WO2019001103A1 - 一种耐温型红外低发射率涂层及其制备方法 - Google Patents

一种耐温型红外低发射率涂层及其制备方法 Download PDF

Info

Publication number
WO2019001103A1
WO2019001103A1 PCT/CN2018/083681 CN2018083681W WO2019001103A1 WO 2019001103 A1 WO2019001103 A1 WO 2019001103A1 CN 2018083681 W CN2018083681 W CN 2018083681W WO 2019001103 A1 WO2019001103 A1 WO 2019001103A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
temperature
resistant
infrared
preparation
Prior art date
Application number
PCT/CN2018/083681
Other languages
English (en)
French (fr)
Inventor
刘若鹏
赵治亚
张运湘
刘凯
胡建景
杨玉
Original Assignee
洛阳尖端技术研究院
洛阳尖端装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 洛阳尖端技术研究院, 洛阳尖端装备技术有限公司 filed Critical 洛阳尖端技术研究院
Publication of WO2019001103A1 publication Critical patent/WO2019001103A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/10Block or graft copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/30Camouflage paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0812Aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds

Definitions

  • the invention belongs to the technical field of functional coating materials, and more particularly to a temperature resistant infrared low emissivity coating and a preparation method thereof.
  • the infrared detector collects the infrared signals of the target 3 ⁇ m-5 ⁇ m and 8 ⁇ m-14 ⁇ m bands, and then uses the infrared radiation energy difference between the target and the background to identify the target through imaging. Reducing the target surface temperature can make the target and the background radiation intensity similar, and coating the low emissivity functional coating on the high temperature part is also one of the effective measures.
  • the low emissivity functional coating is generally composed of a binder and a filler, and is classified into an organic system and an inorganic system.
  • the existing infrared low emissivity coatings have temperature resistance below 200 °C, while inorganic coatings can withstand higher temperatures but the emissivity is generally high. It is impossible to apply infrared coatings under medium and high temperature conditions, but There is almost no organic coating working above 400 °C, so it is not suitable for the harsh environment of the aircraft.
  • the existing solution when the temperature rises above 200 ° C, the coating will crack, discolor, and the low emissivity performance drops sharply, which cannot meet the requirements.
  • the present invention provides a temperature-resistant infrared low emissivity coating and a preparation method thereof to solve the problem that the existing infrared low emissivity coating has poor resistance to medium and high temperature, and realize infrared low emission.
  • the rate coating can function normally below 400 °C.
  • a method for preparing a temperature-resistant infrared low emissivity coating comprising: taking 50-90 parts of a temperature resistant resin, 20-40 parts of aluminum powder, 2-4 parts of diatomaceous earth And the high temperature resistant ceramic powder is uniformly mixed to obtain a preliminary slurry, wherein the high temperature resistant ceramic powder accounts for 3.5%-5.5% of the total mass of the preliminary slurry, and is added to the preliminary slurry. a suitable amount of diluent, uniformly obtained to obtain a coating; spraying the coating on an alloy substrate to obtain a coating, and then naturally drying; and heating the coating, and then cooling the coating to room temperature to obtain the resistance Warm infrared low emissivity coating.
  • the temperature resistant resin is a pure silicone resin, an epoxy modified silicone resin, a polyurethane modified silicone resin, a polymethyl silicone resin, a polymethylphenyl silicone resin, a poly A combination of one or more of ester-modified silicone resins.
  • the high temperature resistant ceramic powder is a combination of one or more of alumina, zirconia, silicon carbide, silicon micropowder, and silicon nitride.
  • the diluent is a combination of one or more of ethyl acetate, xylene, butyl acetate, methyl acetate, and cyclohexanone.
  • the alloy substrate is a combination of one or more of a titanium alloy, an aluminum alloy, a copper alloy, and a zinc alloy.
  • the step of preparing the preliminary slurry further comprises: taking 70 parts of the temperature resistant resin, 30 parts of aluminum powder, 3 parts of diatomaceous earth, and uniformly mixing the high temperature resistant ceramic powder to obtain the preliminary slurry.
