、ベスタゴン(登録商標)B1530)。
 顔料(E-1):酸化チタン(デュポン社製、Ti-Pure(登録商標) R960、酸化チタン含有量:89質量%)。
 フッ素樹脂(F1-1):PVDF(東岳社製、PVDF DS203、質量平均分子量:27万、数平均分子量:16万、融点:170℃)。
 熱硬化性樹脂(F2-1):ポリエステル樹脂(ダイセルサイテック社製、CRYLCOAT(登録商標) 4890-0、数平均分子量:2,500、質量平均分子量:4,400、水酸基価:30mgKOH/g)。
 硬化触媒(G-1):ジブチルスズジラウレート。
 脱ガス剤(H-1):ベンゾイン。
 表面調整剤(H-2):粉体塗料用レベリング剤(ビックケミー社製、BYK(登録商標)-360P)。
[例1~8]
(粉体塗料の製造)
 表1に記載の各成分を、高速ミキサ(佑崎有限公司社製)を用いて10~30分間程度混合し、粉末状の混合物を得た。該混合物を2軸押出機(サーモプリズム社製、16mm押出機)を用いて、120℃のバレル設定温度にて2分間溶融混練を行い、ペレットを得た。該ペレットを粉砕機(FRITSCH社製、装置名:ロータースピードミルP14)を用いて常温で粉砕し、150メッシュのふるいによる分級を行い、平均粒子径が約40μmの粉体塗料を得た。
 また、粉体塗料について赤外線分光法による赤外吸収スペクトルを得た。例1~3および例5~7の粉体塗料については、水酸基含有フッ素樹脂(B)中の水酸基と酸無水物(C1)との反応に伴うエステル結合のピークおよびカルボキシ基のピークが確認された。また、例4の粉体塗料については、水酸基含有フッ素樹脂(A)中の水酸基と化合物(C2)との反応に伴うウレタン結合のピークが確認された。
(試験片の作製)
 静電塗装機(小野田セメント社製、装置名:GX3600C)を用い、クロメート処理を行ったアルミニウム板の一面に粉体塗料の静電塗装を行い、200℃雰囲気中で20分間保持した。放置して室温まで冷却し、厚さ55~65μmの硬化膜付きアルミニウム板を得た。得られた硬化膜付きアルミニウム板を試験片として評価を行った。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、例1~7の粉体塗料から形成された硬化膜は、硬化膜中のボイド(空隙)が少なく、また、優れた耐候性を示した。
 一方、酸無水物(C1)または化合物(C2)を用いなかった例8の粉体塗料から形成された硬化膜は、硬化膜中のボイド(空隙)が多数確認され、また、耐候性は不充分であった。
 本発明の製造方法で得られる粉体塗料は、信号機、電柱、道路標示のポール、橋梁、高欄、建築資材(門扉、フェンス、家屋用ザイディング材、カーテンウォール、屋根等)、自動車の車体や部品(バンパー、ワイパーブレード等)、家電製品(エアコンの室外機、温水器の外装等)、風力発電用のブレード、太陽電池のバックシート、太陽熱発電用集熱鏡の裏面、ナス電池外装等の表面に硬化膜を形成するために有用である。
 なお、2013年8月9日に出願された日本特許出願2013-166645号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (12)

