WO2018032732A1 - 光伏组件用封装材料及该封装材料的制备方法 - Google Patents

光伏组件用封装材料及该封装材料的制备方法 Download PDF

Info

Publication number
WO2018032732A1
WO2018032732A1 PCT/CN2017/072150 CN2017072150W WO2018032732A1 WO 2018032732 A1 WO2018032732 A1 WO 2018032732A1 CN 2017072150 W CN2017072150 W CN 2017072150W WO 2018032732 A1 WO2018032732 A1 WO 2018032732A1
Authority
WO
WIPO (PCT)
Prior art keywords
weather resistant
resistant polyester
super weather
powder coating
photovoltaic module
Prior art date
Application number
PCT/CN2017/072150
Other languages
English (en)
French (fr)
Inventor
戴天贺
骆飚
汪志成
龙国柱
刘皎彦
练成荣
王伟力
Original Assignee
老虎粉末涂料制造(太仓)有限公司
上海羿仕新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 老虎粉末涂料制造(太仓)有限公司, 上海羿仕新能源科技有限公司 filed Critical 老虎粉末涂料制造(太仓)有限公司
Priority to EP17840710.2A priority Critical patent/EP3450620B1/en
Priority to JP2018561048A priority patent/JP6707150B2/ja
Priority to AU2017312824A priority patent/AU2017312824B2/en
Publication of WO2018032732A1 publication Critical patent/WO2018032732A1/zh
Priority to US16/198,863 priority patent/US20190097071A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0006Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0022Glass fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0034Polyamide fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0061Organic fillers or organic fibrous fillers, e.g. ground leather waste, wood bark, cork powder, vegetable flour; Other organic compounding ingredients; Post-treatment with organic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0086Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique
    • D06N3/0088Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique by directly applying the resin
    • D06N3/0093Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique by directly applying the resin by applying resin powders; by sintering
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/121Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyesters, polycarbonates, alkyds
    • D06N3/123Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyesters, polycarbonates, alkyds with polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2201/00Chemical constitution of the fibres, threads or yarns
    • D06N2201/02Synthetic macromolecular fibres
    • D06N2201/0263Polyamide fibres
    • D06N2201/0272Aromatic polyamide fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2201/00Chemical constitution of the fibres, threads or yarns
    • D06N2201/08Inorganic fibres
    • D06N2201/087Carbon fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/16Properties of the materials having other properties
    • D06N2209/1692Weather resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to the field of photovoltaics, and in particular to a packaging material for a photovoltaic module, and to a method for preparing the packaging material.
  • Solar photovoltaic power generation relies on solar cells to directly convert light energy into electrical energy.
  • the total global production of photovoltaic cells has increased at an average annual growth rate of more than 40%.
  • the installed capacity of photovoltaic systems worldwide has reached 100 GW.
  • Photovoltaic power generation is expected to account for 10% of the world's energy supply by 2030, making a substantial contribution to the world's energy supply and energy mix.
  • the package structure of the existing typical photovoltaic module includes from the top to the bottom: tempered glass layer 30c, upper EV A layer 21c, photovoltaic panel layer 10c, lower EVA layer 22c, back sheet layer 40c, wherein: the density of the tempered glass layer is 2.5 g/cm 3 , and the common thickness of the tempered glass is 3.2 mm, so that the tempered glass glass is The weight of square meters is up to 8Kg.
  • the PV modules packaged by them are usually of higher quality. The weight of the PV modules is more than lOKg per square meter.
  • the weight of PV modules per square meter is at least 12Kg, when it is applied in construction.
  • the support structure of the photovoltaic module is put forward higher requirements, which increases the difficulty of construction and the cost of installation.
  • the specific performance is as follows: During the installation of the roof or the wall, there is heavy weight. The installation is labor intensive and difficult to implement; especially in some cases, due to the limitation of the load bearing capacity of the building, it is impossible to Installation of PV modules.
  • the existing photovoltaic module packaging structure has a single appearance and is not easily changed to meet the requirements of different architectural aesthetics.
  • the Chinese invention patent of CN102516852A discloses a weather-resistant, high-heat-conducting coating and a heat-dissipating solar backsheet, but the coating is in production. A large amount of solvent is used in the process, which is very polluting to the environment and does not meet the green environmental standards.
  • the Chinese invention patent of CN102610680A discloses a UV-curable weather-resistant coating solar cell backsheet, but the liquid coating process used is complicated, the defect rate is high, and the equipment investment is large.
  • fluoropolymers are used in a series of Chinese invention patents such as CN102712184A, CN103346182A, CN102969382B, CN101290950B, CN103958196A, etc., but the fluoropolymer is expensive and increases the production cost, and the above patents It is only a material for photovoltaic backsheets, which is opaque, low in hardness and weak in rigidity, and is not suitable for replacing existing tempered glass.
  • an object of the present invention is to provide a packaging material for a photovoltaic module, which is not only low in manufacturing cost.
  • Another object of the present invention is to provide a method for preparing the above-mentioned packaging material for a photovoltaic module, which realizes any change in the package size of the photovoltaic module to meet the installation requirements of different buildings, and further facilitates the installation and application of the photovoltaic module.
  • a packaging material for a photovoltaic module comprises the following parts by weight of raw materials: 30-50 parts of fiber cloth, the fiber cloth is made of fiber material; super weather resistant polyester powder coating 50-70 parts, the super weather resistant polyester powder coating comprises a super weather resistant polyester resin and a curing agent; wherein, the super The weatherable polyester powder coating is uniformly coated on the fiber cloth.
  • the fiber cloth has a basis weight ranging from 30 to 400 g/m 2
  • the super weather resistant polyester powder coating has a weight per unit area of 100-coated on the fiber cloth. 400 g/m 2 .
  • the fiber material is any one or a combination of glass fiber, carbon fiber and aramid fiber.
  • the fiber material has a monofilament diameter ranging from 3 to 23 ⁇ m.
  • the fiber cloth is made of a combination of any one of a plain weave, a twill, a satin, a rib, or a mat, or a plurality of weaving methods.
  • the super weather resistant polyester resin is a mixture of one or both of a hydroxyl super weather resistant polyester resin or a carboxyl super weather resistant polyester resin.
  • the super weather resistant polyester resin is formed by polymerizing one or more monomers of terephthalic acid, isophthalic acid, neopentyl glycol, adipic acid, and ethylene glycol.
  • the super weather resistant polyester resin is a hydroxyl super weather resistant polyester resin
  • the hydroxyl super weather resistant polyester resin has a hydroxyl value ranging from 30 to 300 mgKOH/g, and a glass transition temperature range of 50-75. °C, viscosity range is 1
  • the super weather resistant polyester resin is a carboxyl super weather resistant polyester resin
  • the carboxyl super weather resistant polyester resin has an acid value ranging from 15 to 85 mg KOH/g, and a glass transition temperature ranging from 50 to 75. °C, viscosity range is 15
  • the curing agent is in an amount of 2-20% by weight of the super weather resistant polyester powder coating, and the curing agent is triglycidyl isocyanurate or trimellitic acid. Any one or a mixture of any of a ratio of glycidyl ester, diglycidyl terephthalate, glycidyl methacrylate, hydroxyalkylamide, isocyanate.
  • the super weather resistant polyester powder coating further comprises an auxiliary agent, wherein the auxiliary component comprises 0-40% by weight of the super weather resistant polyester powder coating, and the auxiliary agent Is a polyamide wax, a polyolefin wax, an amide-modified phenol urea surfactant, benzoin, polydimethylsiloxane, vinyltrichlorosilane, n-butyltriethoxysilane, methyl orthosilicate , monoalkoxy pyrophosphate, acrylate, phenolic resin, urea formaldehyde resin, melamine formaldehyde resin, distearyl ethylenediamine, a mixture of ethylene oxide and propylene oxide, hindered phenol, thiodipropionic acid Diester, benzophenone, salicylate derivative, hindered amine, alumina, gas phase Any one or more of any of silicon dioxide, tetrabromobisphenol octadecy
  • the present invention also provides a method for preparing a packaging material for a photovoltaic module as described above, wherein the operation steps thereof include the following:
  • the super weatherable polyester powder coating is uniformly applied to the fiber cloth by a coating device;
  • the thermal bonding process has a pressurization range of 0.05-0.25 MPa, the thermal bonding process has a heating temperature range of 90-130 ° C, and the heated turn-up range is 5-20 seconds.
  • the present invention proposes to use 30-50 parts by weight of fiber cloth and 50-70 parts by weight of super weather resistant polyester powder coating uniformly coated on the fiber cloth as a packaging material for the photovoltaic module, satisfying the anti-UV and anti-UV Under the premise of aging, impact resistance, fire protection and other technical standards of the photovoltaic industry, it has effectively solved the light weight of photovoltaic module packaging materials, and has low manufacturing cost. It replaces the traditional packaged structure of tempered glass to provide certain rigidity to photovoltaic modules.
  • the present invention also uniformly coats the super weather resistant polyester powder coating on the fiber cloth by a coating device, and then pre-bonds the super weather resistant polyester powder coating with the fiber cloth by pressure heating, and finally segments
  • the encapsulation material of the PV module of suitable size is cut, so that any change of the package size of the PV module can be realized to meet the installation requirements of different buildings, and the installation and application of the PV module is further facilitated.
  • DRAWINGS 1 is a block diagram showing the steps of preparing a packaging material for a photovoltaic module according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a preparation device for a packaging material for a photovoltaic module according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing a package structure of a photovoltaic module to which an encapsulating material for a photovoltaic module of the present invention is applied;
  • FIG. 4 is a schematic diagram of another photovoltaic module package structure applying the packaging material for a photovoltaic module of the present invention
  • FIG. 5 is a schematic diagram of a package structure of a conventional typical photovoltaic module according to the background art of the present invention.
  • the embodiment of the invention discloses a packaging material for a photovoltaic module, the packaging material comprises the following raw materials by weight: 30-50 parts of fiber cloth, the fiber cloth is made of fiber material; super weather resistant polyester powder 50-70 parts of the coating, the super weather resistant polyester powder coating comprises a super weather resistant polyester resin and a curing agent; wherein the super weather resistant polyester powder coating is evenly coated on the fiber cloth.
  • the embodiment of the present invention provides a packaging material for a photovoltaic module by using 30-50 parts by weight of a fiber cloth and 50-70 parts by weight of a super weather resistant polyester powder coating uniformly coated on the fiber cloth.
  • a packaging material for a photovoltaic module by using 30-50 parts by weight of a fiber cloth and 50-70 parts by weight of a super weather resistant polyester powder coating uniformly coated on the fiber cloth.
  • UV, anti-aging, anti-shock, fireproof and other photovoltaic industry technical standards it has effectively solved the light weight of photovoltaic module packaging materials, and the manufacturing cost is low. It replaces the traditional package structure type tempered glass and provides certain components for photovoltaic modules.
  • the rigidity of the photovoltaic cell protects the photovoltaic cell, so that it can greatly reduce the weight of the photovoltaic module, thereby adapting to the installation of photovoltaic power generation products in more occasions, and also reducing the labor intensity of the product installation and the convenience of installation, from the overall Reduce the installation cost of PV modules.
  • Embodiments of the present invention also disclose a method for preparing a packaging material for a photovoltaic module as above, wherein the operation steps include the following:
  • the super weather resistant polyester powder coating is uniformly coated on the fiber cloth by a coating device;
  • the super weather resistant polyester powder coating is uniformly coated on the fiber cloth by a coating device, and then the super weather resistant polyester powder coating is pre-bonded to the fiber cloth by pressure heating, and finally, Segment cutting to produce a suitable size of the packaging material of the photovoltaic module, so that any change in the size of the photovoltaic module package can be achieved Adapt to the installation requirements of different buildings, and further facilitate the installation and application of photovoltaic modules.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • An encapsulating material for a photovoltaic module comprising the following parts by weight of raw materials:
  • the fiber cloth is woven from the fiber material, preferably, in the embodiment of the invention, the fiber cloth is made of any plain, twill, satin, rib or mat.
  • a weaving method or a combination of several weaving methods specifically, in the present embodiment, 30 parts of the fiber cloth, the fiber cloth is made of a fiber material by plain weaving, and of course, those skilled in the art can Choose other well-known weaving methods according to actual needs;
  • the basis weight of the fiber cloth ranges from 30 to 400 g/m 2 , and the weight of the fiber cloth is ensured under the strength of the fiber cloth, specifically, in the embodiment.
  • the fiber cloth has a basis weight of 100 g/m 2 ;
  • the fiber material is any one or a combination of glass fiber, carbon fiber and aramid fiber to ensure good insulation and weather resistance of the fiber cloth, and is compatible with photovoltaic
  • the fiber material is glass fiber.
  • those skilled in the art can select other types of fiber materials according to actual needs, and the embodiments of the present invention will not be further illustrated;
  • the diameter of the monofilament of the fiber material ranges from 3 to 23 ⁇ m, and specifically, in the embodiment, the diameter of the monofilament of the fiber material is 3 ⁇ m, which facilitates weaving of the fiber material, and easily obtain the required basis weight of the fiber cloth;
  • the super weather resistant polyester powder coating comprises a super weather resistant polyester resin and a curing agent, specifically, in the present embodiment, 70 parts of the super weather resistant polyester powder coating;
  • the super weather resistant polyester resin is a mixture of one or two of a hydroxyl super weather resistant polyester resin or a carboxyl super weather resistant polyester resin to ensure super weather resistant polyester.
  • the resin has good insulation and weather resistance, and meets the requirements of photovoltaic related standards.
  • the super weather resistant The polyester resin is a hydroxyl super weather resistant polyester resin;
  • the hydroxyl super weather resistant polyester resin is a mixture of one or more monomers of neopentyl glycol, adipic acid, and ethylene glycol, of course, A person skilled in the art can select other types of monomers to polymerize to obtain a hydroxyl super weather resistant polyester resin according to actual needs, and the embodiment of the present invention is no longer an example.
  • the super weather resistant polyester resin Polymerized from adipic acid monomer;
  • the hydroxyl super weather resistant polyester resin has a hydroxyl value ranging from 30 to 300 mg KO H/g, a glass transition temperature ranging from 50 to 75 ° C, and a viscosity ranging from 15 to 200 Pa.
  • the hydroxyl group super weather resistant polyester resin has a hydroxyl value of 100 mgKOH/g, a glass transition temperature of 60 ° C, and a viscosity range of 80 Pa s;
  • the curing agent comprises 2-20% by weight of the super weather resistant polyester powder coating
  • the curing agent is triglycidyl isocyanurate and trimellitic acid trihydrate.
  • a curing agent It is triglycidyl isocyanurate, and triglycidyl isocyanurate accounts for 5% by weight of the hydroxyl super weather resistant polyester powder coating.
  • the super weather resistant polyester powder coating is uniformly coated on the fiber cloth, and the super weather resistant polyester powder coating is coated on the fiber cloth with a basis weight ranging from 100 to 400 g/m 2 , specifically, In this embodiment, the super weather resistant polyester powder coating has a basis weight of 100 g/m 2 coated on the fiber cloth;
  • the super weather resistant polyester powder coating provided by the embodiment of the present invention may further add a certain amount of auxiliary agent, and preferably, the auxiliary weight portion accounts for the super weathering resistance. 0-40% by weight of the ester powder coating, used to further improve the insulation and weather resistance of the super weather resistant polyester powder coating, and also adjust the super weather resistant polyester powder by adding additives according to the actual needs of the installation of the photovoltaic module. The color of the coating further facilitates the practical installation of the photovoltaic module.
  • the auxiliary agent is a polyamide wax, a polyolefin wax, an amide-modified phenol urea surfactant, a benzoin, a polydimethyl group.
  • the super weather resistant polyester powder coating according to the embodiment of the present invention can be prepared by using a known preparation technique of any of the existing powder coatings, and the typical method can be prepared by using premixing, melt extrusion, milling, and the like.
  • the super weather resistant polyester resin, the curing agent and the auxiliary agent are premixed, preferably, the premixed crucible may be selected between 2-10 minutes, and then the premixed
  • the mixture is extruded by a screw extruder and pressed into a sheet.
  • the length to diameter ratio of the extruder can be selected between 15:1 and 50:1, and the heating temperature of the extruder is selected to be 80-120 °C.
  • the screw speed is selected at 200-800 rpm; finally, the sheet is pulverized into small pieces and then ground into a powder coating of a certain particle size by a mill.
  • the rotation speed of the mill is selected at 50-150 rpm, preferably, super weathering resistance
  • the particle size range of the finished ester powder coating is controlled between 35-300 ⁇ m.
  • process parameters or powder coating preparation processes can also be used to prepare super weatherable polyester powder coatings, which are believed to be the conventional technical choices of those skilled in the art. Therefore, the preparation process of the super weather resistant polyester powder coatings is not A detailed description will be given.
  • the method for preparing the packaging material for a photovoltaic module is as follows, wherein the operation steps include the following:
  • the super weatherable polyester powder coating is uniformly coated on the fiber cloth by a coating device;
  • step b) finishing the thermally bonded super weather resistant polyester powder coating and the fiber cloth
  • the thermal bonding process needs to adopt a suitable range of pressurization and heating control, because the super weather resistant polyester powder coating can be made only under the appropriate pressure and temperature conditions. A better hot-melt bonding process between the fiber cloths is ensured, and finally, the requirements for the lamination process in the process of preparing the photovoltaic module package are ensured, thereby obtaining a packaging material that is truly applicable to the photovoltaic cell module package.
  • the press range of the thermal bonding process is 0.05-0.25 Mpa
  • the heating temperature range of the thermal bonding process is 90-130 ° C
  • the heating range is 5-20 seconds.
  • the pressing pressure of the thermal bonding process is 0.05 MPa
  • the heating temperature of the thermal bonding process is 130 ° C
  • the heating enthalpy range is 5 seconds.
  • the method for preparing the packaging material for the photovoltaic module adopts the device shown in FIG. 2, and in actual implementation, the fiber cloth is placed in the fiber feeder 51 to be super weather resistant.
  • the polyester powder coating is uniformly applied to the fiber cloth output from the fiber feeder 51 by the coating device 52, and then heated by the hot melt laminator 53 to thermally bond the super weather resistant polyester powder coating material to the fiber cloth.
  • the segmented cutting of the super-weatherable polyester powder coating and the fiber cloth which have been thermally bonded is obtained, thereby obtaining a packaging material for the photovoltaic module.
  • the coating device may also employ a dusting head, and the crucible coating device realizes the coating process in the form of dusting, thereby uniformly coating the super weather resistant polyester powder coating on the fiber cloth.
  • the crucible coating device realizes the coating process in the form of dusting, thereby uniformly coating the super weather resistant polyester powder coating on the fiber cloth.
  • FIG. 3 Please further refer to the schematic diagram of the photovoltaic module packaging structure of the packaging material for photovoltaic modules of the present embodiment as shown in FIG. 3, which includes the packaging material layer 30a made by the embodiment from the top to the bottom.
  • a person skilled in the art can use the encapsulation material obtained by the embodiment of the present invention to replace other encapsulation layer structures or combine with other materials to replace other layer structures according to actual needs and conditions of the installation site, and the present invention does not specifically limit the present invention.
  • FIG. 4 another schematic diagram of a photovoltaic module package structure using the packaging material for a photovoltaic module of the present embodiment is shown in FIG.
  • the photovoltaic package structure includes, in order from top to bottom, an upper package material layer 31b, an upper EVA layer 21b, a photovoltaic panel layer 10b, a lower EVA layer 22b, and a lower package material layer 32b, which are formed by the present embodiment.
  • the material layer 31b and the lower encapsulating material layer 32b replace the tempered glass layer and the backing layer, respectively.
  • the encapsulating material includes the following parts by weight of the raw materials:
  • the fiber cloth has a basis weight of 30 g / m 2 ;
  • the fibrous material is carbon fiber; [0071] The filament diameter of the fiber material is 5 ⁇ ;
  • the super weather resistant polyester resin is a carboxyl super weather resistant polyester resin, which is a mixture of one or two monomers of terephthalic acid and isophthalic acid.
  • the carboxyl group super weather resistant polyester resin has an acid value in the range of 15 to 85 mgKOH/g, a glass transition temperature in the range of 50 to 75 ° C, and a viscosity in the range of 15 to 2 00 Pa-s.
  • the carboxyl group The super weather resistant polyester resin is polymerized from terephthalic acid monomer, and the carboxyl group super weather resistant polyester resin has an acid value of 85 mgKOH/g, a glass transition temperature of 75 ° C, and a viscosity range of 200 Pa s;
  • the curing agent is triglycidyl trimellitate, and the weight fraction of trimellitic acid triglycidyl ester accounts for 6% by weight of the super weather resistant polyester powder coating;
  • the auxiliary agent is a polyamide wax, a polyolefin wax, an amide modified phenol urea surfactant, a benzoin, a hindered phenol, a thiodipropionate, a benzophenone, a salicylate derivative, and a hindered Mixing of amine, alumina, and magnesium hydroxide, barium sulfate, titanium dioxide, carbon black in any ratio, the weight of the auxiliary agent accounts for 40% by weight of the super weather resistant polyester powder coating;
  • the super weather resistant polyester powder coating has a basis weight of 150 g/m coated on the fiber cloth.
  • the pressing pressure of the thermal bonding process is 0.1 Mpa
  • the heating temperature of the thermal bonding process is 120 ° C
  • the heating time is 8 seconds.
  • the encapsulating material comprises the following parts by weight of raw materials:
  • the fiber cloth has a basis weight of 50 g / m 2 ;
  • the fibrous material is aramid fiber
  • the filament diameter of the fiber material is 8 ⁇ ;
  • super weather resistant polyester powder coating includes super weather resistant polyester resin, curing agent and auxiliary agent;
  • the super weather resistant polyester resin is polymerized from a neopentyl glycol monomer;
  • the hydroxyl super weather resistant polyester resin has a hydroxyl value of 30 mgKOH/g, a glass transition temperature of 50 ° C, and a viscosity in the range of 15 Pa-s.
  • the curing agent is diglycidyl terephthalate, the weight fraction of diglycidyl terephthalate accounts for 8% by weight of the super weather resistant polyester powder coating;
  • the auxiliary agent is polydimethylsiloxane, vinyltrichlorosilane, n-butyltriethoxysilane, methyl orthosilicate
  • the super weather resistant polyester powder coating has a basis weight of 200 g/m coated on the fiber cloth.