  • the preliminary slurry is allowed to stand for 0.5-2 hours, and then uniformly stirred uniformly by a laboratory high-speed disperser, wherein the high-temperature resistant ceramic powder accounts for 4.5% of the total mass of the preliminary slurry. .
  • the step of spraying the coating on the alloy substrate to obtain a coating, and then naturally drying the surface further comprises: spraying the coating on the titanium alloy substrate, and then naturally drying for 46-50 hours, Curing at a temperature of 110-130 ° C for 0.3-1 hour.
  • the step of spraying the coating on the alloy substrate to obtain a coating, and then naturally drying the surface further comprises: spraying the coating on the titanium alloy substrate, and then naturally drying for 48 hours at 120 Curing at °C for 0.5 hours.
  • the coating is heated, and then the coating is cooled to room temperature
  • the step of obtaining the temperature-resistant infrared low emissivity coating further comprises: heating the coating to 350 with a temperature increasing device. After -450 ° C, cool to room temperature, test the temperature resistance of the coating, and test the infrared emissivity of the coating in the 3-5 micron and 8-14 micron bands with an emissivity meter.
  • the coating is heated, and then the coating is cooled to room temperature, and the step of obtaining the temperature-resistant infrared low emissivity coating further comprises: heating the coating to 400 by a temperature increasing device. After °C, cool to room temperature, test the temperature resistance of the coating, and test the infrared emissivity of the coating in the 3-5 micron and 8-14 micron bands with an emissivity meter.
  • thermoresistant infrared low emissivity coating prepared according to the above preparation method.
  • the invention solves the problem that the existing infrared low emissivity coating has poor resistance to medium and high temperature performance, and the infrared low emissivity coating can function normally below 400 ° C, and the invention adopts the temperature resistant resin and the high temperature resistant pigment filler to make the infrared The temperature resistance of the coating reaches 400 °C.
  • the temperature-resistant infrared low emissivity coating prepared according to the preparation method provided by the invention can be applied to high temperature parts such as aircraft engine casing, wing tip and wing leading edge with higher temperature, and can also be used for ship and land use. Engine parts, chimneys, exhaust pipes, etc. It can significantly reduce the heat radiation rate of these parts and achieve the purpose of stealth camouflage.
  • the temperature-resistant infrared low emissivity coating of the invention can be used in the use environment below 400 ° C, and the camouflage stealth performance of the high temperature region of the equipment is effectively improved by selecting a suitable temperature resistant resin and high temperature resistant pigment filler. Resin is the basis of the coating system, which determines the basic properties of the coating. The selection of a suitable resin not only requires temperature resistance, but also requires good system compatibility with existing temperature-modified pigments.
  • FIG. 1 is a process flow of a method for preparing a temperature resistant infrared low emissivity coating in accordance with some embodiments of the present invention.
  • the preparation method of the temperature resistant infrared low emissivity coating provided by the invention comprises the following steps:
  • step S101 shown in FIG. 1 50-90 parts of the temperature resistant resin, 20-40 parts of aluminum powder, 2-4 parts of diatomaceous earth, and the high temperature resistant ceramic powder are uniformly mixed to obtain a preliminary slurry.
  • the high temperature resistant ceramic powder accounts for 3.5%-5.5% of the total mass of the preliminary slurry; preferably, 70 parts of the temperature resistant resin, 30 parts of the aluminum powder, 3 parts of the diatomaceous earth, and high temperature resistance are taken.
  • the ceramic powder is uniformly mixed to obtain a preliminary slurry in which the high temperature resistant ceramic powder accounts for 4.5% of the total mass of the preliminary slurry.
