WO2019003867A1 - 車載用電源回路及び車載用電源装置 - Google Patents

車載用電源回路及び車載用電源装置 Download PDF

Info

Publication number
WO2019003867A1
WO2019003867A1 PCT/JP2018/022110 JP2018022110W WO2019003867A1 WO 2019003867 A1 WO2019003867 A1 WO 2019003867A1 JP 2018022110 W JP2018022110 W JP 2018022110W WO 2019003867 A1 WO2019003867 A1 WO 2019003867A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage
unit
output
internal power
Prior art date
Application number
PCT/JP2018/022110
Other languages
English (en)
French (fr)
Inventor
息吹 河村
貴史 川上
成治 高橋
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to US16/621,802 priority Critical patent/US20200172032A1/en
Priority to CN201880038466.7A priority patent/CN110741544A/zh
Publication of WO2019003867A1 publication Critical patent/WO2019003867A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/263Arrangements for using multiple switchable power supplies, e.g. battery and AC
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters

Definitions

  • the present invention relates to an on-vehicle power supply circuit and an on-vehicle power supply device.
  • Patent Document 1 discloses a technique relating to a DC-DC converter that raises or lowers a DC voltage by driving a switching element.
  • the DC-DC converter converts a first DC voltage into a second DC voltage and outputs the same, a control circuit that controls the operation of the conversion circuit, and a power supply circuit that supplies power to the control circuit.
  • power supply means for supplying power from the conversion circuit to the control circuit when the voltage applied from the power supply circuit to the control circuit falls below a predetermined value.
  • control is performed by supplying power from the conversion circuit to the control circuit when the operating voltage supplied from the power supply circuit to the control circuit falls below a predetermined value for some reason.
  • the operation of the circuit is continued.
  • it is essential for the conversion circuit to operate normally, and when the conversion circuit can not generate sufficient power for operation, the operation of the control circuit can be continued. It disappears.
  • the present invention has been made on the basis of the above-described circumstances, and normally, an operating voltage based on any storage unit can be supplied to the control unit of the on-vehicle power supply device.
  • An object of the present invention is to provide a configuration capable of stably continuing the supply of the operating voltage to the control unit even in the abnormal time when the supply is reduced or stopped.
  • the on-vehicle power supply circuit of the first aspect of the present invention is A voltage conversion unit that reduces or boosts a voltage applied to a first conductive path electrically connected to a first storage unit, and applies the voltage to a second conductive path electrically connected to a second storage unit; A control unit that outputs a control signal to the voltage conversion unit; A first internal power supply unit that supplies power to the control unit based on the power supplied from the first storage unit; A second internal power supply unit that supplies power to the control unit based on the power supplied from the second power storage unit; When the power supply from the second internal power supply unit is in a normal state, an operating voltage is output to the control unit based on at least the power from the second internal power supply unit, and the power from the second internal power supply unit is output. An operating voltage adjusting unit that outputs an operating voltage to the control unit based on at least the power from the first internal power supply unit when the supply is not in the normal state; Have.
  • the on-vehicle power supply device is The vehicle power supply circuit; The voltage conversion unit; The above control unit, including.
  • the vehicle-mounted power supply circuit has an operating voltage adjustment unit, and when the power supply from the second internal power supply unit is in a normal state, the control unit is at least based on the power from the second internal power supply unit.
  • the operating voltage can be output to the control unit based on at least the power from the first internal power supply unit.
  • the operation voltage can be output to the control unit based on the power from the first internal power supply unit.
  • the voltage supply operation can be stably continued.
  • the operating voltage can be generated without depending largely on the voltage conversion unit at the time of abnormality, the stability becomes higher when supplying the operating voltage to the control unit.
  • the vehicle-mounted power supply device of the second aspect can achieve the same effect as the vehicle-mounted power supply circuit of the first aspect.
  • FIG. 1 is a block diagram schematically illustrating a vehicle-mounted power supply system including a vehicle-mounted power supply circuit according to a first embodiment.
  • the in-vehicle power supply device of the vehicle-mounted power supply system shown in FIG. 1 is a block diagram schematically showing a basic configuration related to a voltage conversion operation.
  • the operating voltage adjustment unit includes a first output path that is a conductive path through which the power from the first internal power supply unit is output, and a second output path that is a conductive path through which the power from the second internal power supply unit is output; An input path which is a conductive path for inputting an operating voltage to the control unit, an anode is connected to the first output path side, a first diode whose cathode is connected to the input path side, and an anode is connected to the second output path side And a second diode whose cathode is connected to the roadside.
  • the first internal power supply unit when power is output from the first internal power supply unit and the second internal power supply unit, and when the power supply from the second internal power supply unit is reduced or stopped, the first internal power supply unit is used.
  • the operating voltage is immediately compensated based on the power of Therefore, when the power supply from the second internal power supply unit is reduced or stopped, it is possible to prevent the operating voltage to the control unit from being cut off for a long time.
  • the second internal power supply unit may apply a voltage of a predetermined second voltage value to the second output path in the normal state.
  • the first internal power supply unit may apply a voltage of a first voltage value lower than the second voltage value to the first output path.
  • the voltage of the second output path applied by the second internal power supply unit exceeds the voltage of the first output path applied by the first internal power supply unit, and the second The operating voltage can be provided to the control unit with priority given to the power supply from the internal power supply unit. Therefore, the power consumption in the first internal power supply unit and hence the power consumption in the first power storage unit can be suppressed.
  • the power supply from the second internal power supply unit is reduced or stopped, the operating voltage based on the power from the first internal power supply unit is immediately compensated.
  • the on-vehicle power supply device includes a switch that switches between an on state permitting power supply from the first storage unit to the first internal power supply unit and an off state to shut off, and a value of an output voltage output from the first internal power supply unit
  • a protection control unit may be included to turn the switch on if the threshold value is less than the threshold value and to turn the switch off if the threshold value or more.
  • the on-vehicle power supply device includes a switch that switches between an on state permitting power supply from the first storage unit to the first internal power supply unit and an off state to shut off, and a switch when the control unit operates the voltage conversion unit.
  • the switching unit may be turned on, and the switch may be turned off when the control unit does not operate the voltage conversion unit.
  • the control unit does not operate the voltage conversion unit, that is, when the necessity of supplying power from the first internal power supply unit to the control unit is extremely low, the first internal power supply unit is stopped.
  • the power consumption of the first power storage unit can be effectively suppressed.
  • In-vehicle power supply system 100 shown in FIG. 1 includes first and second power storage units 91 and 92 configured as in-vehicle power supply units, and in-vehicle power supply device 1 configured as an in-vehicle DCDC converter. (Hereafter, it is also called power supply device 1.) It is constituted as a system which can supply electric power to a load for vehicles not shown which was carried in vehicles.
  • the on-vehicle load that receives the power supply from the power supply device 1 is mainly provided in a form electrically connected to the low-voltage side wiring portion 82, and a form electrically connected to the high-voltage side wiring portion 81 In-vehicle load may be provided.
  • the kind of these vehicle-mounted loads is not specifically limited, Well-known various loads which can be mounted in a vehicle can be provided.
  • First power storage unit 91 is formed of, for example, a storage unit such as an electric double layer capacitor, a lithium ion battery, etc., and generates a first predetermined voltage.
  • the terminal on the high potential side of the first power storage unit 91 is maintained at about 48 V, and the terminal on the low potential side is maintained at the ground potential (0 V).
  • the terminal on the high potential side of the first power storage unit 91 is electrically connected to the wiring unit 81 provided in the vehicle, and the first power storage unit 91 applies a predetermined voltage to the wiring unit 81.
  • the low potential side terminal of first power storage unit 91 is electrically connected to a reference conductive path configured as a ground portion in the vehicle.
  • the wiring portion 81 is connected to the high voltage side terminal P1 of the power supply device 1, and is electrically connected to the first conductive path 21 through the high voltage side terminal P1.
  • Second power storage unit 92 is formed of, for example, a storage unit such as a lead storage battery, and generates a second predetermined voltage lower than a first predetermined voltage generated in first power storage unit 91.
  • the terminal on the high potential side of the second power storage unit 92 is maintained at about 12 V, and the terminal on the low potential side is maintained at the ground potential (0 V).
  • the terminal on the high potential side of the second power storage unit 92 is electrically connected to the wiring unit 82 provided in the vehicle, and the second power storage unit 92 applies a predetermined voltage to the wiring unit 82.
  • the low potential side terminal of second power storage unit 92 is electrically connected to a reference conductive path configured as a ground portion in the vehicle.
  • the wiring portion 82 is connected to the low voltage side terminal P2 of the power supply device 1, and is electrically connected to the second conductive path 22 through the low voltage side terminal P2.
  • the power supply device 1 is configured as an on-vehicle DCDC converter mounted and used in a vehicle, and reduces the DC voltage applied to the high-voltage conductive path (first conductive path 21) to reduce the low-voltage side.
  • the basic operation of outputting to the conductive path (second conductive path 22) can be performed.
  • the basic operation of boosting the DC voltage applied to the low voltage side conductive path (the second conductive path 22) and outputting it to the high voltage side conductive path (the first conductive path 21) can be performed.
  • the power supply device 1 mainly includes the first conductive path 21, the second conductive path 22, the voltage converter 10, the controller 30, the voltage detector 41, the current detector 42, the voltage detector 43, and the current.
  • a detection unit 44, a high voltage side terminal P1, a low voltage side terminal P2, and the like are provided.