  • the pressing pressure of the thermal bonding process is 0.15 MPa
  • the heating temperature of the thermal bonding process is 100 ° C
  • the heating time is 10 seconds
  • the encapsulating material includes the following parts by weight of the raw materials:
  • the fiber cloth has a basis weight of 80 g / m 2 ;
  • the diameter of the monofilament of the fibrous material is ⁇ ;
  • the super weather resistant polyester resin is polymerized from an ethylene glycol monomer
  • the hydroxyl group weather resistant polyester resin has a hydroxyl value of 50 mgKOH/g, a glass transition temperature of 55 ° C, and a viscosity range of 35 Pa-s.
  • the curing agent is diglycidyl terephthalate, and the weight ratio of diglycidyl terephthalate is 8% by weight of the super weather resistant polyester powder coating;
  • the auxiliary agent is a mixture of hindered phenol, thiodipropionic acid diester, benzophenone, salicylate derivative, hindered amine, aluminum oxide and barium sulfate, and the auxiliary component accounts for the super weather resistant polyester. 30% by weight of the powder coating;
  • the super weather resistant polyester powder coating has a basis weight of 250 g/m coated on the fiber cloth.
  • the pressing pressure of the thermal bonding process is 0.18 MPa
  • the heating temperature of the thermal bonding process is 115 ° C
  • the heating time is 8 seconds
  • the remaining technical solutions of the fourth embodiment are the same as those of the first embodiment.
  • the encapsulating material includes the following parts by weight of the raw material:
  • the fiber cloth has a basis weight of 120 g / m 2 ;
  • the filament diameter of the fiber material is 13 ⁇ ;
  • the super weather resistant polyester resin is a mixture of neopentyl glycol and adipic acid monomers
  • the hydroxyl group weather resistant polyester resin has a hydroxyl value of 80 mgKOH/g, a glass transition temperature of 58 ° C, and a viscosity range of 70 Pa-s.
  • the curing agent is glycidyl methacrylate, and the weight fraction of glycidyl methacrylate accounts for 10% by weight of the super weather resistant polyester powder coating;
  • the auxiliary agent is melamine formaldehyde resin, distearyl ethylenediamine, a mixture of ethylene oxide and propylene oxide, hindered phenol, thiodipropionic acid diester and benzophenone, and the auxiliary weight accounts for 20% by weight of weatherable polyester powder coating;
  • the super weather resistant polyester powder coating has a basis weight of 300 g/m coated on the fiber cloth.
  • the pressing pressure of the thermal bonding process is 0.2 MPa
  • the heating temperature of the thermal bonding process is 118 ° C
  • the heating time is 6 seconds
  • the encapsulating material includes the following parts by weight of the raw materials:
  • the filament diameter of the fiber material is 16 ⁇ ;
  • the super weather resistant polyester resin is a mixture of adipic acid and ethylene glycol monomers;
  • the hydroxyl super weather resistant polyester resin has a hydroxyl value of 150 mgKOH/g, a glass transition temperature of 65 ° C, and a viscosity in the range of 100 Pa-s.
  • the curing agent is an isocyanate, and the isocyanate by weight is 12% by weight of the super weather resistant polyester powder coating;
  • the super weather resistant polyester powder coating has a basis weight of 350 g/m coated on the fiber cloth.
  • the pressing pressure of the thermal bonding process is 0.25 MPa
  • the heating temperature of the thermal bonding process is 95 ° C
  • the heating time is 15 seconds
  • the encapsulating material includes the following parts by weight of the raw materials:
  • the fiber cloth has a basis weight of 180 g / m 2 ;
  • the filament diameter of the fibrous material is 18 ⁇ ;
  • the super weather resistant polyester resin is a mixture of adipic acid and ethylene glycol monomers
  • the hydroxyl group weather resistant polyester resin has a hydroxyl value of 200 mgKOH/g, a glass transition temperature of 70 ° C, and a viscosity range of 150 Pa-s.
  • the curing agent is an isocyanate, and the isocyanate parts by weight is 15% by weight of the super weather resistant polyester powder coating;
  • the auxiliary agent is a mixture of vinyl trichlorosilane, n-butyltriethoxysilane, methyl orthosilicate and monoalkoxy pyrophosphate in any ratio, and the auxiliary component accounts for the super weather resistant polyester powder. 8% by weight of the coating;
  • the super weather resistant polyester powder coating has a basis weight of 400 g/m coated on the fiber cloth.
  • the pressing pressure of the thermal bonding process is 0.22 MPa
  • the heating temperature of the thermal bonding process is 105 ° C
  • the heating time is 20 seconds
  • the encapsulating material includes the following parts by weight of the raw material: [0147] 42 parts of the fiber cloth, which is made by combining the fiber material by plain weave and satin weave;
  • the fiber cloth has a basis weight of 200 g / m 2 ;
  • the filament diameter of the fibrous material is 18 ⁇ ;
  • the carboxyl group super weather resistant polyester resin has an acid value of 35 mgKOH/g, a glass transition temperature of 72 ° C, and a viscosity range of 180 Pa-s.
  • the curing agent is triglycidyl isocyanurate, and the weight fraction of triglycidyl isocyanurate accounts for 10% by weight of the super weather resistant polyester powder coating;
  • the auxiliary agent is a mixture of arsenic, phenolic resin, urea-formaldehyde resin and melamine formaldehyde resin.
  • the pressing pressure of the thermal bonding process is 0.16 MPa
  • the heating temperature of the thermal bonding process is 98 ° C
  • the heating time is 18 seconds
  • the encapsulating material includes the following parts by weight of the raw material:
  • the fiber cloth has a basis weight of 250 g / m 2 ;
  • the fibrous material is carbon fiber
  • the filament diameter of the fibrous material is 20 ⁇ ;
  • the carboxyl super weather resistant polyester resin is polymerized from an isophthalic acid monomer, and the carboxyl super weather resistant polyester resin has an acid value of 30 mgKOH/g, a glass transition temperature of 70 ° C, and a viscosity of 150 Pa-s;
  • the curing agent accounts for 5% by weight of the super weather resistant polyester powder coating
  • the pressing pressure of the thermal bonding process is 0.18 MPa
  • the heating temperature of the thermal bonding process is 100 ° C
  • the heating time is 16 seconds
  • the encapsulating material includes the following parts by weight of the raw material:
  • the fiber cloth has a basis weight of 300 g / m 2 ;
  • the fibrous material is a combination of glass fibers and aramid fibers
  • the filament diameter of the fibrous material is 23 ⁇ ;
  • the carboxyl group super weather resistant polyester resin is polymerized from an isophthalic acid monomer, and the carboxyl group super weather resistant polyester resin has an acid value of 60 mgKOH/g, a glass transition temperature of 65 ° C, and a viscosity of 120 Pa-s;
  • the curing agent accounts for 8% by weight of the super weather resistant polyester powder coating
  • the encapsulating material includes the following parts by weight of the raw material:
  • the fiber cloth has a basis weight of 350 g / m 2 ;
  • the fibrous material is a combination of glass fibers and carbon fibers
  • the filament diameter of the fibrous material is 14 ⁇ ;
  • the carboxyl super weather resistant polyester resin is a mixture of terephthalic acid and an isophthalic acid monomer, and the carboxyl group super weather resistant polyester resin has an acid value of 50 mgKOH/g and a glass transition temperature of 62 ° C.
  • the viscosity is 80 Pa-s;
  • the curing agent accounts for 10% by weight of the super weather resistant polyester powder coating
  • the encapsulating material includes the following parts by weight of the raw material:
  • the fiber cloth has a basis weight of 400 g / m 2 ; [0191] The filament diameter of the fiber material is 23 ⁇ ;
  • the carboxyl group super weather resistant polyester resin is a mixture obtained by polymerizing a terephthalic acid and an isophthalic acid monomer, and the carboxyl group super weather resistant polyester resin has an acid value of 30 mgKOH/g and a glass transition temperature of 58 ° C. Viscosity is 60 Pa-s;
  • the curing agent accounts for 14% by weight of the super weather resistant polyester powder coating
  • the remaining technical solutions of the thirteenth embodiment are the same as those of the above-mentioned first embodiment, except that in the present embodiment 13, the fiber cloth has a basis weight of 130 g/m 2 , and the super weather resistant polyester powder coating is coated.
  • the basis weight on the fiber cloth was 180 g/m 2 .
  • the remaining technical solutions of the present embodiment 14 are the same as those of the above-mentioned embodiment 2, except that in the present embodiment 14, the acid value of the carboxyl super weather resistant polyester resin is 15 mgKOH/g, and the glass transition temperature is 50 °C. , the viscosity is 15P as, the curing agent accounts for 16% by weight of the super weather resistant polyester powder coating; the basis weight of the fiber cloth is 80 g/m 2 , and the weight per unit area of the super weather resistant polyester powder coating coated on the fiber cloth 280 g/m
  • This Comparative Example 1 employs an encapsulation material of a conventional typical photovoltaic module described in the background art.
  • This Comparative Example 2 employs an EVA film encapsulating material described in the background art.
  • This Comparative Example 3 employs a POE film encapsulating material described in the background art.
  • Comparative Example 4 The remaining technical solutions of Comparative Example 4 were the same as those of the above Example 1, except that in the Comparative Example 4, the encapsulating material included 30 parts of fiber cloth and a conventional commercial epoxy powder coating.
  • the present invention performs an effect test on the above embodiments and comparative examples, and the test results are as shown in Table 1 below. 1 Comparison of the implementation effects of various packaging materials and photovoltaic module packaging
  • the weight of the package structure described in the full text of the present invention refers to the weight per unit square of the packaging material for the photovoltaic module;
  • the impact resistance test refers to the ice ball with a standard diameter of 25 mm and a mass of 7.53 g at 23.0 m/
  • the speed of s is emitted, impacting 11 locations of the packaged PV modules, and the impact resistance of the PV modules is judged by three aspects: appearance, maximum power attenuation and insulation resistance.
  • the fire resistance is detected by UL1703 standard.
  • the result of the pencil hardness is through ASTM
  • the embodiment of the present invention effectively solves the lightness of the photovoltaic module packaging material under the premise of meeting the technical standards of the photovoltaic industry such as anti-ultraviolet, anti-aging, anti-shock, fireproof and the like.
  • Quantitative, and low manufacturing cost replacing the traditional package structure of tempered glass, providing a certain rigidity to the photovoltaic module to protect the photovoltaic cell, thus not only greatly reducing the weight of the photovoltaic module, thereby adapting to more occasions of photovoltaic power generation products Installation, but also reduce the labor intensity of the product installation and improve the installation convenience, reducing the installation cost of the photovoltaic module as a whole.
  • the embodiment of the present invention uniformly coats the super weather resistant polyester powder coating on the fiber cloth by the coating device, and pre-bonds the super weather resistant polyester powder coating with the fiber cloth by pressure heating. Finally, the final segmentation cuts the packaging material of the PV module of the appropriate size, so that any change in the package size of the PV module can be realized to meet the installation requirements of different buildings, and further facilitate the installation of the PV module.
  • the material obtained in the present embodiment can be applied to the packaging of the photovoltaic module to achieve an excellent implementation effect
  • the photovoltaic field is not the only application field of the material, and those skilled in the art according to the needs of the practical application field, and based on the present invention
  • the disclosed characteristics of the packaging material for photovoltaic modules and the technical effects achieved can completely apply the present invention to other suitable fields, and such applications do not require any creative labor, and still belong to the spirit of the present invention. This application is therefore also considered to be within the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)
  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本发明公开了提供一种光伏组件用封装材料,封装材料包括下述重量份数的原料:纤维布30-50份,纤维布由纤维材料织造制成;超耐候聚酯粉末涂料50-70份,超耐候聚酯粉末涂料包括超耐候聚酯树脂和固化剂;其中,超耐候聚酯粉末涂料均匀地涂覆在纤维布上;本发明不仅制造成本低,而且在满足抗紫外、抗老化、抗冲击、防火等光伏行业技术标准要求的前提下,有效实现了解决了光伏组件封装材料的轻量化,提高安装的便利度,降低安装成本,非常适合在光伏领域规模推广应用;本发明还公开了该光伏组件用封装材料的制备方法,实现了光伏组件封装尺寸的任意改变以适应不同建筑的安装要求,进一步便于光伏组件的安装应用。