  1.  カルボキシ基を有する、またはアルコキシシリル基およびウレタン結合を有するフッ素樹脂(A)と、硬化剤(D)と、を含む組成物(α)からなる粉体(X)を含む粉体塗料を製造する方法であって、
     下記工程(a)および工程(b)を有する、粉体塗料の製造方法。
     (a)水酸基含有フッ素樹脂(B)と、酸無水物(C1)、またはアルコキシシリル基およびイソシアナート基を有する化合物(C2)と、硬化剤(D)と、を含む混合物を溶融混練して前記組成物(α)からなる混練物を得る工程。
     (b)前記混練物を粉砕して粉体(X)を得る工程。
  2.  前記混合物が、顔料(E)をさらに含む、請求項1に記載の粉体塗料の製造方法。
  3.  前記混合物が、前記フッ素樹脂(A)以外の他の樹脂(F)をさらに含む、請求項1または2に記載の粉体塗料の製造方法。
  4.  前記他の樹脂(F)が、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂およびウレタン樹脂からなる群から選ばれる少なくとも1種である、請求項3に記載の粉体塗料の製造方法。
  5.  下記工程(d)をさらに有する、請求項1または2に記載の粉体塗料の製造方法。
     (d)前記粉体(X)と、前記フッ素樹脂(A)以外の他の樹脂(F)を含み、フッ素樹脂(A)を含まない組成物(β)からなる粉体(Y)とを、ドライブレンドする工程。
  6.  前記他の樹脂(F)が、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂およびウレタン樹脂からなる群から選ばれる少なくとも1種である、請求項5に記載の粉体塗料の製造方法。
  7.  前記水酸基含有フッ素樹脂(B)が、テトラフルオロエチレンまたはクロロトリフルオロエチレンに由来する単位と、ヒドロキシアルキルビニルエーテルに由来する単位と、シクロアルキルビニルエーテル、アルキルビニルエーテルおよびカルボン酸ビニルエステルからなる群から選ばれる1種以上に由来する単位と、を有する請求項1~6のいずれか一項に記載の粉体塗料の製造方法。
  8.  前記硬化剤(D)が、ブロック化イソシアナート系硬化剤(D1)である請求項1~7のいずれか一項に記載の粉体塗料の製造方法。
  9.  前記水酸基含有フッ素樹脂(B)の水酸基1モルに対する、酸無水物(C1)のモル数が0.1~2.0である、または水酸基含有フッ素樹脂(B)の水酸基1モルに対するアルコキシシリル基およびイソシアナート基を有する化合物(C2)のモル数が、0.03~0.2である請求項1~8のいずれか一項に記載の粉体塗料の製造方法。
  10.  基材の表面に、請求項1~9のいずれか一項に記載の粉体塗料の製造方法で得られた粉体塗料から得られる硬化膜を有する、塗装物品。
  11.  基材の表面に硬化膜を有する塗装物品を製造する方法であって、
     下記工程(e)および工程(f)を有する、塗装物品の製造方法。
     (e)請求項1~9のいずれか一項に記載の粉体塗料の製造方法で得られた粉体塗料を基材に塗装し、前記粉体塗料の溶融物からなる塗膜を形成する工程。
     (f)前記塗膜を硬化させて硬化膜を形成する工程。
  12.  水酸基含有フッ素樹脂と酸無水物とを含む混合物を溶融混練してカルボキシ基含有フッ素樹脂を含む混練物を得る、カルボキシ基含有フッ素樹脂の製造方法。
PCT/JP2014/070776 2013-08-09 2014-08-06 粉体塗料の製造方法、塗装物品およびその製造方法、ならびにカルボキシ基含有フッ素樹脂の製造方法 WO2015020107A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015530929A JPWO2015020107A1 (ja) 2013-08-09 2014-08-06 粉体塗料の製造方法、塗装物品およびその製造方法、ならびにカルボキシ基含有フッ素樹脂の製造方法
CN201480044601.0A CN105452405B (zh) 2013-08-09 2014-08-06 粉体涂料的制造方法、涂装物品及其制造方法、以及含羧基氟树脂的制造方法
EP14834600.0A EP3031873B1 (en) 2013-08-09 2014-08-06 Method for manufacturing powder coating material and method for manufacturing carboxyl-group-containing fluororesin
US15/015,340 US20160152855A1 (en) 2013-08-09 2016-02-04 Process for producing powder coating material, coated article and process for its production, and method for producing carboxy group-containing fluororesin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-166645 2013-08-09
JP2013166645 2013-08-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/015,340 Continuation US20160152855A1 (en) 2013-08-09 2016-02-04 Process for producing powder coating material, coated article and process for its production, and method for producing carboxy group-containing fluororesin

