WO2019003989A1 - セルスタック装置、燃料電池モジュールおよび燃料電池装置 - Google Patents

セルスタック装置、燃料電池モジュールおよび燃料電池装置 Download PDF

Info

Publication number
WO2019003989A1
WO2019003989A1 PCT/JP2018/023159 JP2018023159W WO2019003989A1 WO 2019003989 A1 WO2019003989 A1 WO 2019003989A1 JP 2018023159 W JP2018023159 W JP 2018023159W WO 2019003989 A1 WO2019003989 A1 WO 2019003989A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell stack
conductive
conductive portion
fuel cell
cell
Prior art date
Application number
PCT/JP2018/023159
Other languages
English (en)
French (fr)
Inventor
幸弘 柳本
英徳 中間
鈴木 健吾
片岡 英二
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2018560121A priority Critical patent/JP6498850B1/ja
Publication of WO2019003989A1 publication Critical patent/WO2019003989A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a cell stack device, a fuel cell module and a fuel cell device.
  • a fuel cell module formed by storing a cell stack device in which a plurality of fuel cells (SOFCs), which are a type of cell, are arranged in a storage container, and the fuel cell module Various fuel cell devices which are stored in the U.S. Pat.
  • SOFCs fuel cells
  • the cell stack device of the present disclosure is A cell stack comprising a plurality of cells arranged along a predetermined arrangement direction; End conductive members disposed at both ends in the arrangement direction of the cells and electrically connected to the cells; A first conductive portion connected to the end conductive member and extending in a first direction away from the cell stack; A bus bar having a through hole through which the first conductive portion penetrates, and an insulating portion whose outer shape is tapered from the cell stack side toward the side away from the cell stack; Equipped with
  • the fuel cell module of this indication is provided with the above-mentioned cell stack apparatus, and the storage container which accommodates this cell stack apparatus.
  • a fuel cell device includes the above-described fuel cell module, an accessory for operating the fuel cell module, and an outer case accommodating the fuel cell device module and the accessory.
  • FIG. 1 is a side view showing the configuration of the cell stack device of the embodiment.
  • FIG. 2 is a perspective view showing the configuration of a part (bus bar) of the cell stack device of the embodiment
  • FIG. 3 is a side view of the bus bar of the embodiment
  • FIG. 4 is a cross sectional view of the bus bar of the embodiment.
  • 5A is a perspective view of a second conductive portion of the bus bar
  • FIG. 5B is a perspective view of a first conductive portion of the bus bar
  • FIG. 5C is a perspective view of an insulating portion of the bus bar.
  • the orthogonal coordinate system (X, Y, Z) is defined, and the word such as upper or lower is used with the positive side in the Z-axis direction as the upper side.
  • the explanation is mainly made using a solid oxide fuel cell, but the electrolysis cell produces hydrogen and oxygen by applying steam and voltage to the electrolysis cell to electrolyze steam. Can also be applied.
  • the cell stack device 1 of the embodiment includes the cell stack 2, the end conductive member 4, and the bus bar 5.
  • the cell stack device 1 includes a cell stack 2 in which a plurality of cells 3 are arranged along a predetermined arrangement direction (X-axis direction). Adjacent cells 3 are electrically connected in series via conductive members 32. The lower end of the cell 3 is fixed to the manifold 20 by the insulating adhesive 33. Further, the end conductive member 4 is connected to the outermost cell 3 in the arrangement direction (X-axis direction) via the conductive member.
  • the end conductive members 4 are disposed at both ends of the cell stack 2 in the arrangement direction of the cells 3 (X-axis direction), as shown in FIG. 1.
  • the end conductive member 4 is electrically connected to the cell 3, and the current generated by the cell 3 is taken out via the end conductive member 4 or a voltage for electrolyzing water vapor in the cell 3 is obtained. It can be granted.
  • the bus bar 5 is connected to the terminal 4 a of the end conductive member 4.
  • the bus bar 5 has a first conductive portion 6 and an insulating portion 7 as shown in FIG.
  • the bus bar 5 electrically connects the cell stack 2 stored in the storage container and the power conversion device or the power supply device (not shown) outside the storage container.
  • the first conductive portion 6 has conductivity and extends in a first direction (X-axis positive direction) away from the cell stack 2.
  • the first conductive portion 6 is electrically connected to the end conductive member 4.
  • the first conductive portion 6 has a substantially rectangular plate-like base 8 extending in a straight line in the first direction, as shown in FIGS.
  • a protrusion 9 is provided which protrudes in the direction intersecting the first direction.
  • the projecting portion 9 has a first projecting portion 9a connected to the base portion 8 and a second projecting portion 9b bent and substantially perpendicular to the first projecting portion 9a.
  • the second protrusion 9 b is flat and has a hole 9 c penetrating in the thickness direction (see FIG. 5B).
  • the second projection 9 b may be provided directly on the base 8 without providing the first projection 9 a.
  • the insulating portion 7 is made of an insulating material having an insulating property, and extends in the first direction.
  • the insulating portion 7 has a through hole 10 through which the first conductive portion 6 passes.
  • the through hole 10 penetrates the insulating portion 7 in the first direction.
  • the base 8 of the first conductive portion 6 is inserted into the through hole 10.
  • One end of the base 8 on the cell stack 2 side and the other end on the side away from the cell stack 2 are exposed from the insulating portion 7.
  • the state of electrical connection between the first conductive portion 6 and the end portion conductive member 4 and the state of connection between the first conductive portion 6 and the power conversion device or the power supply device outside the storage container can be visually confirmed. .
  • the insulating portion 7 is attached via a flange to a hole penetrating the wall of the storage container, as described later, and extends in and out of the storage container. Thereby, the internal space of the storage container is airtightly sealed, and the first conductive portion 6 and the storage container are electrically insulated.
  • the outer shape of the insulating portion 7 is tapered from the cell stack 2 side to the side away from the cell stack 2 as shown in FIGS. 2 and 5C. That is, the insulating portion 7 has a shape in which the outer shape narrows from the inside of the storage container to the outside of the storage container. As a result, it is possible to suppress the heat buildup of the end of the insulating portion 7 located outside the storage container (the end away from the cell stack 2), so the temperature inside the storage container is maintained at a high temperature. As a result, the operating efficiency of the cell stack device 1 can be improved.
  • the outer shape of the insulating portion 7 when viewed in the extending direction (X-axis direction) of the insulating portion 7 is substantially circular on the cell stack 2 side and is separated from the cell stack 2
  • the insulating portion 7 has a tapered shape by being substantially oval on the side.