Description

说明书 发明名称:光伏组件用封装材料及该封装材料的制备方法 技术领域
[0001] 本发明属于光伏领域, 具体涉及一种光伏组件用封装材料, 本发明还涉及了该 封装材料的制备方法。
背景技术
[0002] 在当前社会, 能源矛盾与环境问题越来越凸显, 发展各类清洁能源是必然趋势 。 近年来, 光伏行业快速发展, 技术更新逐步加快, 目前光伏行业正向产品多 元化发展, 高可靠性、 高功率、 低安装成本的各种功能组件研究幵发已成为光 伏组件发展的一种方向。
[0003] 太阳能光伏发电依靠太阳电池把光能直接转变为电能。 在过去的十年中, 光伏 电池全球总产量以平均超过 40%的年增长率增加, 至 2012年底全球光伏发电系统 装机容量已达 100GW。 预计光伏发电在 2030年占到世界能源供给的 10%, 对世 界的能源供给和能源结构做出实质性的贡献。
[0004] 作为光伏领域运用的封装材料, 要求其具备抗紫外、 抗老化等性能, 如图 5所 示, 现有典型的光伏组件的封装结构从上往下依次包括: 钢化玻璃层 30c、 上 EV A层 21c、 光伏电池板层 10c、 下 EVA层 22c、 背板层 40c, 其中: 钢化玻璃层的密 度达 2.5 g/cm 3, 而钢化玻璃的常用厚度为 3.2mm, 因而钢化玻璃玻璃每平方米重 量高达 8Kg, 由其封装完成的光伏组件通常质量较大, 其重量每平方米达到 lOKg 以上, 加上安装支撑结构, 光伏组件每平方米的重量至少达到 12Kg以上, 当其 应用在建筑物顶部或墙面等场合中, 对光伏组件的支撑结构提出了较高的要求 , 增加了工程建设难度以及安装的成本, 具体表现为: 在建筑物顶部或墙面安 装过程中, 存在重量重, 安装劳动强度大, 实施困难; 特别在有一些场合由于 建筑承重载荷的限制, 导致无法安装光伏组件。 同吋, 现有的光伏组件封装结 构外观单一, 不太容易变化以适应不同建筑美观的要求等缺点。
[0005] 目前有一些技术方案提出通过改变封装材料试图来解决光伏组件轻量化的问题 , 即采用高透光薄膜、 透明背板替代钢化玻璃, 但是在实际应用过程中, 由于 这些高透光薄膜、 透明背板大多仅采用 EVA、 POE等胶膜, 如此封装后的光伏组 件, 在抗冲击、 防火等性能上无法满足光伏行业技术标准。
[0006] 也有一些技术方案公幵用于降低光伏组件的重量, 如公幵号为 CN102516852A 的中国发明专利公幵了一种耐候、 高导热涂层和散热太阳能背板, 但是其涂层 在生产过程中要用到大量溶剂, 对环境污染很大, 不符合绿色环保标准。 又如 公幵号为 CN102610680A的中国发明专利公幵了一种 UV固化耐候涂层的太阳能 电池背板, 但是其采用的液体涂覆工艺较复杂, 不良率较高, 设备投资大。 再 如公幵号为 CN102712184A、 CN103346182A、 CN102969382B、 CN101290950B 、 CN103958196A等一系列中国发明专利中均采用了含氟聚合物, 但含氟聚合物 价格昂贵, 增加了生产成本, 不仅如此, 上述专利所公幵的仅仅只是光伏背板 用材料, 不透光, 硬度低、 刚性较弱, 不适合用于替代现有的钢化玻璃。
[0007] 因此, 有必要寻求一种光伏组件用封装材料来解决现有光伏组件封装结构中存 在的封装材料重量重的问题, 同吋又满足抗紫外、 抗老化、 抗冲击、 防火等光 伏行业技术标准的要求。
技术问题
[0008] 有鉴于此, 本发明的目的在于提供一种光伏组件用封装材料, 不仅制造成本低
, 而且在满足抗紫外、 抗老化、 抗冲击、 防火等光伏行业技术标准要求的前提 下, 有效实现了解决了光伏组件封装材料的轻量化, 提高安装的便利度, 降低 安装成本, 非常适合在光伏领域规模推广应用。
[0009] 本发明的另一目的在于提供上述光伏组件用封装材料的制备方法, 实现了光伏 组件封装尺寸的任意改变以适应不同建筑的安装要求, 进一步便于光伏组件的 安装应用。
问题的解决方案
技术解决方案
[0010] 本发明采用的技术方案如下:
[0011] 一种光伏组件用封装材料, 所述的封装材料包括下述重量份数的原料: 纤维 布 30-50份, 所述的纤维布由纤维材料织造制成; 超耐候聚酯粉末涂料 50-70份 , 所述的超耐候聚酯粉末涂料包括超耐候聚酯树脂和固化剂; 其中, 所述的超 耐候聚酯粉末涂料均匀地涂覆在所述的纤维布上。
[0012] 优选地, 所述的纤维布的单位面积重量范围为 30-400g/m 2, 所述的超耐候聚酯 粉末涂料涂覆在所述的纤维布上的单位面积重量范围为 100-400 g/m 2。
[0013] 优选地, 所述的纤维材料是玻璃纤维、 碳纤维和芳纶纤维中的任意一种或几种 的组合。
[0014] 优选地, 所述的纤维材料的单丝直径范围为 3-23μηι。
[0015] 优选地, 所述的纤维布是由纤维材料采用平纹、 斜纹、 缎纹、 罗纹或席纹中的 任意一种织造方式或几种织造方式的组合制成。
[0016] 优选地, 所述超耐候聚酯树脂是由羟基超耐候聚酯树脂或者羧基超耐候聚酯树 脂中的一种或两种的混合。
[0017] 优选地, 所述的超耐候聚酯树脂由对苯二甲酸、 间苯二甲酸、 新戊二醇、 己二 酸、 乙二醇中的一种或几种单体聚合而成。
[0018] 优选地, 所述的超耐候聚酯树脂是羟基超耐候聚酯树脂, 所述的羟基超耐候聚 酯树脂的羟值范围为 30-300mgKOH/g, 玻璃化温度范围为 50-75°C, 粘度范围为 1
5-200 Pa-s。
[0019] 优选地, 所述的超耐候聚酯树脂是羧基超耐候聚酯树脂, 所述的羧基超耐候聚 酯树脂的酸值范围为 15-85mgKOH/g, 玻璃化温度范围为 50-75°C, 粘度范围为 15
[0020] 优选地, 所述固化剂重量份占所述的超耐候聚酯粉末涂料重量份的 2-20%, 所 述的固化剂是异氰脲酸三缩水甘油酯、 偏苯三酸三缩水甘油酯、 对苯二甲酸二 缩水甘油酯、 甲基丙烯酸缩水甘油酯、 羟烷基酰胺、 异氰酸酯中的任意一种或 几种任意配比的混合。
[0021] 优选地, 所述的超耐候聚酯粉末涂料还包括助剂, 所述的助剂重量份占所述的 超耐候聚酯粉末涂料重量份的 0-40%, 所述的助剂是聚酰胺蜡、 聚烯烃蜡、 酰胺 改性酚脲表面活性剂、 苯偶茵、 聚二甲基硅氧烷、 乙烯基三氯硅烷、 正丁基三 乙氧基硅烷、 正硅酸甲酯、 单烷氧基焦磷酸酯、 丙烯酸脂类、 酚醛树脂、 脲醛 树脂、 三聚氰胺甲醛树脂、 二硬脂酰乙二胺、 环氧乙烷与环氧丙烷的混合物、 受阻酚、 硫代二丙酸双酯、 二苯酮、 水杨酸酯衍生物、 受阻胺、 氧化铝、 气相 二氧化硅、 四溴双酚八、 十溴二苯乙烷、 磷酸三甲苯酯、 氢氧化铝、 氢氧化镁、 硫酸钡、 钛白粉、 炭黑中的任意一种或几种任意配比的混合。
优选地, 本发明还提出一种如上所述的光伏组件用封装材料的制备方法, 其中 , 其操作步骤包括如下:
[0023] a) 、 将所述的超耐候聚酯粉末涂料通过涂覆装置均匀地涂覆在所述的纤维布 上;
b) 、 通过加压加热使所述的超耐候聚酯粉末涂料与所述的纤维布实现热粘合 c) 、 将上述步骤 b) 完成热粘合的超耐候聚酯粉末涂料与纤维布进行分段裁切
[0026] d) 、 得到光伏组件用封装材料。
[0027] 优选地, 所述热粘合过程的加压范围为 0.05-0.25Mpa, 所述热粘合过程的加热 温度范围为 90-130°C, 加热吋间范围为 5-20秒。
发明的有益效果
有益效果
[0028] 本发明通过提出采用 30-50重量份的纤维布以及均匀涂覆在纤维布上的 50-70重 量份的超耐候聚酯粉末涂料作为光伏组件的封装材料, 在满足抗紫外、 抗老化 、 抗冲击、 防火等光伏行业技术标准要求的前提下, 有效实现了解决了光伏组 件封装材料的轻量化, 且制造成本低, 替代传统封装结构式的的钢化玻璃, 给 光伏组件提供一定的刚性以保护光伏电池, 如此, 不但能够大大减轻光伏组件 的重量, 由此适应更多场合的光伏发电产品的安装, 而且还能降低产品安装吋 的劳动强度以及提高安装的便利度, 从总体上降低光伏组件的安装成本。
[0029] 本发明还通过涂覆装置把超耐候聚酯粉末涂料均匀地涂覆在纤维布上, 再通过 加压加热使超耐候聚酯粉末涂料与所述纤维布预粘合, 最后分段裁切制得合适 尺寸的光伏组件的封装材料, 如此能实现光伏组件封装尺寸的任意改变以适应 不同建筑的安装要求, 进一步便于光伏组件的安装应用。
对附图的简要说明
附图说明 [0030] 附图 1是本发明具体实施方式下光伏组件用封装材料的制备步骤框图。
[0031] 附图 2是本发明具体实施方式下光伏组件用封装材料的制备设备结构示意图;
[0032] 附图 3是一种应用本发明光伏组件用封装材料的光伏组件封装结构示意图;
[0033] 附图 4是另一种应用本发明光伏组件用封装材料的光伏组件封装结构示意图;
[0034] 附图 5是本发明背景技术所述的现有典型的光伏组件的封装结构示意图。
本发明的实施方式
[0035] 本发明实施例公幵了一种光伏组件用封装材料, 封装材料包括下述重量份数的 原料: 纤维布 30-50份, 纤维布由纤维材料织造制成; 超耐候聚酯粉末涂料 50-70 份, 超耐候聚酯粉末涂料包括超耐候聚酯树脂和固化剂; 其中, 超耐候聚酯粉 末涂料均匀地涂覆在纤维布上。
[0036] 本发明实施例通过提出采用 30-50重量份的纤维布以及均匀涂覆在纤维布上的 5 0-70重量份的超耐候聚酯粉末涂料作为光伏组件的封装材料, 在满足抗紫外、 抗 老化、 抗冲击、 防火等光伏行业技术标准要求的前提下, 有效实现了解决了光 伏组件封装材料的轻量化, 且制造成本低, 替代传统封装结构式的钢化玻璃, 给光伏组件提供一定的刚性以保护光伏电池, 如此, 不但能够大大减轻光伏组 件的重量, 由此适应更多场合的光伏发电产品的安装, 而且还能降低产品安装 吋的劳动强度以及提高安装的便利度, 从总体上降低光伏组件的安装成本。
[0037] 本发明实施例还公幵了一种如上光伏组件用封装材料的制备方法, 其中, 其操 作步骤包括如下:
将超耐候聚酯粉末涂料通过涂覆装置均匀地涂覆在纤维布上;
[0039] b) 、 通过加压加热使超耐候聚酯粉末涂料与纤维布实现热粘合;
[0040] c) 、 将上述步骤 b) 完成热粘合的超耐候聚酯粉末涂料与纤维布进行分段裁切
[0041] d) 、 得到光伏组件用封装材料。
[0042] 本发明实施例通过涂覆装置把超耐候聚酯粉末涂料均匀地涂覆在纤维布上, 再 通过加压加热使超耐候聚酯粉末涂料与所述纤维布预粘合, 最后分段裁切制得 合适尺寸的光伏组件的封装材料, 如此能实现光伏组件封装尺寸的任意改变以 适应不同建筑的安装要求, 进一步便于光伏组件的安装应用。
[0043] 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明中记载的一些实施例, 对于本领域普通技术人员来讲, 在不 付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
[0044] 实施例 1:
[0045] 一种光伏组件用封装材料, 封装材料包括下述重量份数的原料:
[0046] 纤维布 30-50份, 纤维布由纤维材料织造制成, 优选地, 在本发明实施例中, 纤维布是由纤维材料采用平纹、 斜纹、 缎纹、 罗纹或席纹中的任意一种织造方 式或几种织造方式的组合制成, 具体地, 在本实施方式中, 纤维布 30份, 纤维 布是由纤维材料采用平纹织造方式制成, 当然地, 本领域的技术人员可以根据 实际需要选择其他公知的织造方式;
[0047] 优选地, 在本发明实施例中, 纤维布的单位面积重量范围为 30-400g/m 2, 在确 保纤维布的强度下, 保证纤维布的轻量化, 具体地, 在本实施方式中, 纤维布 的单位面积重量为 100 g/m 2
[0048] 优选地, 在本发明实施例中, 纤维材料是玻璃纤维、 碳纤维和芳纶纤维中的任 意一种或几种的组合, 用以确保纤维布具有良好的绝缘及耐候性, 符合光伏相 关标准要求, 具体地, 在本实施方式中, 纤维材料为玻璃纤维, 当然地, 本领 域的技术人员可以根据实际需要选择其他类型的纤维材料, 本发明实施例不再 一一展幵说明;
[0049] 优选地, 在本发明实施例中, 纤维材料的单丝直径范围为 3-23μηι, 具体地, 在 本实施方式中, 纤维材料的单丝直径为 3μηι, 便于纤维材料的织造, 以及便于得 到所需要的纤维布的单位面积重量;
[0050] 超耐候聚酯粉末涂料 50-70份, 超耐候聚酯粉末涂料包括超耐候聚酯树脂和 固化剂, 具体地, 在本实施方式中, 超耐候聚酯粉末涂料 70份;