  • the first conductive path 21 is configured as a power supply line on the primary side (high voltage side) to which a relatively high voltage is applied.
  • the first conductive path 21 is electrically connected to the terminal on the high potential side of the first power storage unit 91 via the wiring portion 81, and a predetermined DC voltage is applied from the first power storage unit 91.
  • the high voltage side terminal P1 is provided at the end of the first conductive path 21, and the wiring portion 81 is electrically connected to the high voltage side terminal P1.
  • the second conductive path 22 is configured as a power supply line on the secondary side (low voltage side) to which a relatively low voltage is applied.
  • the second conductive path 22 is electrically connected to the high potential side terminal of the second power storage unit 92 through the wiring portion 82, and a DC voltage smaller than the output voltage of the first power storage unit 91 is applied from the second power storage unit 92.
  • the low voltage side terminal P2 is provided at the end of the second conductive path 22, and the wiring portion 82 is electrically connected to the low voltage side terminal P2.
  • the voltage conversion unit 10 is configured as a buck-boost DCDC converter capable of performing bidirectional voltage conversion.
  • the control unit 30 receives a step-down control signal (step-down PWM signal)
  • the high-voltage conductive path first The DC voltage applied to the conductive path 21
  • the low voltage side conductive path second conductive path 22
  • voltage control unit 10 receives control signal for boosting (PWM signal for boosting) from control unit 30
  • voltage conversion unit 10 receives the DC voltage applied to the conductive path (second conductive path 22) on the low voltage side.
  • the output voltage is applied to the high voltage side conductive path (first conductive path 21) by reducing the voltage.
  • the voltage detection unit 41 is configured as a known voltage detection circuit that can input a value indicating the voltage of the first conductive path 21 to the control unit 30.
  • the voltage detection unit 41 divides the voltage of the first conductive path 21 It may be configured as a voltage divider circuit to be input, or it may be a circuit that directly inputs the voltage of the first conductive path 21 to the control unit 30.
  • the voltage detection unit 43 is configured as a known voltage detection circuit that can input a value indicating the voltage of the second conductive path 22 to the control unit 30.
  • the voltage detection unit 43 divides and controls the voltage of the second conductive path 22
  • the circuit may be configured as a voltage dividing circuit to be input to the unit 30, or may be a circuit to directly input the voltage of the second conductive path 22 to the control unit 30.
  • the current detection unit 42 is configured as a known current detection circuit, and outputs a value indicating the current flowing through the first conductive path 21 (specifically, an analog voltage corresponding to the value of the current flowing through the first conductive path 21) Do.
  • the current detection unit 44 is configured as a known current detection circuit, and a value indicating the current flowing through the second conductive path 22 (specifically, an analog voltage corresponding to the value of the current flowing through the second conductive path 22) Output).
  • the detection values from the current detection units 42 and 44 are input to the control unit 30, respectively.
  • the control unit 30 includes, for example, a control circuit and a drive circuit.
  • the control circuit is configured as a microcomputer, for example, and performs various arithmetic processing, a ROM that stores information such as a program, a RAM that stores temporarily generated information, and converts an input analog voltage into a digital value A / D converter etc. are provided.
  • a / D converter each detection signal (analog voltage signal corresponding to the detection voltage) from the voltage detection units 41 and 43, and detection signal (analog voltage signal corresponding to the detection current) from the current detection units 42 and 44 ) Is given.
  • the control unit 30 sets the voltage applied to the second conductive path 22 while the voltage detection unit 43 detects the voltage of the second conductive path 22 when the voltage conversion unit 10 performs the step-down operation.
  • a feedback operation is performed so as to be close to the value, and a PWM signal is generated. That is, if the voltage of the second conductive path 22 detected by the voltage detection unit 43 is smaller than the target value, the duty is increased by feedback calculation so as to approach the target value, and the second conductive path detected by the voltage detection unit 43 If the voltage of 22 is larger than the target value, the duty is adjusted to decrease the duty by feedback calculation so as to approach the target value.
  • the adjusted duty PWM signal is provided to the voltage conversion unit 10 by the drive circuit.
  • control unit 30 sets the voltage applied to the first conductive path 21 while the voltage detection unit 41 detects the voltage of the first conductive path 21 when causing the voltage conversion unit 10 to perform the boosting operation.
  • a feedback operation is performed so as to approach the specified target value, and a PWM signal is generated. That is, if the voltage of the first conductive path 21 detected by the voltage detection unit 41 is smaller than the target value, the duty is increased by feedback calculation so as to approach the target value, and the first conductive path detected by the voltage detection unit 41 If the voltage 21 is larger than the target value, the duty is adjusted to decrease the duty by feedback calculation so as to approach the target value.
  • the adjusted duty PWM signal is provided to the voltage conversion unit 10 by the drive circuit.
  • the power supply circuit 60 illustrated in FIG. 1 is a circuit that generates an operating voltage to be supplied to the control unit 30.
  • the control unit 30 is configured to operate with the input path 73 as a power supply line and the voltage applied to the input path 73 as a power supply voltage.
  • Power supply circuit 60 supplies power to control unit 30 based on the power supplied from first power storage unit 91, and control unit 30 based on the power supplied from second power storage unit 92. , And an operating voltage adjusting unit 64 for adjusting an operating voltage to be supplied to the control unit 30.
  • the first internal power supply unit 61 is configured as, for example, a known series power supply circuit configured in a series system, or a known switching power supply circuit configured in a switching system, and is applied to the first conductive path 21
  • the voltage (voltage input via the switch 68) is stepped down, and an output voltage having a first voltage value lower than that of the first conductive path 21 is applied to a first output path 71 described later.
  • the type is not limited as long as the power supply circuit has such a step-down function.
  • the output voltage of the first internal power supply unit 61 is the potential difference between the first output path 71 and the ground (not shown), and the output of the first internal power supply unit 61 is controlled such that the value of this potential difference becomes the first voltage value. Be done.
  • the first voltage value which is the value of the output voltage applied to the first output path 71 by the first internal power supply unit 61, is the second value of the output voltage applied to the second output path 72 by the second internal power supply unit 62. It is lower than the voltage value and lower than the rated voltage of second power storage unit 92. In addition, the first voltage value is higher than the voltage value (minimum operable voltage) of the input path 73 at which the control unit 30 is operable.
  • First internal power supply unit 61 may be controlled by any control circuit, and in this case, the control circuit is configured to operate based on the power from first power storage unit 91. It may be done.
  • the second internal power supply unit 62 may have a circuit configuration that can apply a DC voltage (output voltage) higher than the first voltage value to the second output path 72.
  • the output voltage of the second internal power supply unit 62 is the potential difference between the second output path 72 and the ground (not shown), and the value of this potential difference is the second voltage value.
  • the second internal power supply unit 62 is configured to apply, to the second output path 72, a voltage of the same level as the voltage applied to the second conductive path 22.
  • the second internal power supply section An example in which 62 is configured as a conduction path for electrically connecting the second conduction path 22 and the anode of the second diode 64B will be described as a representative example.
  • the second internal power supply unit 62 is not limited to this representative example, and is configured as, for example, a known series power supply circuit configured in a series system or a known switching power supply circuit configured in a switching system.
  • the voltage applied to the second conductive path 22 is stepped down or boosted, and an output voltage having a second voltage value lower or higher than that of the second conductive path 22 is applied to the second output path 72. It may be one.
  • the second internal power supply unit 62 is configured to apply a voltage of a predetermined second voltage value to the second output path 72 in the normal state.
  • the value of the voltage applied to the second output path 72 by the second internal power supply unit 62 is the voltage value of the input path 73 at which the control unit 30 is operable (operable When the first voltage value (the first internal power supply unit 61 is in operation), the voltage applied to the second output path 72 is higher than the lowest voltage). This is a state in which the value of the output voltage applied to the 1 output path 71 is larger.
  • the operating voltage adjusting unit 64 outputs an operating voltage to the control unit 30 based on the power from the second internal power supply unit 62 when the power supply from the second internal power supply unit 62 is in the above-described “normal state”.
  • the operation voltage is output to the control unit 30 based on the power from the first internal power supply unit 61.
  • the operating voltage adjustment unit 64 is a conductive path through which the power from the first internal power supply unit 61 is output, and a conductive path through which the power from the second internal power supply unit 62 is output.
  • the operating voltage adjusting unit 64 is configured such that the value of the voltage applied to the second output path 72 by the second internal power supply unit 62 is higher than the value of the voltage applied to the first output path 71 by the first internal power supply unit 61.
  • a current flows from the second internal power supply unit 62 to the input passage 73 via the second output passage 72 and the second diode 64B, and a current from the first internal power supply unit 61 does not flow to the input passage 73. That is, a voltage corresponding to the power supplied from the second internal power supply unit 62 is applied to the input path 73, and this voltage is the operating voltage applied to the control unit 30.
  • the value of the voltage applied to the second output path 72 by the second internal power supply unit 62 is lower than the value of the voltage applied to the first output path 71 by the first internal power supply unit 61. If the current flow rate is also small, a current flows from the first internal power supply 61 through the first output path 71 and the first diode 64A, and the current from the second internal power supply 62 does not flow to the input path 73. That is, a voltage corresponding to the power supplied from the first internal power supply unit 61 is applied to the input path 73, and this voltage is the operating voltage applied to the control unit 30.
  • Switch 68 is formed of a semiconductor switch element, a mechanical relay, or the like, and is configured to switch between an on state permitting power supply from first power storage unit 91 to first internal power supply unit 61 and an off state shutting off.