Publications (1)

Publication Number Publication Date
WO2015020107A1 true WO2015020107A1 (ja) 2015-02-12

Family

ID=52461438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070776 WO2015020107A1 (ja) 2013-08-09 2014-08-06 粉体塗料の製造方法、塗装物品およびその製造方法、ならびにカルボキシ基含有フッ素樹脂の製造方法

Country Status (5)

Country Link
US (1) US20160152855A1 (ja)
EP (1) EP3031873B1 (ja)
JP (1) JPWO2015020107A1 (ja)
CN (1) CN105452405B (ja)
WO (1) WO2015020107A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204662A (ja) * 2015-04-21 2016-12-08 ダイキン工業株式会社 水性分散体、塗膜及び塗装物品
CN115461147A (zh) * 2020-04-30 2022-12-09 广荣化学株式会社 固化催化剂和树脂组合物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019006765A1 (zh) * 2017-07-07 2019-01-10 老虎表面技术新材料(苏州)有限公司 光伏组件用复合封装材料及该复合封装材料的制备方法
CN109971317A (zh) * 2017-12-27 2019-07-05 Agc株式会社 粉体涂料的制造方法
TWI808232B (zh) * 2018-08-02 2023-07-11 荷蘭商安科智諾貝爾塗料國際股份有限公司 用於柔感防污塗層之包含經聚矽氧烷修飾之聚氨酯之塗料組合物
EP3830163B1 (en) * 2018-08-02 2024-02-14 Akzo Nobel Coatings International B.V. Coating composition comprising polysiloxane-modified polyurethane for soft-feel, stain resistant coatings
CN110028651A (zh) * 2019-04-26 2019-07-19 同济大学 粉末涂料用氟碳改性异氰酸酯固化剂及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136605A (ja) * 1982-02-05 1983-08-13 Asahi Glass Co Ltd カルボキシル基含有含フツ素重合体の製造方法
JPH01103670A (ja) * 1987-07-31 1989-04-20 Nippon Oil & Fats Co Ltd 熱硬化性粉体塗料組成物
JPH03140379A (ja) * 1989-10-26 1991-06-14 Shinto Paint Co Ltd 含フッ素水性樹脂組成物の製造方法
JPH04310272A (ja) * 1991-04-04 1992-11-02 Asahi Glass Co Ltd 自動車の塗装方法
JPH08283428A (ja) * 1995-04-12 1996-10-29 Kureha Chem Ind Co Ltd エチレン・酢酸ビニル共重合体ケン化物フイルムおよびその製造方法
JPH10139812A (ja) * 1996-10-02 1998-05-26 Clariant Gmbh ポリビニルアセタール水性分散物
WO2001027208A1 (en) * 1999-10-14 2001-04-19 Daikin Industries, Ltd. Thermosetting powder coating composition
JP2003096377A (ja) 2001-09-25 2003-04-03 Asahi Glass Co Ltd 熱硬化性フッ素樹脂粉体塗料組成物
JP2003105269A (ja) 2001-09-27 2003-04-09 Asahi Glass Co Ltd 含フッ素粉体塗料組成物
JP2003105249A (ja) * 2001-09-27 2003-04-09 Asahi Glass Co Ltd フッ素樹脂系粉体塗料組成物および塗装物品
JP2013166645A (ja) 2012-02-17 2013-08-29 Taihei Mach Works Ltd 並列材料のクランプ搬送装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910004817B1 (ko) * 1987-07-31 1991-07-13 니혼유시 가부시기가이샤 열경화성분체도료조성물
KR960003930B1 (ko) * 1988-05-13 1996-03-23 아사히가라스 가부시끼가이샤 수성 분산액의 제조방법, 수성 분산액 및 수성 도포 조성물
JP3512268B2 (ja) * 1995-05-12 2004-03-29 日本化薬株式会社 光造形方法
WO2011087095A1 (ja) * 2010-01-15 2011-07-21 旭硝子株式会社 加水分解性シリル基含有含フッ素重合体の製造方法および加水分解性シリル基含有含フッ素重合体含有組成物
CN102782534A (zh) * 2010-03-03 2012-11-14 旭硝子株式会社 太阳能集热用反射板用的涂料组合物、以及太阳能集热用反射板及其制造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136605A (ja) * 1982-02-05 1983-08-13 Asahi Glass Co Ltd カルボキシル基含有含フツ素重合体の製造方法
JPH01103670A (ja) * 1987-07-31 1989-04-20 Nippon Oil & Fats Co Ltd 熱硬化性粉体塗料組成物
JPH03140379A (ja) * 1989-10-26 1991-06-14 Shinto Paint Co Ltd 含フッ素水性樹脂組成物の製造方法
JPH04310272A (ja) * 1991-04-04 1992-11-02 Asahi Glass Co Ltd 自動車の塗装方法
JPH08283428A (ja) * 1995-04-12 1996-10-29 Kureha Chem Ind Co Ltd エチレン・酢酸ビニル共重合体ケン化物フイルムおよびその製造方法
JPH10139812A (ja) * 1996-10-02 1998-05-26 Clariant Gmbh ポリビニルアセタール水性分散物
WO2001027208A1 (en) * 1999-10-14 2001-04-19 Daikin Industries, Ltd. Thermosetting powder coating composition
JP2003096377A (ja) 2001-09-25 2003-04-03 Asahi Glass Co Ltd 熱硬化性フッ素樹脂粉体塗料組成物
JP2003105269A (ja) 2001-09-27 2003-04-09 Asahi Glass Co Ltd 含フッ素粉体塗料組成物
JP2003105249A (ja) * 2001-09-27 2003-04-09 Asahi Glass Co Ltd フッ素樹脂系粉体塗料組成物および塗装物品
JP2013166645A (ja) 2012-02-17 2013-08-29 Taihei Mach Works Ltd 並列材料のクランプ搬送装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204662A (ja) * 2015-04-21 2016-12-08 ダイキン工業株式会社 水性分散体、塗膜及び塗装物品
CN115461147A (zh) * 2020-04-30 2022-12-09 广荣化学株式会社 固化催化剂和树脂组合物

Also Published As

Publication number Publication date
CN105452405B (zh) 2017-10-20
EP3031873B1 (en) 2017-10-18
CN105452405A (zh) 2016-03-30
JPWO2015020107A1 (ja) 2017-03-02
US20160152855A1 (en) 2016-06-02
EP3031873A4 (en) 2016-12-14
EP3031873A1 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP6597806B2 (ja) 粉体塗料組成物、硬化膜の製造方法、および塗装物品
JP6447498B2 (ja) 粉体塗料、塗装物品およびそれらの製造方法
JP5862845B1 (ja) 粉体塗料用組成物、粉体塗料および塗装物品
JP6451640B2 (ja) 粉体塗料および塗装物品
US10246592B2 (en) Powder paint and painted article
JP5920545B1 (ja) 粉体塗料用組成物、粉体塗料および塗装物品
WO2015020107A1 (ja) 粉体塗料の製造方法、塗装物品およびその製造方法、ならびにカルボキシ基含有フッ素樹脂の製造方法
US10113069B2 (en) Coated article
WO2016140145A1 (ja) 粉体塗料、塗装物品および塗装物品の製造方法
JP6927219B2 (ja) 塗装物品の製造方法
JP6841237B2 (ja) 粉体塗料、粉体塗料の製造方法、および塗装物品
WO2015190462A1 (ja) 含フッ素塗膜および外装部材
JP2018002880A (ja) 塗料組成物、塗装物品および含フッ素重合体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044601.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530929

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014834600

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014834600

Country of ref document: EP