[0051] 优选地, 在本发明实施例中, 超耐候聚酯树脂是由羟基超耐候聚酯树脂或者羧 基超耐候聚酯树脂中的一种或两种的混合, 用以确保超耐候聚酯树脂具有良好 的绝缘及耐候性, 符合光伏相关标准要求, 具体地, 在本实施方式中, 超耐候 聚酯树脂是羟基超耐候聚酯树脂;
[0052] 优选地, 在本发明实施例中, 羟基超耐候聚酯树脂由新戊二醇、 己二酸、 乙二 醇中的一种或几种单体聚合而成的混合物, 当然地, 本领域的技术人员可以根 据实际需要选择其他类型的单体来聚合得到羟基超耐候聚酯树脂, 本发明实施 例不再一一例举, 具体地, 在本实施方式中, 超耐候聚酯树脂由己二酸单体聚 合而成;
[0053] 优选地, 在本发明实施例中, 羟基超耐候聚酯树脂的羟值范围为 30-300mgKO H/g, 玻璃化温度范围为 50-75°C, 粘度范围为 15-200 Pa.s, 具体地, 在本实施方 式中, 羟基超耐候聚酯树脂的羟值为 100mgKOH/g, 玻璃化温度范围为 60°C, 粘 度范围为 80 Pa s;
[0054] 优选地, 在本发明实施例中, 固化剂重量份占超耐候聚酯粉末涂料重量份的 2- 20% , 固化剂是异氰脲酸三缩水甘油酯、 偏苯三酸三缩水甘油酯、 对苯二甲酸二 缩水甘油酯、 甲基丙烯酸缩水甘油酯、 羟烷基酰胺、 异氰酸酯中的任意一种或 几种任意配比的混合, 具体地, 在本实施方式中, 固化剂是异氰脲酸三缩水甘 油酯, 异氰脲酸三缩水甘油酯占羟基超耐候聚酯粉末涂料重量份的 5%, 当然地 , 本领域的技术人员可以根据超耐候聚酯树脂的类型和实际情况选择其他类型 的固化剂和在 2-20%重量比范围 (包括 2%和 20%的端点值) 内的固化剂, 同样可 以取得相同的技术效果, 本发明实施例不再一一展幵说明;
[0055] 其中, 超耐候聚酯粉末涂料均匀地涂覆在纤维布上, 超耐候聚酯粉末涂料涂覆 在纤维布上的单位面积重量范围为 100-400 g/m 2, 具体地, 在本实施方式中, 超 耐候聚酯粉末涂料涂覆在纤维布上的单位面积重量为 100 g/m 2 ;
[0056] 当然地, 在其他具体实施方式中, 本发明实施例提供的超耐候聚酯粉末涂料还 可以加入一定重量份数的助剂, 优选地, 助剂重量份占所述的超耐候聚酯粉末 涂料重量份的 0-40%, 用于进一步提高超耐候聚酯粉末涂料的绝缘及耐候性, 同 吋还可以根据光伏组件安装的实际需求, 通过添加助剂来调整超耐候聚酯粉末 涂料的颜色, 进一步利于光伏组件的实际安装应用, 具体地, 在本发明实施吋 , 助剂是聚酰胺蜡、 聚烯烃蜡、 酰胺改性酚脲表面活性剂、 苯偶茵、 聚二甲基 硅氧烷、 乙烯基三氯硅烷、 正丁基三乙氧基硅烷、 正硅酸甲酯、 单烷氧基焦磷 酸酯、 丙烯酸脂类、 酚醛树脂、 脲醛树脂、 三聚氰胺甲醛树脂、 二硬脂酰乙二 胺、 环氧乙烷与环氧丙烷的混合物、 受阻酚、 硫代二丙酸双酯、 二苯酮、 水杨 酸酯衍生物、 受阻胺、 氧化铝、 气相二氧化硅、 四溴双酚八、 十溴二苯乙烷、 磷 酸三甲苯酯、 氢氧化铝、 氢氧化镁、 硫酸钡、 钛白粉、 炭黑中的任意一种或几 种任意配比的混合, 当然地, 本领域的技术人员可以根据实际需要选择其他类 型的助剂, 本发明实施例不再具体说明。
[0057] 本发明实施例涉及的超耐候聚酯粉末涂料可以采用现有任意一种粉末涂料的公 知制备技术来制备得到, 典型的方法可以采用预混、 熔融挤出、 磨粉等工序后 制备得到, 具体地, 在本实施方式中, 将超耐候聚酯树脂、 固化剂与助剂进行 预混, 优选地, 预混吋间可以选择在 2-10分钟之间, 然后将预混后的混合物用螺 杆挤出机挤出并压成薄片, 优选地, 挤出机的长径比可以选择在 15: 1-50: 1之 间, 挤出机的加热温度选择在 80-120°C之间, 螺杆转速选择在 200-800rpm; 最后 将薄片粉碎成小片料进入磨粉机磨成一定粒径的粉末涂料, 优选地, 磨粉机的 转速选择在 50-150rpm, 优选地, 超耐候聚酯粉末涂料成品的粒径范围控制在 35- 300μηι之间。 当然地, 还可以采用其他工艺参数或粉末涂料制备工艺来制备得到 超耐候聚酯粉末涂料, 相信这些都是本领域技术人员的常规技术选择, 因此, 超耐候聚酯粉末涂料的制备过程本文不再详细展幵描述。
[0058] 请参见图 1所示, 在本具体实施方式中, 如上的光伏组件用封装材料的制备方 法, 其中, 其操作步骤包括如下:
[0059] a) 、 将超耐候聚酯粉末涂料通过涂覆装置均匀地涂覆在纤维布上;
[0060] b) 、 通过加压加热使超耐候聚酯粉末涂料与纤维布实现热粘合;
[0061] c) 、 将上述步骤 b) 完成热粘合的超耐候聚酯粉末涂料与纤维布进行分段裁切
[0062] d) 、 得到光伏组件用封装材料。
[0063] 需要说明的是, 在本发明实施例中, 热粘合过程需采用合适范围的加压、 加热 控制, 因为只有在合适的压力和温度情况下, 才能使超耐候聚酯粉末涂料与纤 维布之间实现较好地热熔粘合过程, 最终确保满足制备光伏组件封装过程中的 层压工艺的要求, 从而得到真正能适用于光伏电池组件封装的封装材料。 因此 , 优选地, 在本发明实施例中, 热粘合过程的加压范围为 0.05-0.25Mpa, 热粘合 过程的加热温度范围为 90-130°C, 加热吋间范围为 5-20秒, 具体地, 在本实施方 式中, 热粘合过程的加压压力为 0.05Mpa, 热粘合过程的加热温度为 130°C, 加 热吋间范围为 5秒。
[0064] 优选地, 在本发明实施例中, 光伏组件用封装材料的制备方法采用如图 2所示 的设备, 在实际实施吋, 将纤维布放入纤维进料机 51中, 将超耐候聚酯粉末涂 料通过涂覆装置 52均匀地涂覆在纤维进料机 51所输出的纤维布上, 然后通过热 熔复合机 53加压加热使超耐候聚酯粉末涂料与纤维布实现热粘合, 将完成热粘 合的超耐候聚酯粉末涂料与纤维布进行分段裁切, 即得到光伏组件用封装材料 。 在本发明其他具体实施例中, 涂覆装置也可以采用撒粉头, 此吋涂覆装置是 以撒粉的形式实现涂覆过程, 实现将超耐候聚酯粉末涂料均匀地涂覆在纤维布 上。 当然地, 本领域的技术人员也可以根据实际需要选用现有任意一种公知的 设备来完成本发明所公幵的光伏组件用封装材料的制备。
[0065] 请进一步参见如图 3所示的应用本实施例的光伏组件用封装材料的光伏组件封 装结构示意图, 该光伏封装结构从上往下依次包括: 由本实施例制成的封装材 料层 30a、 上 EVA层 21a、 光伏电池板层 10a、 下 EVA层 22a、 背板层 40a, 其中, 封装材料层 30a取代了钢化玻璃层。 本领域的技术人员可以根据实际需要以及结 合安装场所的条件将本发明实施例得到的封装材料用于替代其他封装层结构或 与其他材料相结合应用于替代其他层结构, 本发明不做具体限制。 进一步参见 图 4所示另一种应用本实施例的光伏组件用封装材料的光伏组件封装结构示意图
, 该光伏封装结构从上往下依次包括: 由本实施例制成的上封装材料层 31b、 上 EVA层 21b、 光伏电池板层 10b、 下 EVA层 22b、 下封装材料层 32b, 其中, 上封 装材料层 31b和下封装材料层 32b分别取代了钢化玻璃层和背板层。
[0066] 实施例 2:
[0067] 在本实施例 2中, 封装材料包括下述重量份数的原料:
[0068] 纤维布 35份, 是由纤维材料采用斜纹织造方式制成;
[0069] 纤维布的单位面积重量为 30 g/m 2;
[0070] 纤维材料为碳纤维; [0071] 纤维材料的单丝直径为 5μηι;
[0072] 超耐候聚酯粉末涂料 65份, 超耐候聚酯粉末涂料包括超耐候聚酯树脂、 固化 剂和助剂;
[0073] 优选地, 在本发明实施例中, 超耐候聚酯树脂是羧基超耐候聚酯树脂, 由对苯 二甲酸、 间苯二甲酸中的一种或两种单体聚合而成的混合物, 羧基超耐候聚酯 树脂的酸值范围为 15-85mgKOH/g, 玻璃化温度范围为 50-75°C, 粘度范围为 15-2 00 Pa-s , 具体地, 在本实施方式中, 羧基超耐候聚酯树脂由对苯二甲酸单体聚合 而成, 羧基超耐候聚酯树脂的酸值为 85mgKOH/g, 玻璃化温度范围为 75°C, 粘 度范围为 200 Pa s ;
[0074] 固化剂为偏苯三酸三缩水甘油酯, 偏苯三酸三缩水甘油酯重量份占超耐候聚酯 粉末涂料重量份的 6% ;
[0075] 助剂为聚酰胺蜡、 聚烯烃蜡、 酰胺改性酚脲表面活性剂、 苯偶茵、 受阻酚、 硫 代二丙酸双酯、 二苯酮、 水杨酸酯衍生物、 受阻胺、 氧化铝、 和氢氧化镁、 硫 酸钡、 钛白粉、 炭黑任意配比的混合, 助剂重量份占超耐候聚酯粉末涂料重量 份的 40% ;
[0076] 超耐候聚酯粉末涂料涂覆在纤维布上的单位面积重量为 150 g/m
[0077] 在本具体实施方式的光伏组件用封装材料的制备方法中, 热粘合过程的加压压 力为 O. lMpa, 热粘合过程的加热温度为 120°C, 加热吋间为 8秒;
[0078] 本实施例 2的其余技术方案与上述实施例 1相同。
[0079] 实施例 3:
[0080] 在本实施例 3中, 封装材料包括下述重量份数的原料:
[0081] 纤维布 40份, 是由纤维材料采用缎纹织造方式制成;
[0082] 纤维布的单位面积重量为 50 g/m 2
[0083] 纤维材料为芳纶纤维;
[0084] 纤维材料的单丝直径为 8μηι;
[0085] 超耐候聚酯粉末涂料 60份, 超耐候聚酯粉末涂料包括超耐候聚酯树脂、 固化 剂和助剂;
[0086] 超耐候聚酯树脂由新戊二醇单体聚合而成; [0087] 羟基超耐候聚酯树脂的羟值为 30mgKOH/g, 玻璃化温度范围为 50°C, 粘度范 围为 15 Pa-s。
[0088] 固化剂为对苯二甲酸二缩水甘油酯, 对苯二甲酸二缩水甘油酯重量份占超耐候 聚酯粉末涂料重量份的 8% ;
[0089] 助剂为聚二甲基硅氧烷、 乙烯基三氯硅烷、 正丁基三乙氧基硅烷、 正硅酸甲酯
、 单烷氧基焦磷酸酯、 十溴二苯乙烷、 磷酸三甲苯酯、 氢氧化铝和硫酸钡任意 配比的混合, 助剂重量份占超耐候聚酯粉末涂料重量份的 35% ;
[0090] 超耐候聚酯粉末涂料涂覆在纤维布上的单位面积重量为 200 g/m
[0091] 在本具体实施方式的光伏组件用封装材料的制备方法中, 热粘合过程的加压压 力为 0.15Mpa, 热粘合过程的加热温度为 100°C, 加热吋间为 10秒;
[0092] 本实施例 3的其余技术方案与上述实施例 1相同。
[0093] 实施例 4:
[0094] 在本实施例 4中, 封装材料包括下述重量份数的原料:
[0095] 纤维布 45份, 是由纤维材料采用罗纹织造方式制成;
[0096] 纤维布的单位面积重量为 80 g/m 2
[0097] 纤维材料的单丝直径为 ΙΟμηι;
[0098] 超耐候聚酯粉末涂料 55份, 超耐候聚酯粉末涂料包括超耐候聚酯树脂、 固化 剂和助剂;
[0099] 超耐候聚酯树脂由乙二醇单体聚合而成;
[0100] 羟基超耐候聚酯树脂的羟值为 50mgKOH/g, 玻璃化温度范围为 55°C, 粘度范 围为 35 Pa-s。
[0101] 固化剂为对苯二甲酸二缩水甘油酯, 对苯二甲酸二缩水甘油酯重量份占超耐候 聚酯粉末涂料重量份的 8% ;
[0102] 助剂为受阻酚、 硫代二丙酸双酯、 二苯酮、 水杨酸酯衍生物、 受阻胺、 氧化铝 和硫酸钡任意配合的混合, 助剂重量份占超耐候聚酯粉末涂料重量份的 30% ;
[0103] 超耐候聚酯粉末涂料涂覆在纤维布上的单位面积重量为 250 g/m
[0104] 在本具体实施方式的光伏组件用封装材料的制备方法中, 热粘合过程的加压压 力为 0.18Mpa, 热粘合过程的加热温度为 115°C, 加热吋间为 8秒; [0105] 本实施例 4的其余技术方案与上述实施例 1相同。
[0106] 实施例 5:
[0107] 在本实施例 5中, 封装材料包括下述重量份数的原料:
[0108] 纤维布 50份, 是由纤维材料采用席纹织造方式制成;
[0109] 纤维布的单位面积重量为 120g/m 2
[0110] 纤维材料的单丝直径为 13μηι;
[0111] 超耐候聚酯粉末涂料 50份, 超耐候聚酯粉末涂料包括超耐候聚酯树脂、 固化 剂和助剂;
[0112] 超耐候聚酯树脂是由新戊二醇和己二酸单体聚合而成的混合物;
[0113] 羟基超耐候聚酯树脂的羟值为 80mgKOH/g, 玻璃化温度范围为 58°C, 粘度范 围为 70 Pa-s。
[0114] 固化剂为甲基丙烯酸缩水甘油酯, 甲基丙烯酸缩水甘油酯重量份占超耐候聚酯 粉末涂料重量份的 10% ;