  • the insulating portion 7 only needs to be thinner as it separates from the cell stack 2, and the outer shape of the insulating portion 7 on the cell stack 2 side and the outer shape on the side away from the cell stack 2 are oval, elliptical, rectangular It may be a shape or the like, or may be another shape.
  • As an insulating material which comprises insulating part 7, a ceramic material, a glass material, etc. can be used, for example.
  • the through hole 10 has a narrow portion 10a on the side away from the cell stack 2 and a wide portion 10b on the cell stack 2 side, and the width of the wide portion 10b in the vertical direction is , And the width of the narrow portion 10a in the vertical direction.
  • the wide portion 10 b is filled with a filler 11 surrounding the first conductive portion 6.
  • a filler 11 surrounding the first conductive portion 6.
  • the gap between the inner surface of the through hole 10 and the first conductive portion 6 in the wide portion 10 b can be closed.
  • the insulating portion 7 can be prevented from dropping off from the first conductive portion 6.
  • the filler 11 for example, an insulating adhesive such as a glass sealing material can be used.
  • the filler 11 may be filled also in the narrow part 10a.
  • the insulating unit 7 includes a restricting unit 12 that restricts the movement of the first conductive unit 6 in the first direction (the positive direction of the X-axis).
  • a restricting unit 12 that restricts the movement of the first conductive unit 6 in the first direction (the positive direction of the X-axis).
  • the first conductive portion 6 has a pair of protrusions 6 a protruding in the width direction, and the pair of protrusions 6 a is configured to be able to abut on the regulating portion 12.
  • the insertion depth can be accurately and easily positioned.
  • thermal deformation thermal expansion and contraction
  • the temperature in the storage container is about 500 to 800 ° C. during power generation
  • the height direction of the cell stack 2 Thermal deformation may occur in all directions (the Z-axis direction), the arrangement direction of the cells 3 (X-axis direction), and the width direction (Y-axis direction) of the cells 3.
  • thermal deformation may adversely affect the sealability and the like at the attachment portion between the storage container and the bus bar 5 and may reduce the operation efficiency of the cell stack device 1.
  • the bus bar 5 may be provided with a configuration capable of absorbing thermal deformation.
  • the bus bar 5 capable of absorbing thermal deformation
  • the first conductive portion 6 and the end portion conductive member 4 are connected using a wire excellent in flexibility and heat resistance. Wires having the properties are expensive, and the cost of the cell stack device 1 is increased.
  • the first conductive portion 6 and the end portion conductive member 4 are connected using a thin conductive member or a thin conductive member, such a configuration increases the electrical resistance of the bus bar 5. This results in power loss, which in turn reduces the operating efficiency of the cell stack device 1.
  • the bus bar 5 mechanically strong to suppress the deformation of the bus bar 5
  • the mechanically strong bus bar 5 applies a thermal stress to the root of the cell stack 2 to make the cell stack 2 There is a risk of damaging the
  • the bus bar 5 in order to make the bus bar 5 have a configuration capable of absorbing thermal deformation, for example, as shown in FIG. 2, the first conductive portion 6 and the end conductive member 4 are bent in a strip material having conductivity. Electrically and mechanically connected through the second conductive portion 13.
  • the second conductive portion 13 is connected to the first portion 14 electrically and mechanically connected to the terminal portion 4 a of the end conductive member 4 and the first portion 14, and electrically and mechanically connected to the first conductive portion 6. And a second portion 15 connected to the
  • the first portion 14 includes a first connection portion 14 a, a first straight portion 14 b, a second straight portion 14 c, and a first bent portion 14 d.
  • the first connection portion 14 a is flat and has a hole 14 e penetrating in the thickness direction.
  • the first connection portion 14a and the end conductive member 4 may be, for example, a bolt passing through the hole 14e of the first connection portion 14a and the hole 4b of the end conductive member 4 and a nut screwed on the bolt And can be fixed.
  • the first straight portion 14b is continuous with the first connection portion 14a and extends in a straight line.
  • the first straight portion 14b extends in the height direction (Z-axis direction) of the cell stack 2 and extends in the direction (X-axis positive direction) away from the cell stack 2.
  • the second straight portion 14 c extends in a straight line in the height direction (Z-axis direction) of the cell stack 2.
  • the lower end of the second straight portion 14c is located below the first connection portion 14a.
  • the first bent portion 14 d connects one end of the first straight portion 14 b and one end of the second straight portion 14 c. In the embodiment, as shown in FIG.
  • the first bent portion 14 d is bent when viewed in the width direction (Y-axis direction) of the cell 3, but the first bent portion 14 d is a first straight line. It may extend substantially in a straight line between one end of the portion 14b and one end of the second straight portion 14c.
  • the first portion 14 of the second conductive portion 13 is bent in a concave shape that opens downward, that is, in a reverse concave shape.
  • each free end can be easily bent and deformed in the direction in which each free end approaches or separates from the proximal end closer to the first bending portion 14d of the first linear portion 14b and the second linear portion 14c. Therefore, thermal deformation in the height direction (Z-axis direction) of the cell stack 2 and the arrangement direction (X-axis direction) of the cells 3 can be absorbed.
  • the second portion 15 of the second conductive portion 13 has a second connection portion 15a, a third straight portion 15b, and a second bent portion 15c.
  • the second connection portion 15a is flat and has a hole 15d penetrating in the thickness direction.
  • the second connection portion 15a and the first conductive portion 6 may be, for example, a bolt passing through the hole 15d of the second connection portion 15a and the hole 9c of the first conductive portion 6, and a nut screwed on the bolt And can be fixed.
  • the third straight portion 15b is bent at approximately a right angle to the second connection portion 15a and extends in a straight line in the height direction of the cell stack 2 (Z-axis direction).
  • the third linear portion 15 b is spaced apart from the first linear portion 14 b and the second linear portion 14 c in the width direction (Y-axis direction) of the cell 3.
  • the third straight portion 15 b is provided such that the normal direction of the first surface (one main surface) 15 e is orthogonal to the arrangement direction of the cells 3 (X-axis direction). For example, as shown in FIGS.
  • the second bending portion 15c extends in the arrangement direction of the cells 3 (X-axis direction) and the width direction of the cells 3 (Y-axis direction), and with the lower end of the second straight portion 14c.
  • the lower end of the third straight portion 15b is connected, and the third straight portion 15b is bent in a direction different from the first bent portion 14d.
  • the third straight portion 15 b has the free end portion connected to the second connection portion 15 a with respect to the base end portion near the second bending portion 15 c in the width direction of the cell 3 ( It can be easily deformed in the Y-axis direction).
  • the second portion 15 can absorb thermal deformation in the width direction (Y-axis direction) of the cell 3.
  • the third straight portion 15 b is in the width direction of the cell 3 because the third straight portion 15 b is separated from the first straight portion 14 b and the second straight portion 14 c. A collision between the first conductive portion 6 and the second conductive portion 13 when deformed in the (Y-axis direction) can be suppressed.
  • the bus bar 5 includes a first bent portion 14d bent in a width direction (Y-axis direction) of the cell 3 and a second bent portion 15c bent in a height direction (Z-axis direction) of the cell stack 2.
  • the bus bar 5 has a plurality of bent portions that bend in directions orthogonal to each other, whereby the height direction of the cell stack 2 (Z-axis direction), the arrangement direction of the cells 3 (X-axis direction), and the cells 3 It is possible to absorb thermal deformation in all directions in the width direction (Y-axis direction) of
  • the first conductive portion 6 and the second conductive portion 13 may be configured such that the thickness of the first conductive portion 6 is larger than the thickness of the second conductive portion 13.
  • the electrical resistance of the first conductive portion 6 is reduced, and the bus bar 5 and an external power converter or power supply device etc. It is possible to suppress the power loss between itself and the other (not shown).
  • the thickness of the second conductive portion 13 smaller than the thickness of the first conductive portion 6, the bending rigidity of the second conductive portion 13 can be reduced, and the second conductive portion can easily follow thermal deformation. It can be 13.
  • the thickness of the first conductive portion 6 is, for example, 1 to 4 mm
  • the thickness of the second conductive portion 13 is, for example, 0.5 to 2 mm.
  • the bus bar 5 is configured such that the first conductive portion 6 extending substantially in a straight line and the second conductive portion 13 having the bent portion can be separated. According to such a configuration, after the space between the first conductive portion 6 and the inner surface of the through hole 10 of the insulating portion 7 is filled with the filler 11, the first conductive portion 6 and the insulating portion 7 are manufactured. The assembly of the part 7 and the second conductive part 13 can be connected, which can improve the workability.
  • the bus bar 5 configured as described above is effective in thermal deformation in all directions of the height direction (Z axis direction) of the cell stack 2, the arrangement direction (X axis direction) of the cells 3 and the width direction (Y axis direction) of the cells 3. Can be absorbed. Therefore, according to the cell stack device 1 of the embodiment, the thermal deformation by the bus bar 5 can be suppressed to improve the operation efficiency. Further, according to the cell stack device 1 of the embodiment, thermal deformation generated during operation is absorbed by the bus bar 5 to suppress breakage of the cell stack 2 and deterioration of sealing performance at the attachment portion between the storage container and the bus bar 5. Thus, it is possible to provide the cell stack device 1 excellent in reliability and durability.
  • FIG. 6 is a side view showing the configuration of a fuel cell module 16 of an embodiment in which the above-described cell stack device 1 is stored in a storage container.
  • the fuel cell module 16 according to the embodiment includes a cell stack device 1 in which a plurality of fuel cells 3 which is a type of cell 3 are arranged.
  • a reformer 17 for generating fuel gas to be supplied to the cells 3 is disposed above the cell stack device 1.
  • the reformer 17 reforms the raw fuel such as natural gas and kerosene supplied via the raw fuel supply pipe 18 to generate a fuel gas.
  • the fuel gas generated by the reformer 17 is supplied to the manifold 20 via the gas flow pipe 19, and is supplied to the fuel cell 3 from the manifold 20.
  • the second conductive portion 13 is connected to the terminal portion 4 a of the end conductive member 4, and the insulating portion 7 is attached to the wall of the storage container 23 via the flange 22.
  • the temperature in the storage container decreases due to the heat of the insulating portion (insulator) surrounding the conductive portion of the bus bar extending in and out of the storage container, and the operation efficiency of the cell stack device decreases. There was a case.
  • the fuel cell module 16 of the embodiment having the above configuration heat generation by the bus bar 5 can be suppressed, and power generation efficiency can be improved. Further, according to the fuel cell module 16 of the embodiment, since the thermal deformation occurring in the wall of the storage container 23, the cell stack 2, the end conductive member 4 and the like can be absorbed by the bus bar 5, reliability and durability The fuel cell module 16 is excellent.
  • FIG. 7 is a perspective view schematically showing the configuration of a fuel cell device 24 according to an embodiment formed by housing the above-described fuel cell module 16 and accessories for operating the fuel cell module in an outer case.
  • FIG. 7 the configuration is partially omitted.
  • the fuel cell device 24 shown in FIG. 7 divides the inside of the outer case composed of the support column 25 and the exterior plate 26 into upper and lower portions by a partition plate 27, and the upper side thereof is a module storage chamber 28 for storing the fuel cell module 16.
  • the lower side is configured as an accessory storage chamber 29 for storing accessories for operating the fuel cell module 16.
  • auxiliary devices stored in the auxiliary device storage room 29 are not shown.
  • the partition plate 27 is provided with an air circulation port 30 for flowing the air of the accessory storage chamber 29 to the module storage chamber 28 side, and a part of the exterior plate 26 constituting the module storage chamber 28 An exhaust port 31 for exhausting the air in the module storage chamber 28 is provided.
  • the fuel cell device 24 of the embodiment can be a fuel cell device 24 with improved power generation efficiency by housing the fuel cell module 16 including the cell stack device 1 as described above in the outer case.
  • this indication was explained in detail, this indication is not limited to the above-mentioned embodiment, In the range which does not deviate from the gist of this indication, various change, improvement, etc. are possible.
  • cell stack device 1 cell stack device 2 cell stack 3 cell (fuel cell) 4 end conductive member 5 bus bar 6 first conductive portion 7 insulating portion 8 base portion 9 projecting portion 10 through hole 11 filler 12 restricting portion 13 second conductive portion 14 first portion 15 second portion 16 fuel cell module 23 storage container 24 Fuel cell device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

本開示のセルスタック装置は、予め定める配列方向に沿って配列された複数の燃料電池セルを備えるセルスタックと、セルの配列方向の両端に配置され、セルと電気的に接続される端部導電部材と、端部導電部材に接続され、セルスタックから離反する第1方向に延びる第1導電部と、第1導電部が貫通する貫通孔を有し、外形がセルスタック側からセルスタックから離反する側に向かって先細り形状とされた絶縁部とを有するバスバーと、を備える。

Description

セルスタック装置、燃料電池モジュールおよび燃料電池装置
 本発明は、セルスタック装置、燃料電池モジュールおよび燃料電池装置に関する。
 近年、次世代エネルギーとして、セルの一種である燃料電池セル(SOFC)を複数個配列してなるセルスタック装置を収納容器内に収納してなる燃料電池モジュールや、該燃料電池モジュールを外装ケース内に収納してなる燃料電池装置が、種々提案されている。
 また、近年、セルの一種として、固体酸化物形の電解質膜を備える電解セル(SOEC)を用いる高温水蒸気電解法も提唱されている。
特開2007-59377号公報
 本開示のセルスタック装置は、
 予め定める配列方向に沿って配列された複数のセルを備えるセルスタックと、
 前記セルの配列方向の両端に配置され、前記セルと電気的に接続される端部導電部材と、
 前記端部導電部材に接続され、前記セルスタックから離反する第1方向に延びる第1導電部と、
 前記第1導電部が貫通する貫通孔を有し、外形が前記セルスタック側から前記セルスタックから離反する側に向かって先細り形状とされた絶縁部とを有するバスバーと、
を備える。
 また、本開示の燃料電池モジュールは、前述のセルスタック装置と、該セルスタック装置を収容する収納容器と、を備える。
 さらに、本開示の燃料電池装置は、前述の燃料電池モジュールと、該燃料電池モジュールの運転を行なうための補機と、前記燃料電池装置モジュールおよび前記補機を収容する外装ケースと、を備える。
 本開示の目的、特色、および利点は、下記の詳細な説明と図面とから、より明確になるであろう。
実施形態のセルスタック装置の構成を示す側面図である。 実施形態のセルスタック装置のバスバーを示す斜視図である。 上記バスバーの側面図である。 上記バスバーの断面図である。 上記バスバーの第2導電部の構成を示す斜視図である。 上記バスバーの第1導電部の構成を示す斜視図である。 上記バスバーの絶縁部の構成を示す斜視図である。 実施形態の燃料電池モジュールの構成を示す側面図である。 実施形態の燃料電池装置の構成を示す斜視図である。
 図1は、実施形態のセルスタック装置の構成を示す側面図である。図2は、実施形態のセルスタック装置の一部(バスバー)の構成を示す斜視図であり、図3は実施形態のバスバーの側面図、図4は実施形態のバスバーの断面図である。また、図5Aは上記バスバーの第2導電部の斜視図、図5Bは上記バスバーの第1導電部の斜視図、図5Cは上記バスバーの絶縁部の斜視図である。なお、本明細書では、便宜的に、直交座標系(X,Y,Z)を定義するとともに、Z軸方向の正側を上方として、上方または下方等の語を用いるものとする。
 以降の図においては、主に固体酸化物形の燃料電池セルを用いて説明するが、電解セルに水蒸気と電圧とを付与して水蒸気を電気分解することにより、水素および酸素を生成する電解セルにも適用することができる。
 実施形態のセルスタック装置1は、セルスタック2と、端部導電部材4と、バスバー5とを備える。
 セルスタック装置1は、図1に示すように、複数のセル3を予め定める配列方向(X軸方向)に沿って配列してなるセルスタック2を備える。隣接するセル3間は、導電部材32を介して、電気的に直列に接続される。セル3の下端は、絶縁性接着材33によってマニホールド20に固定される。また、配列方向(X軸方向)における最外方に位置するセル3に、導電部材を介して、端部導電部材4が接続される。
 端部導電部材4は、図1に示すように、セル3の配列方向(X軸方向)におけるセルスタック2の両端に配置される。端部導電部材4は、セル3と電気的に接続されており、端部導電部材4を介して、セル3によって発電された電流を取り出す、またはセル3に水蒸気を電気分解するための電圧を付与することができる。
 バスバー5は、端部導電部材4の端子部4aに接続される。バスバー5は、図2に示すように、第1導電部6と絶縁部7とを有する。バスバー5は、収納容器内に収納されるセルスタック2と、収納容器外の電力変換装置または電力供給装置等(図示せず)とを電気的に接続する。
 第1導電部6は、導電性を有し、セルスタック2から離反する第1方向(X軸正方向)に延びる。第1導電部6は、端部導電部材4に電気的に接続される。第1導電部6は、図1~3に示すように、第1方向に一直線状に延びる、略矩形板状の基部8を有する。
 基部8の、セルスタック2側の一端に、第1方向に交差する方向に突出する突出部9が設けられる。突出部9は、基部8に連なる第1突出部9aと、第1突出部9aにほぼ直角に屈曲して連なる第2突出部9bとを有する。第2突出部9bは、平板状であり、厚み方向に貫通する孔9cが設けられている(図5B参照)。なお、第1突出部9aを設けずに、基部8に直接、第2突出部9bが設けてもよい。
 絶縁部7は、絶縁性を有する絶縁材料からなり、第1方向に延びる。絶縁部7は、第1導電部6が貫通する貫通孔10を有する。貫通孔10は、絶縁部7を第1方向に沿って貫通する。貫通孔10には、第1導電部6の基部8が挿通される。基部8のセルスタック2側の一端、およびセルスタック2から離反する側の他端は、絶縁部7から露出する。これにより、第1導電部6と端部導電部材4との電気的接続の状態、および第1導電部6と収納容器外の電力変換装置または電力供給装置等との接続状態が目視で確認できる。
 絶縁部7は、後記するように、収納容器の壁を貫通する孔にフランジを介して取り付けられ、収納容器の内外に延びる。これにより、収納容器の内部空間が気密封止されるとともに、第1導電部6と収納容器とが電気的に絶縁される。
 絶縁部7の外形は、図2および図5Cに示すように、セルスタック2側からセルスタック2から離反する側に向かって先細り形状とされる。すなわち、絶縁部7は、外形が収納容器内から収納容器外に向かって細くなる形状である。これにより、絶縁部7の、収納容器外に位置する側の端部(セルスタック2から離反する側の端部)の熱引きを抑制することができるので、収納容器内の温度を高温に維持することができ、ひいては、セルスタック装置1の運転効率を向上させることができる。
 実施形態では、図2に示すように、絶縁部7が延びる方向(X軸方向)に視たときの絶縁部7の外形を、セルスタック2側で略円形状とし、セルスタック2から離反する側で略小判形とすることによって、絶縁部7を先細り形状としている。絶縁部7は、セルスタック2から離反するにつれて細くなっていればよく、絶縁部7のセルスタック2側の外形、およびセルスタック2から離反する側の外形は、長円形状、楕円形状、矩形状等であってもよく、その他の形状であってもよい。絶縁部7を構成する絶縁材料としては、例えば、セラミック材料、ガラス材料等を用いることができる。
 貫通孔10は、図4に示すように、セルスタック2から離反する側の幅狭部10aと、セルスタック2側の幅広部10bとを有しており、幅広部10bの上下方向の幅が、幅狭部10aの上下方向の幅よりも大きい。これにより、セルスタック装置1の製造時に、第1導電部6の基部8を幅広部10b側から貫通孔10に挿入すれば、貫通孔10に基部8を挿通する作業が容易になる。
 幅広部10bには、第1導電部6を取り囲む充填材11が充填されている。これにより、幅広部10bにおける貫通孔10の内面と第1導電部6との隙間を塞ぐことができる。ひいては、収納容器の気密性を向上させることが可能になるとともに、第1導電部6から絶縁部7が脱落することを抑制できる。充填材11としては、例えば、ガラスシール材等の絶縁性接着材を用いることができる。なお、充填材11は、幅狭部10aにも充填されていてもよい。
 絶縁部7は、図4に示すように、第1導電部6の第1方向(X軸正方向)への移動を規制する規制部12を有する。実施形態では、図4に示すように、幅広部10bと幅狭部10aとの境界部において、貫通孔10の上下方向の幅が縮小された部位が設けられ、この部位が規制部12である。また、第1導電部6は、幅方向に突出する一対の突起6aを有し、一対の突起6aは、規制部12に当接可能に構成される。このような構成によれば、セルスタック装置1の製造時に、第1導電部6の一対の突起6aを規制部12に当接させることにより、絶縁部7に対する第1導電部6の挿入位置、挿入深さ等を正確かつ容易に位置決めできる。
 ところで、セル3は高温で動作するため、収納容器の壁部、セルスタック2等に熱による膨張や収縮(以下、纏めて熱変形という。)が発生し易い。特に、セル3が燃料ガスと酸素含有ガスとを用いて発電を行う燃料電池セルである場合、発電時には、収納容器内の温度が500~800℃程度となるため、セルスタック2の高さ方向(Z軸方向)、セル3の配列方向(X軸方向)およびセル3の幅方向(Y軸方向)の全ての方向に熱変形が発生する場合がある。このような熱変形は、収納容器とバスバー5との取り付け部分におけるシール性等に悪影響を及ぼし、セルスタック装置1の運転効率を低下させることがある。セルスタック装置1の運転効率の低下を抑制するために、バスバー5に熱変形を吸収できる構成を設けてもよい。
 熱変形を吸収できるバスバー5の構成として、第1導電部6と端部導電部材4とを、可撓性および耐熱性に優れた線材を用いて接続する構成があるが、高温環境下で耐久性を有する線材は高価であり、セルスタック装置1の高コスト化を招いてしまう。第1導電部6と端部導電部材4とを、薄い導電部材または細い導電部材を用いて接続する構成もあるが、そのような構成は、バスバー5の電気抵抗を増大させるため、バスバー5における電力損失をもたらし、ひいては、セルスタック装置1の運転効率を低下させてしまう。あるいは、バスバー5を機械的に強固なものにして、バスバー5の変形を抑制することも考えられるが、機械的に強固なバスバー5は、セルスタック2の根元に熱応力を加え、セルスタック2を損傷させるおそれがある。
 実施形態では、バスバー5に熱変形を吸収できる構成を持たせるために、例えば図2に示すように、第1導電部6と端部導電部材4とを、導電性を有する帯状板材を屈曲させてなる第2導電部13を介して、電気的および機械的に接続される。
 第2導電部13は、端部導電部材4の端子部4aに電気的および機械的に接続される第1部分14と、第1部分14に連なり、第1導電部6に電気的および機械的に接続される第2部分15とを有する。
 第1部分14は、第1接続部14aと、第1直線部14bと、第2直線部14cと、第1屈曲部14dとを有する。
 第1接続部14aは、平板状であり、厚み方向に貫通する孔14eが設けられている。図示しないが、第1接続部14aと端部導電部材4とは、例えば、第1接続部14aの孔14eおよび端部導電部材4の孔4bを貫通するボルトと、このボルトに螺合するナットとによって固定することができる。
 第1直線部14bは、第1接続部14aに連なり、一直線状に傾斜して延びる。第1直線部14bは、例えば図5Aに示すように、セルスタック2の高さ方向(Z軸方向)に延びつつ、セルスタック2から離反する方向(X軸正方向)に延びている。第2直線部14cは、セルスタック2の高さ方向(Z軸方向)に、一直線状に延びる。第2直線部14cの下端は、第1接続部14aよりも下方に位置する。第1屈曲部14dは、第1直線部14bの一端と第2直線部14cの一端とを接続する。実施形態では、図2に示すように、第1屈曲部14dは、セル3の幅方向(Y軸方向)に視たときに、屈曲しているが、第1屈曲部14dは、第1直線部14bの一端と第2直線部14cの一端との間にほぼ一直線状に延びていてもよい。
 第2導電部13の第1部分14は、図3および図5Aに示すように、下方に開放する凹状、すなわち逆凹状に曲折する。これにより、第1直線部14bおよび第2直線部14cの第1屈曲部14d寄りの基端部に対して、各遊端部が近接し、または離反する方向に容易に曲げ変形させることができるので、セルスタック2の高さ方向(Z軸方向)およびセル3の配列方向(X軸方向)における熱変形を吸収することができる。
 第2導電部13の第2部分15は、第2接続部15aと、第3直線部15bと、第2屈曲部15cとを有する。
 第2接続部15aは、平板状であり、厚み方向に貫通する孔15dが設けられている。図示しないが、第2接続部15aと第1導電部6とは、例えば、第2接続部15aの孔15dおよび第1導電部6の孔9cを貫通するボルトと、このボルトに螺合するナットとによって固定することができる。
 第3直線部15bは、第2接続部15aにほぼ直角に屈曲して連なり、セルスタック2の高さ方向(Z軸方向)に、一直線状に延びる。第3直線部15bは、第1直線部14bおよび第2直線部14cからセル3の幅方向(Y軸方向)に離間して位置する。また、第3直線部15bは、第1面(一方主面)15eの法線方向が、セル3の配列方向(X軸方向)に直交するように設ける。第2屈曲部15cは、例えば図2および図5Aに示すように、セル3の配列方向(X軸方向)およびセル3の幅方向(Y軸方向)に延び、第2直線部14cの下端と第3直線部15bの下端とを接続しており、第1屈曲部14dとは異なる方向に屈曲する。
 上記構成の第2部分15によれば、第3直線部15bは、第2屈曲部15c寄りの基端部に対して、第2接続部15aに連なる遊端部が、セル3の幅方向(Y軸方向)に容易に変形することができる。これにより、第2部分15は、セル3の幅方向(Y軸方向)における熱変形を吸収することができる。また、セル3の幅方向(Y軸方向)において、第3直線部15bと第1直線部14bおよび第2直線部14cとが離間しているので、第3直線部15bがセル3の幅方向(Y軸方向)に変形した際の第1導電部6と第2導電部13との衝突を抑制できる。
 バスバー5は、セル3の幅方向(Y軸方向)に視て屈曲する第1屈曲部14dと、セルスタック2の高さ方向(Z軸方向)に視て屈曲する第2屈曲部15cとを有する。このように、バスバー5が、互いに直交する方向に屈曲する複数の屈曲部を有することにより、セルスタック2の高さ方向(Z軸方向)、セル3の配列方向(X軸方向)およびセル3の幅方向(Y軸方向)の全ての方向における熱変形を吸収することができる。
 第1導電部6および第2導電部13は、第1導電部6の厚みが、第2導電部13の厚みよりも大きくなるように構成されていてもよい。第1導電部6の厚みを、第2導電部13の厚みよりも大きくすることにより、第1導電部6の電気抵抗を小さくし、バスバー5と、外部の電力変換装置または電力供給装置等(図示せず)との間における電力損失を抑制することができる。また、第2導電部13の厚みを、第1導電部6の厚みよりも小さくすることにより、第2導電部13の曲げ剛性を低下させることができ、熱変形に追従し易い第2導電部13とすることができる。なお、第1導電部6の厚みは、例えば、1~4mmであり、第2導電部13の厚みは、例えば、0.5~2mmである。
 上記のように、バスバー5は、ほぼ一直線状に延びる第1導電部6と、屈曲部を有する第2導電部13とが分離可能に構成される。このような構成によれば、セルスタック装置1の製造時に、絶縁部7の貫通孔10の内面と第1導電部6との隙間に充填材11を充填した後に、第1導電部6および絶縁部7の組立体と、第2導電部13とを接続することができ、ひいては、作業性を向上させることができる。
 上記構成のバスバー5は、セルスタック2の高さ方向(Z軸方向)、セル3の配列方向(X軸方向)およびセル3の幅方向(Y軸方向)の全ての方向における熱変形を効果的に吸収することができる。それゆえ、実施形態のセルスタック装置1によれば、バスバー5による熱変形を抑制して、運転効率を向上させることができる。また、実施形態のセルスタック装置1によれば、運転中に生じる熱変形をバスバー5に吸収させ、セルスタック2の破損、収納容器とバスバー5との取り付け部分におけるシール性の悪化等を抑制することができるので、信頼性および耐久性に優れたセルスタック装置1を提供することができる。
 図6は、収納容器内に上記のセルスタック装置1を収納してなる実施形態の燃料電池モジュール16の構成を示す側面図である。実施形態の燃料電池モジュール16は、セル3の一種である燃料電池セル3を複数個配列してなるセルスタック装置1を備える。セルスタック装置1の上方には、セル3に供給する燃料ガスを生成するための改質器17が配置される。
 改質器17においては、原燃料供給管18を介して供給される天然ガスや灯油等の原燃料を改質して燃料ガスを生成する。改質器17にて生成された燃料ガスは、ガス流通管19を介してマニホールド20に供給され、マニホールド20より燃料電池セル3に供給される。
 セルスタック装置1のバスバー5は、第2導電部13が、端部導電部材4の端子部4aに接続され、絶縁部7が、フランジ22を介して収納容器23の壁部に取り付けられる。
 ここで、従来のセルスタック装置においては、収納容器の内外に延びるバスバーの導電部を取り囲む絶縁部(碍子)の熱引きによって収納容器内の温度が低下し、セルスタック装置の運転効率が低下する場合があった。
 これに対して、上記構成を有する実施形態の燃料電池モジュール16によれば、バスバー5による熱引きを抑制して、発電効率を向上させることができる。また、実施形態の燃料電池モジュール16によれば、収納容器23の壁部、セルスタック2、端部導電部材4等に生じる熱変形をバスバー5に吸収させることができるので、信頼性および耐久性に優れた燃料電池モジュール16とすることができる。
 図7は、外装ケース内に、上記の燃料電池モジュール16と、燃料電池モジュールの運転を行うための補機とを収納してなる、実施形態の燃料電池装置24の構成を概略的に示す斜視図である。なお、図7においては一部構成を省略して示している。
 図7に示す燃料電池装置24は、支柱25と外装板26とから構成される外装ケース内を仕切板27により上下に区画し、その上方側が、燃料電池モジュール16を収納するモジュール収納室28とされ、下方側が、燃料電池モジュール16の運転を行うための補機類を収納する補機収納室29として構成される。なお、図7では、補機収納室29に収納する補機類は省略して図示している。
 また、仕切板27には、補機収納室29の空気をモジュール収納室28側に流すための空気流通口30が設けられており、モジュール収納室28を構成する外装板26の一部に、モジュール収納室28内の空気を排気するための排気口31が設けられる。
 実施形態の燃料電池装置24は、上述したようなセルスタック装置1を含む燃料電池モジュール16を外装ケース内に収納することにより、発電効率を向上した燃料電池装置24とすることができる。
 以上、本開示について詳細に説明したが、本開示は上述の実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲内において種々の変更、改良等が可能である。
 さらに、本開示は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本開示の範囲は請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、請求の範囲に属する変形や変更は全て本開示の範囲内のものである。
 1 セルスタック装置
 2 セルスタック
 3 セル(燃料電池セル)
 4 端部導電部材
 5 バスバー
 6 第1導電部
 7 絶縁部
 8 基部
 9 突出部
 10 貫通孔
 11 充填材
 12 規制部
 13 第2導電部
 14 第1部分
 15 第2部分
 16 燃料電池モジュール
 23 収納容器
 24 燃料電池装置

Claims (10)

  1.  予め定める配列方向に沿って配列された複数のセルを備えるセルスタックと、
     前記セルの配列方向の両端に配置され、前記セルと電気的に接続される端部導電部材と、
     前記端部導電部材に接続され、前記セルスタックから離反する第1方向に延びる第1導電部と、
     前記第1導電部が貫通する貫通孔を有し、外形が前記セルスタック側から前記セルスタックから離反する側に向かって先細り形状とされた絶縁部とを有するバスバーと、
    を備えるセルスタック装置。
  2.  前記貫通孔は、前記セルスタックから離反する側の幅狭部と、前記セルスタック側の幅広部とを有する、請求項1に記載のセルスタック装置。
  3.  少なくとも前記幅広部に、前記第1導電部を取り囲む充填材を含む、請求項2に記載のセルスタック装置。
  4.  前記絶縁部は、前記第1導電部の前記第1方向への移動を規制する規制部を有し、
     前記第1導電部は、前記規制部に当接可能であって、幅方向に突出する一対の突起を有する、請求項1~3のいずれか1つに記載のセルスタック装置。
  5.  前記バスバーは、導電性を有する帯状板材を屈曲させてなる第2導電部をさらに有し、
     該第2導電部は、前記第1導電部と前記端部導電部材との間に配置されて、これら第1導電部と端部導電部材とを電気的に接続する、請求項1~4のいずれか1つに記載のセルスタック装置。
  6.  前記第1導電部の厚みは、前記第2導電部の厚みより大きい、請求項5に記載のセルスタック装置。
  7.  前記第2導電部は、互いに異なる方向に屈曲する複数の屈曲部を有する、請求項5または6に記載のセルスタック装置。
  8.  前記複数の屈曲部それぞれの屈曲方向は、互いに直交する方向である、請求項7に記載のセルスタック装置。
  9.  請求項1~8のいずれか1つに記載のセルスタック装置と、該セルスタック装置を収容する収納容器と、を備える燃料電池モジュール。
  10.  請求項9に記載の燃料電池モジュールと、該燃料電池モジュールの運転を行なうための補機と、前記燃料電池装置モジュールおよび前記補機を収容する外装ケースと、を備える燃料電池装置。
PCT/JP2018/023159 2017-06-30 2018-06-18 セルスタック装置、燃料電池モジュールおよび燃料電池装置 WO2019003989A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018560121A JP6498850B1 (ja) 2017-06-30 2018-06-18 セルスタック装置、燃料電池モジュールおよび燃料電池装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-129126 2017-06-30
JP2017129126 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019003989A1 true WO2019003989A1 (ja) 2019-01-03

Family

ID=64741569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023159 WO2019003989A1 (ja) 2017-06-30 2018-06-18 セルスタック装置、燃料電池モジュールおよび燃料電池装置

Country Status (2)

Country Link
JP (1) JP6498850B1 (ja)
WO (1) WO2019003989A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194757A (ja) * 2019-05-30 2020-12-03 大阪瓦斯株式会社 固体酸化物形燃料電池システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105873A (ja) * 1989-09-20 1991-05-02 Hitachi Ltd 燃料電池収納容器
JP2005327558A (ja) * 2004-05-13 2005-11-24 Fuji Electric Holdings Co Ltd 固体高分子形燃料電池
JP2008135304A (ja) * 2006-11-29 2008-06-12 Kyocera Corp 燃料電池セルスタックおよび燃料電池
JP2009277374A (ja) * 2008-05-12 2009-11-26 Ngk Spark Plug Co Ltd 固体酸化物形燃料電池
JP2012054125A (ja) * 2010-09-02 2012-03-15 Honda Motor Co Ltd 燃料電池スタック
JP2018060772A (ja) * 2016-09-28 2018-04-12 東芝燃料電池システム株式会社 燃料電池モジュール

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6719894B2 (ja) * 2015-12-04 2020-07-08 キヤノン株式会社 機能デバイス、制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105873A (ja) * 1989-09-20 1991-05-02 Hitachi Ltd 燃料電池収納容器
JP2005327558A (ja) * 2004-05-13 2005-11-24 Fuji Electric Holdings Co Ltd 固体高分子形燃料電池
JP2008135304A (ja) * 2006-11-29 2008-06-12 Kyocera Corp 燃料電池セルスタックおよび燃料電池
JP2009277374A (ja) * 2008-05-12 2009-11-26 Ngk Spark Plug Co Ltd 固体酸化物形燃料電池
JP2012054125A (ja) * 2010-09-02 2012-03-15 Honda Motor Co Ltd 燃料電池スタック
JP2018060772A (ja) * 2016-09-28 2018-04-12 東芝燃料電池システム株式会社 燃料電池モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194757A (ja) * 2019-05-30 2020-12-03 大阪瓦斯株式会社 固体酸化物形燃料電池システム
JP7285698B2 (ja) 2019-05-30 2023-06-02 大阪瓦斯株式会社 固体酸化物形燃料電池システム

Also Published As

Publication number Publication date
JPWO2019003989A1 (ja) 2019-06-27
JP6498850B1 (ja) 2019-04-10

Similar Documents

Publication Publication Date Title
JP4911978B2 (ja) 燃料電池及び燃料電池用コネクタ
KR102283792B1 (ko) 이차 전지 모듈
JP2007200633A (ja) 燃料電池の電圧検出用コネクタ及びそのコネクタに適した燃料電池
JP2009087542A (ja) 組電池および組電池用バスバー
US10122003B2 (en) Battery-pack case
JP5133551B2 (ja) 燃料電池発電システム
JP2017216114A (ja) 蓄電モジュール
JP5672348B1 (ja) 配線モジュール
JP2016015253A (ja) 蓄電モジュール
JP6498850B1 (ja) セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP6873820B2 (ja) 燃料電池モジュール
JP6216968B2 (ja) ガス生成装置
JPWO2018097174A1 (ja) 電気化学反応単位、電気化学反応セルスタック、および、電気化学反応単位の製造方法
KR101543131B1 (ko) 연료전지 스택 체결장치
JP6520215B2 (ja) 蓄電装置及び蓄電モジュール
JP2017054865A (ja) 蓄電モジュール
JP6317553B2 (ja) 燃料電池
JP2006236792A (ja) 燃料電池スタック絶縁構造
ES2371511T3 (es) Pila de combustible de ensamblaje plano con estanqueidad simplificada.
JP6139209B2 (ja) 燃料電池モジュール
US10454127B2 (en) Fuel cell module
US20220140380A1 (en) Cell stack device, module, and module housing device
TWI521783B (zh) 可逆燃料電池/電解裝置的組裝結構及其總成
CN220132366U (zh) 电解用极柱结构
JP4806900B2 (ja) 燃料電池用配線

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018560121

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823120

Country of ref document: EP

Kind code of ref document: A1