  • the temperature resistant resin is pure silicone resin, epoxy modified silicone resin, polyurethane modified silicone resin, polymethyl silicone resin, polymethylphenyl silicone resin, polyester modified silicone resin. a combination of one or more of them.
  • the high temperature resistant ceramic powder is a combination of one or more of alumina, zirconia, silicon carbide, silicon micropowder, and silicon nitride.
  • step S102 shown in FIG. 1 an appropriate amount of diluent is added to the preliminary slurry to adjust the viscosity of the preliminary slurry to 14-20 s, preferably 16 s, and the mixture is uniformly stirred to obtain a coating; the diluent is ethyl acetate.
  • the coating is sprayed on the alloy substrate to obtain a coating, and then naturally dried; specifically, the coating is sprayed on the alloy substrate, and then naturally dried for 46-50 hours, 110 Curing at -130 ° C for 0.3-1 hour.
  • the coating is sprayed onto a titanium alloy substrate and then naturally dried for 48 hours and cured at 120 ° C for 0.5 hours.
  • the alloy substrate is a combination of one or more of a titanium alloy, an aluminum alloy, a copper alloy, and a zinc alloy.
  • step S104 shown in Fig. 1 the coating was heated, and then the coating was cooled to room temperature to obtain a temperature-resistant infrared low emissivity coating.
  • the coating is heated to 350-450 ° C with a temperature increasing device, preferably, after 400 ° C, cooled to room temperature, the coating temperature resistance is tested, and the coating is tested with an emissivity meter at 3-5 ⁇ m and 8- Infrared emissivity in the 14 micron band.
  • the coating was heated to 400 ° C with a heating device and then cooled to room temperature to test the temperature resistance of the coating.
  • the emissivity meter was used to test the infrared emissivity of the coating in the 3-5 ⁇ m and 8-14 ⁇ m bands.
  • the coating was heated to 380 ° C with a heating device and then cooled to room temperature to test the temperature resistance of the coating.
  • the emissivity meter was used to test the infrared emissivity of the coating in the 3-5 ⁇ m and 8-14 ⁇ m bands.
  • the coating was heated to 420 ° C with a heating device and then cooled to room temperature to test the temperature resistance of the coating.
  • the infrared emissivity of the coating in the 3-5 ⁇ m and 8-14 ⁇ m bands was measured by an emissivity meter.
  • the coating was heated to 400 ° C with a heating device and then cooled to room temperature to test the temperature resistance of the coating.
  • the emissivity meter was used to test the infrared emissivity of the coating in the 3-5 ⁇ m and 8-14 ⁇ m bands.
  • the coating was heated to 400 ° C with a heating device and then cooled to room temperature to test the temperature resistance of the coating.
  • the emissivity meter was used to test the infrared emissivity of the coating in the 3-5 ⁇ m and 8-14 ⁇ m bands.
  • the coating was heated to 400 ° C with a heating device and then cooled to room temperature to test the temperature resistance of the coating.
  • the emissivity meter was used to test the infrared emissivity of the coating in the 3-5 ⁇ m and 8-14 ⁇ m bands.
  • the coating was heated to 400 ° C and then cooled to room temperature. This was carried out for 5 cycles to observe whether the coating was blistering or cracking, and then the coating was allowed to fall freely from the height of 1 m to the concrete floor to observe whether the coating was peeled off;
  • the 3-5 ⁇ m and 8-14 ⁇ m band emissivity tests were performed with an IR-2 type emissivity meter before and after 5 thermal cycles.
  • the temperature resistance and infrared emissivity of the coating prepared in Examples 1-6 were tested by the above methods, and the test results were as follows:
  • the temperature-resistant infrared low emissivity coating of the invention has high temperature resistance and can be used in an environment below 400 ° C.
  • the infrared emissivity is low in the 3-5 ⁇ m and 8-14 ⁇ m bands, and the stealth can be achieved.
  • the purpose of camouflage By selecting a suitable temperature-resistant resin and high-temperature-resistant pigment and filler, it can not only work at high temperatures, but also effectively enhance the camouflage stealth performance of equipment equipped in high temperature areas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