[0115] 助剂为三聚氰胺甲醛树脂、 二硬脂酰乙二胺、 环氧乙烷与环氧丙烷的混合物、 受阻酚、 硫代二丙酸双酯和二苯酮, 助剂重量份占超耐候聚酯粉末涂料重量份 的 20% ;
[0116] 超耐候聚酯粉末涂料涂覆在纤维布上的单位面积重量为 300 g/m
[0117] 在本具体实施方式的光伏组件用封装材料的制备方法中, 热粘合过程的加压压 力为 0.2Mpa, 热粘合过程的加热温度为 118°C, 加热吋间为 6秒;
[0118] 本实施例 5的其余技术方案与上述实施例 1相同。
[0119] 实施例 6:
[0120] 在本实施例 6中, 封装材料包括下述重量份数的原料:
[0121] 纤维布 38份, 是由纤维材料采用平纹和斜纹织造方式组合制成;
[0122] 纤维布的单位面积重量为 150g/m 2;
[0123] 纤维材料的单丝直径为 16μηι;
[0124] 超耐候聚酯粉末涂料 62份, 超耐候聚酯粉末涂料包括超耐候聚酯树脂、 固化 剂和助剂;
[0125] 超耐候聚酯树脂是由己二酸和乙二醇单体聚合而成的混合物; [0126] 羟基超耐候聚酯树脂的羟值为 150mgKOH/g, 玻璃化温度范围为 65°C, 粘度范 围为 100 Pa-s。
[0127] 固化剂为异氰酸酯, 异氰酸酯重量份占超耐候聚酯粉末涂料重量份的 12%;
[0128] 助剂为聚酰胺蜡、 酚醛树脂、 环氧乙烷与环氧丙烷的混合物和氢氧化镁任意配 比的混合, 助剂重量份占超耐候聚酯粉末涂料重量份的 35%;
[0129] 超耐候聚酯粉末涂料涂覆在纤维布上的单位面积重量为 350 g/m
[0130] 在本具体实施方式的光伏组件用封装材料的制备方法中, 热粘合过程的加压压 力为 0.25Mpa, 热粘合过程的加热温度为 95°C, 加热吋间为 15秒;
[0131] 本实施例 6的其余技术方案与上述实施例 1相同。
[0132] 实施例 7:
[0133] 在本实施例 7中, 封装材料包括下述重量份数的原料:
[0134] 纤维布 33份, 是由纤维材料采用平纹和缎纹织造方式组合制成;
[0135] 纤维布的单位面积重量为 180g/m 2;
[0136] 纤维材料的单丝直径为 18μηι;
[0137] 超耐候聚酯粉末涂料 67份, 超耐候聚酯粉末涂料包括超耐候聚酯树脂、 固化 剂和助剂;
[0138] 超耐候聚酯树脂是由己二酸和乙二醇单体聚合而成的混合物;
[0139] 羟基超耐候聚酯树脂的羟值为 200mgKOH/g, 玻璃化温度范围为 70°C, 粘度范 围为 150 Pa-s。
[0140] 固化剂为异氰酸酯, 异氰酸酯重量份占超耐候聚酯粉末涂料重量份的 15%;
[0141] 助剂为乙烯基三氯硅烷、 正丁基三乙氧基硅烷、 正硅酸甲酯和单烷氧基焦磷酸 酯任意配比的混合, 助剂重量份占超耐候聚酯粉末涂料重量份的 8%;
[0142] 超耐候聚酯粉末涂料涂覆在纤维布上的单位面积重量为 400 g/m
[0143] 在本具体实施方式的光伏组件用封装材料的制备方法中, 热粘合过程的加压压 力为 0.22Mpa, 热粘合过程的加热温度为 105°C, 加热吋间为 20秒;
[0144] 本实施例 7的其余技术方案与上述实施例 1相同。
[0145] 实施例 8:
[0146] 在本实施例 8中, 封装材料包括下述重量份数的原料: [0147] 纤维布 42份, 是由纤维材料采用平纹和缎纹织造方式组合制成;
[0148] 纤维布的单位面积重量为 200g/m 2;
[0149] 纤维材料的单丝直径为 18μηι;
[0150] 超耐候聚酯粉末涂料 58份, 超耐候聚酯粉末涂料包括超耐候聚酯树脂、 固化 剂和助剂;
[0151] 羧基超耐候聚酯树脂的酸值为 35mgKOH/g, 玻璃化温度范围为 72°C, 粘度范 围为 180 Pa-s。
[0152] 固化剂为异氰脲酸三缩水甘油酯, 异氰脲酸三缩水甘油酯重量份占超耐候聚酯 粉末涂料重量份的 10%;
[0153] 助剂为丙烯酸脂类、 酚醛树脂、 脲醛树脂、 三聚氰胺甲醛树脂任意配比的混合
, 助剂重量份占超耐候聚酯粉末涂料重量份的 5%;
[0154] 在本具体实施方式的光伏组件用封装材料的制备方法中, 热粘合过程的加压压 力为 0.16Mpa, 热粘合过程的加热温度为 98°C, 加热吋间为 18秒;
[0155] 本实施例 8的其余技术方案与上述实施例 1相同。
[0156] 实施例 9:
[0157] 在本实施例 9中, 封装材料包括下述重量份数的原料:
[0158] 纤维布 48份, 是由纤维材料采用缎纹和罗纹织造方式组合制成;
[0159] 纤维布的单位面积重量为 250g/m 2;
[0160] 纤维材料为碳纤维;
[0161] 纤维材料的单丝直径为 20μηι;
[0162] 超耐候聚酯粉末涂料 52份, 超耐候聚酯粉末涂料包括超耐候聚酯树脂、 固化 剂和助剂;
[0163] 羧基超耐候聚酯树脂由间苯二甲酸单体聚合而成, 羧基超耐候聚酯树脂的酸值 为 30mgKOH/g, 玻璃化温度为 70°C, 粘度为 150 Pa-s;
[0164] 固化剂占超耐候聚酯粉末涂料重量份的 5%;
[0165] 在本具体实施方式的光伏组件用封装材料的制备方法中, 热粘合过程的加压压 力为 0.18Mpa, 热粘合过程的加热温度为 100°C, 加热吋间为 16秒;
[0166] 本实施例 9的其余技术方案与上述实施例 2相同。 [0167] 实施例 10:
[0168] 在本实施例 10中, 封装材料包括下述重量份数的原料:
[0169] 纤维布 46份, 是由纤维材料采用平纹、 斜纹和席纹织造方式组合制成;
[0170] 纤维布的单位面积重量为 300g/m 2;
[0171] 纤维材料为玻璃纤维和芳纶纤维的组合;
[0172] 纤维材料的单丝直径为 23μηι;
[0173] 超耐候聚酯粉末涂料 54份, 超耐候聚酯粉末涂料包括超耐候聚酯树脂、 固化 剂和助剂;
[0174] 羧基超耐候聚酯树脂由间苯二甲酸单体聚合而成, 羧基超耐候聚酯树脂的酸值 为 60mgKOH/g, 玻璃化温度为 65°C, 粘度为 120 Pa-s ;
[0175] 固化剂占超耐候聚酯粉末涂料重量份的 8%;
[0176] 本实施例 10的其余技术方案与上述实施例 2相同。
[0177] 实施例 11:
[0178] 在本实施例 11中, 封装材料包括下述重量份数的原料:
[0179] 纤维布 36份, 是由纤维材料采用平纹、 斜纹和席纹织造方式组合制成;
[0180] 纤维布的单位面积重量为 350g/m 2;
[0181] 纤维材料为玻璃纤维和碳纤维的组合;
[0182] 纤维材料的单丝直径为 14μηι;
[0183] 超耐候聚酯粉末涂料 64份, 超耐候聚酯粉末涂料包括超耐候聚酯树脂、 固化 剂和助剂;
[0184] 羧基超耐候聚酯树脂是由对苯二甲酸和间苯二甲酸单体聚合而成的混合物, 羧 基超耐候聚酯树脂的酸值为 50mgKOH/g, 玻璃化温度为 62°C, 粘度为 80 Pa-s ;
[0185] 固化剂占超耐候聚酯粉末涂料重量份的 10%;
[0186] 本实施例 11的其余技术方案与上述实施例 2相同。
[0187] 实施例 12:
[0188] 在本实施例 12中, 封装材料包括下述重量份数的原料:
[0189] 纤维布 35份, 是由纤维材料采用平纹、 斜纹和席纹织造方式组合制成;
[0190] 纤维布的单位面积重量为 400g/m 2; [0191] 纤维材料的单丝直径为 23μηι;
[0192] 超耐候聚酯粉末涂料 65份, 超耐候聚酯粉末涂料包括超耐候聚酯树脂、 固化 剂和助剂;
[0193] 羧基超耐候聚酯树脂是由对苯二甲酸和间苯二甲酸单体聚合而成的混合物, 羧 基超耐候聚酯树脂的酸值为 30mgKOH/g, 玻璃化温度为 58°C, 粘度为 60 Pa-s;
[0194] 固化剂占超耐候聚酯粉末涂料重量份的 14%;
[0195] 本实施例 12的其余技术方案与上述实施例 2相同。
[0196] 实施例 13:
[0197] 本实施例 13的其余技术方案与上述实施例 1相同, 区别仅在于, 在本实施例 13 中, 纤维布的单位面积重量为 130 g/m 2, 超耐候聚酯粉末涂料涂覆在纤维布上的 单位面积重量为 180 g/m 2
[0198] 实施例 14:
[0199] 本实施例 14的其余技术方案与上述实施例 2相同, 区别仅在于, 在本实施例 14 中, 羧基超耐候聚酯树脂的酸值为 15mgKOH/g, 玻璃化温度为 50°C, 粘度为 15P a-s, 固化剂占超耐候聚酯粉末涂料重量份的 16%; 纤维布的单位面积重量为 80 g/m 2, 超耐候聚酯粉末涂料涂覆在纤维布上的单位面积重量为 280 g/m
[0200] 本实施例 14的其余技术方案与上述实施例 2相同。
[0201] 比较例 1:
[0202] 本比较例 1采用背景技术所述的现有典型的光伏组件的封装材料。
[0203] 比较例 2:
[0204] 本比较例 2采用背景技术所述的 EVA胶膜封装材料。
[0205] 比较例 3:
[0206] 本比较例 3采用背景技术所述的 POE胶膜封装材料。
[0207] 比较例 4:
[0208] 本比较例 4的其余技术方案与上述实施例 1相同, 区别仅在于, 在本比较例 4中 , 封装材料包括纤维布 30份和常规商业化的环氧粉末涂料。
工业实用性
[0209] 本发明针对上述实施例以及比较例进行了实施效果测试, 其测试结果如下表 1 1各类封装材料应用与光伏组件封装的实施效果对比
Figure imgf000019_0001
Figure imgf000020_0001
癣 纖
I 较
纖 藝嫁: .雄 磁 3 M
:«
无严
18,
聽 ≤ik:s½J .ft <:
靈 «燃 i 纖 M . 3 亍 裟 *
:自:嫁
纖 通
纖 性、 不 解 0¾ 来通 : 裰 4 ■i¾塞: m
m 纖
[0211] 本发明全文所述的封装结构重量是指光伏组件用封装材料单位平方米的重量; 所述的抗冲击性能测试是指将标准直径为 25mm、 质量为 7.53g的冰球以 23.0m/s 的速度发射出去, 撞击完成封装的光伏组件 11个位置, 通过外观、 最大功率衰 减和绝缘电阻等三个方面要求来判断光伏组件的抗冲击性能; 所述的防火性是 通过 UL1703标准检测得到的结果; 所述的铅笔硬度是通过 ASTM
D3363-2005(R2011)标准检测得到的结果; 所述的拉伸强度是通过 GB/T
1040.3-2006标准检测得到的结果; 所述的断裂伸长率是通过 GB/T 1040.3-2006标 准检测得到的结果。
[0212] 从表 1中数据可明显看出, 本发明实施例在满足抗紫外、 抗老化、 抗冲击、 防 火等光伏行业技术标准要求的前提下, 有效实现了解决了光伏组件封装材料的 轻量化, 且制造成本低, 替代传统封装结构式的的钢化玻璃, 给光伏组件提供 一定的刚性以保护光伏电池, 如此, 不但能够大大减轻光伏组件的重量, 由此 适应更多场合的光伏发电产品的安装, 而且还能降低产品安装吋的劳动强度以 及提高安装的便利度, 从总体上降低光伏组件的安装成本。
[0213] 需要进一步强调的是, 本发明实施例通过涂覆装置把超耐候聚酯粉末涂料均匀 地涂覆在纤维布上, 再通过加压加热使超耐候聚酯粉末涂料与纤维布预粘合, 最后分段裁切制得合适尺寸的光伏组件的封装材料, 如此能实现光伏组件封装 尺寸的任意改变以适应不同建筑的安装要求, 进一步便于光伏组件的安装应用 [0214] 虽然本实施例得到的材料应用于光伏组件的封装能够取得优异的实施效果, 但 光伏领域并不是该材料的唯一应用领域, 本领域技术人员根据实际应用领域需 要, 同吋基于本发明所公幵的光伏组件用封装材料所具备的特性和所实现的技 术效果, 完全可以将本发明应用在其他合适的领域中, 这种应用不需要付出任 何创造性劳动, 仍然属于本发明的精神, 因此这种应用同样被认为本发明的权 利保护范围。
[0215] 对于本领域技术人员而言, 显然本发明不限于上述示范性实施例的细节, 而且 在不背离本发明的精神或基本特征的情况下, 能够以其他的具体形式实现本发 明。 因此, 无论从哪一点来看, 均应将实施例看作是示范性的, 而且是非限制 性的, 本发明的范围由所附权利要求而不是上述说明限定, 因此旨在将落在权 利要求的等同要件的含义和范围内的所有变化囊括在本发明内。 不应将权利要 求中的任何附图标记视为限制所涉及的权利要求。
[0216] 此外, 应当理解, 虽然本说明书按照实施方式加以描述, 但并非每个实施方式 仅包含一个独立的技术方案, 说明书的这种叙述方式仅仅是为清楚起见, 本领 域技术人员应当将说明书作为一个整体, 各实施例中的技术方案也可以经适当 组合, 形成本领域技术人员可以理解的其他实施方式。

