WO2019003887A1 - 車両用灯具システム、車両用灯具の制御装置及び車両用灯具の制御方法 - Google Patents

車両用灯具システム、車両用灯具の制御装置及び車両用灯具の制御方法 Download PDF

Info

Publication number
WO2019003887A1
WO2019003887A1 PCT/JP2018/022257 JP2018022257W WO2019003887A1 WO 2019003887 A1 WO2019003887 A1 WO 2019003887A1 JP 2018022257 W JP2018022257 W JP 2018022257W WO 2019003887 A1 WO2019003887 A1 WO 2019003887A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminance
illuminance
unit
illuminance value
individual
Prior art date
Application number
PCT/JP2018/022257
Other languages
English (en)
French (fr)
Inventor
佳典 柴田
隆雄 村松
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to EP18824989.0A priority Critical patent/EP3647115B1/en
Priority to CN201880040869.5A priority patent/CN110770081B/zh
Priority to CN202310294172.3A priority patent/CN116176402A/zh
Priority to JP2019526765A priority patent/JP7111708B2/ja
Publication of WO2019003887A1 publication Critical patent/WO2019003887A1/ja
Priority to US16/728,459 priority patent/US11001194B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • B60Q1/1415Dimming circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/0017Devices integrating an element dedicated to another function
    • B60Q1/0023Devices integrating an element dedicated to another function the element being a sensor, e.g. distance sensor, camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/04Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/115Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
    • H05B47/125Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings by using cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • B60Q1/085Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to special conditions, e.g. adverse weather, type of road, badly illuminated road signs or potential dangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • B60Q1/1415Dimming circuits
    • B60Q1/1423Automatic dimming circuits, i.e. switching between high beam and low beam due to change of ambient light or light level in road traffic
    • B60Q1/143Automatic dimming circuits, i.e. switching between high beam and low beam due to change of ambient light or light level in road traffic combined with another condition, e.g. using vehicle recognition from camera images or activation of wipers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/40Indexing codes relating to other road users or special conditions
    • B60Q2300/45Special conditions, e.g. pedestrians, road signs or potential dangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates to a vehicle lamp system, a control device for a vehicle lamp, and a control method for a vehicle lamp, and more particularly to a vehicle lamp system used for an automobile or the like, a control device for a vehicle lamp, and a control method for a vehicle lamp.
  • Patent Document 1 discloses a technique of forming a light distribution pattern using a DMD (Digital Mirror Device) in which a plurality of micro mirrors are arranged in an array.
  • Patent Document 2 discloses a technique for forming a light distribution pattern using a scanning optical system that scans the front of the vehicle with light source light.
  • Patent Document 3 discloses a technique of forming a light distribution pattern using an LED array.
  • ADB Adaptive Driving Beam
  • the present inventors have recognized that there is room to increase the types of light distribution patterns that can be formed. Further, as a result of intensive studies on ADB control, the present inventors have come to recognize that there is room to further increase the irradiation accuracy when irradiating light according to the situation ahead of the vehicle.
  • the present invention has been made in view of these circumstances, and one of its objects is to provide a technique for increasing the types of light distribution patterns that can be formed. Another object of the present invention is to provide a technique for enhancing the irradiation accuracy of light in a vehicular lamp.
  • one mode of the present invention is a lighting system for vehicles.
  • the system includes an imaging unit for imaging the front of the vehicle, a luminance analysis unit for detecting the luminance of each of a plurality of individual areas arranged in front of the vehicle based on information obtained from the imaging unit, and detection results of the luminance analysis unit
  • An illuminance setting unit for determining an illuminance value of light to be irradiated to each individual region, a light source unit capable of independently adjusting the illuminance of light to be irradiated to each of a plurality of individual regions, and an illuminance value determined by the illuminance setting unit
  • a light source control unit that controls the light source unit based on the
  • the illuminance setting unit determines the illuminance value using different functions for the individual area included in the predetermined first luminance range and the individual area included in the predetermined second luminance range. According to this aspect, the types of light distribution patterns that can be formed can be increased.
  • the illuminance setting unit sets the illuminance value depending on the luminance detected by the luminance analysis unit for the individual region included in the first luminance range, and the luminance analysis unit for the individual region included in the second luminance range
  • the illuminance value may be set independently of the luminance detected by the.
  • the illuminance setting unit sets the illuminance value depending on the luminance detected by the luminance analysis unit for the individual region included in the first luminance range and the individual region included in the second luminance range.
  • the correspondence between the detected luminance and the set illuminance may be different between the first luminance range and the second luminance range.
  • the first luminance range may have lower luminance than the second luminance range.
  • the illuminance value of the individual area included in the first luminance range may be positively correlated with the luminance.
  • the illuminance value of the individual region included in the first luminance range and the illuminance value of the individual region included in the second luminance range may be positively correlated with the luminance.
  • the illuminance setting unit is configured to detect the luminance detected by the luminance analysis unit for an individual area included in a predetermined third luminance range having a luminance higher than the first luminance range and the second luminance range.
  • the illuminance value may be set depending on and negatively correlated with the luminance, or the illuminance value 0 may be set independently of the luminance detected by the luminance analysis unit.
  • the control device detects a luminance of each of a plurality of individual areas arranged in front of the vehicle based on information obtained from an imaging unit imaging the front of the vehicle, and a detection result of the luminance analysis unit
  • the light source unit capable of independently adjusting the illuminance of light to be irradiated to each individual region is controlled based on the illuminance value set by the illuminance setting unit that determines the illuminance value of light to be irradiated to each individual region and the illuminance value set by the illuminance setting unit.
  • a light source control unit determines the illuminance value using different functions for an individual area in which the luminance is included in a predetermined first range and an individual area in which the luminance is included in a predetermined second range.
  • the control method includes the steps of detecting the brightness of each of a plurality of individual areas arranged in front of the vehicle based on the information obtained from the imaging unit imaging the front of the vehicle, and detecting each of the individual areas based on the detected brightness.
  • the illuminance value is determined using different functions for an individual area in which the luminance is included in the first predetermined range and an individual area in which the luminance is included in the second predetermined area.
  • the system includes at least a visible light imaging unit, a far infrared imaging unit, and a brightness analysis unit that detects the brightness of each of a plurality of individual areas arranged in front of the vehicle based on information obtained from the visible light imaging unit; Based on information obtained from the far-infrared imaging unit, a target analysis unit that detects a target present ahead of the vehicle, and a predetermined result based on the detection results of the luminance analysis unit and the detection results of the target analysis unit The illuminance setting unit determines the illuminance value of the light irradiated to each individual area including the specific illuminance value for the specific individual area determined according to the existing position of the target, and the illuminance of the light irradiated to each of the plural individual areas independent And a light source control unit that controls the light source unit based on the illuminance value determined by the illuminance setting unit. According to this aspect, it is possible to enhance the irradiation accuracy
  • the visible light imaging unit includes a high speed camera and a low speed camera
  • the brightness analysis unit detects the brightness based on the information obtained from the high speed camera
  • the target analysis unit is a low speed camera and far infrared light.
  • the target is detected based on the information obtained from the imaging unit
  • the vehicle lamp system determines the specific target from the targets detected by the target analysis unit and detects the displacement of the specific target.
  • the image processing apparatus further includes a tracking unit, and the illuminance setting unit includes each individual illuminance value for a specific individual area determined according to the existing position of the specific target based on the detection result of the luminance analysis unit and the detection result of the tracking unit. The illuminance value of the light irradiated to the area may be determined.
  • the illuminance setting unit is configured such that, among the individual areas excluding the specific individual area, the detected luminance is relative to the individual area in which the luminance detected by the luminance analysis section is included in the predetermined range.
  • a relatively low illuminance value may be set in a low individual region, and a relatively high illuminance value may be set in an individual region where the detected luminance is relatively high.
  • Another aspect of the present invention is a control device for a vehicle lamp.
  • the control device detects a luminance of each of the plurality of individual areas arranged in front of the vehicle based on the information obtained from the visible light imaging unit, and at least the information obtained from the far infrared imaging unit.
  • the illuminance setting unit determines the illuminance value of light to be irradiated to each individual region including the specific illuminance value for the region, and adjusts the illuminance of light irradiated to each individual region independently based on the illuminance value set by the illuminance setting unit And a light source control unit that controls possible light source units.
  • Another aspect of the present invention is a control method of a vehicular lamp.
  • the control method includes the steps of: detecting the brightness of each of a plurality of individual areas arranged in front of the vehicle based on the information obtained from the visible light imaging unit; and at least the information obtained from the far infrared imaging unit.
  • a specific individual area determined according to the existing position of a predetermined target based on the steps of detecting the target existing in front of the vehicle, the detection result of the step of detecting the luminance, and the detection result of the step of detecting the target Controlling the light source unit capable of independently adjusting the illuminance of the light to be irradiated to each individual area based on the step of determining the illuminance value of the light to be irradiated to each individual area including the specific illuminance value for And the step of
  • the types of light distribution patterns that can be formed can be increased. Further, according to the present invention, the irradiation accuracy of light in the vehicle lamp can be enhanced.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle lamp system according to a first embodiment.
  • FIG. 2A is a front view showing a schematic configuration of the light deflection apparatus.
  • FIG. 2B is a cross-sectional view of the light deflecting device shown in FIG. 2A taken along the line AA. It is a figure showing typically a situation of the self-vehicles front.
  • FIGS. 4A to 4D are diagrams showing the relationship between the detected luminance value and the set illuminance value in the first embodiment.
  • FIGS. 5A and 5B are flowcharts showing an example of ADB control executed in the vehicle lamp system according to the first embodiment.
  • FIGS. 6 (A) and 6 (B) are diagrams showing the relationship between the detected luminance value and the set illuminance value in the second embodiment.
  • FIG. 7A is a diagram showing the relationship between the detected luminance value and the set illuminance value in the third embodiment.
  • FIG. 7B is a diagram showing the relationship between the detected luminance value and the set illuminance value in the fourth embodiment. It is a figure which shows the relationship of the detection brightness value and setting illumination value in a modification.
  • FIG. 18 is a diagram showing a schematic configuration of a vehicle lamp system according to a fifth embodiment. It is a figure which shows the relationship of the detection brightness value and setting illumination value in brightness equalization control.
  • FIGS. 11A to 11C are diagrams showing other examples of the relationship between the detected luminance value and the set illuminance value in the luminance equalization control.
  • FIG. 12A is a diagram showing the relationship between the detected luminance value and the coefficient in high contrast control.
  • FIG. 12B is a diagram showing the relationship between the detected luminance value and the set illuminance value in high contrast control.
  • FIGS. 13A to 13C are diagrams showing other examples of the relationship between the detected luminance value and the set illuminance value in the high contrast control.
  • FIGS. 14A and 14B are flowcharts showing an example of ADB control executed in the vehicle lamp system according to the fifth embodiment.
  • FIG. 18 is a diagram showing a schematic configuration of a vehicle lamp system according to a seventh embodiment.
  • FIG. 1 is a view showing a schematic configuration of a vehicle lamp system according to a first embodiment.
  • some of the components of the vehicle lamp system 1 are depicted as functional blocks. These functional blocks are realized as hardware configuration by elements and circuits such as a CPU of a computer and a memory, and software configuration is realized by a computer program and the like. Those skilled in the art will understand that these functional blocks can be realized in various forms by a combination of hardware and software.
  • the vehicle lamp system 1 is applied to a vehicle headlamp apparatus having a pair of headlamp units disposed on the left and right of the front of the vehicle.
  • the pair of headlamp units have substantially the same configuration except that they have a symmetrical structure, so FIG. 1 shows the configuration of one headlamp unit as the vehicle lamp 2.
  • the vehicle lamp 2 included in the vehicle lamp system 1 includes a lamp body 4 having an opening on the front side of the vehicle, and a translucent cover 6 attached so as to cover the opening of the lamp body 4.
  • the translucent cover 6 is formed of a translucent resin, glass or the like.
  • a light source unit 10, an imaging unit 12, and a control device 50 are accommodated in a lamp chamber 8 formed by the lamp body 4 and the light transmitting cover 6.
  • the light source unit 10 is a device capable of independently adjusting the illuminance (intensity) of light irradiated to each of a plurality of individual areas (see FIG. 3) arranged in front of the vehicle.
  • the light source unit 10 includes a light source 22, a reflective optical member 24, a light deflection device 26, and a projection optical member 28. Each part is attached to the lamp body 4 by a support mechanism (not shown).
  • the light source 22 can be a semiconductor light emitting element such as a light emitting diode (LED), a laser diode (LD), an electroluminescence (EL) element, a light bulb, an incandescent lamp (halogen lamp), a discharge lamp (discharge lamp) or the like. .
  • LED light emitting diode
  • LD laser diode
  • EL electroluminescence
  • a light bulb an incandescent lamp (halogen lamp), a discharge lamp (discharge lamp) or the like.
  • the reflective optical member 24 is configured to guide the light emitted from the light source 22 to the reflective surface of the light deflector 26.
  • the reflective optical member 24 is configured of a reflective mirror whose inner surface is a predetermined reflective surface.
  • the reflective optical member 24 may be a solid light guide or the like. When the light emitted from the light source 22 can be directly guided to the light deflection device 26, the reflective optical member 24 may not be provided.
  • the light deflection device 26 is disposed on the optical axis of the projection optical member 28 and is configured to selectively reflect the light emitted from the light source 22 to the projection optical member 28.
  • the light deflection device 26 is configured by, for example, a DMD (Digital Mirror Device). That is, the light deflection device 26 is one in which a plurality of micro mirrors are arranged in an array (matrix).
  • the reflection direction of the light emitted from the light source 22 can be selectively changed by controlling the angles of the reflection surfaces of the plurality of micro mirrors. That is, the light deflection device 26 reflects a part of the light emitted from the light source 22 toward the projection optical member 28 and reflects the other light in a direction not effectively used by the projection optical member 28.
  • the direction that is not effectively used may be, for example, a direction that is incident on the projection optical member 28 but hardly contributes to the formation of a light distribution pattern, or a direction toward a light absorbing member (light shielding member) not shown. it can.
  • FIG. 2A is a front view showing a schematic configuration of the light deflection apparatus.
  • FIG. 2B is a cross-sectional view of the light deflecting device shown in FIG. 2A taken along the line AA.
  • the light deflection device 26 includes a micro mirror array 32 in which a plurality of minute mirror elements 30 are arranged in a matrix, and the right side of the light deflection device 26 shown on the front side of the reflection surface 30 a of the mirror element 30 (FIG. 2B) And the transparent cover member 34 disposed in FIG.
  • the cover member 34 is made of, for example, glass, plastic or the like.
  • the mirror element 30 is substantially square and has a pivot shaft 30 b which extends in the horizontal direction and which divides the mirror element 30 approximately equally.
  • Each of the mirror elements 30 of the micro mirror array 32 reflects the light emitted from the light source 22 toward the projection optical member 28 so as to be used as part of a desired light distribution pattern (see FIG. It is configured to be switchable between a position shown by a solid line in B) and a second reflection position (a position shown by a dotted line in FIG. 2B) that reflects light emitted from the light source 22 so as not to be effectively used.
  • Each mirror element 30 is pivoted around the pivot shaft 30 b and switched individually between the first reflection position and the second reflection position.
  • Each mirror element 30 takes a first reflection position when it is on, and takes a second reflection position when it is off.
  • FIG. 3 is a diagram schematically showing the front of the vehicle.
  • the light source unit 10 includes a plurality of mirror elements 30 as individual irradiation units capable of emitting light independently of each other toward the front of the lamp.
  • the light source unit 10 can emit light to the plurality of individual regions R arranged in front of the vehicle by the mirror element 30.
  • Each individual area R is an area corresponding to a set of one or more pixels of the imaging unit 12, more specifically, for example, the high-speed camera 36.
  • each individual region R and each mirror element 30 are associated with each other.
  • the mirror elements 30 and the individual areas R are arranged in a size of 10 ⁇ 8, but the number of the mirror elements 30 and the individual areas R is not particularly limited.
  • the resolution of the micro mirror array 32 (in other words, the number of mirror elements 30 and the individual regions R) is 1 to 300,000 pixels.
  • the time required for the light source unit 10 to form one light distribution pattern is, for example, 0.1 to 5 ms. That is, the light source unit 10 can change the light distribution pattern every 0.1 to 5 ms.
  • the projection optical member 28 is made of, for example, a free curved surface lens having a free curved surface shape on the front side surface and the rear side surface.
  • the projection optical member 28 projects a light source image formed on the back focal plane including the back focal point thereof in front of the lamp as a reverse image.
  • the projection optical member 28 is disposed such that its rear focal point is located on the optical axis of the vehicular lamp 2 and near the reflecting surface of the micro mirror array 32.
  • the projection optical member 28 may be a reflector.
  • the light emitted from the light source 22 is reflected by the reflective optical member 24 and is irradiated to the micro mirror array 32 of the light deflection device 26.
  • the light deflector 26 reflects light towards the projection optics 28 by means of a predetermined mirror element 30 in the first reflection position.
  • the reflected light passes through the projection optical member 28 and travels to the front of the lamp, and is irradiated to the individual regions R corresponding to the mirror elements 30. Thereby, a light distribution pattern of a predetermined shape is formed in front of the lamp.
  • the imaging unit 12 is an apparatus for imaging the front of the vehicle.
  • the imaging unit 12 includes a high speed camera 36.
  • the high-speed camera 36 has a relatively high frame rate, for example, 200 fps or more and 10000 fps or less (0.1 to 5 ms per frame). Also, the high speed camera 36 has a relatively low resolution, for example, not less than 300,000 pixels and less than 5 million pixels.
  • the high-speed camera 36 captures all the individual regions R.
  • the control device 50 includes a luminance analysis unit 14, a lamp control unit 18, and a light source control unit 20.
  • the image data acquired by the imaging unit 12 is sent to the luminance analysis unit 14.
  • the luminance analysis unit 14 detects the luminance of each individual region R based on the information (image data) obtained from the imaging unit 12.
  • the luminance analysis unit 14 is a high speed analysis unit that outputs analysis results at high speed.
  • the luminance analysis unit 14 of the present embodiment detects the luminance of each individual region R based on the information obtained from the high-speed camera 36.
  • the luminance analysis unit 14 detects the luminance of each individual area R, for example, every 0.1 to 5 ms.
  • the detection result of the luminance analysis unit 14, that is, a signal indicating the luminance information of the individual region R is transmitted to the lamp control unit 18.
  • the lamp control unit 18 sets the illuminance value of the light irradiated to each of the individual regions R.
  • the lamp control unit 18 includes an illuminance setting unit 42.
  • the illuminance setting unit 42 determines the illuminance value of the light irradiated to each of the individual areas R based on the detection result of the luminance analysis unit 14. Further, the illuminance setting unit 42 determines the illuminance value using different functions for the individual area R included in the predetermined first luminance range and the individual area R included in the predetermined second luminance range. Furthermore, the illuminance setting unit 42 according to the present embodiment sets the illuminance value depending on the luminance detected by the luminance analysis unit 14 for the individual region R included in the first luminance range. Further, the illuminance value is set independently of the luminance detected by the luminance analysis unit 14 for the individual region R included in the second luminance range.
  • FIGS. 4A to 4D are diagrams showing the relationship between the detected luminance value and the set illuminance value in the first embodiment.
  • the illuminance setting unit 42 sets a predetermined first threshold T1 and a second threshold T2 larger than the first threshold T1 with respect to the detected luminance value. Have. Then, the illuminance setting unit 42 defines the luminance range from the minimum detected luminance value (for example, 0) to the first threshold T1 as the low luminance range L1. Further, a luminance range from the first threshold T1 to the second threshold T2 is defined as a middle luminance range L2. Further, a luminance range from the second threshold T2 to the maximum detected luminance value (for example, 255) is defined as a high luminance range L3.
  • the low luminance range L1 corresponds to the first luminance range
  • the middle luminance range L2 corresponds to the second luminance range
  • the high luminance range L3 corresponds to the third luminance range described later. Therefore, in the present embodiment, the first luminance range is a range in which the luminance is lower than the second luminance range.
  • the gradation of the detected luminance value is not limited to 8 bits (256 gradations), and may be 10 bits, 6 bits, or the like.
  • the first threshold T1 and the second threshold T2 can be appropriately set based on experiments and simulations by a designer. Further, the number of divisions of the luminance range is not limited to three, and may be two or four or more.
  • the illuminance value of the individual region R included in the low luminance range L1 has a positive correlation with the luminance. That is, in the low luminance range L1, as the detected luminance value is larger, the set illuminance value is also larger.
  • the illuminance setting unit 42 forms a high-contrast light distribution pattern with respect to the individual region R included in the low luminance range L1. In the high-contrast light distribution pattern, a relatively low illuminance value is set in the individual region R in which the detected luminance is relatively low, and a relatively high illuminance in the individual region R in which the detected luminance is relatively high. It is a light distribution pattern obtained by setting a value.
  • the high contrast light distribution pattern is a light distribution pattern in which the bright individual region R is brighter and the dark individual region R is darker among the individual regions R included in the low luminance range L1.
  • the light-and-dark contrast is enhanced in the irradiation target in front of the vehicle. This makes it easier for the driver to visually recognize the target existing ahead of the vehicle.
  • the target include an oncoming vehicle, a pedestrian, a preceding vehicle, an obstacle that interferes with the traveling of the host vehicle, a road sign, a road marking, a road shape, and the like.
  • the illuminance setting unit 42 sets the illuminance value by multiplying the detected luminance value included in the low luminance range L1 by a fixed gain value. Therefore, the set illuminance value linearly increases as the detected luminance value increases. In addition, an illuminance value of gradation higher than the gradation of the detected luminance value is set.
  • the increase amount of the illuminance value (the slope of the straight line) is kept relatively small, and the illuminance value is discontinuous at the boundary between the low luminance range L1 and the middle luminance range L2. It has become.
  • the increase in the illuminance value is larger than that in the example shown in FIG. 4A, and the illuminance values are continuous at the boundary between the low luminance range L1 and the middle luminance range L2. There is.
  • the freedom of setting the illuminance value can be increased.
  • the freedom in setting the illuminance value decreases, but it is possible to suppress the discomfort that can be given to the driver by the rapid change of the illuminance value.
  • the illuminance value is continued at the boundary between the low luminance range L1 and the middle luminance range L2 can be appropriately set based on an experiment or simulation by the designer.
  • the illuminance setting unit 42 multiplies the predetermined luminance value by the detected luminance value included in the low luminance range L1 so that the set illuminance value increases nonlinearly. And the illuminance value is set.
  • the setting illumination value has a non-linear characteristic convex upward, it may have a non-linear characteristic convex downward.
  • the illuminance value is continuous at the boundary between the low luminance range L1 and the middle luminance range L2, but the same as the example shown in FIG. 4A.
  • the illuminance value may be discontinuous at the boundary.
  • the illuminance setting unit 42 sets a constant illuminance value for the individual region R included in the middle luminance range L2.
  • the maximum illuminance value that can be emitted by the light source unit 10 is set for the individual region R in the middle luminance range L2.
  • the illuminance setting unit 42 is detected by the luminance analysis unit 14 with respect to the predetermined third luminance range higher in luminance than the low luminance range L1 and the middle luminance range L2, that is, the individual region R included in the high luminance range L3.
  • An illuminance value that is dependent on the luminance and has a negative correlation with the luminance is set, or an illuminance value of 0 is set independently of the luminance detected by the luminance analysis unit 14.
  • the high luminance range L3 is, for example, a range to which the luminance of the individual region R in which a self light emitting body such as a headlight of an oncoming vehicle or a street light is present belongs. Therefore, the second threshold T2 is a value less than the luminance of the self-emitting body.
  • the illuminance value 0 is set in the high luminance range L3. Therefore, the individual region R included in the high luminance range L3 is shielded from light. Further, the illuminance value is discontinuous at the boundary between the middle luminance range L2 and the high luminance range L3. In the examples shown in FIGS. 4B and 4D, the illuminance value is set so as to have a negative correlation with the luminance depending on the detected luminance. Further, the illuminance value is continuous at the boundary between the middle luminance range L2 and the high luminance range L3. In the example shown in FIG. 4 (B), the set illuminance value linearly decreases as the detected luminance value increases. In the example shown in FIG.
  • the set illuminance value decreases non-linearly as the detected luminance value increases.
  • the set illuminance value has a non-linear characteristic of convex downward, but may have a non-linear characteristic of convex upward.
  • the illuminance value is not determined at the boundary between the middle luminance range L2 and the high luminance range L3. It may be continuous.
  • the present invention is not particularly limited to this configuration.
  • an illuminance value greater than 0 may be set for the detected luminance value 0.
  • the illuminance setting unit 42 transmits a signal indicating the illuminance value of each individual region R to the light source control unit 20.
  • the illuminance setting unit 42 sets the illuminance value, for example, every 0.1 to 5 ms.
  • the light source control unit 20 controls the light source unit 10 based on the illuminance value determined by the illuminance setting unit 42.
  • the light source control unit 20 controls turning on / off of the light source 22 and on / off switching of each mirror element 30.
  • the light source control unit 20 adjusts the on time ratio (width or density) of each mirror element 30 based on the illuminance value of the light emitted to each of the individual regions R.
  • the light source control unit 20 transmits a drive signal to the light source 22 and / or the light deflector 26 every 0.1 to 5 ms, for example.
  • the high contrast light distribution pattern described above can be used for ADB (Adaptive Driving Beam) control that forms an optimal light distribution pattern according to the position of a specific target ahead of the vehicle.
  • the imaging unit 12 includes a low speed camera 38.
  • the low speed camera 38 has a relatively low frame rate, for example, not less than 30 fps and not more than 120 fps (about 8 to 33 ms per frame).
  • the low speed camera 38 has a relatively large resolution, for example, 5 million pixels or more.
  • the low speed camera 38 captures all the individual regions R.
  • the imaging by the low speed camera 38 is performed in the situation where the high contrast light distribution pattern is formed.
  • the resolutions of the high speed camera 36 and the low speed camera 38 are not limited to the above numerical values, and can be set to arbitrary values within the technically consistent range.
  • the control device 50 has a situation analysis unit 16.
  • the situation analysis unit 16 detects the situation in front of the vehicle based on the information obtained from the imaging unit 12. For example, the situation analysis unit 16 detects a target present ahead of the vehicle.
  • the situation analysis unit 16 is a low-speed high-accuracy analysis unit that executes image analysis with higher accuracy than the brightness analysis unit 14 and outputs analysis results at low speed.
  • the situation analysis unit 16 of the present embodiment detects the situation in front of the host vehicle based on the information obtained from the low speed camera 38.
  • the image data of the low speed camera 38 is information acquired in the state where the high contrast light distribution pattern is formed. Therefore, the situation analysis unit 16 can detect the target with higher accuracy in the area in which the high contrast light distribution pattern is formed.
  • the situation analysis unit 16 detects the situation, for example, every 50 ms. As a target detected by the situation analysis unit 16, as shown in FIG. 3, an oncoming vehicle 100, a pedestrian 200 and the like are exemplified.
  • the situation analysis unit 16 can detect a target using a conventionally known method including algorithm recognition and deep learning. For example, the situation analysis unit 16 holds feature points indicating the pedestrian 200 in advance. Then, the situation analysis unit 16 recognizes the position of the pedestrian 200 when there is data including a feature point indicating the pedestrian 200 in the imaging data of the low-speed camera 38. A detection result of the situation analysis unit 16, that is, a signal indicating target information ahead of the vehicle is transmitted to the lamp control unit 18.
  • the lamp control unit 18 has a tracking unit 40.
  • the tracking unit 40 determines a specific target from among the targets detected by the situation analysis unit 16.
  • the tracking unit 40 also detects the displacement of the specific target based on the detection result of the luminance analysis unit 14.
  • the pedestrian 200 is used as a specific target as an example.
  • the tracking unit 40 integrates the detection result of the luminance analysis unit 14 and the detection result of the situation analysis unit 16. Then, among the luminances of the individual areas R detected by the luminance analysis unit 14, the luminance of the individual area R where the pedestrian 200 that is the specific target is located is associated with the pedestrian 200.
  • the tracking unit 40 can detect the displacement of the pedestrian 200 which is a specific target by recognizing the position of the luminance associated with the pedestrian 200 in the detection result of the luminance analysis unit 14 acquired thereafter.
  • the tracking unit 40 can track the position of the pedestrian 200 more reliably by performing known image processing such as edge enhancement on the luminance data of each individual region R that is the detection result of the luminance analysis unit 14. Note that edge emphasis may be included in the processing of the luminance analysis unit 14.
  • the tracking unit 40 executes a process of determining a specific target, for example, every 50 ms. Also, the tracking unit 40 executes the displacement detection process (tracking) of the specific target, for example, every 0.1 to 5 ms.
  • the illuminance setting unit 42 determines the illuminance value of the light to be irradiated to each individual region R, based on the detection result of the luminance analysis unit 14 and the detection result of the tracking unit 40. Of the individual regions R, a specific illuminance value is determined for a specific individual region R1 determined according to the position of the specific target. Specifically, the illuminance setting unit 42 first determines the specific individual area R1 based on the existing position of the pedestrian 200 which is the specific target.
  • the illuminance setting unit 42 determines a specific illuminance value for the specific individual region R1. For example, as the specific illuminance value, the maximum value that can be irradiated by the light source unit 10 is set. As a result, it is possible to irradiate the pedestrian 200 with light of higher illuminance and make it easier for the driver of the vehicle to visually recognize the pedestrian 200. In this case, it is desirable to shield the individual area R where the face of the pedestrian 200 is located.
  • the illuminance setting unit 42 sets the predetermined individual region R other than the specific individual region R1 based on the relationship between the detected luminance value and the set illuminance value shown in FIGS. 4 (A) to 4 (D). Form a light distribution pattern. Further, the illuminance setting unit 42 recognizes the displacement of the specific individual region R1 based on the detection result of the tracking unit 40, and updates the position information of the specific individual region R1. And the illumination value of the light irradiated to each separate area
  • FIGS. 5A and 5B are flowcharts showing an example of ADB control executed in the vehicle lamp system according to the first embodiment. This flow is repeatedly executed at a predetermined timing when, for example, an ADB control execution instruction is issued by a light switch (not shown) and the ignition is on, and the ADB control execution instruction is canceled (or a stop instruction is issued). Or end when the ignition is turned off.
  • the flow shown in FIG. 5A is high-speed processing repeated every 0.1 to 5 ms, for example, and the flow shown in FIG. 5B is low-speed processing repeated every 50 ms, for example.
  • the low speed processing and the high speed processing are performed in parallel. Further, it is designed in advance so that the first light distribution pattern is formed in high speed processing in synchronization with the execution timing of the low speed processing.
  • the luminance analysis unit 14 detects the luminance of each individual region R based on the image data of the high-speed camera 36 (S102). Subsequently, it is determined whether the specific individual area R1 is set (S103). The determination is performed by the tracking unit 40, for example. When the specific individual area R1 is set (Y in S103), the tracking unit 40 tracks the specific target to detect the position (displacement) of the specific individual area R1. The illuminance setting unit 42 updates the setting (position information) of the specific individual region R1 based on the detection result of the tracking unit 40 (S104).
  • the illuminance setting unit 42 sets the illuminance value of the light irradiated to each of the individual regions R (S105).
  • a specific illuminance value is set for the specific individual area R1.
  • illuminance values are set based on the relationship between the detected luminance values and the set illuminance values shown in FIGS. 4 (A) to 4 (D).
  • the light source unit 10 is driven by the light source control unit 20, and light of a predetermined illuminance is emitted from the light source unit 10 (S106), and this routine ends.
  • the illuminance setting unit 42 sets the illuminance value of the light to be irradiated to the individual region R (S105). In this case, the set illuminance value does not include the specified illuminance value. Thereafter, the process of step S106 is performed, and the present routine ends.
  • step S104 when the disappearance of the specific target is detected by tracking, the setting of the specific individual region R1 also disappears. Therefore, the specific illuminance value is not included in the illuminance value set in step S105.
  • step S103 in the next routine it is determined that the specific individual region R1 is not set (N in S103) until the process of step S205 described later is executed.
  • the front of the vehicle is imaged by the low speed camera 38 (S201).
  • the situation analysis unit 16 detects a target present ahead of the vehicle (S202).
  • the tracking unit 40 determines the specific target (S204).
  • the specific individual area R1 is set by the illuminance setting unit 42 based on the existing position of the specific target (S205), and this routine ends. If the specific target is not included (N in S203), this routine ends.
  • the specific individual area is set in the low speed processing in the flowchart, the setting may be performed in the high speed processing.
  • the vehicle lamp system 1 includes the imaging unit 12, the luminance analysis unit 14, the illuminance setting unit 42, the light source unit 10, and the light source control unit 20.
  • the luminance analysis unit 14 detects the luminance of each of the plurality of individual regions R arranged in front of the vehicle based on the information obtained from the imaging unit 12.
  • the illuminance setting unit 42 determines the illuminance value of the light irradiated to each of the individual areas R based on the detection result of the luminance analysis unit 14. Further, the illuminance setting unit 42 determines the illuminance value using different functions for the individual area R included in the predetermined first luminance range and the individual area R included in the predetermined second luminance range.
  • the light source control unit 20 controls the light source unit 10 based on the illuminance value determined by the illuminance setting unit 42.
  • the vehicle lamp system 1 can be formed by dividing each individual region R arranged in front of the vehicle into a plurality of luminance bands and making the relationship between the detected luminance value and the set illuminance value different in each luminance band.
  • the types of light distribution patterns can be increased. This makes it possible to form a more appropriate light distribution pattern in accordance with the situation ahead of the host vehicle, thereby improving driving safety.
  • the illuminance setting unit 42 sets the illuminance value depending on the detected luminance for the individual region R included in the first luminance range, and does not depend on the detected luminance for the individual region R included in the second luminance range. Set the value As a result, for the second luminance range, the process of calculating the illuminance value from the detected luminance becomes unnecessary. Therefore, the load applied to the illuminance setting unit 42 can be reduced.
  • the first luminance range is a range in which the luminance is lower than the second luminance range. That is, the first luminance range is the low luminance range L1, and the second luminance range is the middle luminance range L2. Therefore, the individual region R included in the low luminance range L1 has the illuminance value set depending on the detected luminance. Further, the illuminance value of the individual region R included in the first luminance range is positively correlated with the luminance. That is, in the dark individual region R, a high contrast light distribution pattern is formed in which the contrast of the illumination target is enhanced. As a result, it is possible to easily make the target existing in front of the vehicle visible.
  • the illuminance setting unit 42 sets, for the individual region R included in the high luminance range L3, an illuminance value that depends on the detected luminance and has a negative correlation with the luminance, or does not depend on the detected luminance. Set 0. Thereby, it is possible to avoid the irradiation of light to the self-luminous body such as the headlights and the street lights of the oncoming vehicles. As a result, the power consumption of the vehicular lamp system 1 can be suppressed.
  • the vehicle lamp system according to the second embodiment has the same configuration as the vehicle lamp system according to the first embodiment except that the method of setting the illuminance value by the illuminance setting unit 42 is different.
  • a vehicle lamp system according to the second embodiment will be described focusing on a configuration different from that of the first embodiment, and the common configuration will be briefly described or omitted.
  • the vehicle lamp system 1 according to Embodiment 2 includes the imaging unit 12, the luminance analysis unit 14, the illuminance setting unit 42, and the light source unit 10. And a light source control unit 20 (see FIG. 1).
  • the illuminance setting unit 42 determines the illuminance value of the light irradiated to each of the individual areas R based on the detection result of the luminance analysis unit 14. Further, the illuminance setting unit 42 determines the illuminance value using different functions for the individual area R included in the predetermined first luminance range and the individual area R included in the predetermined second luminance range. Furthermore, the illuminance setting unit 42 according to the present embodiment depends on the luminance detected by the luminance analysis unit 14 with respect to the individual region R included in the first luminance range and the individual region R included in the second luminance range. Set the illumination value. However, the correspondence between the detected luminance and the set illuminance is different between the first luminance range and the second luminance range.
  • the illuminance setting unit 42 has a first threshold T1 and a second threshold T2 regarding the detected luminance value. Then, the illuminance setting unit 42 defines the luminance range from the minimum detected luminance value (for example, 0) to the first threshold T1 as the low luminance range L1. Further, a luminance range from the first threshold T1 to the second threshold T2 is defined as a middle luminance range L2. Further, a luminance range from the second threshold T2 to the maximum detected luminance value (for example, 255) is defined as a high luminance range L3.
  • the low luminance range L1 corresponds to the first luminance range
  • the middle luminance range L2 corresponds to the second luminance range
  • the high luminance range L3 corresponds to the third luminance range.
  • the illuminance value of the individual region R included in the low luminance range L1 has a positive correlation with the luminance.
  • the illuminance value of the individual region R included in the middle luminance range L2 has a positive correlation with the luminance. That is, in each of the low luminance range L1 and the middle luminance range L2, the larger the detected luminance value is, the larger the set illuminance value is.
  • the illuminance setting unit 42 forms a high contrast light distribution pattern for each of the individual region R included in the low luminance range L1 and the individual region R included in the middle luminance range L2.
  • an illuminance value having a gradation higher than that of the detected luminance value is set in at least a part of the luminance range.
  • an illuminance value having the same gradation as the gradation of the detected luminance value is set in the middle luminance range L2. Therefore, a high contrast light distribution pattern is formed in the low luminance range L1 to further emphasize the contrast of the object to be irradiated.
  • the set illuminance value linearly increases as the detected luminance value increases. Further, the illuminance value is discontinuous at the boundary between the low luminance range L1 and the middle luminance range L2.
  • the set illuminance value nonlinearly increases as the detected luminance value increases. Further, the illuminance value is continuous at the boundary between the low luminance range L1 and the middle luminance range L2.
  • the set illuminance value included in the low luminance range L1 has a non-linear characteristic that is convex upward, but may have a non-linear characteristic that is convex downward. Further, as in the example shown in FIG. 6A, the illuminance value may be discontinuous at the boundary between the low luminance range L1 and the middle luminance range L2.
  • the illuminance setting unit 42 is detected by the luminance analysis unit 14 with respect to the predetermined third luminance range higher in luminance than the low luminance range L1 and the middle luminance range L2, that is, the individual region R included in the high luminance range L3.
  • An illuminance value that is dependent on the luminance and has a negative correlation with the luminance is set, or an illuminance value of 0 is set independently of the luminance detected by the luminance analysis unit 14.
  • the illuminance value 0 is set in the high luminance range L3. Therefore, the individual region R included in the high luminance range L3 is shielded from light. Further, the illuminance value is discontinuous at the boundary between the middle luminance range L2 and the high luminance range L3. In the example shown in FIG. 6B, the illuminance value is set so as to have a negative correlation with the luminance depending on the detected luminance. Further, the illuminance value is continuous at the boundary between the middle luminance range L2 and the high luminance range L3. In the example shown in FIG.
  • the set illuminance value has a non-linear characteristic of convex downward, but may have a non-linear characteristic of convex upward. Also, although the set illuminance value decreases non-linearly as the detected luminance value increases, it may decrease linearly. Also, the illuminance value may be discontinuous at the boundary between the middle luminance range L2 and the high luminance range L3.
  • the illuminance value 0 is set for the detected luminance value 0, the present invention is not particularly limited to this configuration.
  • an illuminance value greater than 0 may be set for the detected luminance value 0.
  • the types of light distribution patterns that can be formed can also be increased by the vehicle lamp system 1 according to the present embodiment. This makes it possible to form a more appropriate light distribution pattern in accordance with the situation ahead of the host vehicle, thereby improving driving safety.
  • the illuminance setting unit 42 according to the present embodiment sets the illuminance value depending on the detected luminance to the individual region R included in each of the first luminance range and the second luminance range, and at each luminance range. The correspondence relationship between the detected luminance and the set illuminance is made different. Furthermore, the illuminance value of the individual region R included in the first luminance range and the illuminance value of the individual region R included in the second luminance range are positively correlated with the luminance. As a result, the driver's visibility to the object to be irradiated can be enhanced in a wider luminance range.
  • the vehicle lamp system according to the third embodiment has the same configuration as the vehicle lamp system according to the first embodiment except that the method of setting the illuminance value by the illuminance setting unit 42 is different.
  • the vehicle lamp system according to the third embodiment will be described focusing on a configuration different from the first embodiment, and the common configuration will be briefly described or omitted.
  • the vehicle lamp system 1 according to Embodiment 3 includes the imaging unit 12, the luminance analysis unit 14, the illuminance setting unit 42, and the light source unit 10. And a light source control unit 20 (see FIG. 1).
  • the illuminance setting unit 42 determines the illuminance value of the light irradiated to each of the individual areas R based on the detection result of the luminance analysis unit 14. Further, the illuminance setting unit 42 determines the illuminance value using different functions for the individual area R included in the predetermined first luminance range and the individual area R included in the predetermined second luminance range. Furthermore, the illuminance setting unit 42 according to the present embodiment depends on the luminance detected by the luminance analysis unit 14 for the individual region R included in the first luminance range and the individual region R included in the second luminance range. Set the illuminance value without.
  • FIG. 7A is a diagram showing the relationship between the detected luminance value and the set illuminance value in the third embodiment.
  • the illuminance setting unit 42 has a first threshold T1 and a second threshold T2 regarding the detected luminance value. Then, the illuminance setting unit 42 defines the luminance range from the minimum detected luminance value (for example, 0) to the first threshold T1 as the low luminance range L1. Further, a luminance range from the first threshold T1 to the second threshold T2 is defined as a middle luminance range L2. Further, a luminance range from the second threshold T2 to the maximum detected luminance value (for example, 255) is defined as a high luminance range L3.
  • the low luminance range L1 corresponds to the first luminance range
  • the middle luminance range L2 corresponds to the second luminance range
  • the high luminance range L3 corresponds to the third luminance range.
  • the illuminance setting unit 42 sets a constant first illuminance value for the individual region R included in the low luminance range L1.
  • a fixed second illuminance value is set for the individual region R included in the middle luminance range L2.
  • the first illuminance value is a higher illuminance value than the second illuminance value.
  • the illuminance setting unit 42 sets and detects a relatively high illuminance value in the individual region R in which the detected luminance is relatively low.
  • a relatively low illuminance value is set to the individual region R having a relatively high luminance.
  • a luminance uniformization light distribution pattern is formed which makes the brightness in front of the vehicle uniform. According to the luminance uniformization light distribution pattern, it is possible to brightly illuminate a target present in a dark area in front of the vehicle. For this reason, the visibility to the target existing ahead of the vehicle can be enhanced by a method or an aspect different from the high contrast light distribution pattern.
  • the illuminance setting unit 42 sets a relatively high illuminance value for the individual region R in the low luminance range L1, and for the individual region R in the middle luminance range L2.
  • a relatively low illuminance value is set.
  • the present invention is not particularly limited to this configuration, and a relatively low illuminance value is set for the individual region R in the low luminance range L1, and a relatively high illuminance value is set for the individual region R in the middle luminance range L2. You may In this case, a high contrast light distribution pattern is formed when viewed in the luminance range in which the low luminance range L1 and the middle luminance range L2 are integrated.
  • the illuminance setting unit 42 sets the illuminance value 0 for the individual region R included in the high luminance range L3 without depending on the detected luminance.
  • the illuminance setting unit 42 may set an illuminance value depending on the detected luminance and negatively correlated with the luminance. In this case, the set illuminance value may decrease linearly or non-linearly.
  • the illuminance value may be continuous or discontinuous at the boundary between the middle luminance range L2 and the high luminance range L3.
  • the set illuminance value may have a non-linear characteristic convex upward or may have a non-linear characteristic convex downward.
  • the illuminance value 0 is set for the detected luminance value 0, the present invention is not particularly limited to this configuration.
  • an illuminance value greater than 0 may be set for the detected luminance value 0.
  • Embodiment 4 The vehicle lamp system according to the fourth embodiment has the same configuration as the vehicle lamp system according to the first embodiment except that the method of setting the illuminance value by the illuminance setting unit 42 is different.
  • the vehicle lamp system according to the third embodiment will be described focusing on a configuration different from the first embodiment, and the common configuration will be briefly described or omitted.
  • the vehicle lamp system 1 according to Embodiment 4 includes the imaging unit 12, the luminance analysis unit 14, the illuminance setting unit 42, and the light source unit 10. And a light source control unit 20 (see FIG. 1).
  • the illuminance setting unit 42 determines the illuminance value of the light irradiated to each of the individual areas R based on the detection result of the luminance analysis unit 14. Further, the illuminance setting unit 42 determines the illuminance value using different functions for the individual area R included in the predetermined first luminance range and the individual area R included in the predetermined second luminance range. Furthermore, the illuminance setting unit 42 of the present embodiment sets the illuminance value for the individual region R included in the first luminance range, depending on the detected luminance. In addition, the illuminance value is set for the individual region R included in the second luminance range without depending on the detected luminance.
  • FIG. 7B is a diagram showing the relationship between the detected luminance value and the set illuminance value in the fourth embodiment.
  • the illuminance setting unit 42 has a first threshold T1 with respect to the detected luminance value. Then, the illuminance setting unit 42 defines the luminance range from the minimum detected luminance value (for example, 0) to the first threshold T1 as the low luminance range L4. Further, a luminance range from the first threshold T1 to the maximum detected luminance value (for example, 255) is defined as a high luminance range L5.
  • the illuminance setting unit 42 sets only two luminance ranges, the low luminance range L4 and the high luminance range L5.
  • the low luminance range L4 corresponds to the first luminance range
  • the high luminance range L5 corresponds to the second luminance range.
  • the low luminance range L4 corresponds to the luminance range obtained by integrating the low luminance range L1 and the middle luminance range L2 in the first to third embodiments.
  • the high luminance range L5 corresponds to the high luminance range L3 in the first to third embodiments. Therefore, the first threshold T1 of the present embodiment corresponds to the second threshold T2 of the first to third embodiments.
  • the illuminance setting unit 42 sets the illuminance value by multiplying the detected luminance value included in the low luminance range L1 by a predetermined gain value so that the set illuminance value increases nonlinearly.
  • the illuminance value of the individual region R included in the low luminance range L1 has a positive correlation with the luminance. Therefore, a high contrast light distribution pattern is formed in the low luminance range L1.
  • the set illuminance value has a non-linear characteristic of convex upward, but may have a non-linear characteristic of convex downward. Also, the set illumination value may increase linearly as the detected brightness value increases.
  • the illuminance value may have a negative correlation with the detected luminance.
  • the set illuminance value may decrease linearly or non-linearly.
  • the set illuminance value may have a non-linear characteristic convex upward or may have a non-linear characteristic convex downward.
  • the illuminance setting unit 42 sets the illuminance value 0 for the individual region R included in the high luminance range L5 without depending on the detected luminance.
  • the illuminance setting unit 42 may set an illuminance value depending on the detected luminance and negatively correlated with the luminance. In this case, the set illuminance value may decrease linearly or non-linearly.
  • the illuminance value may be continuous or discontinuous at the boundary between the low luminance range L4 and the high luminance range L5.
  • the set illuminance value may have a non-linear characteristic convex upward or may have a non-linear characteristic convex downward.
  • the present invention is not particularly limited to this configuration.
  • an illuminance value greater than 0 may be set for the detected luminance value 0.
  • FIG. 8 is a diagram showing the relationship between the detected luminance value and the set illuminance value in the modification.
  • the low luminance range L1 in FIGS. 4A to 4D, the low luminance range L1 in FIGS. 6A and 6B, and the low luminance range L4 in FIG. 7B are detected.
  • the set illuminance value is continuously increasing with respect to the luminance value.
  • the present invention is not limited to this configuration.
  • the set illuminance value may be increased stepwise with respect to the detected luminance value as shown in FIG. The number of stages of change can be set appropriately. The same applies to the middle luminance range L2 in FIGS. 6 (A) and 6 (B).
  • the set illuminance value is decreased with respect to the detected luminance value, as in the high luminance range L3 in FIG. 4B and FIG. 4D and the high luminance range L3 in FIG. It is not limited to the configuration to be reduced, but may be reduced stepwise.
  • the imaging unit 12, the luminance analysis unit 14, the situation analysis unit 16, the lamp control unit 18 and the light source control unit 20 are provided in the lamp chamber 8, respectively. It may be provided.
  • the low-speed camera 38 of the imaging unit 12 can use an existing camera mounted in the vehicle compartment. It is desirable that the angle of view of the imaging unit 12 and that of the light source unit 10 coincide with each other.
  • the situation analysis unit 16 detects the target using the image data of the high-speed camera 36.
  • the light source unit 10 may be provided with a scanning optical system for scanning the front of the vehicle with light source light or an LED array in which LEDs corresponding to the individual regions R are arrayed, instead of the light deflection device 26 which is a DMD.
  • the illuminance value is set independently of the detected luminance for the individual region R included in the low luminance range L1, and the illuminance value is determined for the individual region R included in the middle luminance range L2 depending on the detected luminance. It may be set. That is, the low luminance range L1 may correspond to the second luminance range, and the middle luminance range L2 may correspond to the first luminance range. In the case of defining “the illuminance value is determined using different functions for the individual region R included in the first luminance range and the individual region R included in the second luminance range”, the low luminance range L1, middle One of the luminance range L2 and the high luminance range L3 corresponds to the first luminance range, and the other corresponds to the second luminance range.
  • the specific target in the ADB control may be the oncoming vehicle 100.
  • the situation analysis unit 16 holds feature points indicating the oncoming vehicle 100 in advance. Then, the situation analysis unit 16 recognizes the position of the oncoming vehicle 100 when there is data including a feature point indicating the oncoming vehicle 100 in the imaging data of the low speed camera 38.
  • the “feature point indicating the oncoming vehicle 100” is, for example, the light spot 102 (see FIG. 3) having a predetermined light intensity or more appearing in the estimated existing area of the headlight of the oncoming vehicle 100.
  • the tracking unit 40 associates the brightness of the individual area R where the light spot 102 of the oncoming vehicle 100, which is a specific target, is located with the oncoming vehicle 100.
  • the illuminance setting unit 42 determines the specific individual area R1 based on the existing position of the oncoming vehicle 100. For example, the illuminance setting unit 42 determines a vertical distance b at a predetermined ratio determined in advance with respect to the horizontal distance a (see FIG. 3) between the two light spots 102 corresponding to the headlights of the oncoming vehicle 100. An individual area R overlapping the size range of horizontal a ⁇ vertical b is defined as a specific individual area R1.
  • the specific individual area R1 includes an individual area R overlapping with the driver of the oncoming vehicle. Then, the illuminance setting unit 42 sets, for example, 0 as a specific illuminance value for the specific individual region R1. That is, the specific individual region R1 is shielded from light.
  • a luminance analysis unit 14 that detects the luminance of each of a plurality of individual regions R arranged in front of the vehicle based on information obtained from the imaging unit 12 that images the front of the vehicle;
  • An illuminance setting unit 42 that determines an illuminance value of light to be irradiated to each individual region R based on the detection result of the luminance analysis unit 14;
  • a light source control unit 20 for controlling the light source unit 10 capable of independently adjusting the illuminance of light to be irradiated to each individual region R based on the illuminance value determined by the illuminance setting unit 42; Equipped with The illumination setting unit 42 determines the illumination value using different functions for the individual area R in which the luminance is included in the predetermined first range and the individual area R in which the luminance is included in the predetermined second range.
  • Control device 2 of 2.
  • FIG. 9 is a view showing a schematic configuration of a vehicle lamp system according to a fifth embodiment.
  • some of the components of the vehicle lamp system 1 are depicted as functional blocks. These functional blocks are realized as hardware configuration by elements and circuits such as a CPU of a computer and a memory, and software configuration is realized by a computer program and the like. Those skilled in the art will understand that these functional blocks can be realized in various forms by a combination of hardware and software.
  • the vehicle lamp system 1 (1A) is applied to a vehicle headlamp apparatus having a pair of headlamp units disposed on the left and right of the front of the vehicle.
  • the pair of headlight units has substantially the same configuration except that it has a symmetrical structure, so FIG. 9 shows the structure of one of the headlight units as the vehicle lamp 2.
  • the vehicle lamp 2 included in the vehicle lamp system 1 includes a lamp body 4 having an opening on the front side of the vehicle, and a translucent cover 6 attached so as to cover the opening of the lamp body 4.
  • the translucent cover 6 is formed of a translucent resin, glass or the like.
  • a light source unit 10, a visible light imaging unit 35, a far infrared imaging unit 52, and a control device 50 are accommodated in a lamp chamber 8 formed by the lamp body 4 and the light transmitting cover 6.
  • the light source unit 10 is a device capable of independently adjusting the illuminance (intensity) of light irradiated to each of a plurality of individual areas (see FIG. 3) arranged in front of the vehicle.
  • the light source unit 10 includes a light source 22, a reflective optical member 24, a light deflection device 26, and a projection optical member 28. Each part is attached to the lamp body 4 by a support mechanism (not shown).
  • the light source 22 can be a semiconductor light emitting element such as a light emitting diode (LED), a laser diode (LD), an electroluminescence (EL) element, a light bulb, an incandescent lamp (halogen lamp), a discharge lamp (discharge lamp) or the like. .
  • LED light emitting diode
  • LD laser diode
  • EL electroluminescence
  • a light bulb an incandescent lamp (halogen lamp), a discharge lamp (discharge lamp) or the like.
  • the reflective optical member 24 is configured to guide the light emitted from the light source 22 to the reflective surface of the light deflector 26.
  • the reflective optical member 24 is configured of a reflective mirror whose inner surface is a predetermined reflective surface.
  • the reflective optical member 24 may be a solid light guide or the like. When the light emitted from the light source 22 can be directly guided to the light deflection device 26, the reflective optical member 24 may not be provided.
  • the light deflection device 26 is disposed on the optical axis of the projection optical member 28 and is configured to selectively reflect the light emitted from the light source 22 to the projection optical member 28.
  • the light deflection device 26 is configured by, for example, a DMD (Digital Mirror Device). That is, the light deflection device 26 is one in which a plurality of micro mirrors are arranged in an array (matrix).
  • the reflection direction of the light emitted from the light source 22 can be selectively changed by controlling the angles of the reflection surfaces of the plurality of micro mirrors. That is, the light deflection device 26 reflects a part of the light emitted from the light source 22 toward the projection optical member 28 and reflects the other light in a direction not effectively used by the projection optical member 28.
  • the direction that is not effectively used may be, for example, a direction that is incident on the projection optical member 28 but hardly contributes to the formation of a light distribution pattern, or a direction toward a light absorbing member (light shielding member) not shown. it can.
  • FIG. 2A is a front view showing a schematic configuration of the light deflection apparatus.
  • FIG. 2B is a cross-sectional view of the light deflecting device shown in FIG. 2A taken along the line AA.
  • the light deflection device 26 includes a micro mirror array 32 in which a plurality of minute mirror elements 30 are arranged in a matrix, and the right side of the light deflection device 26 shown on the front side of the reflection surface 30 a of the mirror element 30 (FIG. 2B) And the transparent cover member 34 disposed in FIG.
  • the cover member 34 is made of, for example, glass, plastic or the like.
  • the mirror element 30 is substantially square and has a pivot shaft 30 b which extends in the horizontal direction and which divides the mirror element 30 approximately equally.
  • Each of the mirror elements 30 of the micro mirror array 32 reflects the light emitted from the light source 22 toward the projection optical member 28 so as to be used as part of a desired light distribution pattern (see FIG. It is configured to be switchable between a position shown by a solid line in B) and a second reflection position (a position shown by a dotted line in FIG. 2B) that reflects light emitted from the light source 22 so as not to be effectively used.
  • Each mirror element 30 is pivoted around the pivot shaft 30 b and switched individually between the first reflection position and the second reflection position.
  • Each mirror element 30 takes a first reflection position when it is on, and takes a second reflection position when it is off.
  • FIG. 3 is a diagram schematically showing the front of the vehicle.
  • the light source unit 10 includes a plurality of mirror elements 30 as individual irradiation units capable of emitting light independently of each other toward the front of the lamp.
  • the light source unit 10 can emit light to the plurality of individual regions R arranged in front of the vehicle by the mirror element 30.
  • Each individual area R is an area corresponding to a visible light imaging unit 35, more specifically, a set of one or more pixels of the high-speed camera 36, for example.
  • the individual regions R and the mirror elements 30 are associated with each other.
  • the mirror elements 30 and the individual areas R are arranged in a size of 10 ⁇ 8, but the number of the mirror elements 30 and the individual areas R is not particularly limited.
  • the resolution of the micro mirror array 32 (in other words, the number of mirror elements 30 and the individual regions R) is 1 to 300,000 pixels.
  • the time required for the light source unit 10 to form one light distribution pattern is, for example, 0.1 to 5 ms. That is, the light source unit 10 can change the light distribution pattern every 0.1 to 5 ms.
  • the projection optical member 28 is formed of, for example, a free-form surface lens having a free-form surface shape on the front side surface and the rear side surface.
  • the projection optical member 28 projects a light source image formed on the back focal plane including the back focal point thereof in front of the lamp as a reverse image.
  • the projection optical member 28 is disposed such that its rear focal point is located on the optical axis of the vehicular lamp 2 and near the reflecting surface of the micro mirror array 32.
  • the projection optical member 28 may be a reflector.
  • the light emitted from the light source 22 is reflected by the reflective optical member 24 and is irradiated to the micro mirror array 32 of the light deflection device 26.
  • the light deflector 26 reflects light towards the projection optics 28 by means of a predetermined mirror element 30 in the first reflection position.
  • the reflected light passes through the projection optical member 28 and travels to the front of the lamp, and is irradiated to the individual regions R corresponding to the mirror elements 30.
  • a light distribution pattern of a predetermined shape configured by collecting a plurality of partial irradiation areas is formed in front of the lamp.
  • the visible light imaging unit 35 is an apparatus for imaging the front of the vehicle.
  • the visible light imaging unit 35 includes a high speed camera 36 and a low speed camera 38.
  • the high-speed camera 36 has a relatively high frame rate, for example, 200 fps or more and 10000 fps or less (0.1 to 5 ms per frame).
  • the low speed camera 38 has a relatively low frame rate, for example, not less than 30 fps and not more than 120 fps (about 8 to 33 ms per frame).
  • the high speed camera 36 has a relatively low resolution, for example, not less than 300,000 pixels and less than 5 million pixels.
  • the low speed camera 38 has a relatively large resolution, for example, 5 million pixels or more.
  • the high speed camera 36 and the low speed camera 38 capture all the individual regions R.
  • the resolutions of the high speed camera 36 and the low speed camera 38 are not limited to the above numerical values, and can be set to arbitrary values within the technically consistent range.
  • the far infrared imaging unit 52 is a device for imaging the front of the vehicle.
  • the far infrared imaging unit 52 includes a far infrared camera 54.
  • the far infrared camera 54 captures the heat generated by the object as an image.
  • the infrared light component of the light reflected by the target ahead of the vehicle is imaged as an image.
  • the far infrared camera 54 has a frame rate of, for example, 5 fps or more and 10000 fps or less (0.1 to 200 ms per frame), and a resolution of, for example, 300,000 pixels or more and less than 5,000,000 pixels.
  • the far infrared camera 54 captures all the individual regions R.
  • the control device 50 includes a brightness analysis unit 14, a target analysis unit 216, a lamp control unit 18, and a light source control unit 20.
  • the image data acquired by the visible light imaging unit 35 is sent to the luminance analysis unit 14 and the target analysis unit 216.
  • the image data acquired by the far infrared imaging unit 52 is sent to the target analysis unit 216.
  • the luminance analysis unit 14 detects the luminance of each individual region R based on the information (image data) obtained from the visible light imaging unit 35.
  • the luminance analysis unit 14 is a high-speed low-accuracy analysis unit that executes image analysis with lower accuracy than the target analysis unit 216 and outputs analysis results at high speed.
  • the luminance analysis unit 14 of the present embodiment detects the luminance of each individual region R based on the information obtained from the high-speed camera 36.
  • the luminance analysis unit 14 detects the luminance of each individual area R, for example, every 0.1 to 5 ms.
  • the detection result of the luminance analysis unit 14, that is, a signal indicating the luminance information of the individual region R is transmitted to the lamp control unit 18.
  • the target analysis unit 216 detects a target present ahead of the host vehicle based on at least information (image data) obtained from the far infrared imaging unit 52.
  • the target analysis unit 216 according to the present embodiment detects a target based on the information obtained from the low speed camera 38 in addition to the information obtained from the far infrared imaging unit 52. Therefore, the target analysis unit 216 is a low-speed high-accuracy analysis unit that executes image analysis with higher accuracy than the luminance analysis unit 14 and outputs analysis results at low speed.
  • the target analysis unit 216 detects a target, for example, every 50 ms.
  • an oncoming vehicle 100, a pedestrian 200 and the like are exemplified.
  • the target vehicle includes a preceding vehicle, an obstacle that hinders the traveling of the vehicle, a road sign, a road marking, a road shape, and the like.
  • the target analysis unit 216 trims and scales each of the image data obtained from the low speed camera 38 and the image data obtained from the far infrared imaging unit 52, and aligns both image data.
  • the gradation of both image data is inverted as necessary.
  • binarization processing may be performed along with tone inversion.
  • both image data are synthesized by, for example, calculation of bit logical product.
  • the target analysis unit 216 detects a target based on the obtained image data. Note that both image data may be combined by the field sequential method.
  • the target analysis unit 216 can detect a target using a conventionally known method including algorithm recognition and deep learning. For example, the target analysis unit 216 holds a feature point indicating the oncoming vehicle 100 in advance. Then, when there is data including a feature point indicating the oncoming vehicle 100 in the imaging data of the far infrared imaging unit 52 or the low speed camera 38, the target analysis unit 216 recognizes the position of the oncoming vehicle 100.
  • the “feature point indicating the oncoming vehicle 100” is, for example, the light spot 102 (see FIG. 3) having a predetermined light intensity or more appearing in the estimated existing area of the headlight of the oncoming vehicle 100.
  • the target analysis unit 216 holds in advance feature points indicating the pedestrian 200 and the other targets, and these feature points are included in the imaging data of the far infrared imaging unit 52 and the low speed camera 38. If there is data to be included, the position of the target corresponding to the feature point is recognized. The detection result of the target analysis unit 216, that is, a signal indicating target information ahead of the vehicle is transmitted to the lamp control unit 18.
  • the lamp control unit 18 uses the detection results of the luminance analysis unit 14 and / or the target analysis unit 216 to determine the specific target, detect the displacement of the specific target, set the specific individual area R1, and set each individual area R The setting of the illuminance value of the light to be irradiated is executed.
  • the lamp control unit 18 includes a tracking unit 40 and an illuminance setting unit 42.
  • the tracking unit 40 determines a specific target from among the targets detected by the target analysis unit 216.
  • the tracking unit 40 also detects the displacement of the specific target based on the detection result of the luminance analysis unit 14. Below, the case where the oncoming vehicle 100 is made into a specific target object is mentioned as an example, and is demonstrated.
  • the tracking unit 40 integrates the detection result of the luminance analysis unit 14 and the detection result of the target analysis unit 216. Then, among the luminances of the individual regions R detected by the luminance analysis unit 14, the luminance of the individual region R where the light spot 102 of the oncoming vehicle 100 that is the specific target is located is associated with the oncoming vehicle 100.
  • the tracking unit 40 can detect the displacement of the oncoming vehicle 100 which is a specific target by recognizing the position of the luminance associated with the oncoming vehicle 100 in the detection result of the luminance analysis unit 14 acquired thereafter.
  • the tracking unit 40 executes a process of determining a specific target, for example, every 50 ms. Also, the tracking unit 40 executes the displacement detection process (tracking) of the specific target, for example, every 0.1 to 5 ms.
  • the illuminance setting unit 42 specifies the specific individual region R1 determined according to the position of the predetermined target, that is, the specific target, based on the detection result of the luminance analysis unit 14 and the detection result of the target analysis unit 216.
  • the illuminance value of light to be irradiated to each individual region R including the illuminance value is determined.
  • the illuminance setting unit 42 determines the illuminance value of the light irradiated to each individual region R based on the detection result of the luminance analysis unit 14 and the detection result of the tracking unit 40. That is, by using the detection result of the tracking unit 40, the detection result of the target analysis unit 216 is indirectly used.
  • the illuminance setting unit 42 determines the specific individual area R1 based on the existing position of the oncoming vehicle 100 which is the specific target. For example, the illuminance setting unit 42 determines the specific individual region R1 based on the position information of the oncoming vehicle 100 included in the detection result of the tracking unit 40. For setting of the specific individual region R1, for example, the illuminance setting unit 42 is a predetermined predetermined for the horizontal distance a (see FIG. 3) between two light spots 102 corresponding to the headlights of the oncoming vehicle 100. A vertical distance b of the ratio is determined, and an individual area R overlapping with the dimension range of horizontal a ⁇ vertical b is defined as a specific individual area R1 (see FIG. 3). The specific individual area R1 includes an individual area R overlapping with the driver of the oncoming vehicle. Then, the illuminance setting unit 42 determines a specific illuminance value for the specific individual region R1.
  • the illuminance setting unit 42 also determines illuminance values for other individual regions R excluding the specific individual region R1. For example, the illuminance setting unit 42 sets the target luminance value to the same value for the individual region R in which the luminance detected by the luminance analysis unit 14 is included in the predetermined range among the individual regions R excluding the specific individual region R1. . That is, the brightness equalization control is performed.
  • the target luminance value means the luminance to be detected by the luminance analysis unit 14 in a state in which the light distribution pattern is formed.
  • FIG. 10 is a diagram showing a relationship between a detected luminance value and a set illuminance value in luminance equalization control.
  • a relatively high illuminance value is set and detected in the individual region R where the detected luminance is relatively low.
  • a relatively low illuminance value is set to the individual region R having a relatively high luminance.
  • the “predetermined range” may be the entire range of luminance detectable by the luminance analysis unit 14 or may be a partial range. In FIG. 10, the entire range of the luminance that can be detected by the luminance analysis unit 14 is the “predetermined range”.
  • FIGS. 11A to 11C are diagrams showing other examples of the relationship between the detected luminance value and the set illuminance value in the luminance equalization control. That is, in the example shown in FIG. 10, the set illuminance value is continuously and linearly changed with respect to the detected luminance value.
  • the present invention is not particularly limited to this relationship, and as shown in FIGS. 11A and 11B, the set illuminance value may be changed stepwise with respect to the detected luminance value. Further, as shown in FIG. 11C, the set illuminance value may be changed in a curved manner with respect to the detected luminance value. Although a curve convex upward is illustrated in FIG. 11C, it may be a curve convex downward.
  • the illuminance setting unit 42 may perform high contrast control instead of or in addition to the luminance equalization control.
  • the high contrast control an individual area R in which the luminance detected by the luminance analysis unit 14 is included in a predetermined range among the individual areas R excluding the specific individual area R1 is an individual area in which the detected luminance is relatively low.
  • a relatively low illuminance value is set to R, and a relatively high illuminance value is set to the individual region R where the detected luminance is relatively high.
  • the high contrast control forms a high contrast light distribution pattern.
  • the “predetermined range” may be the entire range of the luminance detectable by the luminance analysis unit 14 or a partial range. In FIGS. 12A and 12B described below, the entire range of luminance detectable by the luminance analysis unit 14 is the “predetermined range”.
  • the illuminance setting unit 42 sets an illuminance value lower than the illuminance value set for the individual area R whose luminance is higher than the threshold value.
  • an illuminance value higher than the illuminance value set for the individual area R whose luminance is lower than the threshold is set.
  • the degree of height of the illuminance value to be set can be appropriately set based on the result of the experiment or the simulation in consideration of the improvement degree of the detection accuracy of the target.
  • the illuminance value of the individual region R having a relatively low luminance is lower than the illuminance value of the individual region R having a relatively high luminance.
  • the illuminance value of the individual region R having a relatively high luminance is higher than the illuminance value of the individual region R having a relatively low luminance.
  • the illuminance setting unit 42 sets an illuminance value lower than the currently set illuminance value in the individual region R whose luminance is lower than the threshold.
  • an illuminance value higher than the currently set illuminance value is set in the individual region R whose luminance is higher than the threshold value. Note that, without using the threshold value, for example, the illuminance value to be set may be lowered as the luminance becomes lower on the basis of the luminance of the individual region R having the highest luminance.
  • the high contrast light distribution pattern is a light distribution pattern in which the bright individual regions R become brighter and the dark individual regions R become darker. According to the high-contrast light distribution pattern, the light-and-dark contrast is enhanced in the irradiation target in front of the vehicle. Thereby, the detection accuracy of the target by the target analysis unit 216 can be improved by a method or an aspect different from the luminance uniformization light distribution pattern.
  • the newly set relatively low illuminance value becomes the illuminance value lower than the currently set illuminance value, and the newly set relatively high illuminance value is currently set.
  • the illuminance value may be higher than the illuminance value. Therefore, when formation of the high contrast light distribution pattern is repeated, positive feedback is applied, and eventually the set illuminance value is bipolarized to 0 and the maximum value. When the illuminance value is bipolarized, it may be difficult to ensure the visibility of the driver in the individual region R where the illuminance value 0 is set.
  • FIG. 12A is a diagram showing the relationship between the detected luminance value and the coefficient in high contrast control.
  • FIG. 12B is a diagram showing the relationship between the detected luminance value and the set illuminance value in high contrast control.
  • the illuminance setting unit 42 has a predetermined coefficient set in advance according to the magnitude of the detected luminance value.
  • a relatively large coefficient is set to a relatively large detected luminance value, and a relatively small coefficient is set to a relatively small detected luminance value.
  • the value of the coefficient can be appropriately set based on the result of experiment or simulation in consideration of the improvement degree of the detection accuracy of the target and the like.
  • the coefficient 1.0 is set for the threshold of the detected luminance value
  • the coefficient 1.5 is set for the maximum luminance value
  • the coefficient 0.5 is set for the minimum luminance value.
  • the illuminance setting unit 42 sets a coefficient for the individual area R excluding the specific individual area R1, based on the detection result of the luminance analysis unit 14.
  • the illuminance setting unit 42 has a predetermined reference illuminance value M set in advance.
  • the illuminance setting unit 42 multiplies the reference illuminance value M by the coefficient set in each individual region R, and sets the illuminance value of the individual region R.
  • a low illuminance value is set in the individual region R having a low detected luminance value
  • a high illuminance value is set in the individual region R having a high detected luminance value.
  • the coefficient, and the lower limit value and the upper limit value of the illuminance value instead of the reference illuminance value M can also be used by the driver due to the polarization of the illuminance value. A reduction in visibility can be avoided. That is, the illuminance setting unit 42 has the lower limit value and the upper limit value of the illuminance value set in advance. Then, the illuminance setting unit 42 sets, for each of the individual regions R, a predetermined coefficient in accordance with the magnitude of the detected luminance value. Then, the current illumination value is multiplied by the set coefficient to calculate a new illumination value.
  • the illuminance setting unit 42 updates the current illuminance value to the calculated illuminance value when the calculated illuminance value is equal to or more than the predetermined lower limit, and maintains the current illuminance value when the calculated illuminance value is lower than the lower limit. Do. Further, the illuminance setting unit 42 updates the current illuminance value to the calculated illuminance value when the calculated illuminance value is less than or equal to the predetermined upper limit value, and the current illuminance value when the calculated illuminance value exceeds the upper limit value. Maintain. In addition, if the illumination intensity setting unit 42 has at least the lower limit value of the illumination intensity value, setting of the illumination intensity value 0 for the dark individual region R can be avoided.
  • the driver's visibility due to the above-mentioned polarization can be achieved by providing another light source unit (not shown) controlled independently of the light source unit 10. It is possible to avoid the drop.
  • the driver can operate a light switch (not shown) provided on the vehicle to switch on / off and switch the type of light distribution pattern to be formed.
  • a lamp unit is provided.
  • the said lamp unit can form the light distribution pattern for low beams conventionally known, the light distribution pattern for high beams, etc.
  • the light distribution pattern formed by the lamp unit is usually referred to as a light distribution pattern.
  • the illuminance setting unit 42 performs high contrast control under a situation where a light distribution pattern is normally formed by the lamp unit. As a result, the high contrast light distribution pattern is superimposed on the normal light distribution pattern. Even if the illuminance of each individual region R in the high contrast light distribution pattern is bipolarized, the normal light distribution pattern is irradiated to the individual region R with low illuminance in the high contrast light distribution pattern, so the driver sees It is possible to secure the sex.
  • the illuminance setting unit 42 forms, with the light source unit 10, a light distribution pattern in which the illuminance of all the individual regions R excluding the specific individual region R1 is constant at the beginning of high contrast control.
  • the luminance of each individual region R obtained by the irradiation of the constant illuminance light distribution pattern is used to form a high contrast light distribution pattern.
  • the normal light distribution pattern may be formed by the lamp unit at the beginning of the high contrast control. In this case, the luminance of each individual region R obtained by the irradiation of the normal light distribution pattern is used to form the high contrast light distribution pattern.
  • FIGS. 13A to 13C are diagrams showing other examples of the relationship between the detected luminance value and the set illuminance value in the high contrast control. That is, in the example shown in FIG. 12B, the set illuminance value is continuously and linearly changed with respect to the detected luminance value.
  • the present invention is not particularly limited to this relationship, and as shown in FIGS. 13A and 13B, the set illuminance value may be changed stepwise with respect to the detected luminance value. Further, as shown in FIG. 13C, the set illuminance value may be changed in a curved manner with respect to the detected luminance value. Although a curve convex upward is illustrated in FIG. 13C, it may be a curve convex downward. Further, since the relationship between the detected luminance value and the coefficient is similar to the relationship between the detected luminance value and the set illuminance value, it is obvious that it is not shown.
  • the illuminance setting unit 42 recognizes the displacement of the specific individual region R1 based on the detection result of the tracking unit 40, and updates the position information of the specific individual region R1. Then, the illuminance value of each individual area R including the specific illuminance value for the specific individual area R1 is updated.
  • the processing by the tracking unit 40 and the processing by the illuminance setting unit 42 are simultaneously performed at least temporarily.
  • the illuminance setting unit 42 transmits a signal indicating the illuminance value of each individual region R to the light source control unit 20.
  • the illuminance setting unit 42 sets the illuminance value, for example, every 0.1 to 5 ms.
  • the light source control unit 20 controls the light source unit 10 based on the illuminance value determined by the illuminance setting unit 42.
  • the light source control unit 20 controls turning on / off of the light source 22 and on / off switching of each mirror element 30.
  • the light source control unit 20 adjusts the on time ratio (width or density) of each mirror element 30 based on the illuminance value of the light emitted to each of the individual regions R. Thereby, the illumination intensity of the light irradiated to each separate area
  • the light source control unit 20 transmits a drive signal to the light source 22 and / or the light deflector 26 every 0.1 to 5 ms, for example.
  • Light is emitted from the light source unit 10 based on the illuminance value determined by the illuminance setting unit 42, and the luminance value of each actual individual region R as a result is detected by the luminance analysis unit 14. Then, based on the detection result, the illuminance setting unit 42 sets the illuminance value again.
  • the vehicle lamp system 1 executes ADB (Adaptive Driving Beam) control that forms an optimal light distribution pattern according to the position of a specific target ahead of the host vehicle.
  • ADB Adaptive Driving Beam
  • the illuminance setting unit 42 sets the specific illuminance value “0” to the specific individual area R1 determined according to the existing position of the oncoming vehicle 100, and the illuminance value “1” to the other individual areas R. Set ".
  • This setting is referred to as first illuminance information.
  • the illuminance setting unit 42 sets illuminance values for all the individual regions R including the specific individual region R1 in accordance with the luminance equalization control or the high contrast control. This setting is taken as second illumination information.
  • the illuminance setting unit 42 performs an AND operation on the first illuminance information and the second illuminance information.
  • illuminance information is generated in which the specific illuminance value for the specific individual region R1 is “0” and the illuminance value for the other individual regions R is determined according to the brightness equalization control or the high contrast control. That is, the specific individual area R1 is shielded from light, and a brightness uniform light distribution pattern or a high contrast light distribution pattern is formed in each individual area R excluding the specific individual area R1.
  • a specific target is the pedestrian 200
  • a specific target luminance value is set to a high value compared with other separate area
  • the tracking unit 40 can detect the position of the pedestrian 200 by performing well-known image processing such as edge enhancement on the luminance data of each individual region R, which is the detection result of the luminance analysis unit 14. Edge emphasis may be included in the processing of the luminance analysis unit 14.
  • FIGS. 14A and 14B are flowcharts showing an example of ADB control executed in the vehicle lamp system according to the fifth embodiment. This flow is repeatedly executed at a predetermined timing when, for example, an ADB control execution instruction is issued by a light switch (not shown) and the ignition is on, and the ADB control execution instruction is canceled (or a stop instruction is issued). Or end when the ignition is turned off.
  • the flow shown in FIG. 14A is high-speed processing repeated every 0.1 to 5 ms, for example, and the flow shown in FIG. 14B is low-speed processing repeated every 50 ms, for example. The low speed processing and the high speed processing are performed in parallel.
  • the luminance analysis unit 14 detects the luminance of each individual region R based on the image data of the high-speed camera 36 (S2102).
  • the image data of the far infrared camera 54 is sent to the target analysis unit 216.
  • the tracking unit 40 tracks the specific target to detect the position (displacement) of the specific individual area R1.
  • the illuminance setting unit 42 updates the setting (position information) of the specific individual region R1 based on the detection result of the tracking unit 40 (S2104).
  • the illuminance setting unit 42 sets the illuminance value of the light irradiated to each of the individual regions R (S2105).
  • a specific illuminance value is set for the specific individual area R1.
  • illuminance values are set according to the luminance uniformization light distribution pattern or the high contrast light distribution pattern.
  • the light source unit 10 is driven by the light source control unit 20, and light of a predetermined illuminance is emitted from the light source unit 10 (S2106), and this routine ends.
  • the specific individual region R1 is not set (N in S2103)
  • the illuminance setting unit 42 sets the illuminance value of the light to be irradiated to the individual region R (S2105). In this case, the set illuminance value does not include the specified illuminance value.
  • the process of step S2106 is performed, and the present routine ends.
  • step S2104 when the disappearance of the specific target is detected by tracking, the setting of the specific individual region R1 also disappears. Therefore, the specific illuminance value is not included in the illuminance values set in step S2105.
  • step S2103 in the next routine it is determined that the specific individual area R1 is not set (N in S2103) until the process of step S2205 described later is executed.
  • the target analyzing unit 216 detects a target present ahead of the vehicle (S2202). Next, it is determined whether a specific target is included in the detected targets (S2203). The determination is performed by the tracking unit 40, for example.
  • the tracking unit 40 determines the specific target (S2204).
  • the specific individual area R1 is set by the illuminance setting unit 42 based on the existing position of the specific target (S2205), and this routine ends. If the specific target is not included (N in S2203), this routine ends. Although the specific individual area is set in the low speed processing in the flowchart, the setting may be performed in the high speed processing.
  • the vehicle lamp system 1 includes the light source unit 10, the visible light imaging unit 35, the far infrared imaging unit 52, the luminance analysis unit 14, and the target analysis unit 216. , A tracking unit 40, an illuminance setting unit 42, and a light source control unit 20.
  • the light source unit 10 can independently adjust the illuminance of light emitted to each of the plurality of individual regions R.
  • the luminance analysis unit 14 detects the luminance of each individual region R.
  • the target analysis unit 216 detects a target present ahead of the vehicle.
  • the tracking unit 40 determines a specific target from among the targets detected by the target analysis unit 216, and detects the displacement of the specific target based on the detection result of the luminance analysis unit 14.
  • the illuminance setting unit 42 includes each individual region including the specific illuminance value for the specific individual region R1 determined according to the existing position of the specific target based on the detection result of the luminance analysis unit 14 and the detection result of the tracking unit 40. Determine the illuminance value of R.
  • the light source control unit 20 controls the light source unit 10 based on the illuminance value determined by the illuminance setting unit 42.
  • the target analysis unit 216 detects a target based on the image data obtained from the visible light imaging unit 35 and the image data obtained from the far infrared imaging unit 52. Therefore, the target can be detected more accurately than in the case where the target is detected based on only the image data of the visible light imaging unit 35.
  • the target analysis unit 216 can detect the target with high accuracy, it takes a relatively long time for image processing, so the analysis speed is low. For this reason, when ADB control is executed based only on the analysis result of the target analysis unit 216, for example, when the specific target is the oncoming vehicle 100, light distribution in which the light shielding region is narrowed to improve the visibility of the driver of the vehicle Although formation of a pattern is possible, it is difficult to make the light shielding region follow the displacement of the oncoming vehicle 100 with high accuracy.
  • the luminance analysis unit 14 that performs simple luminance detection can perform high-speed analysis because the time required for image processing is relatively short.
  • the detection accuracy of the target is low, it is difficult to accurately grasp the position of the target. For this reason, if ADB control is executed based only on the analysis result of the luminance analysis unit 14, it is necessary to set the light shielding region of the light distribution pattern wider, which is a sacrifice of the driver's visibility.
  • the target analysis unit 216 which is a low speed but advanced image analysis means
  • the luminance analysis unit 14 which is a simple but high speed image analysis means
  • the position of the oncoming vehicle 100 is known with high accuracy, and the light distribution pattern is determined. Therefore, it is possible to increase the irradiation accuracy of light in the vehicular lamp 2, in other words, the formation accuracy of the light distribution pattern. As a result, it is possible to achieve both avoidance of glare given to the driver of the oncoming vehicle 100 and securing of the visibility of the driver of the own vehicle on a higher level.
  • the visible light imaging unit 35 of the present embodiment includes a high speed camera 36 and a low speed camera 38. Then, the luminance analysis unit 14 detects the luminance based on the information obtained from the high speed camera 36. Further, the target analysis unit 216 detects a target based on the information obtained from the low speed camera 38 and the far infrared imaging unit 52. As described above, by allocating the camera to each of the luminance analysis unit 14 and the target analysis unit 216, it is possible to adopt a camera specialized for the performance required for each image analysis. Generally, a camera having the performance required for the image analysis of the luminance analysis unit 14 and the target analysis unit 216 is expensive. Therefore, according to the present embodiment, the cost of the imaging unit 12 can be reduced, and the cost of the vehicle lamp system 1 can be reduced.
  • the illuminance setting unit 42 forms a luminance uniformization light distribution pattern and / or a high contrast light distribution pattern for the individual region R excluding the specific individual region R1. Thereby, the detection accuracy of the target by the target analysis unit 216 can be improved. As a result, the irradiation accuracy of light in the vehicular lamp 2 can be further enhanced.
  • the vehicle lamp system according to the sixth embodiment has the configuration of the vehicle lamp system according to the fifth embodiment except that the tracking unit 40 executes tracking based on the image data of the far infrared imaging unit 52. It is common.
  • the vehicle lamp system according to the sixth embodiment will be described focusing on a configuration different from that of the fifth embodiment, and the common configuration will be briefly described or omitted.
  • the vehicle lamp system 1 includes the visible light imaging unit 35, the far infrared imaging unit 52, the luminance analysis unit 14, the target analysis unit 216, and tracking.
  • a light source control unit 20 and a light source unit 10 are provided.
  • the tracking unit 40 of the present embodiment detects the displacement of the specific target based on the image data of the far infrared imaging unit 52. Therefore, the far-infrared camera 54 is preferably a camera as fast as the high-speed camera 36. For example, the frame rate is 200 fps or more and 10000 fps or less (0.1 to 5 ms per frame). Specifically, the image data of the far-infrared imaging unit 52 is sent to the lamp control unit 18 every 0.1 to 5 ms, for example, via the target analysis unit 216. The tracking unit 40 associates the temperature value of the individual region R in which the specific target is located among the temperature values of the individual regions R detected by the far infrared imaging unit 52 with the specific target. The tracking unit 40 can detect the displacement of the specific target by recognizing the position of the temperature value associated with the specific target in the image data of the far infrared imaging unit 52 acquired thereafter. Also according to the present embodiment, the same effect as that of the fifth embodiment can be obtained.
  • the individual region R associated with the specific target on the image data of the far infrared imaging unit 52 is likely to overlap the driver of the oncoming vehicle 100 when the specific target is the oncoming vehicle 100, for example.
  • the illuminance setting unit 42 may set the individual area R itself associated with the specific target as the specific individual area R1.
  • the vehicle lamp system according to the fifth or sixth embodiment is that the target analysis unit 216 detects the target based only on the image data of the far infrared imaging unit 52. It differs greatly.
  • a vehicle lamp system according to the seventh embodiment will be described focusing on a configuration different from the fifth embodiment or the sixth embodiment, and the common configuration will be briefly described or omitted.
  • FIG. 15 is a diagram showing a schematic configuration of a vehicle lamp system according to a seventh embodiment.
  • a vehicle lamp system 1 (1B) according to the present embodiment includes a light source unit 10, a visible light imaging unit 35, a far infrared imaging unit 52, and a control device 50.
  • the structure of the light source unit 10 is the same as that of the light source unit 10 of the fifth embodiment.
  • the visible light imaging unit 35 includes only the high speed camera 36.
  • the far infrared imaging unit 52 includes a far infrared camera 54.
  • the control device 50 includes a brightness analysis unit 14, a target analysis unit 216, a lamp control unit 18, and a light source control unit 20.
  • the luminance analysis unit 14 detects the luminance of each individual area R based on the information obtained from the high-speed camera 36.
  • the luminance analysis unit 14 detects the luminance of each individual area R, for example, every 0.1 to 5 ms.
  • the target analysis unit 216 detects a target present ahead of the host vehicle based on only the information obtained from the far infrared imaging unit 52.
  • the target analysis unit 216 determines that all objects having a temperature value equal to or greater than a predetermined temperature value are targets. Further, in the present embodiment, all targets detected by the target analysis unit 216 are used as specific targets.
  • the far infrared camera 54 is preferably a camera as fast as the high speed camera 36, and has a frame rate of 200 fps to 10000 fps (0.1 to 5 ms per frame), for example. Therefore, the target analysis unit 216 detects the target every 0.1 to 5 ms, for example.
  • the target analysis unit 216 since all targets detected by the target analysis unit 216 are specified targets, repetition of target detection by the target analysis unit 216 is equivalent to displacement detection of a specific target. Therefore, the target analysis unit 216 also functions as the tracking unit 40 in the fifth embodiment. Therefore, the lamp control unit 18 of the present embodiment includes the illuminance setting unit 42 but does not include the tracking unit 40.
  • the illuminance setting unit 42 determines the illuminance value of light to be applied to each individual region R including the specific illuminance value for the specific individual region R1 based on the detection result of the luminance analysis unit 14 and the detection result of the target object analyzing unit 216. Determined.
  • the light source control unit 20 controls the light source unit 10 based on the illuminance value determined by the illuminance setting unit 42.
  • the target analysis unit 216 may execute target detection by limiting the image data of the far infrared imaging unit 52 to a predetermined area.
  • region the area
  • a plurality of areas for performing target detection may be provided, and the setting of the specific illuminance value may be different for each area. For example, all targets detected in an area where it is estimated that an oncoming vehicle or a preceding vehicle is present are shielded, and all targets detected in an area where it is estimated that a pedestrian is present are all irradiated with light of high illuminance. .
  • the target is detected using the high speed far infrared camera 54 as in the high speed camera 36. Therefore, the target detection process shown in FIG. 14B, which has been described as the low speed process in the fifth embodiment, can be executed at the same speed as the high speed process shown in FIG.
  • step S2101 in FIG. 14A is read as “imaged with a high-speed camera”
  • step S2201 in FIG. 14B is read as “imaged with a far infrared camera”. Therefore, the formed light distribution pattern can be made to quickly follow changes in the situation ahead of the vehicle. Therefore, the irradiation precision of the light in the vehicle lamp 2 can be raised.
  • the present invention is not limited to the above-described fifth to seventh embodiments, and various modifications such as various design changes can be added based on the knowledge of those skilled in the art, or by combining the respective embodiments. New embodiments obtained by such combination or modification are also included in the scope of the present invention. Such new embodiments combine the effects of the combined embodiments and variations.
  • the visible light imaging unit 35, the far infrared imaging unit 52, the luminance analysis unit 14, the target analysis unit 216, the lamp control unit 18, and the light source control unit 20 are provided in the lamp chamber 8. However, each may be provided outside the lamp chamber 8 as appropriate.
  • the low-speed camera 38 of the visible light imaging unit 35 can use an existing camera mounted in the vehicle compartment. It is desirable that the visible light imaging unit 35 and the light source unit 10, and the far infrared imaging unit 52 and the light source unit 10 have the same angle of view.
  • the target analysis unit 216 detects a target using the image data of the far infrared imaging unit 52 and the high speed camera 36.
  • the light source unit 10 may be provided with a scanning optical system for scanning the front of the vehicle with light source light or an LED array in which LEDs corresponding to the individual regions R are arrayed, instead of the light deflection device 26 which is a DMD.
  • a luminance analysis unit 14 that detects the luminance of each of a plurality of individual regions R arranged in front of the vehicle based on the information obtained from the visible light imaging unit 35;
  • a target analysis unit 216 that detects a target present ahead of the vehicle based on at least information obtained from the far infrared imaging unit 52; Based on the detection result of the luminance analysis unit 14 and the detection result of the target analysis unit 216, each individual area R is irradiated including the specific illuminance value for the specific individual area R1 determined according to the existing position of the predetermined target
  • An illuminance setting unit 42 for determining an illuminance value of light;
  • a light source control unit 20 for controlling the light source unit 10 capable of independently adjusting the illuminance of light to be irradiated to each individual region R based on the illuminance value determined by the illuminance setting unit 42;
  • the control apparatus 50 of the vehicle lamp 2 provided with this.
  • the present invention can be used for a vehicle lamp system, a control device of a vehicle lamp, and a control method of a vehicle lamp.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

車両用灯具システム(1)は、撮像部(12)と、撮像部(12)から得られる情報に基づいて、自車前方に並ぶ複数の個別領域それぞれの輝度を検出する輝度解析部(14)と、輝度解析部(14)の検出結果に基づいて、各個別領域に照射する光の照度値を定める照度設定部(42)と、複数の個別領域それぞれに照射する光の照度を独立に調節可能な光源部(10)と、照度設定部(42)が定めた照度値に基づいて光源部(10)を制御する光源制御部(20)とを備える。照度設定部(42)は、所定の第1輝度範囲に含まれる個別領域と、所定の第2輝度範囲に含まれる個別領域とで、異なる関数を用いて照度値を定める。

Description

車両用灯具システム、車両用灯具の制御装置及び車両用灯具の制御方法
 本発明は、車両用灯具システム、車両用灯具の制御装置及び車両用灯具の制御方法に関し、特に自動車などに用いられる車両用灯具システム、車両用灯具の制御装置及び車両用灯具の制御方法に関する。
 従来、様々な配光パターンを形成可能な車両用灯具が知られている。例えば、特許文献1には、複数の微小ミラーをアレイ状に配列したDMD(Digital Mirror Device)を用いて配光パターンを形成する技術が開示されている。また、特許文献2には、光源光で自車前方を走査するスキャン光学系を用いて配光パターンを形成する技術が開示されている。また、特許文献3には、LEDアレイを用いて配光パターンを形成する技術が開示されている。また、自車前方の車両等の位置に応じて配光パターンを形成するADB(Adaptive Driving Beam)制御を、これらの車両用灯具を用いて実行することが知られている。
特開2015-064964号公報 特開2012-227102号公報 特開2008-094127号公報
 本発明者らは、従来の車両用灯具について鋭意検討を重ねた結果、形成可能な配光パターンの種類を増やす余地があることを認識するに至った。また本発明者らは、ADB制御について鋭意検討を重ねた結果、自車前方の状況に応じて光を照射する際の照射精度をより高める余地があることを認識するに至った。
 本発明はこうした状況に鑑みてなされたものであり、その目的の1つは、形成可能な配光パターンの種類を増やす技術を提供することにある。また、本発明の目的の他の1つは、車両用灯具における光の照射精度を高める技術を提供することにある。
 上記課題を解決するために、本発明のある態様は車両用灯具システムである。当該システムは、自車前方を撮像する撮像部と、撮像部から得られる情報に基づいて、自車前方に並ぶ複数の個別領域それぞれの輝度を検出する輝度解析部と、輝度解析部の検出結果に基づいて、各個別領域に照射する光の照度値を定める照度設定部と、複数の個別領域それぞれに照射する光の照度を独立に調節可能な光源部と、照度設定部が定めた照度値に基づいて光源部を制御する光源制御部と、を備える。照度設定部は、所定の第1輝度範囲に含まれる個別領域と、所定の第2輝度範囲に含まれる個別領域とで、異なる関数を用いて照度値を定める。この態様によれば、形成可能な配光パターンの種類を増やすことができる。
 上記態様において、照度設定部は、第1輝度範囲に含まれる個別領域について輝度解析部により検出される輝度に依存して照度値を設定し、第2輝度範囲に含まれる個別領域について輝度解析部により検出される輝度に依存せずに照度値を設定してもよい。また、上記態様において、照度設定部は、第1輝度範囲に含まれる個別領域及び第2輝度範囲に含まれる個別領域に対して、輝度解析部により検出される輝度に依存して照度値を設定し、第1輝度範囲と第2輝度範囲とでは、検出輝度と設定照度との対応関係が異なってもよい。また、上記態様において、第1輝度範囲は、第2輝度範囲よりも輝度が低くてもよい。また、上記態様において、第1輝度範囲に含まれる個別領域の照度値は、輝度と正の相関関係にあってもよい。また、上記態様において、第1輝度範囲に含まれる個別領域の照度値及び第2輝度範囲に含まれる個別領域の照度値は、輝度と正の相関関係にあってもよい。また、上記いずれかの態様において、照度設定部は、第1輝度範囲及び第2輝度範囲よりも輝度が高い所定の第3輝度範囲に含まれる個別領域について、輝度解析部により検出される輝度に依存して且つ輝度と負の相関関係にある照度値を設定するか、輝度解析部により検出される輝度に依存せずに照度値0を設定してもよい。
 本発明の他の態様は、車両用灯具の制御装置である。当該制御装置は、自車前方を撮像する撮像部から得られる情報に基づいて、自車前方に並ぶ複数の個別領域それぞれの輝度を検出する輝度解析部と、輝度解析部の検出結果に基づいて、各個別領域に照射する光の照度値を定める照度設定部と、照度設定部が定めた照度値に基づいて、各個別領域に照射する光の照度を独立に調節可能な光源部を制御する光源制御部と、を備える。照度設定部は、輝度が所定の第1範囲に含まれる個別領域と、輝度が所定の第2範囲に含まれる個別領域とで、異なる関数を用いて照度値を定める。
 また、本発明の他の態様は、車両用灯具の制御方法である。当該制御方法は、自車前方を撮像する撮像部から得られる情報に基づいて、自車前方に並ぶ複数の個別領域それぞれの輝度を検出するステップと、検出した輝度に基づいて、各個別領域に照射する光の照度値を定めるステップと、定めた照度値に基づいて、各個別領域に照射する光の照度を独立に調節可能な光源部を制御するステップと、を含む。照度値を定めるステップにおいて、輝度が所定の第1範囲に含まれる個別領域と、輝度が所定の第2範囲に含まれる個別領域とで、異なる関数を用いて照度値を定める。
 また、本発明の他の態様は車両用灯具システムである。当該システムは、可視光撮像部と、遠赤外撮像部と、可視光撮像部から得られる情報に基づいて、自車前方に並ぶ複数の個別領域それぞれの輝度を検出する輝度解析部と、少なくとも遠赤外撮像部から得られる情報に基づいて、自車前方に存在する物標を検出する物標解析部と、輝度解析部の検出結果と物標解析部の検出結果とに基づいて、所定の物標の存在位置に応じて定まる特定個別領域に対する特定照度値を含む、各個別領域に照射する光の照度値を定める照度設定部と、複数の個別領域それぞれに照射する光の照度を独立に調節可能な光源部と、照度設定部が定めた照度値に基づいて光源部を制御する光源制御部と、を備える。この態様によれば、車両用灯具における光の照射精度を高めることができる。
 上記態様において、可視光撮像部は、高速カメラと低速カメラとを含み、輝度解析部は、高速カメラから得られる情報に基づいて輝度を検出し、物標解析部は、低速カメラ及び遠赤外撮像部から得られる情報に基づいて物標を検出し、本車両用灯具システムは、物標解析部により検出された物標の中から特定物標を決定して特定物標の変位を検出するトラッキング部をさらに備え、照度設定部は、輝度解析部の検出結果とトラッキング部の検出結果とに基づいて、特定物標の存在位置に応じて定まる特定個別領域に対する特定照度値を含む、各個別領域に照射する光の照度値を定めてもよい。また、上記いずれかの態様において、照度設定部は、特定個別領域を除く個別領域のうち、輝度解析部により検出された輝度が所定の範囲に含まれる個別領域について、検出された輝度が相対的に低い個別領域には相対的に低い照度値を設定し、検出された輝度が相対的に高い個別領域には相対的に高い照度値を設定してもよい。
 本発明の他の態様は、車両用灯具の制御装置である。当該制御装置は、可視光撮像部から得られる情報に基づいて、自車前方に並ぶ複数の個別領域それぞれの輝度を検出する輝度解析部と、少なくとも遠赤外撮像部から得られる情報に基づいて、自車前方に存在する物標を検出する物標解析部と、輝度解析部の検出結果と物標解析部の検出結果とに基づいて、所定の物標の存在位置に応じて定まる特定個別領域に対する特定照度値を含む、各個別領域に照射する光の照度値を定める照度設定部と、照度設定部が定めた照度値に基づいて、各個別領域に照射する光の照度を独立に調節可能な光源部を制御する光源制御部と、を備える。
 また、本発明の他の態様は、車両用灯具の制御方法である。当該制御方法は、可視光撮像部から得られる情報に基づいて、自車前方に並ぶ複数の個別領域それぞれの輝度を検出するステップと、少なくとも遠赤外撮像部から得られる情報に基づいて、自車前方に存在する物標を検出するステップと、輝度を検出するステップの検出結果と物標を検出するステップの検出結果とに基づいて、所定の物標の存在位置に応じて定まる特定個別領域に対する特定照度値を含む、各個別領域に照射する光の照度値を定めるステップと、定められた照度値に基づいて、各個別領域に照射する光の照度を独立に調節可能な光源部を制御するステップと、を含む。
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム等の間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、形成可能な配光パターンの種類を増やすことができる。また、本発明によれば、車両用灯具における光の照射精度を高めることができる。
実施の形態1に係る車両用灯具システムの概略構成を示す図である。 図2(A)は、光偏向装置の概略構成を示す正面図である。図2(B)は、図2(A)に示す光偏向装置のA-A断面図である。 自車前方の様子を模式的に示す図である。 図4(A)~図4(D)は、実施の形態1における検出輝度値と設定照度値との関係を示す図である。 図5(A)及び図5(B)は、実施の形態1に係る車両用灯具システムにおいて実行されるADB制御の一例を示すフローチャートである。 図6(A)及び図6(B)は、実施の形態2における検出輝度値と設定照度値との関係を示す図である。 図7(A)は、実施の形態3における検出輝度値と設定照度値との関係を示す図である。図7(B)は、実施の形態4における検出輝度値と設定照度値との関係を示す図である。 変形例における検出輝度値と設定照度値との関係を示す図である。 実施の形態5に係る車両用灯具システムの概略構成を示す図である。 輝度均一化制御における検出輝度値と設定照度値との関係を示す図である。 図11(A)~図11(C)は、輝度均一化制御における検出輝度値と設定照度値との関係の他の例を示す図である。 図12(A)は、ハイコントラスト制御における検出輝度値と係数との関係を示す図である。図12(B)は、ハイコントラスト制御における検出輝度値と設定照度値との関係を示す図である。 図13(A)~図13(C)は、ハイコントラスト制御における検出輝度値と設定照度値との関係の他の例を示す図である。 図14(A)及び図14(B)は、実施の形態5に係る車両用灯具システムにおいて実行されるADB制御の一例を示すフローチャートである。 実施の形態7に係る車両用灯具システムの概略構成を示す図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、特に言及がない限り、この用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。
(実施の形態1)
 図1は、実施の形態1に係る車両用灯具システムの概略構成を示す図である。図1では、車両用灯具システム1の構成要素の一部を機能ブロックとして描いている。これらの機能ブロックは、ハードウェア構成としてはコンピュータのCPUやメモリをはじめとする素子や回路で実現され、ソフトウェア構成としてはコンピュータプログラム等によって実現される。これらの機能ブロックがハードウェア、ソフトウェアの組合せによっていろいろなかたちで実現できることは、当業者には理解されるところである。
 車両用灯具システム1は、車両前方の左右に配置される一対の前照灯ユニットを有する車両用前照灯装置に適用される。一対の前照灯ユニットは左右対称の構造を有する点以外は実質的に同一の構成であるため、図1には車両用灯具2として一方の前照灯ユニットの構造を示す。車両用灯具システム1が備える車両用灯具2は、車両前方側に開口部を有するランプボディ4と、ランプボディ4の開口部を覆うように取り付けられた透光カバー6とを備える。透光カバー6は、透光性を有する樹脂やガラス等で形成される。ランプボディ4と透光カバー6とにより形成される灯室8内には、光源部10と、撮像部12と、制御装置50とが収容される。
 光源部10は、自車前方に並ぶ複数の個別領域(図3参照)のそれぞれに照射する光の照度(強度)を独立に調節可能な装置である。光源部10は、光源22と、反射光学部材24と、光偏向装置26と、投影光学部材28とを有する。各部は、図示しない支持機構によりランプボディ4に取り付けられる。
 光源22は、LED(Light emitting diode)、LD(Laser diode)、EL(Electroluminescence)素子等の半導体発光素子や、電球、白熱灯(ハロゲンランプ)、放電灯(ディスチャージランプ)等を用いることができる。
 反射光学部材24は、光源22から出射した光を光偏向装置26の反射面に導くように構成される。反射光学部材24は、内面が所定の反射面となっている反射鏡で構成される。なお、反射光学部材24は、中実導光体などであってもよい。また、光源22から出射した光を光偏向装置26に直接導くことができる場合は、反射光学部材24を設けなくてもよい。
 光偏向装置26は、投影光学部材28の光軸上に配置され、光源22から出射された光を選択的に投影光学部材28へ反射するように構成される。光偏向装置26は、例えばDMD(Digital Mirror Device)で構成される。すなわち、光偏向装置26は、複数の微小ミラーをアレイ(マトリックス)状に配列したものである。これらの複数の微小ミラーの反射面の角度をそれぞれ制御することで、光源22から出射された光の反射方向を選択的に変えることができる。つまり、光偏向装置26は、光源22から出射された光の一部を投影光学部材28へ向けて反射し、それ以外の光を、投影光学部材28によって有効に利用されない方向へ向けて反射することができる。ここで、有効に利用されない方向とは、例えば、投影光学部材28には入射するが配光パターンの形成にほとんど寄与しない方向や、図示しない光吸収部材(遮光部材)に向かう方向と捉えることができる。
 図2(A)は、光偏向装置の概略構成を示す正面図である。図2(B)は、図2(A)に示す光偏向装置のA-A断面図である。光偏向装置26は、複数の微小なミラー素子30がマトリックス状に配列されたマイクロミラーアレイ32と、ミラー素子30の反射面30aの前方側(図2(B)に示す光偏向装置26の右側)に配置された透明なカバー部材34とを有する。カバー部材34は、例えば、ガラスやプラスチック等で構成される。
 ミラー素子30は略正方形であり、水平方向に延びミラー素子30をほぼ等分する回動軸30bを有する。マイクロミラーアレイ32の各ミラー素子30は、光源22から出射された光を所望の配光パターンの一部として利用されるように投影光学部材28へ向けて反射する第1反射位置(図2(B)において実線で示す位置)と、光源22から出射された光が有効に利用されないように反射する第2反射位置(図2(B)において点線で示す位置)とを切り替え可能に構成されている。各ミラー素子30は、回動軸30b周りに回動して、第1反射位置と第2反射位置との間で個別に切り替えられる。各ミラー素子30は、オン時に第1反射位置をとり、オフ時に第2反射位置をとる。
 図3は、自車前方の様子を模式的に示す図である。上述のように光源部10は、灯具前方に向けて互いに独立に光を照射可能な個別照射部としてのミラー素子30を複数有する。光源部10は、ミラー素子30によって自車前方に並ぶ複数の個別領域Rに光を照射することができる。各個別領域Rは、撮像部12、より具体的には例えば高速カメラ36の1ピクセル又は複数ピクセルの集合に対応する領域である。本実施の形態では、各個別領域Rと各ミラー素子30とが対応付けられている。
 図2(A)及び図3では、説明の便宜上、ミラー素子30及び個別領域Rを横10×縦8の配列としているが、ミラー素子30及び個別領域Rの数は特に限定されない。例えば、マイクロミラーアレイ32の解像度(言い換えればミラー素子30及び個別領域Rの数)は1000~30万ピクセルである。また、光源部10が1つの配光パターンの形成に要する時間は、例えば0.1~5msである。すなわち、光源部10は、0.1~5ms毎に配光パターンを変更することができる。
 図1に示すように、投影光学部材28は、例えば、前方側表面及び後方側表面が自由曲面形状を有する自由曲面レンズからなる。投影光学部材28は、その後方焦点を含む後方焦点面上に形成される光源像を、反転像として灯具前方に投影する。投影光学部材28は、その後方焦点が車両用灯具2の光軸上、且つマイクロミラーアレイ32の反射面の近傍に位置するように配置される。なお、投影光学部材28は、リフレクタであってもよい。
 光源22から出射された光は、反射光学部材24で反射されて、光偏向装置26のマイクロミラーアレイ32に照射される。光偏向装置26は、第1反射位置にある所定のミラー素子30によって投影光学部材28へ向けて光を反射する。この反射された光は、投影光学部材28を通過して灯具前方に進行し、各ミラー素子30に対応する各個別領域Rに照射される。これにより、所定形状の配光パターンが灯具前方に形成される。
 撮像部12は、自車前方を撮像する装置である。撮像部12は、高速カメラ36を含む。高速カメラ36は、比較的フレームレートが高く、例えば200fps以上10000fps以下(1フレームあたり0.1~5ms)である。また、高速カメラ36は、比較的解像度が小さく、例えば30万ピクセル以上500万ピクセル未満である。高速カメラ36は、全ての個別領域Rを撮像する。
 制御装置50は、輝度解析部14と、灯具制御部18と、光源制御部20とを有する。撮像部12が取得した画像データは、輝度解析部14に送られる。
 輝度解析部14は、撮像部12から得られる情報(画像データ)に基づいて、各個別領域Rの輝度を検出する。輝度解析部14は、高速に解析結果を出力する高速解析部である。本実施の形態の輝度解析部14は、高速カメラ36から得られる情報に基づいて、各個別領域Rの輝度を検出する。輝度解析部14は、例えば0.1~5ms毎に各個別領域Rの輝度を検出する。輝度解析部14の検出結果、すなわち個別領域Rの輝度情報を示す信号は、灯具制御部18に送信される。
 灯具制御部18は、各個別領域Rに照射する光の照度値を設定する。一例として、灯具制御部18は、照度設定部42を有する。照度設定部42は、輝度解析部14の検出結果に基づいて、各個別領域Rに照射する光の照度値を定める。また、照度設定部42は、所定の第1輝度範囲に含まれる個別領域Rと、所定の第2輝度範囲に含まれる個別領域Rとで、異なる関数を用いて照度値を定める。さらに、本実施の形態の照度設定部42は、第1輝度範囲に含まれる個別領域Rについて輝度解析部14により検出される輝度に依存して照度値を設定する。また、第2輝度範囲に含まれる個別領域Rについて輝度解析部14により検出される輝度に依存せずに照度値を設定する。
 図4(A)~図4(D)は、実施の形態1における検出輝度値と設定照度値との関係を示す図である。図4(A)~図4(D)に示すように、照度設定部42は、検出される輝度値に関して、所定の第1閾値T1と、第1閾値T1よりも大きい第2閾値T2とを有する。そして、照度設定部42は、最小の検出輝度値(例えば0)から第1閾値T1までの輝度範囲を、低輝度範囲L1と定める。また、第1閾値T1から第2閾値T2までの輝度範囲を、中輝度範囲L2と定める。さらに、第2閾値T2から最大の検出輝度値(例えば255)までの輝度範囲を、高輝度範囲L3と定める。
 本実施の形態では、低輝度範囲L1が第1輝度範囲に対応し、中輝度範囲L2が第2輝度範囲に対応し、高輝度範囲L3が後述する第3輝度範囲に対応する。したがって、本実施の形態では、第1輝度範囲は、第2輝度範囲よりも輝度が低い範囲である。なお、検出輝度値の階調は8bit(256階調)に限定されず、10bitや6bit等であってもよい。また、第1閾値T1及び第2閾値T2は、設計者による実験やシミュレーションに基づき適宜設定することが可能である。また、輝度範囲の分割数も3つに限定されず、2つや4つ以上であってもよい。
 低輝度範囲L1の個別領域Rに対して照度値を定める際に用いられる関数において、低輝度範囲L1に含まれる個別領域Rの照度値は、輝度と正の相関関係にある。つまり、低輝度範囲L1では、検出輝度値が大きいほど設定照度値も大きい。言い換えれば、照度設定部42は、低輝度範囲L1に含まれる個別領域Rに対して、ハイコントラスト配光パターンを形成する。ハイコントラスト配光パターンは、検出された輝度が相対的に低い個別領域Rには相対的に低い照度値が設定され、検出された輝度が相対的に高い個別領域Rには相対的に高い照度値が設定されて得られる配光パターンである。
 つまり、ハイコントラスト配光パターンは、低輝度範囲L1に含まれる個別領域Rのうち、明るい個別領域Rはより明るくなり、暗い個別領域Rはより暗くなる配光パターンである。ハイコントラスト配光パターンによれば、自車前方の照射対象物は、明暗コントラストが強調される。これにより、自車前方に存在する物標を運転者が視認しやすくなる。物標としては、対向車、歩行者、先行車、自車両の走行に支障を来す障害物、道路標識、道路標示、道路形状等が例示される。
 図4(A)及び図4(B)に示す例では、照度設定部42は、低輝度範囲L1に含まれる検出輝度値に一定のゲイン値を乗算して照度値を設定している。したがって、設定照度値は、検出輝度値が大きくなるにつれて線形に増加する。また、検出輝度値の階調よりも高い階調の照度値が設定される。ただし、図4(A)に示す例では、照度値の増加量(直線の傾き)が比較的小さく抑えられており、低輝度範囲L1と中輝度範囲L2との境界で照度値が不連続となっている。一方、図4(B)に示す例では、照度値の増加量が図4(A)に示す例に比べて大きく、低輝度範囲L1と中輝度範囲L2との境界で照度値が連続している。
 照度値を不連続とすることで、照度値の設定自由度を高めることができる。一方、照度値を連続させることで、照度値の設定自由度は低下するが、急激な照度値の変化によって運転者に与え得る違和感を抑制することができる。低輝度範囲L1と中輝度範囲L2との境界で照度値を連続させるか否かは、設計者による実験やシミュレーションに基づき適宜設定することが可能である。
 図4(C)及び図4(D)に示す例では、照度設定部42は、設定照度値が非線形に増加するように、低輝度範囲L1に含まれる検出輝度値に所定のゲイン値を乗算して照度値を設定している。なお、図4(C)及び図4(D)では、設定照度値は上に凸の非線形特性を有するが、下に凸の非線形特性を有してもよい。また、図4(C)及び図4(D)に示す例では、低輝度範囲L1と中輝度範囲L2との境界で照度値が連続しているが、図4(A)に示す例と同様に、当該境界で照度値が不連続であってもよい。
 また、照度設定部42は、中輝度範囲L2に含まれる個別領域Rに対して、一定の照度値を設定する。本実施の形態では、中輝度範囲L2の個別領域Rに対して、光源部10が照射可能な最大の照度値を設定している。
 また、照度設定部42は、低輝度範囲L1及び中輝度範囲L2よりも輝度が高い所定の第3輝度範囲、すなわち高輝度範囲L3に含まれる個別領域Rについて、輝度解析部14により検出される輝度に依存して且つ輝度と負の相関関係にある照度値を設定するか、輝度解析部14により検出される輝度に依存せずに照度値0を設定する。高輝度範囲L3は、例えば対向車の前照灯や街路灯等の自発光体が存在する個別領域Rの輝度が属する範囲である。したがって、第2閾値T2は、自発光体の輝度未満の値である。
 図4(A)及び図4(C)に示す例では、高輝度範囲L3において照度値0が設定されている。したがって、高輝度範囲L3に含まれる個別領域Rは、遮光される。また、中輝度範囲L2と高輝度範囲L3との境界で照度値は不連続である。図4(B)及び図4(D)に示す例では、検出輝度に依存して且つ輝度と負の相関関係を有するように、照度値が設定されている。また、中輝度範囲L2と高輝度範囲L3との境界で照度値が連続している。図4(B)に示す例では、設定照度値は、検出輝度値が大きくなるにつれて線形に減少している。図4(D)に示す例では、設定照度値は、検出輝度値が大きくなるにつれて非線形に減少している。なお、図4(D)では、設定照度値は下に凸の非線形特性を有するが、上に凸の非線形特性を有してもよい。また、図4(B)及び図4(D)において、検出輝度値と設定照度値とに負の相関関係を持たせつつ、中輝度範囲L2と高輝度範囲L3との境界で照度値を不連続としてもよい。
 なお、図4(A)~図4(D)では、検出輝度値0に対して照度値0を設定しているが、特にこの構成に限定されない。例えば、検出輝度値0に対して0超の照度値を設定してもよい。これにより、ハイコントラスト配光パターンの形成において、検出輝度が相対的に低い個別領域Rに対してある程度の光が照射される。その結果、当該個別領域Rにおける運転者の視認性を高めることができる。
 照度設定部42は、各個別領域Rの照度値を示す信号を、光源制御部20に送信する。照度設定部42は、例えば0.1~5ms毎に照度値を設定する。光源制御部20は、照度設定部42が定めた照度値に基づいて光源部10を制御する。光源制御部20は、光源22の点消灯と、各ミラー素子30のオン/オフ切り替えとを制御する。光源制御部20は、各個別領域Rに照射する光の照度値に基づいて、各ミラー素子30のオンの時間比率(幅や密度)を調節する。これにより、各個別領域Rに照射される光の照度を独立に調節することができる。そして、複数の部分照射領域が集まって、各種の配光パターンが構成される。光源制御部20は、例えば0.1~5ms毎に、光源22及び/又は光偏向装置26に駆動信号を送信する。
 上述したハイコントラスト配光パターンは、自車前方の特定物標の位置に応じて最適な配光パターンを形成するADB(Adaptive Driving Beam)制御に利用することができる。具体的には図1に示すように、撮像部12は、低速カメラ38を含む。低速カメラ38は、比較的フレームレートが低く、例えば30fps以上120fps以下である(1フレームあたり約8~33ms)。また、低速カメラ38は、比較的解像度が大きく、例えば500万ピクセル以上である。低速カメラ38は、全ての個別領域Rを撮像する。低速カメラ38による撮像は、ハイコントラスト配光パターンが形成されている状況において実行される。なお、高速カメラ36及び低速カメラ38の解像度は、上記数値に限定されず、技術的に整合する範囲で任意の値に設定することができる。
 制御装置50は、状況解析部16を有する。状況解析部16は、撮像部12から得られる情報に基づいて、自車前方の状況を検出する。例えば、状況解析部16は、自車前方に存在する物標を検出する。状況解析部16は、輝度解析部14に比べて精度の高い画像解析を実行し、低速に解析結果を出力する低速高精度解析部である。本実施の形態の状況解析部16は、低速カメラ38から得られる情報に基づいて自車前方の状況を検出する。低速カメラ38の画像データは、ハイコントラスト配光パターンが形成された状態で取得された情報である。このため、状況解析部16は、ハイコントラスト配光パターンが形成された領域において、物標をより高精度に検出することができる。状況解析部16は、例えば50ms毎に状況を検出する。状況解析部16によって検出される物標としては、図3に示すように、対向車100や歩行者200等が例示される。
 状況解析部16は、アルゴリズム認識やディープラーニング等を含む、従来公知の方法を用いて物標を検出することができる。例えば、状況解析部16は、歩行者200を示す特徴点を予め保持している。そして、状況解析部16は、低速カメラ38の撮像データの中に歩行者200を示す特徴点を含むデータが存在する場合、歩行者200の位置を認識する。状況解析部16の検出結果、すなわち自車前方の物標情報を示す信号は、灯具制御部18に送信される。
 灯具制御部18は、トラッキング部40を有する。トラッキング部40は、状況解析部16により検出された物標の中から特定物標を決定する。また、トラッキング部40は、輝度解析部14の検出結果に基づいて特定物標の変位を検出する。本実施の形態では、一例として歩行者200を特定物標とする。
 具体的には、トラッキング部40は、輝度解析部14の検出結果と状況解析部16の検出結果とを統合する。そして、輝度解析部14で検出された各個別領域Rの輝度のうち、特定物標である歩行者200が位置する個別領域Rの輝度を歩行者200と関連付ける。トラッキング部40は、その後に取得する輝度解析部14の検出結果において、歩行者200と関連付けた輝度の位置を認識することで、特定物標である歩行者200の変位を検出することができる。トラッキング部40は、輝度解析部14の検出結果である各個別領域Rの輝度データにエッジ強調等の公知の画像処理を施すことで、歩行者200の位置をより確実にトラッキングすることができる。なお、エッジ強調は、輝度解析部14の処理に含めてもよい。
 トラッキング部40は、例えば50ms毎に特定物標の決定処理を実行する。また、トラッキング部40は、例えば0.1~5ms毎に特定物標の変位検出処理(トラッキング)を実行する。
 照度設定部42は、輝度解析部14の検出結果と、トラッキング部40の検出結果とに基づいて、各個別領域Rに照射する光の照度値を定める。各個別領域Rのうち、特定物標の存在位置に応じて定まる特定個別領域R1に対しては特定照度値を定める。具体的には、照度設定部42はまず、特定物標である歩行者200の存在位置に基づいて特定個別領域R1を定める。
 そして、照度設定部42は、特定個別領域R1に対する特定照度値を定める。例えば、特定照度値として、光源部10が照射可能な最大値が設定される。これにより、より高い照度の光を歩行者200に照射して、自車運転者が歩行者200を視認しやすくすることができる。この場合、歩行者200の顔が位置する個別領域Rは、遮光することが望ましい。
 また、照度設定部42は、特定個別領域R1を除く他の個別領域Rについて、図4(A)~図4(D)に示す検出輝度値と設定照度値との関係に基づいて、所定の配光パターンを形成する。また、照度設定部42は、トラッキング部40の検出結果に基づいて、特定個別領域R1の変位を認識し、特定個別領域R1の位置情報を更新する。そして、各個別領域Rに照射する光の照度値を更新する。トラッキング部40による処理と照度設定部42による処理とは、少なくとも一時において並行して実行される。
 図5(A)及び図5(B)は、実施の形態1に係る車両用灯具システムにおいて実行されるADB制御の一例を示すフローチャートである。このフローは、例えば図示しないライトスイッチによってADB制御の実行指示がなされ、且つイグニッションがオンのときに所定のタイミングで繰り返し実行され、ADB制御の実行指示が解除される(あるいは停止指示がなされる)か、イグニッションがオフにされた場合に終了する。また、図5(A)に示すフローは、例えば0.1~5ms毎に繰り返される高速処理であり、図5(B)に示すフローは、例えば50ms毎に繰り返される低速処理である。この低速処理と高速処理とは、並行して実行される。また、低速処理の実行タイミングと同期して高速処理において第1配光パターンが形成されるように、予め設計されている。
 図5(A)に示すように、高速処理では、まず高速カメラ36によって自車前方が撮像される(S101)。次に、輝度解析部14によって、高速カメラ36の画像データに基づいて、各個別領域Rの輝度が検出される(S102)。続いて、特定個別領域R1が設定されているか判断される(S103)。当該判断は、例えばトラッキング部40により実行される。特定個別領域R1が設定されている場合(S103のY)、トラッキング部40によって、特定物標がトラッキングされて特定個別領域R1の位置(変位)が検出される。照度設定部42は、トラッキング部40の検出結果に基づいて、特定個別領域R1の設定(位置情報)を更新する(S104)。
 次に、照度設定部42によって、各個別領域Rに照射する光の照度値が設定される(S105)。特定個別領域R1に対しては、特定照度値が設定される。残りの個別領域Rに対しては、図4(A)~図4(D)に示す検出輝度値と設定照度値との関係に基づいた照度値が設定される。次に、光源制御部20によって光源部10が駆動され、定められた照度の光が光源部10から照射されて(S106)、本ルーチンが終了する。特定個別領域R1が設定されていない場合(S103のN)、照度設定部42によって、個別領域Rに照射する光の照度値が設定される(S105)。この場合、設定される照度値の中には、特定照度値は含まれない。その後は、ステップS106の処理が実行されて、本ルーチンが終了する。
 ステップS104において、トラッキングにより特定物標の消失が検出された場合には、特定個別領域R1の設定も消失する。したがって、ステップS105で設定される照度値の中には、特定照度値は含まれないこととなる。また、次回のルーチンにおけるステップS103では、後述するステップS205の処理が実行されるまでは、特定個別領域R1が設定されていない(S103のN)と判定される。
 図5(B)に示すように、低速処理では、まず低速カメラ38によって自車前方が撮像される(S201)。次に、状況解析部16によって、低速カメラ38の画像データに基づいて、自車前方に存在する物標が検出される(S202)。次に、検出された物標の中に特定物標が含まれているか判断される(S203)。当該判断は、例えばトラッキング部40により実行される。
 特定物標が含まれている場合(S203のY)、トラッキング部40によって、特定物標が決定される(S204)。次に、照度設定部42によって、特定物標の存在位置に基づいて特定個別領域R1が設定され(S205)、本ルーチンが終了する。特定物標が含まれていない場合(S203のN)、本ルーチンが終了する。なお、上記フローチャートでは、低速処理において特定個別領域が設定されているが、当該設定は高速処理において実行されてもよい。
 以上説明したように、本実施の形態に係る車両用灯具システム1は、撮像部12と、輝度解析部14と、照度設定部42と、光源部10と、光源制御部20とを備える。輝度解析部14は、撮像部12から得られる情報に基づいて、自車前方に並ぶ複数の個別領域Rそれぞれの輝度を検出する。照度設定部42は、輝度解析部14の検出結果に基づいて、各個別領域Rに照射する光の照度値を定める。また、照度設定部42は、所定の第1輝度範囲に含まれる個別領域Rと、所定の第2輝度範囲に含まれる個別領域Rとで、異なる関数を用いて照度値を定める。光源制御部20は、照度設定部42が定めた照度値に基づいて、光源部10を制御する。
 このように、自車前方に並ぶ各個別領域Rを複数の輝度帯に分け、各輝度帯で検出輝度値と設定照度値との関係を異ならせることで、車両用灯具システム1が形成可能な配光パターンの種類を増やすことができる。これにより、自車前方の状況に応じてより適切な配光パターンの形成が可能となるため、運転の安全性を向上させることができる。
 また、照度設定部42は、第1輝度範囲に含まれる個別領域Rについて検出輝度に依存して照度値を設定し、第2輝度範囲に含まれる個別領域Rについて検出輝度に依存せずに照度値を設定する。これにより、第2輝度範囲については検出輝度から照度値を算出する処理が不要となる。よって、照度設定部42にかかる負荷を軽減することができる。
 また、本実施の形態では、第1輝度範囲は、第2輝度範囲よりも輝度が低い範囲である。つまり、第1輝度範囲は低輝度範囲L1であり、第2輝度範囲は中輝度範囲L2である。したがって、低輝度範囲L1に含まれる個別領域Rは、検出輝度に依存して照度値が設定される。また、第1輝度範囲に含まれる個別領域Rの照度値は、輝度と正の相関関係にある。すなわち、暗い個別領域Rに対して、照射対象物の明暗コントラストが強調されるハイコントラスト配光パターンが形成される。これにより、自車前方に存在する物標を視認させやすくすることができる。
 また、照度設定部42は、高輝度範囲L3に含まれる個別領域Rについて、検出輝度に依存し且つ輝度と負の相関関係にある照度値を設定するか、検出輝度に依存せずに照度値0を設定する。これにより、対向車の前照灯や街路灯等の自発光体への光の照射を回避することができる。その結果、車両用灯具システム1の消費電力を抑制することができる。
(実施の形態2)
 実施の形態2に係る車両用灯具システムは、照度設定部42による照度値の設定方法が異なる点を除いて、実施の形態1に係る車両用灯具システムの構成と共通する。以下、実施の形態2に係る車両用灯具システムについて、実施の形態1と異なる構成を中心に説明し、共通する構成については簡単に説明するか、あるいは説明を省略する。
 実施の形態2に係る車両用灯具システム1は、実施の形態1に係る車両用灯具システム1と同様に、撮像部12と、輝度解析部14と、照度設定部42と、光源部10と、光源制御部20とを備える(図1参照)。
 照度設定部42は、輝度解析部14の検出結果に基づいて、各個別領域Rに照射する光の照度値を定める。また、照度設定部42は、所定の第1輝度範囲に含まれる個別領域Rと、所定の第2輝度範囲に含まれる個別領域Rとで、異なる関数を用いて照度値を定める。さらに、本実施の形態の照度設定部42は、第1輝度範囲に含まれる個別領域R及び第2輝度範囲に含まれる個別領域Rに対して、輝度解析部14により検出される輝度に依存して照度値を設定する。ただし、第1輝度範囲と第2輝度範囲とでは、検出輝度と設定照度との対応関係が異なる。
 図6(A)及び図6(B)は、実施の形態2における検出輝度値と設定照度値との関係を示す図である。図6(A)及び図6(B)に示すように、照度設定部42は、検出される輝度値に関して、第1閾値T1と第2閾値T2とを有する。そして、照度設定部42は、最小の検出輝度値(例えば0)から第1閾値T1までの輝度範囲を、低輝度範囲L1と定める。また、第1閾値T1から第2閾値T2までの輝度範囲を、中輝度範囲L2と定める。さらに、第2閾値T2から最大の検出輝度値(例えば255)までの輝度範囲を、高輝度範囲L3と定める。本実施の形態では、低輝度範囲L1が第1輝度範囲に対応し、中輝度範囲L2が第2輝度範囲に対応し、高輝度範囲L3が第3輝度範囲に対応する。
 低輝度範囲L1の個別領域Rに対して用いられる関数において、低輝度範囲L1に含まれる個別領域Rの照度値は、輝度と正の相関関係にある。また、中輝度範囲L2の個別領域Rに対して用いられる関数において、中輝度範囲L2に含まれる個別領域Rの照度値は、輝度と正の相関関係にある。つまり、低輝度範囲L1と中輝度範囲L2のそれぞれで、検出輝度値が大きいほど設定照度値も大きい。言い換えれば、照度設定部42は、低輝度範囲L1に含まれる個別領域Rと中輝度範囲L2に含まれる個別領域Rのそれぞれに対して、ハイコントラスト配光パターンを形成する。
 ただし、低輝度範囲L1では、少なくとも一部の輝度範囲において、検出輝度値の階調よりも高い階調の照度値が設定される。一方、中輝度範囲L2では、検出輝度値の階調と同一階調の照度値が設定される。したがって、低輝度範囲L1には、照射対象物の明暗コントラストをより強調するハイコントラスト配光パターンが形成される。
 図6(A)に示す例では、設定照度値は、検出輝度値が大きくなるにつれて線形に増加する。また、低輝度範囲L1と中輝度範囲L2との境界で、照度値が不連続である。一方、図6(B)に示す例では、設定照度値は、検出輝度値が大きくなるにつれて非線形に増加する。また、低輝度範囲L1と中輝度範囲L2との境界で照度値が連続する。なお、図6(B)では、低輝度範囲L1に含まれる設定照度値は上に凸の非線形特性を有するが、下に凸の非線形特性を有してもよい。また、図6(A)に示す例と同様に、低輝度範囲L1と中輝度範囲L2の境界で照度値が不連続であってもよい。
 また、照度設定部42は、低輝度範囲L1及び中輝度範囲L2よりも輝度が高い所定の第3輝度範囲、すなわち高輝度範囲L3に含まれる個別領域Rについて、輝度解析部14により検出される輝度に依存して且つ輝度と負の相関関係にある照度値を設定するか、輝度解析部14により検出される輝度に依存せずに照度値0を設定する。
 図6(A)に示す例では、高輝度範囲L3において照度値0が設定されている。したがって、高輝度範囲L3に含まれる個別領域Rは、遮光される。また、中輝度範囲L2と高輝度範囲L3との境界で照度値は不連続である。図6(B)に示す例では、検出輝度に依存して且つ輝度と負の相関関係を有するように、照度値が設定されている。また、中輝度範囲L2と高輝度範囲L3との境界で照度値が連続している。図6(B)に示す例では、設定照度値は下に凸の非線形特性を有するが、上に凸の非線形特性を有してもよい。また、設定照度値は、検出輝度値が大きくなるにつれて非線形に減少しているが、線形に減少してもよい。また、中輝度範囲L2と高輝度範囲L3との境界で照度値が不連続であってもよい。
 なお、図6(A)及び図6(B)では、検出輝度値0に対して照度値0を設定しているが、特にこの構成に限定されない。例えば、検出輝度値0に対して0超の照度値を設定してもよい。
 本実施の形態に係る車両用灯具システム1によっても、形成可能な配光パターンの種類を増やすことができる。これにより、自車前方の状況に応じてより適切な配光パターンの形成が可能となるため、運転の安全性を向上させることができる。また、本実施の形態の照度設定部42は、第1輝度範囲と第2輝度範囲のそれぞれに含まれる個別領域Rに対して、検出輝度に依存した照度値を設定するとともに、各輝度範囲で検出輝度と設定照度との対応関係を異ならせている。さらに、第1輝度範囲に含まれる個別領域Rの照度値及び第2輝度範囲に含まれる個別領域Rの照度値は、輝度と正の相関関係にある。これらにより、より広い輝度範囲で照射対象物に対する運転者の視認性を高めることができる。
(実施の形態3)
 実施の形態3に係る車両用灯具システムは、照度設定部42による照度値の設定方法が異なる点を除いて、実施の形態1に係る車両用灯具システムの構成と共通する。以下、実施の形態3に係る車両用灯具システムについて、実施の形態1と異なる構成を中心に説明し、共通する構成については簡単に説明するか、あるいは説明を省略する。
 実施の形態3に係る車両用灯具システム1は、実施の形態1に係る車両用灯具システム1と同様に、撮像部12と、輝度解析部14と、照度設定部42と、光源部10と、光源制御部20とを備える(図1参照)。
 照度設定部42は、輝度解析部14の検出結果に基づいて、各個別領域Rに照射する光の照度値を定める。また、照度設定部42は、所定の第1輝度範囲に含まれる個別領域Rと、所定の第2輝度範囲に含まれる個別領域Rとで、異なる関数を用いて照度値を定める。さらに、本実施の形態の照度設定部42は、第1輝度範囲に含まれる個別領域R及び第2輝度範囲に含まれる個別領域Rに対して、輝度解析部14により検出される輝度に依存せずに照度値を設定する。
 図7(A)は、実施の形態3における検出輝度値と設定照度値との関係を示す図である。図7(A)に示すように、照度設定部42は、検出される輝度値に関して、第1閾値T1と第2閾値T2とを有する。そして、照度設定部42は、最小の検出輝度値(例えば0)から第1閾値T1までの輝度範囲を、低輝度範囲L1と定める。また、第1閾値T1から第2閾値T2までの輝度範囲を、中輝度範囲L2と定める。さらに、第2閾値T2から最大の検出輝度値(例えば255)までの輝度範囲を、高輝度範囲L3と定める。本実施の形態では、低輝度範囲L1が第1輝度範囲に対応し、中輝度範囲L2が第2輝度範囲に対応し、高輝度範囲L3が第3輝度範囲に対応する。
 照度設定部42は、低輝度範囲L1に含まれる個別領域Rに対して、一定の第1照度値を設定する。また、中輝度範囲L2に含まれる個別領域Rに対して、一定の第2照度値を設定する。本実施の形態では、第1照度値は、第2照度値に比べて高い照度値である。
 したがって、低輝度範囲L1及び中輝度範囲L2を統合した輝度範囲で見た場合、照度設定部42は、検出輝度が相対的に低い個別領域Rには相対的に高い照度値を設定し、検出輝度が相対的に高い個別領域Rには相対的に低い照度値を設定する。この結果、自車前方の明るさを均一化する輝度均一化配光パターンが形成される。輝度均一化配光パターンによれば、自車前方の暗い領域に存在する物標を明るく照らし出すことができる。このため、ハイコントラスト配光パターンとは異なる方法あるいは態様で、自車前方に存在する物標に対する視認性を高めることができる。
 なお、図7(A)に示す例では、照度設定部42は、低輝度範囲L1の個別領域Rに対して相対的に高い照度値を設定し、中輝度範囲L2の個別領域Rに対して相対的に低い照度値を設定している。しかしながら、特にこの構成に限定されず、低輝度範囲L1の個別領域Rに対して相対的に低い照度値を設定し、中輝度範囲L2の個別領域Rに対して相対的に高い照度値を設定してもよい。この場合、低輝度範囲L1及び中輝度範囲L2を統合した輝度範囲で見れば、ハイコントラスト配光パターンが形成されることになる。
 また、照度設定部42は、高輝度範囲L3に含まれる個別領域Rについて、検出輝度に依存せずに照度値0を設定する。なお、照度設定部42は、検出輝度に依存して且つ輝度と負の相関関係にある照度値を設定してもよい。この場合、設定照度値は線形に減少してもよいし、非線形に減少してもよい。また、中輝度範囲L2と高輝度範囲L3との境界で照度値は連続でも不連続でもよい。また、設定照度値が非線形に減少する場合、設定照度値は上に凸の非線形特性を有してもよいし、下に凸の非線形特性を有してもよい。
 図7(A)では、検出輝度値0に対して照度値0を設定しているが、特にこの構成に限定されない。例えば、検出輝度値0に対して0超の照度値を設定してもよい。
(実施の形態4)
 実施の形態4に係る車両用灯具システムは、照度設定部42による照度値の設定方法が異なる点を除いて、実施の形態1に係る車両用灯具システムの構成と共通する。以下、実施の形態3に係る車両用灯具システムについて、実施の形態1と異なる構成を中心に説明し、共通する構成については簡単に説明するか、あるいは説明を省略する。
 実施の形態4に係る車両用灯具システム1は、実施の形態1に係る車両用灯具システム1と同様に、撮像部12と、輝度解析部14と、照度設定部42と、光源部10と、光源制御部20とを備える(図1参照)。
 照度設定部42は、輝度解析部14の検出結果に基づいて、各個別領域Rに照射する光の照度値を定める。また、照度設定部42は、所定の第1輝度範囲に含まれる個別領域Rと、所定の第2輝度範囲に含まれる個別領域Rとで、異なる関数を用いて照度値を定める。さらに、本実施の形態の照度設定部42は、第1輝度範囲に含まれる個別領域Rについて検出輝度に依存して照度値を設定する。また、第2輝度範囲に含まれる個別領域Rについて検出輝度に依存せずに照度値を設定する。
 図7(B)は、実施の形態4における検出輝度値と設定照度値との関係を示す図である。図7(B)に示すように、照度設定部42は、検出輝度値に関して、第1閾値T1を有する。そして、照度設定部42は、最小の検出輝度値(例えば0)から第1閾値T1までの輝度範囲を、低輝度範囲L4と定める。また、第1閾値T1から最大の検出輝度値(例えば255)までの輝度範囲を、高輝度範囲L5と定める。
 本実施の形態では、照度設定部42は、低輝度範囲L4と高輝度範囲L5の2つの輝度範囲のみを設定する。低輝度範囲L4が第1輝度範囲に対応し、高輝度範囲L5が第2輝度範囲に対応する。また、低輝度範囲L4は、実施の形態1~3における低輝度範囲L1及び中輝度範囲L2を統合した輝度範囲に対応する。高輝度範囲L5は、実施の形態1~3における高輝度範囲L3に対応する。したがって、本実施の形態の第1閾値T1は、実施の形態1~3の第2閾値T2に対応する。
 照度設定部42は、設定照度値が非線形に増加するように、低輝度範囲L1に含まれる検出輝度値に所定のゲイン値を乗算して照度値を設定している。低輝度範囲L1に含まれる個別領域Rの照度値は、輝度と正の相関関係にある。したがって、低輝度範囲L1には、ハイコントラスト配光パターンが形成される。なお、図7(B)では、設定照度値は上に凸の非線形特性を有するが、下に凸の非線形特性を有してもよい。また、設定照度値は、検出輝度値が大きくなるにつれて線形に増加してもよい。
 また、低輝度範囲L1において、照度値は検出輝度と負の相関関係を有してもよい。この場合、設定照度値は線形に減少してもよいし、非線形に減少してもよい。また、設定照度値が非線形に減少する場合、設定照度値は上に凸の非線形特性を有してもよいし、下に凸の非線形特性を有してもよい。
 また、照度設定部42は、高輝度範囲L5に含まれる個別領域Rについて、検出輝度に依存せずに照度値0を設定する。なお、照度設定部42は、検出輝度に依存して且つ輝度と負の相関関係にある照度値を設定してもよい。この場合、設定照度値は線形に減少してもよいし、非線形に減少してもよい。また、低輝度範囲L4と高輝度範囲L5との境界で照度値は連続でも不連続でもよい。また、設定照度値が非線形に減少する場合、設定照度値は上に凸の非線形特性を有してもよいし、下に凸の非線形特性を有してもよい。
 図7(B)では、検出輝度値0に対して照度値0を設定しているが、特にこの構成に限定されない。例えば、検出輝度値0に対して0超の照度値を設定してもよい。
 本発明は、上述の各実施の形態に限定されるものではなく、各実施の形態を組み合わせたり、当業者の知識に基づいて各種の設計変更などの変形を加えることも可能であり、そのような組み合わせられ、もしくは変形が加えられて得られる新たな実施の形態も本発明の範囲に含まれる。このような新たな実施の形態は、組み合わされる実施の形態及び変形それぞれの効果をあわせもつ。
 図8は、変形例における検出輝度値と設定照度値との関係を示す図である。図4(A)~図4(D)における低輝度範囲L1と、図6(A)及び図6(B)における低輝度範囲L1と、図7(B)における低輝度範囲L4とでは、検出輝度値に対して設定照度値が連続的に増加している。しかしながら、この構成に限定されず、検出輝度値に依存して設定照度値を増加させる場合、図8に示すように、検出輝度値に対して設定照度値を段階的に増加させてもよい。変化の段数は適宜設定することができる。図6(A)及び図6(B)における及び中輝度範囲L2についても同様である。また、検出輝度値に対して設定照度値を減少させる場合も、図4(B)及び図4(D)における高輝度範囲L3や図6(B)における高輝度範囲L3のように連続的に減少させる構成に限定されず、段階的に減少させてもよい。
 各実施の形態では、撮像部12、輝度解析部14、状況解析部16、灯具制御部18及び光源制御部20が灯室8内に設けられているが、それぞれは適宜、灯室8外に設けられてもよい。例えば、撮像部12のうち低速カメラ38は、車室内に搭載されている既存のカメラを利用することができる。なお、撮像部12と光源部10とは画角が一致していることが望ましい。
 また、高速カメラ36が低速カメラ38と同等の解像度を有する場合には、低速カメラ38を省略してもよい。これにより、車両用灯具システム1の小型化を図ることができる。この場合、状況解析部16は、高速カメラ36の画像データを用いて物標を検出する。
 光源部10は、DMDである光偏向装置26に代えて、光源光で自車前方を走査するスキャン光学系や、各個別領域Rに対応するLEDが配列されたLEDアレイを備えてもよい。
 実施の形態1において、低輝度範囲L1に含まれる個別領域Rについて検出輝度に依存せずに照度値を設定し、中輝度範囲L2に含まれる個別領域Rについて検出輝度に依存して照度値を設定してもよい。つまり、低輝度範囲L1が第2輝度範囲に対応し、中輝度範囲L2が第1輝度範囲に対応してもよい。また、「第1輝度範囲に含まれる個別領域Rと第2輝度範囲に含まれる個別領域Rとで、異なる関数を用いて照度値を定める」と規定する場合には、低輝度範囲L1、中輝度範囲L2及び高輝度範囲L3のうちいずれか1つが第1輝度範囲に対応し、他の1つが第2輝度範囲に対応する。
 また、ADB制御における特定物標は、対向車100であってもよい。この場合、状況解析部16は、対向車100を示す特徴点を予め保持している。そして、状況解析部16は、低速カメラ38の撮像データの中に対向車100を示す特徴点を含むデータが存在する場合、対向車100の位置を認識する。前記「対向車100を示す特徴点」とは、例えば対向車100の前照灯の推定存在領域に現れる所定光度以上の光点102(図3参照)である。トラッキング部40は、特定物標である対向車100の光点102が位置する個別領域Rの輝度を対向車100と関連付ける。
 照度設定部42は、対向車100の存在位置に基づいて特定個別領域R1を定める。例えば照度設定部42は、対向車100の前照灯に対応する2つの光点102間の水平方向距離a(図3参照)に対して、予め定められた所定比率の鉛直方向距離bを定め、横a×縦bの寸法範囲と重なる個別領域Rを特定個別領域R1とする。特定個別領域R1には、対向車の運転者と重なる個別領域Rが含まれる。そして、照度設定部42は、特定個別領域R1に対する特定照度値として、例えば0を設定する。つまり、特定個別領域R1を遮光する。
 以下の態様も本発明に含めることができる。
 自車前方を撮像する撮像部12から得られる情報に基づいて、自車前方に並ぶ複数の個別領域Rそれぞれの輝度を検出する輝度解析部14と、
 輝度解析部14の検出結果に基づいて、各個別領域Rに照射する光の照度値を定める照度設定部42と、
 照度設定部42が定めた照度値に基づいて、各個別領域Rに照射する光の照度を独立に調節可能な光源部10を制御する光源制御部20と、
を備え、
 照度設定部42は、輝度が所定の第1範囲に含まれる個別領域Rと、輝度が所定の第2範囲に含まれる個別領域Rとで、異なる関数を用いて照度値を定める、車両用灯具2の制御装置50。
 自車前方を撮像する撮像部12から得られる情報に基づいて、自車前方に並ぶ複数の個別領域Rそれぞれの輝度を検出するステップと、
 検出した輝度に基づいて、各個別領域Rに照射する光の照度値を定めるステップと、
 定めた照度値に基づいて、各個別領域Rに照射する光の照度を独立に調節可能な光源部10を制御するステップと、
を含み、
 照度値を定めるステップにおいて、輝度が所定の第1範囲に含まれる個別領域Rと、輝度が所定の第2範囲に含まれる個別領域Rとで、異なる関数を用いて照度値を定める、車両用灯具2の制御方法。
(実施の形態5)
 図9は、実施の形態5に係る車両用灯具システムの概略構成を示す図である。図9では、車両用灯具システム1の構成要素の一部を機能ブロックとして描いている。これらの機能ブロックは、ハードウェア構成としてはコンピュータのCPUやメモリをはじめとする素子や回路で実現され、ソフトウェア構成としてはコンピュータプログラム等によって実現される。これらの機能ブロックがハードウェア、ソフトウェアの組合せによっていろいろなかたちで実現できることは、当業者には理解されるところである。
 車両用灯具システム1(1A)は、車両前方の左右に配置される一対の前照灯ユニットを有する車両用前照灯装置に適用される。一対の前照灯ユニットは左右対称の構造を有する点以外は実質的に同一の構成であるため、図9には車両用灯具2として一方の前照灯ユニットの構造を示す。
 車両用灯具システム1が備える車両用灯具2は、車両前方側に開口部を有するランプボディ4と、ランプボディ4の開口部を覆うように取り付けられた透光カバー6とを備える。透光カバー6は、透光性を有する樹脂やガラス等で形成される。ランプボディ4と透光カバー6とにより形成される灯室8内には、光源部10と、可視光撮像部35と、遠赤外撮像部52と、制御装置50とが収容される。
 光源部10は、自車前方に並ぶ複数の個別領域(図3参照)のそれぞれに照射する光の照度(強度)を独立に調節可能な装置である。光源部10は、光源22と、反射光学部材24と、光偏向装置26と、投影光学部材28とを有する。各部は、図示しない支持機構によりランプボディ4に取り付けられる。
 光源22は、LED(Light emitting diode)、LD(Laser diode)、EL(Electroluminescence)素子等の半導体発光素子や、電球、白熱灯(ハロゲンランプ)、放電灯(ディスチャージランプ)等を用いることができる。
 反射光学部材24は、光源22から出射した光を光偏向装置26の反射面に導くように構成される。反射光学部材24は、内面が所定の反射面となっている反射鏡で構成される。なお、反射光学部材24は、中実導光体などであってもよい。また、光源22から出射した光を光偏向装置26に直接導くことができる場合は、反射光学部材24を設けなくてもよい。
 光偏向装置26は、投影光学部材28の光軸上に配置され、光源22から出射された光を選択的に投影光学部材28へ反射するように構成される。光偏向装置26は、例えばDMD(Digital Mirror Device)で構成される。すなわち、光偏向装置26は、複数の微小ミラーをアレイ(マトリックス)状に配列したものである。これらの複数の微小ミラーの反射面の角度をそれぞれ制御することで、光源22から出射された光の反射方向を選択的に変えることができる。つまり、光偏向装置26は、光源22から出射された光の一部を投影光学部材28へ向けて反射し、それ以外の光を、投影光学部材28によって有効に利用されない方向へ向けて反射することができる。ここで、有効に利用されない方向とは、例えば、投影光学部材28には入射するが配光パターンの形成にほとんど寄与しない方向や、図示しない光吸収部材(遮光部材)に向かう方向と捉えることができる。
 図2(A)は、光偏向装置の概略構成を示す正面図である。図2(B)は、図2(A)に示す光偏向装置のA-A断面図である。光偏向装置26は、複数の微小なミラー素子30がマトリックス状に配列されたマイクロミラーアレイ32と、ミラー素子30の反射面30aの前方側(図2(B)に示す光偏向装置26の右側)に配置された透明なカバー部材34とを有する。カバー部材34は、例えば、ガラスやプラスチック等で構成される。
 ミラー素子30は略正方形であり、水平方向に延びミラー素子30をほぼ等分する回動軸30bを有する。マイクロミラーアレイ32の各ミラー素子30は、光源22から出射された光を所望の配光パターンの一部として利用されるように投影光学部材28へ向けて反射する第1反射位置(図2(B)において実線で示す位置)と、光源22から出射された光が有効に利用されないように反射する第2反射位置(図2(B)において点線で示す位置)とを切り替え可能に構成されている。各ミラー素子30は、回動軸30b周りに回動して、第1反射位置と第2反射位置との間で個別に切り替えられる。各ミラー素子30は、オン時に第1反射位置をとり、オフ時に第2反射位置をとる。
 図3は、自車前方の様子を模式的に示す図である。上述のように光源部10は、灯具前方に向けて互いに独立に光を照射可能な個別照射部としてのミラー素子30を複数有する。光源部10は、ミラー素子30によって自車前方に並ぶ複数の個別領域Rに光を照射することができる。各個別領域Rは、可視光撮像部35、より具体的には例えば高速カメラ36の1ピクセル又は複数ピクセルの集合に対応する領域である。本実施の形態では各個別領域Rと各ミラー素子30とが対応付けられている。
 図2(A)及び図3では、説明の便宜上、ミラー素子30及び個別領域Rを横10×縦8の配列としているが、ミラー素子30及び個別領域Rの数は特に限定されない。例えば、マイクロミラーアレイ32の解像度(言い換えればミラー素子30及び個別領域Rの数)は1000~30万ピクセルである。また、光源部10が1つの配光パターンの形成に要する時間は、例えば0.1~5msである。すなわち、光源部10は、0.1~5ms毎に配光パターンを変更することができる。
 図9に示すように、投影光学部材28は、例えば、前方側表面及び後方側表面が自由曲面形状を有する自由曲面レンズからなる。投影光学部材28は、その後方焦点を含む後方焦点面上に形成される光源像を、反転像として灯具前方に投影する。投影光学部材28は、その後方焦点が車両用灯具2の光軸上、且つマイクロミラーアレイ32の反射面の近傍に位置するように配置される。なお、投影光学部材28は、リフレクタであってもよい。
 光源22から出射された光は、反射光学部材24で反射されて、光偏向装置26のマイクロミラーアレイ32に照射される。光偏向装置26は、第1反射位置にある所定のミラー素子30によって投影光学部材28へ向けて光を反射する。この反射された光は、投影光学部材28を通過して灯具前方に進行し、各ミラー素子30に対応する各個別領域Rに照射される。これにより、複数の部分照射領域が集まって構成される、所定形状の配光パターンが灯具前方に形成される。
 可視光撮像部35は、自車前方を撮像する装置である。可視光撮像部35は、高速カメラ36と低速カメラ38とを含む。高速カメラ36は、比較的フレームレートが高く、例えば200fps以上10000fps以下(1フレームあたり0.1~5ms)である。一方、低速カメラ38は、比較的フレームレートが低く、例えば30fps以上120fps以下である(1フレームあたり約8~33ms)。また、高速カメラ36は、比較的解像度が小さく、例えば30万ピクセル以上500万ピクセル未満である。一方、低速カメラ38は、比較的解像度が大きく、例えば500万ピクセル以上である。高速カメラ36及び低速カメラ38は、全ての個別領域Rを撮像する。なお、高速カメラ36及び低速カメラ38の解像度は、上記数値に限定されず、技術的に整合する範囲で任意の値に設定することができる。
 遠赤外撮像部52は、自車前方を撮像する装置である。遠赤外撮像部52は、遠赤外カメラ54を含む。遠赤外カメラ54は、物体が発生する熱を画像として撮像する。また、自車前方の物標により反射された光のうち赤外光成分を画像として撮像する。遠赤外カメラ54は、フレームレートが例えば5fps以上10000fps以下(1フレームあたり0.1~200ms)であり、解像度が例えば30万ピクセル以上500万ピクセル未満である。遠赤外カメラ54は、全ての個別領域Rを撮像する。
 制御装置50は、輝度解析部14と、物標解析部216と、灯具制御部18と、光源制御部20とを有する。可視光撮像部35が取得した画像データは、輝度解析部14及び物標解析部216に送られる。また、遠赤外撮像部52が取得した画像データは、物標解析部216に送られる。
 輝度解析部14は、可視光撮像部35から得られる情報(画像データ)に基づいて、各個別領域Rの輝度を検出する。輝度解析部14は、物標解析部216に比べて精度の低い画像解析を実行し、高速に解析結果を出力する高速低精度解析部である。本実施の形態の輝度解析部14は、高速カメラ36から得られる情報に基づいて、各個別領域Rの輝度を検出する。輝度解析部14は、例えば0.1~5ms毎に各個別領域Rの輝度を検出する。輝度解析部14の検出結果、すなわち個別領域Rの輝度情報を示す信号は、灯具制御部18に送信される。
 物標解析部216は、少なくとも遠赤外撮像部52から得られる情報(画像データ)に基づいて、自車前方に存在する物標を検出する。本実施の形態の物標解析部216は、遠赤外撮像部52から得られる情報に加えて、低速カメラ38から得られる情報に基づいて物標を検出する。したがって、物標解析部216は、輝度解析部14に比べて精度の高い画像解析を実行し、低速に解析結果を出力する低速高精度解析部である。物標解析部216は、例えば50ms毎に物標を検出する。物標解析部216によって検出される物標としては、図3に示すように、対向車100や歩行者200等が例示される。また、先行車や、自車両の走行に支障を来す障害物、道路標識、道路標示、道路形状等も物標に含まれる。
 例えば、物標解析部216は、低速カメラ38から得られる画像データと、遠赤外撮像部52から得られる画像データとをそれぞれトリミング及びスケーリングして、両画像データを位置合わせする。また、必要に応じて両画像データを階調反転させる。階調反転とともに2値化処理を施す場合もある。そして、例えばビット論理積の演算により両画像データを合成する。物標解析部216は、得られた画像データに基づいて物標を検出する。なお、フィールドシーケンシャル方式で両画像データを合成してもよい。
 物標解析部216は、アルゴリズム認識やディープラーニング等を含む、従来公知の方法を用いて物標を検出することができる。例えば、物標解析部216は、対向車100を示す特徴点を予め保持している。そして、物標解析部216は、遠赤外撮像部52や低速カメラ38の撮像データの中に対向車100を示す特徴点を含むデータが存在する場合、対向車100の位置を認識する。前記「対向車100を示す特徴点」とは、例えば対向車100の前照灯の推定存在領域に現れる所定光度以上の光点102(図3参照)である。同様に、物標解析部216は、歩行者200やその他の物標を示す特徴点を予め保持しており、遠赤外撮像部52や低速カメラ38の撮像データの中にこれらの特徴点を含むデータが存在する場合、当該特徴点に対応する物標の位置を認識する。物標解析部216の検出結果、すなわち自車前方の物標情報を示す信号は、灯具制御部18に送信される。
 灯具制御部18は、輝度解析部14及び/又は物標解析部216の検出結果を用いて、特定物標の決定、特定物標の変位検出、特定個別領域R1の設定、各個別領域Rに照射する光の照度値の設定等を実行する。一例として、灯具制御部18は、トラッキング部40と、照度設定部42とを含む。トラッキング部40は、物標解析部216により検出された物標の中から特定物標を決定する。また、トラッキング部40は、輝度解析部14の検出結果に基づいて特定物標の変位を検出する。以下では、対向車100を特定物標とした場合を例に挙げて説明する。
 具体的には、トラッキング部40は、輝度解析部14の検出結果と物標解析部216の検出結果とを統合する。そして、輝度解析部14で検出された各個別領域Rの輝度のうち、特定物標である対向車100の光点102が位置する個別領域Rの輝度を対向車100と関連付ける。トラッキング部40は、その後に取得する輝度解析部14の検出結果において、対向車100と関連付けた輝度の位置を認識することで、特定物標である対向車100の変位を検出することができる。トラッキング部40は、例えば50ms毎に特定物標の決定処理を実行する。また、トラッキング部40は、例えば0.1~5ms毎に特定物標の変位検出処理(トラッキング)を実行する。
 照度設定部42は、輝度解析部14の検出結果と、物標解析部216の検出結果とに基づいて、所定の物標、すなわち特定物標の存在位置に応じて定まる特定個別領域R1に対する特定照度値を含む、各個別領域Rに照射する光の照度値を定める。本実施の形態では、照度設定部42は、輝度解析部14の検出結果とトラッキング部40の検出結果とに基づいて、各個別領域Rに照射する光の照度値を定める。つまり、トラッキング部40の検出結果を用いることで、物標解析部216の検出結果を間接的に用いている。
 まず、照度設定部42は、特定物標である対向車100の存在位置に基づいて特定個別領域R1を定める。例えば照度設定部42は、トラッキング部40の検出結果に含まれる対向車100の位置情報に基づいて、特定個別領域R1を定める。特定個別領域R1の設定について、例えば照度設定部42は、対向車100の前照灯に対応する2つの光点102間の水平方向距離a(図3参照)に対して、予め定められた所定比率の鉛直方向距離bを定め、横a×縦bの寸法範囲と重なる個別領域Rを特定個別領域R1(図3参照)とする。特定個別領域R1には、対向車の運転者と重なる個別領域Rが含まれる。そして、照度設定部42は、特定個別領域R1に対する特定照度値を定める。
 また、照度設定部42は、特定個別領域R1を除く他の個別領域Rについても照度値を定める。例えば、照度設定部42は、特定個別領域R1を除く個別領域Rのうち、輝度解析部14により検出された輝度が所定の範囲に含まれる個別領域Rについて、目標輝度値を同じ値に設定する。すなわち、輝度均一化制御を実行する。目標輝度値とは、配光パターンが形成された状態で輝度解析部14により検出されるべき輝度を意味する。
 図10は、輝度均一化制御における検出輝度値と設定照度値との関係を示す図である。図10に示すように、輝度均一化制御では特定個別領域R1を除く個別領域Rについて、検出された輝度が相対的に低い個別領域Rには相対的に高い照度値が設定され、検出された輝度が相対的に高い個別領域Rには相対的に低い照度値が設定される。輝度均一化制御により、自車前方の明るさを均一にする輝度均一化配光パターンが形成される。輝度均一化配光パターンによれば、自車前方の暗い領域に存在する物標を明るく照らし出すことができる。このため、物標解析部216による物標の検出精度を向上させることができる。なお、前記「所定の範囲」は、輝度解析部14により検出可能な輝度の全範囲であってもよいし、一部の範囲であってもよい。図10では、輝度解析部14により検出可能な輝度の全範囲を、前記「所定の範囲」としている。
 輝度均一化制御における検出輝度値と設定照度値との関係は、次のようであってもよい。図11(A)~図11(C)は、輝度均一化制御における検出輝度値と設定照度値との関係の他の例を示す図である。すなわち、図10に示す例では、検出輝度値に対して設定照度値を連続的且つ直線的に変化させている。しかしながら、特にこの関係に限定されず、図11(A)及び図11(B)に示すように、検出輝度値に対して設定照度値を段階的に変化させてもよい。また、図11(C)に示すように、検出輝度値に対して設定照度値を曲線的に変化させてもよい。なお、図11(C)では上に凸の曲線を図示しているが、下に凸の曲線であってもよい。
 照度設定部42は、輝度均一化制御に代えて又は加えて、ハイコントラスト制御を実行してもよい。ハイコントラスト制御とは、特定個別領域R1を除く個別領域Rのうち、輝度解析部14により検出された輝度が所定の範囲に含まれる個別領域Rについて、検出された輝度が相対的に低い個別領域Rには相対的に低い照度値を設定し、検出された輝度が相対的に高い個別領域Rには相対的に高い照度値を設定する制御である。ハイコントラスト制御により、ハイコントラスト配光パターンが形成される。前記「所定の範囲」は、輝度解析部14により検出可能な輝度の全範囲であってもよいし、一部の範囲であってもよい。以下に説明する図12(A)及び図12(B)では、輝度解析部14により検出可能な輝度の全範囲を、前記「所定の範囲」としている。
 例えば照度設定部42は、予め定められたしきい値よりも輝度の低い個別領域Rには、当該しきい値よりも輝度の高い個別領域Rに対して設定する照度値よりも低い照度値を設定する。一方、当該しきい値よりも輝度の高い個別領域Rには、当該しきい値よりも輝度の低い個別領域Rに対して設定する照度値よりも高い照度値を設定する。設定する照度値の高低の程度は、物標の検出精度の向上度合い等を考慮して、実験やシミュレーションの結果に基づいて適宜設定することができる。
 この結果、輝度が相対的に低い個別領域Rの照度値は、輝度が相対的に高い個別領域Rの照度値よりも低い値となる。逆に、輝度が相対的に高い個別領域Rの照度値は、輝度が相対的に低い個別領域Rの照度値よりも高い値となる。一例として、照度設定部42は、しきい値よりも輝度の低い個別領域Rには、現在設定されている照度値よりも低い照度値を設定する。一方、しきい値よりも輝度の高い個別領域Rには、現在設定されている照度値よりも高い照度値を設定する。なお、しきい値を用いずに、例えば最も輝度の高い個別領域Rの輝度を基準として、輝度が低くなるにつれて設定する照度値を下げていってもよい。
 つまり、ハイコントラスト配光パターンは、明るい個別領域Rはより明るくなり、暗い個別領域Rはより暗くなる配光パターンである。ハイコントラスト配光パターンによれば、自車前方の照射対象物は、明暗コントラストが強調される。これにより、輝度均一化配光パターンとは異なる方法あるいは態様で、物標解析部216による物標の検出精度を向上させることができる。
 ハイコントラスト制御では、新たに設定される相対的に低い照度値は、現在設定されている照度値よりも低い照度値となり、新たに設定される相対的に高い照度値は、現在設定されている照度値よりも高い照度値となり得る。したがって、ハイコントラスト配光パターンの形成が繰り返されると、正帰還がかかって、いずれは設定照度値が0と最大値とに二極化してしまう。照度値が二極化すると、照度値0が設定される個別領域Rにおいて、運転者の視認性を確保することが困難となり得る。
 これに対し、以下のように基準照度値Mと係数とを用いることで、当該二極化による運転者の視認性低下を回避することができる。図12(A)は、ハイコントラスト制御における検出輝度値と係数との関係を示す図である。図12(B)は、ハイコントラスト制御における検出輝度値と設定照度値との関係を示す図である。
 照度設定部42は、図12(A)に示すように、検出輝度値の大きさに応じて予め設定された所定の係数を有する。相対的に大きい検出輝度値には相対的に大きい係数が設定され、相対的に小さい検出輝度値には相対的に小さい係数が設定される。係数の値は、物標の検出精度の向上度合い等を考慮して、実験やシミュレーションの結果に基づいて適宜設定することができる。ここでは一例として、検出輝度値のしきい値に対して係数1.0が設定され、最大輝度値に対して係数1.5が設定され、最小輝度値に対して係数0.5が設定されている。照度設定部42は、輝度解析部14の検出結果に基づいて、特定個別領域R1を除く個別領域Rに対して係数を設定する。
 また、照度設定部42は、図12(B)に示すように、予め設定された所定の基準照度値Mを有する。照度設定部42は、各個別領域Rに設定した係数を基準照度値Mに乗じて、個別領域Rの照度値を設定する。これにより、検出輝度値が低い個別領域Rには低い照度値が設定され、検出輝度値が高い個別領域Rには高い照度値が設定される。
 また、基準照度値Mに代えて各個別領域Rの現在設定されている照度値と、係数と、照度値の下限値及び上限値とを用いることでも、照度値の二極化による運転者の視認性低下を回避することができる。すなわち、照度設定部42は、予め設定された照度値の下限値及び上限値を有する。そして、照度設定部42は各個別領域Rについて、検出された輝度値の大きさに応じて所定の係数を設定する。そして、設定した係数を、現在の照度値に乗じて新たな照度値を算出する。
 照度設定部42は、算出した照度値が所定の下限値以上である場合は現在の照度値を算出した照度値に更新し、算出した照度値が下限値を下回る場合は現在の照度値を維持する。また、照度設定部42は、算出した照度値が所定の上限値以下である場合は現在の照度値を算出した照度値に更新し、算出した照度値が上限値を上回る場合は現在の照度値を維持する。なお、照度設定部42が少なくとも照度値の下限値を有していれば、暗い個別領域Rに対して照度値0が設定されることは回避することができる。
 また、ハイコントラスト配光パターンを形成する光源部10に加えて、光源部10と独立に制御される他の光源部(図示せず)を設けることでも、上記二極化による運転者の視認性低下を回避することができる。例えば、車両用灯具システム1には、車両に設けられた図示しないライトスイッチが運転者に操作されることで、点消灯が切り替えられ、また形成する配光パターンの種類が切り替えられる、従来公知の灯具ユニットが設けられる。当該灯具ユニットは、従来公知のロービーム用配光パターンやハイビーム用配光パターン等を形成することができる。以下では適宜、この灯具ユニットにより形成される配光パターンを、通常配光パターンと称する。
 照度設定部42は、灯具ユニットにより通常配光パターンが形成されている状況下で、ハイコントラスト制御を実行する。この結果、ハイコントラスト配光パターンが通常配光パターンに重ね合わされる。ハイコントラスト配光パターンにおける各個別領域Rの照度が二極化したとしても、ハイコントラスト配光パターンにおいて照度の低い個別領域Rに対しては通常配光パターンが照射されるため、運転者の視認性を確保することができる。
 なお、一例として照度設定部42は、ハイコントラスト制御の最初に、特定個別領域R1を除く全ての個別領域Rの照度を一定にした配光パターンを光源部10により形成する。この照度一定配光パターンの照射により得られる各個別領域Rの輝度が、ハイコントラスト配光パターンの形成に利用される。光源部10に加えて灯具ユニットを備える場合には、ハイコントラスト制御の最初に灯具ユニットにより通常配光パターンを形成してもよい。この場合、通常配光パターンの照射により得られる各個別領域Rの輝度が、ハイコントラスト配光パターンの形成に利用される。
 ハイコントラスト制御における検出輝度値と設定照度値との関係は、次のようであってもよい。図13(A)~図13(C)は、ハイコントラスト制御における検出輝度値と設定照度値との関係の他の例を示す図である。すなわち、図12(B)に示す例では、検出輝度値に対して設定照度値を連続的且つ直線的に変化させている。しかしながら、特にこの関係に限定されず、図13(A)及び図13(B)に示すように、検出輝度値に対して設定照度値を段階的に変化させてもよい。また、図13(C)に示すように、検出輝度値に対して設定照度値を曲線的に変化させてもよい。なお、図13(C)では上に凸の曲線を図示しているが、下に凸の曲線であってもよい。また、検出輝度値と係数との関係は、検出輝度値と設定照度値との関係と同様であるため、図示するまでもなく明らかである。
 照度設定部42は、トラッキング部40の検出結果に基づいて、特定個別領域R1の変位を認識し、特定個別領域R1の位置情報を更新する。そして、特定個別領域R1に対する特定照度値を含む、各個別領域Rの照度値を更新する。トラッキング部40による処理と照度設定部42による処理とは、少なくとも一時において並行して実行される。照度設定部42は、各個別領域Rの照度値を示す信号を、光源制御部20に送信する。照度設定部42は、例えば0.1~5ms毎に照度値を設定する。
 光源制御部20は、照度設定部42が定めた照度値に基づいて光源部10を制御する。光源制御部20は、光源22の点消灯と、各ミラー素子30のオン/オフ切り替えとを制御する。光源制御部20は、各個別領域Rに照射する光の照度値に基づいて、各ミラー素子30のオンの時間比率(幅や密度)を調節する。これにより、各個別領域Rに照射される光の照度を調節することができる。光源制御部20は、例えば0.1~5ms毎に、光源22及び/又は光偏向装置26に駆動信号を送信する。照度設定部42が定めた照度値に基づいて光源部10から光が照射され、その結果としての実際の各個別領域Rの輝度値が輝度解析部14により検出される。そして、この検出結果に基づいて、照度設定部42が再び照度値を設定する。
 車両用灯具システム1は、自車前方の特定物標の位置に応じて最適な配光パターンを形成するADB(Adaptive Driving Beam)制御を実行する。一例として、照度設定部42は、対向車100の存在位置に応じて定まる特定個別領域R1に対して、特定照度値「0」を設定し、他の個別領域Rに対して、照度値「1」を設定する。この設定を、第1照度情報とする。また、照度設定部42は、輝度均一化制御又はハイコントラスト制御に準じて、特定個別領域R1を含む全ての個別領域Rに対する照度値を設定する。この設定を、第2照度情報とする。
 そして、照度設定部42は、第1照度情報と第2照度情報とをAND演算する。これにより、特定個別領域R1に対する特定照度値が「0」であり、他の個別領域Rに対する照度値が輝度均一化制御又はハイコントラスト制御に準じて定まる照度値である照度情報が生成される。すなわち、特定個別領域R1は遮光され、特定個別領域R1を除く各個別領域Rには、輝度均一化配光パターン又はハイコントラスト配光パターンが形成される。
 なお、特定物標が歩行者200である場合、特定目標輝度値は、一例として他の個別領域Rに比べて高い値に設定される。これにより、より高い照度の光を歩行者200に照射して、自車運転者が歩行者200を視認しやすくすることができる。この場合、歩行者200の顔が位置する個別領域Rは、遮光することが望ましい。トラッキング部40は、輝度解析部14の検出結果である各個別領域Rの輝度データにエッジ強調等の公知の画像処理を施すことで、歩行者200の位置を検出することができる。エッジ強調は、輝度解析部14の処理に含めてもよい。
 図14(A)及び図14(B)は、実施の形態5に係る車両用灯具システムにおいて実行されるADB制御の一例を示すフローチャートである。このフローは、例えば図示しないライトスイッチによってADB制御の実行指示がなされ、且つイグニッションがオンのときに所定のタイミングで繰り返し実行され、ADB制御の実行指示が解除される(あるいは停止指示がなされる)か、イグニッションがオフにされた場合に終了する。また、図14(A)に示すフローは、例えば0.1~5ms毎に繰り返される高速処理であり、図14(B)に示すフローは、例えば50ms毎に繰り返される低速処理である。この低速処理と高速処理とは、並行して実行される。
 図14(A)に示すように、高速処理では、まず高速カメラ36及び遠赤外カメラ54によって自車前方が撮像される(S2101)。次に、輝度解析部14によって、高速カメラ36の画像データに基づいて、各個別領域Rの輝度が検出される(S2102)。遠赤外カメラ54の画像データは、物標解析部216に送られる。続いて、特定個別領域R1が設定されているか判断される(S2103)。当該判断は、例えばトラッキング部40により実行される。特定個別領域R1が設定されている場合(S2103のY)、トラッキング部40によって、特定物標がトラッキングされて特定個別領域R1の位置(変位)が検出される。照度設定部42は、トラッキング部40の検出結果に基づいて、特定個別領域R1の設定(位置情報)を更新する(S2104)。
 次に、照度設定部42によって、各個別領域Rに照射する光の照度値が設定される(S2105)。特定個別領域R1に対しては、特定照度値が設定される。残りの個別領域Rに対しては、輝度均一化配光パターン又はハイコントラスト配光パターンに準じた照度値が設定される。次に、光源制御部20によって光源部10が駆動され、定められた照度の光が光源部10から照射されて(S2106)、本ルーチンが終了する。特定個別領域R1が設定されていない場合(S2103のN)、照度設定部42によって、個別領域Rに照射する光の照度値が設定される(S2105)。この場合、設定される照度値の中には、特定照度値は含まれない。その後は、ステップS2106の処理が実行されて、本ルーチンが終了する。
 ステップS2104において、トラッキングにより特定物標の消失が検出された場合には、特定個別領域R1の設定も消失する。したがって、ステップS2105で設定される照度値の中には、特定照度値は含まれないこととなる。また、次回のルーチンにおけるステップS2103では、後述するステップS2205の処理が実行されるまでは、特定個別領域R1が設定されていない(S2103のN)と判定される。
 図14(B)に示すように、低速処理では、まず低速カメラ38によって自車前方が撮像される(S2201)。次に、物標解析部216によって、低速カメラ38及び遠赤外カメラ54の画像データに基づいて、自車前方に存在する物標が検出される(S2202)。次に、検出された物標の中に特定物標が含まれているか判断される(S2203)。当該判断は、例えばトラッキング部40により実行される。
 特定物標が含まれている場合(S2203のY)、トラッキング部40によって、特定物標が決定される(S2204)。次に、照度設定部42によって、特定物標の存在位置に基づいて特定個別領域R1が設定され(S2205)、本ルーチンが終了する。特定物標が含まれていない場合(S2203のN)、本ルーチンが終了する。なお、上記フローチャートでは、低速処理において特定個別領域が設定されているが、当該設定は高速処理において実行されてもよい。
 以上説明したように、本実施の形態に係る車両用灯具システム1は、光源部10と、可視光撮像部35と、遠赤外撮像部52と、輝度解析部14と、物標解析部216と、トラッキング部40と、照度設定部42と、光源制御部20とを備える。光源部10は、複数の個別領域Rのそれぞれに照射する光の照度を独立に調節可能である。輝度解析部14は、各個別領域Rの輝度を検出する。物標解析部216は、自車前方に存在する物標を検出する。トラッキング部40は、物標解析部216により検出された物標の中から特定物標を決定し、輝度解析部14の検出結果に基づいて特定物標の変位を検出する。照度設定部42は、輝度解析部14の検出結果と、トラッキング部40の検出結果とに基づいて、特定物標の存在位置に応じて定まる特定個別領域R1に対する特定照度値を含む、各個別領域Rの照度値を定める。光源制御部20は、照度設定部42が定めた照度値に基づいて光源部10を制御する。
 物標解析部216は、可視光撮像部35から得られる画像データと、遠赤外撮像部52から得られる画像データとに基づいて、物標を検出する。したがって、可視光撮像部35の画像データのみに基づいて物標を検出する場合に比べて、より高精度に物標を検出することができる。
 また、物標解析部216は、高精度に物標を検出できるが画像処理に比較的長時間を要するため、解析速度が劣る。このため、物標解析部216の解析結果のみに基づいてADB制御を実行すると、例えば特定物標が対向車100である場合、遮光領域を絞り込んで自車運転者の視認性を高めた配光パターンの形成が可能であるが、対向車100の変位に遮光領域を高精度に追従させることが困難である。
 一方、簡単な輝度検出を行う輝度解析部14は、画像処理に要する時間が比較的短時間であるため、高速な解析が可能である。しかしながら、物標の検出精度が低いため、物標の存在位置を正確に把握することが困難である。このため、輝度解析部14の解析結果のみに基づいてADB制御を実行すると、配光パターンの遮光領域を広めに設定する必要があり、自車運転者の視認性が犠牲となる。
 これに対し、本実施の形態の車両用灯具システム1では、低速だが高度な画像解析手段である物標解析部216と、単純だが高速な画像解析手段である輝度解析部14とを組み合わせて、対向車100の存在位置を高精度に把握し、配光パターンを決定している。このため、車両用灯具2における光の照射精度、言い換えれば配光パターンの形成精度を高めることができる。その結果、対向車100の運転者に与えるグレアの回避と、自車両の運転者の視認性確保とをより高い次元で両立することができる。
 また、本実施の形態の可視光撮像部35は、高速カメラ36と低速カメラ38とを含む。そして、輝度解析部14は、高速カメラ36から得られる情報に基づいて輝度を検出する。また、物標解析部216は、低速カメラ38及び遠赤外撮像部52から得られる情報に基づいて物標を検出する。このように、輝度解析部14と物標解析部216とのそれぞれにカメラを割り当てることで、それぞれの画像解析に必要とされる性能に特化したカメラを採用することができる。一般に、輝度解析部14と物標解析部216の画像解析に必要とされる性能を兼ね備えるカメラは高価である。このため、本実施の形態によれば、撮像部12の低コスト化を図ることができ、ひいては車両用灯具システム1の低コスト化を図ることができる。
 また、本実施の形態の照度設定部42は、特定個別領域R1を除く個別領域Rに対して、輝度均一化配光パターン及び/又はハイコントラスト配光パターンを形成する。これにより、物標解析部216による物標の検出精度を向上させることができる。その結果、車両用灯具2における光の照射精度をより高めることができる。
(実施の形態6)
 実施の形態6に係る車両用灯具システムは、トラッキング部40が遠赤外撮像部52の画像データに基づいてトラッキングを実行する点を除いて、実施の形態5に係る車両用灯具システムの構成と共通する。以下、実施の形態6に係る車両用灯具システムについて、実施の形態5と異なる構成を中心に説明し、共通する構成については簡単に説明するか、あるいは説明を省略する。
 本実施の形態に係る車両用灯具システム1は、実施の形態5と同様に、可視光撮像部35と、遠赤外撮像部52と、輝度解析部14と、物標解析部216と、トラッキング部40と、照度設定部42と、光源制御部20と、光源部10とを備える。
 本実施の形態のトラッキング部40は、遠赤外撮像部52の画像データに基づいて特定物標の変位を検出する。したがって、遠赤外カメラ54は好ましくは高速カメラ36と同程度に高速のカメラであり、例えばフレームレートが200fps以上10000fps以下(1フレームあたり0.1~5ms)である。具体的には、遠赤外撮像部52の画像データは、物標解析部216を介して、例えば0.1~5ms毎に灯具制御部18に送られる。トラッキング部40は、遠赤外撮像部52で検出された各個別領域Rの温度値のうち、特定物標が位置する個別領域Rの温度値を特定物標と関連付ける。トラッキング部40は、その後に取得する遠赤外撮像部52の画像データにおいて、特定物標と関連付けた温度値の位置を認識することで、特定物標の変位を検出することができる。本実施の形態によっても、実施の形態5と同様の効果を得ることができる。
 また、遠赤外撮像部52の画像データ上で特定物標と関連付けられた個別領域Rは、例えば特定物標が対向車100である場合、対向車100の運転者と重なる可能性が高い。このため、照度設定部42は、特定物標と関連づけられた個別領域Rそのものを特定個別領域R1と定めてもよい。
(実施の形態7)
 実施の形態7に係る車両用灯具システムは、物標解析部216が遠赤外撮像部52の画像データのみに基づいて物標を検出する点が実施の形態5又は6に係る車両用灯具システムと大きく異なる。以下、実施の形態7に係る車両用灯具システムについて、実施の形態5又は6と異なる構成を中心に説明し、共通する構成については簡単に説明するか、あるいは説明を省略する。
 図15は、実施の形態7に係る車両用灯具システムの概略構成を示す図である。本実施の形態に係る車両用灯具システム1(1B)は、光源部10と、可視光撮像部35と、遠赤外撮像部52と、制御装置50とを備える。光源部10の構造は、実施の形態5の光源部10と同様である。可視光撮像部35は、高速カメラ36のみを備える。遠赤外撮像部52は、遠赤外カメラ54を備える。
 制御装置50は、輝度解析部14、物標解析部216、灯具制御部18及び光源制御部20を有する。輝度解析部14は、高速カメラ36から得られる情報に基づいて、各個別領域Rの輝度を検出する。輝度解析部14は、例えば0.1~5ms毎に各個別領域Rの輝度を検出する。
 物標解析部216は、遠赤外撮像部52から得られる情報のみに基づいて、自車前方に存在する物標を検出する。物標解析部216は、予め定められた温度値以上の被写体を全て物標と判断する。また、本実施の形態では、物標解析部216により検出される物標が全て特定物標とされる。遠赤外カメラ54は好ましくは高速カメラ36と同程度に高速のカメラであり、例えばフレームレートが200fps以上10000fps以下(1フレームあたり0.1~5ms)である。したがって、物標解析部216は、例えば0.1~5ms毎に物標を検出する。本実施の形態では、物標解析部216により検出される物標が全て特定物標とされるため、物標解析部216による物標検出の繰り返しは、特定物標の変位検出と等しい。よって、物標解析部216は、実施の形態5におけるトラッキング部40としても機能する。このため、本実施の形態の灯具制御部18は、照度設定部42を備えるがトラッキング部40を備えない。
 照度設定部42は、輝度解析部14の検出結果と物標解析部216の検出結果とに基づいて、特定個別領域R1に対する特定照度値を含む、各個別領域Rに照射する光の照度値を定める。光源制御部20は、照度設定部42が定めた照度値に基づいて光源部10を制御する。
 物標解析部216は、遠赤外撮像部52の画像データのうち所定の領域に限定して、物標検出を実行してもよい。所定の領域としては、例えば対向車や先行車、歩行者が存在すると推定される領域が挙げられる。これらの領域は、設計者が実験やシミュレーションの結果に基づいて適宜設定することができる。これにより、物標解析部216による物標検出に要する時間を短くすることができる。また、本来は特定物標とすべきでない被写体が特定物標として扱われる可能性を低減することができる。
 また、物標検出を実行する領域を複数設け、領域毎に特定照度値の設定を異ならせてもよい。例えば、対向車や先行車が存在すると推定される領域で検出される物標は全て遮光し、歩行者が存在すると推定される領域で検出される物標は、全て高照度の光を照射する。
 本実施の形態では、高速カメラ36と同様に高速の遠赤外カメラ54を用いて物標が検出される。このため、実施の形態5では低速処理として説明した、図14(B)に示す物標の検出処理を、図14(A)に示す高速処理と同等の速度で実行することができる。この場合、図14(A)におけるステップS2101は、「高速カメラで撮像」と読み替えられ、図14(B)におけるステップS2201は、「遠赤外カメラで撮像」と読み替えられる。したがって、形成される配光パターンを、自車前方の状況の変化に迅速に追従させることができる。よって、車両用灯具2における光の照射精度を高めることができる。
 本発明は、上述の実施の形態5~7に限定されるものではなく、各実施の形態を組み合わせたり、当業者の知識に基づいて各種の設計変更などの変形を加えることも可能であり、そのような組み合わせられ、もしくは変形が加えられて得られる新たな実施の形態も本発明の範囲に含まれる。このような新たな実施の形態は、組み合わされる実施の形態及び変形それぞれの効果をあわせもつ。
 実施の形態5~7では、可視光撮像部35、遠赤外撮像部52、輝度解析部14、物標解析部216、灯具制御部18及び光源制御部20が灯室8内に設けられているが、それぞれは適宜、灯室8外に設けられてもよい。例えば、可視光撮像部35のうち低速カメラ38は、車室内に搭載されている既存のカメラを利用することができる。なお、可視光撮像部35と光源部10、及び遠赤外撮像部52と光源部10とは、それぞれ画角が一致していることが望ましい。
 また、高速カメラ36が低速カメラ38と同等の解像度を有する場合には、低速カメラ38を省略してもよい。これにより、車両用灯具システム1の小型化を図ることができる。この場合、実施の形態5及び6の物標解析部216は、遠赤外撮像部52及び高速カメラ36の画像データを用いて物標を検出する。
 光源部10は、DMDである光偏向装置26に代えて、光源光で自車前方を走査するスキャン光学系や、各個別領域Rに対応するLEDが配列されたLEDアレイを備えてもよい。
 以下の態様も本発明に含めることができる。
 可視光撮像部35から得られる情報に基づいて、自車前方に並ぶ複数の個別領域Rそれぞれの輝度を検出する輝度解析部14と、
 少なくとも遠赤外撮像部52から得られる情報に基づいて、自車前方に存在する物標を検出する物標解析部216と、
 輝度解析部14の検出結果と物標解析部216の検出結果とに基づいて、所定の物標の存在位置に応じて定まる特定個別領域R1に対する特定照度値を含む、各個別領域Rに照射する光の照度値を定める照度設定部42と、
 照度設定部42が定めた照度値に基づいて、各個別領域Rに照射する光の照度を独立に調節可能な光源部10を制御する光源制御部20と、
を備える、車両用灯具2の制御装置50。
 可視光撮像部35から得られる情報に基づいて、自車前方に並ぶ複数の個別領域Rそれぞれの輝度を検出するステップと、
 少なくとも遠赤外撮像部52から得られる情報に基づいて、自車前方に存在する物標を検出するステップと、
 輝度を検出するステップの検出結果と物標を検出するステップの検出結果とに基づいて、所定の物標の存在位置に応じて定まる特定個別領域R1に対する特定照度値を含む、各個別領域Rに照射する光の照度値を定めるステップと、
 定められた照度値に基づいて、各個別領域Rに照射する光の照度を独立に調節可能な光源部10を制御するステップと、
を含む、車両用灯具2の制御方法。
 1 車両用灯具システム、 2 車両用灯具、 10 光源部、 12 撮像部、 14 輝度解析部、 20 光源制御部、 35 可視光撮像部、 36 高速カメラ、 38 低速カメラ、 40 トラッキング部、 42 照度設定部、 50 制御装置、 52 遠赤外撮像部、 216 物標解析部。
 本発明は、車両用灯具システム、車両用灯具の制御装置及び車両用灯具の制御方法に利用することができる。

Claims (14)

  1.  自車前方を撮像する撮像部と、
     前記撮像部から得られる情報に基づいて、自車前方に並ぶ複数の個別領域それぞれの輝度を検出する輝度解析部と、
     前記輝度解析部の検出結果に基づいて、各個別領域に照射する光の照度値を定める照度設定部と、
     前記複数の個別領域それぞれに照射する光の照度を独立に調節可能な光源部と、
     前記照度設定部が定めた照度値に基づいて前記光源部を制御する光源制御部と、
    を備え、
     前記照度設定部は、所定の第1輝度範囲に含まれる前記個別領域と、所定の第2輝度範囲に含まれる前記個別領域とで、異なる関数を用いて照度値を定めることを特徴とする車両用灯具システム。
  2.  前記照度設定部は、前記第1輝度範囲に含まれる前記個別領域について前記輝度解析部により検出される輝度に依存して照度値を設定し、前記第2輝度範囲に含まれる前記個別領域について前記輝度解析部により検出される輝度に依存せずに照度値を設定する請求項1に記載の車両用灯具システム。
  3.  前記照度設定部は、前記第1輝度範囲に含まれる前記個別領域及び前記第2輝度範囲に含まれる前記個別領域に対して、前記輝度解析部により検出される輝度に依存して照度値を設定し、
     前記第1輝度範囲と前記第2輝度範囲とでは、検出輝度と設定照度との対応関係が異なる請求項1に記載の車両用灯具システム。
  4.  前記第1輝度範囲は、前記第2輝度範囲よりも輝度が低い請求項2に記載の車両用灯具システム。
  5.  前記第1輝度範囲に含まれる前記個別領域の照度値は、輝度と正の相関関係にある請求項4に記載の車両用灯具システム。
  6.  前記第1輝度範囲に含まれる前記個別領域の照度値及び前記第2輝度範囲に含まれる前記個別領域の照度値は、輝度と正の相関関係にある請求項3に記載の車両用灯具システム。
  7.  前記照度設定部は、前記第1輝度範囲及び前記第2輝度範囲よりも輝度が高い所定の第3輝度範囲に含まれる前記個別領域について、前記輝度解析部により検出される輝度に依存して且つ輝度と負の相関関係にある照度値を設定するか、前記輝度解析部により検出される輝度に依存せずに照度値0を設定する請求項1乃至6のいずれか1項に記載の車両用灯具システム。
  8.  自車前方を撮像する撮像部から得られる情報に基づいて、自車前方に並ぶ複数の個別領域それぞれの輝度を検出する輝度解析部と、
     前記輝度解析部の検出結果に基づいて、各個別領域に照射する光の照度値を定める照度設定部と、
     前記照度設定部が定めた照度値に基づいて、各個別領域に照射する光の照度を独立に調節可能な光源部を制御する光源制御部と、
    を備え、
     前記照度設定部は、輝度が所定の第1範囲に含まれる前記個別領域と、輝度が所定の第2範囲に含まれる前記個別領域とで、異なる関数を用いて照度値を定めることを特徴とする車両用灯具の制御装置。
  9.  自車前方を撮像する撮像部から得られる情報に基づいて、自車前方に並ぶ複数の個別領域それぞれの輝度を検出するステップと、
     検出した輝度に基づいて、各個別領域に照射する光の照度値を定めるステップと、
     定めた照度値に基づいて、各個別領域に照射する光の照度を独立に調節可能な光源部を制御するステップと、
    を含み、
     前記照度値を定めるステップにおいて、輝度が所定の第1範囲に含まれる前記個別領域と、輝度が所定の第2範囲に含まれる前記個別領域とで、異なる関数を用いて照度値を定めることを特徴とする車両用灯具の制御方法。
  10.  可視光撮像部と、
     遠赤外撮像部と、
     前記可視光撮像部から得られる情報に基づいて、自車前方に並ぶ複数の個別領域それぞれの輝度を検出する輝度解析部と、
     少なくとも前記遠赤外撮像部から得られる情報に基づいて、自車前方に存在する物標を検出する物標解析部と、
     前記輝度解析部の検出結果と前記物標解析部の検出結果とに基づいて、所定の物標の存在位置に応じて定まる特定個別領域に対する特定照度値を含む、各個別領域に照射する光の照度値を定める照度設定部と、
     前記複数の個別領域それぞれに照射する光の照度を独立に調節可能な光源部と、
     前記照度設定部が定めた照度値に基づいて前記光源部を制御する光源制御部と、
    を備えることを特徴とする車両用灯具システム。
  11.  前記可視光撮像部は、高速カメラと低速カメラとを含み、
     前記輝度解析部は、前記高速カメラから得られる情報に基づいて前記輝度を検出し、
     前記物標解析部は、前記低速カメラ及び前記遠赤外撮像部から得られる情報に基づいて前記物標を検出し、
     本車両用灯具システムは、前記物標解析部により検出された物標の中から特定物標を決定して前記特定物標の変位を検出するトラッキング部をさらに備え、
     前記照度設定部は、前記輝度解析部の検出結果と前記トラッキング部の検出結果とに基づいて、前記特定物標の存在位置に応じて定まる特定個別領域に対する特定照度値を含む、各個別領域に照射する光の照度値を定める請求項10に記載の車両用灯具システム。
  12.  前記照度設定部は、前記特定個別領域を除く個別領域のうち、前記輝度解析部により検出された輝度が所定の範囲に含まれる個別領域について、検出された輝度が相対的に低い個別領域には相対的に低い照度値を設定し、検出された輝度が相対的に高い個別領域には相対的に高い照度値を設定する請求項10又は11に記載の車両用灯具システム。
  13.  可視光撮像部から得られる情報に基づいて、自車前方に並ぶ複数の個別領域それぞれの輝度を検出する輝度解析部と、
     少なくとも遠赤外撮像部から得られる情報に基づいて、自車前方に存在する物標を検出する物標解析部と、
     前記輝度解析部の検出結果と前記物標解析部の検出結果とに基づいて、所定の物標の存在位置に応じて定まる特定個別領域に対する特定照度値を含む、各個別領域に照射する光の照度値を定める照度設定部と、
     前記照度設定部が定めた照度値に基づいて、各個別領域に照射する光の照度を独立に調節可能な光源部を制御する光源制御部と、
    を備えることを特徴とする車両用灯具の制御装置。
  14.  可視光撮像部から得られる情報に基づいて、自車前方に並ぶ複数の個別領域それぞれの輝度を検出するステップと、
     少なくとも遠赤外撮像部から得られる情報に基づいて、自車前方に存在する物標を検出するステップと、
     前記輝度を検出するステップの検出結果と前記物標を検出するステップの検出結果とに基づいて、所定の物標の存在位置に応じて定まる特定個別領域に対する特定照度値を含む、各個別領域に照射する光の照度値を定めるステップと、
     定められた前記照度値に基づいて、各個別領域に照射する光の照度を独立に調節可能な光源部を制御するステップと、
    を含むことを特徴とする車両用灯具の制御方法。
PCT/JP2018/022257 2017-06-27 2018-06-11 車両用灯具システム、車両用灯具の制御装置及び車両用灯具の制御方法 WO2019003887A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18824989.0A EP3647115B1 (en) 2017-06-27 2018-06-11 Vehicle lamp fitting system, and vehicle lamp fitting control method
CN201880040869.5A CN110770081B (zh) 2017-06-27 2018-06-11 车辆用灯具系统、车辆用灯具的控制装置及车辆用灯具的控制方法
CN202310294172.3A CN116176402A (zh) 2017-06-27 2018-06-11 车辆用灯具系统、车辆用灯具的控制装置及车辆用灯具的控制方法
JP2019526765A JP7111708B2 (ja) 2017-06-27 2018-06-11 車両用灯具システム、車両用灯具の制御装置及び車両用灯具の制御方法
US16/728,459 US11001194B2 (en) 2017-06-27 2019-12-27 Vehicular lamp system, vehicular lamp control device, and vehicular lamp control method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017125498 2017-06-27
JP2017-125498 2017-06-27
JP2017132056 2017-07-05
JP2017-132056 2017-07-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/728,459 Continuation US11001194B2 (en) 2017-06-27 2019-12-27 Vehicular lamp system, vehicular lamp control device, and vehicular lamp control method

Publications (1)

Publication Number Publication Date
WO2019003887A1 true WO2019003887A1 (ja) 2019-01-03

Family

ID=64742928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022257 WO2019003887A1 (ja) 2017-06-27 2018-06-11 車両用灯具システム、車両用灯具の制御装置及び車両用灯具の制御方法

Country Status (5)

Country Link
US (1) US11001194B2 (ja)
EP (1) EP3647115B1 (ja)
JP (1) JP7111708B2 (ja)
CN (2) CN116176402A (ja)
WO (1) WO2019003887A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111486402A (zh) * 2019-01-25 2020-08-04 株式会社小糸制作所 车辆用灯具系统、车辆用灯具的控制装置及车辆用灯具的控制方法
WO2021002450A1 (ja) * 2019-07-04 2021-01-07 株式会社小糸製作所 車両用灯具システム、車両用灯具の制御装置および車両用灯具の制御方法
WO2021100510A1 (ja) * 2019-11-19 2021-05-27 株式会社小糸製作所 車両用灯具システム、配光制御装置および配光制御方法
JP2022523400A (ja) * 2019-03-01 2022-04-22 ヴァレオ ビジョン 光パターンを補正するための方法、自動車両の照明装置、および自動車両の照明用組立体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110225846B (zh) 2017-01-20 2023-12-22 株式会社小糸制作所 车辆用灯具系统、车辆用灯具的控制装置及车辆用灯具的控制方法
JP2020034472A (ja) * 2018-08-31 2020-03-05 株式会社デンソー 自律的ナビゲーションのための地図システム、方法および記憶媒体
FR3112517B1 (fr) * 2020-07-20 2023-10-06 Valeo Vision Procédé de fonctionnement d'un dispositif d'éclairage automobile et dispositif d'éclairage automobile

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309836A (ja) * 1988-06-07 1989-12-14 Honda Motor Co Ltd 車両用照明機器の調光制御装置
JP2008094127A (ja) 2006-10-06 2008-04-24 Hitachi Ltd 自動車用ヘッドライト制御装置
JP2009090844A (ja) * 2007-10-10 2009-04-30 Toyota Central R&D Labs Inc 照明装置
JP2012227102A (ja) 2011-04-22 2012-11-15 Koito Mfg Co Ltd 光学ユニット
JP2015064964A (ja) 2013-09-24 2015-04-09 株式会社小糸製作所 車両用前照灯

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2749729B2 (ja) * 1991-08-29 1998-05-13 三菱電機株式会社 磁気記録再生回路
US6861809B2 (en) * 1998-09-18 2005-03-01 Gentex Corporation Headlamp control to prevent glare
CN100420592C (zh) * 2003-02-21 2008-09-24 金泰克斯公司 自动汽车外部灯光控制系统
JP4613970B2 (ja) * 2008-03-12 2011-01-19 トヨタ自動車株式会社 車両用照明装置
CN101376352B (zh) * 2008-09-24 2011-05-04 上海大学 自动适应夜间行车弯道及坡度的汽车前照灯控制方法
DE102012210467A1 (de) * 2012-06-21 2013-12-24 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur automatischen Anpassung einer Fahrzeugbeleuchtung an eine Umgebung des Fahrzeugs
DE102013200427B4 (de) * 2013-01-14 2021-02-04 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erzeugen eines Rundumsichtbildes einer Fahrzeugumgebung eines Fahrzeugs, Verfahren zum Bereitstellen zumindest einer Fahrerassistenzfunktion für ein Fahrzeug, Rundumsichtsystem für ein Fahrzeug
US9472104B2 (en) * 2013-11-26 2016-10-18 Elwha Llc Systems and methods for automatically documenting an accident
CN110225846B (zh) * 2017-01-20 2023-12-22 株式会社小糸制作所 车辆用灯具系统、车辆用灯具的控制装置及车辆用灯具的控制方法
DE102017209301A1 (de) * 2017-06-01 2018-12-06 Osram Gmbh Anpassen einer lichtstärke von scheinwerferlicht eines fahrzeugs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309836A (ja) * 1988-06-07 1989-12-14 Honda Motor Co Ltd 車両用照明機器の調光制御装置
JP2008094127A (ja) 2006-10-06 2008-04-24 Hitachi Ltd 自動車用ヘッドライト制御装置
JP2009090844A (ja) * 2007-10-10 2009-04-30 Toyota Central R&D Labs Inc 照明装置
JP2012227102A (ja) 2011-04-22 2012-11-15 Koito Mfg Co Ltd 光学ユニット
JP2015064964A (ja) 2013-09-24 2015-04-09 株式会社小糸製作所 車両用前照灯

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3647115A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111486402A (zh) * 2019-01-25 2020-08-04 株式会社小糸制作所 车辆用灯具系统、车辆用灯具的控制装置及车辆用灯具的控制方法
JP2020117155A (ja) * 2019-01-25 2020-08-06 株式会社小糸製作所 車両用灯具システム、車両用灯具の制御装置および車両用灯具の制御方法
US11214189B2 (en) 2019-01-25 2022-01-04 Koito Manufacturing Co., Ltd. Vehicle lamp system, vehicle lamp control device and vehicle lamp control method
JP7237607B2 (ja) 2019-01-25 2023-03-13 株式会社小糸製作所 車両用灯具システム、車両用灯具の制御装置および車両用灯具の制御方法
JP2022523400A (ja) * 2019-03-01 2022-04-22 ヴァレオ ビジョン 光パターンを補正するための方法、自動車両の照明装置、および自動車両の照明用組立体
JP7176128B2 (ja) 2019-03-01 2022-11-21 ヴァレオ ビジョン 光パターンを補正するための方法、自動車両の照明装置、および自動車両の照明用組立体
WO2021002450A1 (ja) * 2019-07-04 2021-01-07 株式会社小糸製作所 車両用灯具システム、車両用灯具の制御装置および車両用灯具の制御方法
WO2021100510A1 (ja) * 2019-11-19 2021-05-27 株式会社小糸製作所 車両用灯具システム、配光制御装置および配光制御方法

Also Published As

Publication number Publication date
US20200139879A1 (en) 2020-05-07
JP7111708B2 (ja) 2022-08-02
CN116176402A (zh) 2023-05-30
EP3647115A4 (en) 2021-03-24
EP3647115A1 (en) 2020-05-06
US11001194B2 (en) 2021-05-11
CN110770081B (zh) 2023-05-12
JPWO2019003887A1 (ja) 2020-04-23
EP3647115B1 (en) 2023-03-22
CN110770081A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
JP7111708B2 (ja) 車両用灯具システム、車両用灯具の制御装置及び車両用灯具の制御方法
JP7121051B2 (ja) 車両用灯具システム、車両用灯具の制御装置及び車両用灯具の制御方法
JP6932610B2 (ja) 車両用灯具システム、車両用灯具の制御装置および車両用灯具の制御方法
CN110225846B (zh) 车辆用灯具系统、车辆用灯具的控制装置及车辆用灯具的控制方法
US10919438B2 (en) Vehicle lamp system, vehicle lamp control device and vehicle lamp control method
JP7237607B2 (ja) 車両用灯具システム、車両用灯具の制御装置および車両用灯具の制御方法
JP7084392B2 (ja) 車両用灯具システム、車両用灯具の制御装置及び車両用灯具の制御方法
WO2022196296A1 (ja) 車両用灯具の制御装置、車両用灯具の制御方法、車両用灯具システム
WO2022172860A1 (ja) 車両用前照灯
JP7173780B2 (ja) 車両用灯具
WO2021002450A1 (ja) 車両用灯具システム、車両用灯具の制御装置および車両用灯具の制御方法
JP2020044946A (ja) 車両用灯具
WO2024009934A1 (ja) 物標検出装置、配光制御装置および物標検出方法
WO2022220187A1 (ja) 車両用灯具システム、配光制御装置および配光制御方法
WO2022085683A1 (ja) 車両用灯具システム、配光制御装置および配光制御方法
JP6162012B2 (ja) 車両用前照灯の点灯制御装置、車両用前照灯システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526765

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018824989

Country of ref document: EP

Effective date: 20200127