WO2019006764A1 - 一种光伏组件的层压结构及其制备方法、光伏组件 - Google Patents

一种光伏组件的层压结构及其制备方法、光伏组件 Download PDF

Info

Publication number
WO2019006764A1
WO2019006764A1 PCT/CN2017/092290 CN2017092290W WO2019006764A1 WO 2019006764 A1 WO2019006764 A1 WO 2019006764A1 CN 2017092290 W CN2017092290 W CN 2017092290W WO 2019006764 A1 WO2019006764 A1 WO 2019006764A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder coating
photovoltaic module
laminated structure
acrylic resin
polyester resin
Prior art date
Application number
PCT/CN2017/092290
Other languages
English (en)
French (fr)
Inventor
施正荣
龙国柱
刘皎彦
练成荣
王伟力
Original Assignee
上迈(香港)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上迈(香港)有限公司 filed Critical 上迈(香港)有限公司
Priority to PCT/CN2017/092290 priority Critical patent/WO2019006764A1/zh
Priority to CN201780092921.7A priority patent/CN111201614B/zh
Publication of WO2019006764A1 publication Critical patent/WO2019006764A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention belongs to the field of photovoltaics, and in particular relates to a laminated structure of a photovoltaic module and a method for preparing the same, and the present invention also relates to a photovoltaic module to which the laminated structure is applied.
  • Solar photovoltaic power generation relies on solar cells to directly convert light energy into electrical energy.
  • the total global production of photovoltaic cells has increased at an average annual growth rate of more than 40%.
  • the installed capacity of photovoltaic systems worldwide has reached 100 GW.
  • Photovoltaic power generation is expected to account for 10% of the world's energy supply by 2030, making a substantial contribution to the world's energy supply and energy mix.
  • the existing typical photovoltaic module laminate structure (also commonly referred to as laminate) is by The ultra-white tempered embossed glass 21, the first EVA film 22, the solar cell string 23, the second EVA film 24, and the back sheet 25 are laminated and laminated, wherein: the ultra-white tempered embossed glass has a density of 2.5 g/ Cm 3
  • the common thickness is 3.2mm, so the tempered glass glass has a weight of up to 8Kg per square meter, and the photovoltaic module assembled from the photovoltaic module laminate structure is generally of high quality, and the weight thereof is more than 10Kg per square meter, the photovoltaic module Then, the supporting structure is installed, and the weight of the photovoltaic module is at least 12Kg per square meter.
  • the support structure of the photovoltaic module When it is applied to the top of the building or the wall surface, the support structure of the photovoltaic module is put forward, which increases the difficulty of construction and The cost of installation is as follows: In the process of installing the top of the building or the wall, there is heavy weight, the installation is labor intensive, and the implementation is difficult; especially in some cases, due to the limitation of the load bearing capacity of the building, the photovoltaic module cannot be installed. At the same time, the existing photovoltaic module package structure has a single appearance, which is not easy to change to meet the requirements of different architectural aesthetics.
  • the Chinese invention patent of CN102516852A discloses a weather-resistant, high-heat-conducting coating and a heat-dissipating solar backsheet, but the coating is in production. A large amount of solvent is used in the process, which is very polluting to the environment and does not meet the green environmental standards.
  • the Chinese invention patent of CN102610680A discloses a UV-curable weather-resistant coating solar cell backsheet, but the liquid coating process used is complicated, the defect rate is high, and the equipment investment is large.
  • fluoropolymers are used in a series of Chinese invention patents such as CN102712184A, CN103346182A, CN102969382B, CN101290950B, CN103958196A, etc., but the fluoropolymer is expensive and increases the production cost, and the above patents It is only a material for photovoltaic backsheets, which is opaque, low in hardness and weak in rigidity, and is not suitable for replacing existing tempered glass.
  • the closest prior art to the present invention is the Chinese patent issued under the number CN105637653A, which discloses a photovoltaic panel and a method for manufacturing the same, specifically based on an epoxy group-containing group.
  • the acrylate and glass fiber reinforced plastic is used as a packaging material for the surface of the solar cell string and the backlight surface.
  • the method solves the problem of heavy weight of the photovoltaic module laminate structure packaging material, all of them adopt the price.
  • expensive acrylate is not only costly, but also causes a single color of the photovoltaic module.
  • the technology also has a high lamination temperature during lamination, high energy consumption, and the resulting laminated structure of the photovoltaic module is curved and has a certain The curvature and unevenness are not conducive to the installation and implementation of the PV modules, and the appearance is beautiful.
  • the object of the present invention is to provide a laminated structure of a photovoltaic module, which is not only low in cost, but also meets the requirements of the technical standards of the photovoltaic industry such as anti-ultraviolet, anti-aging, anti-shock, fireproof and anti-insulation.
  • the utility model can effectively solve the light weight of the photovoltaic component packaging material, improve the installation convenience, and reduce the installation cost, and is very suitable for the scale application in the photovoltaic field.
  • Another object of the present invention is to provide a method for preparing a laminate structure of the above photovoltaic module, which realizes a lamination process in a low temperature environment, reduces energy consumption, and ensures the flatness of the laminated structure of the photovoltaic module, further Facilitate the installation and implementation of photovoltaic modules.
  • Plastics are used as encapsulating materials, but the high cost of acrylates directly leads to an increase in the cost of photovoltaic modules, which is unacceptable in the photovoltaic industry; further, the lamination process of the patent uses layers at 150-200 ° C and a certain pressure.
  • the pressure, resulting in the resulting photovoltaic module laminate structure bending, a certain degree of curvature, unevenness, is not conducive to the installation and implementation of the photovoltaic module, and affect the appearance of the appearance; the same patent application of the epoxy group containing acrylate powder On the glass fiber, in order to improve the connection between the two, only the tempering process is used.
  • the uniformity of the application of the powder and the application density are not guaranteed, which are factors affecting the performance of the encapsulation layer in anti-UV, anti-aging, anti-shock, fireproof and anti-insulation properties.
  • the invention patent of 85240.9 discloses the packaging materials for photovoltaic modules based on acrylic powder coatings and super weather-resistant polyester powder coatings. With the promotion and use, the cost of packaging materials for photovoltaic modules based on acrylic powder coatings is higher. High, low stability in high temperature and high humidity environments, and poor performance in mechanical properties with high mechanical installation requirements for photovoltaic modules may shorten the service life of photovoltaic modules; and based on super weather resistant polyester powder coatings The fabricated packaging materials for photovoltaic modules have poor weatherability in outdoor installation environments, and poor performance in mechanical properties with high mechanical installation requirements for photovoltaic modules may shorten the service life of photovoltaic modules.
  • the present application hopes to find a laminated structure made of a packaging material for a photovoltaic module based on superior performance, which can effectively ensure that the photovoltaic module includes a high temperature and high humidity environment, an outdoor strong ultraviolet light or a strong wind environment.
  • the applicant was consciously surprised to find that when the powder coating obtained by mixing the acrylic powder coating with the polyester powder coating is coated on the fiber cloth, a packaging material with significantly improved performance can be obtained.
  • a laminate structure of a photovoltaic module comprising an encapsulation layer and a solar cell string, the encapsulation layer being prepared from a raw material comprising a fiber cloth and a mixed thermosetting powder coating, a mixed thermosetting powder coating is uniformly coated on the fiber cloth; wherein, the raw material of the mixed thermosetting powder coating comprises an acrylic resin, an acrylic resin curing agent, a polyester resin, and a polyester resin curing agent;
  • the fiber cloth is made of a fiber material.
  • the encapsulation layer comprises a first encapsulation layer and/or a second encapsulation layer
  • the first encapsulation layer or/and the second encapsulation layer is prepared from a raw material comprising a fiber cloth and a mixed thermosetting powder coating.
  • the mixed thermosetting powder coating is uniformly coated on the fiber cloth; wherein the raw material of the mixed thermosetting powder coating comprises an acrylic resin, an acrylic resin curing agent, a polyester resin, and a polyester resin. a curing agent; the fiber cloth is woven from a fiber material.
  • the laminate structure comprises a fluoroplastic film layer, and the fluoroplastic film layer is located above the encapsulation layer.
  • the laminate structure comprises an encapsulation film layer, the encapsulation film layer being disposed between the encapsulation layer and the solar cell string; further preferably
  • the encapsulating film layer of the present patent may be made of EVA, POE or PVB materials. Of course, those skilled in the art may also use other suitable encapsulating film materials.
  • EVA appearing in this patent text refers to an ethylene-vinyl acetate copolymer, which is obtained by copolymerization of ethylene (E) and vinyl acetate (VA).
  • EVA Ethylene Vinyl Acetate
  • POE Polyolefi n Elastomer
  • PVB polyvinyl butyral
  • PVB Poly vinyl Butyral
  • the laminated structure comprises a backing layer, and the backing layer is located below the encapsulating layer.
  • the fiber cloth has a basis weight ranging from 30 to 400 g/m 2
  • the mixed thermosetting powder coating has a weight per unit area of 70-400 coated on the fiber cloth. g/m 2.
  • the fiber material is any one or a combination of glass fiber, carbon fiber and aramid fiber; more preferably, the fiber material is glass fiber.
  • the fiber material has a monofilament diameter ranging from 3 to 23 ⁇ m.
  • the fiber cloth is made of a combination of any one of a plain weave, a twill, a satin, a rib, or a mat, or a plurality of weaving methods; more preferably, The fiber cloth is made of twill of the fiber material.
  • the ratio of the weight ratio of the fiber cloth to the mixed thermosetting powder coating is 20
  • the ratio of the weight ratio of the fiber cloth to the mixed thermosetting powder coating is in the range of 30-50 parts: 50-70 parts.
  • the fiber cloth has a basis weight ranging from 30 to 400 g/m 2
  • the mixed thermosetting powder coating has a weight per unit area of 70-400 coated on the fiber cloth. g/m 2.
  • the ratio by weight of the acrylic resin to the polyester resin ranges from 30 to 70 parts: 70 to 30 parts.
  • the ratio by weight of the acrylic resin to the polyester resin ranges from 40 to 60 parts: 60 to 40 parts.
  • the mixed thermosetting powder coating has a gelation range of 50-1000 s, a swash plate flow range of 10-40 cm, and a softening point temperature range of 80-120 °C.
  • the mixed thermosetting powder coating is prepared by a melt mixing process using a raw material comprising an acrylic resin, an acrylic resin cured ij, a polyester resin, and a polyester resin curing agent.
  • the mixed thermosetting powder coating is prepared by a melt mixing process using an acrylic powder coating and a polyester powder coating, wherein the acrylic powder coating adopts a raw material including an acrylic resin and an acrylic resin curing agent. It is prepared by a melt mixing process; the polyester powder coating is prepared by a melt mixing process using a raw material including a polyester resin and a polyester resin curing agent.
  • the mixed thermosetting powder coating is prepared by a dry mixing process using an acrylic powder coating and a polyester powder coating, wherein the acrylic powder coating comprises an acrylic resin.
  • the raw material of the acrylic resin curing agent is prepared by a melt mixing process;
  • the polyester powder coating is prepared by a melt mixing process using a raw material including a polyester resin and a polyester resin curing agent.
  • the mixed thermosetting powder coating is prepared by a melt mixing process using an acrylic powder coating, a polyester resin, and a polyester resin curing agent, wherein the acrylic powder coating comprises acrylic resin and acrylic acid.
  • the raw material of the resin curing agent is prepared by a melt mixing process
  • the mixed thermosetting powder coating is prepared by a melt mixing process using an acrylic resin, an acrylic resin curing agent, and a polyester powder coating, wherein the polyester powder coating comprises a polyester resin and
  • the raw material of the polyester curing agent is prepared by a melt mixing process.
  • the acrylic resin curing agent is different from the polyester resin.
  • the polyester resin curing agent is different from the acrylic resin.
  • the acrylic resin curing agent is a carboxy polyester resin, a hydroxy polyester resin, a triglycidyl isocyanurate, a triglycidyl trimellitate, a diglycidyl terephthalate.
  • hydroxyalkylamide isocyanate, blocked polyisocyanate, uretdione, phthalic anhydride, trimellitic anhydride, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecane Any of diacid, pentadecanedioic acid, hexadecandioic acid, dicyandiamide, azelaic acid dihydrazide hydrogen, diaminodiphenyl sulfone, tetramethyl glycoluril, amino resin, hydrogenated epoxy Or a mixture of any of the ratios.
  • the polyester resin curing agent is GMA acrylic resin, triglycidyl isocyanurate, triglycidyl trimellitate, diglycidyl terephthalate, hydroxyalkylamide Any one or more of any ratio of isocyanate, blocked polyisocyanate, uretdione, phthalic anhydride, trimellitic anhydride, diaminodiphenyl sulfone, tetramethyl glycoluril, amino resin, hydrogenated epoxy mixing.
  • the acrylic resin is a mixture of one or more of a GMA acrylic resin, a hydroxy acrylic resin or a carboxy acrylic resin or a bifunctional acrylic resin.
  • the acrylic resin is composed of acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, hydroxypropyl acrylate, glycidyl acrylate, methacrylic acid, methacrylic acid.
  • the acrylic resin is a GMA acrylic resin
  • the refractive index ranges from 1.40 to 1.50
  • the epoxy equivalent ranges from 300 to 800 g/eq
  • the glass transition temperature ranges from 40 to 70 ° C
  • the viscosity ranges from 75 to 75. -600Pa.s
  • softening point temperature range of 100-120 °C.
  • the acrylic resin is a hydroxy acrylic resin having a refractive index ranging from 1.40 to 1.50, a hydroxyl value ranging from 15 to 70 mgKOH/g, a glass transition temperature ranging from 40 to 70 ° C, and a viscosity range of 75- 600Pa s, softening point temperature range of 100-120 ° C.
  • the acrylic resin is a carboxy acrylic resin having a refractive index ranging from 1.40 to 1.50, an acid value ranging from 15 to 85 mgKOH/g, a glass transition temperature ranging from 40 to 70 ° C, and a viscosity range of 75- 600Pa s, softening point temperature range of 100-120 ° C.
  • the polyester resin is a mixture of one or both of a hydroxy polyester resin or a carboxy polyester resin.
  • the polyester resin is composed of ethylene glycol, propylene glycol, neopentyl glycol, 2-methylpropanediol, 1
  • one or more monomers of 6-hexanediol, terephthalic acid, isophthalic acid, adipic acid, sebacic acid, phthalic anhydride, and trimellitic anhydride are polymerized.
  • the polyester resin is a hydroxy polyester resin having a hydroxyl value in the range of 30 to 300 mgKOH/g, a glass transition temperature in the range of 50 to 75 ° C, and a viscosity in the range of 15 to 200 Pa-s.
  • the polyester resin is a carboxylated polyester resin having an acid value in the range of 15-85 mgKOH/g, a glass transition temperature in the range of 50-75 ° C, and a viscosity in the range of 15-200 Pa-s.
  • the ratio by weight of the acrylic resin to the acrylic resin curing agent ranges from 95 to 75 parts.
  • the ratio by weight of the polyester resin to the polyester resin curing agent is in the range of 98-80 parts: 2-20 parts.
  • the acrylic powder coating has a gelation range of 100-600 s, and the swash plate flow range is 1
  • softening point temperature range is 100-110 °C.
  • the polyester powder coating has a gelation range of 150-800 s, and the swash plate has a flow range of 10-
  • softening point temperature range is 100-110 °C.
  • the mixed thermosetting powder coating further includes an auxiliary agent; more preferably, the auxiliary agent is heavy The amount is 0.1-40% by weight of the mixed thermosetting powder coating, and the auxiliary agent is a polyamide wax, a polyolefin wax, an amide modified phenol urea surfactant, a benzoin, a polydimethyl group.
  • the auxiliary agent is a polyamide wax, a polyolefin wax, an amide modified phenol urea surfactant, a benzoin, a polydimethyl group.
  • Silicone vinyltrichlorosilane, n-butyltriethoxysilane, methyl orthosilicate, monoalkoxy pyrophosphate, acrylate, phenolic resin, urea formaldehyde resin, melamine formaldehyde resin, distearyl Acetylenediamine, a mixture of ethylene oxide and propylene oxide, hindered phenol, thiodipropionate, benzophenone, salicylate derivative, hindered amine, alumina, fumed silica, tetra Mixture of any one or more of bromobisphenol octadecyl, decabromodiphenylethane, tricresyl phosphate, aluminum hydroxide, magnesium hydroxide, barium sulfate, titanium dioxide, carbon black
  • the method for preparing the encapsulation layer comprises the following steps:
  • the hybrid thermosetting powder coating is thermally bonded to the fiber cloth by pressure heating.
  • step b) finishing the thermally bonded hybrid thermosetting powder coating and the fiber cloth are cut in sections;
  • the thermal bonding process has a pressurization range of 0.05-0.25 MPa, the thermal bonding process has a heating temperature range of 90-130 ° C, and the heated turn-up range is 5-20 seconds.
  • a method for preparing a laminated structure of a photovoltaic module as described above wherein the laminated structure of the photovoltaic module is prepared by a lamination process, wherein the laminating process comprises preheating and melting a first heating stage, a second heating stage for cross-linking curing of the hybrid thermosetting powder coating, and a third pressurized cooling stage.
  • the heating temperature range of the first stage is 110-130 ° C, the heating range is 100-60 0 seconds, and the heating temperature range of the second stage is 131-200 ° C. , the heating crucible range is 100-1200 seconds; the third stage cooling temperature range is -10-60 ° C, the applied pressure range is 0.05-0.25 Mpa ;
  • the above lamination process provided by the present invention can be applied not only to the laminated structure of the photovoltaic module of the present invention, but also to the laminated structure of other types of photovoltaic components, such as the applicant.
  • the laminated structure of the photovoltaic module previously applied, the patent application numbers are CN201610927464.6 and CN20 respectively. 1610927383.6, substantially the same technical effects as the present invention can be obtained, and thus the present invention will not be specifically described.
  • a photovoltaic module comprising a laminate structure, a connector and a junction box, the electrical connection of the laminate structure to the junction box is achieved by a connector, wherein the photovoltaic component comprises a photovoltaic component as described above Laminated structure.
  • the connector comprises a crimping terminal and a heat shrinkable sleeve, and a cable card located at two ends of the connector is connected to the crimping terminal, and the heat shrinkable sleeve surrounds the pressure Connect the terminal.
  • melt mixing process of the present invention generally includes the steps of raw material premixing, melt extrusion, milling, etc., which can achieve good uniform dispersion of the raw materials;
  • the acrylic powder coating and the polyester powder coating are directly mixed;
  • GMA referred to throughout the present invention means glycidyl methacrylate.
  • the present invention proposes to use a synthetic thermosetting powder coating made of an acrylic resin, an acrylic resin curing agent, a polyester resin, and a polyester resin curing agent, and then uniformly coating the mixed thermosetting powder coating on the fiber cloth.
  • a synthetic thermosetting powder coating made of an acrylic resin, an acrylic resin curing agent, a polyester resin, and a polyester resin curing agent, and then uniformly coating the mixed thermosetting powder coating on the fiber cloth.
  • the test layer provides that the encapsulation layer provided by the invention effectively avoids or reduces the penetration of moisture into the photovoltaic module from the outside.
  • the mixed thermosetting powder coating in the layer material has good wettability with the fiber cloth, and the adhesion to the fiber cloth is good, the overall mechanical properties of the encapsulating layer of the invention are excellent, and the weathering and light transmittance are also excellent.
  • the utility model can effectively ensure the service life of the photovoltaic module to which the invention is applied in a harsh installation environment including a high temperature and high humidity environment, an outdoor strong ultraviolet light or a strong wind environment, and a high mechanical installation requirement environment, and the invention has low cost and simple preparation process. , very conducive to large-scale promotion and implementation of applications.
  • the present invention further proposes a lamination process of a preferred photovoltaic module laminate structure, specifically, the lamination process is set to a first heating phase, a second heating phase, and a third pressurized cooling phase, wherein the first heating phase
  • the setting allows the hybrid thermosetting powder coating to have sufficient inter-turn melting and leveling to fully remove the bubbles.
  • the second heating stage is set so that the hybrid thermosetting powder coating is fully crosslinked and solidified, while the critical third pressurized cooling
  • the stage balances the cooling rate and shrinkage of different materials in the laminated structure of the photovoltaic module to obtain a flat component, which finally realizes the lamination process in a low temperature environment, reduces energy consumption, and ensures the laminated structure of the photovoltaic module.
  • the flatness taking into account the aesthetic appearance, further facilitates the installation and implementation of photovoltaic modules.
  • the present invention also uniformly applies a mixed thermosetting powder coating to a fiber cloth by a coating device, and then pre-bonds the mixed thermosetting powder coating material to the fiber cloth by pressure heating, and finally segments cutting.
  • the encapsulation layer of the PV module of suitable size is obtained, so that any change of the package size of the PV module laminate structure can be realized to meet the installation requirements of different buildings, and the installation and application of the PV module is further facilitated.
  • FIG. 1 is a schematic view showing a laminated structure of a typical photovoltaic module of the prior art
  • FIG. 2 is a schematic view showing a laminated structure of a photovoltaic module according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic view showing a laminated structure of a photovoltaic module according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic view showing a laminated structure of a photovoltaic module according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic view showing a laminated structure of a photovoltaic module according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic view showing a laminated structure of a photovoltaic module according to Embodiment 5 of the present invention.
  • FIG. 7 is a schematic view showing a laminated structure of a photovoltaic module according to Embodiment 6 of the present invention.
  • FIG. 8 is a schematic view showing a laminated structure of a photovoltaic module according to Embodiment 7 of the present invention.
  • FIG. 9 is a schematic view showing a laminated structure of a photovoltaic module according to Embodiment 8 of the present invention.
  • FIG. 10 is a schematic structural view of a preparation device for a first package layer and a second package layer for a photovoltaic module according to an embodiment of the present invention
  • FIG. 11 is a schematic view showing a structural arrangement of a lamination process of a laminate structure of the photovoltaic module shown in FIG. 8;
  • FIG. 12 is a schematic structural view of a connector of a photovoltaic module according to an embodiment of the present invention.
  • 13 is a schematic view showing a laminated structure of a photovoltaic module according to Embodiment 9 of the present invention
  • 14 is a schematic view showing a laminated structure of a photovoltaic module according to Embodiment 10 of the present invention.
  • Embodiments of the present invention disclose a laminate structure of a photovoltaic module, the laminate structure including an encapsulation layer and a solar cell string, the encapsulation layer being composed of a material including a fiber cloth and a mixed thermosetting powder coating.
  • the mixed thermosetting powder coating is uniformly coated on the fiber cloth; wherein the raw material of the mixed thermosetting powder coating comprises an acrylic resin, an acrylic resin curing agent, a polyester resin, and a poly An ester resin curing agent; the fiber cloth is woven from a fiber material.
  • Embodiments of the present invention also disclose a method for preparing a laminated structure of a photovoltaic module as described above, wherein the laminated structure of the photovoltaic module is prepared by a lamination process, wherein the laminating process includes A first heating stage for preheating melting, a second heating stage for cross-linking curing of the hybrid thermosetting powder coating, and a third pressurized cooling stage.
  • Embodiments of the present invention also disclose a photovoltaic module including a laminate structure, a connector and a junction box, and electrical connection of the laminate structure to the junction box through the connector, wherein the photovoltaic module includes the above
  • the laminated structure of the photovoltaic module uses a standard rapid electrical connection joint with respect to the conventional photovoltaic module of the prior art, which is costly, and the connected machine structure of the embodiment of the invention can make the electrical connection reliable and low in cost.
  • a laminated structure of a photovoltaic module the laminated structure includes a first encapsulation layer la, a solar cell string 13a, and a second encapsulation layer 14a, wherein
  • the laminate structure comprises a fluoroplastic film layer, and the fluoroplastic film layer is located above the first encapsulation layer.
  • the laminate structure comprises an encapsulation film layer, and the encapsulation film layer may be separately disposed between the first encapsulation layer and the solar cell string or between the solar cell string and the second encapsulation layer, Can also be set in the first encapsulation layer and the sun Between the battery strings and between the solar cell string and the second encapsulation layer.
  • the encapsulating film layer involved in the patent may be made of EVA, POE or PVB materials.
  • the laminate structure comprises a backing layer, the backing layer being located below the second encapsulating layer.
  • the laminated structure further includes a first encapsulation film layer 12a, and the first encapsulation film layer 12a is located on the first encapsulation layer 11a and the solar cell string. Between 13a. Further preferably, the first encapsulating film layer 12a is made of an EVA material.
  • the first encapsulating layer and the second encapsulating layer use the same raw materials, specifically including the following materials:
  • a fiber cloth the fiber cloth is woven from a fiber material
  • the mixed thermosetting powder coating material includes a acrylic resin, an acrylic resin curing agent, a polyester resin, and a polyester resin curing agent; wherein the mixed thermosetting powder coating is uniformly coated on the fiber cloth .
  • the ratio by weight of the fiber cloth to the mixed thermosetting powder coating ranges from 20 to 60 parts: 40 to 80 parts; more preferably, in the embodiment of the invention, the fiber cloth
  • the ratio by weight to the mixed thermosetting powder coating is in the range of 30-50 parts: 50-70 parts; specifically, in the present embodiment, the ratio by weight of the fiber cloth to the mixed thermosetting powder coating is 30 parts: 70 parts .
  • the ratio by weight of the fiber cloth to the mixed thermosetting powder coating is not within the preferred range of the embodiment of the present invention, specifically, when the ratio of the weight ratio of the fiber cloth to the mixed thermosetting powder coating is 15 parts: When 85 parts of enamel, the mechanical strength is obviously deteriorated. When the weight ratio of the fiber cloth to the mixed type thermosetting powder coating is 85 parts: 15 parts ⁇ , the weather resistance is obviously deteriorated, and even the photovoltaic standard requirement cannot be met, but it is also verified by the verification.
  • the suitable ratio of the weight ratio of the fiber cloth to the mixed thermosetting powder coating is higher than the applicant's prior application numbers CN201610685536.0 and CN201610685240.9.
  • the scope of application is wide, and the range of selection of raw materials is increased, and the implementation of the present invention will not be further described.
  • the mixed thermosetting powder coating has a basis weight on the fiber cloth ranging from 70 to 400 g/m 2 , specifically, in the present embodiment, the hybrid thermosetting property The powder coating was applied to the fiber cloth to have a basis weight of 100 g/m 2 .
  • the basis weight of the fiber cloth ranges from 30 to 400 g/m 2 , and the weight of the fiber cloth is ensured under the strength of the fiber cloth, specifically, in the embodiment.
  • the fiber cloth has a basis weight of 100 g/m 2 ;
  • the fiber cloth is made of a combination of any one of a plain weave, a twill, a satin, a rib, or a mat, or a plurality of weaving methods, more preferably
  • the fiber cloth is made of the fiber material by the twill weaving method, because the fiber cloth surface made by the twill weave method is flat, more favorable for the infiltration of the mixed thermosetting powder coating, and the fiber cloth is transparent. The effect is good and there is better support strength; of course, those skilled in the art can select other well-known weaving methods according to actual needs;
  • the fiber material is any one or a combination of glass fiber, carbon fiber and aramid fiber to ensure good insulation and weather resistance of the fiber cloth, and is compatible with photovoltaic Related standard requirements, more preferably, in the present embodiment, the fiber material is glass fiber because the glass fiber itself has good light transmittance, low cost, wide source, and mature preparation and compounding process.
  • the fiber material is glass fiber because the glass fiber itself has good light transmittance, low cost, wide source, and mature preparation and compounding process.
  • the filament diameter of the fiber material ranges from 3 to 23 ⁇ m, and particularly preferably, In the embodiment, the diameter of the monofilament of the fiber material is 3 ⁇ m ; in other embodiments of the present invention, those skilled in the art can select the range of the diameter of the monofilament according to actual needs, and the embodiments of the present invention will not be further illustrated.
  • the mixed thermosetting powder coating has a gelatinization range of 50-1000 s, a swash plate flow range of 10-40 cm, and a softening point temperature range of 80-120 ° C; more preferably, in the practice of the present invention
  • the mixed thermosetting powder coating has a gelation range of 100-800 s, a swash plate flow range of 10-3 5 cm, and a softening point temperature range of 100-110 °C.
  • the acrylic resin has good light transmittance, insulation and weather resistance, it meets the requirements of the relevant standards of photovoltaics.
  • the refractive index of the acrylic resin ranges from 1.40 to 1.50, and the glass transition temperature range It is 40-70 ° C, the viscosity range is 75-600 Pa, s, and the softening point temperature ranges from 100-120 ° C.
  • the acrylic resin is a mixture of one or more of GMA acrylic resin, hydroxy acrylic resin or carboxy acrylic resin or difunctional acrylic resin.
  • the bifunctional acrylic resin may be an acrylic resin including a hydroxyl functional group and a carboxyl functional group, and may also include other types of functional groups.
  • the acrylic resin is composed of acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, hydroxypropyl acrylate, glycidyl acrylate, methacrylic acid.
  • those skilled in the art can select other monomers to polymerize according to actual needs to prepare the acrylic resin of the embodiment of the present invention.
  • the acrylic resin is a GMA acrylic resin having a refractive index ranging from 1.40 to 1.50 and an epoxy equivalent range of 300.
  • the resin has a refractive index in the range of 1.42-1.48, an epoxy equivalent range of 450-700 g/eq, a glass transition temperature range of 45-6 0 ° C, a viscosity range of 150-400 Pa, and a softening point temperature range of 105-110. °C.
  • the acrylic resin is a hydroxy acrylic resin having a refractive index ranging from 1.40 to 1.50 and a hydroxyl value of 15 -70 mgKOH/g, glass transition temperature in the range of 40-70 ° C, viscosity in the range of 75-600 Pa, s, softening point temperature in the range of 100-120 ° C; still more preferably, in the embodiment of the invention, hydroxy acrylic acid
  • the resin has a refractive index range of 1.42-1.48, a hydroxyl value range of 30-50 mgKOH/g, a glass transition temperature range of 45-60 ° C, a viscosity range of 150-400 Pa, and a softening point temperature range of 105-110 ° C. .
  • the acrylic resin is a carboxy acrylic resin having a refractive index in the range of 1.40 to 1.50, an acid value in the range of 15 to 85 mgKOH/g, a glass transition temperature in the range of 40 to 70 ° C, a viscosity in the range of 75 to 600 Pa, s, and softening.
  • the point temperature ranges from 100 to 120 ° C; still more preferably, in the embodiment of the invention, the carboxylic acid resin has a refractive index in the range of 1.42-1.48, an acid value in the range of 30-60 mgKOH/g, and a glass transition temperature range of 45. -60 ° C, viscosity range of 150-400 Pa, s, softening point temperature range of 105-110 ° C.
  • the acrylic resin curing agent is a carboxy polyester resin, a hydroxy polyester resin, a triglycidyl isocyanurate, a benzene benzene.
  • the polyester resin is one of a hydroxy polyester resin or a carboxy polyester resin. Or a mixture of the two.
  • the polyester resin is composed of ethylene glycol, propylene glycol, neopentyl glycol, 2-methylpropanediol, 1,6-hexanediol, terephthalic acid, and m-benzene.
  • One or more monomers of dicarboxylic acid, adipic acid, sebacic acid, phthalic anhydride, and trimellitic anhydride are polymerized.
  • the polyester resin of the examples of the present invention was polymerized.
  • the polyester resin is a hydroxy polyester resin having a hydroxyl value ranging from 30 to 300 mgKOH/g, and a glass transition temperature range. It is 50-75 ° C, the viscosity ranges from 15 to 200 Pa, s ; still more preferably, in the embodiment of the invention, the hydroxyl group of the hydroxy polyester resin ranges from 30 to 100 mg KOH / g, and the glass transition temperature ranges from 55 -65 ° C, viscosity range of 1 5-100 Pa-s.
  • the polyester resin is a carboxyl polyester resin having an acid value ranging from 15 to 85 mgKOH/g, a glass transition temperature. The range is 50-75 ° C, and the viscosity ranges from 15 to 200 Pa, s. More preferably, in the embodiment of the present invention, the carboxyl group polyester resin has an acid value ranging from 30 to 60 mgKOH/g, a glass transition temperature ranging from 55 to 65 ° C, and a viscosity ranging from 15 to 100 Pa. s.
  • the polyester resin curing agent is GMA acrylic resin, triglycidyl isocyanurate, trimellitic acid tri-shrinkage Glyceryl ester, diglycidyl terephthalate, hydroxyalkylamide, isocyanate, blocked polyisocyanate, uretdione, phthalic anhydride, trimellitic anhydride, diaminodiphenyl sulfone, tetramethyl glycoluril, amino resin Any one or a mixture of hydrogenated epoxies in any ratio.
  • the weight ratio of the acrylic resin to the acrylic resin curing agent ranges from 95 to 75 parts: 5-25 parts;
  • the ratio of the weight ratio of the polyester resin to the polyester resin curing agent in the embodiment of the present invention is preferably 98-80 parts: 2-20 parts;
  • the ratio by weight of the acrylic resin to the polyester resin ranges from 30 to 70 parts: 70 to 30 parts; still more preferably, in the embodiment of the invention, in the mixed type In the thermosetting powder coating, the ratio by weight of the acrylic resin to the polyester resin ranges from 40 to 60 parts: 60 to 40 parts.
  • the mixed thermosetting powder coating of the first encapsulating layer and the second encapsulating layer is prepared by the same method.
  • the mixed thermosetting powder coating comprises acrylic resin and acrylic resin.
  • the raw materials of the curing agent, the polyester resin and the polyester resin curing agent are prepared by a melt mixing process, and the embodiment enables the various raw materials in the mixed system to be better dispersed in each other, so that the uniformity of the mixed system is achieved. Stronger, the transmittance and surface properties of the obtained first encapsulation layer and second encapsulation layer are also more stable;
  • the acrylic resin curing agent is different from the polyester resin; further preferably, in the embodiment of the invention, the polyester resin curing agent is different from the acrylic resin.
  • the melt mixing process according to the embodiment of the present invention generally includes process steps such as premixing, melt extrusion, and milling of raw materials, which can achieve good uniform dispersion of the raw materials.
  • premixed mash The interval may be selected between 2 and 10 minutes, and then the premixed mixture is extruded and pressed into a sheet by a screw extruder.
  • the aspect ratio of the extruder may be selected.
  • the heating temperature of the extruder is selected between 80-120 ° C
  • the screw speed is selected at 200-800 rpm
  • the sheet is pulverized into small pieces into a powder mill to grind into a certain particle size powder coating, preferably, in the present
  • the rotational speed of the mill is selected to be 50-150 rpm.
  • the particle size range of the hybrid thermosetting powder coating is controlled between 35-300 ⁇ m.
  • other suitable process parameters of the apparatus can also be used to prepare a hybrid thermoset powder coating, which is believed to be a matter of course for those skilled in the art.
  • the hybrid thermosetting powder coating provided by the embodiment of the present invention may further add a certain amount of auxiliary agent (which may be added during the premixing stage of the raw material) for further use.
  • auxiliary agent which may be added during the premixing stage of the raw material
  • the auxiliary component by weight is part by weight of the mixed thermosetting powder coating 0.1-40%, the same can also be based on the actual needs of the installation of photovoltaic modules, by adding additives to adjust the color of the hybrid thermosetting powder coating, further conducive to the actual installation and application of photovoltaic modules.
  • Additives are polyamide wax, polyolefin wax, amide modified phenol urea surfactant, benzoin, polydimethylsiloxane, vinyltrichlorosilane, n-butyltriethoxysilane, orthosilicate Methyl ester, monoalkoxy pyrophosphate, acrylate, phenolic resin, urea resin, melamine formaldehyde resin, distearyl ethylenediamine, mixture of ethylene oxide and propylene oxide, hindered phenol, thiodi Propionic acid diester, benzophenone, salicylate derivative, hindered amine, alumina, fumed silica, tetrabromobisphenol VIII, decabromodiphenylethane, tricresyl phosphate, aluminum hydroxide, hydrogen Any one or a mixture of any of magnesium oxide, barium sulfate, titanium dioxide, and carbon black.
  • the present invention only lists the preferred types of auxiliaries. In other embodiments, those skilled in the art may select other types of auxiliaries according to actual needs, which are not specifically described in the embodiments of the present invention; further preferably, The embodiment of the invention can also be used to adjust the color of the mixed thermosetting powder coating by adding the pigment filler as an auxiliary agent according to the actual requirements of the installation of the photovoltaic module, thereby further facilitating the practical installation and application of the photovoltaic component.
  • the additive can be used.
  • the blue and yellow pigments it is also possible to use a pigment filler in a red or yellow hue.
  • it is also possible to adjust the color or the special hue by using a mixed color pigment filler.
  • the acrylic resin is a GMA acrylic resin having a refractive index in the range of 1.42-1.48, an epoxy equivalent in the range of 450-700 g/eq, and a glass transition temperature in the range of 45-60 ° C. , viscosity range is 150-400Pa, s, softening point temperature range is 105-110 ° C, acrylic resin curing agent is dodecane Diacid, wherein the ratio by weight of GMA acrylic resin to dodecanedioic acid is 85 parts: 15 parts; the polyester resin is a carboxyl super weather resistant polyester resin having an acid value of 50 mgKOH/g and a glass transition temperature of 60°.
  • the viscosity is 80 Pa.s
  • the polyester resin curing agent is triglycidyl isocyanurate, wherein the proportion by weight of the carboxyl super weather resistant polyester resin and the isocyanuric acid triglycidyl ester is 95 parts: 5 Specifically, in the present embodiment, the weight ratio of the GMA acrylic resin to the carboxyl super weather resistant polyester resin is 50 parts: 50 parts.
  • the mixed thermosetting powder coating is uniformly coated on the fiber cloth by a coating device;
  • step b) finishing the thermally bonded hybrid thermosetting powder coating and the fiber cloth;
  • the thermal bonding process requires a suitable range of pressurization and heating control, because the mixed thermosetting powder coating and the fiber can be obtained only under the appropriate pressure and temperature. A better hot-melt bonding process between the cloths is achieved, which ultimately ensures that the lamination process in the process of preparing the photovoltaic component package is met, thereby obtaining a packaging material that is truly applicable to the photovoltaic cell component package. Therefore, preferably, in the embodiment of the present invention, the press range of the thermal bonding process is 0.05-0.25 Mpa, the heating temperature range of the thermal bonding process is 90-130 ° C, and the heating range is 5-20 seconds. Specifically, in the present embodiment, the pressing pressure of the thermal bonding process is 0.05 MPa, the heating temperature of the thermal bonding process is 130 ° C, and the heating enthalpy range is 5 seconds.
  • the method for preparing the first encapsulating layer and the second encapsulating layer as described above adopts the device shown in FIG. 10, and in actual implementation, the fiber cloth is put into the fiber into the fiber.
  • the mixed thermosetting powder coating is uniformly applied to the fiber cloth output from the fiber feeder 51 through the coating device 52, and then heated by the hot melt laminator 53 to make the mixed thermosetting powder coating and the coating.
  • the fiber cloth realizes thermal bonding, and the mixed thermosetting powder coating and the fiber cloth which are completed by thermal bonding are segmented and cut, thereby obtaining the first encapsulating layer and the second encapsulating layer of the photovoltaic module, which are not only easy to operate but also uniform.
  • the coating device may also employ a dusting head, which is applied in the form of dusting to uniformly apply the mixed thermosetting powder coating to the fiber.
  • a dusting head which is applied in the form of dusting to uniformly apply the mixed thermosetting powder coating to the fiber.
  • those skilled in the art may also select any known device according to actual needs to complete the preparation of the first encapsulation layer and the second encapsulation layer disclosed in the present invention, as long as the implementation is The technical effect of uniformly mixing the thermosetting powder coating on the fiber cloth
  • the laminated structure of the photovoltaic module is prepared by a lamination process, wherein the laminating process includes the first step for preheating and melting A heating stage, a second heating stage for cross-linking curing of the hybrid thermosetting powder coating, and a third pressurized cooling stage.
  • the heating temperature range of the first stage is 110-130 ° C, the heating range is 100-600 seconds, and the heating temperature range of the second stage is 131-200 ° C.
  • the applied pressure ranges from 0.05 to 0.25 Mpa; more preferably, the heating temperature in the first stage ranges from 115 to 125 ° C, and the heating interval in the range of 300 to 500 seconds; the heating temperature range in the second stage is 140-180 ° C, the heating range is 400-1000 seconds; the third stage cooling temperature ranges from 40 to 50 ° C, and the applied pressure ranges from 0.1 to 0.2 MPa, specifically, in the present embodiment
  • the heating temperature in the first stage is 120 ° C, and the heating time is 400 seconds.
  • the heating temperature in the second stage is 160 ° C, and the heating time is 700 seconds.
  • the cooling temperature in the third stage is 45 ° C. It is 0.15Mpa.
  • the embodiment further provides a photovoltaic module, comprising a laminated structure, a connector and a junction box, the electrical connection of the laminated structure and the junction box is realized by the connector, wherein the photovoltaic component comprises the above The laminated structure of the photovoltaic module.
  • the connector includes a crimping terminal 72 and a heat shrinkable sleeve 73, and the cable wires 71, 74 at both ends of the connector are inserted into the crimping terminal 72.
  • the heat shrink sleeve 73 surrounds the crimp terminal 72 to make the electrical connection of the photovoltaic module laminate structure reliable and low in cost.
  • Embodiment 2 Referring to FIG. 3, in the second embodiment, the laminated structure includes a fluoroplastic film layer l lb, a first encapsulation layer 12b, a first encapsulation film layer 13b, and a solar cell string 14b. And the second encapsulation layer 15b, the fluoroplastic film layer 1 lb is located above the first encapsulation layer 12b, and the remaining technical solutions of the second embodiment are the same as those of the first embodiment.
  • Embodiment 3 Referring to FIG. 4, in the third embodiment, the laminated structure includes a first encapsulation layer 111, a first encapsulation film layer 12c, a solar cell string 13c, and a second encapsulation layer 14c.
  • the backing layer 15c and the backing layer 15c are located below the second encapsulating layer 14c.
  • the remaining technical solutions of the third embodiment are the same as those of the first embodiment.
  • Embodiment 4 Referring to FIG. 5, in the fourth embodiment, the laminated structure includes a first encapsulation layer 111, a first encapsulation film layer 12d, a solar cell string 13d, and a second encapsulation film.
  • the layer 14d and the second encapsulation layer 15d are located between the solar cell string 13d and the second encapsulation layer 15d.
  • the remaining technical solutions of the fourth embodiment are the same as those of the first embodiment.
  • Embodiment 5 Referring to FIG. 6, in the embodiment 5, the laminated structure includes a fluoroplastic film layer l le, a first encapsulation layer 12e, a first encapsulation film layer 13e, and a solar cell string 14e. a second encapsulating film layer 15e and a second encapsulating layer 16e, wherein the fluoroplastic film layer lie is located above the first encapsulating layer 12e, and the second encapsulating film layer 15e is located at the solar cell string 14e and the second encapsulating layer 16e Between the remaining technical parties of the fifth embodiment The same as the above-described first embodiment.
  • the laminated structure includes a first encapsulation layer 1 If, a first encapsulation film layer 12f, a solar cell string 13f, and a second encapsulation film.
  • the remaining technical solutions of the sixth embodiment are the same as those of the first embodiment.
  • the laminated structure includes a fluoroplastic film layer l lg, a first encapsulation layer 12g, a first encapsulation film layer 13g, and solar energy.
  • the second package film layer 15g is located between the solar cell string 14g and the second package layer 16g.
  • Embodiment 8 Referring to FIG. 9, in the embodiment 8, the laminated structure includes a first encapsulation layer l lh, a solar cell string 12h, and a second encapsulation layer 13h, wherein the solar cell string 12h is located.
  • the remaining technical solutions of the eighth embodiment are the same as those of the first embodiment described above between the first encapsulation layer l lh and the second encapsulation layer 13h.
  • Embodiment 9 Referring to FIG. 13, in the embodiment 9, the laminated structure includes an encapsulation layer 1 li, a first encapsulation film layer 12i, a solar cell string 13i, and a second encapsulation film layer 14i. And the backing layer 15i, wherein the backing layer 15i is located below the second encapsulating film layer 14i, and the remaining technical solutions of the embodiment 9 are the same as those of the first embodiment.
  • Embodiment 10 Referring to FIG. 14, in the embodiment 10, the laminated structure includes a fluoroplastic film layer 11 j, a first encapsulating film layer 12j, a solar cell string 13j, and a second encapsulating film.
  • the remaining technical solutions of the embodiment 10 are as described above. Example 1 is the same.
  • Embodiment 11 The remaining technical solutions of the present embodiment 11 are different from any of the above embodiments 1 to 10, except that in the present embodiment 11, the hybrid thermosetting powder coating uses acrylic powder.
  • the coating and the polyester powder coating are prepared by a melt mixing process, wherein the acrylic powder coating is prepared by a melt mixing process using a raw material including an acrylic resin and an acrylic resin curing agent; the polyester powder coating comprises a polyester resin and a polyester.
  • the raw material of the resin curing agent is melted and mixed Further prepared preferably after the process; in order to facilitate the better infiltration of the fiber material by the mixed thermosetting powder coating which is melted during the preparation process, the connection effect of the thermal bonding between the mixed thermosetting powder coating and the fiber cloth is effectively ensured, and further preferably,
  • the gelatinized crucible range of the acrylic powder coating is 100-60 0s
  • the swash plate flow range is 15-35 cm
  • the softening point temperature range is 100-110 ° C
  • the polyester powder coating gelatinized daytime The range is 150-800s
  • the swash plate flow range is 10-25cm
  • the softening point temperature range is 100-110°C.
  • the gel powder of the acrylic powder coating is 500 s
  • the swash plate flow is 20 cm
  • the glass transition temperature is 45 ° C
  • the softening point temperature ranges from 100 to 105 ° C.
  • the polyester powder coating has a gelatinized crucible of 600 s, a swash plate flow of 15 cm, a glass transition temperature of 50 ° C, and a softening point temperature of 105-110 ° C.
  • Embodiment 12 The remaining technical solutions of Embodiment 12 are the same as those of Embodiment 1 to Embodiment 10 except that in the present embodiment 12, the mixed thermosetting powder coating uses acrylic powder coating and polyester powder.
  • the coating is prepared by a dry mixing process, wherein the acrylic powder coating is prepared by a melt mixing process using a raw material including an acrylic resin and an acrylic resin curing agent; the polyester powder coating adopts a raw material including a polyester resin and a polyester resin curing agent. It is prepared by a melt mixing process.
  • the hybrid thermosetting powder coating uses acrylic powder coating and polyester resin.
  • the polyester resin curing agent is prepared by a melt mixing process, wherein the acrylic powder coating is prepared by a melt mixing process using a raw material including an acrylic resin and an acrylic resin curing agent.
  • the hybrid thermosetting powder coating is made of an acrylic resin or an acrylic resin curing agent.
  • the polyester powder coating is prepared by a melt mixing process, wherein the polyester powder coating is prepared by a melt mixing process using a raw material including a polyester resin and a polyester curing agent.
  • Embodiment 15 The remaining technical solutions of the present embodiment 15 are the same as those of the above-mentioned Embodiments 1 to 10. The only difference is that in the embodiment 15, the acrylic resin curing agent is the same as the polyester resin, specifically, The acrylic resin curing agent is a carboxyl super weather resistant polyester resin.
  • Embodiment 16 The remaining technical solutions of Embodiment 16 are the same as Embodiment 1 to Embodiment 10 described above, and the difference is only In the present Example 16, the polyester resin curing agent is the same as the acrylic resin, and specifically, the polyester resin curing agent is a GMA acrylic resin.
  • Embodiment 17 The remaining technical solutions of the present embodiment 17 are the same as those of the above-mentioned Embodiments 1 to 10.
  • the acrylic resin curing agent is the same as the polyester resin
  • the polyester resin The curing agent is the same as the acrylic resin.
  • the acrylic resin curing agent is a carboxyl group super weather resistant polyester resin
  • the polyester resin curing agent is a GMA acrylic resin.
  • Embodiment 18 The remaining technical solutions of Embodiment 18 are the same as those of Embodiments 1 to 10 described above, except that in the present embodiment 18, the ratio by weight of the acrylic resin to the polyester resin is 40 parts. : 60 servings.
  • Embodiment 19 The remaining technical solutions of the present embodiment 19 are the same as those of the above-mentioned Embodiments 1 to 10. The only difference is that in the present embodiment 19, the ratio by weight of the acrylic resin to the polyester resin is 60 parts. : 40 servings.
  • Embodiment 20 The remaining technical solutions of Embodiment 20 are the same as those of Embodiment 1 to Embodiment 10 described above, except that in the present embodiment 20, the ratio by weight of the acrylic resin to the polyester resin is 30 parts. : 70 copies.
  • Embodiment 21 The remaining technical solutions of the present embodiment 21 are the same as those of the above-mentioned Embodiments 1 to 10. The only difference is that in the present embodiment 21, the ratio by weight of the acrylic resin to the polyester resin is 70 parts. : 30 servings.
  • Embodiment 22 The remaining technical solutions of the present embodiment 22 are the same as those of the above-mentioned Embodiments 1 to 10. The only difference is that in the present embodiment 22, the ratio by weight of the acrylic resin to the polyester resin is 25 parts. : 75 servings.
  • Embodiment 23 The remaining technical solutions of the present embodiment 23 are the same as those of the above-mentioned Embodiments 1 to 10. The only difference is that in the present embodiment 23, the ratio by weight of the acrylic resin to the polyester resin is 75 parts. : 25 copies.
  • Embodiment 24 The remaining technical solutions of the present embodiment 24 are the same as those of the above-mentioned Embodiments 1 to 10. The only difference is that in the present embodiment 24, the ratio by weight of the acrylic resin to the polyester resin is 20 parts. : 80 copies.
  • Embodiment 25 The remaining technical solutions of the present embodiment 25 are the same as those of the above-mentioned Embodiments 1 to 10. The only difference is that in the present embodiment 25, the ratio by weight of the acrylic resin to the polyester resin is 80 parts. : 20 copies.
  • Embodiment 26 The remaining technical solutions of the present embodiment 26 are the same as those of the above-mentioned Embodiments 1 to 10. The only difference is that in the present embodiment 26, the ratio by weight of the acrylic resin to the polyester resin is 15 parts. : 85 copies.
  • Embodiment 27 The remaining technical solutions of the present embodiment 27 are the same as those of the above-mentioned Embodiment 1 - Embodiment 10, except that in the present embodiment 27, the ratio by weight of the acrylic resin to the polyester resin is 85 parts. : 15 copies.
  • Embodiment 28 The remaining technical solutions of the present embodiment 28 are the same as those of the above-mentioned Embodiments 1 to 10. The only difference is that in the present embodiment 28, the ratio by weight of the acrylic resin to the polyester resin is 10 parts. : 90 copies.
  • Embodiment 29 The remaining technical solutions of the present embodiment 29 are the same as those of the above-mentioned Embodiments 1 to 10. The only difference is that in the present embodiment 29, the ratio by weight of the acrylic resin to the polyester resin is 90 parts. : 10 servings.
  • Embodiment 30 The remaining technical solutions of Embodiment 30 are the same as those of Embodiment 1 to Embodiment 10 except that in the present embodiment 30, the ratio by weight of the acrylic resin to the polyester resin is 5 parts. : 95 copies.
  • Example 31 The remaining technical solutions of the present embodiment 31 are the same as those of the above-mentioned embodiment examples 1 to 10. The only difference is that in the present embodiment 31, the weight ratio of the acrylic resin to the polyester resin is 95 servings: 5 servings.
  • Embodiment 32 The remaining technical solutions of the present embodiment 32 are the same as those of the above-described embodiment 11, except that in the present embodiment 32, the weight ratio of the acrylic resin to the polyester resin is 40 parts: 60 parts.
  • Embodiment 38 The remaining technical solutions of the present embodiment 38 are the same as those of the above-described embodiment 11, except that in the present embodiment 38, the ratio by weight of the acrylic resin to the polyester resin is 20 parts: 80 parts.
  • Embodiment 39 The remaining technical solutions of the present embodiment 39 are the same as those of the above-described embodiment 11, except that in the present embodiment 39, the ratio by weight of the acrylic resin to the polyester resin is 80 parts: 20 parts.
  • Embodiment 40 The remaining technical solutions of the present embodiment 40 are the same as those of the above-described Embodiment 11, except that in the present embodiment 40, the ratio by weight of the acrylic resin to the polyester resin is 15 parts: 85 parts.
  • Embodiment 41 The remaining technical solutions of the present embodiment 41 are the same as those of the above-described embodiment 11, except that in the present embodiment 41, the ratio by weight of the acrylic resin to the polyester resin is 85 parts: 15 parts.
  • Embodiment 42 The remaining technical solutions of Embodiment 42 are the same as Embodiment 11 described above, except that In the present Example 42, the ratio by weight of the acrylic resin to the polyester resin was 10 parts: 90 parts.
  • Embodiment 46 The remaining technical solutions of Embodiment 46 are the same as those of Embodiment 1 to Embodiment 10 described above, except that in the present embodiment 46, during the lamination process, the heating temperature of the first stage is At 125 ° C, the heating time is 350 seconds; the second stage heating temperature is 165 ° C, and the heating time is 750 seconds; the third stage cooling temperature is 18 ° C, and the applied pressure is 0.13 MPa.
  • Embodiment 47 The remaining technical solutions of the present embodiment 47 are the same as those of the above-mentioned Embodiment 1 - Embodiment 10, except that in the present embodiment 47, during the lamination process, the heating temperature of the first stage is At 115 ° C, the heating time is 500 seconds; the second stage heating temperature is 180 ° C, the heating time is 400 seconds; the third stage cooling temperature is 35 ° C, and the applied pressure is 0.2 MPa.
  • Embodiment 48 The remaining technical solutions of the present embodiment 48 are the same as the above-mentioned Embodiments 1 to 10. The only difference is that in the present embodiment 48, during the lamination process, the heating temperature of the first stage is At 120 ° C, the heating time is 400 seconds; the heating temperature in the second stage is 160 ° C, and the heating time is 700 seconds; the third stage cooling temperature is 20 ° C, and the applied pressure is 0.15 MPa.
  • Embodiment 49 The remaining technical solutions of the present embodiment 49 are the same as those of the above-mentioned Embodiments 1 to 10. The only difference is that in the present embodiment 49, during the lamination process, the heating temperature of the first stage is At 120 ° C, the heating time is 400 seconds; the heating temperature in the second stage is 160 ° C, and the heating time is 700 seconds; the third stage cooling temperature is -10 ° C, and the applied pressure is 0.15 MPa.
  • Embodiment 50 The remaining technical solutions of Embodiment 50 are the same as those of Embodiment 1 to Embodiment 10 described above, except that in the present embodiment 50, during the lamination process, the heating temperature of the first stage is At 112 ° C, the heating time is 180 seconds; the heating temperature in the second stage is 131 ° C, and the heating time is 1200 seconds; the third stage cooling temperature is 25 ° C, and the applied pressure is 0.25 Mpa.
  • Embodiment 51 The remaining technical solutions of the embodiment 51 are the same as the above-mentioned Embodiment 1 - Embodiment 10, and the difference is only In the present embodiment, during the laminating process, the heating temperature in the first stage is 125 ° C, and the heating time is 600 seconds; the heating temperature in the second stage is 155 ° C, and the heating time is 600 seconds.
  • the third stage has a cooling temperature of 0 ° C and an applied pressure of 0.18 MPa.
  • This Comparative Example 1 employs a packaging material of a typical photovoltaic module of the prior art.
  • This Comparative Example 2 employs a background art EVA film encapsulating material.
  • This Comparative Example 3 employs a background art POE film encapsulating material.
  • the remaining technical solutions of the comparative example 4 are the same as those of the above-mentioned embodiment 7, except that in the comparative example 4, the first encapsulating layer and the second encapsulating layer are each composed of 35 parts by weight including the fiber cloth and conventional commercialization.
  • the epoxy powder coating was prepared in an amount of 65 parts by weight.
  • This Comparative Example 5 uses the packaging material example 1 of a photovoltaic module made of an acrylic powder coating based on CN201610685536.0.
  • This Comparative Example 6 employs Example 1 of a packaging material for a photovoltaic module based on a super weather resistant polyester powder coating of CN201610685240.9.
  • This Comparative Example 7 employs an encapsulating material for a photovoltaic module made of an acrylic powder coating according to CN201610685536.0.
  • This Comparative Example 6 employs Example 5 of a packaging material for a photovoltaic module based on a super weather resistant polyester powder coating of CN201610685240.9.
  • Comparative Example 9 employs the most preferred embodiment disclosed in CN105637653A, and employs its preferred lamination process. Comparative Example 10:
  • the preferred lamination process disclosed in 653A is laminated to obtain a laminate structure of the photovoltaic module.
  • the present invention conducted an effect test on the photovoltaic technology standard for the encapsulation layer and the comparative example of the above embodiment, and the test results are shown in Table 1 below.
  • the weight of the package structure of the present invention refers to the weight per unit square of the packaging material for the photovoltaic module;
  • the impact resistance test refers to the launch of the ice hockey with a standard diameter of 25 mm and a mass of 7.53 g at a speed of 23.0 m/s, and the impact completes the package.
  • the embodiment of the present invention effectively solves the lightness of the photovoltaic module packaging material under the premise of meeting the technical requirements of the photovoltaic industry such as anti-ultraviolet, anti-aging, impact resistance and fire prevention.
  • Quantitative, and low manufacturing cost replacing the traditional package structure of tempered glass, providing a certain rigidity to the photovoltaic module to protect the photovoltaic cell, thus not only greatly reducing the weight of the photovoltaic module, thereby adapting to more occasions of photovoltaic power generation products Installation, but also reduce the labor intensity of the product installation and improve the installation convenience, reducing the installation cost of the photovoltaic module as a whole.
  • the mixed thermosetting powder coating is uniformly coated on the fiber cloth by the coating device, and the mixed thermosetting powder coating is pre-bonded to the fiber cloth by pressure heating.
  • the encapsulation layer of the PV module of suitable size is cut in a segmented manner, so that any change in the package size of the PV module can be realized to meet the installation requirements of different buildings, and the installation and application of the PV module can be further facilitated.
  • the present invention also compares the encapsulating layers and the comparative examples of the above embodiments on specific items, and the comparison results are shown in Table 2 below.
  • Embodiment 11 ++++ Embodiment 12 ++++ Embodiment 13 ++++++ Embodiment 14 ++++++ ++++++
  • the "+” in Table 2 of the present invention indicates that the corresponding embodiment or comparative example is excellent in the comparison item, and "-" indicates that the corresponding embodiment or comparative example cannot satisfy the photovoltaic under the comparison item.
  • the standard, "/" indicates that the corresponding embodiment or comparative example is not applicable to the comparison item, wherein the more the number of "+”, the more excellent the performance of the corresponding embodiment or the comparative example in the comparison item, specifically Under the “cost” comparison, each additional “+” represents a corresponding example or comparative example that reduces the "cost" by about 10-20%; under the "wet heat and humidity stability” comparison, each more One “+” means that its corresponding embodiment or comparative example is improved by about 10-20% on “moisture resistance and heat stability”; under the "weather resistance” comparison, each additional "+” represents its corresponding implementation.
  • the example or the comparative example increases the "weather resistance" by about 10-20%; under the "wetness with the fiber cloth", each additional “+” represents its corresponding embodiment or comparative example in “with fiber”
  • the wetting property of the cloth is increased by about 10-20%; under the contrast of the adhesion to the fiber cloth, each additional “+” generation
  • the corresponding embodiment or comparative example is improved by about 10-20% on the "adhesion to the fiber cloth"; under the "mechanical performance” comparison, each additional “+” represents its corresponding embodiment or comparative example.
  • the present invention is directed to the lamination structure of the above embodiment and the comparative examples, and the effect of the preparation process is also compared, and the test results are shown in Table 3 below.
  • the present invention is low in cost, and has excellent scratch resistance characteristics, and finally Now the lamination process in low temperature environment reduces the energy consumption, and ensures the flatness of the laminated structure of the photovoltaic module, and further facilitates the installation and implementation of the photovoltaic module under the aesthetic appearance.
  • the first package may be based on the actual layer structure position and specific performance requirements of the first package layer and the second package layer.
  • the layer and the second encapsulating layer may be combined with different preferred technical solutions to form a hybrid thermosetting powder coating, or the first encapsulating layer or the second encapsulating layer may separately adopt different embodiments of the present invention.
  • the mixed thermosetting powder coating is formed by using another material, and the encapsulating layer of the embodiment of the invention also has the technical effect brought by the invention; further, although obtained by the embodiment
  • the layer structure is a partially preferred embodiment, but does not limit the needs of those skilled in the art according to the actual application field, and other layer structures can be added based on the contents disclosed in the present invention; it is believed that these applications are based on the technology in the art.
  • the basis of the invention can be obtained by combining common knowledge in the art, SHEET space is limited, embodiments of the present invention show no eleven Jian described, these applications are still within the spirit of the present invention, these applications are also considered according to the scope of protection of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

一种光伏组件的层压结构及其制备方法、光伏组件,所述的层压结构包括封装层(11i)和太阳能电池串(13i),所述的封装层(11i)由包括纤维布和混合型热固性粉末涂料的原料制备而成,所述的混合型热固性粉末涂料均匀地涂覆在所述的纤维布上;其中,所述的混合型热固性粉末涂料的原料包括丙烯酸树脂、丙烯酸树脂固化剂、聚酯树脂以及聚酯树脂固化剂;所述的纤维布由纤维材料织造制成;该层压结构可以有效保证光伏组件在包括高温高湿环境、户外强紫外光照或强风环境、具有高机械安装要求环境等恶劣安装环境下的使用寿命。

Description

一种光伏组件的层压结构及其制备方法、 光伏组件 技术领域
[0001] 本发明属于光伏领域, 具体涉及一种光伏组件的层压结构及其制备方法, 本发 明还涉及了应用该层压结构的光伏组件。
背景技术
[0002] 在当前社会, 能源矛盾与环境问题越来越凸显, 发展各类清洁能源是必然趋势 。 近年来, 光伏行业快速发展, 技术更新逐步加快, 目前光伏行业正向产品多 元化发展, 高可靠性、 高功率、 低安装成本的各种功能组件研究幵发已成为光 伏组件发展的一种方向。
[0003] 太阳能光伏发电依靠太阳电池把光能直接转变为电能。 在过去的十年中, 光伏 电池全球总产量以平均超过 40%的年增长率增加, 至 2012年底全球光伏发电系统 装机容量已达 100GW。 预计光伏发电在 2030年占到世界能源供给的 10%, 对世 界的能源供给和能源结构做出实质性的贡献。
[0004] 作为光伏领域运用的封装材料, 要求其具备抗紫外、 抗老化等性能, 如图 1所 示, 现有典型的光伏组件的层压结构 (通常也叫层压件) 是通过依次将超白钢 化压花玻璃 21、 第一 EVA膜 22、 太阳能电池串 23、 第二 EVA膜 24以及背板 25叠 合层压而成的, 其中: 超白钢化压花玻璃的密度达 2.5 g/cm 3
, 而其常用厚度为 3.2mm, 因而该钢化玻璃玻璃每平方米重量高达 8Kg, 由该光 伏组件层压结构组装成的光伏组件通常质量较大, 其重量每平方米达到 10Kg以 上, 该光伏组件再安装支撑结构, 光伏组件每平方米的重量至少达到 12Kg以上 , 当其应用在建筑物顶部或墙面等场合中, 对光伏组件的支撑结构提出了较高 的要求, 增加了工程建设难度以及安装的成本, 具体表现为: 在建筑物顶部或 墙面安装过程中, 存在重量重, 安装劳动强度大, 实施困难; 特别在有一些场 合由于建筑承重载荷的限制, 导致无法安装光伏组件。 同吋, 现有的光伏组件 封装结构外观单一, 不太容易变化以适应不同建筑美观的要求等缺点。
[0005] 目前有一些技术方案提出通过改变封装材料试图来解决光伏组件轻量化的问题 , 即采用高透光薄膜、 透明背板替代钢化玻璃, 但是在实际应用过程中, 由于 这些高透光薄膜、 透明背板大多仅采用 EVA、 POE等胶膜, 如此封装后的光伏组 件, 在抗冲击、 防火等性能上无法满足光伏行业技术标准。
[0006] 也有一些技术方案公幵用于降低光伏组件的重量, 如公幵号为 CN102516852A 的中国发明专利公幵了一种耐候、 高导热涂层和散热太阳能背板, 但是其涂层 在生产过程中要用到大量溶剂, 对环境污染很大, 不符合绿色环保标准。 又如 公幵号为 CN102610680A的中国发明专利公幵了一种 UV固化耐候涂层的太阳能 电池背板, 但是其采用的液体涂覆工艺较复杂, 不良率较高, 设备投资大。 再 如公幵号为 CN102712184A、 CN103346182A、 CN102969382B、 CN101290950B 、 CN103958196A等一系列中国发明专利中均采用了含氟聚合物, 但含氟聚合物 价格昂贵, 增加了生产成本, 不仅如此, 上述专利所公幵的仅仅只是光伏背板 用材料, 不透光, 硬度低、 刚性较弱, 不适合用于替代现有的钢化玻璃。
[0007] 与本发明最接近的现有技术是公幵号为 CN105637653A的中国专利, 该专利公 幵了一种光伏板以及用于制造该光伏板的方法, 具体采用了基于含环氧基团的 丙烯酸酯且用玻璃纤维加强的塑料, 用其作为太阳能电池串的面光面和背光面 的封装材料, 该方法虽然解决了光伏组件层压结构封装材料重量重的问题, 但 其全部采用价格昂贵的丙烯酸酯作为封装材料, 不仅成本高, 而且造成光伏组 件的颜色单一, 该技术还存在层压过程中的层压温度高, 能耗高, 而且得到的 光伏组件层压结构弯曲、 有一定弧度, 不平整, 不利于光伏组件的安装实施, 且影响外观美观。
[0008] 因此, 迫切需要寻求方法来解决现有光伏组件层压结构中存在的封装材料重量 重、 成本高且层压工艺繁琐且层压效果不佳的问题, 同吋又满足抗紫外、 抗老 化、 抗冲击、 防火、 防绝缘等光伏行业技术标准的要求。
技术问题
[0009] 有鉴于此, 本发明的目的在于提供一种光伏组件的层压结构, 不仅成本低, 而 且在满足抗紫外、 抗老化、 抗冲击、 防火、 防绝缘等光伏行业技术标准要求的 前提下, 有效实现了解决了光伏组件封装材料的轻量化, 提高安装的便利度, 降低安装成本, 非常适合在光伏领域规模推广应用。 [0010] 本发明的另一目的在于提供上述光伏组件层压结构的制备方法, 实现了在低温 度环境下的层压工艺, 降低能耗, 同吋确保光伏组件层压结构的平整度, 进一 步便于光伏组件的安装实施应用。
[0011] 在介绍本发明的技术方案之前有必要说明与本申请最接近的现有技术以及相关 冃 :
[0012] 本申请人基于在光伏封装领域多年累积的专业知识和大量试验发现, 用于光伏 组件层压结构中的封装材料不仅需要具有重量轻、 成本低, 还需要具备满足抗 紫外、 抗老化、 抗冲击、 防火等光伏行业技术标准要求, 同吋还需要便于后续 光伏组件的安装, 而公幵号为 CN105637653A的中国专利虽然公幵了采用含环氧 基团的丙烯酸酯且用玻璃纤维加强的塑料作为封装材料, 但丙烯酸酯价格昂贵 , 直接导致光伏组件成本的增加, 这是光伏行业无法接受的; 进一步地, 该专 利的层压工艺采用在 150-200°C和一定压力下进行层压, 导致得到的光伏组件层 压结构弯曲、 有一定弧度, 不平整, 不利于光伏组件的安装实施, 且影响外观 美观; 同吋该专利采用将含环氧基团的丙烯酸酯粉末施涂在玻璃纤维上, 为了 改善两者之间的连接, 仅采用回火工序, 该粉末施涂的均匀性和施涂密度均无 法保证, 这都是影响封装层在抗紫外、 抗老化、 抗冲击、 防火、 防绝缘等性能 上的因素。
[0013] 另外, 本申请人关联申请人提出的在先申请号 CN201610685536.0和 CN2016106
85240.9的发明专利, 分别公幵了基于丙烯酸粉末涂料和超耐候聚酯粉末涂料制 成的光伏组件用封装材料, 随着推广使用发现, 基于丙烯酸粉末涂料制成的光 伏组件用封装材料的成本较高, 且在高温高湿环境下的稳定性较差, 以及在对 光伏组件具有高机械安装要求吋的机械性能上表现不够优异可能会缩短光伏组 件的使用寿命; 而基于超耐候聚酯粉末涂料制成的光伏组件用封装材料在户外 安装环境恶劣吋的耐候性表现较差, 以及在对光伏组件具有高机械安装要求吋 的机械性能上表现不够优异可能会缩短光伏组件的使用寿命。
[0014] 基于以上应用情况, 本申请希望找到一种基于性能更加优异的光伏组件用封装 材料制成的层压结构, 可以有效保证光伏组件在包括高温高湿环境、 户外强紫 外光照或强风环境、 具有高机械安装要求环境等恶劣安装环境下的使用寿命。 申请人惊喜地发现当将丙烯酸粉末涂料与聚酯粉末涂料混合得到的粉末涂料涂 覆在纤维布上吋, 可得到性能显著提高的封装材料.
问题的解决方案
技术解决方案
[0015] 为此, 本发明采用的技术方案如下:
[0016] 一种光伏组件的层压结构, 所述的层压结构包括封装层和太阳能电池串, 所述 的封装层由包括纤维布和混合型热固性粉末涂料的原料制备而成, 所述的混合 型热固性粉末涂料均匀地涂覆在所述的纤维布上; 其中, 所述的混合型热固性 粉末涂料的原料包括丙烯酸树脂、 丙烯酸树脂固化剂、 聚酯树脂以及聚酯树脂 固化剂; 所述的纤维布由纤维材料织造制成。
[0017] 优选地, 所述的封装层包括第一封装层和第二封装层, 所述的第一封装层或 / 和第二封装层由包括纤维布和混合型热固性粉末涂料的原料制备而成, 所述的 混合型热固性粉末涂料均匀地涂覆在所述的纤维布上; 其中, 所述的混合型热 固性粉末涂料的原料包括丙烯酸树脂、 丙烯酸树脂固化剂、 聚酯树脂以及聚酯 树脂固化剂; 所述的纤维布由纤维材料织造制成。
[0018] 优选地, 为了进一步增强耐候性, 所述的层压结构包括氟塑料薄膜层, 所述的 氟塑料薄膜层位于所述的封装层的上方。
[0019] 优选地, 为了给予太阳能电池串提供韧性保护, 所述的层压结构包括封装胶膜 层, 所述的封装胶膜层设置在所述的封装层和太阳能电池串之间; 进一步优选 地, 本专利涉及的封装胶膜层可以采用 EVA、 POE或 PVB材料制成, 当然本领域 的技术人员也可以实际情况采用其他合适的封装胶膜材料。
[0020] 需要说明的是, 本专利文本中出现的 EVA是指乙烯 -醋酸乙烯共聚物, 是由乙 烯 (E) 和乙酸乙烯 (VA) 共聚而制得, 英文名称为: Ethylene Vinyl Acetate, 简称为 EVA; 本专利文本中出现的 POE是指聚烯烃弹性体, 英文名称为 Polyolefi n Elastomer, 简称 POE; 本专利文本中出现的 PVB是指聚乙烯醇缩丁醛, 英文名 称为 Poly vinyl Butyral, 简称 PVB。
[0021] 优选地, 为了增加光伏组件的绝缘性能且减少水汽透过, 所述的层压结构包括 背板层, 所述的背板层位于所述的封装层的下方。 [0022] 优选地, 所述的纤维布的单位面积重量范围为 30-400g/m 2, 所述的混合型热固 性粉末涂料涂覆在所述的纤维布上的单位面积重量范围为 70-400 g/m 2。
[0023] 优选地, 所述的纤维材料是玻璃纤维、 碳纤维和芳纶纤维中的任意一种或几种 的组合; 更优选地, 所述的纤维材料是玻璃纤维。
[0024] 优选地, 所述的纤维材料的单丝直径范围为 3-23μηι。
[0025] 优选地, 所述的纤维布是由纤维材料采用平纹、 斜纹、 缎纹、 罗纹或席纹中的 任意一种织造方式或几种织造方式的组合制成; 更优选地, 所述的纤维布是由 纤维材料采用斜纹制成。
[0026] 优选地, 所述的纤维布与所述的混合型热固性粉末涂料的重量份比例范围为 20
-60份: 40-80份; 更优选地, 所述的纤维布与所述的混合型热固性粉末涂料的重 量份比例范围为 30-50份: 50-70份。
[0027] 优选地, 所述的纤维布的单位面积重量范围为 30-400g/m 2, 所述的混合型热固 性粉末涂料涂覆在所述的纤维布上的单位面积重量范围为 70-400 g/m 2。
[0028] 优选地, 在所述的混合型热固性粉末涂料中, 所述的丙烯酸树脂与聚酯树脂的 重量份比例范围为 30-70份: 70-30份。
[0029] 优选地, 在所述的混合型热固性粉末涂料中, 所述的丙烯酸树脂与聚酯树脂的 重量份比例范围为 40-60份: 60-40份。
[0030] 优选地, 所述的混合型热固性粉末涂料的胶化吋间范围为 50-1000s, 斜板流动 范围为 10-40cm, 软化点温度范围为 80-120°C。
[0031] 优选地, 所述的混合型热固性粉末涂料采用包括丙烯酸树脂、 丙烯酸树脂固化 齐 ij、 聚酯树脂以及聚酯树脂固化剂的原料通过熔融混合工艺后制备得到。
[0032] 优选地, 所述的混合型热固性粉末涂料采用丙烯酸粉末涂料和聚酯粉末涂料通 过熔融混合工艺后制备得到, 其中, 所述的丙烯酸粉末涂料采用包括丙烯酸树 脂以及丙烯酸树脂固化剂的原料通过熔融混合工艺后制备得到; 所述的聚酯粉 末涂料采用包括聚酯树脂以及聚酯树脂固化剂的原料通过熔融混合工艺后制备 得到。
[0033] 优选地, 所述的混合型热固性粉末涂料采用丙烯酸粉末涂料和聚酯粉末涂料通 过干混工艺后制备得到, 其中, 所述的丙烯酸粉末涂料采用包括丙烯酸树脂以 及丙烯酸树脂固化剂的原料通过熔融混合工艺后制备得到; 所述的聚酯粉末涂 料采用包括聚酯树脂以及聚酯树脂固化剂的原料通过熔融混合工艺后制备得到
[0034] 优选地, 所述的混合型热固性粉末涂料采用丙烯酸粉末涂料、 聚酯树脂以及聚 酯树脂固化剂通过熔融混合工艺后制备得到, 其中, 所述的丙烯酸粉末涂料采 用包括丙烯酸树脂以及丙烯酸树脂固化剂的原料通过熔融混合工艺后制备得到
[0035] 优选地, 所述的混合型热固性粉末涂料采用丙烯酸树脂、 丙烯酸树脂固化剂以 及聚酯粉末涂料通过熔融混合工艺后制备得到, 其中, 所述的聚酯粉末涂料采 用包括聚酯树脂以及聚酯固化剂的原料通过熔融混合工艺后制备得到。
[0036] 优选地, 所述的丙烯酸树脂固化剂与所述的聚酯树脂不相同。
[0037] 优选地, 所述的聚酯树脂固化剂与所述的丙烯酸树脂不相同。
[0038] 优选地, 所述的丙烯酸树脂固化剂是羧基聚酯树脂、 羟基聚酯树脂、 异氰脲酸 三缩水甘油酯、 偏苯三酸三缩水甘油酯、 对苯二甲酸二缩水甘油酯、 羟烷基酰 胺、 异氰酸酯、 封闭型多异氰酸酯、 脲二酮、 邻苯二甲酸酐、 偏苯三酸酐、 癸 二酸、 十一烷二酸、 十二烷二酸、 十三烷二酸、 十四烷二酸、 十五烷二酸、 十 六烷二酸、 双氰胺、 癸二酸二酰肼氢、 二氨基二苯砜、 四甲基甘脲、 氨基树脂 、 氢化环氧中的任意一种或几种任意配比的混合。
[0039] 优选地, 所述的聚酯树脂固化剂是 GMA丙烯酸树脂、 异氰脲酸三缩水甘油酯 、 偏苯三酸三缩水甘油酯、 对苯二甲酸二缩水甘油酯、 羟烷基酰胺、 异氰酸酯 、 封闭型多异氰酸酯、 脲二酮、 邻苯二甲酸酐、 偏苯三酸酐、 二氨基二苯砜、 四甲基甘脲、 氨基树脂、 氢化环氧中的任意一种或几种任意配比的混合。
[0040] 优选地, 所述的丙烯酸树脂是由 GMA丙烯酸树脂, 羟基丙烯酸树脂或者羧基 丙烯酸树脂或者双官能团丙烯酸树脂中的一种或几种的混合而成。
[0041] 优选地, 所述的丙烯酸树脂是由丙烯酸、 丙烯酸甲酯、 丙烯酸乙酯、 丙烯酸正 丁酯、 丙烯酸异丁酯、 丙烯酸羟丙酯、 丙烯酸缩水甘油酯、 甲基丙烯酸、 甲基 丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸正丁酯、 甲基丙烯酸异丁酯、 甲基 丙烯酸羟丙酯、 甲基丙烯酸缩水甘油酯、 苯乙烯、 丙烯腈中的一种或几种单体 聚合而成。
[0042] 优选地, 所述的丙烯酸树脂是 GMA丙烯酸树脂, 折射率范围为 1.40-1.50, 环氧 当量范围为 300-800g/eq, 玻璃化温度范围为 40-70°C, 粘度范围为 75-600Pa.s, 软 化点温度范围为 100-120°C。
[0043] 优选地, 所述的丙烯酸树脂是羟基丙烯酸树脂, 折射率范围为 1.40-1.50, 羟值 范围为 15-70mgKOH/g, 玻璃化温度范围为 40-70°C, 粘度范围为 75-600Pa s, 软 化点温度范围为 100-120°C。
[0044] 优选地, 所述的丙烯酸树脂是羧基丙烯酸树脂, 折射率范围为 1.40-1.50, 酸值 范围为 15-85mgKOH/g, 玻璃化温度范围为 40-70°C, 粘度范围为 75-600Pa s, 软 化点温度范围为 100-120°C。
[0045] 优选地, 所述的聚酯树脂是由羟基聚酯树脂或者羧基聚酯树脂中的一种或两种 的混合而成。
[0046] 优选地, 所述的聚酯树脂由对乙二醇、 丙二醇、 新戊二醇、 2-甲基丙二醇、 1
, 6-已二醇、 对苯二甲酸、 间苯二甲酸、 己二酸、 癸二酸、 邻苯二甲酸酐、 偏苯 三甲酸酐中的一种或几种单体聚合而成。
[0047] 优选地, 所述的聚酯树脂是羟基聚酯树脂, 羟值范围为 30-300mgKOH/g, 玻璃 化温度范围为 50-75°C, 粘度范围为 15-200 Pa-s。
[0048] 优选地, 所述的聚酯树脂是羧基聚酯树脂, 酸值范围为 15-85mgKOH/g, 玻璃 化温度范围为 50-75°C, 粘度范围为 15-200 Pa-s。
[0049] 优选地, 所述的丙烯酸树脂与丙烯酸树脂固化剂的重量份比例范围为 95-75份
: 5-25份。
[0050] 优选地, 所述的聚酯树脂与聚酯树脂固化剂的重量份比例范围为 98-80份: 2-20 份。
[0051] 优选地, 所述的丙烯酸粉末涂料的胶化吋间范围为 100-600s, 斜板流动范围为 1
5-35cm, 软化点温度范围为 100-110°C。
[0052] 优选地, 所述的聚酯粉末涂料的胶化吋间范围为 150-800s, 斜板流动范围为 10-
25cm, 软化点温度范围为 100-110°C。
[0053] 优选地, 所述的混合型热固性粉末涂料还包括助剂; 更优选地, 所述的助剂重 量份占所述的混合型热固性粉末涂料重量份的 0.1-40%, 所述的助剂是聚酰胺蜡 、 聚烯烃蜡、 酰胺改性酚脲表面活性剂、 苯偶茵、 聚二甲基硅氧烷、 乙烯基三 氯硅烷、 正丁基三乙氧基硅烷、 正硅酸甲酯、 单烷氧基焦磷酸酯、 丙烯酸脂类 、 酚醛树脂、 脲醛树脂、 三聚氰胺甲醛树脂、 二硬脂酰乙二胺、 环氧乙烷与环 氧丙烷的混合物、 受阻酚、 硫代二丙酸双酯、 二苯酮、 水杨酸酯衍生物、 受阻 胺、 氧化铝、 气相二氧化硅、 四溴双酚八、 十溴二苯乙烷、 磷酸三甲苯酯、 氢氧 化铝、 氢氧化镁、 硫酸钡、 钛白粉、 炭黑中的任意一种或几种任意配比的混合
[0054] 优选地, 所述的封装层的制备方法包括如下操作步骤:
[0055] a) 、 将所述的混合型热固性粉末涂料通过涂覆装置均匀地涂覆在所述的纤维 布上;
[0056] b) 、 通过加压加热使所述的混合型热固性粉末涂料与所述的纤维布实现热粘 合.
[0057] c) 、 将上述步骤 b) 完成热粘合的混合型热固性粉末涂料与纤维布进行分段裁 切;
[0058] d) 、 得到所述的封装层。
[0059] 优选地, 所述热粘合过程的加压范围为 0.05-0.25Mpa, 所述热粘合过程的加热 温度范围为 90-130°C, 加热吋间范围为 5-20秒。
[0060] 优选地, 一种如上所述的光伏组件的层压结构的制备方法, 所述的光伏组件的 层压结构采用层压工艺制备而成, 其中, 层压工艺包括用于预热熔融的第一加 热阶段、 用于混合型热固性粉末涂料交联固化的第二加热阶段和第三加压冷却 阶段。
[0061] 优选地, 所述的第一阶段的加热温度范围为 110-130°C, 加热吋间范围为 100-60 0秒; 所述的第二阶段的加热温度范围为 131-200°C, 加热吋间范围为 100-1200秒 ; 所述的第三阶段的冷却温度范围为 -10-60°C, 施加压力范围为 0.05-0.25Mpa;
[0062] 需要说明的是, 本发明提供的上述层压工艺不仅可以应用于本发明所述的光伏 组件的层压结构, 也可以应用于其他类型的光伏组件的层压结构, 如本申请人 在先申请的光伏组件的层压结构, 专利申请号分别为 CN201610927464.6和 CN20 1610927383.6, 可以取得与本发明基本相同的技术效果, 因此本发明不再具体展 幵实施例描述。
[0063] 优选地, 一种光伏组件, 包括层压结构, 连接器和接线盒, 通过连接器实现层 压结构与接线盒的电气连接, 其中, 所述的光伏组件包括如上所述的光伏组件 的层压结构。
[0064] 优选地, 所述的连接器包括压接端子和热缩套管, 位于所述的连接器两端的电 缆线卡接入所述的压接端子, 所述的热缩套管包围压接端子。
[0065] 需要说明的是, 本发明全文涉及的熔融混合工艺通常包括原料预混、 熔融挤出 、 磨粉等工序步骤, 可以将原料实现良好的均匀分散; 本发明涉及的干混工艺 是指将丙烯酸粉末涂料和聚酯粉末涂料直接进行混合; 本发明全文涉及的 GMA 是指甲基丙烯酸缩水甘油酯类。
发明的有益效果
有益效果
[0066] 本发明通过提出采用由丙烯酸树脂、 丙烯酸树脂固化剂、 聚酯树脂以及聚酯树 脂固化剂制成混合型热固性粉末涂料, 然后将该混合型热固性粉末涂料以及均 匀涂覆在纤维布上作为光伏组件层压结构的封装层材料, 在满足抗紫外、 抗老 化、 抗冲击、 防火等光伏行业技术标准要求的前提下, 有效实现了解决了光伏 组件封装材料的轻量化, 且制造成本低, 替代传统封装结构式的的钢化玻璃, 给光伏组件提供一定的刚性以保护光伏电池, 如此, 不但能够大大减轻光伏组 件的重量, 由此适应更多场合的光伏发电产品的安装, 而且还能降低产品安装 吋的劳动强度以及提高安装的便利度, 从总体上降低光伏组件的安装成本; 更 重要的是, 经试验验证, 本发明提供的封装层有效避免或减少了水汽从外部透 入光伏组件内部, 耐湿热稳定性强、 封装层材料中的混合型热固性粉末涂料与 纤维布的润湿性好, 且其与纤维布的附着力佳, 本发明封装层的整体机械性能 优异, 同吋还具有优异的耐候性和透光性, 可以有效保证应用本发明的光伏组 件在包括高温高湿环境、 户外强紫外光照或强风环境、 具有高机械安装要求环 境等恶劣安装环境下的使用寿命, 同吋本发明成本低, 制备工艺简单, 非常利 于大规模推广实施应用。 [0067] 本发明进一步提出了优选的光伏组件层压结构的层压工艺, 具体将层压工艺设 置为第一加热阶段、 第二加热阶段和第三加压冷却阶段, 其中, 第一加热阶段 的设置使得混合型热固性粉末涂料有足够的吋间熔融、 流平, 充分排走气泡, 第二加热阶段的设置使得混合型热固性粉末涂料完成充分交联和固化, 而关键 的第三加压冷却阶段平衡了光伏组件层压结构中不同材料的冷却速度和收缩率 , 以得到平整的组件, 最终实现了在低温度环境下的层压工艺, 降低能耗, 同 吋确保了光伏组件层压结构的平整度, 兼顾了外观美观度下还进一步便于光伏 组件的安装实施应用。
[0068] 本发明还通过涂覆装置把混合型热固性粉末涂料均匀地涂覆在纤维布上, 再通 过加压加热使混合型热固性粉末涂料与所述纤维布预粘合, 最后分段裁切制得 合适尺寸的光伏组件的封装层, 如此能实现光伏组件层压结构封装尺寸的任意 改变以适应不同建筑的安装要求, 进一步便于光伏组件的安装应用。
对附图的简要说明
附图说明
[0069] 附图 1是现有典型的光伏组件的层压结构示意图;
[0070] 附图 2是本发明实施例 1光伏组件的层压结构示意图;
[0071] 附图 3是本发明实施例 2光伏组件的层压结构示意图;
[0072] 附图 4是本发明实施例 3光伏组件的层压结构示意图;
[0073] 附图 5是本发明实施例 4光伏组件的层压结构示意图;
[0074] 附图 6是本发明实施例 5光伏组件的层压结构示意图;
[0075] 附图 7是本发明实施例 6光伏组件的层压结构示意图;
[0076] 附图 8是本发明实施例 7光伏组件的层压结构示意图;
[0077] 附图 9是本发明实施例 8光伏组件的层压结构示意图;
[0078] 附图 10是本发明具体实施方式下光伏组件用第一封装层和第二封装层的制备设 备结构示意图;
[0079] 附图 11是附图 8所示光伏组件的层压结构的层压过程结构排列示意图;
[0080] 附图 12是本发明具体实施方式下光伏组件的连接器的结构示意图;
[0081] 附图 13是本发明实施例 9光伏组件的层压结构示意图; [0082] 附图 14是本发明实施例 10光伏组件的层压结构示意图。
本发明的实施方式
[0083] 本发明实施例公幵了一种光伏组件的层压结构, 所述的层压结构包括封装层和 太阳能电池串, 所述的封装层由包括纤维布和混合型热固性粉末涂料的原料制 备而成, 所述的混合型热固性粉末涂料均匀地涂覆在所述的纤维布上; 其中, 所述的混合型热固性粉末涂料的原料包括丙烯酸树脂、 丙烯酸树脂固化剂、 聚 酯树脂以及聚酯树脂固化剂; 所述的纤维布由纤维材料织造制成。
[0084] 本发明实施例还公幵了一种如上所述的光伏组件的层压结构的制备方法, 所述 的光伏组件的层压结构采用层压工艺制备而成, 其中, 层压工艺包括用于预热 熔融的第一加热阶段、 用于混合型热固性粉末涂料交联固化的第二加热阶段和 第三加压冷却阶段。
[0085] 本发明实施例还公幵了一种光伏组件, 包括层压结构, 连接器和接线盒, 通过 连接器实现层压结构与接线盒的电气连接, 其中, 光伏组件包括如上所述的光 伏组件的层压结构, 相对于现有技术中常规的光伏组件采用标准快速电气连接 接头, 其成本高, 而本发明实施例的连机器结构能够使电气连接可靠且成本低 廉。
[0086] 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明中记载的一些实施例, 对于本领域普通技术人员来讲, 在不 付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
[0087] 实施例 1:
[0088] 请参见图 2所示, 一种光伏组件的层压结构, 层压结构包括第一封装层 l la、 太 阳能电池串 13a和第二封装层 14a, 其中,
[0089] 优选地, 为了进一步增强耐候性, 层压结构包括氟塑料薄膜层, 氟塑料薄膜层 位于第一封装层的上方。 优选地, 为了给予太阳能电池串提供韧性保护, 层压 结构包括封装胶膜层, 封装胶膜层可以单独设置在第一封装层和太阳能电池串 之间或太阳能电池串和第二封装层之间, 也可以同吋设置在第一封装层和太阳 能电池串之间和太阳能电池串和第二封装层之间。 进一步优选地, 本专利涉及 的封装胶膜层可以采用 EVA、 POE或 PVB材料制成, 当然本领域的技术人员也可 以实际情况采用其他合适的封装胶膜材料。 优选地, 为了增加光伏组件的绝缘 性能且减少水汽透过, 层压结构包括背板层, 所述的背板层位于第二封装层的 下方。
[0090] 因此, 结合上段内容, 本领域的技术人员可以根据实际需要选择具体的光伏组 件的层压结构, 当然地, 还可以设置其他类型的材料层, 只要采用本发明的核 心技术特征, 这些都是属于本发明的保护范围内。 本发明的下述实施例仅为列 举了部分优选光伏组件的层压结构的实施例。
[0091] 具体地, 在本实施方式中, 请参见图 2所示, 层压结构还包括第一封装胶膜层 1 2a, 第一封装胶膜层 12a位于第一封装层 11a和太阳能电池串 13a之间。 进一步优 选地, 第一封装胶膜层 12a采用 EVA材料制成。
[0092] 优选地, 在本实施方式中, 第一封装层与第二封装层采用相同的原料, 具体包 括下述原料:
[0093] 纤维布, 纤维布由纤维材料织造制成;
[0094] 混合型热固性粉末涂料, 混合型热固性粉末涂料的原料包括丙烯酸树脂、 丙烯 酸树脂固化剂、 聚酯树脂以及聚酯树脂固化剂; 其中, 混合型热固性粉末涂料 均匀地涂覆在纤维布上。
[0095] 优选地, 在本发明实施例中, 纤维布与混合型热固性粉末涂料的重量份比例范 围为 20-60份: 40-80份; 更优选地, 在本发明实施例中, 纤维布与混合型热固性 粉末涂料的重量份比例范围为 30-50份: 50-70份; 具体优选地, 在本实施方式中 , 纤维布与混合型热固性粉末涂料的重量份比例为 30份: 70份。 经本发明实施 例检测, 当纤维布与混合型热固性粉末涂料的重量份比例不在本发明实施例优 选范围内吋, 具体地, 当纤维布与混合型热固性粉末涂料的重量份比例为 15份 : 85份吋, 机械强度明显变差, 当纤维布与混合型热固性粉末涂料的重量份比 例为 85份: 15份吋, 耐候性明显变差, 甚至无法满足光伏标准要求, 但也经该 验证得知, 采用本发明实施例吋, 纤维布与混合型热固性粉末涂料的重量份比 例的适合范围比本申请人在先申请号 CN201610685536.0和 CN201610685240.9的 适合范围要广泛, 提高了原料的可选择范围, 本发明实施不再一一展幵说明。
[0096] 优选地, 在本发明实施例中, 混合型热固性粉末涂料涂覆在纤维布上的单位面 积重量范围为 70-400 g/m 2, 具体地, 在本实施方式中, 混合型热固性粉末涂料 涂覆在纤维布上的单位面积重量为 100 g/m 2。
[0097] 优选地, 在本发明实施例中, 纤维布的单位面积重量范围为 30-400g/m 2, 在确 保纤维布的强度下, 保证纤维布的轻量化, 具体地, 在本实施方式中, 纤维布 的单位面积重量为 100 g/m 2
[0098] 优选地, 在本发明实施例中, 纤维布是由纤维材料采用平纹、 斜纹、 缎纹、 罗 纹或席纹中的任意一种织造方式或几种织造方式的组合制成, 更优选地, 在本 实施方式中, 纤维布是由纤维材料采用斜纹织造方式制成, 因为斜纹织造方式 制成的纤维布布面平整、 更有利于混合型热固性粉末涂料的浸润, 且纤维布透 光效果好以及有更好的支撑强度; 当然地, 本领域的技术人员可以根据实际需 要选择其他公知的织造方式;
[0099] 优选地, 在本发明实施例中, 纤维材料是玻璃纤维、 碳纤维和芳纶纤维中的任 意一种或几种的组合, 用以确保纤维布具有良好的绝缘及耐候性, 符合光伏相 关标准要求, 更优选地, 在本实施方式中, 纤维材料为玻璃纤维, 这是因为玻 璃纤维自身透光性好、 成本低、 且来源广泛、 制备及复合工艺成熟。 当然地, 本领域的技术人员可以根据实际需要选择其他类型的纤维材料, 本发明实施例 不再一一展幵说明。
[0100] 为了便于纤维材料的织造以及便于得到所需要的纤维布的单位面积重量, 优选 地, 在本发明实施例中, 纤维材料的单丝直径范围为 3-23μηι, 具体优选地, 在 本实施方式中, 纤维材料的单丝直径为 3μηι; 在本发明其他实施方式中, 本领域 的技术人员可以根据实际需要选择单丝直径范围, 本发明实施例不再一一展幵 说明。
[0101] 为了有助于在制备过程中熔融的混合型热固性粉末涂料更好地浸润纤维材料, 有效保证混合型热固性粉末涂料与纤维布之间热粘合的连接效果, 优选地, 在 本发明实施例中, 混合型热固性粉末涂料的胶化吋间范围为 50-1000s, 斜板流动 范围为 10-40cm, 软化点温度范围为 80-120°C; 更进一步优选地, 在本发明实施 例中, 混合型热固性粉末涂料的胶化吋间范围为 100-800s, 斜板流动范围为 10-3 5cm, 软化点温度范围为 100-110°C。
[0102] 为了确保丙烯酸树脂具有良好的透光性、 绝缘及耐候性, 符合光伏相关标准要 求, 优选地, 在本发明实施例中, 丙烯酸树脂的折射率范围为 1.40-1.50, 玻璃化 温度范围为 40-70°C, 粘度范围为 75-600Pa,s, 软化点温度范围为 100-120°C。
[0103] 优选地, 在本发明实施例中, 丙烯酸树脂是由 GMA丙烯酸树脂, 羟基丙烯酸 树脂或者羧基丙烯酸树脂或者双官能团丙烯酸树脂中的一种或几种的混合而成 。 具体地, 在本发明实施例中, 双官能团丙烯酸树脂可以是包括羟基官能团和 羧基官能团的丙烯酸树脂, 也可以是包括其他类型的官能团。
[0104] 优选地, 在本发明实施例中, 丙烯酸树脂是由丙烯酸、 丙烯酸甲酯、 丙烯酸乙 酯、 丙烯酸正丁酯、 丙烯酸异丁酯、 丙烯酸羟丙酯、 丙烯酸缩水甘油酯、 甲基 丙烯酸、 甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸正丁酯、 甲基丙烯酸 异丁酯、 甲基丙烯酸羟丙酯、 甲基丙烯酸缩水甘油酯、 苯乙烯、 丙烯腈中的一 种或几种单体聚合而成, 当然地, 本领域的技术人员可以根据实际需要选择其 他单体聚合制成本发明实施例的丙烯酸树脂。
[0105] 为了提高丙烯酸树脂的透光性、 绝缘及耐候性, 进一步优选地, 在本发明一实 施方式中, 丙烯酸树脂是 GMA丙烯酸树脂, 折射率范围为 1.40-1.50, 环氧当量 范围为 300-800g/eq, 玻璃化温度范围为 40-70°C, 粘度范围为 75-600Pa,s, 软化点 温度范围为 100-120°C; 更进一步优选地, 在本发明实施例中, GMA丙烯酸树脂 的折射率范围为 1.42-1.48, 环氧当量范围为 450-700g/eq, 玻璃化温度范围为 45-6 0°C, 粘度范围为 150-400Pa,s, 软化点温度范围为 105-110°C。
[0106] 为了提高丙烯酸树脂的透光性、 绝缘及耐候性, 进一步优选地, 在本发明另一 实施方式中, 丙烯酸树脂是羟基丙烯酸树脂, 折射率范围为 1.40-1.50, 羟值范围 为 15-70mgKOH/g, 玻璃化温度范围为 40-70°C, 粘度范围为 75-600Pa,s, 软化点 温度范围为 100-120°C; 更进一步优选地, 在本发明实施例中, 羟基丙烯酸树脂 的折射率范围为 1.42-1.48, 羟值范围为 30-50mgKOH/g, 玻璃化温度范围为 45-60 °C, 粘度范围为 150-400Pa,s, 软化点温度范围为 105-110°C。
[0107] 为了提高丙烯酸树脂的透光性、 绝缘及耐候性, 进一步优选地, 在本发明另一 实施方式中, 丙烯酸树脂是羧基丙烯酸树脂, 折射率范围为 1.40-1.50, 酸值范围 为 15-85mgKOH/g, 玻璃化温度范围为 40-70°C, 粘度范围为 75-600Pa,s, 软化点 温度范围为 100-120°C; 更进一步优选地, 在本发明实施例中, 羧基丙烯酸树脂 的折射率范围为 1.42-1.48, 酸值范围为 30-60mgKOH/g, 玻璃化温度范围为 45-60 °C, 粘度范围为 150-400Pa,s, 软化点温度范围为 105-110°C。
[0108] 为了有效保证丙烯树脂的交联固化效果, 优选地, 在本发明实施例中, 丙烯酸 树脂固化剂是羧基聚酯树脂、 羟基聚酯树脂、 异氰脲酸三缩水甘油酯、 偏苯三 酸三缩水甘油酯、 对苯二甲酸二缩水甘油酯、 羟烷基酰胺、 异氰酸酯、 封闭型 多异氰酸酯、 脲二酮、 邻苯二甲酸酐、 偏苯三酸酐、 癸二酸、 十一烷二酸、 十 二烷二酸、 十三烷二酸、 十四烷二酸、 十五烷二酸、 十六烷二酸、 双氰胺、 癸 二酸二酰肼氢、 二氨基二苯砜、 四甲基甘脲、 氨基树脂、 氢化环氧中的任意一 种或几种任意配比的混合。
[0109] 为了确保聚酯树脂具有良好的绝缘及耐候性, 符合光伏相关标准要求, 优选地 , 在本发明实施例中, 聚酯树脂是由羟基聚酯树脂或者羧基聚酯树脂中的一种 或两种的混合而成。
[0110] 优选地, 在本发明实施例中, 聚酯树脂由对乙二醇、 丙二醇、 新戊二醇、 2-甲 基丙二醇、 1, 6-已二醇、 对苯二甲酸、 间苯二甲酸、 己二酸、 癸二酸、 邻苯二 甲酸酐、 偏苯三甲酸酐中的一种或几种单体聚合而成, 当然地, 本领域的技术 人员可以根据实际需要选择其他单体聚合制成本发明实施例的聚酯树脂。
[0111] 为了提高聚酯树脂的耐湿热性能和耐候性能, 优选地, 在本发明一实施方式中 , 聚酯树脂是羟基聚酯树脂, 羟值范围为 30-300mgKOH/g, 玻璃化温度范围为 5 0-75°C, 粘度范围为 15-200Pa,s; 更进一步优选地, 在本发明实施例中, 羟基聚 酯树脂的羟值范围为 30-100mgKOH/g, 玻璃化温度范围为 55-65°C, 粘度范围为 1 5-100 Pa-s。
[0112] 为了提高聚酯树脂的耐湿热性能和耐候性能, 优选地, 在本发明另一实施方式 中, 聚酯树脂是羧基聚酯树脂, 酸值范围为 15-85mgKOH/g, 玻璃化温度范围为 50-75°C, 粘度范围为 15-200Pa,s。 更优选地, 在本发明实施例中, 羧基聚酯树脂 的酸值范围为 30-60mgKOH/g, 玻璃化温度范围为 55-65°C, 粘度范围为 15-100Pa- s。
[0113] 为了有效保证聚酯树脂的交联固化效果, 优选地, 在本发明实施例中, 聚酯树 脂固化剂是 GMA丙烯酸树脂、 异氰脲酸三缩水甘油酯、 偏苯三酸三缩水甘油酯 、 对苯二甲酸二缩水甘油酯、 羟烷基酰胺、 异氰酸酯、 封闭型多异氰酸酯、 脲 二酮、 邻苯二甲酸酐、 偏苯三酸酐、 二氨基二苯砜、 四甲基甘脲、 氨基树脂、 氢化环氧中的任意一种或几种任意配比的混合。
[0114] 为了有效保证丙烯酸树脂的交联固化速度和质量, 优选地, 在本发明实施例中 , 丙烯酸树脂与丙烯酸树脂固化剂的重量份比例范围为 95-75份: 5-25份; 为了 有效保证聚酯树脂的交联固化速度和质量, 优选地, 在本发明实施例中, 聚酯 树脂与聚酯树脂固化剂的重量份比例范围为 98-80份: 2-20份;
[0115] 为了进一步有效保证本发明实施例在包括高温高湿环境、 户外强紫外光照或强 风环境、 具有高机械安装要求环境等恶劣安装环境下的性能尽可能不受到影响 , 优选地, 在本发明实施例中, 在混合型热固性粉末涂料中, 丙烯酸树脂与聚 酯树脂的重量份比例范围为 30-70份: 70-30份; 更进一步优选地, 在本发明实施 例中, 在混合型热固性粉末涂料中, 丙烯酸树脂与聚酯树脂的重量份比例范围 为 40-60份: 60-40份。
[0116] 优选地, 在本发明实施方式中, 第一封装层和第二封装层的混合型热固性粉末 涂料采用相同的方法制备得到, 具体地, 混合型热固性粉末涂料采用包括丙烯 酸树脂、 丙烯酸树脂固化剂、 聚酯树脂以及聚酯树脂固化剂的原料通过熔融混 合工艺后制备得到, 该实施方式能够使得混合体系中的各种原材料更好的相互 分散在对方之中, 使得混合体系的均一性更强, 得到的第一封装层和第二封装 层的透光率和表面性质也更加稳定;
[0117] 进一步优选地, 在本发明实施方式中, 丙烯酸树脂固化剂与聚酯树脂不相同; 进一步优选地, 在本发明实施方式中, 聚酯树脂固化剂与丙烯酸树脂不相同。
[0118] 本发明实施例涉及的熔融混合工艺通常包括原料预混、 熔融挤出、 磨粉等工序 步骤, 可以将原料实现良好的均匀分散, 优选地, 在本发明实施例中, 预混吋 间可以选择在 2- 10分钟之间, 然后将预混后的混合物用螺杆挤出机挤出并压成薄 片, 优选地, 在本发明实施例中, 挤出机的长径比可以选择在 15: 1-50: 1之间 , 挤出机的加热温度选择在 80-120°C之间, 螺杆转速选择在 200-800rpm; 最后将 薄片粉碎成小片料进入磨粉机磨成一定粒径的粉末涂料, 优选地, 在本发明实 施例中, 磨粉机的转速选择在 50-150rpm, 优选地, 在本发明实施例中, 混合型 热固性粉末涂料的粒径范围控制在 35-300μηι之间。 当然地, 还可以采用设备的 其他合适工艺参数来制备得到混合型热固性粉末涂料, 相信这些都是本领域技 术人员的常规技术选择。
[0119] 当然地, 在本发明其他具体实施方式中, 本发明实施例提供的混合型热固性粉 末涂料还可以加入一定重量份数的助剂 (可以在原料预混阶段吋添加) , 用于 进一步提高混合型热固性粉末涂料的透明性和 /或耐候性和 /或绝缘性和 /或阻燃性 或改善其他性能或降低成本; 进一步优选地, 助剂重量份占混合型热固性粉末 涂料重量份的 0.1-40%, 同吋还可以根据光伏组件安装的实际需求, 通过添加助 剂来调整混合型热固性粉末涂料的颜色, 进一步利于光伏组件的实际安装应用 。 助剂是聚酰胺蜡、 聚烯烃蜡、 酰胺改性酚脲表面活性剂、 苯偶茵、 聚二甲基 硅氧烷、 乙烯基三氯硅烷、 正丁基三乙氧基硅烷、 正硅酸甲酯、 单烷氧基焦磷 酸酯、 丙烯酸脂类、 酚醛树脂、 脲醛树脂、 三聚氰胺甲醛树脂、 二硬脂酰乙二 胺、 环氧乙烷与环氧丙烷的混合物、 受阻酚、 硫代二丙酸双酯、 二苯酮、 水杨 酸酯衍生物、 受阻胺、 氧化铝、 气相二氧化硅、 四溴双酚八、 十溴二苯乙烷、 磷 酸三甲苯酯、 氢氧化铝、 氢氧化镁、 硫酸钡、 钛白粉、 炭黑中的任意一种或几 种任意配比的混合。 当然地, 本发明仅列出了优选的助剂类型, 在其他实施方 式中, 本领域的技术人员可以根据实际需要选择其他类型的助剂, 本发明实施 例不再具体说明; 进一步优选地, 本发明实施例还可以根据光伏组件安装的实 际需求, 通过添加颜填料作为助剂专门用来调整混合型热固性粉末涂料的颜色 , 进一步利于光伏组件的实际安装应用, 具体地, 助剂可以采用呈蓝色色相的 颜填料, 也可以采用呈红色色相或黄色色相的颜填料, 当然也可以采用混合色 相的颜填料实现彩色或特殊色相的调整。
[0120] 具体优选地, 在本实施方式中, 丙烯酸树脂为 GMA丙烯酸树脂, 其折射率范 围为 1.42-1.48, 环氧当量范围为 450-700g/eq, 玻璃化温度范围为 45-60°C, 粘度 范围为 150-400Pa,s, 软化点温度范围为 105-110°C, 丙烯酸树脂固化剂是十二烷 二酸, 其中, GMA丙烯酸树脂与十二烷二酸的重量份比例为 85份: 15份; 聚酯 树脂是羧基超耐候聚酯树脂, 其酸值为 50mgKOH/g, 玻璃化温度为 60°C, 粘度 为 80 Pa.s, 聚酯树脂固化剂是异氰脲酸三缩水甘油酯, 其中, 羧基超耐候聚酯树 脂与异氰脲酸三缩水甘油酯的重量份比例为 95份: 5份; 具体优选地, 在本实施 方式中, GMA丙烯酸树脂与羧基超耐候聚酯树脂的重量份比例为 50份: 50份。
[0121] 在本具体实施方式中, 如上所述的第一封装层和第二封装层的制备方法, 其中
, 其操作步骤包括如下:
[0122] a) 、 将混合型热固性粉末涂料通过涂覆装置均匀地涂覆在纤维布上;
[0123] b) 、 通过加压加热使混合型热固性粉末涂料与纤维布实现热粘合;
[0124] c) 、 将上述步骤 b) 完成热粘合的混合型热固性粉末涂料与纤维布进行分段裁 切;
[0125] d) 、 得到第一封装层或第二封装层。
[0126] 需要说明的是, 在本发明实施例中, 热粘合过程需采用合适范围的加压、 加热 控制, 因为只有在合适的压力和温度情况下, 才能使混合型热固性粉末涂料与 纤维布之间实现较好地热熔粘合过程, 最终确保满足制备光伏组件封装过程中 的层压工艺的要求, 从而得到真正能适用于光伏电池组件封装的封装材料。 因 此, 优选地, 在本发明实施例中, 热粘合过程的加压范围为 0.05-0.25Mpa, 热粘 合过程的加热温度范围为 90-130°C, 加热吋间范围为 5-20秒, 具体地, 在本实施 方式中, 热粘合过程的加压压力为 0.05Mpa, 热粘合过程的加热温度为 130°C, 加热吋间范围为 5秒。
[0127] 优选地, 在本发明实施例中, 如上所述的第一封装层和第二封装层的制备方法 采用如图 10所示的设备, 在实际实施吋, 将纤维布放入纤维进料机 51中, 将混 合型热固性粉末涂料通过涂覆装置 52均匀地涂覆在纤维进料机 51所输出的纤维 布上, 然后通过热熔复合机 53加压加热使混合型热固性粉末涂料与纤维布实现 热粘合, 将完成热粘合的混合型热固性粉末涂料与纤维布进行分段裁切, 即得 到光伏组件的第一封装层和第二封装层, 不仅操作简单, 而且实现了均匀涂覆 。 在本发明其他具体实施例中, 涂覆装置也可以采用撒粉头, 此吋涂覆装置是 以撒粉的形式实现涂覆过程, 实现将混合型热固性粉末涂料均匀地涂覆在纤维 布上。 当然地, 作为次优选方案, 本领域的技术人员也可以根据实际需要选用 现有任意一种公知的设备来完成本发明所公幵的第一封装层和第二封装层的制 备, 只要实现将混合型热固性粉末涂料均匀地涂覆在纤维布上的技术效果即可
[0128] 需要特别说明的是, 在本发明其他实施方式中, 本领域的技术人员可以根据实 际情况选择本实施例提出的优选的其他类型的丙烯酸树脂、 聚酯树脂、 丙烯酸 树脂固化剂、 聚酯树脂固化剂以及纤维布, 以及选择本发明实施例提出的其他 优选的丙烯酸树脂与聚酯树脂重量份比例、 丙烯酸树脂与丙烯酸树脂固化剂的 重量份比例、 聚酯树脂与聚酯树脂固化剂的重量份比例以及纤维布与混合型热 固性粉末涂料的重量份比例, 以及选择本发明实施例提出的其他优选的热粘合 过程的加压压力、 加热温度以及加热吋间, 采用这些优选技术方案组合得到的 实施方式同样可以取得与本实施方式第一封装层和第二封装层基本相同或差异 不明显的技术效果, 对于这些可以取得本实施方式基本相同或差异不明显的技 术效果的实施方式, 相信本领域技术人员可以根据本发明实施例说明可以直接 进行组合得到, 本发明实施例不再一一分别展幵说明。
[0129] 优选地, 本实施例如上所述的光伏组件的层压结构的制备方法, 光伏组件的层 压结构采用层压工艺制备而成, 其中, 层压工艺包括用于预热熔融的第一加热 阶段、 用于混合型热固性粉末涂料交联固化的第二加热阶段和第三加压冷却阶 段。
[0130] 优选地, 在本发明实施例中, 第一阶段的加热温度范围为 110-130°C, 加热吋 间范围为 100-600秒; 第二阶段的加热温度范围为 131-200°C, 加热吋间范围为 10 0-1200秒; 第三阶段的冷却温度范围为 -10-60。C, 施加压力范围为 0.05-0.25Mpa ; 更优选地, 第一阶段的加热温度范围为 115-125°C, 加热吋间范围为 300-500秒 ; 所述的第二阶段的加热温度范围为 140-180°C, 加热吋间范围为 400-1000秒; 所述的第三阶段的冷却温度范围为 40-50°C, 施加压力范围为 0.1-0.2Mpa, 具体地 , 在本实施方式中, 第一阶段的加热温度为 120°C, 加热吋间为 400秒; 第二阶段 的加热温度为 160°C, 加热吋间为 700秒; 第三阶段的冷却温度为 45°C, 施加压力 为 0.15Mpa。 [0131] 同样地, 在本发明其他实施方式中, 本领域的技术人员可以根据实际情况选择 本发明实施例提出的层压工艺中的其他优选的第一加热阶段、 第二加热阶段的 加热温度、 加热吋间, 和第三加压冷却阶段的冷却温度和施加压力大小, 采用 这些优选技术方案组合得到的实施方式同样可以取得与本实施方式层压工艺基 本相同或差异不明显的技术效果, 对于这些可以取得本实施方式层压工艺基本 相同或差异不明显的技术效果的实施方式, 相信本领域技术人员可以根据本发 明实施例说明可以直接进行组合得到, 本发明实施例不再一一分别展幵说明。
[0132] 优选地, 本实施例还提出一种光伏组件, 包括层压结构, 连接器和接线盒, 通 过连接器实现层压结构与接线盒的电气连接, 其中, 光伏组件包括如上所述的 光伏组件的层压结构。
[0133] 优选地, 请参见图 12所示, 在本实施方式中, 连接器包括压接端子 72和热缩套 管 73, 位于连接器两端的电缆线 71,74卡接入压接端子 72, 热缩套管 73包围压接 端子 72, 使光伏组件层压结构的电气连接可靠, 且成本低廉。
[0134] 实施例 2: 请参见图 3所示, 在本实施例 2中, 层压结构包括氟塑料薄膜层 l lb、 第一封装层 12b、 第一封装胶膜层 13b、 太阳能电池串 14b和第二封装层 15b, 氟 塑料薄膜层 1 lb位于第一封装层 12b的上方, 本实施例 2的其余技术方案与上述实 施例 1相同。
[0135] 实施例 3: 请参见图 4所示, 在本实施例 3中, 层压结构包括第一封装层 l lc、 第 一封装胶膜层 12c、 太阳能电池串 13c、 第二封装层 14c和背板层 15c, 背板层 15c 位于第二封装层 14c的下方, 本实施例 3的其余技术方案与上述实施例 1相同。
[0136] 实施例 4: 请参见图 5所示, 在本实施例 4中, 层压结构包括第一封装层 l ld、 第 一封装胶膜层 12d、 太阳能电池串 13d、 第二封装胶膜层 14d和第二封装层 15d, 第二封装胶膜层 14d位于太阳能电池串 13d和第二封装层 15d之间, 本实施例 4的 其余技术方案与上述实施例 1相同。
[0137] 实施例 5: 请参见图 6所示, 在本实施例 5中, 层压结构包括氟塑料薄膜层 l le、 第一封装层 12e、 第一封装胶膜层 13e、 太阳能电池串 14e、 第二封装胶膜层 15e和 第二封装层 16e, 其中, 氟塑料薄膜层 l ie位于第一封装层 12e的上方, 第二封装 胶膜层 15e位于太阳能电池串 14e和第二封装层 16e之间, 本实施例 5的其余技术方 案与上述实施例 1相同。
[0138] 实施例 6: 请参见图 7所示, 在本实施例 6中, 层压结构包括第一封装层 1 If、 第 一封装胶膜层 12f、 太阳能电池串 13f、 第二封装胶膜层 14f、 第二封装层 15f和背 板层 16f, 其中, 背板层 16f位于第二封装层 15f的下方, 第二封装胶膜层 14f位于 太阳能电池串 13f和第二封装层 15f之间, 本实施例 6的其余技术方案与上述实施 例 1相同。
[0139] 实施例 7: 请参见图 8和图 11所示, 在本实施例 7中, 层压结构包括氟塑料薄膜 层 l lg、 第一封装层 12g、 第一封装胶膜层 13g、 太阳能电池串 14g、 第二封装胶 膜层 15g、 第二封装层 16g和背板层 17g, 其中, 氟塑料薄膜层 l lg位于第一封装 层 12g的上方, 背板层 17g位于第二封装层 16g的下方, 第二封装胶膜层 15g位于 太阳能电池串 14g和第二封装层 16g之间, 本实施例 7的其余技术方案与上述实施 例 1相同。
[0140] 实施例 8: 请参见图 9所示, 在本实施例 8中, 层压结构包括第一封装层 l lh、 太 阳能电池串 12h和第二封装层 13h, 其中, 太阳能电池串 12h位于第一封装层 l lh 和第二封装层 13h之间, 本实施例 8的其余技术方案与上述实施例 1相同。
[0141] 实施例 9: 请参见图 13所示, 在本实施例 9中, 层压结构包括封装层 l li、 第一 封装胶膜层 12i、 太阳能电池串 13i、 第二封装胶膜层 14i和背板层 15i, 其中, 背 板层 15i位于第二封装胶膜层 14i的下方, 本实施例 9的其余技术方案与上述实施 例 1相同。
[0142] 实施例 10: 请参见图 14所示, 在本实施例 10中, 层压结构包括氟塑料薄膜层 11 j、 第一封装胶膜层 12j、 太阳能电池串 13j、 第二封装胶膜层 14j和封装层 15j, 其 中, 氟塑料薄膜层 l lj位于第一封装胶膜层 12j的上方, 封装层 15j位于第二封装胶 膜层 14j的下方, 本实施例 10的其余技术方案与上述实施例 1相同。
[0143] 实施例 11: 本实施例 11的其余技术方案与上述实施例 1-实施例 10中的任意一个 实施例, 区别仅在于, 在本实施例 11中, 混合型热固性粉末涂料采用丙烯酸粉 末涂料和聚酯粉末涂料通过熔融混合工艺后制备得到, 其中, 丙烯酸粉末涂料 采用包括丙烯酸树脂以及丙烯酸树脂固化剂的原料通过熔融混合工艺后制备得 到; 聚酯粉末涂料采用包括聚酯树脂以及聚酯树脂固化剂的原料通过熔融混合 工艺后制备得到; 为了有助于在制备过程中熔融的混合型热固性粉末涂料更好 地浸润纤维材料, 有效保证混合型热固性粉末涂料与纤维布之间热粘合的连接 效果, 进一步优选地, 在本实施例中, 丙烯酸粉末涂料的胶化吋间范围为 100-60 0s, 斜板流动范围为 15-35cm, 软化点温度范围为 100-110°C; 聚酯粉末涂料的胶 化吋间范围为 150-800s, 斜板流动范围为 10-25cm, 软化点温度范围为 100-110°C
[0144] 具体优选地, 在本实施方式中, 丙烯酸粉末涂料的胶化吋间为 500s, 斜板流动 为 20cm, 玻璃化温度为 45°C, 软化点温度范围为 100-105°C。 具体地, 在本实施 方式中, 聚酯粉末涂料的胶化吋间为 600s, 斜板流动为 15cm, 玻璃化温度为 50 °C, 软化点温度范围为 105-110°C。
[0145] 实施例 12: 本实施例 12的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 12中, 混合型热固性粉末涂料采用丙烯酸粉末涂料和聚酯粉 末涂料通过干混工艺后制备得到, 其中, 丙烯酸粉末涂料采用包括丙烯酸树脂 以及丙烯酸树脂固化剂的原料通过熔融混合工艺后制备得到; 聚酯粉末涂料采 用包括聚酯树脂以及聚酯树脂固化剂的原料通过熔融混合工艺后制备得到。
[0146] 实施例 13: 本实施例 13的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 13中, 混合型热固性粉末涂料采用丙烯酸粉末涂料、 聚酯树 脂以及聚酯树脂固化剂通过熔融混合工艺后制备得到, 其中, 丙烯酸粉末涂料 采用包括丙烯酸树脂以及丙烯酸树脂固化剂的原料通过熔融混合工艺后制备得 到。
[0147] 实施例 14: 本实施例 14的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 14中, 混合型热固性粉末涂料采用丙烯酸树脂、 丙烯酸树脂 固化剂以及聚酯粉末涂料通过熔融混合工艺后制备得到, 其中, 聚酯粉末涂料 采用包括聚酯树脂以及聚酯固化剂的原料通过熔融混合工艺后制备得到。
[0148] 实施例 15: 本实施例 15的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 15中, 丙烯酸树脂固化剂与聚酯树脂相同, 具体地, 丙烯酸 树脂固化剂为羧基超耐候聚酯树脂。
[0149] 实施例 16: 本实施例 16的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 16中, 聚酯树脂固化剂与丙烯酸树脂相同, 具体地, 聚酯树 脂固化剂为 GMA丙烯酸树脂。
[0150] 实施例 17: 本实施例 17的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 17中, 丙烯酸树脂固化剂与聚酯树脂相同, 聚酯树脂固化剂 与丙烯酸树脂相同, 具体地, 丙烯酸树脂固化剂为羧基超耐候聚酯树脂, 聚酯 树脂固化剂为 GMA丙烯酸树脂。
[0151] 实施例 18: 本实施例 18的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 18中, 丙烯酸树脂与聚酯树脂的重量份比例为 40份: 60份。
[0152] 实施例 19: 本实施例 19的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 19中, 丙烯酸树脂与聚酯树脂的重量份比例为 60份: 40份。
[0153] 实施例 20: 本实施例 20的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 20中, 丙烯酸树脂与聚酯树脂的重量份比例为 30份: 70份。
[0154] 实施例 21: 本实施例 21的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 21中, 丙烯酸树脂与聚酯树脂的重量份比例为 70份: 30份。
[0155] 实施例 22: 本实施例 22的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 22中, 丙烯酸树脂与聚酯树脂的重量份比例为 25份: 75份。
[0156] 实施例 23: 本实施例 23的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 23中, 丙烯酸树脂与聚酯树脂的重量份比例为 75份: 25份。
[0157] 实施例 24: 本实施例 24的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 24中, 丙烯酸树脂与聚酯树脂的重量份比例为 20份: 80份。
[0158] 实施例 25: 本实施例 25的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 25中, 丙烯酸树脂与聚酯树脂的重量份比例为 80份: 20份。
[0159] 实施例 26: 本实施例 26的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 26中, 丙烯酸树脂与聚酯树脂的重量份比例为 15份: 85份。
[0160] 实施例 27: 本实施例 27的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 27中, 丙烯酸树脂与聚酯树脂的重量份比例为 85份: 15份。
[0161] 实施例 28: 本实施例 28的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 28中, 丙烯酸树脂与聚酯树脂的重量份比例为 10份: 90份。 [0162] 实施例 29: 本实施例 29的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 29中, 丙烯酸树脂与聚酯树脂的重量份比例为 90份: 10份。
[0163] 实施例 30: 本实施例 30的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 30中, 丙烯酸树脂与聚酯树脂的重量份比例为 5份: 95份。
[0164] 实施例 31: 本实施例 31的其余技术方案与上述实施例实施例 1-实施例 10相同, 区别仅在于, 在本实施例 31中, 丙烯酸树脂与聚酯树脂的重量份比例为 95份: 5 份。
[0165] 实施例 32: 本实施例 32的其余技术方案与上述实施例 11相同, 区别仅在于, 在 本实施例 32中, 丙烯酸树脂与聚酯树脂的重量份比例为 40份: 60份。
[0166] 实施例 33: 本实施例 33的其余技术方案与上述实施例 11相同, 区别仅在于, 在 本实施例 33中, 丙烯酸树脂与聚酯树脂的重量份比例为 60份: 40份。
[0167] 实施例 34: 本实施例 34的其余技术方案与上述实施例 11相同, 区别仅在于, 在 本实施例 34中, 丙烯酸树脂与聚酯树脂的重量份比例为 30份: 70份。
[0168] 实施例 35: 本实施例 35的其余技术方案与上述实施例 11相同, 区别仅在于, 在 本实施例 35中, 丙烯酸树脂与聚酯树脂的重量份比例为 70份: 30份。
[0169] 实施例 36: 本实施例 36的其余技术方案与上述实施例 11相同, 区别仅在于, 在 本实施例 36中, 丙烯酸树脂与聚酯树脂的重量份比例为 25份: 75份。
[0170] 实施例 37: 本实施例 37的其余技术方案与上述实施例 11相同, 区别仅在于, 在 本实施例 37中, 丙烯酸树脂与聚酯树脂的重量份比例为 75份: 25份。
[0171] 实施例 38: 本实施例 38的其余技术方案与上述实施例 11相同, 区别仅在于, 在 本实施例 38中, 丙烯酸树脂与聚酯树脂的重量份比例为 20份: 80份。
[0172] 实施例 39: 本实施例 39的其余技术方案与上述实施例 11相同, 区别仅在于, 在 本实施例 39中, 丙烯酸树脂与聚酯树脂的重量份比例为 80份: 20份。
[0173] 实施例 40: 本实施例 40的其余技术方案与上述实施例 11相同, 区别仅在于, 在 本实施例 40中, 丙烯酸树脂与聚酯树脂的重量份比例为 15份: 85份。
[0174] 实施例 41: 本实施例 41的其余技术方案与上述实施例 11相同, 区别仅在于, 在 本实施例 41中, 丙烯酸树脂与聚酯树脂的重量份比例为 85份: 15份。
[0175] 实施例 42: 本实施例 42的其余技术方案与上述实施例 11相同, 区别仅在于, 在 本实施例 42中, 丙烯酸树脂与聚酯树脂的重量份比例为 10份: 90份。
[0176] 实施例 43: 本实施例 43的其余技术方案与上述实施例 11相同, 区别仅在于, 在 本实施例 43中, 丙烯酸树脂与聚酯树脂的重量份比例为 90份: 10份。
[0177] 实施例 44: 本实施例 44的其余技术方案与上述实施例 11相同, 区别仅在于, 在 本实施例 44中, 丙烯酸树脂与聚酯树脂的重量份比例为 5份: 95份。
[0178] 实施例 45: 本实施例 45的其余技术方案与上述实施例 11相同, 区别仅在于, 在 本实施例 45中, 丙烯酸树脂与聚酯树脂的重量份比例为 95份: 5份。
[0179] 实施例 46: 本实施例 46的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 46中, 层压工艺过程中, 第一阶段的加热温度为 125°C, 加热 吋间为 350秒; 第二阶段的加热温度为 165°C, 加热吋间为 750秒; 第三阶段的冷 却温度为 18°C, 施加压力为 0.13Mpa。
[0180] 实施例 47: 本实施例 47的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 47中, 层压工艺过程中, 第一阶段的加热温度为 115°C, 加热 吋间为 500秒; 第二阶段的加热温度为 180°C, 加热吋间为 400秒; 第三阶段的冷 却温度为 35°C, 施加压力为 0.2Mpa。
[0181] 实施例 48: 本实施例 48的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 48中, 层压工艺过程中, 第一阶段的加热温度为 120°C, 加热 吋间为 400秒; 第二阶段的加热温度为 160°C, 加热吋间为 700秒; 第三阶段的冷 却温度为 20°C, 施加压力为 0.15Mpa。
[0182] 实施例 49: 本实施例 49的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 49中, 层压工艺过程中, 第一阶段的加热温度为 120°C, 加热 吋间为 400秒; 第二阶段的加热温度为 160°C, 加热吋间为 700秒; 第三阶段的冷 却温度为 -10°C, 施加压力为 0.15Mpa。
[0183] 实施例 50: 本实施例 50的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 50中, 层压工艺过程中, 第一阶段的加热温度为 112°C, 加热 吋间为 180秒; 第二阶段的加热温度为 131°C, 加热吋间为 1200秒; 第三阶段的冷 却温度为 25°C, 施加压力为 0.25Mpa。
[0184] 实施例 51: 本实施例 51的其余技术方案与上述实施例 1-实施例 10相同, 区别仅 在于, 在本实施例 51中, 层压工艺过程中, 第一阶段的加热温度为 125°C, 加热 吋间为 600秒; 第二阶段的加热温度为 155°C, 加热吋间为 600秒; 第三阶段的冷 却温度为 0°C, 施加压力为 0.18Mpa。
[0185] 比较例 1 :
[0186] 本比较例 1采用背景技术现有典型的光伏组件的封装材料。
[0187] 比较例 2:
[0188] 本比较例 2采用背景技术 EVA胶膜封装材料。
[0189] 比较例 3:
[0190] 本比较例 3采用背景技术 POE胶膜封装材料。
[0191] 比较例 4:
[0192] 本比较例 4的其余技术方案与上述实施例 7相同, 区别仅在于, 在本比较例 4中 , 第一封装层和第二封装层均由包括纤维布 35重量份和常规商业化的环氧粉末 涂料 65重量份制备而成。
[0193] 比较例 5:
[0194] 本比较例 5采用 CN201610685536.0公幵的基于丙烯酸粉末涂料制成的光伏组件 用封装材料实施例 1。
[0195] 比较例 6:
[0196] 本比较例 6采用 CN201610685240.9公幵的基于超耐候聚酯粉末涂料制成的光伏 组件用封装材料实施例 1。
[0197] 比较例 7:
[0198] 本比较例 7采用 CN201610685536.0公幵的基于丙烯酸粉末涂料制成的光伏组件 用封装材料实施例 11。
[0199] 比较例 8:
[0200] 本比较例 6采用 CN201610685240.9公幵的基于超耐候聚酯粉末涂料制成的光伏 组件用封装材料实施例 5。
[0201] 比较例 9:
[0202] 本比较例 9采用 CN105637653A公布的最优选实施例, 且采用其公幵的优选层压 工艺。 [0203] 比较例 10:
[0204] 本比较例 10的其余技术方案与上述实施例 7相同, 区别仅在于, 采用 CN105637
653A公布的优选层压工艺进行层压得到光伏组件的层压结构。
工业实用性
[0205] 本发明针对上述实施例的封装层以及比较例进行了针对光伏技术标准的实施效 果测试, 其测试结果如下表 1。
[0206] 表 1 在光伏技术标准方面的实施效果一对比
[]
Figure imgf000030_0001
本发明全文封装结构重量是指光伏组件用封装材料单位平方米的重量; 抗冲击 性能测试是指将标准直径为 25mm、 质量为 7.53g的冰球以 23.0m/s的速度发射出 去, 撞击完成封装的光伏组件 11个位置, 通过外观、 最大功率衰减和绝缘电阻 等三个方面要求来判断光伏组件的抗冲击性能; 防火性是通过 UL1703标准检测 得到的结果; 铅笔硬度是 ASTM D3363-2005(R2011)标准检测得到的结果; 拉伸 强度是 GB/T 1040.3-2006标准检测得到的结果; 断裂伸长率是通过 GB/T 1040.3-2006标准检测得到的结果。
[0208] 从表 1中数据可明显看出, 本发明实施例在满足抗紫外、 抗老化、 抗冲击、 防 火等光伏行业技术标准要求的前提下, 有效实现了解决了光伏组件封装材料的 轻量化, 且制造成本低, 替代传统封装结构式的的钢化玻璃, 给光伏组件提供 一定的刚性以保护光伏电池, 如此, 不但能够大大减轻光伏组件的重量, 由此 适应更多场合的光伏发电产品的安装, 而且还能降低产品安装吋的劳动强度以 及提高安装的便利度, 从总体上降低光伏组件的安装成本。
[0209] 需要进一步强调的是, 本发明实施例通过涂覆装置把混合型热固性粉末涂料均 匀地涂覆在纤维布上, 再通过加压加热使混合型热固性粉末涂料与纤维布预粘 合, 最后分段裁切制得合适尺寸的光伏组件的封装层, 如此能实现光伏组件封 装尺寸的任意改变以适应不同建筑的安装要求, 进一步便于光伏组件的安装应 用。
[0210] 本发明还针对上述实施例的封装层以及比较例在特定项目上进行了对比, 其对 比结果如下表 2。
[0211] 表 2 实施效果二对比
[]
[表 1] 对比项目 成本 耐湿热稳耐候性 与纤维布与纤维布机械性能水汽透过 定性 润湿性 的附着力 率
实施例 1- ++++ ++++
10
实施例 11 ++++ 实施例 12 ++++ 实施例 13 ++++ ++++ 实施例 14 ++++ ++++
实施例 15 ++++ ++++
-16
实施例 17 ++++ ++++ ++++ +++ ++++ ++++ ++++
实施例 18 ++++ ++++
-21
实施例 22 ++++ ++++
、 24、 26
实施例 23 +++ ++++
、 25、 27 实施例 28 ++++ ++++ 、 30
实施例 29 ++ ++++ ++++ 、 31
实施例 32 ++++
-35
实施例 36 ++++
、 38、 40 实施例 37 +++
、 39、 41 实施例 42 ++++ ++++
、 44
实施例 43 ++ ++++ ++++ 、 45
实施例 46 ++++ ++++
-51
比较例 1 ++++ ++++ 1 1
比较例 2 ++++ +++ + 1 1 - ++ 比较例 3 ++++ +++ + 1 1 - ++ 比较例 4 ++++ + - + + - + 比较例 5 ++ ++ ++++ ++ 比较例 6 +++ ++ +++ ++
比较例 7 ++ ++ ++++ ++++ ++ 比较例 8 ++++ +++ ++ ++ ++
比较例 9 ++ + ++++ +++ ++ + 比较例 10 ++++ ++++
[0212] 本发明上表 2中的" +"表示其对应的实施例或比较例在该对比项目下表现优异, "-"表示其对应的实施例或比较例在该对比项目下无法满足光伏标准, "/"表示其 对应的实施例或比较例不适用于该对比项目, 其中, "+"的数量越多, 代表其对 应的实施例或比较例在该对比项目表现越优异, 具体地, 在"成本"对比项下, 每 多 1个" +"代表其对应的实施例或比较例在"成本"上降低 10-20%左右; 在"耐湿热 稳定性 "对比项下, 每多 1个 "+"代表其对应的实施例或比较例在"耐湿热稳定性" 上提高 10-20%左右; 在"耐候性 "对比项下, 每多 1个" +"代表其对应的实施例或 比较例在"耐候性"上提高 10-20%左右; 在"与纤维布润湿性"对比项下, 每多 1个" +"代表其对应的实施例或比较例在"与纤维布润湿性"上提高 10-20%左右; 在"与 纤维布的附着力"对比项下, 每多 1个" +"代表其对应的实施例或比较例在"与纤维 布的附着力"上提高 10-20%左右; 在"机械性能"对比项下, 每多 1个 "+"代表其对 应的实施例或比较例在"机械性能"上提高 10-20%左右; 在"水汽透过率"对比项下 , 每多 1个" +"代表其对应的实施例或比较例在"水汽透过率"上降低 10-20%左右
[0213] 需要特别说明的是, 在本发明上表 2中, "耐湿热稳定性"越好、 以及"水汽透过 率"越低则表示其适合应用于高温高湿环境; "耐候性"越好则表示其适合应用于 户外强紫外光照或强风环境; "与纤维布润湿性"以及"与纤维布的附着力"分别 是指本发明实施例混合型热固性粉末涂料与纤维布的润湿性与附着力, "与纤维 布润湿性"以及"与纤维布的附着力"越好, 则表示其强度好, 且与纤维布的连接 质量好, 适合应用于具有高机械安装要求环境; "机械性能"是指本发明实施例整 体的机械性能表现, 包括了附着力、 抗冲击、 铅笔硬度等方面的机械性能。
[0214] 通过上表 2可清楚得知: 通过实施本发明可以取得大量综合性能明显优异于比 较例 5-比较例 8的实施例, 本发明这些实施例可以有效保证光伏组件在包括高温 高湿环境、 户外强紫外光照或强风环境、 具有高机械安装要求环境等恶劣安装 环境下的使用寿命, 而且成本较低, 非常适合大规模实施应用; 其中, 在其他 的相同实施条件下, 本发明采用实施例 11、 实施例 12中的混合型热固性粉末涂 料制备方法的实施效果最优异; 在其他的相同实施条件下, 当本发明丙烯酸树 脂固化剂与聚酯树脂不相同, 以及聚酯树脂固化剂与丙烯酸树脂不相同吋的实 施例性能明显优于其相同吋的实施例性能; 在其他的相同实施条件下, 当本发 明丙烯酸树脂与聚酯树脂的重量份比例范围在 40-60份: 60-40份吋的实施效果最 优异, 重量份比例范围介于 30-70份: 70-30份与 40-60份: 60-40份吋的实施效果 次之。
[0215] 本发明针对上述实施例的层压结构以及比较例还在进行了制备工艺方面进行实 施效果对比, 其测试结果如下表 3。
[0216] 表 3各类光伏组件的层压结构在制备工艺等方面的实施效果对比
[]
[表 2]
Figure imgf000036_0001
进一步从表 3可看出, 本发明低成本化, 且具有优异的耐划擦特性, 且最终实 现了在低温度环境下的层压工艺, 降低能耗, 同吋确保了光伏组件层压结构的 平整度, 兼顾了外观美观度下还进一步便于光伏组件的安装实施应用。
[0218] 还需要说明的是, 显而易见地, 在本发明其他实施方式中, 本领域的技术人员 可以根据第一封装层和第二封装层实际的层结构位置情况和具体性能需要, 第 一封装层和第二封装层可以采用本发明实施例列举出不同优选技术方案组合而 成混合型热固性粉末涂料, 或者第一封装层或第二封装层单独采用本发明实施 例列举出不同优选技术方案组合而成混合型热固性粉末涂料, 另一个封装层采 用其他材料制成, 该应用了本发明实施例的封装层同样具备了本发明所带来的 技术效果; 进一步来说, 虽然本实施例得到的层结构是部分优选的实施例, 但 不限定本领域技术人员根据实际应用领域需要, 同吋基于本发明所公幵的内容 , 完全可以添加其它层结构; 相信这些应用都是本领域技术基于本发明的基础 结合本领域的公知常识即可得到, 由于说明书篇幅有限, 本发明实施例不再一 一展幵描述, 这些应用仍然属于本发明的精神, 因此这些应用同样被认为本发 明的权利保护范围。
[0219] 对于本领域技术人员而言, 显然本发明不限于上述示范性实施例的细节, 而且 在不背离本发明的精神或基本特征的情况下, 能够以其他的具体形式实现本发 明。 因此, 无论从哪一点来看, 均应将实施例看作是示范性的, 而且是非限制 性的, 本发明的范围由所附权利要求而不是上述说明限定, 因此旨在将落在权 利要求的等同要件的含义和范围内的所有变化囊括在本发明内。 不应将权利要 求中的任何附图标记视为限制所涉及的权利要求。
[0220] 此外, 应当理解, 虽然本说明书按照实施方式加以描述, 但并非每个实施方式 仅包含一个独立的技术方案, 说明书的这种叙述方式仅仅是为清楚起见, 本领 域技术人员应当将说明书作为一个整体, 各实施例中的技术方案也可以经适当 组合, 形成本领域技术人员可以理解的其他实施方式。

Claims

权利要求书
[权利要求 1] 一种光伏组件的层压结构, 所述的层压结构包括封装层和太阳能电池 串, 其特征在于, 所述的封装层由包括纤维布和混合型热固性粉末涂 料的原料制备而成, 所述的混合型热固性粉末涂料均匀地涂覆在所述 的纤维布上;
其中, 所述的混合型热固性粉末涂料的原料包括丙烯酸树脂、 丙烯酸 树脂固化剂、 聚酯树脂以及聚酯树脂固化剂; 所述的纤维布由纤维材 料织造制成。
[权利要求 2] 如权利要求 1所述的光伏组件的层压结构, 其特征在于, 所述的封装 层包括第一封装层和第二封装层, 其特征在于, 所述的第一封装层或 /和第二封装层由包括纤维布和混合型热固性粉 末涂料的原料制备而成, 所述的混合型热固性粉末涂料均匀地涂覆在 所述的纤维布上; 其中, 所述的混合型热固性粉末涂料的原料包括丙 烯酸树脂、 丙烯酸树脂固化剂、 聚酯树脂以及聚酯树脂固化剂; 所述 的纤维布由纤维材料织造制成。
[权利要求 3] 如权利要求 1或 2所述的光伏组件的层压结构, 其特征在于, 所述的层 压结构包括氟塑料薄膜层, 所述的氟塑料薄膜层位于所述的封装层的 上方。
[权利要求 4] 如权利要求 1或 2所述的光伏组件的层压结构, 其特征在于, 所述的层 压结构包括封装胶膜层, 所述的封装胶膜层设置在所述的封装层和太 阳能电池串之间。
[权利要求 5] 如权利要求 1或 2所述的光伏组件的层压结构, 其特征在于, 所述的纤 维布与所述的混合型热固性粉末涂料的重量份比例范围为 20-60份: 4 0-80份。
[权利要求 6] 如权利要求 1或 2所述的光伏组件的层压结构, 其特征在于, 所述的纤 维布的单位面积重量范围为 30-400g/m 2, 所述的混合型热固性粉末涂 料涂覆在所述的纤维布上的单位面积重量范围为 70-400 g/m 2。
[权利要求 7] 如权利要求 1或 2所述的光伏组件的层压结构, 其特征在于, 在所述的 混合型热固性粉末涂料中, 所述的丙烯酸树脂与聚酯树脂的重量份比 例范围为 30-70份: 70-30份。
如权利要求 1或 2所述的光伏组件的层压结构, 其特征在于, 在所述的 混合型热固性粉末涂料中, 所述的丙烯酸树脂与聚酯树脂的重量份比 例范围为 40-60份: 60-40份。
如权利要求 1或 2所述的光伏组件的层压结构, 其特征在于, 所述的混 合型热固性粉末涂料的胶化吋间范围为 50-1000s, 斜板流动范围为 10- 40cm, 软化点温度范围为 80-120°C。
如权利要求 1或 2所述的光伏组件的层压结构, 其特征在于, 所述的混 合型热固性粉末涂料采用包括丙烯酸树脂、 丙烯酸树脂固化剂、 聚酯 树脂以及聚酯树脂固化剂的原料通过熔融混合工艺后制备得到。
如权利要求 1或 2所述的光伏组件的层压结构, 其特征在于, 所述的混 合型热固性粉末涂料采用丙烯酸粉末涂料和聚酯粉末涂料通过熔融混 合工艺后制备得到, 其中,
所述的丙烯酸粉末涂料采用包括丙烯酸树脂以及丙烯酸树脂固化剂的 原料通过熔融混合工艺后制备得到;
所述的聚酯粉末涂料采用包括聚酯树脂以及聚酯树脂固化剂的原料通 过熔融混合工艺后制备得到。
如权利要求 1或 2所述的光伏组件的层压结构, 其特征在于, 所述的混 合型热固性粉末涂料采用丙烯酸粉末涂料和聚酯粉末涂料通过干混工 艺后制备得到, 其中,
所述的丙烯酸粉末涂料采用包括丙烯酸树脂以及丙烯酸树脂固化剂的 原料通过熔融混合工艺后制备得到;
所述的聚酯粉末涂料采用包括聚酯树脂以及聚酯树脂固化剂的原料通 过熔融混合工艺后制备得到。
如权利要求 1或 2所述的光伏组件的层压结构, 其特征在于, 所述的混 合型热固性粉末涂料采用丙烯酸粉末涂料、 聚酯树脂以及聚酯树脂固 化剂通过熔融混合工艺后制备得到, 其中, 所述的丙烯酸粉末涂料采 用包括丙烯酸树脂以及丙烯酸树脂固化剂的原料通过熔融混合工艺后 制备得到。
[权利要求 14] 如权利要求 1或 2所述的光伏组件的层压结构, 其特征在于, 所述的混 合型热固性粉末涂料采用丙烯酸树脂、 丙烯酸树脂固化剂以及聚酯粉 末涂料通过熔融混合工艺后制备得到, 其中, 所述的聚酯粉末涂料采 用包括聚酯树脂以及聚酯固化剂的原料通过熔融混合工艺后制备得到
[权利要求 15] 如权利要求 1或 2所述的光伏组件的层压结构, 其特征在于, 所述的丙 烯酸树脂固化剂与所述的聚酯树脂不相同。
[权利要求 16] 如权利要求 1或 2所述的光伏组件的层压结构, 其特征在于, 所述的聚 酯树脂固化剂与所述的丙烯酸树脂不相同。
[权利要求 17] 如权利要求 1或 2或 10或 11或 12或 13或 14或 15或 16所述的光伏组件的层 压结构, 其特征在于, 所述的丙烯酸树脂固化剂是羧基聚酯树脂、 羟 基聚酯树脂、 异氰脲酸三缩水甘油酯、 偏苯三酸三缩水甘油酯、 对苯 二甲酸二缩水甘油酯、 羟烷基酰胺、 异氰酸酯、 封闭型多异氰酸酯、 脲二酮、 邻苯二甲酸酐、 偏苯三酸酐、 癸二酸、 十一烷二酸、 十二烷 二酸、 十三烷二酸、 十四烷二酸、 十五烷二酸、 十六烷二酸、 双氰胺 、 癸二酸二酰肼氢、 二氨基二苯砜、 四甲基甘脲、 氨基树脂、 氢化环 氧中的任意一种或几种任意配比的混合。
[权利要求 18] 如权利要求 1或 2或 10或 11或 12或 13或 14或 15或 16所述的光伏组件的层 压结构, 其特征在于, 所述的聚酯树脂固化剂是 GMA丙烯酸树脂、 异氰脲酸三缩水甘油酯、 偏苯三酸三缩水甘油酯、 对苯二甲酸二缩水 甘油酯、 羟烷基酰胺、 异氰酸酯、 封闭型多异氰酸酯、 脲二酮、 邻苯 二甲酸酐、 偏苯三酸酐、 二氨基二苯砜、 四甲基甘脲、 氨基树脂、 氢 化环氧中的任意一种或几种任意配比的混合。
[权利要求 19] 如权利要求 1或 2所述的光伏组件的层压结构, 其特征在于, 所述的封 装层的制备方法包括如下操作步骤:
a) 、 将所述的混合型热固性粉末涂料通过涂覆装置均匀地涂覆在所 述的纤维布上;
b) 、 通过加压加热使所述的混合型热固性粉末涂料与所述的纤维布 实现热粘合;
c) 、 将上述步骤 b) 完成热粘合的混合型热固性粉末涂料与纤维布进 行分段裁切;
d) 、 得到所述的封装层。
如权利要求 19所述的光伏组件的层压结构, 其特征在于, 所述热粘合 过程的加压范围为 0.05-0.25Mpa, 所述热粘合过程的加热温度范围为 90-130°C, 加热吋间范围为 5-20秒。
一种如权利要求 1-20任意一项所述的光伏组件的层压结构的制备方法 , 其特征在于, 所述的光伏组件的层压结构采用层压工艺制备而成, 其中, 层压工艺包括用于预热熔融的第一加热阶段、 用于混合型热固 性粉末涂料交联固化的第二加热阶段和第三加压冷却阶段。
如权利要求 21所述的光伏组件的层压结构的制备方法, 其特征在于, 所述的第一阶段的加热温度范围为 110-130°C, 加热吋间范围为 100-6 00秒; 所述的第二阶段的加热温度范围为 131-200°C, 加热吋间范围 为 100-1200秒; 所述的第三阶段的冷却温度范围为 -10-60°C, 施加压 力范围为 0.05-0.25Mpa。
一种光伏组件, 包括层压结构, 连接器和接线盒, 通过连接器实现层 压结构与接线盒的电气连接, 其特征在于, 所述的光伏组件包括如权 利要求 1-20任意一项所述的光伏组件的层压结构。
如权利要求 23所述的光伏组件, 其特征在于, 所述的连接器包括压接 端子和热缩套管, 位于所述的连接器两端的电缆线卡接入所述的压接 端子, 所述的热缩套管包围压接端子。
PCT/CN2017/092290 2017-07-07 2017-07-07 一种光伏组件的层压结构及其制备方法、光伏组件 WO2019006764A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/092290 WO2019006764A1 (zh) 2017-07-07 2017-07-07 一种光伏组件的层压结构及其制备方法、光伏组件
CN201780092921.7A CN111201614B (zh) 2017-07-07 2017-07-07 一种光伏组件的层压结构及其制备方法、光伏组件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/092290 WO2019006764A1 (zh) 2017-07-07 2017-07-07 一种光伏组件的层压结构及其制备方法、光伏组件

Publications (1)

Publication Number Publication Date
WO2019006764A1 true WO2019006764A1 (zh) 2019-01-10

Family

ID=64949606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092290 WO2019006764A1 (zh) 2017-07-07 2017-07-07 一种光伏组件的层压结构及其制备方法、光伏组件

Country Status (2)

Country Link
CN (1) CN111201614B (zh)
WO (1) WO2019006764A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3106698A1 (fr) 2020-01-27 2021-07-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant une couche avant et une couche arrière en matériaux composites
FR3107990A1 (fr) 2020-03-05 2021-09-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant des couches avant et arrière polymère et des renforts fibrés
CN114014972A (zh) * 2021-11-15 2022-02-08 上海银浆科技有限公司 一种光伏银浆中有机载体用的酮肼交联体系
CN114806425A (zh) * 2022-06-30 2022-07-29 江苏鹿山新材料有限公司 光伏组件用封装胶膜及其制备方法及光伏组件
CN115519869A (zh) * 2022-09-01 2022-12-27 北京金茂绿建科技有限公司 一种光伏背板、光伏组件以及光伏背板的制备方法
FR3127089A1 (fr) 2021-09-14 2023-03-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant une couche avant en verre et polymère
WO2023135385A1 (fr) 2022-01-14 2023-07-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fabrication d'un module photovoltaïque et installation de fabrication correspondante
WO2023199005A1 (fr) 2022-04-15 2023-10-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant un cadre composite intégré
WO2023203289A1 (fr) 2022-04-20 2023-10-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger et résistant aux chocs
CN117106214A (zh) * 2023-08-22 2023-11-24 常州百佳年代薄膜科技股份有限公司 一种快速交联成型轻质光伏组件封装前板及其制备方法
FR3138001A1 (fr) 2022-07-18 2024-01-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant un cadre de renfort composite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116914007A (zh) * 2023-08-25 2023-10-20 湖北美格新能源科技有限公司 一种新型光伏瓦

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110272023A1 (en) * 2010-05-08 2011-11-10 Dj Solar Co., Ltd. Solar cell packaging structure
CN102315285A (zh) * 2011-09-06 2012-01-11 新高电子材料(中山)有限公司 一种耐候性涂层及使用该涂层的太阳能背板
CN102364694A (zh) * 2011-11-01 2012-02-29 杭州福膜新材料科技有限公司 太阳能电池背板及太阳能电池
CN106299000A (zh) * 2016-08-18 2017-01-04 老虎粉末涂料制造(太仓)有限公司 光伏组件用封装材料及该封装材料的制备方法
CN106283677A (zh) * 2016-08-18 2017-01-04 老虎粉末涂料制造(太仓)有限公司 光伏组件用封装材料及该封装材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795467A (zh) * 2015-04-14 2015-07-22 四川和鼎环保工程有限责任公司 一种太阳能电池板制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110272023A1 (en) * 2010-05-08 2011-11-10 Dj Solar Co., Ltd. Solar cell packaging structure
CN102315285A (zh) * 2011-09-06 2012-01-11 新高电子材料(中山)有限公司 一种耐候性涂层及使用该涂层的太阳能背板
CN102364694A (zh) * 2011-11-01 2012-02-29 杭州福膜新材料科技有限公司 太阳能电池背板及太阳能电池
CN106299000A (zh) * 2016-08-18 2017-01-04 老虎粉末涂料制造(太仓)有限公司 光伏组件用封装材料及该封装材料的制备方法
CN106283677A (zh) * 2016-08-18 2017-01-04 老虎粉末涂料制造(太仓)有限公司 光伏组件用封装材料及该封装材料的制备方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3859793A1 (fr) 2020-01-27 2021-08-04 Commissariat à l'énergie atomique et aux énergies alternatives Module photovoltaïque léger comportant une couche avant et une couche arrière en matériaux composites
FR3106698A1 (fr) 2020-01-27 2021-07-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant une couche avant et une couche arrière en matériaux composites
FR3107990A1 (fr) 2020-03-05 2021-09-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant des couches avant et arrière polymère et des renforts fibrés
FR3127089A1 (fr) 2021-09-14 2023-03-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant une couche avant en verre et polymère
WO2023041864A1 (fr) 2021-09-14 2023-03-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant une couche avant en verre et polymère
CN114014972A (zh) * 2021-11-15 2022-02-08 上海银浆科技有限公司 一种光伏银浆中有机载体用的酮肼交联体系
CN114014972B (zh) * 2021-11-15 2022-11-08 上海银浆科技有限公司 一种光伏银浆中有机载体用的酮肼交联体系
WO2023135385A1 (fr) 2022-01-14 2023-07-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fabrication d'un module photovoltaïque et installation de fabrication correspondante
FR3131982A1 (fr) 2022-01-14 2023-07-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fabrication d’un module photovoltaïque et installation de fabrication correspondante
FR3134653A1 (fr) 2022-04-15 2023-10-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant un cadre composite intégré
WO2023199005A1 (fr) 2022-04-15 2023-10-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant un cadre composite intégré
WO2023203289A1 (fr) 2022-04-20 2023-10-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger et résistant aux chocs
FR3134919A1 (fr) 2022-04-20 2023-10-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger et résistant aux chocs
CN114806425A (zh) * 2022-06-30 2022-07-29 江苏鹿山新材料有限公司 光伏组件用封装胶膜及其制备方法及光伏组件
FR3138001A1 (fr) 2022-07-18 2024-01-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque léger comportant un cadre de renfort composite
EP4310924A1 (fr) 2022-07-18 2024-01-24 Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives Module photovoltaïque léger comportant un cadre de renfort composite
CN115519869A (zh) * 2022-09-01 2022-12-27 北京金茂绿建科技有限公司 一种光伏背板、光伏组件以及光伏背板的制备方法
CN117106214A (zh) * 2023-08-22 2023-11-24 常州百佳年代薄膜科技股份有限公司 一种快速交联成型轻质光伏组件封装前板及其制备方法

Also Published As

Publication number Publication date
CN111201614B (zh) 2022-05-10
CN111201614A (zh) 2020-05-26

Similar Documents

Publication Publication Date Title
WO2019006764A1 (zh) 一种光伏组件的层压结构及其制备方法、光伏组件
CN108022988B (zh) 一种光伏组件的层压结构及其制备方法、光伏组件
CN110832138B (zh) 光伏组件用复合封装材料及该复合封装材料的制备方法
JP6752537B2 (ja) 太陽光発電モジュール用シーリング材及びその製造方法
WO2018032732A1 (zh) 光伏组件用封装材料及该封装材料的制备方法
CN108242473B (zh) 一种彩色光伏组件及其制备方法
JP2019518113A5 (zh)
CN110854226B (zh) 一种光伏高效复合背板及其制备方法、应用的光伏组件
CN206758444U (zh) 一种彩色光伏组件
WO2017140002A1 (zh) 树脂基复合薄膜材料及其制备方法、太阳电池组件
CN108376717B (zh) 光伏组件层压结构的制备方法以及层压结构、光伏组件
CN208400857U (zh) 一种叠片组件的层压结构及叠片组件
CN108695401B (zh) 一种双面组件的层压结构及其制备方法、双面组件
CN108695400B (zh) 一种叠片组件的层压结构及其制备方法、叠片组件
CN114134714A (zh) 一种太阳能光伏用高耐候透明前板封装材料及其制备方法
CN110629558A (zh) 高效防护复合板材及其制备方法、应用和应用方法
WO2019228049A1 (zh) 高效防护复合板材及其制备方法、应用和应用方法
CN110629557A (zh) 高效防护复合板材及其制备方法、应用和应用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.05.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17916839

Country of ref document: EP

Kind code of ref document: A1