Claims

权利要求书
[权利要求 1] 一种光伏组件用封装材料, 其特征在于, 所述的封装材料包括下述重 量份数的原料:
纤维布 30-50份, 所述的纤维布由纤维材料织造制成;
超耐候聚酯粉末涂料 50-70份, 所述的超耐候聚酯粉末涂料包括超耐 候聚酯树脂和固化剂;
其中, 所述的超耐候聚酯粉末涂料均匀地涂覆在所述的纤维布上。
[权利要求 2] 如权利要求 1所述的光伏组件用封装材料, 其特征在于, 所述的纤维 布的单位面积重量范围为 30-400g/m 2, 所述的超耐候聚酯粉末涂料涂 覆在所述的纤维布上的单位面积重量范围为 100-400 g/m 2。
[权利要求 3] 如权利要求 1所述的光伏组件用封装材料, 其特征在于, 所述的纤维 材料是玻璃纤维、 碳纤维和芳纶纤维中的任意一种或几种的组合。
[权利要求 4] 如权利要求 1所述的光伏组件用封装材料, 其特征在于, 所述的纤维 材料的单丝直径范围为 3-23μηι。
[权利要求 5] 如权利要求 1所述的光伏组件用封装材料, 其特征在于, 所述的纤维 布是由纤维材料采用平纹、 斜纹、 缎纹、 罗纹或席纹中的任意一种织 造方式或几种织造方式的组合制成。
[权利要求 6] 如权利要求 1所述的光伏组件用封装材料, 其特征在于, 所述超耐候 聚酯树脂是由羟基超耐候聚酯树脂或者羧基超耐候聚酯树脂中的一种 或两种的混合。
[权利要求 7] 如权利要求 6所述的光伏组件用封装材料, 其特征在于, 所述的超耐 候聚酯树脂由对苯二甲酸、 间苯二甲酸、 新戊二醇、 己二酸、 乙二醇 中的一种或几种单体聚合而成。
[权利要求 8] 如权利要求 6所述的光伏组件用封装材料, 其特征在于, 所述的超耐 候聚酯树脂是羟基超耐候聚酯树脂, 所述的羟基超耐候聚酯树脂的羟 值范围为 30-300mgKOH/g, 玻璃化温度范围为 50-75°C, 粘度范围为 1 5-200 Pa-s。
[权利要求 9] 如权利要求 6所述的光伏组件用封装材料, 其特征在于, 所述的超耐 候聚酯树脂是羧基超耐候聚酯树脂, 所述的羧基超耐候聚酯树脂的酸 值范围为 15-85mgKOH/g, 玻璃化温度范围为 50-75°C, 粘度范围为 15
Figure imgf000024_0001
[权利要求 10] 如权利要求 1所述的光伏组件用封装材料, 其特征在于, 所述固化剂 重量份占所述的超耐候聚酯粉末涂料重量份的 2-20%, 所述的固化剂 是异氰脲酸三缩水甘油酯、 偏苯三酸三缩水甘油酯、 对苯二甲酸二缩 水甘油酯、 甲基丙烯酸缩水甘油酯、 羟烷基酰胺、 异氰酸酯中的任意 一种或几种任意配比的混合。
[权利要求 11] 如权利要求 10所述的光伏组件用封装材料, 其特征在于, 所述的超耐 候聚酯粉末涂料还包括助剂, 所述的助剂重量份占所述的超耐候聚酯 粉末涂料重量份的 0-40%, 所述的助剂是聚酰胺蜡、 聚烯烃蜡、 酰胺 改性酚脲表面活性剂、 苯偶茵、 聚二甲基硅氧烷、 乙烯基三氯硅烷、 正丁基三乙氧基硅烷、 正硅酸甲酯、 单烷氧基焦磷酸酯、 丙烯酸脂类 、 酚醛树脂、 脲醛树脂、 三聚氰胺甲醛树脂、 二硬脂酰乙二胺、 环氧 乙烷与环氧丙烷的混合物、 受阻酚、 硫代二丙酸双酯、 二苯酮、 水杨 酸酯衍生物、 受阻胺、 氧化铝、 气相二氧化硅、 四溴双酚 、 十溴二 苯乙院、 磷酸三甲苯酯、 氢氧化铝、 氢氧化镁、 硫酸钡、 钛白粉、 炭 黑中的任意一种或几种任意配比的混合。
[权利要求 12] 一种如权利要求 1- 11任意一项所述的光伏组件用封装材料的制备方法 , 其特征在于, 其操作步骤包括如下:
a) 、 将所述的超耐候聚酯粉末涂料通过涂覆装置均匀地涂覆在所述 的纤维布上;
b) 、 通过加压加热使所述的超耐候聚酯粉末涂料与所述的纤维布实 现热粘合;
c) 、 将上述步骤 b) 完成热粘合的超耐候聚酯粉末涂料与纤维布进行 分段裁切;
d) 、 得到光伏组件用封装材料。
[权利要求 13] 如权利要求 12所述的光伏组件用封装材料的制备方法, 其特征在于, 所述热粘合过程的加压范围为 0.05-0.25Mpa, 所述热粘合过程的加热 温度范围为 90-130°C, 加热吋间范围为 5-20秒。
PCT/CN2017/072150 2016-08-18 2017-01-23 光伏组件用封装材料及该封装材料的制备方法 WO2018032732A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17840710.2A EP3450620B1 (en) 2016-08-18 2017-01-23 Packaging material for photovoltaic module and method for preparing packaging material
JP2018561048A JP6707150B2 (ja) 2016-08-18 2017-01-23 太陽光発電モジュール用シーリング材及びこのシーリング材の製造方法
AU2017312824A AU2017312824B2 (en) 2016-08-18 2017-01-23 Packaging material for photovoltaic module and method for preparing packaging material
US16/198,863 US20190097071A1 (en) 2016-08-18 2018-11-22 Encapsulant material for photovoltaic modules and method of preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610685240.9 2016-08-18
CN201610685240.9A CN106283677B (zh) 2016-08-18 2016-08-18 光伏组件用封装材料及该封装材料的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/198,863 Continuation-In-Part US20190097071A1 (en) 2016-08-18 2018-11-22 Encapsulant material for photovoltaic modules and method of preparing the same