  • one end of the switch 68 is connected to the first conductive path 21, and the other end is connected to the first internal power supply unit 61.
  • the on / off of the switch 68 is controlled by the voltage monitoring unit 66 and the control unit 30. That is, when the off signal is output to the switch 68 from at least one of the voltage monitoring unit 66 and the control unit 30, the switch 68 performs the off operation.
  • the on signal is output to the switch 68 from both the voltage monitoring unit 66 and the control unit 30, the switch 68 is turned on.
  • the control unit 30 performs the step-down operation on the voltage conversion unit 10 according to the establishment of a predetermined step-down condition (for example, the establishment of a condition for switching the ignition switch from the off state to the on state). Let me do it. Specifically, based on the voltage of the second conductive path 22 monitored by the voltage detection unit 43, the feedback calculation is repeated to set the voltage of the second conductive path 22 to a desired target voltage, and the PWM signal (for The voltage conversion unit 10 performs the step-down operation while adjusting the duty of the control signal (1). Further, the control unit 30 causes the voltage conversion unit 10 to perform the boosting operation according to the establishment of the predetermined boosting condition.
  • a predetermined step-down condition for example, the establishment of a condition for switching the ignition switch from the off state to the on state.
  • the feedback calculation is repeated to set the voltage of the first conductive path 21 as a desired target voltage, and the PWM signal (for boosting
  • the voltage conversion unit 10 performs the boosting operation while adjusting the duty of the control signal (1).
  • the power supply circuit 60 is configured such that the power from the second power storage unit 92 is supplied to the second internal power supply unit 62 whether the ignition switch is in the off state or in the on state. Therefore, even when the ignition switch is in the off state or in the on state, the second internal power supply unit 62 operates under the condition where power supply from the second storage unit 92 is normally performed. An operating voltage based on the power from V. is applied to the input path 73.
  • the control unit 30 functions as a switch switching unit, and turns on the switch 68 during a period in which the control unit 30 operates the voltage conversion unit 10 (for example, a period when the ignition switch is on).
  • the switch 68 is turned off in a period in which the control unit 30 does not operate the voltage conversion unit 10 (for example, a period in which the ignition switch is in the off state).
  • the first internal power supply unit 61 does not perform an output operation during a period in which the control unit 30 operates the voltage conversion unit 10 (for example, a period when the ignition switch is on), and the control unit 30 operates the voltage conversion unit 10
  • the output operation is performed in a period in which the ignition switch is not caused (for example, a period in which the ignition switch is in the off state).
  • the output voltage of the first voltage value is applied from the first internal power supply unit 61 to the first output path 71, and the second internal power supply unit 62 In the normal state, the voltage of the second voltage value is applied to the second output path 72.
  • the second voltage value applied to the second output path 72 by the second internal power supply unit 62 is larger than the first voltage value applied to the first output path 71 by the first internal power supply unit 61.
  • a current flows from the second internal power supply 62 to the input path 73 via the second output path 72 and the second diode 64B, and no current from the first internal power source 61 flows to the input path 73. That is, a voltage corresponding to the power supplied from the second internal power supply unit 62 is applied to the input path 73, and this voltage is the operating voltage applied to the control unit 30.
  • the output voltage of the first voltage value is applied from the first internal power supply unit 61 to the first output path 71, it is applied from the second internal power supply unit 62 to the second output path 72 for any reason.
  • a current flows from the first internal power supply 61 to the input path 73 via the first output path 71 and the first diode 64A. That is, a voltage corresponding to the power supplied from the first internal power supply unit 61 is applied to the input path 73, and this voltage is the operating voltage applied to the control unit 30. In this case, the current from the second internal power supply unit 62 does not flow to the input path 73.
  • the voltage monitoring unit 66 also functions as an example of the protection control unit, and monitors the value of the voltage applied to the first output path 71 (the value of the output voltage output from the first internal power supply unit 61). When the value of the output voltage output from the first internal power supply unit 61, that is, the value of the voltage applied to the first output path 71 is less than the threshold voltage, the voltage monitoring unit 66 sends the switch 68 to the switch 68. Control is performed to output an on signal to turn on the switch 68. In this case, if the control unit 30 also outputs an on signal to the switch 68, the switch 68 is maintained in the on state.
  • the voltage monitoring unit 66 when the value of the voltage applied to the first output path 71 is equal to or higher than the threshold voltage, the voltage monitoring unit 66 outputs an off signal to the switch 68 to turn the switch off.
  • the threshold voltage set in voltage monitoring unit 66 is set higher than, for example, the second voltage value described above or the rated voltage of second power storage unit 92, and is set lower than the rated voltage of first power storage unit 91. Ru.
  • the on-vehicle power supply circuit 60 described above has the operating voltage adjustment unit 64, and when the power supply from the second internal power supply unit 62 is in a normal state, at least based on the power from the second internal power supply unit 62.
  • the operating voltage is output to control unit 30, and when the power supply from second internal power supply unit 62 is not in a normal state, the operating voltage is output to control unit 30 based on at least the power from first internal power supply unit 61. be able to.
  • the operation voltage can be output to control unit 30 based on the power from first internal power supply unit 61.
  • the operation of supplying the operating voltage to unit 30 can be stably continued.
  • the stability becomes higher when supplying the operating voltage to the control unit 30.
  • the operating voltage adjustment unit 64 includes a first output path 71 which is a conductive path through which the power from the first internal power supply unit 61 is output, and a second output path through which the power from the second internal power supply unit 62 is output.
  • a second diode having an anode connected to the second output path 72 side and a cathode connected to the input path 73 side.
  • the second internal power supply unit 62 is configured to apply a voltage of a predetermined second voltage value to the second output path 72 in the normal state.
  • the first internal power supply unit 61 is configured to apply a voltage of a first voltage value lower than the second voltage value to the first output path 71. In this way, in the normal state, the voltage of the second output path 72 applied by the second internal power supply unit 62 exceeds the voltage of the first output path 71 applied by the first internal power supply unit 61.
  • the operation voltage can be given to the control unit 30 by prioritizing the power supply from the second internal power supply unit 62. Therefore, it is possible to suppress the power consumption in the first internal power supply unit 61 and hence the power consumption in the first power storage unit 91.
  • the power supply from the second internal power supply unit 62 is reduced or stopped, the operating voltage based on the power from the first internal power supply unit 61 is immediately compensated.
  • Power supply device 1 has a switch 68 for switching between an ON state permitting power supply from first power storage unit 91 to first internal power supply portion 61 and an OFF state to cut off, and an output output from first internal power supply portion 61 And a protection control unit that turns on the switch 68 when the voltage value is less than the threshold value and turns off the switch 68 when the voltage value is equal to or greater than the threshold value.
  • the voltage monitoring unit 66 functions as a protection control unit. In this way, it is possible to stop the output from the first internal power supply unit 61 in the overvoltage state where the value of the output voltage output from the first internal power supply unit 61 has become higher than the threshold value. Therefore, it is possible to prevent an adverse effect due to an overvoltage state, and to prevent a situation where the power supply from the first internal power supply unit 61 is prioritized when the power supply from the second internal power supply unit 62 is in a normal state. Can.
  • the power supply device 1 includes a switch switching unit that turns off the switch 68 when the control unit 30 does not operate the voltage conversion unit 10.
  • the control unit 30 functions as a switch switching unit. In this way, when the control unit 30 does not operate the voltage conversion unit 10, that is, when the need for supplying power from the first internal power supply unit 61 to the control unit 30 is extremely low, the first internal power supply Portion 61 can be stopped, and power consumption of first power storage portion 91 can be effectively suppressed.
  • Power supply system 100 shown in FIGS. 1 and 2 has a configuration in which a starter is electrically connected to a conductive path connected to voltage conversion unit 10, and is illustrated based on power supply from second power storage unit 92.
  • the starter controller is configured to be able to operate the starter. In this system, when the output from the second power storage unit 92 is decreasing, the starter can not operate normally. In such a case (for example, the output voltage from the second power storage unit 92 has a predetermined threshold value). In the case where the voltage drops below the voltage, etc.), an auxiliary operation may be performed to operate the starter using the power of the first power storage unit 91 on the high voltage side.
  • control unit 30 operates with only the power of second power storage unit 92, if the output of second power storage unit 92 decreases, control unit 30 does not operate normally, and the starter There is a possibility that the operation becomes impossible.
  • control unit 30 can be operated based on the power of first power storage unit 91, so the risk of the starter operation becoming inoperable Can be reduced.
  • the DCDC converter in which the voltage conversion unit 10 has a single phase structure is illustrated as an example of the on-vehicle power supply device.
  • the voltage conversion unit 10 is between the first conductive path 21 and the second conductive path 22.
  • a plurality of multi-phase DCDC converters connected in parallel may be used.
  • the power supply device steps down the voltage applied to the first conductive path and applies the voltage to the second conductive path, and boosts the voltage applied to the second conductive path to the first conductive path.
  • An example is shown configured as a DC-DC converter capable of performing the step-up operation of applying voltage to the first conductive path.
  • the step-down operation of stepping down the voltage applied to the first conductive path and applying it to the second conductive path May be Moreover, it is not limited to these structures, You may be comprised as any well-known DCDC converter provided with a control part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Dc-Dc Converters (AREA)
  • Power Sources (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

通常時には、車載用電源装置の制御部に対していずれかの蓄電部に基づく動作電圧を供給することができ、この蓄電部からの電力供給が低下又は停止する異常時であっても、制御部に対する動作電圧の供給を安定的に継続し得る構成を提供する。 車載用電源回路(60)は、第1蓄電部(91)から供給される電力に基づいて制御部(30)に電力を供給する第1内部電源部(61)と、第2蓄電部(92)から供給される電力に基づいて制御部(30)に電力を供給する第2内部電源部(62)と、動作電圧調整部(64)とを有する。動作電圧調整部(64)は、第2内部電源部(62)からの電力供給が正常状態である場合に、第2内部電源部(62)からの電力に基づいて制御部(30)に動作電圧を出力し、第2内部電源部(62)からの電力供給が正常状態でない場合に、第1内部電源部(61)からの電力に基づいて制御部(30)に動作電圧を出力する。

Description

車載用電源回路及び車載用電源装置
 本発明は、車載用電源回路及び車載用電源装置に関するものである。
 特許文献1には、スイッチング素子の駆動によって直流電圧を昇圧又は降圧するDC-DCコンバータに関する技術が開示されている。このDC-DCコンバータは、第1の直流電圧を第2の直流電圧に変換して出力する変換回路と、上記変換回路の動作を制御する制御回路と、上記制御回路に電力を供給する電源回路と、電源回路から制御回路に印加される電圧が所定値以下に低下したときに、変換回路から制御回路へ電力を供給する電力供給手段と、を有する。
特開2004-88906号公報
 特許文献1で開示されるDC-DCコンバータでは、電源回路から制御回路に供給される動作電圧が何らかの原因によって所定値以下に低下したとき、変換回路からの電力を制御回路に供給することで制御回路の動作を継続させている。しかし、このような補助動作を行うためには変換回路が正常に動作することが必須であり、変換回路が動作用の電力を十分生成できない場合には、制御回路の動作を継続することができなくなる。
 本発明は上述した事情に基づいてなされたものであり、通常時には、車載用電源装置の制御部に対していずれかの蓄電部に基づく動作電圧を供給することができ、この蓄電部からの電力供給が低下又は停止する異常時であっても、制御部に対する動作電圧の供給を安定的に継続し得る構成を提供することを目的とする。
 本発明の第1態様の車載用電源回路は、
 第1蓄電部に電気的に接続された第1導電路に印加される電圧を降圧又は昇圧し、第2蓄電部に電気的に接続された第2導電路に印加する電圧変換部と、
 前記電圧変換部に対して制御信号を出力する制御部と、
 前記第1蓄電部から供給される電力に基づいて前記制御部に電力を供給する第1内部電源部と、
 前記第2蓄電部から供給される電力に基づいて前記制御部に電力を供給する第2内部電源部と、
 前記第2内部電源部からの電力供給が正常状態である場合に、少なくとも前記第2内部電源部からの電力に基づいて前記制御部に動作電圧を出力し、前記第2内部電源部からの電力供給が前記正常状態でない場合に、少なくとも前記第1内部電源部からの電力に基づいて前記制御部に動作電圧を出力する動作電圧調整部と、
を有する。
 本発明の第2態様の車載用電源装置は、
 上記車載用電源回路と、
 上記電圧変換部と、
 上記制御部と、
を含む。
 第1態様の車載用電源回路は、動作電圧調整部を有し、第2内部電源部からの電力供給が正常状態である場合には、少なくとも第2内部電源部からの電力に基づいて制御部に動作電圧を出力し、第2内部電源部からの電力供給が正常状態でない場合には、少なくとも第1内部電源部からの電力に基づいて制御部に動作電圧を出力することができる。つまり、第2蓄電部からの電力供給が低下又は停止する異常時であっても、第1内部電源部からの電力に基づいて制御部に動作電圧を出力することができるため、制御部に対する動作電圧の供給動作を安定的に継続し得る。また、異常時には、電圧変換部に大きく依存することなく動作電圧を生成することができるため、制御部に動作電圧を供給する上で、より安定性が高くなる。
 第2態様の車載用電源装置は、第1態様の車載用電源回路と同様の効果が得られる。
実施例1の車載用電源回路を備えた車載用電源システムを概略的に例示するブロック図である。 図1で示す車載用電源システムの車載用電源装置において、電圧変換動作に関係する基本構成を簡略的に示すブロック図である。
 ここで、発明の望ましい例を示す。
 動作電圧調整部は、第1内部電源部からの電力が出力される導電路である第1出力路と、第2内部電源部からの電力が出力される導電路である第2出力路と、制御部に動作電圧を入力する導電路である入力路と、第1出力路側にアノードが接続され、入力路側にカソードが接続された第1ダイオードと、第2出力路側にアノードが接続され、入力路側にカソードが接続された第2ダイオードと、を備えていてもよい。
 このようにすれば、第1内部電源部及び第2内部電源部から電力が出力されている場合において、第2内部電源部からの電力供給が低下又は停止した場合に、第1内部電源部からの電力に基づいて動作電圧が即座に補われることになる。よって、第2内部電源部からの電力供給が低下又は停止した場合に、制御部に対する動作電圧が長く遮断されることを防ぐことができる。
 第2内部電源部は、正常状態のときに所定の第2電圧値の電圧を第2出力路に印加するものであってもよい。第1内部電源部は、第2電圧値よりも低い第1電圧値の電圧を第1出力路に印加するものであってもよい。
 このようにすれば、正常状態のときには、第2内部電源部によって印加される第2出力路の電圧が第1内部電源部によって印加される第1出力路の電圧を上回ることになり、第2内部電源部からの電力供給を優先して制御部に動作電圧を与えることができる。よって、第1内部電源部での電力消費、ひいては第1蓄電部での電力消費を抑えることができる。一方で、第2内部電源部からの電力供給が低下又は停止した場合には、第1内部電源部からの電力に基づく動作電圧が即座に補われることになる。
 車載用電源装置は、第1蓄電部から第1内部電源部への電力供給を許容するオン状態と、遮断するオフ状態とに切り替わるスイッチと、第1内部電源部から出力される出力電圧の値が閾値未満である場合にスイッチをオン状態とし、閾値以上である場合にスイッチをオフ状態とする保護制御部と、を含んでいてもよい。
 このようにすれば、第1内部電源部から出力される出力電圧の値が閾値以上に高くなった過電圧状態のときに第1内部電源部からの出力を停止させることができる。よって、過電圧状態に起因する弊害を防ぐことができ、第2内部電源部からの電力供給が正常状態のときに第1内部電源部からの電力供給が優先されてしまう事態をも防ぐことができる。
 車載用電源装置は、第1蓄電部から第1内部電源部への電力供給を許容するオン状態と、遮断するオフ状態とに切り替わるスイッチと、制御部が電圧変換部を動作させる場合にスイッチをオン状態とし、制御部が電圧変換部を動作させない場合にスイッチをオフ状態とするスイッチ切替部と、を含んでいてもよい。
 このようにすれば、制御部が電圧変換部を動作させないとき、即ち、第1内部電源部から制御部に対して電力を供給する必要性が極めて低いときに、第1内部電源部を停止させることができ、第1蓄電部の電力消費を効果的に抑えることができる。
 <実施例1>
 以下、本発明を具体化した実施例1について説明する。
 図1で示す車載用の電源システム100は、それぞれが車載用の電源部として構成される第1蓄電部91及び第2蓄電部92と、車載用のDCDCコンバータとして構成される車載用電源装置1(以下、電源装置1ともいう)とを備え、車両に搭載された図示しない車載用負荷に対して電力を供給し得るシステムとして構成されている。電源装置1からの電力供給を受ける車載用負荷は、主に低圧側の配線部82に電気的に接続された形態で設けられており、高圧側の配線部81に電気的に接続された形態で車載用負荷が設けられていてもよい。なお、これら車載用負荷の種類は特に限定されず、車両に搭載されうる公知の様々な負荷を設けることができる。
 第1蓄電部91は、例えば、電気二重層キャパシタ、リチウムイオン電池等の蓄電手段によって構成され、第1の所定電圧を発生させるものである。例えば、第1蓄電部91の高電位側の端子は48V程度に保たれ、低電位側の端子はグラウンド電位(0V)に保たれている。第1蓄電部91の高電位側の端子は、車両内に設けられた配線部81に電気的に接続されており、第1蓄電部91は、配線部81に対して所定電圧を印加する。第1蓄電部91の低電位側の端子は、車両内のグラウンド部として構成される基準導電路に電気的に接続されている。配線部81は、電源装置1の高圧側端子P1に接続されており、高圧側端子P1を介して第1導電路21と導通している。
 第2蓄電部92は、例えば、鉛蓄電池等の蓄電手段によって構成され、第1蓄電部91で発生する第1の所定電圧よりも低い第2の所定電圧を発生させるものである。例えば、第2蓄電部92の高電位側の端子は12V程度に保たれ、低電位側の端子はグラウンド電位(0V)に保たれている。第2蓄電部92の高電位側の端子は、車両内に設けられた配線部82に電気的に接続されており、第2蓄電部92は、配線部82に対して所定電圧を印加する。第2蓄電部92の低電位側の端子は車両内のグラウンド部として構成される基準導電路に電気的に接続されている。配線部82は、電源装置1の低圧側端子P2に接続されており、低圧側端子P2を介して第2導電路22と導通している。
 電源装置1は、車両内に搭載されて使用される車載用のDCDCコンバータとして構成されており、高圧側の導電路(第1導電路21)に印加された直流電圧を降圧して低圧側の導電路(第2導電路22)に出力する基本動作を行いうる。更に、低圧側の導電路(第2導電路22)に印加された直流電圧を昇圧して高圧側の導電路(第1導電路21)に出力する基本動作を行いうる。
 図2のように、電源装置1は、主として、第1導電路21、第2導電路22、電圧変換部10、制御部30、電圧検出部41、電流検出部42、電圧検出部43、電流検出部44、高圧側端子P1、低圧側端子P2などを備える。
 第1導電路21は、相対的に高い電圧が印加される一次側(高圧側)の電源ラインとして構成されている。第1導電路21は、配線部81を介して第1蓄電部91の高電位側の端子に導通するとともに、第1蓄電部91から所定の直流電圧が印加される構成をなす。図1の構成では、第1導電路21の端部に高圧側端子P1が設けられ、この高圧側端子P1に配線部81が電気的に接続されている。
 第2導電路22は、相対的に低い電圧が印加される二次側(低圧側)の電源ラインとして構成されている。第2導電路22は、配線部82を介して第2蓄電部92の高電位側の端子に導通するとともに、第2蓄電部92から第1蓄電部91の出力電圧よりも小さい直流電圧が印加される構成をなす。図1の構成では、第2導電路22の端部に低圧側端子P2が設けられ、この低圧側端子P2に配線部82が電気的に接続されている。
 電圧変換部10は、双方向の電圧変換を行いうる昇降圧DCDCコンバータとして構成されている。電圧変換部10は、スイッチング方式のDCDCコンバータの要部をなし、制御部30から降圧用の制御信号(降圧用のPWM信号)を与えられている場合には、高圧側の導電路(第1導電路21)に印加された直流電圧を降圧して低圧側の導電路(第2導電路22)に出力電圧を印加する。電圧変換部10は、制御部30から昇圧用の制御信号(昇圧用のPWM信号)を与えられている場合には、低圧側の導電路(第2導電路22)に印加された直流電圧を降圧して高圧側の導電路(第1導電路21)に出力電圧を印加する。
 電圧検出部41は、第1導電路21の電圧を示す値を制御部30に入力し得る公知の電圧検出回路として構成され、例えば、第1導電路21の電圧を分圧して制御部30に入力するような分圧回路として構成されていてもよく、第1導電路21の電圧を直接的に制御部30に入力する回路であってもよい。同様に、電圧検出部43は、第2導電路22の電圧を示す値を制御部30に入力し得る公知の電圧検出回路として構成され、例えば、第2導電路22の電圧を分圧して制御部30に入力するような分圧回路として構成されていてもよく、第2導電路22の電圧を直接的に制御部30に入力する回路であってもよい。
 電流検出部42は、公知の電流検出回路として構成され、第1導電路21を流れる電流を示す値(具体的には、第1導電路21を流れる電流の値に応じたアナログ電圧)を出力する。同様に、電流検出部44は、公知の電流検出回路として構成され、第2導電路22を流れる電流を示す値(具体的には、第2導電路22を流れる電流の値に応じたアナログ電圧)を出力する。電流検出部42,44からの検出値はそれぞれ制御部30に入力される。
 制御部30は、例えば、制御回路と駆動回路とを備える。制御回路は、例えば、マイクロコンピュータとして構成され、様々な演算処理を行うCPU、プログラム等の情報を記憶するROM、一時的に発生した情報を記憶するRAM、入力されたアナログ電圧をデジタル値に変換するA/D変換器などを備える。A/D変換器には、電圧検出部41、43からの各検出信号(検出電圧に対応したアナログ電圧信号)や、電流検出部42、44からの検出信号(検出電流に対応したアナログ電圧信号)が与えられる。
 制御部30は、電圧変換部10に降圧動作を行わせる場合に、電圧検出部43によって第2導電路22の電圧を検出しながら、第2導電路22に印加される電圧を設定された目標値に近づけるようにフィードバック演算を行い、PWM信号を発生させる。即ち、電圧検出部43によって検出される第2導電路22の電圧が目標値よりも小さければ目標値に近づけるようにフィードバック演算によってデューティを増大させ、電圧検出部43によって検出される第2導電路22の電圧が目標値よりも大きければ目標値に近づけるようにフィードバック演算によってデューティを減少させるようにデューティを調整する。調整されたデューティのPWM信号は、駆動回路によって電圧変換部10に与えられる。同様に、制御部30は、電圧変換部10に昇圧動作を行わせる場合に、電圧検出部41によって第1導電路21の電圧を検出しながら、第1導電路21に印加される電圧を設定された目標値に近づけるようにフィードバック演算を行い、PWM信号を発生させる。即ち、電圧検出部41によって検出される第1導電路21の電圧が目標値よりも小さければ目標値に近づけるようにフィードバック演算によってデューティを増大させ、電圧検出部41によって検出される第1導電路21の電圧が目標値よりも大きければ目標値に近づけるようにフィードバック演算によってデューティを減少させるようにデューティを調整する。調整されたデューティのPWM信号は、駆動回路によって電圧変換部10に与えられる。
 次に、図1を参照し車載用電源回路60(以下、電源回路60ともいう)について説明する。
 図1に示す電源回路60は、制御部30に与える動作電圧を生成する回路である。制御部30は、入力路73を電源ラインとし、入力路73に印加される電圧を電源電圧として動作し得るように構成されている。
 電源回路60は、第1蓄電部91から供給される電力に基づいて制御部30に電力を供給する第1内部電源部61と、第2蓄電部92から供給される電力に基づいて制御部30に電力を供給する第2内部電源部62と、制御部30に与える動作電圧を調整する動作電圧調整部64とを有する。
 第1内部電源部61は、例えば、シリーズ方式で構成された公知のシリーズ電源回路、或いは、スイッチング方式で構成された公知のスイッチング電源回路として構成されており、第1導電路21に印加された電圧(スイッチ68を介して入力される電圧)を降圧し、第1導電路21よりも低い第1電圧値の出力電圧を後述の第1出力路71に印加する。なお、このような降圧機能を有する電源回路であれば、種類は限定されない。第1内部電源部61の出力電圧とは、第1出力路71と図示しないグラウンドとの電位差であり、この電位差の値が第1電圧値となるように第1内部電源部61の出力が制御される。第1内部電源部61が第1出力路71に印加する出力電圧の値である第1電圧値は、第2内部電源部62が第2出力路72に印加する出力電圧の値である第2電圧値よりも低く、第2蓄電部92の定格電圧よりも低い。また、第1電圧値は、制御部30が動作可能となる入力路73の電圧値(動作可能最低電圧)よりも高い。なお、第1内部電源部61は、何らかの制御回路によって制御動作が行われるものであってもよく、この場合、制御回路は、第1蓄電部91からの電力に基づいて動作し得るように構成されていてもよい。
 第2内部電源部62は、第2出力路72に第1電圧値よりも高い直流電圧(出力電圧)を印加し得る回路構成であればよい。第2内部電源部62の出力電圧とは、第2出力路72と図示しないグラウンドとの電位差であり、この電位差の値が第2電圧値となる構成となっている。第2内部電源部62は、例えば、第2導電路22に印加される電圧と同程度の電圧を第2出力路72に印加する構成をなしており、以下の説明では、第2内部電源部62が、第2導電路22と第2ダイオード64Bのアノードとを導通させる導通路として構成されている例を代表例として説明する。なお、第2内部電源部62は、この代表例に限定されるものではなく、例えば、シリーズ方式で構成された公知のシリーズ電源回路、又は、スイッチング方式で構成された公知のスイッチング電源回路として構成されていてもよく、第2導電路22に印加された電圧を降圧又は昇圧し、第2導電路22よりも低い又は高い第2電圧値の出力電圧を第2出力路72に印加する構成のものであってもよい。
 第2内部電源部62は、正常状態のときに所定の第2電圧値の電圧を第2出力路72に印加する構成をなす。第2内部電源部62の正常状態とは、第2内部電源部62によって第2出力路72に印加される電圧の値が、制御部30が動作可能となる入力路73の電圧値(動作可能最低電圧)よりも高い状態であり、具体的には、第2出力路72に印加される電圧の値が、第1電圧値(第1内部電源部61が動作している状態のときに第1出力路71に印加される出力電圧の値)よりも大きくなっている状態のことである。
 動作電圧調整部64は、第2内部電源部62からの電力供給が上述の「正常状態」である場合に、第2内部電源部62からの電力に基づいて制御部30に動作電圧を出力し、第2内部電源部62からの電力供給が正常状態でない場合に、第1内部電源部61からの電力に基づいて制御部30に動作電圧を出力するように動作する。この動作電圧調整部64は、第1内部電源部61からの電力が出力される導電路である第1出力路71と、第2内部電源部62からの電力が出力される導電路である第2出力路72と、制御部30に動作電圧を入力する導電路である入力路73と、第1出力路71側にアノードが接続され、入力路73側にカソードが接続された第1ダイオード64Aと、第2出力路72側にアノードが接続され、入力路73側にカソードが接続された第2ダイオード64Bと、を備える。
 この動作電圧調整部64は、第2内部電源部62によって第2出力路72に印加される電圧の値が、第1内部電源部61によって第1出力路71に印加される電圧の値よりも大きい場合、第2内部電源部62から第2出力路72及び第2ダイオード64Bを介して入力路73に電流が流れ、第1内部電源部61からの電流は入力路73には流れない。つまり、入力路73には、第2内部電源部62から供給される電力に応じた電圧が印加され、この電圧が制御部30に与えられる動作電圧となる。
 一方、動作電圧調整部64は、第2内部電源部62によって第2出力路72に印加される電圧の値が、第1内部電源部61によって第1出力路71に印加される電圧の値よりも小さい場合、第1内部電源部61から第1出力路71及び第1ダイオード64Aを介して入力路73に電流が流れ、第2内部電源部62からの電流は入力路73には流れない。つまり、入力路73には、第1内部電源部61から供給される電力に応じた電圧が印加され、この電圧が制御部30に与えられる動作電圧となる。
 スイッチ68は、半導体スイッチ素子や機械式のリレーなどによって構成されており、第1蓄電部91から第1内部電源部61への電力供給を許容するオン状態と、遮断するオフ状態とに切り替わる構成をなす。図1の例では、スイッチ68の一端が第1導電路21に接続され、他端が第1内部電源部61に接続されている。このスイッチ68のオンオフは、電圧監視部66及び制御部30によって制御される。即ち、電圧監視部66及び制御部30のうち、少なくともいずれかからスイッチ68に対してオフ信号が出力されている場合、スイッチ68はオフ動作する。電圧監視部66及び制御部30の両方からスイッチ68に対してオン信号が出力されている場合、スイッチ68はオン動作する。
 次に、電源装置1で行われる制御について説明する。
 このように構成された電源装置1では、制御部30が、所定の降圧条件の成立(例えば、イグニッションスイッチがオフ状態からオン状態に切り替わる条件の成立など)に応じて電圧変換部10に降圧動作を行わせる。具体的には、電圧検出部43によって監視される第2導電路22の電圧に基づき、第2導電路22の電圧を所望の目標電圧とするように、フィードバック演算を繰り返してPWM信号(降圧用の制御信号)のデューティを調整しつつ電圧変換部10に降圧動作を行わせる。また、制御部30は、所定の昇圧条件の成立に応じて電圧変換部10に昇圧動作を行わせる。具体的には、電圧検出部41によって監視される第1導電路21の電圧に基づき、第1導電路21の電圧を所望の目標電圧とするように、フィードバック演算を繰り返してPWM信号(昇圧用の制御信号)のデューティを調整しつつ電圧変換部10に昇圧動作を行わせる。
 電源回路60は、イグニッションスイッチがオフ状態であるときでも、オン状態であるときでも、第2蓄電部92からの電力が第2内部電源部62に供給されるようになっている。従って、イグニッションスイッチがオフ状態であるときでも、オン状態であるときでも、第2蓄電部92からの電力供給が正常に行われる状況下では、第2内部電源部62は、第2蓄電部92からの電力に基づく動作電圧を入力路73に印加する。
 図1の構成では、制御部30が、スイッチ切替部として機能し、制御部30が電圧変換部10を動作させる期間(例えば、イグニッションスイッチがオン状態である期間)にスイッチ68をオン状態とし、制御部30が電圧変換部10を動作させない期間(例えば、イグニッションスイッチがオフ状態である期間)にスイッチ68をオフ状態とする。第1内部電源部61は、制御部30が電圧変換部10を動作させる期間(例えば、イグニッションスイッチがオン状態である期間)には出力動作を行わず、制御部30が電圧変換部10を動作させない期間(例えば、イグニッションスイッチがオフ状態である期間)に出力動作を行う。
 本構成では、例えば、イグニッションスイッチがオン状態である期間、第1内部電源部61から第1出力路71に対して第1電圧値の出力電圧が印加され、第2内部電源部62が上述した正常状態であれば第2出力路72に対して第2電圧値の電圧が印加される。この場合、第2内部電源部62によって第2出力路72に印加される第2電圧値が、第1内部電源部61によって第1出力路71に印加される第1電圧値よりも大きくなるため、第2内部電源部62から第2出力路72及び第2ダイオード64Bを介して入力路73に電流が流れ、第1内部電源部61からの電流は入力路73には流れない。つまり、入力路73には、第2内部電源部62から供給される電力に応じた電圧が印加され、この電圧が制御部30に与えられる動作電圧となる。
 一方、第1内部電源部61から第1出力路71に対して第1電圧値の出力電圧が印加されているときに、何らかの理由によって第2内部電源部62から第2出力路72に印加される電圧の値が第2電圧値よりも小さくなった場合、即座に、第1内部電源部61から第1出力路71及び第1ダイオード64Aを介して入力路73に電流が流れる。つまり、入力路73には、第1内部電源部61から供給される電力に応じた電圧が印加され、この電圧が制御部30に与えられる動作電圧となる。この場合、第2内部電源部62からの電流は入力路73には流れない。
 また、電圧監視部66は、保護制御部の一例として機能し、第1出力路71に印加される電圧の値を(第1内部電源部61から出力される出力電圧の値)を監視する。電圧監視部66は、第1内部電源部61から出力される出力電圧の値、即ち、第1出力路71に印加される電圧の値が閾値電圧未満である場合には、スイッチ68に対してオン信号を出力してスイッチ68をオン状態とする制御を行う。この場合、制御部30からもスイッチ68に対してオン信号が出力されていれば、スイッチ68はオン状態で維持される。一方、電圧監視部66は、第1出力路71に印加される電圧の値が閾値電圧以上である場合にはスイッチ68に対してオフ信号を出力し、スイッチをオフ状態とする。なお、電圧監視部66において設定される閾値電圧は、例えば、上述した第2電圧値や第2蓄電部92の定格電圧よりも高く設定され、第1蓄電部91の定格電圧よりも低く設定される。
 以下、本構成の効果を例示する。
 上述した車載用電源回路60は、動作電圧調整部64を有し、第2内部電源部62からの電力供給が正常状態である場合には、少なくとも第2内部電源部62からの電力に基づいて制御部30に動作電圧を出力し、第2内部電源部62からの電力供給が正常状態でない場合には、少なくとも第1内部電源部61からの電力に基づいて制御部30に動作電圧を出力することができる。つまり、第2蓄電部92からの電力供給が低下又は停止する異常時であっても、第1内部電源部61からの電力に基づいて制御部30に動作電圧を出力することができるため、制御部30に対する動作電圧の供給動作を安定的に継続し得る。また、異常時には、電圧変換部10に大きく依存することなく動作電圧を生成することができるため、制御部30に動作電圧を供給する上で、より安定性が高くなる。
 動作電圧調整部64は、第1内部電源部61からの電力が出力される導電路である第1出力路71と、第2内部電源部62からの電力が出力される導電路である第2出力路72と、制御部30に動作電圧を入力する導電路である入力路73と、第1出力路71側にアノードが接続され、入力路73側にカソードが接続された第1ダイオードと、第2出力路72側にアノードが接続され、入力路73側にカソードが接続された第2ダイオードと、を備える。このようにすれば、第1内部電源部61及び第2内部電源部62から電力が出力されている場合において、第2内部電源部62からの電力供給が低下又は停止した場合に、第1内部電源部61からの電力に基づいて動作電圧が即座に補われることになる。よって、第2内部電源部62からの電力供給が低下又は停止した場合に、制御部30に対する動作電圧が長く遮断されることを防ぐことができる。
 第2内部電源部62は、正常状態のときに所定の第2電圧値の電圧を第2出力路72に印加する構成をなす。第1内部電源部61は、第2電圧値よりも低い第1電圧値の電圧を第1出力路71に印加する構成をなす。このようにすれば、正常状態のときには、第2内部電源部62によって印加される第2出力路72の電圧が第1内部電源部61によって印加される第1出力路71の電圧を上回ることになり、第2内部電源部62からの電力供給を優先して制御部30に動作電圧を与えることができる。よって、第1内部電源部61での電力消費、ひいては第1蓄電部91での電力消費を抑えることができる。一方で、第2内部電源部62からの電力供給が低下又は停止した場合には、第1内部電源部61からの電力に基づく動作電圧が即座に補われることになる。
 電源装置1は、第1蓄電部91から第1内部電源部61への電力供給を許容するオン状態と、遮断するオフ状態とに切り替わるスイッチ68と、第1内部電源部61から出力される出力電圧の値が閾値未満である場合にスイッチ68をオン状態とし、閾値以上である場合にスイッチ68をオフ状態とする保護制御部と、を含む。具体的には、電圧監視部66が保護制御部として機能する。このようにすれば、第1内部電源部61から出力される出力電圧の値が閾値以上に高くなった過電圧状態のときに第1内部電源部61からの出力を停止させることができる。よって、過電圧状態に起因する弊害を防ぐことができ、第2内部電源部62からの電力供給が正常状態のときに第1内部電源部61からの電力供給が優先されてしまう事態をも防ぐことができる。
 電源装置1は、制御部30が電圧変換部10を動作させない場合にスイッチ68をオフ状態とするスイッチ切替部を含む。具体的には、制御部30がスイッチ切替部として機能する。このようにすれば、制御部30が電圧変換部10を動作させないとき、即ち、第1内部電源部61から制御部30に対して電力を供給する必要性が極めて低いときに、第1内部電源部61を停止させることができ、第1蓄電部91の電力消費を効果的に抑えることができる。
 図1、図2で示す電源システム100は、電圧変換部10に接続された導電路にスタータが電気的に接続された構成をなしており、第2蓄電部92からの電力供給に基づいて図示しないスタータ制御装置によってスタータを動作させ得るように構成されている。このシステムでは、第2蓄電部92からの出力が低下しているとき、スタータを正常に動作させることができなくなるため、このような場合(例えば、第2蓄電部92からの出力電圧が所定閾値電圧以下に低下している場合など)には、高圧側の第1蓄電部91の電力を利用してスタータを動作させるような補助動作を行うようにしてもよい。しかし、制御部30が第2蓄電部92の電力のみで動作するものであると仮定した場合、第2蓄電部92の出力が低下してしまうと、制御部30が正常に動作しなくなり、スタータ動作が不能となる虞がある。これに対し、上述の構成では、第2蓄電部92の出力が低下しても、第1蓄電部91の電力に基づいて制御部30を動作させることができるため、スタータ動作が不能となるリスクを抑えることができる。
 <他の実施例>
 本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、その趣旨を逸脱しない範囲において様々に変更し実現できる。また、上述した実施例や後述する変更例は矛盾しない範囲で組み合わせることが可能である。また、例えば次のような実施例も本発明の技術的範囲に含まれる。
 実施例1では、車載用電源装置の一例として、電圧変換部10が単相構造をなすDCDCコンバータを例示したが、第1導電路21と第2導電路22との間に電圧変換部10が複数個並列に接続された多相式のDCDCコンバータとしてもよい。
 実施例1では、電源装置が、第1導電路に印加された電圧を降圧して第2導電路に印加する降圧動作と、第2導電路に印加された電圧を昇圧して第1導電路に印加する昇圧動作と、を行い得るDCDCコンバータとして構成された例を示したが、第1導電路に印加された電圧を降圧して第2導電路に印加する降圧動作のみを行う構成であってもよい。また、これらの構成に限定されず、制御部を備える公知のいずれのDCDCコンバータとして構成されてもよい。
 1…車載用電源装置
 10…電圧変換部
 21…第1導電路
 22…第2導電路
 30…制御部(スイッチ切替部)
 60…車載用電源回路
 61…第1内部電源部
 62…第2内部電源部
 64…動作電圧調整部
 64A…第1ダイオード
 64B…第2ダイオード
 66…電圧監視部(保護制御部)
 68…スイッチ
 71…第1出力路
 72…第2出力路
 73…入力路
 91…第1蓄電部
 92…第2蓄電部

Claims (6)

  1.  第1蓄電部に電気的に接続された第1導電路に印加される電圧を降圧又は昇圧し、第2蓄電部に電気的に接続された第2導電路に印加する電圧変換部と、前記電圧変換部に対して制御信号を出力する制御部と、を備えた車載用電源装置に用いられる電源回路であって、
     前記第1蓄電部から供給される電力に基づいて前記制御部に電力を供給する第1内部電源部と、
     前記第2蓄電部から供給される電力に基づいて前記制御部に電力を供給する第2内部電源部と、
     前記第2内部電源部からの電力供給が正常状態である場合に、少なくとも前記第2内部電源部からの電力に基づいて前記制御部に動作電圧を出力し、前記第2内部電源部からの電力供給が前記正常状態でない場合に、少なくとも前記第1内部電源部からの電力に基づいて前記制御部に動作電圧を出力する動作電圧調整部と、
    を有する車載用電源回路。
  2.  前記動作電圧調整部は、
     前記第1内部電源部からの電力が出力される導電路である第1出力路と、
     前記第2内部電源部からの電力が出力される導電路である第2出力路と、
     前記制御部に動作電圧を入力する導電路である入力路と、
     前記第1出力路側にアノードが接続され、前記入力路側にカソードが接続された第1ダイオードと、
     前記第2出力路側にアノードが接続され、前記入力路側にカソードが接続された第2ダイオードと、
    を備える請求項1に記載の車載用電源回路。
  3.  前記第2内部電源部は、前記正常状態のときに所定の第2電圧値の電圧を前記第2出力路に印加し、
     前記第1内部電源部は、前記第2電圧値よりも低い第1電圧値の電圧を前記第1出力路に印加する請求項2に記載の車載用電源回路。
  4.  請求項1から請求項3のいずれか一項に記載の車載用電源回路と、
     前記電圧変換部と、
     前記制御部と、
    を含む車載用電源装置。
  5.  前記第1蓄電部から前記第1内部電源部への電力供給を許容するオン状態と、遮断するオフ状態とに切り替わるスイッチと、
     前記第1内部電源部から出力される出力電圧の値が閾値未満である場合に前記スイッチをオン状態とし、前記閾値以上である場合に前記スイッチをオフ状態とする保護制御部と、
     を含む請求項4に記載の車載用電源装置。
  6.  前記第1蓄電部から前記第1内部電源部への電力供給を許容するオン状態と、遮断するオフ状態とに切り替わるスイッチと、
     前記制御部が前記電圧変換部を動作させる場合に前記スイッチをオン状態とし、前記制御部が前記電圧変換部を動作させない場合に前記スイッチをオフ状態とするスイッチ切替部と、
     を含む請求項4に記載の車載用電源装置。
PCT/JP2018/022110 2017-06-28 2018-06-08 車載用電源回路及び車載用電源装置 WO2019003867A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/621,802 US20200172032A1 (en) 2017-06-28 2018-06-08 On-vehicle power supply circuit and on-vehicle power supply apparatus
CN201880038466.7A CN110741544A (zh) 2017-06-28 2018-06-08 车载用电源电路及车载用电源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017125885A JP6748921B2 (ja) 2017-06-28 2017-06-28 車載用電源回路及び車載用電源装置
JP2017-125885 2017-06-28

Publications (1)

Publication Number Publication Date
WO2019003867A1 true WO2019003867A1 (ja) 2019-01-03

Family

ID=64741535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022110 WO2019003867A1 (ja) 2017-06-28 2018-06-08 車載用電源回路及び車載用電源装置

Country Status (4)

Country Link
US (1) US20200172032A1 (ja)
JP (1) JP6748921B2 (ja)
CN (1) CN110741544A (ja)
WO (1) WO2019003867A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3989423A4 (en) * 2019-06-20 2022-06-15 Mitsubishi Electric Corporation POWER CONVERSION SYSTEM

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3955408B1 (en) * 2020-06-23 2022-11-16 Contemporary Amperex Technology Co., Limited Power converter, power conversion system and power conversion method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11196540A (ja) * 1997-12-26 1999-07-21 Seiko Instruments Inc 電子機器
JP2011172422A (ja) * 2010-02-20 2011-09-01 Diamond Electric Mfg Co Ltd 制御用電源システム及びこれを備える車載用電力変換装置
JP2015220815A (ja) * 2014-05-15 2015-12-07 パナソニックIpマネジメント株式会社 電力供給切替システムおよび電力供給切替方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11196540A (ja) * 1997-12-26 1999-07-21 Seiko Instruments Inc 電子機器
JP2011172422A (ja) * 2010-02-20 2011-09-01 Diamond Electric Mfg Co Ltd 制御用電源システム及びこれを備える車載用電力変換装置
JP2015220815A (ja) * 2014-05-15 2015-12-07 パナソニックIpマネジメント株式会社 電力供給切替システムおよび電力供給切替方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3989423A4 (en) * 2019-06-20 2022-06-15 Mitsubishi Electric Corporation POWER CONVERSION SYSTEM

Also Published As

Publication number Publication date
CN110741544A (zh) 2020-01-31
US20200172032A1 (en) 2020-06-04
JP6748921B2 (ja) 2020-09-02
JP2019009950A (ja) 2019-01-17

Similar Documents

Publication Publication Date Title
JP6801528B2 (ja) 車載用電源部の制御装置及び車載用電源装置
JP6536466B2 (ja) 電源装置
US10889201B2 (en) Power redundancy system
CN109417292B (zh) 电源装置
WO2018070231A1 (ja) 車載用のバックアップ装置
CN109075600B (zh) 车辆用电源装置
JP6904051B2 (ja) 車両用電源装置
WO2018047636A1 (ja) 車載用のバックアップ装置
WO2019208203A1 (ja) 車載用のバックアップ回路及び車載用のバックアップ装置
JP6030755B2 (ja) 電源保護のためのdc/dc電力コンバータ制御方式
WO2018105383A1 (ja) 車載用電源装置
US10840729B2 (en) Method and system for operating a DC-DC converter of an electrical system to distribute a load
US20190353715A1 (en) Failure detection device for onboard power supply device, and onboard power supply device
WO2019003867A1 (ja) 車載用電源回路及び車載用電源装置
WO2022130924A1 (ja) 電源制御装置
JP2007267582A (ja) 昇降圧チョッパ装置とその駆動方法
WO2019225396A1 (ja) 車載用電源装置
WO2022190790A1 (ja) 電源制御装置
JP2018129951A (ja) 車載用電源装置の異常検出装置及び車載用電源装置
JP7340775B2 (ja) 車載電源システム
WO2024105794A1 (ja) 給電制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18825138

Country of ref document: EP

Kind code of ref document: A1