一种耐温型红外低发射率涂层的制备方法,包括:取耐温型树脂50-90份,铝粉20-40份,硅藻土2-4份,以及耐高温陶瓷粉混合均匀以得到初步浆料,其中,按照质量百分比计,耐高温陶瓷粉占初步浆料总质量的3.5%-5.5%;向初步浆料中加入适量的稀释剂,搅拌均匀得到涂料;将涂料喷涂在合金基板上以得到涂层,然后自然表干;以及加热涂层,然后将涂层冷却至室温,得到耐温型红外低发射率涂层。

Description

一种耐温型红外低发射率涂层及其制备方法 技术领域
本发明属于功能涂层材料技术领域,更具体地,涉及一种耐温型红外低发射率涂层及其制备方法。
背景技术
红外探测器对目标的3μm-5μm和8μm-14μm波段红外信号进行收集,再利用目标与背景的红外辐射能量差异通过成像来识别目标。降低目标表面温度能够使目标与背景的辐射强度相近,同时在高温部件上涂敷低发射率功能涂层也是有效措施之一。
低发射率功能涂层一般由黏合剂和填料组成,分为有机体系和无机体系两类。现有红外低发射率涂层耐温性能多在200℃以下,而无机涂层能够耐受较高温度但是发射率普遍偏高,无法实现红外涂层在中高温工况下应用,但是能在400℃以上工作的有机涂层几乎没有,因此不适合飞行器上苛刻的使用环境。此外,现有方案在温度升至200℃以上时,涂层会开裂、变色、低发射率性能急剧下降,不能满足要求。
因此,设计一种具有使用温度高、性能稳定、红外发射率低的新型涂层,将具有重要意义。
发明内容
为了解决现有技术中的不足,本发明提供了一种耐温型红外低发射率涂层及其制备方法以解决现有红外低发射率涂层耐中高温性能差的问题,实现红外低发射率涂层能够在400℃以下正常发挥作用。
根据本发明的一个方面,提供了一种耐温型红外低发射率涂层的制备方法,包括:取耐温型树脂50-90份,铝粉20-40份,硅藻土2-4份,以及耐高温陶瓷粉混合均匀以得到初步浆料,其中,按照质量百分比计,所述 耐高温陶瓷粉占所述初步浆料总质量的3.5%-5.5%;向所述初步浆料中加入适量的稀释剂,搅拌均匀得到涂料;将所述涂料喷涂在合金基板上以得到涂层,然后自然表干;以及加热所述涂层,然后将所述涂层冷却至室温,得到所述耐温型红外低发射率涂层。
在上述制备方法中,所述耐温型树脂为纯有机硅树脂、环氧改性有机硅树脂、聚氨酯改性有机硅树脂、聚甲基有机硅树脂、聚甲基苯基有机硅树脂、聚酯改性有机硅树脂中的一种或者多种的组合。
在上述制备方法中,所述耐高温陶瓷粉为氧化铝、氧化锆、碳化硅、硅微粉、氮化硅中的一种或者多种的组合。
在上述制备方法中,所述稀释剂为乙酸乙酯,二甲苯,乙酸丁酯,乙酸甲酯,环己酮中的一种或者多种的组合。
在上述制备方法中,所述合金基板为钛合金、铝合金、铜合金、锌合金中的一种或者多种的组合。
在上述制备方法中,制备所述初步浆料的步骤进一步包括:取耐温型树脂70份,铝粉30份,硅藻土3份,以及耐高温陶瓷粉混合均匀以得到所述初步浆料,将所述初步浆料静置0.5-2小时,然后用实验室高速分散机充分搅拌均匀,其中,按照质量百分比计,所述耐高温陶瓷粉占所述初步浆料的总质量的4.5%。
在上述制备方法中,在将所述涂料喷涂在合金基板上以得到涂层,然后自然表干的步骤进一步包括:将所述涂料喷涂在钛合金基板上,然后自然表干46-50小时,在110-130℃的温度下固化0.3-1小时。
在上述制备方法中,在将所述涂料喷涂在合金基板上以得到涂层,然后自然表干的步骤进一步包括:将所述涂料喷涂在钛合金基板上,然后自然表干48小时,在120℃的温度下固化0.5小时。
在上述制备方法中,加热所述涂层,然后将所述涂层冷却至室温,得到所述耐温型红外低发射率涂层的步骤进一步包括:用升温装置将所述涂层加热至350-450℃后,冷却至室温,测试涂层耐温性能,用发射率测量仪测试涂层在3-5微米和8-14微米波段红外发射率。
在上述制备方法中,加热所述涂层,然后将所述涂层冷却至室温,得 到所述耐温型红外低发射率涂层的步骤进一步包括:用升温装置将所述涂层加热至400℃后,冷却至室温,测试涂层耐温性能,用发射率测量仪测试涂层在3-5微米和8-14微米波段红外发射率。
根据本发明的另一方面,还提供了一种根据上述制备方法制得的耐温型红外低发射率涂层。
本发明解决了现有红外低发射率涂层耐中高温性能差的问题,为了实现红外低发射率涂层能够在400℃以下正常发挥作用,本发明采用耐温树脂和耐高温颜填料使红外涂层的耐温性能达到400℃。
根据本发明提供的制备方法制备的耐温型红外低发射率涂层能够应用于具有较高温度的飞行器发动机外壳、翼尖和机翼前缘等高温部件,也能用于舰船和陆用装备的发动机部位、烟囱、排气管等。能够显著降低这些部位的热辐射率,达到隐身伪装的目的。本发明耐温型红外低发射率涂层能够用于400℃以下的使用环境,通过选择合适的耐温型树脂和耐高温颜填料,有效提升了装备高温区域的伪装隐身性能。树脂是涂层体系的基础,决定了涂层的基础性能,选用合适的树脂不仅要求能够耐温,而且要求能够与现有温度改性颜填料具有良好的体系相容性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明的一些实施例的用于制备耐温型红外低发射率涂层的方法的工艺流程。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其 他实施例,都属于本发明保护的范围。
本发明提供的耐温型红外低发射率涂层的制备方法,包括以下步骤:
如图1中所示的步骤S101所示,取耐温型树脂50-90份,铝粉20-40份,硅藻土2-4份,以及耐高温陶瓷粉混合均匀以得到初步浆料,其中,按照质量百分比计,耐高温陶瓷粉占初步浆料的总质量的3.5%-5.5%;优选地,取耐温型树脂70份,铝粉30份,硅藻土3份,以及耐高温陶瓷粉混合均匀以得到初步浆料,其中,按照质量百分比计,耐高温陶瓷粉占初步浆料的总质量的4.5%。其中,耐温型树脂为纯有机硅树脂、环氧改性有机硅树脂、聚氨酯改性有机硅树脂、聚甲基有机硅树脂、聚甲基苯基有机硅树脂、聚酯改性有机硅树脂中的一种或者多种的组合。耐高温陶瓷粉为氧化铝、氧化锆、碳化硅、硅微粉、氮化硅中的一种或者多种的组合。
如图1中所示的步骤S102所示,向初步浆料中加入适量的稀释剂以便将初步浆料的粘度调整为14-20s,优选为16s,搅拌均匀得到涂料;稀释剂为乙酸乙酯、二甲苯、乙酸丁酯、乙酸甲酯、环己酮中的一种或者多种的组合。
如图1中所示的步骤S103所示,将涂料喷涂在合金基板上以得到涂层,然后自然表干;具体地,将涂料喷涂在合金基板上,然后自然表干46-50小时,110-130℃固化0.3-1小时。优选地,将涂料喷涂在钛合金基板上,然后自然表干48小时,120℃固化0.5小时。合金基板为钛合金、铝合金、铜合金、锌合金中的一种或者多种的组合。
如图1中所示的步骤S104所示,加热涂层,然后将涂层冷却至室温,得到耐温型红外低发射率涂层。具体地,用升温装置将涂层加热至350-450℃,优选地,400℃后,冷却至室温,测试涂层耐温性能,用发射率测量仪测试涂层在3-5微米和8-14微米波段红外发射率。
实施例1
1、取70g聚甲基有机硅树脂,加入30g铝粉和3g硅藻土、4.5%耐高温氧化铝陶瓷粉后静置0.5-2h,然后用实验室高速分散机充分搅拌均匀;
2、加入适量的稀释剂乙酸乙酯,调整粘度至16s;
3、在钛合金基板上喷涂涂层,然后自然表干48h,120℃固化0.5h;
4、用升温装置将涂层加热至400℃后冷却至室温,测试涂层耐温性能,用发射率测量仪测试涂层在3-5μm和8-14μm波段红外发射率。
实施例2
1、取50g环氧改性有机硅树脂,加入30g铝粉和4g硅藻土、3.5%耐高温氧化锆陶瓷粉后静置0.5h,然后用实验室高速分散机充分搅拌均匀;
2、加入适量的稀释剂乙酸丁酯,调整粘度至16s;
3、在铝合金基板上喷涂涂层,然后自然表干50h,120℃固化0.5h;
4、用升温装置将涂层加热至380℃后冷却至室温,测试涂层耐温性能,用发射率测量仪测试涂层在3-5μm和8-14μm波段红外发射率。
实施例3
1、取90g纯有机硅树脂,加入50g铝粉和5g硅藻土、5.5%耐高温碳化硅陶瓷粉后静置2h,然后用实验室高速分散机充分搅拌均匀;
2、加入适量的稀释剂环己酮,调整粘度至14s;
3、在锌合金基板上喷涂涂层,然后自然表干48h,100℃固化1h;
4、用升温装置将涂层加热至420℃后冷却至室温,测试涂层耐温性能,用发射率测量仪测试涂层在3-5μm和8-14μm波段红外发射率。
实施例4
1、取80g聚氨酯改性有机硅树脂,加入25g铝粉和5g硅藻土、3.5%耐高温硅微粉陶瓷粉后静置1h,然后用实验室篮式充分搅拌均匀;
2、加入适量的稀释剂乙酸甲酯,调整粘度至15s;
3、在钛合金基板上喷涂涂层,然后自然表干46h,110℃固化0.3h;
4、用升温装置将涂层加热至400℃后冷却至室温,测试涂层耐温性能,用发射率测量仪测试涂层在3-5μm和8-14μm波段红外发射率。
实施例5
1、取60g聚甲基苯基有机硅树脂,加入20g铝粉和2g硅藻土、3.5%耐高温氧化铝陶瓷粉后静置0.5h,然后用实验室篮式充分搅拌均匀;
2、加入适量的稀释剂二甲苯,调整粘度至18s;
3、在钛合金基板上喷涂涂层,然后自然表干46h,130℃固化0.8h;
4、用升温装置将涂层加热至400℃后冷却至室温,测试涂层耐温性能,用发射率测量仪测试涂层在3-5μm和8-14μm波段红外发射率。
实施例6
1、取80g聚酯改性有机硅树脂,加入35g铝粉和4g硅藻土、5%耐高温氮化硅陶瓷粉后静置1.5h,然后用实验室篮式充分搅拌均匀;
2、加入适量的稀释剂乙酸乙酯,调整粘度至16s;
3、在钛合金基板上喷涂涂层,然后自然表干48h,110℃固化0.7h;
4、用升温装置将涂层加热至400℃后冷却至室温,测试涂层耐温性能,用发射率测量仪测试涂层在3-5μm和8-14μm波段红外发射率。
将涂层升温至400℃然后冷却至室温,如此进行5个循环,观察涂层是否有起泡、开裂,然后让涂层由1m高处自由下落至水泥地面,观察涂层是否有脱落情况;用IR-2型发射率测量仪在升温前和5次热循环后进行3-5μm和8-14μm波段发射率测试。通过上述方法测试得实施例1-6中制备得到的涂层的耐温性能和红外发射率,测试结果如下:
Figure PCTCN2018083681-appb-000001
以上实验结果表明,本发明耐温型红外低发射率涂层耐温性能高,可以用于400℃以下的使用环境,此外,在3-5μm和8-14μm波段红外发射率低,可以达到隐身伪装的目的。通过选择合适的耐温型树脂和耐高温颜填料,不仅可以在高温下工作,还有效提升了装备在高温区域的伪装隐身性能。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种耐温型红外低发射率涂层的制备方法,其特征在于,包括:
    取耐温型树脂50-90份,铝粉20-40份,硅藻土2-4份,以及耐高温陶瓷粉混合均匀以得到初步浆料,其中,按照质量百分比计,所述耐高温陶瓷粉占所述初步浆料总质量的3.5%-5.5%;
    向所述初步浆料中加入适量的稀释剂,搅拌均匀得到涂料;
    将所述涂料喷涂在合金基板上以得到涂层,然后自然表干;以及
    加热所述涂层,然后将所述涂层冷却至室温,得到所述耐温型红外低发射率涂层。
  2. 根据权利要求1所述的制备方法,其特征在于,所述耐温型树脂为纯有机硅树脂、环氧改性有机硅树脂、聚氨酯改性有机硅树脂、聚甲基有机硅树脂、聚甲基苯基有机硅树脂、聚酯改性有机硅树脂中的一种或者多种的组合。
  3. 根据权利要求1所述的制备方法,其特征在于,所述耐高温陶瓷粉为氧化铝、氧化锆、碳化硅、硅微粉、氮化硅中的一种或者多种的组合。
  4. 根据权利要求1所述的制备方法,其特征在于,所述稀释剂为乙酸乙酯、二甲苯、乙酸丁酯、乙酸甲酯、环己酮中的一种或者多种的组合。
  5. 根据权利要求1所述的制备方法,其特征在于,所述合金基板为钛合金、铝合金、铜合金、锌合金中的一种或者多种的组合。
  6. 根据权利要求1所述的制备方法,其特征在于,制备所述初步浆料的步骤进一步包括:
    取耐温型树脂70份,铝粉30份,硅藻土3份,以及耐高温陶瓷粉混合均匀以得到所述初步浆料,将所述初步浆料静置0.5-2小时,然后用实验室高速分散机充分搅拌均匀,其中,按照质量百分比计,所述耐高温陶瓷粉占所述初步浆料的总质量的4.5%。
  7. 根据权利要求1所述的制备方法,其特征在于,在将所述涂料喷涂在合金基板上以得到涂层,然后自然表干的步骤进一步包括:
    将所述涂料喷涂在钛合金基板上,然后自然表干46-50小时,在110-130℃ 的温度下固化0.3-1小时。
  8. 根据权利要求1所述的制备方法,其特征在于,在将所述涂料喷涂在合金基板上以得到涂层,然后自然表干的步骤进一步包括:将所述涂料喷涂在钛合金基板上,然后自然表干48小时,在120℃的温度下固化0.5小时。
  9. 根据权利要求1所述的制备方法,其特征在于,加热所述涂层,然后将所述涂层冷却至室温,得到所述耐温型红外低发射率涂层的步骤进一步包括:
    用升温装置将所述涂层加热至350-450℃后,冷却至室温,测试涂层耐温性能,用发射率测量仪测试涂层在3-5微米和8-14微米波段红外发射率。
  10. 根据权利要求1所述的制备方法,其特征在于,加热所述涂层,然后将所述涂层冷却至室温,得到所述耐温型红外低发射率涂层的步骤进一步包括:
    用升温装置将所述涂层加热至400℃后,冷却至室温,测试涂层耐温性能,用发射率测量仪测试涂层在3-5微米和8-14微米波段红外发射率。
  11. 一种根据权利要求1-10中任一项所述的制备方法制得的耐温型红外低发射率涂层。
PCT/CN2018/083681 2017-06-27 2018-04-19 一种耐温型红外低发射率涂层及其制备方法 WO2019001103A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710500416.3 2017-06-27
CN201710500416.3A CN109423196A (zh) 2017-06-27 2017-06-27 一种耐温型红外低发射率涂层及其制备方法

Publications (1)

Publication Number Publication Date
WO2019001103A1 true WO2019001103A1 (zh) 2019-01-03

Family

ID=64741003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083681 WO2019001103A1 (zh) 2017-06-27 2018-04-19 一种耐温型红外低发射率涂层及其制备方法

Country Status (2)

Country Link
CN (1) CN109423196A (zh)
WO (1) WO2019001103A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111560219A (zh) * 2020-06-28 2020-08-21 潮州市泥香陶瓷新材料有限公司 一种隔热效果好的纳米陶瓷涂料
CN112708339A (zh) * 2021-01-22 2021-04-27 泰州市华润纺织品有限公司 一种光学红外多波段伪装涂料及制备方法
CN114773690A (zh) * 2022-03-23 2022-07-22 上海交通大学 有机大分子修饰的二维纳米片复合材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111560218A (zh) * 2020-05-28 2020-08-21 电子科技大学 一种热膨胀匹配的红外低发射率涂料及其制备方法和涂层

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618157A (zh) * 2012-03-23 2012-08-01 电子科技大学 一种红外低发射率涂料及其制备方法
CN106634503A (zh) * 2016-10-13 2017-05-10 滁州学院 高耐润滑油性能近红外低反射与8~14μm低发射率兼容涂料与涂层的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102464933A (zh) * 2010-11-18 2012-05-23 沈阳理工大学 纤维增强耐高温隔热保温陶瓷涂料及其制备方法
CN102925056B (zh) * 2012-10-26 2015-08-26 中国第一汽车股份有限公司 一种应用于越野车排气系统的迷彩涂敷工艺

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618157A (zh) * 2012-03-23 2012-08-01 电子科技大学 一种红外低发射率涂料及其制备方法
CN106634503A (zh) * 2016-10-13 2017-05-10 滁州学院 高耐润滑油性能近红外低反射与8~14μm低发射率兼容涂料与涂层的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HU , CHEN: "Research on Thermal Resistance Coatings with Low Infrared Emissivity in Science -Engineering (A", CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 June 2011 (2011-06-15), pages 21 - 27,41, 50 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111560219A (zh) * 2020-06-28 2020-08-21 潮州市泥香陶瓷新材料有限公司 一种隔热效果好的纳米陶瓷涂料
CN112708339A (zh) * 2021-01-22 2021-04-27 泰州市华润纺织品有限公司 一种光学红外多波段伪装涂料及制备方法
CN112708339B (zh) * 2021-01-22 2022-08-26 泰州市华润纺织品有限公司 一种光学红外多波段伪装涂料及制备方法
CN114773690A (zh) * 2022-03-23 2022-07-22 上海交通大学 有机大分子修饰的二维纳米片复合材料及其制备方法
CN114773690B (zh) * 2022-03-23 2023-02-07 上海交通大学 有机大分子修饰的二维纳米片复合材料及其制备方法

Also Published As

Publication number Publication date
CN109423196A (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
WO2019001103A1 (zh) 一种耐温型红外低发射率涂层及其制备方法
CN107182139B (zh) 一种金属膜多孔陶瓷发热体及其应用
US11549169B2 (en) Method for fabricating thermal barrier coating having self-repair and temperature-sensitive functions
CN104059450A (zh) 一种耐高温散热涂料
CN104342017A (zh) 一种耐高温复合涂料的制备方法
CN108441002A (zh) 无机耐高温涂料及无机耐高温涂料的制备方法
CN109486319A (zh) 一种散热涂料及其制备方法
CN106497313B (zh) 一种耐高温吸波涂层及其应用
CN107201168A (zh) 一种附着力高的耐磨耐高温涂料
CN101824275B (zh) 耐400℃-0℃高低温交替瞬变特种涂层
US20230416564A1 (en) Phosphate coating resistant to 1,800 degrees celsius for heat insulation and fireproofing and preparation method thereof
CN104232017A (zh) 一种可室温固化的陶瓷先驱体粘结剂的制备方法
CN103881436A (zh) 一种苯胺甲醛树脂led散热涂料及其制备方法
CN110591423B (zh) 应用于9CrMoCoB钢热加工的抗氧化涂料和使用方法
CN103351772B (zh) 一种耐酸碱散热涂料及其制备方法
CN104098936B (zh) 一种高发射红外节能辐射涂层的制备方法
CN105778674B (zh) 一种用于led灯的丙烯酸涂料及其制备方法
CN106700917A (zh) 一种高辐射率耐高温防腐蚀涂料及其制备方法
CN111856623A (zh) 一种可见光-红外兼容隐身材料及其制备方法
CN105860828B (zh) 快速修复防热材料及其制备方法
CN111269592A (zh) 一种散热涂层组合物
CN103351785A (zh) 一种耐高温散热涂料及其制备方法
CN109868058A (zh) 非对称中空锆酸镧微球增强硅橡胶隔热涂料及其应用
CN110342916A (zh) 耐高温高辐射的粉料、其制备、包含其的涂层浆料、涂层及应用
CN103131293A (zh) 飞行器用碳纳米管改性耐高温透波涂料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823578

Country of ref document: EP

Kind code of ref document: A1