Publications (1)

Publication Number Publication Date
WO2018032732A1 true WO2018032732A1 (zh) 2018-02-22

Family

ID=57678464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072150 WO2018032732A1 (zh) 2016-08-18 2017-01-23 光伏组件用封装材料及该封装材料的制备方法

Country Status (6)

Country Link
US (1) US20190097071A1 (zh)
EP (1) EP3450620B1 (zh)
JP (1) JP6707150B2 (zh)
CN (1) CN106283677B (zh)
AU (1) AU2017312824B2 (zh)
WO (1) WO2018032732A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106283677B (zh) * 2016-08-18 2018-11-09 老虎表面技术新材料(苏州)有限公司 光伏组件用封装材料及该封装材料的制备方法
CN108022988B (zh) * 2016-10-31 2020-06-30 上迈(镇江)新能源科技有限公司 一种光伏组件的层压结构及其制备方法、光伏组件
CN108695400B (zh) * 2017-04-05 2021-05-28 上迈(镇江)新能源科技有限公司 一种叠片组件的层压结构及其制备方法、叠片组件
CN108691397A (zh) * 2017-04-05 2018-10-23 上迈(上海)新能源科技有限公司 一种屋顶发电装置及其安装方法
CN108695401B (zh) * 2017-04-05 2021-05-28 上迈(镇江)新能源科技有限公司 一种双面组件的层压结构及其制备方法、双面组件
CN110832138B (zh) * 2017-07-07 2022-08-26 老虎表面技术新材料(苏州)有限公司 光伏组件用复合封装材料及该复合封装材料的制备方法
WO2019006764A1 (zh) * 2017-07-07 2019-01-10 上迈(香港)有限公司 一种光伏组件的层压结构及其制备方法、光伏组件
CN109326667B (zh) * 2017-07-31 2021-11-16 上迈(镇江)新能源科技有限公司 一种基于封装材料的绿电建材及其制备方法
CN110629558B (zh) * 2018-05-31 2024-07-26 上迈(镇江)新能源科技有限公司 高效防护复合板材及其制备方法、应用和应用方法
WO2019228049A1 (zh) * 2018-05-31 2019-12-05 上迈(上海)新能源科技有限公司 高效防护复合板材及其制备方法、应用和应用方法
CN110629557A (zh) * 2018-05-31 2019-12-31 上迈(上海)新能源科技有限公司 高效防护复合板材及其制备方法、应用和应用方法
CN110854226B (zh) * 2018-08-03 2021-05-28 上迈(镇江)新能源科技有限公司 一种光伏高效复合背板及其制备方法、应用的光伏组件
CN109438922A (zh) * 2018-10-30 2019-03-08 深圳市普光太阳能有限公司 一种太阳能电池钢化封装材料及制备方法
EP3696864A1 (en) 2019-02-13 2020-08-19 TIGER Coatings GmbH & Co. KG Housing material
CN110527412A (zh) * 2019-10-22 2019-12-03 广西南宁维一防腐科技有限公司 一种环保的固化热转印粉及其制备方法
CN110746866A (zh) * 2019-11-04 2020-02-04 六安捷通达新材料有限公司 一种具有耐高温黄变的粉末涂料
CN114134714A (zh) * 2021-12-23 2022-03-04 苏州赛伍应用技术股份有限公司 一种太阳能光伏用高耐候透明前板封装材料及其制备方法
CN117304655B (zh) * 2023-11-28 2024-03-26 上海品诚控股集团有限公司 一种轻质光伏组件封装面材用环氧乙烯基酯树脂及其制备方法和应用
CN118578749A (zh) * 2024-08-05 2024-09-03 江苏中来新材科技有限公司 一种复合型光伏前板及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09116182A (ja) * 1995-10-17 1997-05-02 Canon Inc 太陽電池モジュール及び太陽電池モジュールの製造方法
US20040202866A1 (en) * 2003-04-11 2004-10-14 Kernander Carl P. Bright white protective laminates
CN101671518A (zh) * 2009-08-14 2010-03-17 老虎粉末涂料制造(太仓)有限公司 一种具有超耐候性的粉末涂料及其制备方法和应用
CN102408550A (zh) * 2011-11-14 2012-04-11 广州擎天实业有限公司 一种超耐候粉末涂料用端羧基聚酯树脂及其制备方法
CN102456758A (zh) * 2010-10-18 2012-05-16 杜邦太阳能有限公司 光伏模块背板及其制备方法
CN103497651A (zh) * 2013-09-24 2014-01-08 安徽锐视光电技术有限公司 一种超耐候聚酯树脂粉末涂料
CN106283677A (zh) * 2016-08-18 2017-01-04 老虎粉末涂料制造(太仓)有限公司 光伏组件用封装材料及该封装材料的制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2445642C2 (de) * 1974-09-25 1982-05-27 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Solarzellenanordnung
JPS61220808A (ja) * 1985-03-27 1986-10-01 Sumitomo Electric Ind Ltd プリプレグの製造方法
US4686322A (en) * 1985-08-12 1987-08-11 Rca Corporation Solar panel
US20090155462A1 (en) * 2007-12-18 2009-06-18 Carmen Flosbach Thermal curable polyester powder coating composition
CN101928509A (zh) * 2009-06-19 2010-12-29 扬州市金晨化工有限公司 一种超耐候聚酯粉末涂料及其制备方法
US8298969B2 (en) * 2009-08-19 2012-10-30 Milliken & Company Multi-layer composite material
CN101851460A (zh) * 2010-06-04 2010-10-06 江苏兰陵高分子材料有限公司 太阳能热水器用聚酯粉末涂料
JP2013062437A (ja) * 2011-09-14 2013-04-04 Asahi Kasei Chemicals Corp 太陽電池モジュール被覆固定用光硬化性プリプレグシート
CN103022190A (zh) * 2011-09-21 2013-04-03 杜邦公司 用于太阳能电池模块的阻燃背板
CN103194139A (zh) * 2013-03-20 2013-07-10 徐州华日化学工业有限公司 一种新型室外用纯聚酯粉末涂料及其制备方法
CN104124300A (zh) * 2013-04-26 2014-10-29 比亚迪股份有限公司 一种太阳能电池背板及太阳能电池组件
DK2863443T3 (en) * 2013-10-17 2016-08-15 Das Energy Gmbh Photovoltaic panel and method for making it

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09116182A (ja) * 1995-10-17 1997-05-02 Canon Inc 太陽電池モジュール及び太陽電池モジュールの製造方法
US20040202866A1 (en) * 2003-04-11 2004-10-14 Kernander Carl P. Bright white protective laminates
CN101671518A (zh) * 2009-08-14 2010-03-17 老虎粉末涂料制造(太仓)有限公司 一种具有超耐候性的粉末涂料及其制备方法和应用
CN102456758A (zh) * 2010-10-18 2012-05-16 杜邦太阳能有限公司 光伏模块背板及其制备方法
CN102408550A (zh) * 2011-11-14 2012-04-11 广州擎天实业有限公司 一种超耐候粉末涂料用端羧基聚酯树脂及其制备方法
CN103497651A (zh) * 2013-09-24 2014-01-08 安徽锐视光电技术有限公司 一种超耐候聚酯树脂粉末涂料
CN106283677A (zh) * 2016-08-18 2017-01-04 老虎粉末涂料制造(太仓)有限公司 光伏组件用封装材料及该封装材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3450620A4 *

Also Published As

Publication number Publication date
EP3450620C0 (en) 2024-07-31
JP2019518113A (ja) 2019-06-27
EP3450620A1 (en) 2019-03-06
US20190097071A1 (en) 2019-03-28
AU2017312824B2 (en) 2020-12-03
CN106283677B (zh) 2018-11-09
EP3450620B1 (en) 2024-07-31
CN106283677A (zh) 2017-01-04
AU2017312824A1 (en) 2018-12-13
EP3450620A4 (en) 2019-08-07
JP6707150B2 (ja) 2020-06-10

Similar Documents

Publication Publication Date Title
WO2018032732A1 (zh) 光伏组件用封装材料及该封装材料的制备方法
CN108565307B (zh) 一种光伏组件用封装材料
CN110832138B (zh) 光伏组件用复合封装材料及该复合封装材料的制备方法
CN108022988B (zh) 一种光伏组件的层压结构及其制备方法、光伏组件
CN111201614B (zh) 一种光伏组件的层压结构及其制备方法、光伏组件
JP2019518113A5 (zh)
CN108242473B (zh) 一种彩色光伏组件及其制备方法
CN110854226B (zh) 一种光伏高效复合背板及其制备方法、应用的光伏组件
WO2017140002A1 (zh) 树脂基复合薄膜材料及其制备方法、太阳电池组件
WO2018076524A1 (zh) 光伏组件层压结构的制备方法以及层压结构、光伏组件
CN108695400B (zh) 一种叠片组件的层压结构及其制备方法、叠片组件
CN108695401B (zh) 一种双面组件的层压结构及其制备方法、双面组件
CN114134714A (zh) 一种太阳能光伏用高耐候透明前板封装材料及其制备方法
CN110629558B (zh) 高效防护复合板材及其制备方法、应用和应用方法
CN110629557A (zh) 高效防护复合板材及其制备方法、应用和应用方法
WO2019228049A1 (zh) 高效防护复合板材及其制备方法、应用和应用方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018561048

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17840710

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017840710

Country of ref document: EP

Effective date: 20181129

ENP Entry into the national phase

Ref document number: 2017312824

Country of ref document: AU

Date of ref document: 20170123

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE